1
|
Fernando L, Echesabal-Chen J, Miller M, Powell RR, Bruce T, Paul A, Poudyal N, Saliutama J, Parman K, Paul KS, Stamatikos A. Cholesterol Efflux Decreases TLR4-Target Gene Expression in Cultured Macrophages Exposed to T. brucei Ghosts. Microorganisms 2024; 12:1730. [PMID: 39203572 PMCID: PMC11357207 DOI: 10.3390/microorganisms12081730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 08/17/2024] [Accepted: 08/20/2024] [Indexed: 09/03/2024] Open
Abstract
Trypanosoma brucei causes African trypanosomiasis in humans. Infection with T. brucei elicits a potent pro-inflammatory immune response within infected human hosts, and this response is thought to at least be partially due to Toll-like receptor (TLR) activation. In response to stimulation by lipopolysaccharide and other pathogen antigens, TLR4 translocates to lipid rafts, which induces the expression of pro-inflammatory genes. However, cholesterol efflux is acknowledged as anti-inflammatory due to promoting lipid raft disruption. In this study, we wanted to assess the impact of T. brucei "ghosts", which are non-viable T. brucei essentially devoid of intracellular contents, in stimulating macrophage TLR4 translocation to lipid rafts, and whether promoting cholesterol efflux in macrophages incubated with T. brucei ghosts attenuates TLR4-target gene expression. When cultured macrophages were exposed to T. brucei ghosts, we observed an increase in lipid raft TLR4 protein content, which suggests certain surface molecules of T. brucei serve as ligands for TLR4. However, pretreating macrophages with cholesterol acceptors before T. brucei ghost exposure decreased lipid raft TLR4 protein content and the expression of pro-inflammatory TLR4-target genes. Taken together, these results imply that macrophage cholesterol efflux weakens pro-inflammatory responses which occur from T. brucei infection via increasing macrophage lipid raft disruption.
Collapse
Affiliation(s)
- Lawrence Fernando
- Department of Food, Nutrition, and Packaging Sciences, Clemson University, Clemson, SC 29634, USA; (L.F.); (J.E.-C.)
| | - Jing Echesabal-Chen
- Department of Food, Nutrition, and Packaging Sciences, Clemson University, Clemson, SC 29634, USA; (L.F.); (J.E.-C.)
| | - Murphy Miller
- School of Medicine Greenville, University of South Carolina, Greenville, SC 29605, USA;
| | - Rhonda Reigers Powell
- Clemson Light Imaging Facility, Clemson University, Clemson, SC 29634, USA; (R.R.P.); (T.B.)
| | - Terri Bruce
- Clemson Light Imaging Facility, Clemson University, Clemson, SC 29634, USA; (R.R.P.); (T.B.)
| | - Apurba Paul
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, USA
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, USA; (N.P.); (K.S.P.)
| | - Nava Poudyal
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, USA; (N.P.); (K.S.P.)
| | - Joshua Saliutama
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, USA; (N.P.); (K.S.P.)
| | - Kristina Parman
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, USA; (N.P.); (K.S.P.)
| | - Kimberly S. Paul
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, USA; (N.P.); (K.S.P.)
| | - Alexis Stamatikos
- Department of Food, Nutrition, and Packaging Sciences, Clemson University, Clemson, SC 29634, USA; (L.F.); (J.E.-C.)
| |
Collapse
|
2
|
Gu L, Ju Y, Hu M, Zheng M, Li Q, Zhang X. Research progress of PPARγ regulation of cholesterol and inflammation in Alzheimer's disease. Metab Brain Dis 2023; 38:839-854. [PMID: 36723831 DOI: 10.1007/s11011-022-01139-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/29/2022] [Indexed: 02/02/2023]
Abstract
Peroxidase proliferator receptors (PPARs) are defined as key sensors and regulators of cell metabolism, transcription factors activated by ligands, involved in lipid, glucose and amino acid metabolism, participating in the processes of cell differentiation, apoptosis, inflammation regulation, and acute and chronic nerve damage. Among them, PPARγ is expressed in different brain regions and can regulate lipid metabolism, mitochondrial disorders, oxidative stress, and cell apoptosis. It has anti-inflammatory activity and shows neuroprotection. The regulation of Aβ levels in Alzheimer's disease involves cholesterol metabolism and inflammation, so this article first analyzes the biological functions of PPARγ, then mainly focuses on the relationship between cholesterol and inflammation and Aβ, and elaborates on the regulation of PPARγ on key proteins and the corresponding molecules, which provides new ideas for the treatment of AD.
Collapse
Affiliation(s)
- Lili Gu
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, 310013, China
| | - Yue Ju
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, 310013, China
| | - Min Hu
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, 310013, China
| | - Miao Zheng
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, 310013, China
| | - Qin Li
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, 310013, China
| | - Xinyue Zhang
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, 310013, China.
| |
Collapse
|
3
|
Zhang G, Wang Z, Hu H, Zhao M, Sun L. Microglia in Alzheimer's Disease: A Target for Therapeutic Intervention. Front Cell Neurosci 2021; 15:749587. [PMID: 34899188 PMCID: PMC8651709 DOI: 10.3389/fncel.2021.749587] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/28/2021] [Indexed: 12/31/2022] Open
Abstract
Alzheimer’s disease (AD) is one of the most common types of age-related dementia worldwide. In addition to extracellular amyloid plaques and intracellular neurofibrillary tangles, dysregulated microglia also play deleterious roles in the AD pathogenesis. Numerous studies have demonstrated that unbridled microglial activity induces a chronic neuroinflammatory environment, promotes β-amyloid accumulation and tau pathology, and impairs microglia-associated mitophagy. Thus, targeting microglia may pave the way for new therapeutic interventions. This review provides a thorough overview of the pathophysiological role of the microglia in AD and illustrates the potential avenues for microglia-targeted therapies, including microglial modification, immunoreceptors, and anti-inflammatory drugs.
