1
|
Cao Y, Hong J, Wang H, Lin M, Cai Y, Liao L, Li X, Han Y. Beyond glycolysis: multifunctional roles of glyceraldehyde-3-phosphate dehydrogenases in plants. HORTICULTURE RESEARCH 2025; 12:uhaf070. [PMID: 40303431 PMCID: PMC12038228 DOI: 10.1093/hr/uhaf070] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 02/25/2025] [Indexed: 05/02/2025]
Abstract
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), a highly conserved enzyme in the glycolytic pathway, also acts as a moonlighting protein, performing various functions beyond its classical role in glycolysis, such as regulating gene expression, participating in cell signal transduction, and responding to environmental stress. By interacting with various signaling molecules, GAPDH plays a regulatory role in hormone signaling pathways, influencing plant growth and development. Functional plasticity in GAPDH is modulated mainly through redox-driven post-translational modifications, which alter the enzyme's catalytic activity and influence its subcellular distribution. This review explores the diverse functionalities of GAPDHs in plants, highlighting their significance in plant metabolic processes and stress adaptation.
Collapse
Affiliation(s)
- Yunpeng Cao
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Jiayi Hong
- College of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Han Wang
- Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei 230000, China
| | - Mengfei Lin
- Jiangxi Provincial Key Laboratory of Plantation and High Valued Utilization of Specialty Fruit Tree and Tea, Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang 330224 Jiangxi, China
| | - Yongping Cai
- College of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Liao Liao
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Xiaoxu Li
- Beijing Life Science Academy, Beijing 102209, China
- Tobacco Chemistry Research Institute of Technology Center, China Tobacco Hunan Industrial Co., Ltd., Changsha, China
| | - Yuepeng Han
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| |
Collapse
|
2
|
Luo FS, Zhao X, Li F, Zhang YH, Li WT, Zhang PD. Integrating ecology, physiology and transcriptomics reveals the response of Zostera marina to rusting of iron transplantation frame. MARINE POLLUTION BULLETIN 2024; 199:115977. [PMID: 38194824 DOI: 10.1016/j.marpolbul.2023.115977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/11/2024]
Abstract
Frame Transplantation System (FTS) is considered an efficient method for seagrass restoration, but the effect of the rusting of iron frame on seagrass restoration remains unclear. We transplanted Zostera marina plants using iron FTS treated with fluorocarbon paint (painted treatment, PT) and traditional unpainted iron FTS (unpainted treatment, UT) under controlled mesocosm conditions for 24 days. Our results showed that the survival rate of Z. marina under the UT was significantly 31.2 % lower than that of the plants under the PT. Soluble sugar content in Z. marina rhizomes under the UT was significantly 2.19 times higher than that of the plants under the PT. Transcriptome analysis revealed differentially expressed genes (DEGs) involved in photosynthesis, metabolism and signal transduction functions. The results provide valuable data that could prove helpful in the development of efficient restoration techniques for Z. marina beds.
Collapse
Affiliation(s)
- Fan-Shu Luo
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, People's Republic of China
| | - Xiang Zhao
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, People's Republic of China
| | - Fan Li
- Shandong Provincial Key Laboratory of Restoration for Marine Ecology, Shandong Marine Resources and Environment Research Institute, Yantai, People's Republic of China
| | - Yan-Hao Zhang
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, People's Republic of China
| | - Wen-Tao Li
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, People's Republic of China
| | - Pei-Dong Zhang
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, People's Republic of China.
| |
Collapse
|
3
|
Belcour A, Got J, Aite M, Delage L, Collén J, Frioux C, Leblanc C, Dittami SM, Blanquart S, Markov GV, Siegel A. Inferring and comparing metabolism across heterogeneous sets of annotated genomes using AuCoMe. Genome Res 2023; 33:972-987. [PMID: 37468308 PMCID: PMC10629481 DOI: 10.1101/gr.277056.122] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 05/23/2023] [Indexed: 07/21/2023]
Abstract
Comparative analysis of genome-scale metabolic networks (GSMNs) may yield important information on the biology, evolution, and adaptation of species. However, it is impeded by the high heterogeneity of the quality and completeness of structural and functional genome annotations, which may bias the results of such comparisons. To address this issue, we developed AuCoMe, a pipeline to automatically reconstruct homogeneous GSMNs from a heterogeneous set of annotated genomes without discarding available manual annotations. We tested AuCoMe with three data sets, one bacterial, one fungal, and one algal, and showed that it successfully reduces technical biases while capturing the metabolic specificities of each organism. Our results also point out shared and divergent metabolic traits among evolutionarily distant algae, underlining the potential of AuCoMe to accelerate the broad exploration of metabolic evolution across the tree of life.
Collapse
Affiliation(s)
- Arnaud Belcour
- Univ Rennes, Inria, CNRS, IRISA, F-35000 Rennes, France;
| | - Jeanne Got
- Univ Rennes, Inria, CNRS, IRISA, F-35000 Rennes, France
| | - Méziane Aite
- Univ Rennes, Inria, CNRS, IRISA, F-35000 Rennes, France
| | - Ludovic Delage
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), 29680 Roscoff, France
| | - Jonas Collén
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), 29680 Roscoff, France
| | | | - Catherine Leblanc
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), 29680 Roscoff, France
| | - Simon M Dittami
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), 29680 Roscoff, France
| | | | - Gabriel V Markov
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), 29680 Roscoff, France
| | - Anne Siegel
- Univ Rennes, Inria, CNRS, IRISA, F-35000 Rennes, France;
| |
Collapse
|
4
|
Riaz A, Deng F, Chen G, Jiang W, Zheng Q, Riaz B, Mak M, Zeng F, Chen ZH. Molecular Regulation and Evolution of Redox Homeostasis in Photosynthetic Machinery. Antioxidants (Basel) 2022; 11:antiox11112085. [PMID: 36358456 PMCID: PMC9686623 DOI: 10.3390/antiox11112085] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/14/2022] [Accepted: 10/20/2022] [Indexed: 01/14/2023] Open
Abstract
The recent advances in plant biology have significantly improved our understanding of reactive oxygen species (ROS) as signaling molecules in the redox regulation of complex cellular processes. In plants, free radicals and non-radicals are prevalent intra- and inter-cellular ROS, catalyzing complex metabolic processes such as photosynthesis. Photosynthesis homeostasis is maintained by thiol-based systems and antioxidative enzymes, which belong to some of the evolutionarily conserved protein families. The molecular and biological functions of redox regulation in photosynthesis are usually to balance the electron transport chain, photosystem II, photosystem I, mesophyll and bundle sheath signaling, and photo-protection regulating plant growth and productivity. Here, we review the recent progress of ROS signaling in photosynthesis. We present a comprehensive comparative bioinformatic analysis of redox regulation in evolutionary distinct photosynthetic cells. Gene expression, phylogenies, sequence alignments, and 3D protein structures in representative algal and plant species revealed conserved key features including functional domains catalyzing oxidation and reduction reactions. We then discuss the antioxidant-related ROS signaling and important pathways for achieving homeostasis of photosynthesis. Finally, we highlight the importance of plant responses to stress cues and genetic manipulation of disturbed redox status for balanced and enhanced photosynthetic efficiency and plant productivity.
Collapse
Affiliation(s)
- Adeel Riaz
- Hubei Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou 414000, China
| | - Fenglin Deng
- Hubei Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou 414000, China
| | - Guang Chen
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Wei Jiang
- Hubei Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou 414000, China
| | - Qingfeng Zheng
- Hubei Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou 414000, China
| | - Bisma Riaz
- Department of Biotechnology, University of Okara, Okara, Punjab 56300, Pakistan
| | - Michelle Mak
- School of Science, Western Sydney University, Penrith, NSW 2751, Australia
| | - Fanrong Zeng
- Hubei Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou 414000, China
- Correspondence: (F.Z.); (Z.-H.C.)
| | - Zhong-Hua Chen
- School of Science, Western Sydney University, Penrith, NSW 2751, Australia
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW 2751, Australia
- Correspondence: (F.Z.); (Z.-H.C.)
| |
Collapse
|
5
|
Río Bártulos C, Rogers MB, Williams TA, Gentekaki E, Brinkmann H, Cerff R, Liaud MF, Hehl AB, Yarlett NR, Gruber A, Kroth PG, van der Giezen M. Mitochondrial Glycolysis in a Major Lineage of Eukaryotes. Genome Biol Evol 2018; 10:2310-2325. [PMID: 30060189 PMCID: PMC6198282 DOI: 10.1093/gbe/evy164] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2018] [Indexed: 12/21/2022] Open
Abstract
The establishment of the mitochondrion is seen as a transformational step in the origin of eukaryotes. With the mitochondrion came bioenergetic freedom to explore novel evolutionary space leading to the eukaryotic radiation known today. The tight integration of the bacterial endosymbiont with its archaeal host was accompanied by a massive endosymbiotic gene transfer resulting in a small mitochondrial genome which is just a ghost of the original incoming bacterial genome. This endosymbiotic gene transfer resulted in the loss of many genes, both from the bacterial symbiont as well the archaeal host. Loss of genes encoding redundant functions resulted in a replacement of the bulk of the host’s metabolism for those originating from the endosymbiont. Glycolysis is one such metabolic pathway in which the original archaeal enzymes have been replaced by bacterial enzymes from the endosymbiont. Glycolysis is a major catabolic pathway that provides cellular energy from the breakdown of glucose. The glycolytic pathway of eukaryotes appears to be bacterial in origin, and in well-studied model eukaryotes it takes place in the cytosol. In contrast, here we demonstrate that the latter stages of glycolysis take place in the mitochondria of stramenopiles, a diverse and ecologically important lineage of eukaryotes. Although our work is based on a limited sample of stramenopiles, it leaves open the possibility that the mitochondrial targeting of glycolytic enzymes in stramenopiles might represent the ancestral state for eukaryotes.
