1
|
Nascimento H, Martins TMM, Moreira R, Barbieri G, Pires P, Carvalho LN, Rosa LR, Almeida A, Araujo MS, Pessuti CL, Ferrer H, Pereira Gomes JÁ, Belfort R, Raia S. Current Scenario and Future Perspectives of Porcine Corneal Xenotransplantation. Cornea 2025; 44:387-404. [PMID: 39413247 DOI: 10.1097/ico.0000000000003723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 08/25/2024] [Indexed: 10/18/2024]
Abstract
ABSTRACT Corneal diseases represent a significant cause of blindness worldwide, with corneal transplantation being an effective treatment to prevent vision loss. Despite substantial advances in transplantation techniques, the demand for donor corneas exceeds the available supply, particularly in developing countries. Cornea xenotransplantation has emerged as a promising strategy to address the worldwide scarcity, notably using porcine corneas. In addition to the inherent immune privilege of the cornea, the low cost of porcine breeding and the anatomical and physiological similarities between humans and pigs have made porcine corneas a viable alternative. Nonetheless, ethical concerns, specifically the risk of xenozoonotic transmission and the necessity for stringent biosafety measures, remain significant obstacles. Moreover, the success of xenotransplantation is compromised by innate and adaptive immune responses, which requires meticulous consideration and further studies. Despite these challenges, recent breakthroughs have further contributed to reducing immunogenicity while preserving the corneal architecture. Advances in genetic engineering, such as the use of CRISPR-Cas9 to eliminate critical porcine antigens, have shown promise for mitigating immune reactions. Additionally, new immunosuppressive protocols, such as have techniques like decellularization and the use of porcine-derived acellular matrices, have greatly increased graft survival in preclinical models. Future research must focus on refining immunomodulatory strategies and improving graft preparation techniques to ensure the long-term survival and safety of porcine corneal xenotransplantation in clinical trials in humans.
Collapse
Affiliation(s)
- Heloisa Nascimento
- Department of Ophthalmology, Federal University of São Paulo (UNIFESP), Sao Paulo, Brazil
- Faculty of Medicine, University of São Paulo (USP), Sao Paulo, Brazil
| | - Thaís M M Martins
- Department of Ophthalmology, Federal University of São Paulo (UNIFESP), Sao Paulo, Brazil
- Faculty of Medicine, University of São Paulo (USP), Sao Paulo, Brazil
- Federal University of Viçosa (UFV), Viçosa, Brazil; and
| | | | - Gabriel Barbieri
- Department of Ophthalmology, Federal University of São Paulo (UNIFESP), Sao Paulo, Brazil
| | - Pedro Pires
- Faculty of Medicine, University of São Paulo (USP), Sao Paulo, Brazil
| | - Lucimeire N Carvalho
- Department of Ophthalmology, Federal University of São Paulo (UNIFESP), Sao Paulo, Brazil
| | - Larissa R Rosa
- Department of Ophthalmology, Federal University of São Paulo (UNIFESP), Sao Paulo, Brazil
| | - Augusto Almeida
- Faculty of Medicine, University of São Paulo (USP), Sao Paulo, Brazil
| | | | - Carmen Luz Pessuti
- Department of Ophthalmology, Federal University of São Paulo (UNIFESP), Sao Paulo, Brazil
| | - Henrique Ferrer
- Department of Ophthalmology, Federal University of São Paulo (UNIFESP), Sao Paulo, Brazil
| | | | - Rubens Belfort
- Department of Ophthalmology, Federal University of São Paulo (UNIFESP), Sao Paulo, Brazil
- Faculty of Medicine, University of São Paulo (USP), Sao Paulo, Brazil
- Federal University of Viçosa (UFV), Viçosa, Brazil; and
- Vision Institute (IPEPO), Sao Paulo, Brazil
| | - Silvano Raia
- Faculty of Medicine, University of São Paulo (USP), Sao Paulo, Brazil
| |
Collapse
|
2
|
Lee S, Chung YS, Lee KW, Choi M, Sonn CH, Oh WJ, Hong HG, Shim J, Choi K, Kim SJ, Park JB, Kim TJ. Alteration of γδ T cell subsets in non-human primates transplanted with GGTA1 gene-deficient porcine blood vessels. Xenotransplantation 2024; 31:e12838. [PMID: 38112053 DOI: 10.1111/xen.12838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/30/2023] [Accepted: 11/27/2023] [Indexed: 12/20/2023]
Abstract
BACKGROUND αGal-deficient xenografts are protected from hyperacute rejection during xenotransplantation but are still rejected more rapidly than allografts. Despite studies showing the roles of non-Gal antibodies and αβ T cells in xenograft rejection, the involvement of γδ T cells in xenograft rejection has been limitedly investigated. METHODS Six male cynomolgus monkeys were transplanted with porcine vessel xenografts from wild-type (n = 3) or GGTA1 knockout (n = 3) pigs. We measured the proportions and T cell receptor (TCR) repertoires of blood γδ T cells before and after xenotransplant. Grafted porcine vessel-infiltrating immune cells were visualized at the end of experiments. RESULTS Blood γδ T cells expanded and infiltrated into the graft vessel adventitia following xenotransplantation of α-Gal-deficient pig blood vessels. Pre- and post-transplant analysis of γδ TCR repertoire revealed a transition in δ chain usage post-transplantation, with the expansion of several clonotypes of δ1, δ3, or δ7 chains. Furthermore, the distinctions between pre- and post-transplant δ chain usages were more prominent than those observed for γ chain usages. CONCLUSION γδ TCR repertoire was significantly altered by xenotransplantation, suggesting the role of γδ T cells in sustained xenoreactive immune responses.