Collapse
Affiliation(s)
- Guimei Zhang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Zicheng Wang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Huiling Hu
- Department of Intensive Care Unit, The Affiliated Hospital of Qingdao University, Shandong, China
| | - Meng Zhao
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Li Sun
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, China
| |
Collapse
|
4
|
Kotlyarov S, Kotlyarova A. Bioinformatic Analysis of ABCA1 Gene Expression in Smoking and Chronic Obstructive Pulmonary Disease. MEMBRANES 2021; 11:674. [PMID: 34564491 PMCID: PMC8464760 DOI: 10.3390/membranes11090674] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/26/2021] [Accepted: 08/30/2021] [Indexed: 12/14/2022]
Abstract
UNLABELLED Smoking is a key modifiable risk factor for developing the chronic obstructive pulmonary disease (COPD). When smoking, many processes, including the reverse transport of cholesterol mediated by the ATP binding cassette transporter A1 (ABCA1) protein are disrupted in the lungs. Changes in the cholesterol content in the lipid rafts of plasma membranes can modulate the function of transmembrane proteins localized in them. It is believed that this mechanism participates in increasing the inflammation in COPD. METHODS Bioinformatic analysis of datasets from Gene Expression Omnibus (GEO) was carried out. Gene expression data from datasets of alveolar macrophages and the epithelium of the respiratory tract in smokers and COPD patients compared with non-smokers were used for the analysis. To evaluate differentially expressed genes, bioinformatic analysis was performed in comparison groups using the limma package in R (v. 4.0.2), and the GEO2R and Phantasus tools (v. 1.11.0). RESULTS The conducted bioinformatic analysis showed changes in the expression of the ABCA1 gene associated with smoking. In the alveolar macrophages of smokers, the expression levels of ABCA1 were lower than in non-smokers. At the same time, in most of the airway epithelial datasets, gene expression did not show any difference between the groups of smokers and non-smokers. In addition, it was shown that the expression of ABCA1 in the epithelial cells of the trachea and large bronchi is higher than in small bronchi. CONCLUSIONS The conducted bioinformatic analysis showed that smoking can influence the expression of the ABCA1 gene, thereby modulating lipid transport processes in macrophages, which are part of the mechanisms of inflammation development.
Collapse
Affiliation(s)
- Stanislav Kotlyarov
- Department of Nursing, Ryazan State Medical University, 390026 Ryazan, Russia
| | - Anna Kotlyarova
- Department of Pharmacology and Pharmacy, Ryazan State Medical University, 390026 Ryazan, Russia;
| |
Collapse
|
5
|
Su X, Zhang G, Cheng Y, Wang B. New insights into the emerging effects of inflammatory response on HDL particles structure and function. Mol Biol Rep 2021; 48:5723-5733. [PMID: 34319542 DOI: 10.1007/s11033-021-06553-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/08/2021] [Indexed: 12/11/2022]
Abstract
According to the increasing results, it has been well-demonstrated that the chronic inflammatory response, including systemic lupus erythematosus, rheumatoid arthritis, and inflammatory bowel disease are associated with an increased risk of atherosclerotic cardiovascular disease. The mechanism whereby inflammatory response up-regulates the risk of cardio-metabolic disorder disease is multifactorial; furthermore, the alterations in high density lipoprotein (HDL) structure and function which occur under the inflammatory response could play an important modulatory function. On the other hand, the serum concentrations of HDL cholesterol (HDL-C) have been shown to be reduced significantly under inflammatory status with remarked alterations in HDL particles. Nevertheless, the potential mechanism whereby the inflammatory response reduces serum HDL-C levels is not simply defined but reduces apolipoprotein A1 production. The alterations in HDL structure mediated by the inflammatory response has been also confirmed to decrease the ability of HDL particle to play an important role in reverse cholesterol transport and protect the LDL particles from oxidation. Recently, it has been shown that under the inflammatory condition, diverse alterations in HDL structure could be observed which lead to changes in HDL function. In the current review, the emerging effects of inflammatory response on HDL particles structure and function are well-summarized to elucidate the potential mechanism whereby different inflammatory status modulates the pathogenic development of dyslipidemia.
Collapse
Affiliation(s)
- Xin Su
- Department of Cardiology, The Xiamen Cardiovascular Hospital of Xiamen University, No. 2999 Jinshan Road, Xiamen, 361000, Fujian, China
| | - Guoming Zhang
- Department of Cardiology, The Xiamen Cardiovascular Hospital of Xiamen University, No. 2999 Jinshan Road, Xiamen, 361000, Fujian, China
| | - Ye Cheng
- Department of Cardiology, The Xiamen Cardiovascular Hospital of Xiamen University, No. 2999 Jinshan Road, Xiamen, 361000, Fujian, China.
| | - Bin Wang
- Department of Cardiology, The Xiamen Cardiovascular Hospital of Xiamen University, No. 2999 Jinshan Road, Xiamen, 361000, Fujian, China.