Collapse
Affiliation(s)
- Carolina Río Bártulos
- Institut für Genetik, Technische Universität Braunschweig.,Fachbereich Biologie, Universität Konstanz, Germany
| | - Matthew B Rogers
- Biosciences, University of Exeter, United Kingdom.,Rangos Research Center, University of Pittsburgh, Children's Hospital, Pittsburgh, PA
| | - Tom A Williams
- School of Biological Sciences, University of Bristol, United Kingdom
| | - Eleni Gentekaki
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Canada.,School of Science and Human Gut Microbiome for Health Research Unit, Mae Fah Luang University, Chiang Rai, Thailand
| | - Henner Brinkmann
- Département de Biochimie, Université de Montréal C.P. 6128, Montréal, Quebec, Canada.,Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, Braunschweig, Germany
| | - Rüdiger Cerff
- Institut für Genetik, Technische Universität Braunschweig
| | | | - Adrian B Hehl
- Institute of Parasitology, University of Zürich, Switzerland
| | - Nigel R Yarlett
- Department of Chemistry and Physical Sciences, Pace University
| | - Ansgar Gruber
- Fachbereich Biologie, Universität Konstanz, Germany.,Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Canada.,Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
| | | | | |
Collapse
|
6
|
Martin WF, Cerff R. Physiology, phylogeny, early evolution, and GAPDH. PROTOPLASMA 2017; 254:1823-1834. [PMID: 28265765 PMCID: PMC5610209 DOI: 10.1007/s00709-017-1095-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 02/22/2017] [Indexed: 05/23/2023]
Abstract
The chloroplast and cytosol of plant cells harbor a number of parallel biochemical reactions germane to the Calvin cycle and glycolysis, respectively. These reactions are catalyzed by nuclear encoded, compartment-specific isoenzymes that differ in their physiochemical properties. The chloroplast cytosol isoenzymes of D-glyceraldehyde-3-phosphate dehydrogenase (GAPDH) harbor evidence of major events in the history of life: the origin of the first genes, the bacterial-archaeal split, the origin of eukaryotes, the evolution of protein compartmentation during eukaryote evolution, the origin of plastids, and the secondary endosymbiosis among the algae with complex plastids. The reaction mechanism of GAPDH entails phosphorolysis of a thioester to yield an energy-rich acyl phosphate bond, a chemistry that points to primitive pathways of energy conservation that existed even before the origin of the first free-living cells. Here, we recount the main insights that chloroplast and cytosolic GAPDH provided into endosymbiosis and physiological evolution.
Collapse
Affiliation(s)
- William F. Martin
- Institute of Molecular Evolution, University of Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Rüdiger Cerff
- Institute of Genetics, Technical University of Braunschweig, Spielmannstr. 7, 38106 Braunschweig, Germany
| |
Collapse
|
7
|
Markunas CM, Triemer RE. Evolutionary History of the Enzymes Involved in the Calvin–Benson Cycle in Euglenids. J Eukaryot Microbiol 2016; 63:326-39. [DOI: 10.1111/jeu.12282] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 10/28/2015] [Accepted: 10/28/2015] [Indexed: 11/28/2022]
Affiliation(s)
- Chelsea M. Markunas
- Department of Plant Biology Michigan State University 612 Wilson Road 166 Plant Biology Labs East Lansing Michigan 48824
| | - Richard E. Triemer
- Department of Plant Biology Michigan State University 612 Wilson Road 166 Plant Biology Labs East Lansing Michigan 48824
| |
Collapse
|
8
|
Petersen J, Ludewig AK, Michael V, Bunk B, Jarek M, Baurain D, Brinkmann H. Chromera velia, endosymbioses and the rhodoplex hypothesis--plastid evolution in cryptophytes, alveolates, stramenopiles, and haptophytes (CASH lineages). Genome Biol Evol 2014; 6:666-84. [PMID: 24572015 PMCID: PMC3971594 DOI: 10.1093/gbe/evu043] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The discovery of Chromera velia, a free-living photosynthetic relative of apicomplexan pathogens, has provided an unexpected opportunity to study the algal ancestry of malaria parasites. In this work, we compared the molecular footprints of a eukaryote-to-eukaryote endosymbiosis in C. velia to their equivalents in peridinin-containing dinoflagellates (PCD) to reevaluate recent claims in favor of a common ancestry of their plastids. To this end, we established the draft genome and a set of full-length cDNA sequences from C. velia via next-generation sequencing. We documented the presence of a single coxI gene in the mitochondrial genome, which thus represents the genetically most reduced aerobic organelle identified so far, but focused our analyses on five "lucky genes" of the Calvin cycle. These were selected because of their known support for a common origin of complex plastids from cryptophytes, alveolates (represented by PCDs), stramenopiles, and haptophytes (CASH) via a single secondary endosymbiosis with a red alga. As expected, our broadly sampled phylogenies of the nuclear-encoded Calvin cycle markers support a rhodophycean origin for the complex plastid of Chromera. However, they also suggest an independent origin of apicomplexan and dinophycean (PCD) plastids via two eukaryote-to-eukaryote endosymbioses. Although at odds with the current view of a common photosynthetic ancestry for alveolates, this conclusion is nonetheless in line with the deviant plastome architecture in dinoflagellates and the morphological paradox of four versus three plastid membranes in the respective lineages. Further support for independent endosymbioses is provided by analysis of five additional markers, four of them involved in the plastid protein import machinery. Finally, we introduce the "rhodoplex hypothesis" as a convenient way to designate evolutionary scenarios where CASH plastids are ultimately the product of a single secondary endosymbiosis with a red alga but were subsequently horizontally spread via higher-order eukaryote-to-eukaryote endosymbioses.
Collapse
Affiliation(s)
- Jörn Petersen
- Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, Braunschweig, Germany
| | | | | | | | | | | | | |
Collapse
|
9
|
Michelet L, Zaffagnini M, Morisse S, Sparla F, Pérez-Pérez ME, Francia F, Danon A, Marchand CH, Fermani S, Trost P, Lemaire SD. Redox regulation of the Calvin-Benson cycle: something old, something new. FRONTIERS IN PLANT SCIENCE 2013; 4:470. [PMID: 24324475 PMCID: PMC3838966 DOI: 10.3389/fpls.2013.00470] [Citation(s) in RCA: 277] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 10/30/2013] [Indexed: 05/18/2023]
Abstract
Reversible redox post-translational modifications such as oxido-reduction of disulfide bonds, S-nitrosylation, and S-glutathionylation, play a prominent role in the regulation of cell metabolism and signaling in all organisms. These modifications are mainly controlled by members of the thioredoxin and glutaredoxin families. Early studies in photosynthetic organisms have identified the Calvin-Benson cycle, the photosynthetic pathway responsible for carbon assimilation, as a redox regulated process. Indeed, 4 out of 11 enzymes of the cycle were shown to have a low activity in the dark and to be activated in the light through thioredoxin-dependent reduction of regulatory disulfide bonds. The underlying molecular mechanisms were extensively studied at the biochemical and structural level. Unexpectedly, recent biochemical and proteomic studies have suggested that all enzymes of the cycle and several associated regulatory proteins may undergo redox regulation through multiple redox post-translational modifications including glutathionylation and nitrosylation. The aim of this review is to detail the well-established mechanisms of redox regulation of Calvin-Benson cycle enzymes as well as the most recent reports indicating that this pathway is tightly controlled by multiple interconnected redox post-translational modifications. This redox control is likely allowing fine tuning of the Calvin-Benson cycle required for adaptation to varying environmental conditions, especially during responses to biotic and abiotic stresses.
