1
|
Noda H, Guo J, Khatri A, Dean T, Reyes M, Armanini M, Brooks DJ, Martins JS, Schipani E, Bouxsein ML, Demay MB, Potts JT, Jüppner H, Gardella TJ. An Inverse Agonist Ligand of the PTH Receptor Partially Rescues Skeletal Defects in a Mouse Model of Jansen's Metaphyseal Chondrodysplasia. J Bone Miner Res 2020; 35:540-549. [PMID: 31693237 PMCID: PMC8050614 DOI: 10.1002/jbmr.3913] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 10/14/2019] [Accepted: 10/24/2019] [Indexed: 01/09/2023]
Abstract
Jansen's metaphyseal chondrodysplasia (JMC) is a rare disease of bone and mineral ion physiology that is caused by activating mutations in PTHR1. Ligand-independent signaling by the mutant receptors in cells of bone and kidney results in abnormal skeletal growth, excessive bone turnover, and chronic hypercalcemia and hyperphosphaturia. Clinical features further include short stature, limb deformities, nephrocalcinosis, and progressive losses in kidney function. There is no effective treatment option available for JMC. In previous cell-based assays, we found that certain N-terminally truncated PTH and PTHrP antagonist peptides function as inverse agonists and thus can reduce the high rates of basal cAMP signaling exhibited by the mutant PTHR1s of JMC in vitro. Here we explored whether one such inverse agonist ligand, [Leu11 ,dTrp12 ,Trp23 ,Tyr36 ]-PTHrP(7-36)NH2 (IA), can be effective in vivo and thus ameliorate the skeletal abnormalities that occur in transgenic mice expressing the PTHR1-H223R allele of JMC in osteoblastic cells via the collagen-1α1 promoter (C1HR mice). We observed that after 2 weeks of twice-daily injection and relative to vehicle controls, the IA analog resulted in significant improvements in key skeletal parameters that characterize the C1HR mice, because it reduced the excess trabecular bone mass, bone marrow fibrosis, and levels of bone turnover markers in blood and urine. The overall findings provide proof-of-concept support for the notion that inverse agonist ligands targeted to the mutant PTHR1 variants of JMC can have efficacy in vivo. Further studies of such PTHR1 ligand analogs could help open paths toward the first treatment option for this debilitating skeletal disorder. © 2019 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Hiroshi Noda
- Endocrine Unit, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, USA
| | - Jun Guo
- Endocrine Unit, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, USA
| | - Ashok Khatri
- Endocrine Unit, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, USA
| | - Thomas Dean
- Endocrine Unit, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, USA
| | - Monica Reyes
- Endocrine Unit, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, USA
| | - Michael Armanini
- Endocrine Unit, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, USA.,Department of Orthopedic Surgery, Harvard Medical School, Boston, MA, USA.,Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Daniel J Brooks
- Endocrine Unit, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, USA.,Department of Orthopedic Surgery, Harvard Medical School, Boston, MA, USA.,Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Janaina S Martins
- Endocrine Unit, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, USA
| | | | - Mary L Bouxsein
- Endocrine Unit, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, USA.,Department of Orthopedic Surgery, Harvard Medical School, Boston, MA, USA.,Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Marie B Demay
- Endocrine Unit, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, USA
| | - John T Potts
- Endocrine Unit, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, USA
| | - Harald Jüppner
- Endocrine Unit, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, USA
| | - Thomas J Gardella
- Endocrine Unit, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
2
|
Chakraborty C, Sharma AR, Sharma G, Bhattacharya M, Lee SS. Insight into Evolution and Conservation Patterns of B1-Subfamily Members of GPCR. Int J Pept Res Ther 2020; 26:2505-2517. [PMID: 32421105 PMCID: PMC7223794 DOI: 10.1007/s10989-020-10043-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2020] [Indexed: 11/25/2022]
Abstract
The diverse, evolutionary architectures of proteins can be regarded as molecular fossils, tracing a historical path that marks important milestones across life. The B1-subfamily of GPCRs (G-protein-coupled receptors) are medically significant proteins that comprise 15 transmembrane receptor proteins in Homo sapiens. These proteins control the intracellular concentration of cyclic AMP as well as various vital processes in the body. However, little is known about the evolutionary correlation and conservational blueprint of this GPCR subfamily. We performed a comprehensive analysis to understand the evolutionary architecture among 13 members of the B1-subfamily. Multiple sequence alignment analysis exhibited six multiple sequence aligned blocks and five highly aligned blocks. Molecular phylogenetics indicated that CRHR1 and CRHR2 share a typical ancestral relationship and are siblings in 100% bootstrap replications with a total of 24 nodes observed in the cladogram. CRHR2 has the maximum number of extremely conserved amino acids followed by ADCYAP1R1. The longest continuous number sequence logos (74) were found between sequence location 349 and 423, and consequently, the maximum and minimum logo height recorded was 3.6 bits and 0.18 bits, respectively. Finally, to understand the model and pattern of evolutionary relatedness, the conservation blueprint, and the diversification among the members of a protein family, GPCR distribution from several species throughout the animal kingdom was analysed. Together, the study provides an evolutionary insight and offers a rapid method to explore the potential of depicting the evolutionary relationship, conservation blueprint, and diversification among the B1-subfamily of GPCRs using bioinformatics, algorithm analysis, and mathematical models.
Collapse
Affiliation(s)
- Chiranjib Chakraborty
- Adamas University, North, 24 Parganas, Kolkata, 700126 West Bengal India
- Institute for Skeletal Aging & Orthopedic Surgery, Chuncheon Sacred Heart Hospital, Hallym University, Chuncheon, 24252 Republic of Korea
| | - Ashish Ranjan Sharma
- Institute for Skeletal Aging & Orthopedic Surgery, Chuncheon Sacred Heart Hospital, Hallym University, Chuncheon, 24252 Republic of Korea
| | - Garima Sharma
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chuncheon, 24341 Republic of Korea
| | - Manojit Bhattacharya
- Institute for Skeletal Aging & Orthopedic Surgery, Chuncheon Sacred Heart Hospital, Hallym University, Chuncheon, 24252 Republic of Korea
| | - Sang-Soo Lee
- Institute for Skeletal Aging & Orthopedic Surgery, Chuncheon Sacred Heart Hospital, Hallym University, Chuncheon, 24252 Republic of Korea
| |
Collapse
|
3
|
Sahbani K, Cardozo CP, Bauman WA, Tawfeek HA. Abaloparatide exhibits greater osteoanabolic response and higher cAMP stimulation and β-arrestin recruitment than teriparatide. Physiol Rep 2019; 7:e14225. [PMID: 31565870 PMCID: PMC6766518 DOI: 10.14814/phy2.14225] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 08/16/2019] [Indexed: 12/26/2022] Open
Abstract
Teriparatide and abaloparatide are parathyroid hormone receptor 1 (PTHR1) analogs with unexplained differential efficacy for the treatment of osteoporosis. Therefore, we compared the effects of abaloparatide and teriparatide on bone structure, turnover, and levels of receptor activator of nuclear factor-kappa B ligand (RANKL) and osteoprotegerin (OPG). Wild-type (WT) female mice were injected daily with vehicle or 20-80 µg/kg/day of teriparatide or abaloparatide for 30 days. Femurs and spines were examined by microcomputed tomography scanning and serum levels of bone turnover markers, RANKL, and OPG, were measured by ELISA. Both analogs similarly increased the distal femoral fractional trabecular bone volume, connectivity, and number, and reduced the structure model index (SMI) at 20-80 µg/kg/day doses. However, only abaloparatide exhibited a significant increase (13%) in trabecular thickness at 20 µg/kg/day dose. Femoral cortical evaluation showed that abaloparatide caused a greater dose-dependent increase in cortical thickness than teriparatide. Both teriparatide and abaloparatide increased lumbar 5 vertebral trabecular connectivity but had no or modest effect on other indices. Biochemical analysis demonstrated that abaloparatide promoted greater elevation of procollagen type 1 intact N-terminal propeptide, a bone formation marker, and tartrate-resistant acid phosphatase 5b levels, a bone resorption marker, and lowered the RANKL/OPG ratio. Furthermore, PTHR1 signaling was compared in cells treated with 0-100 nmol/L analog. Interestingly, abaloparatide had a markedly lower EC50 for cAMP formation (2.3-fold) and β-arrestin recruitment (1.6-fold) than teriparatide. Therefore, abaloparatide-improved efficacy can be attributed to enhanced bone formation and cortical structure, reduced RANKL/OPG ratio, and amplified Gs-cAMP and β-arrestin signaling.