| |
Collapse
|
6
|
Rho JH, Kim HJ, Joo JY, Lee JY, Lee JH, Park HR. Periodontal Pathogens Promote Foam Cell Formation by Blocking Lipid Efflux. J Dent Res 2021; 100:1367-1377. [PMID: 33899578 DOI: 10.1177/00220345211008811] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Foam cells are one of the major cellular components of atherosclerotic plaques, within which the trace of periodontal pathogens has also been identified in recent studies. In line with these findings, the correlation between periodontitis and atherosclerotic cardiovascular incidences has been repetitively supported by evidence from a number of experimental studies. However, the direct role of periodontal pathogens in altered cellular signaling underlying such cardiovascular events has not been clearly defined. To determine the role of periodontal pathogens in the pathogenesis of atherosclerosis, especially in the evolution of macrophages into foam cells, we monitored the pattern of lipid accumulation within macrophages in the presence of periodontal pathogens, followed by characterization of these lipids and investigation of major molecules involved in lipid homeostasis. The cells were stained with the lipophilic fluorescent dye BODIPY 493/503 and Oil Red O to characterize the lipid profile. The amounts of Oil Red O-positive droplets, representing neutral lipids, as well as fluorescent lipid aggregates were prominently increased in periodontal pathogen-infected macrophages. Subsequent analysis allowed us to locate the accumulated lipids in the endoplasmic reticulum. In addition, the levels of cholesteryl ester in periodontal pathogen-infected macrophages were increased, implying disrupted lipid homeostasis. Further investigations to delineate the key messengers and regulatory factors involved in the altered lipid homeostasis have revealed alterations in cholesterol efflux-related enzymes, such as ABCG1 and CYP46A1, as contributors to foam cell formation, and increased Ca2+ signaling and reactive oxygen species (ROS) production as key events underlying disrupted lipid homeostasis. Consistently, a treatment of periodontal pathogen-infected macrophages with ROS inhibitors and nifedipine attenuated the accumulation of lipid droplets, further confirming periodontal pathogen-induced alterations in Ca2+ and ROS signaling and the subsequent dysregulation of lipid homeostasis as key regulatory events underlying the evolution of macrophages into foam cells.
Collapse
Affiliation(s)
- J H Rho
- Department of Oral Pathology and BK21 FOUR Project, School of Dentistry, Pusan National University, Yangsan, Republic of Korea
- Department of Periodontology, School of Dentistry, Pusan National University, Pusan National University Dental Hospital, Yangsan, Republic of Korea
| | - H J Kim
- Department of Oral Pathology and BK21 FOUR Project, School of Dentistry, Pusan National University, Yangsan, Republic of Korea
- Department of Periodontology, School of Dentistry, Pusan National University, Pusan National University Dental Hospital, Yangsan, Republic of Korea
| | - J Y Joo
- Department of Periodontology, School of Dentistry, Pusan National University, Pusan National University Dental Hospital, Yangsan, Republic of Korea
- Periodontal Disease Signaling Network Research Center, Dental & Life Science Institute, Pusan National University, Yangsan, Republic of Korea
| | - J Y Lee
- Department of Periodontology, School of Dentistry, Pusan National University, Pusan National University Dental Hospital, Yangsan, Republic of Korea
- Periodontal Disease Signaling Network Research Center, Dental & Life Science Institute, Pusan National University, Yangsan, Republic of Korea
| | - J H Lee
- Department of Oral Pathology and BK21 FOUR Project, School of Dentistry, Pusan National University, Yangsan, Republic of Korea
- Periodontal Disease Signaling Network Research Center, Dental & Life Science Institute, Pusan National University, Yangsan, Republic of Korea
| | - H R Park
- Department of Oral Pathology and BK21 FOUR Project, School of Dentistry, Pusan National University, Yangsan, Republic of Korea
- Periodontal Disease Signaling Network Research Center, Dental & Life Science Institute, Pusan National University, Yangsan, Republic of Korea
| |
Collapse
|
7
|
Xia J, Yu P, Zeng Z, Ma M, Zhang G, Wan D, Gong D, Deng S, Wang J. High Dietary Intervention of Lauric Triglyceride Might be Harmful to Its Improvement of Cholesterol Metabolism in Obese Rats. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:4453-4463. [PMID: 33844520 DOI: 10.1021/acs.jafc.1c00745] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Hypercholesterolemia is often considered to be a major risk factor for atherosclerosis, and medium-chain fatty acids have been found to reduce the total cholesterol (TC) level and maintain low-density lipoprotein cholesterol (LDL-c) stability. However, we unexpectedly found that the levels of TC and LDL-c were increased in obese rats treated with high-dose lauric triglycerides (LT). The study aimed to investigate the effect and mechanism of LT on cholesterol metabolism in obese rats. Our results showed that LT intervention could reduce cholesterol biosynthesis by downregulating the expression of HMG-CoA reductase in obese rats. LT increased the expression levels of PPARγ1, LXRα, ABCA1, and ABCG8 in the liver. These results indicated that LT could improve the lipid transfer and bile acid efflux. However, LT significantly increased the expression of PCSK 9, resulting in accelerated degradation of LDLR, thus reducing the transport of very LDL (VLDL) and LDL to the liver. Together with the increased expression of NPC1L1 protein, LT impaired the uptake of VLDL/LDL by the liver and increased the reabsorption of sterols, leading to an increase in the levels of TC and LDL-c in obese rats.