Collapse
Affiliation(s)
- Laure Michelet
- Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, FRE3354 Centre National de la Recherche Scientifique, Institut de Biologie Physico-Chimique, Université Pierre et Marie CurieParis, France
| | - Mirko Zaffagnini
- Laboratory of Plant Redox Biology, Department of Pharmacy and Biotechnology (FaBiT), University of BolognaBologna, Italy
| | - Samuel Morisse
- Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, FRE3354 Centre National de la Recherche Scientifique, Institut de Biologie Physico-Chimique, Université Pierre et Marie CurieParis, France
| | - Francesca Sparla
- Laboratory of Plant Redox Biology, Department of Pharmacy and Biotechnology (FaBiT), University of BolognaBologna, Italy
| | - María Esther Pérez-Pérez
- Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, FRE3354 Centre National de la Recherche Scientifique, Institut de Biologie Physico-Chimique, Université Pierre et Marie CurieParis, France
| | - Francesco Francia
- Laboratory of Plant Redox Biology, Department of Pharmacy and Biotechnology (FaBiT), University of BolognaBologna, Italy
| | - Antoine Danon
- Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, FRE3354 Centre National de la Recherche Scientifique, Institut de Biologie Physico-Chimique, Université Pierre et Marie CurieParis, France
| | - Christophe H. Marchand
- Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, FRE3354 Centre National de la Recherche Scientifique, Institut de Biologie Physico-Chimique, Université Pierre et Marie CurieParis, France
| | - Simona Fermani
- Department of Chemistry “G. Ciamician”, University of BolognaBologna, Italy
| | - Paolo Trost
- Laboratory of Plant Redox Biology, Department of Pharmacy and Biotechnology (FaBiT), University of BolognaBologna, Italy
| | - Stéphane D. Lemaire
- Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, FRE3354 Centre National de la Recherche Scientifique, Institut de Biologie Physico-Chimique, Université Pierre et Marie CurieParis, France
| |
Collapse
|
10
|
Gaston D, Roger AJ. Functional divergence and convergent evolution in the plastid-targeted glyceraldehyde-3-phosphate dehydrogenases of diverse eukaryotic algae. PLoS One 2013; 8:e70396. [PMID: 23936198 PMCID: PMC3728087 DOI: 10.1371/journal.pone.0070396] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 06/18/2013] [Indexed: 11/19/2022] Open
Abstract
Background Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a key enzyme of the glycolytic pathway, reversibly catalyzing the sixth step of glycolysis and concurrently reducing the coenzyme NAD+ to NADH. In photosynthetic organisms a GAPDH paralog (Gap2 in Cyanobacteria, GapA in most photosynthetic eukaryotes) functions in the Calvin cycle, performing the reverse of the glycolytic reaction and using the coenzyme NADPH preferentially. In a number of photosynthetic eukaryotes that acquired their plastid by the secondary endosymbiosis of a eukaryotic red alga (Alveolates, haptophytes, cryptomonads and stramenopiles) GapA has been apparently replaced with a paralog of the host’s own cytosolic GAPDH (GapC1). Plastid GapC1 and GapA therefore represent two independent cases of functional divergence and adaptations to the Calvin cycle entailing a shift in subcellular targeting and a shift in binding preference from NAD+ to NADPH. Methods We used the programs FunDi, GroupSim, and Difference Evolutionary-Trace to detect sites involved in the functional divergence of these two groups of GAPDH sequences and to identify potential cases of convergent evolution in the Calvin-cycle adapted GapA and GapC1 families. Sites identified as being functionally divergent by all or some of these programs were then investigated with respect to their possible roles in the structure and function of both glycolytic and plastid-targeted GAPDH isoforms. Conclusions In this work we found substantial evidence for convergent evolution in GapA/B and GapC1. In many cases sites in GAPDHs of these groups converged on identical amino acid residues in specific positions of the protein known to play a role in the function and regulation of plastid-functioning enzymes relative to their cytosolic counterparts. In addition, we demonstrate that bioinformatic software like FunDi are important tools for the generation of meaningful biological hypotheses that can then be tested with direct experimental techniques.
Collapse
Affiliation(s)
- Daniel Gaston
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Andrew J. Roger
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, Nova Scotia, Canada
- * E-mail:
| |
Collapse
|
11
|
Consequences of the presence of 24-epibrassinolide, on cultures of a diatom, Asterionella formosa. Biochimie 2012; 94:1213-20. [DOI: 10.1016/j.biochi.2012.02.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
12
|
Erales J, Mekhalfi M, Woudstra M, Gontero B. Molecular mechanism of NADPH-glyceraldehyde-3-phosphate dehydrogenase regulation through the C-terminus of CP12 in Chlamydomonas reinhardtii. Biochemistry 2011; 50:2881-8. [PMID: 21366264 DOI: 10.1021/bi1020259] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In Chlamydomonas reinhardtii, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) consists of four GapA subunits. This A4 GAPDH is not autonomously regulated, as the regulatory cysteine residues present on GapB subunits are missing in GapA subunits. The regulation of A4 GAPDH is provided by another protein, CP12. To determine the molecular mechanisms of regulation of A4 GAPDH, we mutated three residues (R82, R190, and S195) of GAPDH of C. reinhardtii. Kinetic studies of GAPDH mutants showed the importance of residue R82 in the specificity of GAPDH for NADPH, as previously shown for the spinach enzyme. The cofactor NADPH was not stabilized through the 2'-phosphate by the serine 195 residue of the algal GAPDH, unlike the case in spinach. The mutation of R190 also led to a structural change that was not observed in the spinach enzyme. This mutation led to a loss of activity for NADPH and NADH, indicating the crucial role of this residue in maintaining the algal GAPDH structure. Finally, the interaction between GAPDH mutants and wild-type and mutated CP12 was analyzed by immunoblotting experiments, surface plasmon resonance, and kinetic studies. The results obtained with these approaches highlight the involvement of the last residue of CP12, Asp80, in modulating the activity of GAPDH by preventing access of the cofactor NADPH to the active site. These results help us to bridge the gap between our knowledge of structure and our understanding of functional biology in GAPDH regulation.
Collapse
Affiliation(s)
- Jenny Erales
- Laboratoire d'Enzymologie de complexes supramoléculaires, BIP-UPR 9036, BIP-CNRS, IMM-Aix-Marseille Universities, 31 chemin J. Aiguier, 13402 Marseille Cedex 20, France
| | | | | | | |
Collapse
|
13
|
Takishita K, Yamaguchi H, Maruyama T, Inagaki Y. A hypothesis for the evolution of nuclear-encoded, plastid-targeted glyceraldehyde-3-phosphate dehydrogenase genes in "chromalveolate" members. PLoS One 2009; 4:e4737. [PMID: 19270733 PMCID: PMC2649427 DOI: 10.1371/journal.pone.0004737] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Accepted: 02/05/2009] [Indexed: 11/18/2022] Open
Abstract
Eukaryotes bearing red alga-derived plastids — photosynthetic alveolates (dinoflagellates plus the apicomplexan Toxoplasma gondii plus the chromerid Chromera velia), photosynthetic stramenopiles, haptophytes, and cryptophytes — possess unique plastid-targeted glyceraldehyde-3-phosphate dehydrogenases (henceforth designated as “GapC1”). Pioneering phylogenetic studies have indicated a single origin of the GapC1 enzymes in eukaryotic evolution, but there are two potential idiosyncrasies in the GapC1 phylogeny: Firstly, the GapC1 tree topology is apparently inconsistent with the organismal relationship among the “GapC1-containing” groups. Secondly, four stramenopile GapC1 homologues are consistently paraphyletic in previously published studies, although these organisms have been widely accepted as monophyletic. For a closer examination of the above issues, in this study GapC1 gene sampling was improved by determining/identifying nine stramenopile and two cryptophyte genes. Phylogenetic analyses of our GapC1 dataset, which is particularly rich in the stramenopile homologues, prompt us to propose a new scenario that assumes multiple, lateral GapC1 gene transfer events to explain the incongruity between the GapC1 phylogeny and the organismal relationships amongst the “GapC1-containing” groups. Under our new scenario, GapC1 genes uniquely found in photosynthetic alveolates, photosynthetic stramenopiles, haptophytes, and cryptopyhytes are not necessarily a character vertically inherited from a common ancestor.
Collapse
Affiliation(s)
- Kiyotaka Takishita
- Japan Agency for Marine-Earth Science and Technology, Yokosuka, Kanagawa, Japan.
| | | | | | | |
Collapse
|
14
|
Erales J, Gontero B, Maberly SC. SPECIFICITY AND FUNCTION OF GLYCERALDEHYDE-3-PHOSPHATE DEHYDROGENASE IN A FRESHWATER DIATOM, ASTERIONELLA FORMOSA (BACILLARIOPHYCEAE)(1). JOURNAL OF PHYCOLOGY 2008; 44:1455-1464. [PMID: 27039860 DOI: 10.1111/j.1529-8817.2008.00600.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The plastidic glyceraldehyde-3-phosphate dehydrogenase (GAPDH) catalyzes the only reductive step in the Calvin cycle and exists as different forms of which GapC1 enzyme is present in chromalveolates, such as diatoms. Biochemical studies on diatoms are still fragmentary, and, thus, in this report, GAPDH from the freshwater diatom Asterionella formosa Hassall has been purified and kinetically characterized. It is a homotetrameric enzyme with a molecular mass of ~150 ± 15 kDa. The enzyme showed Michaelis-Menten kinetics with respect to both cofactors, NADPH and NADH, with a 16-fold greater catalytic constant for NADPH. The Km for NADPH was 140 μM, the lowest affinity reported, while the catalytic constant, 815 s(-1) , is the highest reported. The Km for NADH was 93 μM, and the catalytic constant was 50 s(-1) , both are similar to reported values for other types of GAPDH. The GapC1 enzyme, like the Chlamydomonas reinhardtii A4 GAPDH, exhibits a cooperative behavior toward the substrate, 1,3-bisphosphoglyceric acid (BPGA), with both cofactors. Mass spectrometry analysis showed that when GapC1 enzyme was purified without reducing agents, it copurified with a small protein with a mass of 8.2 kDa. This protein was recognized by antibodies against CP12. When associated with this protein, GAPDH displayed a lag that disappeared upon incubation with reducing agent in the presence of either BPGA or NADPH as a consequence of dissociation of the GAPDH/CP12 complex. Thus, as in other species of algae and higher plants, regulation of GapC1 enzyme in A. formosa may occur through association-dissociation processes linked to dark-light transitions.