Collapse
Affiliation(s)
- Sujin Lee
- Department of Immunology, Graduate School of Basic Medical Science, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Yun Shin Chung
- Department of Immunology, Graduate School of Basic Medical Science, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
- Center for Antimicrobial Resistance and Microbial Genetics, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Kyo Won Lee
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Miran Choi
- Transplantation Research Center, Samsung Medical Center, Seoul, Republic of Korea
| | - Chung Hee Sonn
- Transplantation Research Center, Samsung Medical Center, Seoul, Republic of Korea
| | - Won Jun Oh
- Department of Immunology, Graduate School of Basic Medical Science, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Hun Gi Hong
- Department of Immunology, Graduate School of Basic Medical Science, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Joohyun Shim
- Department of Transgenic Animal Research, Optipharm, Inc., Cheongju, Chungcheongbuk-do, Republic of Korea
| | - Kimyung Choi
- Department of Transgenic Animal Research, Optipharm, Inc., Cheongju, Chungcheongbuk-do, Republic of Korea
| | - Sung Joo Kim
- GenNBio Co., Ltd, Pyeongtaek, Gyeonggi-do, Republic of Korea
| | - Jae Berm Park
- Center for Antimicrobial Resistance and Microbial Genetics, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Tae Jin Kim
- Department of Immunology, Graduate School of Basic Medical Science, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| |
Collapse
|
3
|
Jou S, Mendez SR, Feinman J, Mitrani LR, Fuster V, Mangiola M, Moazami N, Gidea C. Heart transplantation: advances in expanding the donor pool and xenotransplantation. Nat Rev Cardiol 2024; 21:25-36. [PMID: 37452122 DOI: 10.1038/s41569-023-00902-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/13/2023] [Indexed: 07/18/2023]
Abstract
Approximately 65 million adults globally have heart failure, and the prevalence is expected to increase substantially with ageing populations. Despite advances in pharmacological and device therapy of heart failure, long-term morbidity and mortality remain high. Many patients progress to advanced heart failure and develop persistently severe symptoms. Heart transplantation remains the gold-standard therapy to improve the quality of life, functional status and survival of these patients. However, there is a large imbalance between the supply of organs and the demand for heart transplants. Therefore, expanding the donor pool is essential to reduce mortality while on the waiting list and improve clinical outcomes in this patient population. A shift has occurred to consider the use of organs from donors with hepatitis C virus, HIV or SARS-CoV-2 infection. Other advances in this field have also expanded the donor pool, including opt-out donation policies, organ donation after circulatory death and xenotransplantation. We provide a comprehensive overview of these various novel strategies, provide objective data on their safety and efficacy, and discuss some of the unresolved issues and controversies of each approach.
Collapse
Affiliation(s)
- Stephanie Jou
- The Zena and Michael A. Wiener Cardiovascular Institute, The Mount Sinai Hospital, New York, NY, USA.
| | - Sean R Mendez
- The Zena and Michael A. Wiener Cardiovascular Institute, The Mount Sinai Hospital, New York, NY, USA
| | - Jason Feinman
- The Zena and Michael A. Wiener Cardiovascular Institute, The Mount Sinai Hospital, New York, NY, USA
| | - Lindsey R Mitrani
- The Zena and Michael A. Wiener Cardiovascular Institute, The Mount Sinai Hospital, New York, NY, USA
| | - Valentin Fuster
- The Zena and Michael A. Wiener Cardiovascular Institute, The Mount Sinai Hospital, New York, NY, USA
| | - Massimo Mangiola
- Transplant Institute, New York University Langone Health, New York, NY, USA
| | - Nader Moazami
- Department of Cardiothoracic Surgery, New York University Langone Health, New York, NY, USA
| | - Claudia Gidea
- The Zena and Michael A. Wiener Cardiovascular Institute, The Mount Sinai Hospital, New York, NY, USA
| |
Collapse
|
4
|
Samiec M, Wiater J, Wartalski K, Skrzyszowska M, Trzcińska M, Lipiński D, Jura J, Smorąg Z, Słomski R, Duda M. The Relative Abundances of Human Leukocyte Antigen-E, α-Galactosidase A and α-Gal Antigenic Determinants Are Biased by Trichostatin A-Dependent Epigenetic Transformation of Triple-Transgenic Pig-Derived Dermal Fibroblast Cells. Int J Mol Sci 2022; 23:ijms231810296. [PMID: 36142211 PMCID: PMC9499218 DOI: 10.3390/ijms231810296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/01/2022] [Accepted: 09/04/2022] [Indexed: 11/16/2022] Open
Abstract
The present study sought to establish the mitotically stable adult cutaneous fibroblast cell (ACFC) lines stemming from hFUT2×hGLA×HLA-E triple-transgenic pigs followed by trichostatin A (TSA)-assisted epigenetically modulating the reprogrammability of the transgenes permanently incorporated into the host genome and subsequent comprehensive analysis of molecular signatures related to proteomically profiling the generated ACFC lines. The results of Western blot and immunofluorescence analyses have proved that the profiles of relative abundance (RA) noticed for both recombinant human α-galactosidase A (rhα-Gal A) and human leukocyte antigen-E (HLA-E) underwent significant upregulations in tri-transgenic (3×TG) ACFCs subjected to TSA-mediated epigenetic transformation as compared to not only their TSA-unexposed counterparts but also TSA-treated and untreated non-transgenic (nTG) cells. The RT-qPCR-based analysis of porcine tri-genetically engineered ACFCs revealed stable expression of mRNA fractions transcribed from hFUT2, hGLA and HLA-E transgenes as compared to a lack of such transcriptional activities in non-transgenic ACFC variants. Furthermore, although TSA-based epigenomic modulation has given rise to a remarkable increase in the expression levels of Galα1→3Gal (α-Gal) epitopes that have been determined by lectin blotting analysis, their semi-quantitative profiles have dwindled profoundly in both TSA-exposed and unexposed 3×TG ACFCs as compared to their nTG counterparts. In conclusion, thoroughly exploring proteomic signatures in such epigenetically modulated ex vivo models devised on hFUT2×hGLA×HLA-E triple-transgenic ACFCs that display augmented reprogrammability of translational activities of two mRNA transcripts coding for rhα-Gal A and HLA-E proteins might provide a completely novel and powerful research tool for the panel of further studies. The objective of these future studies should be to multiply the tri-transgenic pigs with the aid of somatic cell nuclear transfer (SCNT)-based cloning for the purposes of both xenografting the porcine cutaneous bioprostheses and dermoplasty-mediated surgical treatments in human patients.