Collapse
Affiliation(s)
- Jiaheng Xia
- Jiangxi Province Key Laboratory of Edible and Medicinal Resources Exploitation, School of Resource and Environmental and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Ping Yu
- Jiangxi Province Key Laboratory of Edible and Medicinal Resources Exploitation, School of Resource and Environmental and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Zheling Zeng
- Jiangxi Province Key Laboratory of Edible and Medicinal Resources Exploitation, School of Resource and Environmental and Chemical Engineering, Nanchang University, Nanchang 330031, China
- State Key Laboratory of Food Science and Technology, Jiangxi Province Key Laboratory of Edible and Medicinal Resources Exploitation, School of Food Science and Technology, Nanchang University, Nanchang 330031, China
| | - Maomao Ma
- State Key Laboratory of Food Science and Technology, Jiangxi Province Key Laboratory of Edible and Medicinal Resources Exploitation, School of Food Science and Technology, Nanchang University, Nanchang 330031, China
| | - Guohua Zhang
- State Key Laboratory of Food Science and Technology, Jiangxi Province Key Laboratory of Edible and Medicinal Resources Exploitation, School of Food Science and Technology, Nanchang University, Nanchang 330031, China
| | - Dongman Wan
- School of Food Science and Technology, Nanchang University, Nanchang 330031, China
| | - Deming Gong
- State Key Laboratory of Food Science and Technology, Jiangxi Province Key Laboratory of Edible and Medicinal Resources Exploitation, New Zealand Institute of Natural Medicine Research, 8 Ha Crescent, Auckland 2104, New Zealand
| | - Shuguang Deng
- Jiangxi Province Key Laboratory of Edible and Medicinal Resources Exploitation, School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, Arizona 85284, United States
| | - Jun Wang
- Jiangxi Province Key Laboratory of Edible and Medicinal Resources Exploitation, School of Resource and Environmental and Chemical Engineering, Nanchang University, Nanchang 330031, China
| |
Collapse
|
8
|
Kotlyarov S. Participation of ABCA1 Transporter in Pathogenesis of Chronic Obstructive Pulmonary Disease. Int J Mol Sci 2021; 22:3334. [PMID: 33805156 PMCID: PMC8037621 DOI: 10.3390/ijms22073334] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 12/12/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is the important medical and social problem. According to modern concepts, COPD is a chronic inflammatory disease, macrophages play a key role in its pathogenesis. Macrophages are heterogeneous in their functions, which is largely determined by their immunometabolic profile, as well as the features of lipid homeostasis, in which the ATP binding cassette transporter A1 (ABCA1) plays an essential role. The objective of this work is the analysis of the ABCA1 protein participation and the function of reverse cholesterol transport in the pathogenesis of COPD. The expression of the ABCA1 gene in lung tissues takes the second place after the liver, which indicates the important role of the carrier in lung function. The participation of the transporter in the development of COPD consists in provision of lipid metabolism, regulation of inflammation, phagocytosis, and apoptosis. Violation of the processes in which ABCA1 is involved may be a part of the pathophysiological mechanisms, leading to the formation of a heterogeneous clinical course of the disease.
Collapse
Affiliation(s)
- Stanislav Kotlyarov
- Department of Nursing, Ryazan State Medical University, 390026 Ryazan, Russia
| |
Collapse
|
9
|
Karten A, Vernice NA, Renna HA, Carsons SE, DeLeon J, Pinkhasov A, Gomolin IH, Glass DS, Reiss AB, Kasselman LJ. Effect of oxytocin on lipid accumulation under inflammatory conditions in human macrophages. Exp Mol Pathol 2021; 118:104604. [PMID: 33434610 DOI: 10.1016/j.yexmp.2021.104604] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 12/21/2020] [Accepted: 01/07/2021] [Indexed: 11/27/2022]
Abstract
INTRODUCTION AND AIMS Oxytocin (OT) is a neuropeptide hormone secreted by the posterior pituitary gland. Deficits in OT action have been observed in patients with behavioral and mood disorders, some of which correlate with an increased risk of cardiovascular disease (CVD). Recent research has revealed a wider systemic role that OT plays in inflammatory modulation and development of atherosclerotic plaques. This study investigated the role that OT plays in cholesterol transport and foam cell formation in LPS-stimulated THP-1 human macrophages. METHODS THP-1 differentiated macrophages were treated with media, LPS (100 ng/ml), LPS + OT (10 pM), or LPS + OT (100 pM). Changes in gene expression and protein levels of cholesterol transporters were analyzed by real time quantitative PCR (RT-qPCR) and Western blot, while oxLDL uptake and cholesterol efflux capacity were evaluated with fluorometric assays. RESULTS RT-qPCR analysis revealed a significant increase in ABCG1 gene expression upon OT + LPS treatment, compared to LPS alone (p = 0.0081), with Western blotting supporting the increase in expression of the ABCG1 protein. Analysis of oxLDL uptake showed a significantly lower fluorescent value in LPS + OT (100pM) -treated cells when compared to LPS alone (p < 0.0001). While not statistically significant (p = 0.06), cholesterol efflux capacity increased with LPS + OT treatment. CONCLUSION We demonstrate here that OT can attenuate LPS-mediated lipid accumulation in THP-1 macrophages. These findings support the hypothesis that OT could be used to reduce pro-inflammatory and potentially atherogenic changes observed in patients with heightened CVD risk. This study suggests further exploration of OT effects on monocyte and macrophage cholesterol handling in vivo.