Collapse
Affiliation(s)
- Jenny Erales
- Laboratoire de Bioénergétique et Ingénierie des Protéines, 31 Chemin Joseph Aiguier, 13 402 Marseille Cedex 20 FranceCentre for Ecology and Hydrology, Lancaster Environment Centre, Library Avenue, Bailrigg, Lancaster LA1 4AP, UK
| | - Brigitte Gontero
- Laboratoire de Bioénergétique et Ingénierie des Protéines, 31 Chemin Joseph Aiguier, 13 402 Marseille Cedex 20 FranceCentre for Ecology and Hydrology, Lancaster Environment Centre, Library Avenue, Bailrigg, Lancaster LA1 4AP, UK
| | - Stephen C Maberly
- Laboratoire de Bioénergétique et Ingénierie des Protéines, 31 Chemin Joseph Aiguier, 13 402 Marseille Cedex 20 FranceCentre for Ecology and Hydrology, Lancaster Environment Centre, Library Avenue, Bailrigg, Lancaster LA1 4AP, UK
| |
Collapse
|
15
|
Takishita K, Kawachi M, Noël MH, Matsumoto T, Kakizoe N, Watanabe MM, Inouye I, Ishida KI, Hashimoto T, Inagaki Y. Origins of plastids and glyceraldehyde-3-phosphate dehydrogenase genes in the green-colored dinoflagellate Lepidodinium chlorophorum. Gene 2007; 410:26-36. [PMID: 18191504 DOI: 10.1016/j.gene.2007.11.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2007] [Revised: 11/12/2007] [Accepted: 11/19/2007] [Indexed: 10/22/2022]
Abstract
The dinoflagellate Lepidodinium chlorophorum possesses "green" plastids containing chlorophylls a and b (Chl a+b), unlike most dinoflagellate plastids with Chl a+c plus a carotenoid peridinin (peridinin-containing plastids). In the present study we determined 8 plastid-encoded genes from Lepidodinium to investigate the origin of the Chl a+b-containing dinoflagellate plastids. The plastid-encoded gene phylogeny clearly showed that Lepidodinium plastids were derived from a member of Chlorophyta, consistent with pigment composition. We also isolated three different glyceraldehyde-3-phosphate dehydrogenase (GAPDH) genes from Lepidodinium-one encoding the putative cytosolic "GapC" enzyme and the remaining two showing affinities to the "plastid-targeted GapC" genes. In a GAPDH phylogeny, one of the plastid-targeted GapC-like sequences robustly grouped with those of dinoflagellates bearing peridinin-containing plastids, while the other was nested in a clade of the homologues of haptophytes and dinoflagellate genera Karenia and Karlodinium bearing "haptophyte-derived" plastids. Since neither host nor plastid phylogeny suggested an evolutionary connection between Lepidodinium and Karenia/Karlodinium, a lateral transfer of a plastid-targeted GapC gene most likely took place from a haptophyte or a dinoflagellate with haptophyte-derived plastids to Lepidodinium. The plastid-targeted GapC data can be considered as an evidence for the single origin of plastids in haptophytes, cryptophytes, stramenopiles, and alveolates. However, in the light of Lepidodinium GAPDH data, we need to closely examine whether the monophyly of the plastids in the above lineages inferred from plastid-targeted GapC genes truly reflects that of the host lineages.
Collapse
Affiliation(s)
- Kiyotaka Takishita
- Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Kanagawa, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Patron NJ, Inagaki Y, Keeling PJ. Multiple gene phylogenies support the monophyly of cryptomonad and haptophyte host lineages. Curr Biol 2007; 17:887-91. [PMID: 17462896 DOI: 10.1016/j.cub.2007.03.069] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2007] [Revised: 03/18/2007] [Accepted: 03/28/2007] [Indexed: 01/08/2023]
Abstract
Cryptomonad algae acquired their plastids by the secondary endosymbiotic uptake of a eukaryotic red alga. Several other algal lineages acquired plastids through such an event [1], but cryptomonads are distinguished by the retention of a relic red algal nucleus, the nucleomorph [2]. The nucleomorph (and its absence in other lineages) can reveal a great deal about the process and history of endosymbiosis, but only if we know the relationship between cryptomonads and other algae, and this has been controversial. Several recent analyses have suggested a relationship between plastids of cryptomonads and some or all other red alga-containing lineages [3-6], but we must also know whether host nuclear genes mirror this relationship to determine the number of endosymbiotic events, and this has not been demonstrated. We have carried out an expressed sequence tag (EST) survey of the cryptomonad Guillardia theta. Phylogenetic analyses of 102 orthologous nucleus-encoded proteins (18,425 amino acid alignment positions) show a robust sister-group relationship between cryptomonads and the haptophyte algae, which also have a red secondary plastid. This relationship demonstrates that loss of nucleomorphs must have taken place in haptophytes independently of any other red alga-containing lineages and that the ancestor of both already contained a red algal endosymbiont.
Collapse
Affiliation(s)
- Nicola J Patron
- Department of Botany, University of British Columbia, 3529-6270 University Boulevard, Vancouver, BC V6T 1Z4, Canada
| | | | | |
Collapse
|
17
|
Petersen J, Teich R, Becker B, Cerff R, Brinkmann H. The GapA/B Gene Duplication Marks the Origin of Streptophyta (Charophytes and Land Plants). Mol Biol Evol 2006; 23:1109-18. [PMID: 16527864 DOI: 10.1093/molbev/msj123] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Independent evidence from morphological, ultrastructural, biochemical, and molecular data have shown that land plants originated from charophycean green algae. However, the branching order within charophytes is still unresolved, and contradictory phylogenies about, for example,the position of the unicellular green alga Mesostigma viride are difficult to reconcile. A comparison of nuclear-encoded Calvin cycle glyceraldehyde-3-phosphate dehydrogenases (GAPDH) indicates that a crucial duplication of the GapA gene occurred early in land plant evolution. The duplicate called GapB acquired a characteristic carboxy-terminal extension (CTE) from the general regulator of the Calvin cycle CP12. This CTE is responsible for thioredoxin-dependent light/dark regulation. In this work, we established GapA, GapB, and CP12 sequences from bryophytes, all orders of charophyte as well as chlorophyte green algae, and the glaucophyte Cyanophora paradoxa. Comprehensive phylogenetic analyses of all available plastid GAPDH sequences suggest that glaucophytes and green plants are sister lineages and support a positioning of Mesostigma basal to all charophycean algae. The exclusive presence of GapB in terrestrial plants, charophytes, and Mesostigma dates the GapA/B gene duplication to the common ancestor of Streptophyta. The conspicuously high degree of GapB sequence conservation suggests an important metabolic role of the newly gained regulatory function. Because the GapB-mediated protein aggregation most likely ensures the complete blockage of the Calvin cycle at night, we propose that this mechanism is also crucial for efficient starch mobilization. This innovation may be one prerequisite for the development of storage tissues in land plants.
Collapse
Affiliation(s)
- Jörn Petersen
- Institut für Genetik, Technische Universität Braunschweig, Braunschweig, Germany.
| | | | | | | | | |
Collapse
|
18
|
Petersen J, Teich R, Brinkmann H, Cerff R. A “Green” Phosphoribulokinase in Complex Algae with Red Plastids: Evidence for a Single Secondary Endosymbiosis Leading to Haptophytes, Cryptophytes, Heterokonts, and Dinoflagellates. J Mol Evol 2006; 62:143-57. [PMID: 16474987 DOI: 10.1007/s00239-004-0305-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2004] [Accepted: 05/24/2005] [Indexed: 01/06/2023]
Abstract
Phosphoribulokinase (PRK) is an essential enzyme of photosynthetic eukaryotes which is active in the plastid-located Calvin cycle and regenerates the substrate for ribulose-bisphosphate carboxylase/oxygenase (Rubisco). Rhodophytes and chlorophytes (red and green algae) recruited their nuclear-encoded PRK from the cyanobacterial ancestor of plastids. The plastids of these organisms can be traced back to a single primary endosymbiosis, whereas, for example, haptophytes, dinoflagellates, and euglenophytes obtained their "complex" plastids through secondary endosymbioses, comprising the engulfment of a unicellular red or green alga by a eukaryotic host cell. We have cloned eight new PRK sequences from complex algae as well as a rhodophyte in order to investigate their evolutionary origin. All available PRK sequences were used for phylogenetic analyses and the significance of alternative topologies was estimated by the approximately unbiased test. Our analyses led to several astonishing findings. First, the close relationship of PRK genes of haptophytes, heterokontophytes, cryptophytes, and dinophytes (complex red lineage) supports a monophyletic origin of their sequences and hence their plastids. Second, based on PRK genes the complex red lineage forms a highly supported assemblage together with chlorophytes and land plants, to the exclusion of the rhodophytes. This green affinity is in striking contrast to the expected red algal origin and our analyses suggest that the PRK gene was acquired once via lateral transfer from a green alga. Third, surprisingly the complex green lineages leading to Bigelowiella and Euglena probably also obtained their PRK genes via lateral gene transfers from a red alga and a complex alga with red plastids, respectively.