Collapse
Affiliation(s)
- Karim Sahbani
- National Center for the Medical Consequences of Spinal Cord InjuryJames J. Peters Veterans Affairs Medical CenterBronxNew York
| | - Christopher P. Cardozo
- National Center for the Medical Consequences of Spinal Cord InjuryJames J. Peters Veterans Affairs Medical CenterBronxNew York
- Department of MedicineThe Icahn School of Medicine at Mount SinaiNew YorkNew York
- Department of Rehabilitation MedicineThe Icahn School of Medicine at Mount SinaiNew YorkNew York
- Department of Pharmacologic ScienceThe Icahn School of Medicine at Mount SinaiNew YorkNew York
| | - William A. Bauman
- National Center for the Medical Consequences of Spinal Cord InjuryJames J. Peters Veterans Affairs Medical CenterBronxNew York
- Department of MedicineThe Icahn School of Medicine at Mount SinaiNew YorkNew York
| | - Hesham A. Tawfeek
- National Center for the Medical Consequences of Spinal Cord InjuryJames J. Peters Veterans Affairs Medical CenterBronxNew York
- Department of MedicineThe Icahn School of Medicine at Mount SinaiNew YorkNew York
| |
Collapse
|
4
|
Moirangthem A, Narayanan DL, Jacob P, Nishimura G, Mortier G, Girisha KM. Report of second case and clinical and molecular characterization of Eiken syndrome. Clin Genet 2018; 94:457-460. [PMID: 29987841 DOI: 10.1111/cge.13413] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 07/04/2018] [Accepted: 07/06/2018] [Indexed: 11/29/2022]
Abstract
We report a boy with Eiken syndrome caused by a homozygous missense variant in Parathyroid hormone 1 receptor (PTH1R) c.103G > A [p.(Glu35Lys)]. Eiken syndrome is a very rare skeletal dysplasia due to bi-allelic variants in PTH1R. Only one affected family has been known to-date. The hallmarks include delayed ossification of bone including the epiphyses, pubic symphysis, and primary ossification centers of the short tubular bones, coarse bone trabeculae, and modeling abnormalities. The phenotype being described here recapitulates the delayed ossification and modeling abnormalities of Eiken syndrome. In addition, supernumerary epiphyses of the tubular bones of the hands and primary failure of eruption of teeth were observed in our proband. This report characterizes Eiken syndrome and confirms that bi-allelic hypomorphic variants in PTH1R are probably to cause this condition.
Collapse
Affiliation(s)
- A Moirangthem
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - D L Narayanan
- Department of Medical Genetics, Nizam's Institute of Medical Sciences, Hyderabad, India
| | - P Jacob
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - G Nishimura
- Center for Intractable Diseases, Saitama Medical University Hospital, Saitama, Japan
| | - G Mortier
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - K M Girisha
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
5
|
Tascau L, Gardner T, Anan H, Yongpravat C, Cardozo CP, Bauman WA, Lee FY, Oh DS, Tawfeek HA. Activation of Protein Kinase A in Mature Osteoblasts Promotes a Major Bone Anabolic Response. Endocrinology 2016; 157:112-26. [PMID: 26488807 DOI: 10.1210/en.2015-1614] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Protein kinase A (PKA) regulates osteoblast cell function in vitro and is activated by important bone mass modulating agents. We determined whether PKA activation in osteoblasts is sufficient to mediate a bone anabolic response. Thus, a mouse model conditionally expressing a constitutively active PKA (CA-PKA) in osteoblasts (CA-PKA-OB mouse) was developed by crossing a 2.3-kb α1 (I)-collagen promoter-Cre mouse with a floxed-CA-PKA mouse. Primary osteoblasts from the CA-PKA-OB mice exhibited higher basal PKA activity than those from control mice. Microcomputed tomographic analysis revealed that CA-PKA-OB female mice had an 8.6-fold increase in femoral but only 1.16-fold increase in lumbar 5 vertebral bone volume/total volume. Femur cortical thickness and volume were also higher in the CA-PKA-OB mice. In contrast, alterations in many femoral microcomputed tomographic parameters in male CA-PKA-OB mice were modest. Interestingly, the 3-dimensional structure model index was substantially lower both in femur and lumbar 5 of male and female CA-PKA-OB mice, reflecting an increase in the plate to rod-like structure ratio. In agreement, femurs from female CA-PKA-OB mice had greater load to failure and were stiffer compared with those of control mice. Furthermore, the CA-PKA-OB mice had higher levels of serum bone turnover markers and increased osteoblast and osteoclast numbers per total tissue area compared with control animals. In summary, constitutive activation of PKA in osteoblasts is sufficient to increase bone mass and favorably modify bone architecture and improve mechanical properties. PKA activation in mature osteoblasts is, therefore, an important target for designing anabolic drugs for treating diseases with bone loss.