Collapse
Affiliation(s)
- Marcin Samiec
- Department of Reproductive Biotechnology and Cryoconservation, National Research Institute of Animal Production, Krakowska 1 Street, 32-083 Balice, Poland
- Correspondence: (M.S.); (J.W.)
| | - Jerzy Wiater
- Department of Histology, Jagiellonian University Medical College, Kopernika 7 Street, 31-034 Kraków, Poland
- Correspondence: (M.S.); (J.W.)
| | - Kamil Wartalski
- Department of Histology, Jagiellonian University Medical College, Kopernika 7 Street, 31-034 Kraków, Poland
| | - Maria Skrzyszowska
- Department of Reproductive Biotechnology and Cryoconservation, National Research Institute of Animal Production, Krakowska 1 Street, 32-083 Balice, Poland
| | - Monika Trzcińska
- Department of Reproductive Biotechnology and Cryoconservation, National Research Institute of Animal Production, Krakowska 1 Street, 32-083 Balice, Poland
| | - Daniel Lipiński
- Department of Biochemistry and Biotechnology, Poznań University of Life Sciences, Dojazd 11 Street, 60-647 Poznań, Poland
| | - Jacek Jura
- Department of Reproductive Biotechnology and Cryoconservation, National Research Institute of Animal Production, Krakowska 1 Street, 32-083 Balice, Poland
| | - Zdzisław Smorąg
- Department of Reproductive Biotechnology and Cryoconservation, National Research Institute of Animal Production, Krakowska 1 Street, 32-083 Balice, Poland
| | - Ryszard Słomski
- Department of Biochemistry and Biotechnology, Poznań University of Life Sciences, Dojazd 11 Street, 60-647 Poznań, Poland
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszyńska 32 Street, 60-479 Poznań, Poland
| | - Małgorzata Duda
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University in Krakow, Gronostajowa 9 Street, 30-387 Kraków, Poland
| |
Collapse
|
5
|
Furuya K, Zheng YW, Ge JY, Zhang L, Furuta T, Liang C, Abe H, Yagi H, Hamada H, Isoda H, Hui L, Ohkohchi N, Oda T. The evidence of a macrophage barrier in the xenotransplantation of human hematopoietic stem cells to severely immunodeficient rats. Xenotransplantation 2021; 28:e12702. [PMID: 34145650 DOI: 10.1111/xen.12702] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 04/15/2021] [Accepted: 06/02/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND The human-to-rat hematopoietic stem cell transplantation (HSCT) model is rare, unlike its human-to-mouse counterpart. The rat models are desired, especially in areas of physiology, toxicology, and pharmacology. In addition to lymphocytes, macrophages are also considered to be important for xenotransplantation. We generated a rat xenotransplantation model to prove the role of macrophages as a xenotransplantation barrier. METHODS Immunodeficiency in SRG rats, which are Sprague-Dawley (SD) rats lacking Rag2 and Il2rg, was confirmed by flow cytometry and spleen immunostaining. Human umbilical cord blood was collected after scheduled cesarean section at the University of Tsukuba Hospital. Cord blood mononuclear cells (CB-MNCs) were transplanted into the SRG rats administered several injections of clodronate liposome (CL), which cause macrophage depletion. Survival of human cells was observed by flow cytometry. Rat macrophage phagocytosis assay was performed to check the species-specific effects of rat macrophages on injected human/rat blood cells. RESULTS SRG rats were deficient in T/B/NK cells. Without CL pretreatment, human CB-MNCs were removed from SRG rats within 7 hours after transplantation. The rats pretreated with CL could survive after transplantation. Prolonged survival for more than 4 weeks was observed only following a one-time CL injection. Rat macrophages had a species-specific potential for the phagocytosis of human blood cells in vivo. CONCLUSION In human-to-rat HSCT, the short period of early macrophage control, leading to macrophage immunotolerance, is important for engraftment. The generated model can be useful for the creation of future xenotransplantation models or other clinical research.
Collapse
Affiliation(s)
- Kinji Furuya
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Yun-Wen Zheng
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine and School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
- Institute of Regenerative Medicine and Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, China
- Department of Regenerative Medicine, School of Medicine, Yokohama City University, Yokohama, Japan
| | - Jian-Yun Ge
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine and School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
| | - Ludi Zhang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Science, Shanghai, China
| | - Tomoaki Furuta
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Chen Liang
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Haruna Abe
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Hiroya Yagi
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Hiromi Hamada
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Hiroko Isoda
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Lijian Hui
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Science, Shanghai, China
| | - Nobuhiro Ohkohchi
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Tatsuya Oda
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
6
|
Helke KL, Meyerholz DK, Beck AP, Burrough ER, Derscheid RJ, Löhr C, McInnes EF, Scudamore CL, Brayton CF. Research Relevant Background Lesions and Conditions: Ferrets, Dogs, Swine, Sheep, and Goats. ILAR J 2021; 62:133-168. [PMID: 33712827 DOI: 10.1093/ilar/ilab005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/17/2020] [Accepted: 01/06/2021] [Indexed: 01/01/2023] Open
Abstract
Animal models provide a valuable tool and resource for biomedical researchers as they investigate biological processes, disease pathogenesis, novel therapies, and toxicologic studies. Interpretation of animal model data requires knowledge not only of the processes/diseases being studied but also awareness of spontaneous conditions and background lesions in the model that can influence or even confound the study results. Species, breed/stock, sex, age, anatomy, physiology, diseases (noninfectious and infectious), and neoplastic processes are model features that can impact the results as well as study interpretation. Here, we review these features in several common laboratory animal species, including ferret, dog (beagle), pig, sheep, and goats.