Collapse
Affiliation(s)
- Ariel Karten
- NYU Langone Hospital - Long Island Biomedical Research Institute and NYU Long Island School of Medicine, Mineola, New York, United States of America
| | - Nicholas A Vernice
- NYU Langone Hospital - Long Island Biomedical Research Institute and NYU Long Island School of Medicine, Mineola, New York, United States of America
| | - Heather A Renna
- NYU Langone Hospital - Long Island Biomedical Research Institute and NYU Long Island School of Medicine, Mineola, New York, United States of America
| | - Steven E Carsons
- NYU Langone Hospital - Long Island Biomedical Research Institute and NYU Long Island School of Medicine, Mineola, New York, United States of America
| | - Joshua DeLeon
- NYU Langone Hospital - Long Island Biomedical Research Institute and NYU Long Island School of Medicine, Mineola, New York, United States of America
| | - Aaron Pinkhasov
- NYU Langone Hospital - Long Island Biomedical Research Institute and NYU Long Island School of Medicine, Mineola, New York, United States of America
| | - Irving H Gomolin
- NYU Langone Hospital - Long Island Biomedical Research Institute and NYU Long Island School of Medicine, Mineola, New York, United States of America
| | - Daniel S Glass
- NYU Langone Hospital - Long Island Biomedical Research Institute and NYU Long Island School of Medicine, Mineola, New York, United States of America
| | - Allison B Reiss
- NYU Langone Hospital - Long Island Biomedical Research Institute and NYU Long Island School of Medicine, Mineola, New York, United States of America
| | - Lora J Kasselman
- NYU Langone Hospital - Long Island Biomedical Research Institute and NYU Long Island School of Medicine, Mineola, New York, United States of America.
| |
Collapse
|
10
|
Zhao L, Lei W, Deng C, Wu Z, Sun M, Jin Z, Song Y, Yang Z, Jiang S, Shen M, Yang Y. The roles of liver X receptor α in inflammation and inflammation-associated diseases. J Cell Physiol 2020; 236:4807-4828. [PMID: 33305467 DOI: 10.1002/jcp.30204] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 10/19/2020] [Accepted: 11/24/2020] [Indexed: 12/14/2022]
Abstract
Liver X receptor α (LXRα; also known as NR1H3), an isoform of LXRs, is a member of the nuclear receptor family of transcription factors and plays essential roles in the transcriptional control of cholesterol homeostasis. Previous in-depth phenotypic analyses of mouse models with deficient LXRα have also demonstrated various physiological functions of this receptor within inflammatory responses. LXRα activation exerts a combination of metabolic and anti-inflammatory actions resulting in the modulation and the amelioration of inflammatory disorders. The tight "repercussions" between LXRα and inflammation, as well as cholesterol homeostasis, have suggested that LXRα could be pharmacologically targeted in pathologies such as atherosclerosis, acute lung injury, and Alzheimer's disease. This review gives an overview of the recent advances in understanding the roles of LXRα in inflammation and inflammation-associated diseases, which will help in the design of future experimental researches on the potential of LXRα and advance the investigation of LXRα as pharmacological inflammatory targets.
Collapse
Affiliation(s)
- Lin Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education Life of Sciences, Northwest University, Xi'an, China.,Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Wangrui Lei
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education Life of Sciences, Northwest University, Xi'an, China
| | - Chao Deng
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Zhen Wu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education Life of Sciences, Northwest University, Xi'an, China
| | - Meng Sun
- Department of Cardiology, The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Zhenxiao Jin
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Yanbin Song
- Department of Cardiology, Affiliated Hospital, Yan'an University, China
| | - Zhi Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education Life of Sciences, Northwest University, Xi'an, China
| | - Shuai Jiang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education Life of Sciences, Northwest University, Xi'an, China
| | - Mingzhi Shen
- Hainan Hospital of PLA General Hospital, The Second School of Clinical Medicine, Southern Medical University, Sanya, Hainan, China.,Hainan Branch of National Clinical Reasearch Center of Geriatrics Disease, Sanya, Hainan, China
| | - Yang Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education Life of Sciences, Northwest University, Xi'an, China
| |
Collapse
|
11
|
Park JW, Kim OH, Lee SC, Kim KH, Hong HE, Seo H, Choi HJ, Kim SJ. Serum level of visfatin can reflect the severity of inflammation in patients with acute cholecystitis. Ann Surg Treat Res 2020; 99:26-36. [PMID: 32676479 PMCID: PMC7332317 DOI: 10.4174/astr.2020.99.1.26] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 03/02/2020] [Accepted: 04/07/2020] [Indexed: 12/29/2022] Open
Abstract
Purpose Visfatin is a key cytokine released from the pe ripheral blood mononuclear cells (PBMCs) as well as adipose tissue, and it is involved in immune response as well as inflammation. In this study, we investigated whether the serum visfatin level could be a prognostic factor for predicting the severity of inflammation in patients with acute cholecystitis. Methods We examined the blood samples and gallbladder specimens from patients who underwent laparoscopic cholecystectomy for either acute (n = 18) or chronic cholecystitis (n = 18). We determined the visfatin levels of these samples using various procedures such as real-time polymerase chain reaction, enzyme-linked immunosorbent assay, western blotting, and immunohistochemistry. Results The patients with acute cholecystitis exhibited higher mRNA expression of visfatin in PBMCs, higher serum levels of visfatin, and increased protein expression of visfatin in the gallbladder specimens than in patients with chronic cholecystitis. In the in vitro model of acute cholecystitis, the mRNA expression of visfatin showed the fastest increase among the other pro-inflammatory mediators studied, including interleukin (IL)-10, tumor necrosis factor-α, IL-6, intracellular adhesion molecule-1, and ascular cell adhesion molecule-1. Inhibition of visfatin using siRNA abrogated the inhibitory effects of lipopolysaccharide (LPS) on the expression of ABCG1 in GBECs, suggesting that visfatin is significantly involved in the LPS-driven suppression of ABCG1. Conclusion Taken together, we concluded that visfatin is a pro-inflammatory mediators that is upregulated during acute cholecystitis and is expected to be increased within a short time after inflammation. Therefore, measuring the serum level of visfatin would be helpful in predicting the inflammatory severity in the patients with acute cholecystitis.