Collapse
Affiliation(s)
- Liana Tascau
- National Center for the Medical Consequences of Spinal Cord Injury (C.P.C., W.A.B., H.A.T.), James J. Peters VA Medical Center, Bronx, New York 10468; Center for Orthopaedic Research (T.G., C.Y., F.Y.L.), College of Dental Medicine (D.S.O.), and Department of Molecular Medicine (L.T.), Columbia University, and Departments of Medicine (C.P.C., W.A.B., H.A.T.), Rehabilitation Medicine (C.P.C., W.A.B.), and Pharmacology and Systems Therapeutics (C.P.C.), The Icahn School of Medicine at Mount Sinai, New York, New York 10029; and Sacred Heart Hospital/Temple University (H.A.), Allentown, Pennsylvania 16102
| | - Thomas Gardner
- National Center for the Medical Consequences of Spinal Cord Injury (C.P.C., W.A.B., H.A.T.), James J. Peters VA Medical Center, Bronx, New York 10468; Center for Orthopaedic Research (T.G., C.Y., F.Y.L.), College of Dental Medicine (D.S.O.), and Department of Molecular Medicine (L.T.), Columbia University, and Departments of Medicine (C.P.C., W.A.B., H.A.T.), Rehabilitation Medicine (C.P.C., W.A.B.), and Pharmacology and Systems Therapeutics (C.P.C.), The Icahn School of Medicine at Mount Sinai, New York, New York 10029; and Sacred Heart Hospital/Temple University (H.A.), Allentown, Pennsylvania 16102
| | - Hussein Anan
- National Center for the Medical Consequences of Spinal Cord Injury (C.P.C., W.A.B., H.A.T.), James J. Peters VA Medical Center, Bronx, New York 10468; Center for Orthopaedic Research (T.G., C.Y., F.Y.L.), College of Dental Medicine (D.S.O.), and Department of Molecular Medicine (L.T.), Columbia University, and Departments of Medicine (C.P.C., W.A.B., H.A.T.), Rehabilitation Medicine (C.P.C., W.A.B.), and Pharmacology and Systems Therapeutics (C.P.C.), The Icahn School of Medicine at Mount Sinai, New York, New York 10029; and Sacred Heart Hospital/Temple University (H.A.), Allentown, Pennsylvania 16102
| | - Charlie Yongpravat
- National Center for the Medical Consequences of Spinal Cord Injury (C.P.C., W.A.B., H.A.T.), James J. Peters VA Medical Center, Bronx, New York 10468; Center for Orthopaedic Research (T.G., C.Y., F.Y.L.), College of Dental Medicine (D.S.O.), and Department of Molecular Medicine (L.T.), Columbia University, and Departments of Medicine (C.P.C., W.A.B., H.A.T.), Rehabilitation Medicine (C.P.C., W.A.B.), and Pharmacology and Systems Therapeutics (C.P.C.), The Icahn School of Medicine at Mount Sinai, New York, New York 10029; and Sacred Heart Hospital/Temple University (H.A.), Allentown, Pennsylvania 16102
| | - Christopher P Cardozo
- National Center for the Medical Consequences of Spinal Cord Injury (C.P.C., W.A.B., H.A.T.), James J. Peters VA Medical Center, Bronx, New York 10468; Center for Orthopaedic Research (T.G., C.Y., F.Y.L.), College of Dental Medicine (D.S.O.), and Department of Molecular Medicine (L.T.), Columbia University, and Departments of Medicine (C.P.C., W.A.B., H.A.T.), Rehabilitation Medicine (C.P.C., W.A.B.), and Pharmacology and Systems Therapeutics (C.P.C.), The Icahn School of Medicine at Mount Sinai, New York, New York 10029; and Sacred Heart Hospital/Temple University (H.A.), Allentown, Pennsylvania 16102
| | - William A Bauman
- National Center for the Medical Consequences of Spinal Cord Injury (C.P.C., W.A.B., H.A.T.), James J. Peters VA Medical Center, Bronx, New York 10468; Center for Orthopaedic Research (T.G., C.Y., F.Y.L.), College of Dental Medicine (D.S.O.), and Department of Molecular Medicine (L.T.), Columbia University, and Departments of Medicine (C.P.C., W.A.B., H.A.T.), Rehabilitation Medicine (C.P.C., W.A.B.), and Pharmacology and Systems Therapeutics (C.P.C.), The Icahn School of Medicine at Mount Sinai, New York, New York 10029; and Sacred Heart Hospital/Temple University (H.A.), Allentown, Pennsylvania 16102
| | - Francis Y Lee
- National Center for the Medical Consequences of Spinal Cord Injury (C.P.C., W.A.B., H.A.T.), James J. Peters VA Medical Center, Bronx, New York 10468; Center for Orthopaedic Research (T.G., C.Y., F.Y.L.), College of Dental Medicine (D.S.O.), and Department of Molecular Medicine (L.T.), Columbia University, and Departments of Medicine (C.P.C., W.A.B., H.A.T.), Rehabilitation Medicine (C.P.C., W.A.B.), and Pharmacology and Systems Therapeutics (C.P.C.), The Icahn School of Medicine at Mount Sinai, New York, New York 10029; and Sacred Heart Hospital/Temple University (H.A.), Allentown, Pennsylvania 16102
| | - Daniel S Oh
- National Center for the Medical Consequences of Spinal Cord Injury (C.P.C., W.A.B., H.A.T.), James J. Peters VA Medical Center, Bronx, New York 10468; Center for Orthopaedic Research (T.G., C.Y., F.Y.L.), College of Dental Medicine (D.S.O.), and Department of Molecular Medicine (L.T.), Columbia University, and Departments of Medicine (C.P.C., W.A.B., H.A.T.), Rehabilitation Medicine (C.P.C., W.A.B.), and Pharmacology and Systems Therapeutics (C.P.C.), The Icahn School of Medicine at Mount Sinai, New York, New York 10029; and Sacred Heart Hospital/Temple University (H.A.), Allentown, Pennsylvania 16102
| | - Hesham A Tawfeek
- National Center for the Medical Consequences of Spinal Cord Injury (C.P.C., W.A.B., H.A.T.), James J. Peters VA Medical Center, Bronx, New York 10468; Center for Orthopaedic Research (T.G., C.Y., F.Y.L.), College of Dental Medicine (D.S.O.), and Department of Molecular Medicine (L.T.), Columbia University, and Departments of Medicine (C.P.C., W.A.B., H.A.T.), Rehabilitation Medicine (C.P.C., W.A.B.), and Pharmacology and Systems Therapeutics (C.P.C.), The Icahn School of Medicine at Mount Sinai, New York, New York 10029; and Sacred Heart Hospital/Temple University (H.A.), Allentown, Pennsylvania 16102
| |
Collapse
|
6
|
Thompson MD, Hendy GN, Percy ME, Bichet DG, Cole DEC. G protein-coupled receptor mutations and human genetic disease. Methods Mol Biol 2015; 1175:153-87. [PMID: 25150870 DOI: 10.1007/978-1-4939-0956-8_8] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Genetic variations in G protein-coupled receptor genes (GPCRs) disrupt GPCR function in a wide variety of human genetic diseases. In vitro strategies and animal models have been used to identify the molecular pathologies underlying naturally occurring GPCR mutations. Inactive, overactive, or constitutively active receptors have been identified that result in pathology. These receptor variants may alter ligand binding, G protein coupling, receptor desensitization and receptor recycling. Receptor systems discussed include rhodopsin, thyrotropin, parathyroid hormone, melanocortin, follicle-stimulating hormone (FSH), luteinizing hormone, gonadotropin-releasing hormone (GNRHR), adrenocorticotropic hormone, vasopressin, endothelin-β, purinergic, and the G protein associated with asthma (GPRA or neuropeptide S receptor 1 (NPSR1)). The role of activating and inactivating calcium-sensing receptor (CaSR) mutations is discussed in detail with respect to familial hypocalciuric hypercalcemia (FHH) and autosomal dominant hypocalemia (ADH). The CASR mutations have been associated with epilepsy. Diseases caused by the genetic disruption of GPCR functions are discussed in the context of their potential to be selectively targeted by drugs that rescue altered receptors. Examples of drugs developed as a result of targeting GPCRs mutated in disease include: calcimimetics and calcilytics, therapeutics targeting melanocortin receptors in obesity, interventions that alter GNRHR loss from the cell surface in idiopathic hypogonadotropic hypogonadism and novel drugs that might rescue the P2RY12 receptor congenital bleeding phenotype. De-orphanization projects have identified novel disease-associated receptors, such as NPSR1 and GPR35. The identification of variants in these receptors provides genetic reagents useful in drug screens. Discussion of the variety of GPCRs that are disrupted in monogenic Mendelian disorders provides the basis for examining the significance of common pharmacogenetic variants.