Collapse
Affiliation(s)
- Kristi L Helke
- Department of Comparative Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - David K Meyerholz
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Amanda P Beck
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Eric R Burrough
- Veterinary Diagnostic and Production Animal Medicine Department, Iowa State University, Ames, Iowa, USA
| | - Rachel J Derscheid
- Veterinary Diagnostic and Production Animal Medicine Department, Iowa State University, Ames, Iowa, USA
| | - Christiane Löhr
- Department of Biomedical Sciences, Oregon State University, Corvallis, Oregon, USA
| | - Elizabeth F McInnes
- Toxicologic Pathology, Toxicology Section, Human Safety at Syngenta, in Jealott's Hill, Bracknell, United Kingdom
| | - Cheryl L Scudamore
- ExePathology, Pathologist at ExePathology, Exmouth, Devon, United Kingdom
| | - Cory F Brayton
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
7
|
Yilmaz S, Sahin T, Saglam K. What Are the Immune Obstacles to Liver Xenotransplantation Which Is Promising for Patients with Hepatocellular Carcinoma? J Gastrointest Cancer 2020; 51:1209-1214. [PMID: 32833222 DOI: 10.1007/s12029-020-00495-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
PURPOSE Liver transplantation is the most important achievement in the twentieth and twenty-first century. It is the gold standard treatment for hepatocellular carcinoma. However, it provides the best results when performed under strict selection criteria. Nevertheless, organ supply is overwhelmed by the number of patients on the waiting list. There are certain strategies to expand the donor pool such as split liver transplantation, use of extended criteria donors, and living donor liver transplantation. Xenotransplantation can also be a strategy in decreasing the organ shortage. We reviewed the current status of xenotransplantation. METHODS We evaluated the historical attempts of xenotransplantation to humans and also made a summary of the preclinical studies in the field. RESULTS Molecular biology and genetic engineering are developing with an incredible speed. There are great achievements made in cell therapy, 3D bioprinting of the organs, and ultimately xenotransplantation. There is a vast amount of problems to be handled before evaluating the efficacy of xenotransplantation in the treatment of hepatocellular carcinoma. Major problems include antibody-mediated rejection to antigens such as galactose ⍺1-3 galactose, N- glycolylneuraminic acid, β1,4-N-acetylgalactosaminyltransferase, lethal thrombocytopenia, and erythrocyte sequestration. Antibody mediated rejection to these specific antigens are addressed using gene editing technology including CRISPR Cas9, TALEN and other recombination methods. Although hyperacute rejection is reduced, long-term survival could not be achieved in experimental models. CONCLUSION The future is yet to come, there are developments made in the field of genetic editing, immunosuppressive medication, and pretransplant desensitization techniques. Therefore, we believe that xenotransplantation will be in clinical practice, at least for treatment of critically ill patients.
Collapse
Affiliation(s)
- Sezai Yilmaz
- Department of Surgery and Liver Transplant Institute, Inonu University Faculty of Medicine, 244280, Malatya, Turkey.
- Department of Surgery and Liver Transplant Institute, Inonu University Faculty of Medicine, Elazig Yolu 10. Km, 44280, Malatya, Turkey.
| | - Tolga Sahin
- Department of Surgery and Liver Transplant Institute, Inonu University Faculty of Medicine, 244280, Malatya, Turkey
| | - Kutay Saglam
- Department of Surgery and Liver Transplant Institute, Inonu University Faculty of Medicine, 244280, Malatya, Turkey
| |
Collapse
|
8
|
Klama-Baryła A, Kitala D, Łabuś W, Kraut M, Szapski M, Słomski R. Is Transgenic Porcine Skin as Good as Allogeneic Skin for Regenerative Medicine? Comparison of Chosen Properties of Xeno- and Allogeneic Material. Transplant Proc 2020; 52:2208-2217. [PMID: 32334798 DOI: 10.1016/j.transproceed.2020.01.109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 01/22/2020] [Indexed: 10/24/2022]
Abstract
BACKGROUND Burn treatment is associated with the need of dressing large cutaneous defects. There is a need of alternative search for the allogeneic skin as a source of grafting for a clinical use. Such sources include animals. For many years, porcine skin was used as a biological dressing for wounds or donor's fields, or residual fields after skin grafting. Current studies aim to minimize immunogenicity, inter alia, through the decellularization process. MATERIALS AND METHODS The decellularization methods and porcine skin resettlement of human keratinocytes and fibroblasts were evaluated. The mechanical properties of the dressings and their influence on the viability, apoptosis, population doubling, and cell cycle of keratinocytes and fibroblasts were examined. The inheritance of cell antigens responsible for histocompatibility on the human keratinocyte and fibroblast surface in the cultures incubated with examined variants of dressings from porcine skin were analyzed. RESULTS The most effective acellularization method is trypsinization. Morphology of the cell remained proper and stable during the whole experiment. In both fibroblast and keratinocyte cultures, the highest number of apoptotic cells was observed when samples were incubated with allogeneic skin. In the keratinocyte cultures, the highest number of live cells was observed when incubated with porcine transgenic acellular dermal matrix. The acellular matrices influence the increase of population doubling of keratinocytes in the cultures. CONCLUSION For routine acellurization, trypsinization was chosen as the most effective method with preservation of tissue properties.
Collapse
Affiliation(s)
| | - Diana Kitala
- Stanislaw Sakiel Burn Treatment Center, Siemianowice Śląskie, Poland
| | - Wojciech Łabuś
- Stanislaw Sakiel Burn Treatment Center, Siemianowice Śląskie, Poland
| | - Małgorzata Kraut
- Stanislaw Sakiel Burn Treatment Center, Siemianowice Śląskie, Poland
| | - Michał Szapski
- Stanislaw Sakiel Burn Treatment Center, Siemianowice Śląskie, Poland
| | - Ryszard Słomski
- Department of Biochemistry and Biotechnology, University of Life Sciences in Poznań, Poznań, Poland
| |
Collapse
|
9
|
Harris JP, Burrell JC, Struzyna LA, Chen HI, Serruya MD, Wolf JA, Duda JE, Cullen DK. Emerging regenerative medicine and tissue engineering strategies for Parkinson's disease. NPJ Parkinsons Dis 2020; 6:4. [PMID: 31934611 PMCID: PMC6949278 DOI: 10.1038/s41531-019-0105-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 11/25/2019] [Indexed: 02/07/2023] Open
Abstract
Parkinson's disease (PD) is the second most common progressive neurodegenerative disease, affecting 1-2% of people over 65. The classic motor symptoms of PD result from selective degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNpc), resulting in a loss of their long axonal projections to the striatum. Current treatment strategies such as dopamine replacement and deep brain stimulation (DBS) can only minimize the symptoms of nigrostriatal degeneration, not directly replace the lost pathway. Regenerative medicine-based solutions are being aggressively pursued with the goal of restoring dopamine levels in the striatum, with several emerging techniques attempting to reconstruct the entire nigrostriatal pathway-a key goal to recreate feedback pathways to ensure proper dopamine regulation. Although many pharmacological, genetic, and optogenetic treatments are being developed, this article focuses on the evolution of transplant therapies for the treatment of PD, including fetal grafts, cell-based implants, and more recent tissue-engineered constructs. Attention is given to cell/tissue sources, efficacy to date, and future challenges that must be overcome to enable robust translation into clinical use. Emerging regenerative medicine therapies are being developed using neurons derived from autologous stem cells, enabling the construction of patient-specific constructs tailored to their particular extent of degeneration. In the upcoming era of restorative neurosurgery, such constructs may directly replace SNpc neurons, restore axon-based dopaminergic inputs to the striatum, and ameliorate motor deficits. These solutions may provide a transformative and scalable solution to permanently replace lost neuroanatomy and improve the lives of millions of people afflicted by PD.