Collapse
Affiliation(s)
- Jae Woo Park
- Department of Surgery, Daejeon St. Mary's Hospital, The Catholic University of Korea, Seoul, Korea
| | - Ok-Hee Kim
- Department of Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea.,Catholic Central Laboratory of Surgery, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Sang Chul Lee
- Department of Surgery, Daejeon St. Mary's Hospital, The Catholic University of Korea, Seoul, Korea.,Catholic Central Laboratory of Surgery, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Kee-Hwan Kim
- Catholic Central Laboratory of Surgery, College of Medicine, The Catholic University of Korea, Seoul, Korea.,Department of Surgery, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Ha-Eun Hong
- Department of Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea.,Catholic Central Laboratory of Surgery, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Haeyeon Seo
- Department of Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea.,Catholic Central Laboratory of Surgery, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Ho Joong Choi
- Department of Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Say-June Kim
- Department of Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea.,Catholic Central Laboratory of Surgery, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
12
|
Advanced Glycated apoA-IV Loses Its Ability to Prevent the LPS-Induced Reduction in Cholesterol Efflux-Related Gene Expression in Macrophages. Mediators Inflamm 2020; 2020:6515401. [PMID: 32410861 PMCID: PMC7201780 DOI: 10.1155/2020/6515401] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/06/2019] [Accepted: 12/21/2019] [Indexed: 02/06/2023] Open
Abstract
We addressed how advanced glycation (AGE) affects the ability of apoA-IV to impair inflammation and restore the expression of genes involved in cholesterol efflux in lipopolysaccharide- (LPS-) treated macrophages. Recombinant human apoA-IV was nonenzymatically glycated by incubation with glycolaldehyde (GAD), incubated with cholesterol-loaded bone marrow-derived macrophages (BMDMs), and then stimulated with LPS prior to measurement of proinflammatory cytokines by ELISA. Genes involved in cholesterol efflux were quantified by RT-qPCR, and cholesterol efflux was measured by liquid scintillation counting. Carboxymethyllysine (CML) and pyrraline (PYR) levels, determined by Liquid Chromatography-Mass Spectrometry (LC-MS/MS), were greater in AGE-modified apoA-IV (AGE-apoA-IV) compared to unmodified-apoA-IV. AGE-apoA-IV inhibited expression of interleukin 6 (Il6), TNF-alpha (Tnf), IL-1 beta (Il1b), toll-like receptor 4 (Tlr4), tumor necrosis factor receptor-associated factor 6 (Traf6), Janus kinase 2/signal transducer and activator of transcription 3 (Jak2/Stat3), nuclear factor kappa B (Nfkb), and AGE receptor 1 (Ddost) as well as IL-6 and TNF-alpha secretion. AGE-apoA-IV alone did not change cholesterol efflux or ABCA-1 levels but was unable to restore the LPS-induced reduction in expression of Abca1 and Abcg1. AGE-apoA-IV inhibited inflammation but lost its ability to counteract the LPS-induced changes in expression of genes involved in macrophage cholesterol efflux that may contribute to atherosclerosis.
Collapse
|
13
|
Horiuchi Y, Ohkawa R, Lai SJ, Yamazaki A, Ikoma H, Yano K, Kameda T, Tozuka M. Characterization of the cholesterol efflux of apolipoprotein E-containing high-density lipoprotein in THP-1 cells. Biol Chem 2019; 400:209-218. [PMID: 30210053 DOI: 10.1515/hsz-2018-0284] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 09/02/2018] [Indexed: 01/02/2023]
Abstract
High-density lipoprotein (HDL), also known as antiatherogenic lipoprotein, consists of heterogeneous particles in terms of size, density and composition, suggesting differences among HDL subclasses in characteristics and functions. We investigated the role of apolipoprotein E (apoE)-containing HDL, a minor HDL subclass, in the cholesterol efflux capacity (CEC) of HDL, which is its predominant atheroprotective function. The CEC of apoE-containing HDL was similar to that of apoE-deficient HDL, but the former exhibited a greater rate increase (1.48-fold) compared to that of the latter (1.10-fold) by the stimulation of THP-1 macrophages with the Liver X Receptor (LXR) agonist. No difference in CEC was observed without the LXR agonist between apoA-I, the main apolipoprotein in HDL, and apoE, whereas the increase in CEC in response to treatment with the LXR agonist was greater for apoA-I (4.25-fold) than for apoE (2.22-fold). Furthermore, the increase in the CEC of apoE-containing HDL induced by the LXR agonist was significantly reduced by treatment with glyburide, an inhibitor of ATP-binding cassette transporter A1 (ABCA1). These results suggest that apoE-containing HDL, unlike apoE-deficient HDL, is involved in cholesterol efflux via ABCA1.