Collapse
Affiliation(s)
- Miles D Thompson
- Department of Pharmacology, University of Toronto, 1 King's College Circle, Toronto, ON, Canada, M5S 1A8,
| | | | | | | | | |
Collapse
|
7
|
Marcucci G, Cianferotti L, Beck-Peccoz P, Capezzone M, Cetani F, Colao A, Davì MV, degli Uberti E, Del Prato S, Elisei R, Faggiano A, Ferone D, Foresta C, Fugazzola L, Ghigo E, Giacchetti G, Giorgino F, Lenzi A, Malandrino P, Mannelli M, Marcocci C, Masi L, Pacini F, Opocher G, Radicioni A, Tonacchera M, Vigneri R, Zatelli MC, Brandi ML. Rare diseases in clinical endocrinology: a taxonomic classification system. J Endocrinol Invest 2015; 38:193-259. [PMID: 25376364 DOI: 10.1007/s40618-014-0202-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 10/17/2014] [Indexed: 02/05/2023]
Abstract
PURPOSE Rare endocrine-metabolic diseases (REMD) represent an important area in the field of medicine and pharmacology. The rare diseases of interest to endocrinologists involve all fields of endocrinology, including rare diseases of the pituitary, thyroid and adrenal glands, paraganglia, ovary and testis, disorders of bone and mineral metabolism, energy and lipid metabolism, water metabolism, and syndromes with possible involvement of multiple endocrine glands, and neuroendocrine tumors. Taking advantage of the constitution of a study group on REMD within the Italian Society of Endocrinology, consisting of basic and clinical scientists, a document on the taxonomy of REMD has been produced. METHODS AND RESULTS This document has been designed to include mainly REMD manifesting or persisting into adulthood. The taxonomy of REMD of the adult comprises a total of 166 main disorders, 338 including all variants and subtypes, described into 11 tables. CONCLUSIONS This report provides a complete taxonomy to classify REMD of the adult. In the future, the creation of registries of rare endocrine diseases to collect data on cohorts of patients and the development of common and standardized diagnostic and therapeutic pathways for each rare endocrine disease is advisable. This will help planning and performing intervention studies in larger groups of patients to prove the efficacy, effectiveness, and safety of a specific treatment.
Collapse
Affiliation(s)
- G Marcucci
- Head, Bone Metablic Diseases Unit, Department of Surgery and Translational Medicine, University of Florence, Viale Pieraccini 6, 50139, Florence, Italy.
| | - L Cianferotti
- Head, Bone Metablic Diseases Unit, Department of Surgery and Translational Medicine, University of Florence, Viale Pieraccini 6, 50139, Florence, Italy
| | - P Beck-Peccoz
- Department of Clinical Sciences and Community Health, University of Milan and Endocrine Unit, Fondazione IRCCS Ca' Granda, Milan, Italy
| | - M Capezzone
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Endocrinology and Metabolism and Biochemistry, University of Siena, Policlinico Santa Maria alle Scotte, Siena, Italy
| | - F Cetani
- Unit of Endocrinology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - A Colao
- Dipartimento di Medicina Clinica e Chirurgia, Università Federico II di Napoli, Naples, Italy
| | - M V Davì
- Section D, Department of Medicine, Clinic of Internal Medicine, University of Verona, Verona, Italy
| | - E degli Uberti
- Section of Endocrinology, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - S Del Prato
- Section of Metabolic Diseases and Diabetes, Department of Endocrinology and Metabolism, University of Pisa, Pisa, Italy
| | - R Elisei
- Unit of Endocrinology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - A Faggiano
- Dipartimento di Medicina Clinica e Chirurgia, Università Federico II di Napoli, Naples, Italy
| | - D Ferone
- Endocrinology, Department of Internal Medicine and Medical Specialties and Center of Excellence for Biomedical Research, IRCCS AOU San Martino-IST, University of Genoa, Genoa, Italy
| | - C Foresta
- Department of Medicine and Centre for Human Reproduction Pathology, University of Padova, Padua, Italy
| | - L Fugazzola
- Department of Clinical Sciences and Community Health, University of Milan and Endocrine Unit, Fondazione IRCCS Ca' Granda, Milan, Italy
| | - E Ghigo
- Division of Endocrinology, Diabetology and Metabolism Department of Medical Sciences, University Hospital Città Salute e Scienza, Turin, Italy
| | - G Giacchetti
- Division of Endocrinology, Azienda Ospedaliero-Universitaria, Ospedali Riuniti Umberto I-GM Lancisi-G Salesi, Università Politecnica delle Marche, Ancona, Italy
| | - F Giorgino
- Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Bari, Italy
| | - A Lenzi
- Chair of Endocrinology, Section Medical Pathophysiology, Food Science and Endocrinology, Department Exp. Medicine, Sapienza University of Rome, Policlinico Umberto I, Rome, Italy
| | - P Malandrino
- Endocrinology, Department of Clinical and Molecular Biomedicine, Garibaldi-Nesima Medical Center, University of Catania, Catania, Italy
| | - M Mannelli
- Endocrinology Unit, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - C Marcocci
- Department of Endocrinology and Metabolism, University of Pisa, Pisa, Italy
| | - L Masi
- Department of Orthopedic, Metabolic Bone Diseases Unit AOUC-Careggi Hospital, Largo Palagi, 1, Florence, Italy
| | - F Pacini
- Section of Endocrinology and Metabolism, University of Siena, Siena, Italy
| | - G Opocher
- Familial Cancer Clinic and Oncoendocrinology, Veneto Institute of Oncology, IRCCS, Padua, Italy
- Department of Medicine DIMED, University of Padova, Padova, Italy
| | - A Radicioni
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - M Tonacchera
- Unit of Endocrinology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - R Vigneri
- Department of Clinical and Molecular Biomedicine, University of Catania, and Humanitas Catania Center of Oncology, Catania, Italy
| | - M C Zatelli
- Section of Endocrinology, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - M L Brandi
- Head, Bone Metablic Diseases Unit, Department of Surgery and Translational Medicine, University of Florence, Viale Pieraccini 6, 50139, Florence, Italy.
| |
Collapse
|
8
|
Gardella TJ, Vilardaga JP. International Union of Basic and Clinical Pharmacology. XCIII. The parathyroid hormone receptors--family B G protein-coupled receptors. Pharmacol Rev 2015; 67:310-37. [PMID: 25713287 PMCID: PMC4394688 DOI: 10.1124/pr.114.009464] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The type-1 parathyroid hormone receptor (PTHR1) is a family B G protein-coupled receptor (GPCR) that mediates the actions of two polypeptide ligands; parathyroid hormone (PTH), an endocrine hormone that regulates the levels of calcium and inorganic phosphate in the blood by acting on bone and kidney, and PTH-related protein (PTHrP), a paracrine-factor that regulates cell differentiation and proliferation programs in developing bone and other tissues. The type-2 parathyroid hormone receptor (PTHR2) binds a peptide ligand, called tuberoinfundibular peptide-39 (TIP39), and while the biologic role of the PTHR2/TIP39 system is not as defined as that of the PTHR1, it likely plays a role in the central nervous system as well as in spermatogenesis. Mechanisms of action at these receptors have been explored through a variety of pharmacological and biochemical approaches, and the data obtained support a basic "two-site" mode of ligand binding now thought to be used by each of the family B peptide hormone GPCRs. Recent crystallographic studies on the family B GPCRs are providing new insights that help to further refine the specifics of the overall receptor architecture and modes of ligand docking. One intriguing pharmacological finding for the PTHR1 is that it can form surprisingly stable complexes with certain PTH/PTHrP ligand analogs and thereby mediate markedly prolonged cell signaling responses that persist even when the bulk of the complexes are found in internalized vesicles. The PTHR1 thus appears to be able to activate the Gα(s)/cAMP pathway not only from the plasma membrane but also from the endosomal domain. The cumulative findings could have an impact on efforts to develop new drug therapies for the PTH receptors.