Collapse
Affiliation(s)
- James P. Harris
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA USA
| | - Justin C. Burrell
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA USA
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA USA
| | - Laura A. Struzyna
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA USA
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA USA
| | - H. Isaac Chen
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA USA
| | - Mijail D. Serruya
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA USA
| | - John A. Wolf
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA USA
| | - John E. Duda
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
- Parkinson’s Disease Research, Education, and Clinical Center (PADRECC), Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA USA
| | - D. Kacy Cullen
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA USA
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA USA
| |
Collapse
|
10
|
Bhatia S, Singh A, Batra N, Singh J. Microbial production and biotechnological applications of α-galactosidase. Int J Biol Macromol 2019; 150:1294-1313. [PMID: 31747573 DOI: 10.1016/j.ijbiomac.2019.10.140] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 10/12/2019] [Accepted: 10/15/2019] [Indexed: 12/13/2022]
Abstract
α-Galactosidase, (E.C. 3.2.1.22) is an exoglycosidase that target galactooligosaccharides such as raffinose, melibiose, stachyose and branched polysaccharides like galactomannans and galacto-glucomannans by catalysing the hydrolysis of α-1,6 linked terminal galactose residues. The enzyme has been isolated and characterized from microbial, plant and animal sources. This ubiquitous enzyme possesses physiological significance and immense industrial potential. Optimization of the growth conditions and efficient purification strategies can lead to a significant increase in the enzyme production. To boost commercial productivity, cloning of novel α-galactosidase genes and their heterologous expression in suitable host has gained popularity. Enzyme immobilization leads to its greater reutilization, superior thermostability, pH tolerance and increased activity. The enzyme is well explored in food industry in the removal of raffinose family oligosaccharides (RFOs) in soymilk and sugar crystallization process. It also improves animal feed quality and biomass processing. Applications of the enzyme is in the area of biomedicine includes therapeutic advances in treatment of Fabry disease, blood group conversion and removal of α-gal type immunogenic epitopes in xenotransplantation. With considerable biotechnological applications, this enzyme has been vastly commercialized and holds greater future prospects.
Collapse
Affiliation(s)
- Sonu Bhatia
- Department of Biotechnology, Panjab University, Chandigarh, India
| | - Abhinashi Singh
- Department of Biotechnology, G.G.D.S.D. College, Sector-32-C, Chandigarh, India
| | - Navneet Batra
- Department of Biotechnology, G.G.D.S.D. College, Sector-32-C, Chandigarh, India
| | - Jagtar Singh
- Department of Biotechnology, Panjab University, Chandigarh, India.
| |
Collapse
|
11
|
Tong C, Li C, Xie B, Li M, Li X, Qi Z, Xia J. Generation of bioartificial hearts using decellularized scaffolds and mixed cells. Biomed Eng Online 2019; 18:71. [PMID: 31164131 PMCID: PMC6549274 DOI: 10.1186/s12938-019-0691-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 05/27/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Patients with end-stage heart failure must receive treatment to recover cardiac function, and the current primary therapy, heart transplantation, is plagued by the limited supply of donor hearts. Bioengineered artificial hearts generated by seeding of cells on decellularized scaffolds have been suggested as an alternative source for transplantation. This study aimed to develop a tissue-engineered heart with lower immunogenicity and functional similarity to a physiological heart that can be used for heart transplantation. MATERIALS AND METHODS We used sodium dodecyl sulfate (SDS) to decellularize cardiac tissue to obtain a decellularized scaffold. Mesenchymal stem cells (MSCs) were isolated from rat bone marrow and identified by flow cytometric labeling of their surface markers. At the same time, the multi-directional differentiation of MSCs was analyzed. The MSCs, endothelial cells, and cardiomyocytes were allowed to adhere to the decellularized scaffold during perfusion, and the function of tissue-engineered heart was analyzed by immunohistochemistry and electrocardiogram. RESULTS MSCs, isolated from rats differentiated into cardiomyocytes, were seeded along with primary rat cardiomyocytes and endothelial cells onto decellularized rat heart scaffolds. We first confirmed the pluripotency of the MSCs, performed immunostaining against cardiac markers expressed by MSC-derived cardiomyocytes, and completed surface antigen profiling of MSC-derived endothelial cells. After cell seeding and culture, we analyzed the performance of the bioartificial heart by electrocardiography but found that the bioartificial heart exhibited abnormal electrical activity. The results indicated that the tissue-engineered heart lacked some cells necessary for the conduction of electrical current, causing deficient conduction function compared to the normal heart. CONCLUSION Our study suggests that MSCs derived from rats may be useful in the generation of a bioartificial heart, although technical challenges remain with regard to generating a fully functional bioartificial heart.