Collapse
Affiliation(s)
- Yuna Horiuchi
- Department of Analytical Laboratory Chemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Ryunosuke Ohkawa
- Department of Analytical Laboratory Chemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Shao-Jui Lai
- Department of Analytical Laboratory Chemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Azusa Yamazaki
- Department of Analytical Laboratory Chemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Hayato Ikoma
- Clinical Laboratory, Hamamatsu University Hospital, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Kouji Yano
- Center for Genomic and Regenerative Medicine, Graduate School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Takahiro Kameda
- Department of Medical Technology, School of Health Sciences, Tokyo University of Technology, 5-23-22 Nishikamata, Ota-ku, Tokyo 144-8535, Japan
| | - Minoru Tozuka
- Department of Analytical Laboratory Chemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| |
Collapse
|
14
|
Pan H, Zheng Y, Pan Q, Chen H, Chen F, Wu J, Di D. Expression of LXR‑β, ABCA1 and ABCG1 in human triple‑negative breast cancer tissues. Oncol Rep 2019; 42:1869-1877. [PMID: 31432185 PMCID: PMC6775801 DOI: 10.3892/or.2019.7279] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 07/09/2019] [Indexed: 12/26/2022] Open
Abstract
Previous studies have reported that liver X receptor (LXR), ATP-binding cassette sub-family G number 1 (ABCG1) and ATP-binding cassette transporter number 1 (ABCA1), which are associated with cholesterol metabolism, may be associated with the development and progression of breast cancer. The expression levels of LXR-β, ABCA1 and ABCG1 in triple-negative breast cancer (TNBC) tissues and in non-cancerous mammary tissues were observed by immunohistochemistry, quantum dot-based immunohistochemistry, western blot analysis and reverse transcription-quantitative polymerase chain reaction. The present study identified that the expression of ABCA1 in TNBC tissues was higher than that in non-cancerous mammary tissues. A high expression of ABCA1 in the TNBC tissues was significantly associated with the histological grade. However, no significant differences were identified between the expression levels of LXR-β and ABCG1 in the TNBC tissues compared with the non-cancerous mammary tissues. Therefore, the findings of this study suggest that ABCA1 is a specific marker for TNBC.
Collapse
Affiliation(s)
- Hailing Pan
- Department of Medical Oncology, Taizhou Integrated Chinese and Western Medicine Hospital, Zhejiang University of Traditional Chinese Medicine, Wenling, Zhejiang 317500, P.R. China
| | - Yue Zheng
- Department of Radiology, Traditional Chinese Medical Hospital of Wenling, Wenling, Zhejiang 317500, P.R. China
| | - Qi Pan
- Department of Thoracosurgery, Traditional Chinese Medical Hospital of Wenling, Wenling, Zhejiang 317500, P.R. China
| | - Honglei Chen
- Department of Pathology, School of Basic Medical Science, Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Fuchun Chen
- Department of Thoracosurgery, Traditional Chinese Medical Hospital of Wenling, Wenling, Zhejiang 317500, P.R. China
| | - Jie Wu
- Department of Pathology, School of Basic Medical Science, Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Dingxin Di
- Department of Pathology, School of Basic Medical Science, Wuhan University, Wuhan, Hubei 430071, P.R. China
| |
Collapse
|
15
|
Cao XJ, Zhang MJ, Zhang LL, Yu K, Xiang Y, Ding X, Fan J, Li JC, Wang QS. TLR4 mediates high-fat diet induced physiological changes in mice via attenuating PPARγ/ABCG1 signaling pathway. Biochem Biophys Res Commun 2018; 503:1356-1363. [DOI: 10.1016/j.bbrc.2018.07.048] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Accepted: 07/10/2018] [Indexed: 12/14/2022]
|
16
|
Bowden KL, Dubland JA, Chan T, Xu YH, Grabowski GA, Du H, Francis GA. LAL (Lysosomal Acid Lipase) Promotes Reverse Cholesterol Transport In Vitro and In Vivo. Arterioscler Thromb Vasc Biol 2018; 38:1191-1201. [PMID: 29599133 DOI: 10.1161/atvbaha.117.310507] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 03/13/2018] [Indexed: 11/16/2022]
Abstract
OBJECTIVE To explore the role of LAL (lysosomal acid lipase) in macrophage cholesterol efflux and whole-body reverse cholesterol transport. APPROACH AND RESULTS Immortalized peritoneal macrophages from lal-/- mice showed reduced expression of ABCA1 (ATP-binding cassette transporter A1) and ABCG1 (ATP-binding cassette transporter G1), reduced production of the regulatory oxysterol 27-hydroxycholesterol, and impaired suppression of cholesterol synthesis on exposure to acetylated low-density lipoprotein when compared with lal+/+ macrophages. LAL-deficient mice also showed reduced hepatic ABCG5 (ATP-binding cassette transporter G5) and ABCG8 (ATP-binding cassette transporter G8) expression compared with lal+/+ mice. LAL-deficient macrophages loaded with [3H]-cholesteryl oleate-labeled acetylated low-density lipoprotein showed impaired efflux of released [3H]-cholesterol to apoA-I (apolipoprotein A-I), with normalization of [3H]-cholesteryl ester levels and partial correction of ABCA1 expression and cholesterol efflux to apoA-I when treated with exogenous rhLAL (recombinant human LAL protein). LAL-deficient mice injected intraperitoneally with lal-/- macrophages cholesterol loaded and labeled in the same way exhibited only 1.55±0.35% total injected [3H]-cholesterol counts appearing in the feces for 48 h (n=30), compared with 5.38±0.92% in lal+/+ mice injected with labeled lal+/+ macrophages (n=27), P<0.001. To mimic the therapeutic condition of delivery of supplemental LAL in vivo, injection of labeled lal-/- macrophages into lal+/+ mice resulted in a significant increase in reverse cholesterol transport (2.60±0.46% of 3H-cholesterol counts in feces at 48 hours [n=19]; P<0.001 when compared with injection into lal-/- mice). CONCLUSIONS These results indicate a critical role for LAL in promoting both macrophage and whole-body reverse cholesterol transport and the ability of supplemental LAL to be taken up and correct reverse cholesterol transport in vivo.