Collapse
Affiliation(s)
- Thomas J Gardella
- Endocrine Unit, Massachusetts General Hospital, Boston, Massachusetts (T.J.G.); and Laboratory for GPCR Biology, Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania (J.-P.V.)
| | - Jean-Pierre Vilardaga
- Endocrine Unit, Massachusetts General Hospital, Boston, Massachusetts (T.J.G.); and Laboratory for GPCR Biology, Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania (J.-P.V.)
| |
Collapse
|
9
|
Anabolic action of parathyroid hormone regulated by the β2-adrenergic receptor. Proc Natl Acad Sci U S A 2012; 109:7433-8. [PMID: 22538810 DOI: 10.1073/pnas.1109036109] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Parathyroid hormone (PTH), the major calcium-regulating hormone, and norepinephrine (NE), the principal neurotransmitter of sympathetic nerves, regulate bone remodeling by activating distinct cell-surface G protein-coupled receptors in osteoblasts: the parathyroid hormone type 1 receptor (PTHR) and the β(2)-adrenergic receptor (β(2)AR), respectively. These receptors activate a common cAMP/PKA signal transduction pathway mediated through the stimulatory heterotrimeric G protein. Activation of β(2)AR via the sympathetic nervous system decreases bone formation and increases bone resorption. Conversely, daily injection of PTH (1-34), a regimen known as intermittent (i)PTH treatment, increases bone mass through the stimulation of trabecular and cortical bone formation and decreases fracture incidences in severe cases of osteoporosis. Here, we show that iPTH has no osteoanabolic activity in mice lacking the β(2)AR. β(2)AR deficiency suppressed both iPTH-induced increase in bone formation and resorption. We showed that the lack of β(2)AR blocks expression of iPTH-target genes involved in bone formation and resorption that are regulated by the cAMP/PKA pathway. These data implicate an unexpected functional interaction between PTHR and β(2)AR, two G protein-coupled receptors from distinct families, which control bone formation and PTH anabolism.
Collapse
|
10
|
Osteoblastic expansion induced by parathyroid hormone receptor signaling in murine osteocytes is not sufficient to increase hematopoietic stem cells. Blood 2012; 119:2489-99. [PMID: 22262765 DOI: 10.1182/blood-2011-06-360933] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Microenvironmental expansion of hematopoietic stem cells (HSCs) is induced by treatment with parathyroid hormone (PTH) or activation of the PTH receptor (PTH1R) in osteoblastic cells; however, the osteoblastic subset mediating this action of PTH is unknown. Osteocytes are terminally differentiated osteoblasts embedded in mineralized bone matrix but are connected with the BM. Activation of PTH1R in osteocytes increases osteoblastic number and bone mass. To establish whether osteocyte-mediated PTH1R signaling expands HSCs, we studied mice expressing a constitutively active PTH1R in osteocytes (TG mice). Osteoblasts, osteoclasts, and trabecular bone were increased in TG mice without changes in BM phenotypic HSCs or HSC function. TG mice had progressively increased trabecular bone but decreased HSC function. In severely affected TG mice, phenotypic HSCs were decreased in the BM but increased in the spleen. TG osteocytes had no increase in signals associated with microenvironmental HSC support, and the spindle-shaped osteoblastic cells that increased with PTH treatment were not present in TG bones. These findings demonstrate that activation of PTH1R signaling in osteocytes does not expand BM HSCs, which are instead decreased in TG mice. Therefore, osteocytes do not mediate the HSC expansion induced by PTH1R signaling. Further, osteoblastic expansion is not sufficient to increase HSCs.
Collapse
|
11
|
de Graaf C, Rein C, Piwnica D, Giordanetto F, Rognan D. Structure-based discovery of allosteric modulators of two related class B G-protein-coupled receptors. ChemMedChem 2011; 6:2159-69. [PMID: 21994134 DOI: 10.1002/cmdc.201100317] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Revised: 08/23/2011] [Indexed: 01/09/2023]
Abstract
Despite the availability of X-ray crystal structure data for several members of the G-protein-coupled receptor (GPCR) superfamily, structure-based discovery of GPCR ligands has been exclusively restricted to class A (rhodopsin-like) receptors. Herein we report the identification, by a docking-based virtual screening approach, of noncompetitive ligands for two related class B (secretin-like) GPCRs: the glucagon receptor (GLR) and the glucagon-like peptide 1 receptor (GLP-1R). Starting from a knowledge-based three-dimensional model of the GLR, a database of 1.9 million commercially available drug-like compounds was screened for chemical similarity to existing GLR noncompetitive antagonists and docked to the transmembrane cavity of the GLR; 23 compounds were then selected based on protein-ligand interaction fingerprints, and were then purchased and evaluated for in vitro binding to GLR and modulation of glucagon-induced cAMP release. Two of the 23 compounds inhibited the effect of glucagon in a dose-dependent manner, with one inhibitor exhibiting the same potency as L-168 049, a reference noncompetitive GLR antagonist, in a whole-cell-based functional assay. Interestingly, one virtual hit that was inactive at the GLR was shown to bind to GLP-1R and potentiate the response to the endogenous GLP-1 ligand.
Collapse
Affiliation(s)
- Chris de Graaf
- Structural Chemogenomics Group, Laboratoire d'Innovation Thérapeutique, UMR 7200 CNRS-UdS, 74 route du Rhin, 67400 Illkirch, France
| | | | | | | | | |
Collapse
|
12
|
Abstract
At least 2 different types of cells, hematopoietic and mesenchymal, are present in the adult bone marrow, in addition to endothelial cells. Hematopoietic and mesenchymal cells are believed to originate from hematopoietic stem cells (HSC) and mesenchymal stem cells (MSC), respectively. The bone marrow stroma, a cellular microenvironment that supports HSC, is composed of non-hematopoietic cells and contains MSC. A unique expansion of the bone marrow stroma, also known as marrow fibrosis, is the hallmark of a variety of disorders including hyperparathyroidism and fibrous dysplasia. PTH is the first bone anabolic agent approved by US Food and Drug Administration for the treatment of osteoporosis. Recent studies have suggested that PTH treatment may affect the number of hematopoietic stem cells in the bone marrow and their mobilization into the bloodstream. In addition, cells with classical features of mesenchymal stem cells/progenitors have been shown to express receptors for PTH, and to increase in number and undergo redistribution in the adult bone marrow upon PTH treatment. In this review, we will summarize the up-to-date knowledge on PTH and its relation to stem cells. We will also discuss the contribution of different cell types to the development of marrow fibrosis and the involvement of PTH signaling in this pathology.