Collapse
Affiliation(s)
- Cailing Tong
- School of Life Science, Xiamen University, Xiamen, 361102 Fujian China
- Organ Transplantation Institute of Xiamen University, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, 361102 Fujian China
| | - Cheng Li
- Organ Transplantation Institute of Xiamen University, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, 361102 Fujian China
| | - Baiyi Xie
- Organ Transplantation Institute of Xiamen University, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, 361102 Fujian China
| | - Minghui Li
- Organ Transplantation Institute of Xiamen University, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, 361102 Fujian China
| | - Xianguo Li
- Organ Transplantation Institute of Xiamen University, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, 361102 Fujian China
| | - Zhongquan Qi
- School of Medicine, Guangxi University, Nanning, 530004 Guangxi China
| | - Junjie Xia
- Organ Transplantation Institute of Xiamen University, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, 361102 Fujian China
- School of Medicine, Guangxi University, Nanning, 530004 Guangxi China
| |
Collapse
|
12
|
Wang YM, Li K, Dou XG, Bai H, Zhao XP, Ma X, Li LJ, Chen ZS, Huang YC. Treatment of AECHB and Severe Hepatitis (Liver Failure). ACUTE EXACERBATION OF CHRONIC HEPATITIS B 2019. [PMCID: PMC7498915 DOI: 10.1007/978-94-024-1603-9_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
This chapter describes the general treatment and immune principles and internal management for AECHB and HBV ACLF, including ICU monitoring, general supportive medications/nutrition/nursing, immune therapy, artificial liver supportive systems, hepatocyte/stem cell, and liver transplant, management for special populations, frequently clinical complications and the utilization of Chinese traditional medicines.Early clinical indicators of severe hepatitis B include acratia, gastrointestinal symptoms, a daily increase in serum bilirubin >1 mg/dL, toxic intestinal paralysis, bleeding tendency and mild mind anomaly or character change, and the presence of other diseases inducing severe hepatitis. Laboratory indicators include T-Bil, PTA, cholinesterase, pre-albumin and albumin. The roles of immune indicators (such as IL-6, TNF-α, and fgl2), gene polymorphisms, HBV genotypes, and gene mutations as early clinical indicators. Intensive Care Unit monitor patients with severe hepatitis include intracranial pressure, infection, blood dynamics, respiratory function, renal function, blood coagulation function, nutritional status and blood purification process. Nursing care should not only include routine care, but psychological and special care (complications). Nutrition support and nursing care should be maintained throughout treatment for severe hepatitis. Common methods of evaluating nutritional status include direct human body measurement, creatinine height index (CHI) and subject global assessment of nutrition (SGA). Malnourished patients should receive enteral or parenteral nutrition support. Immune therapies for severe hepatitis include promoting hepatocyte regeneration (e.g. with glucagon, hepatocyte growth factor and prostaglandin E1), glucocorticoid suppressive therapy, and targeting molecular blocking. Corticosteroid treatment should be early and sufficient, and adverse drug reactions monitored. Treatments currently being investigated are those targeting Toll-like receptors, NK cell/NK cell receptors, macrophage/immune coagulation system, CTLA-4/PD-1 and stem cell transplantation. In addition to conventional drugs and radioiodine, corticosteroids and artificial liver treatment can also be considered for severe hepatitis patients with hyperthyreosis. Patients with gestational severe hepatitis require preventive therapy for fetal growth restriction, and it is necessary to choose the timing and method of fetal delivery. For patients with both diabetes and severe hepatitis, insulin is preferred to oral antidiabetic agents to control blood glucose concentration. Liver toxicity of corticosteroids and immune suppressors should be monitored during treatment for severe hepatitis in patients with connective tissue diseases including SLE, RA and sicca syndrome. Patient with connective tissue diseases should preferably be started after the antiviral treatment with nucleos(t)ide analogues. An artificial liver can improve patients’ liver function; remove endotoxins, blood ammonia and other toxins; correct amino acid metabolism and coagulation disorders; and reverse internal environment imbalances. Non-bioartificial livers are suitable for patients with early and middle stage severe hepatitis; for late-stage patients waiting for liver transplantation; and for transplanted patients with rejection reaction or transplant failure. The type of artificial liver should be determined by each patient’s condition and previous treatment purpose, and patients should be closely monitored for adverse reactions and complications. Bio- and hybrid artificial livers are still under development. MELD score is the international standard for choosing liver transplantation. Surgical methods mainly include the in situ classic type and the piggyback type; transplantation includes no liver prophase, no liver phase or new liver phase. Preoperative preparation, management of intraoperative and postoperative complications and postoperative long-term treatment are keys to success. Severe hepatitis belongs to the categories of “acute jaundice”, “scourge jaundice”, and “hot liver” in traditional Chinese medicine. Treatment methods include Chinese traditional medicines, acupuncture and acupoint injection, external application of drugs, umbilical compress therapy, drip, blow nose therapy, earpins, and clysis. Dietary care is also an important part of traditional Chinese medicine treatment.
Collapse
|
13
|
Samy KP, Davis RP, Gao Q, Martin BM, Song M, Cano J, Farris AB, McDonald A, Gall EK, Dove CR, Leopardi FV, How T, Williams KD, Devi GR, Collins BH, Kirk AD. Early barriers to neonatal porcine islet engraftment in a dual transplant model. Am J Transplant 2018; 18:998-1006. [PMID: 29178588 PMCID: PMC5878697 DOI: 10.1111/ajt.14601] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 10/24/2017] [Accepted: 11/14/2017] [Indexed: 01/25/2023]
Abstract
Porcine islet xenografts have the potential to provide an inexhaustible source of islets for β cell replacement. Proof-of-concept has been established in nonhuman primates. However, significant barriers to xenoislet transplantation remain, including the poorly understood instant blood-mediated inflammatory reaction and a thorough understanding of early xeno-specific immune responses. A paucity of data exist comparing xeno-specific immune responses with alloislet (AI) responses in primates. We recently developed a dual islet transplant model, which enables direct histologic comparison of early engraftment immunobiology. In this study, we investigate early immune responses to neonatal porcine islet (NPI) xenografts compared with rhesus islet allografts at 1 hour, 24 hours, and 7 days. Within the first 24 hours after intraportal infusion, we identified greater apoptosis (caspase 3 activity and TUNEL [terminal deoxynucleotidyl transferase dUTP nick end labeling])-positive cells) of NPIs compared with AIs. Macrophage infiltration was significantly greater at 24 hours compared with 1 hour in both NPI (wild-type) and AIs. At 7 days, IgM and macrophages were highly specific for NPIs (α1,3-galactosyltransferase knockout) compared with AIs. These findings demonstrate an augmented macrophage and antibody response toward xenografts compared with allografts. These data may inform future immune or genetic manipulations required to improve xenoislet engraftment.