Collapse
Affiliation(s)
- Jörn Petersen
- Institut für Genetik, Technische Universität Braunschweig, D-38106, Braunschweig, Germany.
| | | | | | | |
Collapse
|
19
|
Broughton MJ, Howe CJ, Hiller RG. Distinctive organization of genes for light-harvesting proteins in the cryptophyte alga Rhodomonas. Gene 2006; 369:72-9. [PMID: 16431038 DOI: 10.1016/j.gene.2005.10.026] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2005] [Revised: 06/30/2005] [Accepted: 10/20/2005] [Indexed: 11/20/2022]
Abstract
Cryptophyte algae contain two kinds of light-harvesting protein, phycobiliproteins and chlorophyll a,c-binding proteins. The beta subunit of the phycobiliprotein phycoerythrin (PE) is encoded in the chloroplast. Genes for the other PE polypeptides are located in the nucleus but little is known of their organization. We cloned and sequenced six cpeA genes encoding the phycoerythrin alpha subunit from a genomic library of the cryptophyte Rhodomonas CS24. Derived peptide sequences of the cpeA genes show that alpha subunits occur in at least two forms, a longer alpha1 form and a shorter alpha2 form. Remarkably, all six cpeA genes occur in divergent pairs encoding one alpha1 and one alpha2 subunit. Four cac genes encoding chlorophyll a,c-binding proteins were cloned and sequenced and also found to occur in divergent pairs comprising one cac1 and one cac2 gene. Inspection of the predicted targeting sequences of the alpha1 and alpha2 phycoerythrin polypeptides shows that only the alpha1 polypeptides have a thylakoid lumen targeting sequence, corresponding to the TAT pathway. Given the previously reported lack of a lumen-targeting sequence on the beta subunit, we propose a novel import mechanism in which the entire alpha1alpha2 betabeta phycoerythrin complex is assembled in the stroma and transported into the thylakoid under the direction of the single targeting sequence on the alpha1 protein. The FAP motif implicated in plastid targeting in diatoms appears to be conserved in this cryptophyte.
Collapse
Affiliation(s)
- M J Broughton
- Macquarie University, Department of Biological Sciences, Sydney, NSW 2109 Australia
| | | | | |
Collapse
|
20
|
Bachvaroff TR, Sanchez-Puerta MV, Delwiche CF. Rate variation as a function of gene origin in plastid-derived genes of peridinin-containing dinoflagellates. J Mol Evol 2006; 62:42-52. [PMID: 16408243 DOI: 10.1007/s00239-004-0365-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2004] [Accepted: 08/01/2005] [Indexed: 11/24/2022]
Abstract
Peridinin-pigmented dinoflagellates contain secondary plastids that seem to have undergone more nearly complete plastid genome reduction than other eukaryotes. Many typically plastid-encoded genes appear to have been transferred to the nucleus, with a few remaining genes found on minicircles. To understand better the evolution of the dinoflagellate plastid, four categories of plastid-associated genes in dinoflagellates were defined based on their history of transfer and evaluated for rate of sequence evolution, including minicircle genes (presumably plastid-encoded), genes probably transferred from the plastid to the nucleus (plastid-transferred), and genes that were likely acquired directly from the nucleus of the previous plastid host (nuclear-transferred). The fourth category, lateral-transferred genes, are plastid-associated genes that do not appear to have a cyanobacterial origin. The evolutionary rates of these gene categories were compared using relative rate tests and likelihood ratio tests. For comparison with other secondary plastid-containing organisms, rates were calculated for the homologous sequences from the haptophyte Emiliania huxleyi. The evolutionary rate of minicircle and plastid-transferred genes in the dinoflagellate was strikingly higher than that of nuclear-transferred and lateral-transferred genes and, also, substantially higher than that of all plastid-associated genes in the haptophyte. Plastid-transferred genes in the dinoflagellate had an accelerated rate of evolution that was variable but, in most cases, not as extreme as the minicircle genes. Furthermore, the nuclear-transferred and lateral-transferred genes showed rates of evolution that are similar to those of other taxa. Thus, nucleus-to-nucleus transferred genes have a more typical rate of sequence evolution, while those whose history was wholly or partially within the dinoflagellate plastid genome have a markedly accelerated rate of evolution.
Collapse
Affiliation(s)
- Tsvetan R Bachvaroff
- Department of Cell Biology and Molecular Genetics, University of Maryland College Park, H. J. Patterson Hall, College Park, MD 20742, USA
| | | | | |
Collapse
|
21
|
Valverde F, Ortega JM, Losada M, Serrano A. Sugar-mediated transcriptional regulation of the Gap gene system and concerted photosystem II functional modulation in the microalga Scenedesmus vacuolatus. PLANTA 2005; 221:937-952. [PMID: 15830207 DOI: 10.1007/s00425-005-1501-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2004] [Accepted: 02/02/2005] [Indexed: 05/24/2023]
Abstract
Partial cDNAs corresponding to the GapA, GapC and GapN genes that encode the three different glyceraldehyde-3-phosphate dehydrogenases (GAPDHs) of the green microalga Scenedesmus vacuolatus SAG 211-8b have been cloned and characterized. Northern blot experiments, as well as immunoblots and activity measurements, demonstrate a differential regulation by sugars of the components of the algal Gap gene system. Addition of glucose or other metabolizable sugars to photoautotrophic cultures promoted a drastic repression of the GapA gene and depletion to negligible levels of the corresponding GAPDHA, a chloroplastic protein involved in photosynthetic CO2 assimilation. By contrast, expression of the GapC and GapN genes encoding their cytosolic counterparts involved in glycolysis was enhanced. However, no down-regulation of the GapA gene by glucose took place in the dark, indicating that the observed effect is associated with sugar assimilation in the light. Likewise, glucose promoted in illuminated algal cultures a severe decrease of photosystem II functionality, estimated by O2 evolution activity, thermoluminescence emission and D1 protein level, while again, no effect was observed in the dark. On the basis of the correlation found between photosystem II performance and sugar transcriptional regulation of the GapA gene, a scenario of sugar-mediated regulation of photosynthetic metabolism in microalgae is proposed that will help to explain the so-called glucose bleaching effect in photosynthetic eukaryotes.
Collapse
Affiliation(s)
- Federico Valverde
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla-CSIC, 41092, Seville, Spain
| | | | | | | |
Collapse
|
22
|
Abstract
Considerable work still needs to be done to understand more fully the basic processes going on inside the non-photosynthetic plastid organelle of Plasmodium spp., the causative agent of malaria. Following an explosion of genomic and transcriptional information in recent years, research workers are still analysing these data looking for new material relevant to the plastid. Several metabolic and housekeeping functions based on bacterial biochemistry have been elucidated and this has given impetus to finding lead inhibitors based on established anti-microbials. Structural investigations of plastid-associated enzymes identified as potential targets have begun. This review gives a perspective on the research to date and hopes to emphasize that a practical outcome for the clinic should be an important focus of future efforts. Malaria parasites have become resistant to front-line anti-malarials that are widely used and were formerly dependable. This has become a worrying problem in many regions where malaria is endemic. The time lag between hunting for new inhibitors and their application as pharmaceuticals is so long and costly that a steady stream of new ventures has to be undertaken to give a reasonable chance of finding affordable and appropriate anti-malarials for the future. Attempts to find inhibitors of the plastid organelle of the malaria parasite should be intensified in such programmes.