Collapse
Affiliation(s)
- M Ohishi
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | | |
Collapse
|
13
|
Goodfellow LR, Cooper C, Harvey NC. Regulation of placental calcium transport and offspring bone health. Front Endocrinol (Lausanne) 2011; 2:3. [PMID: 22649358 PMCID: PMC3355895 DOI: 10.3389/fendo.2011.00003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Accepted: 01/31/2011] [Indexed: 11/24/2022] Open
Abstract
Osteoporosis causes considerable morbidity and mortality in later life, and the risk of the disease is strongly determined by peak bone mass, which is achieved in early adulthood. Poor intrauterine and early childhood growth are associated with reduced peak bone mass, and increased risk of osteoporotic fracture in older age. In this review we describe the regulatory aspects of intrauterine bone development, and then summarize the evidence relating early growth to later fracture risk. Physiological systems include vitamin D, parathyroid hormone, leptin, GH/IGF-1; finally the potential role of epigenetic processes in the underlying mechanisms will be explored. Thus factors such as maternal lifestyle, diet, body build, physical activity, and vitamin D status in pregnancy all appear to influence offspring bone mineral accrual. These data demonstrate a likely interaction between environmental factors and gene expression, a phenomenon ubiquitous in the natural world (developmental plasticity), as the potential key process. Intervention studies are now required to test the hypotheses generated by these epidemiological and physiological findings, to inform potential novel public health interventions aimed at improving childhood bone health and reducing the burden of osteoporotic fracture in future generations.
Collapse
Affiliation(s)
- Laura R. Goodfellow
- The MRC Lifecourse Epidemiology Unit, Southampton General Hospital, University of SouthamptonSouthampton, UK
| | - Cyrus Cooper
- The MRC Lifecourse Epidemiology Unit, Southampton General Hospital, University of SouthamptonSouthampton, UK
| | - Nicholas C. Harvey
- The MRC Lifecourse Epidemiology Unit, Southampton General Hospital, University of SouthamptonSouthampton, UK
| |
Collapse
|
14
|
Parathyroid Hormone and Parathyroid Hormone–Related Peptide in the Regulation of Calcium Homeostasis and Bone Development. Endocrinology 2010. [DOI: 10.1016/b978-1-4160-5583-9.00056-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
15
|
Abstract
G protein-coupled receptors (GPCRs) are a large family of proteins that represent targets for approximately 40% of all approved drugs. They possess unique structural motifs that allow them to interact with a diverse series of extracellular ligands, as well as intracellular signaling proteins, such as G proteins, RAMPs, arrestins, and indeed other receptors. Extensive efforts are under way to discover new generations of drugs against GPCRs with unique targeted therapeutic uses, including "designer" drugs such as allosteric regulators, inverse agonists, and drugs targeting hetero-oligomeric complexes. This has been facilitated by the development of new screening technologies to identify novel drugs against both known and orphan GPCRs.
Collapse
|
16
|
Thompson MD, Percy ME, McIntyre Burnham W, Cole DEC. G protein-coupled receptors disrupted in human genetic disease. Methods Mol Biol 2008; 448:109-37. [PMID: 18370233 DOI: 10.1007/978-1-59745-205-2_7] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Genetic variation in G protein-coupled receptors (GPCRs) results in the disruption of GPCR function in a wide variety of human genetic diseases. In vitro strategies have been used to elucidate the molecular pathologies that underlie naturally occurring GPCR mutations. Various degrees of inactive, overactive, or constitutively active receptors have been identified. These mutations often alter ligand binding, G protein coupling, receptor desensitization, and receptor recycling. The role of inactivating and activating calcium-sensing receptor (CASR) mutations is discussed with respect to familial hypocalciuric hypercalemia (FHH) and autosomal dominant hypocalemia (ADH). Among ADH mutations, those associated with tonic-clonic seizures are discussed. Other receptors discussed include rhodopsin, thyrotropin, parathyroid hormone, melanocortin, follicle-stimulating hormone, luteinizing hormone, gonadotropin-releasing hormone (GnRHR), adrenocorticotropic hormone, vasopressin, endothelin-beta, purinergic, and the G protein associated with asthma (GPRA). Diseases caused by mutations that disrupt GPCR function are significant because they might be selectively targeted by drugs that rescue altered receptors. Examples of drug development based on targeting GPCRs mutated in disease include the calcimimetics used to compensate for some CASR mutations, obesity therapeutics targeting melanocortin receptors, interventions that alter GnRHR loss from the cell surface in idiopathic hypogonadotropic hypogonadism and novel drugs that might rescue the P2RY12 receptor in a rare bleeding disorder. The discovery of GPRA suggests that drug screens against variant GPCRs may identify novel drugs. This review of the variety of GPCRs that are disrupted in monogenic disease provides the basis for examining the significance of common pharmacogenetic variants.
Collapse
Affiliation(s)
- Miles D Thompson
- Department of Laboratory Medicine and Pathobiology, Banting Institute, University of Toronto, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
17
|
Eglen RM, Bosse R, Reisine T. Emerging concepts of guanine nucleotide-binding protein-coupled receptor (GPCR) function and implications for high throughput screening. Assay Drug Dev Technol 2007; 5:425-51. [PMID: 17638542 DOI: 10.1089/adt.2007.062] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Guanine nucleotide binding protein (G protein) coupled receptors (GPCRs) comprise one of the largest families of proteins in the human genome and are a target for 40% of all approved drugs. GPCRs have unique structural motifs that allow them to interact with a wide and diverse series of extracellular ligands, as well as intracellular proteins, G proteins, receptor activity-modifying proteins, arrestins, and indeed other receptors. This distinctive structure has led to numerous efforts to discover drugs against GPCRs with targeted therapeutic uses. Such "designer" drugs currently include allosteric regulators, inverse agonists, and drugs targeting hetero-oligomeric complexes. Moreover, the large family of orphan GPCRs provides a rich and novel field of targets to discover drugs with unique therapeutic properties. The numerous technologies to discover GPCR drugs have also greatly advanced over the years, facilitating compound screening against known and orphan GPCRs, as well as in the identification of unique designer GPCR drugs. Indeed, high throughput screening (HTS) technologies employing functional cell-based approaches are now widely used. These include measurement of second messenger accumulation such as cyclic AMP, calcium ions, and inositol phosphates, as well as mitogen-activated protein kinase activation, protein-protein interactions, and GPCR oligomerization. This review focuses on how the improved understanding of the molecular pharmacology of GPCRs, coupled with a plethora of novel HTS technologies, is leading to the discovery and development of an entirely new generation of GPCR-based therapeutics.