Collapse
Affiliation(s)
- KP Samy
- Department of Surgery, Duke University School of Medicine, Durham, NC 27710
| | - RP Davis
- Department of Surgery, Duke University School of Medicine, Durham, NC 27710
| | - Q Gao
- Department of Surgery, Duke University School of Medicine, Durham, NC 27710
| | - BM Martin
- Emory Transplant Center, Emory University School of Medicine, Atlanta, GA 30322
| | - M Song
- Department of Surgery, Duke University School of Medicine, Durham, NC 27710
| | - J Cano
- Emory Transplant Center, Emory University School of Medicine, Atlanta, GA 30322
| | - AB Farris
- Department of Pathology & Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322
| | - A McDonald
- Department of Surgery, Duke University School of Medicine, Durham, NC 27710
| | - EK Gall
- Department of Surgery, Duke University School of Medicine, Durham, NC 27710
| | - CR Dove
- College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA 30602
| | | | - T How
- Department of Surgery, Duke University School of Medicine, Durham, NC 27710
| | - KD Williams
- Department of Surgery, Duke University School of Medicine, Durham, NC 27710
| | - GR Devi
- Department of Surgery, Duke University School of Medicine, Durham, NC 27710
| | - BH Collins
- Department of Surgery, Duke University School of Medicine, Durham, NC 27710
| | - AD Kirk
- Department of Surgery, Duke University School of Medicine, Durham, NC 27710,Emory Transplant Center, Emory University School of Medicine, Atlanta, GA 30322
| |
Collapse
|
14
|
Joanna Z, Magdalena H, Agnieszka NT, Jacek J, Ryszard S, Zdzisław S, Barbara G, Daniel L. The production of UL16-binding protein 1 targeted pigs using CRISPR technology. 3 Biotech 2018; 8:70. [PMID: 29354381 PMCID: PMC5766454 DOI: 10.1007/s13205-018-1107-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 01/07/2018] [Indexed: 11/30/2022] Open
Abstract
Two sgRNAs were designed to target the region of exon 2 of the pULBP1 gene by microinjection. The co-injection of modified Cas9-D10A nickase with a pair of sgRNAs into the zygote's cytoplasm easily and efficiently generated biallelic modification of the pULBP1 gene in one step. Five out of nine F0 generation piglets showed insertions or deletions in the targeting site of the pULBP1 gene, indicating that pULBP1 mutation efficiency reached about 56% (5/9). Quantitative determination of pULBP1 showed approximately a 1.53-fold reduction in the amount of protein ULBP1 on the cell surface (ELISA). A human NK-cell cytotoxicity test leads to the conclusion that higher cell viability is observed for -/- ULBP1 (survival rate 85.36%) compared to +/+ ULBP1 (69.58%). ULBP1-KO pigs will provide a more progressive xenograft source for further research studies, especially those measuring the effects of abolishing the gene function in terms of the complexity of the immunological interactions.
Collapse
Affiliation(s)
- Zeyland Joanna
- Department of Biochemistry and Biotechnology, Poznan University of Life Sciences, Dojazd 11, 60-632 Poznań, Poland
| | - Hryhorowicz Magdalena
- Department of Biochemistry and Biotechnology, Poznan University of Life Sciences, Dojazd 11, 60-632 Poznań, Poland
| | - Nowak-Terpiłowska Agnieszka
- Department of Biochemistry and Biotechnology, Poznan University of Life Sciences, Dojazd 11, 60-632 Poznań, Poland
| | - Jura Jacek
- Department of Animal Reproduction, National Research Institute of Animal Production, Krakowska 1, 32-083 Balice, Poland
| | - Słomski Ryszard
- Department of Biochemistry and Biotechnology, Poznan University of Life Sciences, Dojazd 11, 60-632 Poznań, Poland
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszyńska 32, 60-479 Poznań, Poland
| | - Smorąg Zdzisław
- Department of Animal Reproduction, National Research Institute of Animal Production, Krakowska 1, 32-083 Balice, Poland
| | - Gajda Barbara
- Department of Animal Reproduction, National Research Institute of Animal Production, Krakowska 1, 32-083 Balice, Poland
| | - Lipiński Daniel
- Department of Biochemistry and Biotechnology, Poznan University of Life Sciences, Dojazd 11, 60-632 Poznań, Poland
| |
Collapse
|
15
|
Jung SH, Hwang JH, Kim SE, Kim YK, Park HC, Lee HT. Human galectin-9 on the porcine cells affects the cytotoxic activity of M1-differentiated THP-1 cells through inducing a shift in M2-differentiated THP-1 cells. Xenotransplantation 2017; 24. [PMID: 28432704 DOI: 10.1111/xen.12305] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 03/21/2017] [Indexed: 12/28/2022]
Abstract
BACKGROUND In xenotransplantation, immune rejection by macrophages occurs rapidly and remains a major obstacle. Studies to control immune rejection in macrophages have been continuing to date. Recent studies have reported that human galectin-9 (hGal-9) can regulate the function of regulatory T cells (Treg), as well as cytotoxicity T cells (CTL) and natural killer cells (NK). Although the effect of hGal-9 on lymphocytes has been well studied, the relationship between hGal-9 and myeloid cells has been scarcely studied. METHODS To confirm the decreased cytotoxic activity effect by hGal-9 in M1-differentiated THP-1 cells, we established the hGal-9 expressing transgenic porcine cell line. hGal-9 siRNA was transfected to transgenic cells and recombinant hGal-9 (rhGal-9) was treated to co-culturing condition, and then, flow cytometry assay was conducted for analyzing the cytotoxic activity of M1-differentiated THP-1 cells. Related inflammatory cytokines (IL-1β, IL-10, TNF-α, IL-6, IL-12, IL-23, and TGF-β) and related enzymes (iNOS and Arginase 1) were analyzed by qPCR and Western blot assay. To identify the shift in M1/M2-differentiated THP-1 cells, expression levels of CCR7, CD163, iNOS, and Arginase 1 and population of M2 marker positive cells were analyzed. RESULTS The expression levels of pro-inflammatory cytokines in M1-differentiated THP-1 cells co-cultured with hGal-9-expressing porcine kidney epithelial cells were decreased, but not in co-cultured THP-1 cells. However, the expression levels of anti-inflammatory cytokines were also increased in co-cultured M1-differentiated THP-1 cells. The cytotoxicity effect of M1-differentiated THP-1 cells on transgenic cells was decreased while the expression levels of anti-inflammatory cytokines and M2 macrophages-related molecules were increased. M2 differentiation program was turned on while M1 program was turned down by enhancing the phosphorylation levels of Akt and PI3K and the expression level of PPAR-γ. Due to these changes, differentiation of M2 program was enhanced in cells co-cultured with hGal-9. CONCLUSIONS These data suggested that hGal-9 has a reduction in M1-differentiated THP-1 cell cytotoxic activity-related acute immune rejection in pig-to-human xenotransplantation in addition to its role in lymphoid lineage immune cell regulation.