Collapse
Affiliation(s)
- R J M Iain Wilson
- National Institute for Medical Research, Mill Hill, London, NW7 1AA, UK.
| |
Collapse
|
23
|
Takishita K, Ishida KI, Maruyama T. An Enigmatic GAPDH Gene in the Symbiotic Dinoflagellate Genus Symbiodinium and its Related Species (the Order Suessiales): Possible Lateral Gene Transfer between Two Eukaryotic Algae, Dinoflagellate and Euglenophyte. Protist 2003; 154:443-54. [PMID: 14658500 DOI: 10.1078/143446103322454176] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A group of unicellular eukaryotic algae, the dinoflagellates, are known to possess two types of gene for glyceraldehyde-3-phosphate dehydrogenase (GAPDH). An enzyme encoded by one type of gene possibly plays a key role in the glycolytic pathway of the cytosol and the other in the Calvin cycle of plastids. In the present study, an additional type of GAPDH gene (GapC3) was found in the symbiotic dinoflagellates, Symbiodinium spp. and their related species, Gymnodinium simplex and Polarella glacialis, all of which belong to the order Suessiales. Since no intracellular translocation signal is found at both amino- and carboxy-termini of its deduced amino acid sequence, the protein is predicted to function in the cytosol. However, it may not be involved in glycolysis due to the presence of an amino acid signature that allows binding for NADP+. It is likely that dinoflagellate species, other than Suessiales investigated in this study, lack this type of GAPDH. Phylogenetic analysis placed GapC3 from the Suessialean species firmly in the clade composed of GAPDH from spirochetes, euglenophytes (cytosolic type) and kinetoplastids (glycosomal type). Specifically, this enigmatic GAPDH gene in dinoflagellates was closely related to its cytosolic counterpart in euglenophytes. It has been previously reported that plastid-targeted (Calvin cycle) GAPDH genes of the dinoflagellates Pyrocystis spp. and that of the euglenophyte Euglena gracilis also seem to share a common ancestor. It appears highly likely that at least two genes (cytosolic and plastid-targeted GAPDH genes) have been laterally transferred between these two eukaryotic algal groups.
Collapse
|
24
|
Kroth PG. Protein transport into secondary plastids and the evolution of primary and secondary plastids. INTERNATIONAL REVIEW OF CYTOLOGY 2003; 221:191-255. [PMID: 12455749 DOI: 10.1016/s0074-7696(02)21013-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Chloroplasts are key organelles in algae and plants due to their photosynthetic abilities. They are thought to have evolved from prokaryotic cyanobacteria taken up by a eukaryotic host cell in a process termed primary endocytobiosis. In addition, a variety of organisms have evolved by subsequent secondary endocytobioses, in which a heterotrophic host cell engulfed a eukaryotic alga. Both processes dramatically enhanced the complexity of the resulting cells. Since the first version of the endosymbiotic theory was proposed more than 100 years ago, morphological, physiological, biochemical, and molecular data have been collected substantiating the emerging picture about the origin and the relationship of individual organisms with different primary or secondary chloroplast types. Depending on their origin, plastids in different lineages may have two, three, or four envelope membranes. The evolutionary success of endocytobioses depends, among other factors, on the specific exchange of molecules between the host and endosymbiont. This raises questions concerning how targeting of nucleus-encoded proteins into the different plastid types occurs and how these processes may have developed. Most studies of protein translocation into plastids have been performed on primary plastids, but in recent years more complex protein-translocation systems of secondary plastids have been investigated. Analyses of transport systems in different algal lineages with secondary plastids reveal that during evolution existing translocation machineries were recycled or recombined rather than being developed de novo. This review deals with current knowledge about the evolution and function of primary and secondary plastids and the respective protein-targeting systems.
Collapse
Affiliation(s)
- Peter G Kroth
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| |
Collapse
|
25
|
Apt KE, Zaslavkaia L, Lippmeier JC, Lang M, Kilian O, Wetherbee R, Grossman AR, Kroth PG. In vivo characterization of diatom multipartite plastid targeting signals. J Cell Sci 2002; 115:4061-9. [PMID: 12356911 DOI: 10.1242/jcs.00092] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Plastids of diatoms and related algae are delineated by four membranes: the outermost membrane (CER) is continuous with the endoplasmic reticulum while the inner two membranes are homologous to plastid envelope membranes of vascular plants and green algae. Proteins are transported into these plastids by pre-sequences that have two recognizable domains. To characterize targeting of polypeptides within diatom cells, we generated constructs encoding green fluorecent protein (GFP) fused to leader sequences. A fusion of GFP to the pre-sequence of BiP [an endoplasmic reticulum (ER)-localized chaperone] resulted in accumulation of GFP within the ER; a construct encoding the pre-sequence of a plastid protein fused to GFP was directed into the plastids. Additional constructs demonstrated that the N-terminal region of the bipartite plastid targeting pre-sequence was necessary for transport of polypeptides to the lumen of the ER, while the C-terminal region was shown to enable the proteins to traverse the plastid double envelope membrane. Our data strongly support the hypothesis of a multi-step plastid targeting process in chromophytic algae and raises questions about the continuity of the ER and CER and the function of the latter in polypeptide trafficking.
Collapse
Affiliation(s)
- Kirk E Apt
- Martek Biosciences Corp, 6480 Dobbin Rd., Columbia, MD 21045, USA.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Fagan TF, Woodland Hastings J. Phylogenetic analysis indicates multiple origins of chloroplast glyceraldehyde-3-phosphate dehydrogenase genes in dinoflagellates. Mol Biol Evol 2002; 19:1203-7. [PMID: 12082139 DOI: 10.1093/oxfordjournals.molbev.a004178] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
27
|
van Dooren GG, Su V, D'Ombrain MC, McFadden GI. Processing of an apicoplast leader sequence in Plasmodium falciparum and the identification of a putative leader cleavage enzyme. J Biol Chem 2002; 277:23612-9. [PMID: 11976331 DOI: 10.1074/jbc.m201748200] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The plastid (apicoplast) of the malaria-causing parasite Plasmodium falciparum was derived via a secondary endosymbiotic process. As in other secondary endosymbionts, numerous genes for apicoplast proteins are located in the nucleus, and the encoded proteins are targeted to the organelle courtesy of a bipartite N-terminal extension. The first part of this leader sequence is a signal peptide that targets proteins to the secretory pathway. The second, so-called transit peptide region is required to direct proteins from the secretory pathway across the multiple membranes surrounding the apicoplast. In this paper we perform a pulse-chase experiment and N-terminal sequencing to show that the transit peptide of an apicoplast-targeted protein is cleaved, presumably upon import of the protein into the apicoplast. We identify a gene whose product likely performs this cleavage reaction, namely a stromal-processing peptidase (SPP) homologue. In plants SPP cleaves the transit peptides of plastid-targeted proteins. The P. falciparum SPP homologue contains a bipartite N-terminal apicoplast-targeting leader. Interestingly, it shares this leader sequence with a Delta-aminolevulinic acid dehydratase homologue via an alternative splicing event.
Collapse
Affiliation(s)
- Giel G van Dooren
- Plant Cell Biology Research Centre, School of Botany, University of Melbourne, Melboure 3010, Australia
| | | | | | | |
Collapse
|
28
|
van Dooren GG, Schwartzbach SD, Osafune T, McFadden GI. Translocation of proteins across the multiple membranes of complex plastids. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1541:34-53. [PMID: 11750661 DOI: 10.1016/s0167-4889(01)00154-9] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Secondary endosymbiosis describes the origin of plastids in several major algal groups such as dinoflagellates, euglenoids, heterokonts, haptophytes, cryptomonads, chlorarachniophytes and parasites such as apicomplexa. An integral part of secondary endosymbiosis has been the transfer of genes for plastid proteins from the endosymbiont to the host nucleus. Targeting of the encoded proteins back to the plastid from their new site of synthesis in the host involves targeting across the multiple membranes surrounding these complex plastids. Although this process shows many overall similarities in the different algal groups, it is emerging that differences exist in the mechanisms adopted.
Collapse
Affiliation(s)
- G G van Dooren
- Plant Cell Biology Research Centre, School of Botany, University of Melbourne, Australia
| | | | | | | |
Collapse
|
29
|
Fermani S, Ripamonti A, Sabatino P, Zanotti G, Scagliarini S, Sparla F, Trost P, Pupillo P. Crystal structure of the non-regulatory A(4 )isoform of spinach chloroplast glyceraldehyde-3-phosphate dehydrogenase complexed with NADP. J Mol Biol 2001; 314:527-42. [PMID: 11846565 DOI: 10.1006/jmbi.2001.5172] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Here, we report the first crystal structure of a photosynthetic glyceraldehyde-3-phosphate dehydrogenase (GAPDH) complexed with NADP. The enzyme, purified from spinach chloroplasts, is constituted of a single type of subunit (A) arranged in homotetramers. It shows non-regulated NADP-dependent and NAD-dependent activities, with a preference for NADP. The structure has been solved to 3.0 A resolution by molecular replacement. The crystals belong to space group C222 with three monomers in the asymmetric unit. One of the three monomers generates a tetramer using the space group 222 point symmetry and a very similar tetramer is generated by the other two monomers, related by a non-crystallographic symmetry, using a crystallographic 2-fold axis. The protein reveals a large structural homology with known GAPDHs both in the cofactor-binding domain and in regions of the catalytic domain. Like all other GAPDHs investigated so far, the A(4)-GAPDH belongs to the Rossmann fold family of dehydrogenases. However, unlike most dehydrogenases of this family, the adenosine 2'-phosphate group of NADP does not form a salt-bridge with any positively charged residue in its surroundings, being instead set in place by hydrogen bonds with a threonine residue belonging to the Rossmann fold and a serine residue located in the S-loop of a symmetry-related monomer. While increasing our knowledge of an important photosynthetic enzyme, these results contribute to a general understanding of NADP versus NAD recognition in pyridine nucleotide-dependent enzymes. Although the overall structure of A(4)-GAPDH is similar to that of the cytosolic GAPDH from bacteria and eukaryotes, the chloroplast tetramer is peculiar, in that it can actually be considered a dimer of dimers, since monomers are bound in pairs by a disulphide bridge formed across Cys200 residues. This bridge is not found in other cytosolic or chloroplast GAPDHs from animals, bacteria, or plants other than spinach.