Collapse
Affiliation(s)
- Richard M Eglen
- Discovery and Research Reagents, PerkinElmer Life and Analytical Sciences, Waltham, MA 02451, USA.
| | | | | |
Collapse
|
18
|
Guimont P, Grondin F, Dubois CM. Sox9-dependent transcriptional regulation of the proprotein convertase furin. Am J Physiol Cell Physiol 2007; 293:C172-83. [PMID: 17360815 DOI: 10.1152/ajpcell.00349.2006] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The proprotein convertase furin participates in the maturation/bioactivation of a variety of proproteins involved in chondrogenesis events. These include parathyroid hormone-related peptide (PTHrP), an autocrine/paracrine factor that is crucial to both normal cartilage development and cartilage-related pathological processes. Despite the known importance of furin activity in the bioactivation of the polypeptides, the mechanisms that control furin regulation in chondrogenesis remain unknown. To gain insight into the molecular regulation of furin, we used the mouse prechondrogenic ATDC5 cell line, an established in vitro model of cartilage differentiation. Peak expression of both furin mRNA and furin PTHrP maturation was observed during chondrocyte nodule formation stage, an event that correlated with increased mRNA levels of Sox9, a potent high-mobility-group (HMG) box-containing transcription factor required for cartilage formation. Inhibition of furin activity led to a diminution in maturation of PTHrP, suggesting a relationship between Sox9-induced regulation of furin and chondrogenesis events. Transient transfection of Sox9 in nonchondrogenic cells resulted in a marked increase in furin mRNA and in the transactivation of the furin P1A promoter. Direct Sox9 action on the P1A promoter was narrowed down to a critical paired site with Sox9 binding capability in vitro and in vivo. Sox9 transactivation effect was inhibited by L-Sox5 and Sox-6, two Sox9 homologs also expressed in ATDC5 cells. Sox6 inhibitory effect was reduced when using Sox6-HMG-box mutants, indicating a repressive effect through direct HMG-box/DNA binding. Our work suggests a mechanism by which furin is regulated during chondrogenesis. It also adds to the complexity of Sox molecule interaction during gene regulation.
Collapse
Affiliation(s)
- Philippe Guimont
- Immunology Division, Faculty of Medicine, Université de Sherbrooke, QC, Canada J1H 5N4
| | | | | |
Collapse
|
19
|
Thompson MD, Burnham WM, Cole DEC. The G protein-coupled receptors: pharmacogenetics and disease. Crit Rev Clin Lab Sci 2005; 42:311-92. [PMID: 16281738 DOI: 10.1080/10408360591001895] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Genetic variation in G-protein coupled receptors (GPCRs) is associated with a wide spectrum of disease phenotypes and predispositions that are of special significance because they are the targets of therapeutic agents. Each variant provides an opportunity to understand receptor function that complements a plethora of available in vitro data elucidating the pharmacology of the GPCRs. For example, discrete portions of the proximal tail of the dopamine D1 receptor have been discovered, in vitro, that may be involved in desensitization, recycling and trafficking. Similar in vitro strategies have been used to elucidate naturally occurring GPCR mutations. Inactive, over-active or constitutively active receptors have been identified by changes in ligand binding, G-protein coupling, receptor desensitization and receptor recycling. Selected examples reviewed include those disorders resulting from mutations in rhodopsin, thyrotropin, luteinizing hormone, vasopressin and angiotensin receptors. By comparison, the recurrent pharmacogenetic variants are more likely to result in an altered predisposition to complex disease in the population. These common variants may affect receptor sequence without intrinsic phenotype change or spontaneous induction of disease and yet result in significant alteration in drug efficacy. These pharmacogenetic phenomena will be reviewed with respect to a limited sampling of GPCR systems including the orexin/hypocretin system, the beta2 adrenergic receptors, the cysteinyl leukotriene receptors and the calcium-sensing receptor. These developments will be discussed with respect to strategies for drug discovery that take into account the potential for the development of drugs targeted at mutated and wild-type proteins.
Collapse
Affiliation(s)
- Miles D Thompson
- Department of Laboratory Medicine and Pathobiology, Banting Institute, University of Toronto, ON, Canada.
| | | | | |
Collapse
|
20
|
van der Horst G, Farih-Sips H, Löwik CWGM, Karperien M. Multiple mechanisms are involved in inhibition of osteoblast differentiation by PTHrP and PTH in KS483 Cells. J Bone Miner Res 2005; 20:2233-44. [PMID: 16294276 DOI: 10.1359/jbmr.050821] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2005] [Revised: 07/28/2005] [Accepted: 08/23/2005] [Indexed: 11/18/2022]
Abstract
UNLABELLED We examined the mechanism by which PTHrP and PTH inhibit KS483 osteoblastic differentiation. We show that PTHrP and PTH inhibit differentiation downstream of early BMP signaling and downregulated components of the hedgehog (Hh) signaling cascade. In addition, PTHrP and PTH repressed RunX2 and osx expression. Overexpression of either gene, however, could not relieve PTHrP and PTH's inhibitory actions. Our data suggest that multiple parallel mechanisms are involved in the inhibition of osteoblast differentiation and matrix mineralization by PTHrP and PTH. INTRODUCTION PTH-related peptide (PTHrP) and PTH are potent inhibitors of osteoblast differentiation in vitro by as yet unexplained mechanisms. MATERIALS AND METHODS We treated murine bone marrow stromal cells and the mesenchymal progenitor cell line KS483 with PTHrP and PTH in combination with either BMPs or hedgehog (Hh) and measured early and late markers of osteoblast differentiation and studied the expression of RunX2 and Osterix (osx). In addition, we examined the PTHrP and PTH response in stable KS483 cells overexpressing either RunX2 or osx. RESULTS PTHrP and PTH inhibited BMP- and Hh-induced osteogenesis downstream of early BMP signaling and by downregulation of components of the Hh signaling cascade. PTHrP and PTH prevented the upregulation of RunX2 expression associated with osteoblast differentiation in an indirect response. However, PTHrP and PTH could still inhibit differentiation, and particularly matrix mineralization, of cells expressing RunX2. In addition, PTHrP and PTH potently downregulated osx expression only in mature osteoblasts in an intermediate early response, but osx overexpression could not relieve the inhibitory effects of PTHrP and PTH on matrix mineralization. CONCLUSIONS Our data suggest that, besides transcriptional repression of RunX2 and osx, other mechanisms in parallel with or downstream of RunX2 and osx are involved in the inhibition of osteoblast differentiation and matrix mineralization by PTHrP and PTH in vitro.
Collapse
Affiliation(s)
- Geertje van der Horst
- Department of Endocrinology and Metabolic Diseases, Leiden University Medical Center, The Netherlands
| | | | | | | |
Collapse
|
21
|
Provot S, Schipani E. Molecular mechanisms of endochondral bone development. Biochem Biophys Res Commun 2005; 328:658-65. [PMID: 15694399 DOI: 10.1016/j.bbrc.2004.11.068] [Citation(s) in RCA: 266] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2004] [Indexed: 10/26/2022]
Abstract
Endochondral bone development is a complex process in which undifferentiated mesenchymal cells differentiate into chondrocytes, which then undergo well-ordered and controlled phases of proliferation, hypertrophic differentiation, death, blood vessel invasion, and finally replacement of cartilage with bone. The process recapitulates basic and fundamental mechanisms of cell biology with a highly specific spatial and temporal pattern, and it thus constitutes an excellent model for the analysis of such mechanisms. In recent years, the tools provided by modern genetic both in mice and men have been instrumental in the process of identifying and dissecting basic molecular mechanisms of endochondral bone formation. This review is a brief summary of the current knowledge about some of the crucial factors involved in growth plate development.