Collapse
Affiliation(s)
- Sung Han Jung
- Department of Animal Science, Konkuk University, Gwangjin-Gu, Seoul, Korea
| | - Jeong Ho Hwang
- Korea Institute of Toxicology, Jeongeup-si, Jeollabuk-do, Korea
| | - Sang Eun Kim
- Department of Animal Science, Konkuk University, Gwangjin-Gu, Seoul, Korea
| | - Young Kyu Kim
- Department of Animal Science, Konkuk University, Gwangjin-Gu, Seoul, Korea
| | - Hyo Chang Park
- Department of Animal Science, Konkuk University, Gwangjin-Gu, Seoul, Korea
| | - Hoon Taek Lee
- Department of Animal Science, Konkuk University, Gwangjin-Gu, Seoul, Korea
| |
Collapse
|
16
|
Iwase H, Hara H, Ezzelarab M, Li T, Zhang Z, Gao B, Liu H, Long C, Wang Y, Cassano A, Klein E, Phelps C, Ayares D, Humar A, Wijkstrom M, Cooper DKC. Immunological and physiological observations in baboons with life-supporting genetically engineered pig kidney grafts. Xenotransplantation 2017; 24:10.1111/xen.12293. [PMID: 28303661 PMCID: PMC5397334 DOI: 10.1111/xen.12293] [Citation(s) in RCA: 170] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 12/22/2016] [Accepted: 01/26/2017] [Indexed: 12/13/2022]
Abstract
BACKGROUND Genetically engineered pigs could provide a source of kidneys for clinical transplantation. The two longest kidney graft survivals reported to date have been 136 and 310 days, but graft survival >30 days has been unusual until recently. METHODS Donor pigs (n=4) were on an α1,3-galactosyltransferase gene-knockout (GTKO)/human complement regulatory protein (CD46) background (GTKO/CD46). In addition, the pigs were transgenic for at least one human coagulation regulatory protein. Two baboons received a kidney from a six-gene pig (GroupA) and two from a three-gene pig (GroupB). Immunosuppressive therapy was identical in all four cases and consisted of anti-thymoglobulin (ATG)+anti-CD20mAb (induction) and anti-CD40mAb+rapamycin+corticosteroids (maintenance). Anti-TNF-α and anti-IL-6R mAbs were administered to reduce the inflammatory response. Baboons were followed by clinical/laboratory monitoring of immune/coagulation/inflammatory/physiological parameters. At biopsy or euthanasia, the grafts were examined by microscopy. RESULTS The two GroupA baboons remained healthy with normal renal function >7 and >8 months, respectively, but then developed infectious complications. However, no features of a consumptive coagulopathy, eg, thrombocytopenia and reduction of fibrinogen, or of a protein-losing nephropathy were observed. There was no evidence of an elicited anti-pig antibody response, and histology of biopsies taken at approximately 4, 6, and 7 months and at necropsy showed no significant abnormalities. In contrast, both GroupB baboons developed features of a consumptive coagulopathy and required euthanasia on day 12. CONCLUSIONS The combination of (i) a graft from a specific six-gene genetically modified pig, (ii) an effective immunosuppressive regimen, and (iii) anti-inflammatory therapy prevented immune injury, a protein-losing nephropathy, and coagulation dysfunction for >7 months. Although the number of experiments is very limited, our impression is that expression of human endothelial protein C receptor (±CD55) in the graft is important if coagulation dysregulation is to be avoided.
Collapse
Affiliation(s)
- Hayato Iwase
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Hidetaka Hara
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mohamed Ezzelarab
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Tao Li
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Kidney Transplantation, Second Affiliated Hospital of the University of South China, Hengyang, Hunan, China
| | - Zhongqiang Zhang
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Department of General Surgery, Second Xiangya Hospital of the Central South University, Changsha, Hunan, China
| | - Bingsi Gao
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Kidney Transplantation, Second Affiliated Hospital of the University of South China, Hengyang, Hunan, China
| | - Hong Liu
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Department of General Surgery, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Cassandra Long
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yi Wang
- Center for Kidney Transplantation, Second Affiliated Hospital of the University of South China, Hengyang, Hunan, China
| | - Amy Cassano
- Division of Laboratory Animal Resources, University of Pittsburgh, Pittsburgh, PA, USA
| | - Edwin Klein
- Division of Laboratory Animal Resources, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | | - Abhinav Humar
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Martin Wijkstrom
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - David K C Cooper
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
17
|
Zeiser R, Robson SC, Vaikunthanathan T, Dworak M, Burnstock G. Unlocking the Potential of Purinergic Signaling in Transplantation. Am J Transplant 2016; 16:2781-2794. [PMID: 27005321 PMCID: PMC5472988 DOI: 10.1111/ajt.13801] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 03/11/2016] [Accepted: 03/19/2016] [Indexed: 01/25/2023]
Abstract
Purinergic signaling has been recognized as playing an important role in inflammation, angiogenesis, malignancy, diabetes and neural transmission. Activation of signaling pathways downstream from purinergic receptors may also be implicated in transplantation and related vascular injury. Following transplantation, the proinflammatory "danger signal" adenosine triphosphate (ATP) is released from damaged cells and promotes proliferation and activation of a variety of immune cells. Targeting purinergic signaling pathways may promote immunosuppression and ameliorate inflammation. Under pathophysiological conditions, nucleotide-scavenging ectonucleotidases CD39 and CD73 hydrolyze ATP, ultimately, to the anti-inflammatory mediator adenosine. Adenosine suppresses proinflammatory cytokine production and is associated with improved graft survival and decreased severity of graft-versus-host disease. Furthermore, purinergic signaling is involved both directly and indirectly in the mechanism of action of several existing immunosuppressive drugs, such as calcineurin inhibitors and mammalian target of rapamycin inhibitors. Targeting of purinergic receptor pathways, particularly in the setting of combination therapies, could become a valuable immunosuppressive strategy in transplantation. This review focuses on the role of the purinergic signaling pathway in transplantation and immunosuppression and explores possible future applications in clinical practice.
Collapse
Affiliation(s)
- R. Zeiser
- Department of Hematology and Oncology, Freiburg University Medical Center, Albert-Ludwigs-University, Freiburg, Germany
| | - S. C. Robson
- Department of Medicine, Transplant Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA,Corresponding authors: Markus Dworak and Simon C. Robson, and
| | - T. Vaikunthanathan
- Division of Transplantation Immunology & Mucosal Biology, MRC Centre for Transplantation, King’s College London, Great Maze Pond, London, UK
| | - M. Dworak
- Novartis Pharma, Nuernberg, Germany,Institute of Movement and Neurosciences, German Sport University Cologne, Cologne, Germany,Corresponding authors: Markus Dworak and Simon C. Robson, and
| | - G. Burnstock
- Autonomic Neuroscience Centre, University College Medical School, London, UK,Department of Pharmacology and Therapeutics, The University of Melbourne, Melbourne, Australia
| |
Collapse
|