Collapse
Affiliation(s)
- S Fermani
- Dipartimento di Chimica "G. Ciamician", Università di Bologna, via Selmi 2, Bologna, 40126, Italia.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Fast NM, Kissinger JC, Roos DS, Keeling PJ. Nuclear-encoded, plastid-targeted genes suggest a single common origin for apicomplexan and dinoflagellate plastids. Mol Biol Evol 2001; 18:418-26. [PMID: 11230543 DOI: 10.1093/oxfordjournals.molbev.a003818] [Citation(s) in RCA: 273] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The phylum Apicomplexa encompasses a large number of intracellular protozoan parasites, including the causative agents of malaria (Plasmodium), toxoplasmosis (Toxoplasma), and many other human and animal diseases. Apicomplexa have recently been found to contain a relic, nonphotosynthetic plastid that has attracted considerable interest as a possible target for therapeutics. This plastid is known to have been acquired by secondary endosymbiosis, but when this occurred and from which type of alga it was acquired remain uncertain. Based on the molecular phylogeny of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) genes, we provide evidence that the apicomplexan plastid is homologous to plastids found in dinoflagellates-close relatives of apicomplexa that contain secondary plastids of red algal origin. Surprisingly, apicomplexan and dinoflagellate plastid-targeted GAPDH sequences were also found to be closely related to the plastid-targeted GAPDH genes of heterokonts and cryptomonads, two other groups that contain secondary plastids of red algal origin. These results address several outstanding issues: (1) apicomplexan and dinoflagellate plastids appear to be the result of a single endosymbiotic event which occurred relatively early in eukaryotic evolution, also giving rise to the plastids of heterokonts and perhaps cryptomonads; (2) apicomplexan plastids are derived from a red algal ancestor; and (3) the ancestral state of apicomplexan parasites was photosynthetic.
Collapse
Affiliation(s)
- N M Fast
- Canadian Institute for Advanced Research, Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada.
| | | | | | | |
Collapse
|
31
|
Deane JA, Fraunholz M, Su V, Martin W, Durnford DG, McFadden GI. Evidence for nucleomorph to host nucleus gene transfer: light-harvesting complex proteins from cryptomonads and chlorarachniophytes. Protist 2000; 151:239-52. [PMID: 11079769 DOI: 10.1078/1434-4610-00022] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Cryptomonads and chlorarachniophytes acquired photosynthesis independently by engulfing and retaining eukaryotic algal cells. The nucleus of the engulfed cells (known as a nucleomorph) is much reduced and encodes only a handful of the numerous essential plastid proteins normally encoded by the nucleus of chloroplast-containing organisms. In cryptomonads and chlorarachniophytes these proteins are thought to be encoded by genes in the secondary host nucleus. Genes for these proteins were potentially transferred from the nucleomorph (symbiont nucleus) to the secondary host nucleus; nucleus to nucleus intracellular gene transfers. We isolated complementary DNA clones (cDNAs) for chlorophyll-binding proteins from a cryptomonad and a chlorarachniophyte. In each organism these genes reside in the secondary host nuclei, but phylogenetic evidence, and analysis of the targeting mechanisms, suggest the genes were initially in the respective nucleomorphs (symbiont nuclei). Implications for origins of secondary endosymbiotic algae are discussed.
Collapse
Affiliation(s)
- J A Deane
- Plant Cell Biology Research Centre, School of Botany, University of Melbourne, Parkville VIC, Australia
| | | | | | | | | | | |
Collapse
|
32
|
Abstract
Complex plastids, found in many alga groups, are surrounded by three or four membranes. Therefore, proteins of the complex plastids, which are encoded in the cell nucleus, must cross three or four membranes during transport to the plastid. To study this process we have developed a method for isolating transport-competent two membrane-bound plastids derived from the complex plastids of the cryptophyte Guillardia theta. This in vitro protein import system provides the first non-heterologous system for studying the import of proteins into four-membrane complex plastids. We use our import system as well as canine microsomes to demonstrate in the case of cryptomonads how nuclear proteins pass the first nucleomorph-encoded proteins the third and fourth membrane and discuss the potential mechanisms for protein transport across the second membrane.
Collapse
Affiliation(s)
- J Wastl
- Department of Cell Biology and Applied Botany, Philipps-University Marburg, Karl-von-Frisch-Strasse, D-35032 Marburg, Germany
| | | |
Collapse
|
33
|
Waller RF, Reed MB, Cowman AF, McFadden GI. Protein trafficking to the plastid of Plasmodium falciparum is via the secretory pathway. EMBO J 2000; 19:1794-802. [PMID: 10775264 PMCID: PMC302007 DOI: 10.1093/emboj/19.8.1794] [Citation(s) in RCA: 397] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The plastid of Plasmodium falciparum (or 'apicoplast') is the evolutionary homolog of the plant chloroplast and represents a vestige of a photosynthetic past. Apicoplast indispensability indicates that it still provides essential functions to parasites. Similar to plant chloroplasts, the apicoplast is dependent on many nucleus-encoded genes to provide these functions. The apicoplast is surrounded by four membranes, two more than plant chloroplasts. Thus, protein targeting to the apicoplast must overcome additional membrane barriers. In P.falciparum we have analyzed apicoplast targeting using green fluorescent protein (GFP). We demonstrate that protein targeting is at least a two-step process mediated by bipartite N-terminal pre-sequences that consist of a signal peptide for entry into the secretory pathway and a plant-like transit peptide for subsequent import into the apicoplast. The P.falciparum transit peptide is exceptional compared with other known plastid transit peptides in not requiring serine or threonine residues. The pre-sequence components are removed stepwise during apicoplast targeting. Targeting GFP to the apicoplast has also provided the first opportunity to examine apicoplast morphology in live P. falciparum.
Collapse
Affiliation(s)
- R F Waller
- Plant Cell Biology Research Centre, School of Botany, University of Melbourne, Parkville Victoria 3052, Australia.
| | | | | | | |
Collapse
|
34
|
Liaud MF, Lichtlé C, Apt K, Martin W, Cerff R. Compartment-specific isoforms of TPI and GAPDH are imported into diatom mitochondria as a fusion protein: evidence in favor of a mitochondrial origin of the eukaryotic glycolytic pathway. Mol Biol Evol 2000; 17:213-23. [PMID: 10677844 DOI: 10.1093/oxfordjournals.molbev.a026301] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and triosephosphate isomerase (TPI) are essential to glycolysis, the major route of carbohydrate breakdown in eukaryotes. In animals and other heterotrophic eukaryotes, both enzymes are localized in the cytosol; in photosynthetic eukaryotes, GAPDH and TPI exist as isoenzymes that function in the glycolytic pathway of the cytosol and in the Calvin cycle of chloroplasts. Here, we show that diatoms--photosynthetic protists that acquired their plastids through secondary symbiotic engulfment of a eukaryotic rhodophyte--possess an additional isoenzyme each of both GAPDH and TPI. Surprisingly, these new forms are expressed as an TPI-GAPDH fusion protein which is imported into mitochondria prior to its assembly into a tetrameric bifunctional enzyme complex. Homologs of this translational fusion are shown to be conserved and expressed also in nonphotosynthetic, heterokont-flagellated oomycetes. Phylogenetic analyses show that mitochondrial GAPDH and its N-terminal TPI fusion branch deeply within their respective eukaryotic protein phylogenies, suggesting that diatom mitochondria may have retained an ancestral state of glycolytic compartmentation that existed at the onset of mitochondrial symbiosis. These findings strongly support the view that nuclear genes for enzymes of glycolysis in eukaryotes were acquired from mitochondrial genomes and provide new insights into the evolutionary history (host-symbiont relationships) of diatoms and other heterokont-flagellated protists.