Collapse
Affiliation(s)
- Sylvain Provot
- Endocrine Unit, MGH-Harvard Medical School, Boston, MA 02114, USA
| | | |
Collapse
|
22
|
Abstract
Heterotrimeric G proteins couple seven-transmembrane receptors for diverse extracellular signals to effectors that generate intracellular signals altering cell function. Mutations in the gene encoding the alpha subunit of the G protein-coupling receptors to stimulation of adenylyl cyclase cause developmental abnormalities of bone, as well as hormone resistance (pseudohypoparathyroidism caused by loss-of-function mutations) and hormone hypersecretion (McCune-Albright syndrome caused by gain-of-function mutations). Loss- and gain-of-function mutations in genes encoding G protein-coupled receptors (GPCRs) have been identified as the cause of an increasing number of retinal, endocrine, metabolic, and developmental disorders. GPCRs comprise an evolutionarily conserved gene superfamily ( 1 ). By coupling to heterotrimeric G proteins, GPCRs transduce a wide variety of extracellular signals including monoamine, amino acid, and nucleoside neurotransmitters, as well as photons, chemical odorants, divalent cations, hormones, lipids, peptides and proteins. Following a brief overview of G protein-coupled signal transduction, we review the growing body of evidence that mutations in genes encoding GPCRs and G proteins are an important cause of human disease.
Collapse
Affiliation(s)
- Allen M Spiegel
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | |
Collapse
|
23
|
Bolander FF. Molecular Bases of Endocrinopathies. Mol Endocrinol 2004. [DOI: 10.1016/b978-012111232-5/50017-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
24
|
Thyagarajan T, Totey S, Danton MJS, Kulkarni AB. Genetically altered mouse models: the good, the bad, and the ugly. CRITICAL REVIEWS IN ORAL BIOLOGY AND MEDICINE : AN OFFICIAL PUBLICATION OF THE AMERICAN ASSOCIATION OF ORAL BIOLOGISTS 2003; 14:154-74. [PMID: 12799320 DOI: 10.1177/154411130301400302] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Targeted gene disruption in mice is a powerful tool for generating murine models for human development and disease. While the human genome program has helped to generate numerous candidate genes, few genes have been characterized for their precise in vivo functions. Gene targeting has had an enormous impact on our ability to delineate the functional roles of these genes. Many gene knockout mouse models faithfully mimic the phenotypes of the human diseases. Because some models display an unexpected or no phenotype, controversy has arisen about the value of gene-targeting strategies. We argue in favor of gene-targeting strategies, provided they are used with caution, particularly in interpreting phenotypes in craniofacial and oral biology, where many genes have pleiotropic roles. The potential pitfalls are outweighed by the unique opportunities for developing and testing different therapeutic strategies before they are introduced into the clinic. In the future, we believe that genetically engineered animal models will be indispensable for gaining important insights into the molecular mechanisms underlying development, as well as disease pathogenesis, diagnosis, prevention, and treatment.
Collapse
Affiliation(s)
- Tamizchelvi Thyagarajan
- Functional Genomics Unit and Gene Targeting Facility, National Institute of Dental and Craniofacial Research, National Institutes of Health, Building 30, Room 527, 30 Convent Drive, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
25
|
Conley YP, Finegold DN. Exploring calcium level disorders. Looking through the genetic window for new treatment clues. AWHONN LIFELINES 2002; 6:424-9. [PMID: 12420385 DOI: 10.1177/1091592302238928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Yvette P Conley
- Department of Health Promotion and Development, School of Nursing, Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | | |
Collapse
|
26
|
Beier F, LuValle P. The cyclin D1 and cyclin A genes are targets of activated PTH/PTHrP receptors in Jansen's metaphyseal chondrodysplasia. Mol Endocrinol 2002; 16:2163-73. [PMID: 12198252 DOI: 10.1210/me.2001-0103] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Jansen's metaphyseal chondrodysplasia (JMC) is an autosomal dominant disorder characterized by short-limbed dwarfism, delayed ossification, and hypercalcemia. Activating mutations in the PTH/PTHrP receptor have been identified as the molecular cause of this disorder. Although these mutations have been shown to increase cAMP accumulation, little is known about possible target genes of the downstream signaling pathways that may contribute to the pathogenesis of the disease. Here we demonstrate that JMC mutations of the PTH/PTHrP receptor induce activation of the cyclin D1 and cyclin A promoters in primary mouse chondrocytes and rat chondrosarcoma cells. Induction of cyclin D1 expression is required for stimulation of E2F-dependent transcription by mutant receptors. Activation of the cyclin D1 and cyclin A promoters requires a functional cAMP response element in both genes. Inhibition of protein kinase A or the transcription factor cAMP response element binding protein blocks the stimulation of both promoters by mutant receptors, whereas inhibition of activating transcription factor 2, c-Fos, or c-Jun has only minor effects. In summary, our data suggest that stimulation of cell cycle gene expression and cell cycle progression by mutant PTH/PTHrP receptors contribute to the pathogenesis of JMC.
Collapse
MESH Headings
- Animals
- Cell Cycle Proteins
- Chondrocytes
- Cyclic AMP Response Element-Binding Protein/metabolism
- Cyclic AMP-Dependent Protein Kinases/metabolism
- Cyclin A/genetics
- Cyclin D1/genetics
- DNA-Binding Proteins
- E2F Transcription Factors
- Exostoses, Multiple Hereditary/genetics
- Exostoses, Multiple Hereditary/metabolism
- Gene Expression Regulation
- Humans
- Mice
- Mutation/genetics
- Promoter Regions, Genetic/genetics
- Rats
- Receptor, Parathyroid Hormone, Type 1/genetics
- Receptor, Parathyroid Hormone, Type 1/metabolism
- Receptors, Parathyroid Hormone/genetics
- Receptors, Parathyroid Hormone/metabolism
- Response Elements/genetics
- Transcription Factors/metabolism
- Transcription, Genetic
Collapse
Affiliation(s)
- Frank Beier
- Canadian Institutes of Health Research Group in Skeletal Development and Remodeling, University of Western Ontario, London, Ontario, Canada N6A 5C1.
| | | |
Collapse
|
27
|
Converting a differentiation cascade into longitudinal growth: stereology and analysis of transgenic animals as tools for understanding growth plate function. ACTA ACUST UNITED AC 2001. [DOI: 10.1097/00001433-200110000-00011] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
28
|
Abstract
The receptor for parathyroid hormone (PTH) and PTH-related protein (PTHrP) is a G protein-coupled receptor (GPCR) that plays a key role in controlling blood Ca(2+) concentration and endochondral bone formation. This review focuses on the molecular mechanisms by which the receptor recognizes the PTH and PTHrP peptide ligands and transmits their signal across the cell membrane. The available data suggest that there are two principal components to the ligand-receptor interaction. First, a docking interaction between the C-terminal portion of PTH(1-34) and the N-terminal extracellular domain of the receptor; and second, a weaker interaction between the N-terminal portion of the ligand and the juxtamembrane region of the receptor, which induces signal transduction. A full understanding of these processes could lead to new PTH/PTHrP receptor ligands that are effective in controlling diseases of bone and mineral metabolism, such as osteoporosis.
Collapse
Affiliation(s)
- T J Gardella
- Endocrine Unit and Dept of Pediatrics, Massachusetts General Hospital and Harvard Medical School, 02114, Boston, MA, USA.
| | | |
Collapse
|