Collapse
Affiliation(s)
- M F Liaud
- Institute of Genetics, University of Braunschweig, Germany
| | | | | | | | | |
Collapse
|
35
|
|
36
|
Abstract
Plastids with two bounding membranes--as exemplified by red algae, green algae, plants, and glaucophytes--derive from primary endosymbiosis; a process involving engulfment and retention of a cyanobacterium by a phagotrophic eukaryote. Plastids with more than two bounding membranes (such as those of euglenoids, dinoflagellates, heterokonts, haptopytes, apicomplexa, cryptomonads, and chlorarachniophytes) probably arose by secondary endosymbiosis, in which a eukaryotic alga (itself the product of primary endosymbiosis) was engulfed and retained by a phagotroph. Secondary endosymbiosis transfers photosynthetic capacity into heterotrophic lineages, has apparently occurred numerous times, and has created several major eukaryotic lineages comprising upwards of 42,600 species. Plastids acquired by secondary endosymbiosis are sometimes referred to as "second-hand." Establishment of secondary endosymbioses has involved transfer of genes from the endosymbiont nucleus to the secondary host nucleus. Limited gene transfer could initially have served to stabilise the endosymbioses, but it is clear that the transfer process has been extensive, leading in many cases to the complete disappearance of the endosymbiont nucleus. One consequence of these gene transfers is that gene products required in the plastid must be targeted into the organelle across multiple membranes: at least three for stromal proteins in euglenoids and dinoflagellates, and across five membranes in the case of thylakoid lumen proteins in plastids with four bounding membranes. Evolution of such targeting mechanisms was obviously a key step in the successful establishment of each different secondary endosymbiosis. Analysis of targeted proteins in the various organisms now suggests that a similar system is used by each group. However, rather than interpreting this similarity as evidence of an homologous origin, I believe that targeting has evolved convergently by combining and recycling existing protein trafficking mechanisms already existing in the endosymbiont and host. Indeed, by analyzing the multiple motifs in targeting sequences of some genes it is possible to infer that they originated in the plastid genome, transferred from there into the primary host nucleus, and subsequently moved into the secondary host nucleus. Thus, each step of the targeting process in "second-hand" plastids recapitulates the gene's previous intracellular transfers.
Collapse
Affiliation(s)
- G I McFadden
- Plant Cell Biology Research Centre, School of Botany, University of Melbourne, Parkville, Vic., Australia.
| |
Collapse
|
37
|
Germot A, Philippe H. Critical analysis of eukaryotic phylogeny: a case study based on the HSP70 family. J Eukaryot Microbiol 1999; 46:116-24. [PMID: 10361733 DOI: 10.1111/j.1550-7408.1999.tb04594.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Trichomonads, together with diplomonads and microsporidia, emerge at the base of the eukaryotic tree, on the basis of the small subunit rRNA phylogeny. However, phylogenies based on protein sequences such as tubulin are markedly different with these protists emerging much later. We have investigated 70 kDa heat-shock protein (HSP70), which could be a reliable phylogenetic marker. In eukaryotes, HSP70s are found in cytosol, endoplasmic reticulum, and organelles (mitochondria and chloroplasts). In Trichomonas vaginalis we identified nine different HSP70-encoding genes and sequenced three nearly complete cDNAs corresponding to cytosolic, endoplasmic reticulum, and mitochondrial-type HSP70. Phylogenies of eukaryotes were reconstructed using the classical methods while varying the number of species and characters considered. Almost all the undoubtedly monophyletic groups, defined by ultrastructural characters, were recovered. However, due to the long branch attraction phenomenon, the evolutionary rates were the main factor determining the position of species, even with the use of a close outgroup, which is an important advantage of HSP70 with respect to many other markers. Numerous variable sites are peculiar to Trichomonas and probably generated the artefactual placement of this species at the base of the eukaryotes or as the sister group of fast-evolving species. The inter-phyla relationships were not well supported and were sensitive to the reconstruction method, the number of species; and the quantity of information used. This lack of resolution could be explained by the very rapid diversification of eukaryotes, likely after the mitochondrial endosymbiosis.
Collapse
Affiliation(s)
- A Germot
- Laboratoire de Biologie comparée des Protistes (UPRESA CNRS 6023), Université Clermont Ferrand 2, Aubière, France
| | | |
Collapse
|
38
|
Van der Auwera G, Hofmann CJ, De Rijk P, De Wachter R. The origin of red algae and cryptomonad nucleomorphs: A comparative phylogeny based on small and large subunit rRNA sequences of Palmaria palmata, Gracilaria verrucosa, and the Guillardia theta nucleomorph. Mol Phylogenet Evol 1998; 10:333-42. [PMID: 10051386 DOI: 10.1006/mpev.1998.0544] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The complete large subunit rRNA sequences from the red algae Palmaria palmata and Gracilaria verrucosa, and from the nucleomorph of the cryptomonad Guillardia theta, were determined in order to assess their phylogenetic relationships relative to each other and to other eukaryotes. Neighbor-joining, maximum-parsimony, and maximum-likelihood trees were constructed on the basis of small subunit rRNA, large subunit rRNA, and a combination of both molecules. Our results support the hypothesis that the cryptomonad plastid is derived from a primitive red alga, in that an ancient common ancestor of rhodophytes and cryptomonad nucleomorphs is indicated. This cluster shows some affinity with chlorobionts, which could point to a monophyletic origin of green and red plastids. However, the exact branching order of the crown eukaryotes remains uncertain and further research is required.
Collapse
Affiliation(s)
- G Van der Auwera
- Department of Biochemistry, University of Antwerp (UIA), Universiteitsplein 1, Antwerpen, B 2610, Belgium
| | | | | | | |
Collapse
|
39
|
Lang M, Apt KE, Kroth PG. Protein transport into "complex" diatom plastids utilizes two different targeting signals. J Biol Chem 1998; 273:30973-8. [PMID: 9812993 DOI: 10.1074/jbc.273.47.30973] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The plastids found in diatoms and other chromophytic algae are completely enclosed by four membranes in contrast to chloroplasts of higher plants, which are surrounded by only two membranes. The bipartite targeting sequence of diatom nuclear-encoded plastid proteins contains an endoplasmic reticulum signal sequence and, based on sequence comparison, a transit peptide-like domain similar to that which targets proteins into the plastids of higher plants. By performing heterologous import experiments using the precursor of the gamma subunit of the chloroplast ATPase from the diatom Odontella sinensis we were able to show that protein import into diatom plastids is at least a two-step event. We demonstrate that the first step involves co-translational transport through endoplasmic reticulum membranes and that there is an additional targeting step which is similar to the import of precursor proteins into chloroplasts of higher plants and green algae indicating that the transit peptide-like domain of the diatom precursor is functionally equivalent to the respective targeting signal of higher plants. Our results suggest that the transit peptide depending targeting mechanism in plastids has apparently remained relatively unchanged over the course of evolution, with only the peptidase cleavage site significantly modified.
Collapse
Affiliation(s)
- M Lang
- Institut für Biochemie der Pflanzen, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
| | | | | |
Collapse
|
40
|
Meyer-Gauen G, Herbrand H, Pahnke J, Cerff R, Martin W. Gene structure, expression in Escherichia coli and biochemical properties of the NAD+ -dependent glyceraldehyde-3-phosphate dehydrogenase from Pinus sylvestris chloroplasts. Gene 1998; 209:167-74. [PMID: 9583948 DOI: 10.1016/s0378-1119(98)00034-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Photosynthetic eukaryotes typically possess two distinct glyceraldehyde-3-phosphate dehydrogenases, an NAD+ -specific enzyme in the cytosol (GapC: EC 1.2.1.12) and an NADP+ -dependent enzyme in the chloroplast (GapAB: EC 1.2.1.13). The gymnosperm Pinus sylvestris is an exception in that it is known to express a gene encoding a transit peptide-bearing GapC-like subunit that is imported into chloroplasts (GapCp), but the enzymatic properties of this novel GAPDH have not been described from any source. We have expressed the mature GapCp unit from Pinus in Escherichia coli and have characterized the active enzyme. GapCp has a specific activity of 89 units per milligram and is strictly NAD+ -dependent, showing no detectable activity with NADP+. Values of the apparent Km for NAD+ and glyceraldehyde-3-phosphate were determined as 62 and 344 microM, respectively. The Pinus GapCpl gene possesses 12 introns, two in the region encoding the transit peptide and ten in the region encoding the mature subunit, all of which are found at positions strictly conserved across genes for higher plant GapC. A cDNA encoding a homologue of GapCp was isolated from the heterosporous fern Marsilea quadrifolia, indicating that NAD+ -dependent chloroplast GAPDH also occurs in other higher plants.
Collapse
Affiliation(s)
- G Meyer-Gauen
- Institut für Genetik, Technische Universität Braunschweig, Germany
| | | | | | | | | |
Collapse
|
41
|
Gilson PR, Maier UG, McFadden GI. Size isn't everything: lessons in genetic miniaturisation from nucleomorphs. Curr Opin Genet Dev 1997; 7:800-6. [PMID: 9468790 DOI: 10.1016/s0959-437x(97)80043-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Nucleomorphs are the vestigial nuclear genomes of eukaryotic algal cells now existing as endosymbionts within a host cell. Molecular investigation of the endosymbiont genomes has allowed important insights into the process of eukaryote/eukaryote cell endosymbiosis and has also disclosed a plethora of interesting genetic phenomena. Although nucleomorph genomes retain classic eukaryotic traits such as linear chromosomes, telomeres, and introns, they are highly reduced and modified. Nucleomorph chromosomes are extremely small and encode compacted genes which are disrupted by the tiniest spliceosomal introns found in any eukaryote. Mechanisms of gene expression within nucleomorphs have apparently accommodated increasingly parsimonious DNA usage by permitting genes to become co-transcribed or, in select cases, to overlap.
Collapse
Affiliation(s)
- P R Gilson
- Plant Cell Biology Research Centre, School of Botany, University of Melbourne, Parkville, Australia.
| | | | | |
Collapse
|