Collapse
Affiliation(s)
- Kristin L Bowden
- From the Department of Medicine, Centre for Heart Lung Innovation, Institute for Heart + Lung Health, Providence Health Care Research Institute at St. Paul's Hospital, University of British Columbia, Vancouver, Canada (K.L.B., J.A.D., T.C., G.A.F.)
| | - Joshua A Dubland
- From the Department of Medicine, Centre for Heart Lung Innovation, Institute for Heart + Lung Health, Providence Health Care Research Institute at St. Paul's Hospital, University of British Columbia, Vancouver, Canada (K.L.B., J.A.D., T.C., G.A.F.)
| | - Teddy Chan
- From the Department of Medicine, Centre for Heart Lung Innovation, Institute for Heart + Lung Health, Providence Health Care Research Institute at St. Paul's Hospital, University of British Columbia, Vancouver, Canada (K.L.B., J.A.D., T.C., G.A.F.)
| | - You-Hai Xu
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, OH (Y.-H.X., G.A.G.).,Division of Human Genetics, Cincinnati Children's Hospital Medical Center, OH (Y.-H.X., G.A.G.)
| | - Gregory A Grabowski
- From the Department of Medicine, Centre for Heart Lung Innovation, Institute for Heart + Lung Health, Providence Health Care Research Institute at St. Paul's Hospital, University of British Columbia, Vancouver, Canada (K.L.B., J.A.D., T.C., G.A.F.).,Division of Human Genetics, Cincinnati Children's Hospital Medical Center, OH (Y.-H.X., G.A.G.).,Department of Pediatrics, University of Cincinnati College of Medicine, OH (Y.-H.X., G.A.G.)
| | - Hong Du
- Department of Pathology and Laboratory Medicine, Indiana University, Indianapolis (H.D.)
| | - Gordon A Francis
- From the Department of Medicine, Centre for Heart Lung Innovation, Institute for Heart + Lung Health, Providence Health Care Research Institute at St. Paul's Hospital, University of British Columbia, Vancouver, Canada (K.L.B., J.A.D., T.C., G.A.F.)
| |
Collapse
|
17
|
Lipid testing in infectious diseases: possible role in diagnosis and prognosis. Infection 2017; 45:575-588. [PMID: 28484991 DOI: 10.1007/s15010-017-1022-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 05/04/2017] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Acute infections lead to significant alterations in metabolic regulation including lipids and lipoproteins, which play a central role in the host immune response. In this regard, several studies have investigated the role of lipid levels as a marker of infection severity and prognosis. SCOPE OF REVIEW We review here the role of lipids in immune response and the potential mechanisms underneath. Moreover, we summarize studies on lipid and lipoprotein alterations in acute bacterial, viral and parasitic infections as well as their diagnostic and prognostic significance. Chronic infections (HIV, HBV, HCV) are also considered. RESULTS All lipid parameters have been found to be significantly dearranged during acute infection. Common lipid alterations in this setting include a decrease of total cholesterol levels and an increase in the concentration of triglyceride-rich lipoproteins, mainly very low-density lipoproteins. Also, low-density lipoprotein cholesterol, apolipoprotein A1, low-density lipoprotein cholesterol and apolipoprotein-B levels decrease. These lipid alterations may have prognostic and diagnostic role in certain infections. CONCLUSION Lipid testing may be of help to assess response to treatment in septic patients and those with various acute infections (such as pneumonia, leptospirosis and others). Diagnostically, new onset of altered lipid levels should prompt the clinician to test for underlying infection (such as leishmaniasis).
Collapse
|
18
|
Salama H, Medhat E, Shaheen M, Zekri ARN, Darwish T, Ghoneum M. Arabinoxylan rice bran (Biobran) suppresses the viremia level in patients with chronic HCV infection: A randomized trial. Int J Immunopathol Pharmacol 2016; 29:647-653. [PMID: 27799299 PMCID: PMC5806823 DOI: 10.1177/0394632016674954] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 09/27/2016] [Indexed: 11/16/2022] Open
Abstract
Current treatments for Hepatitis C virus (HCV) have severe side effects and are very expensive. There is a need to explore effective natural therapies against HCV that are less toxic and more cost-effective. In the current study, 37 chronic HCV patients were randomized into two groups and treated with either pegylated interferon (PEG IFN) plus ribavirin (n = 21) or Biobran, an arabinoxylan from rice bran (1 g/day) (n = 16). We examined viremia, liver enzymes, interferon-γ (IFN-γ) levels in serum, and toxicity before and three months after treatment. Both groups showed a significant and similar reduction in viral load after three months of treatment relative to the baseline viral load (P <0.05). In addition, treatment with Biobran resulted in a significant increase in the level of IFN-γ (P <0.001). Patients in the PEG IFN plus ribavirin group showed fever, anemia, thrombocytopenia, and easy fatigue. Patients in the Biobran group showed no side effects and reported good health. We conclude that Biobran is a potential novel therapeutic regimen that has a similar effect to PEG IFN plus ribavirin and is safe and cost-effective in the treatment of chronic HCV. Our finding of Biobran's efficacy against HCV infection warrants further investigation in multiple clinical trials (Clinical Trials Registration: NCT02690103).
Collapse
Affiliation(s)
- Hosny Salama
- Tropical Medicine Department, Cairo University, Cairo, Egypt
| | - Eman Medhat
- Tropical Medicine Department, Cairo University, Cairo, Egypt
| | - Magda Shaheen
- Charles R Drew University of Medicine and Science, Department of Internal Medicine, Los Angeles, CA, USA
| | | | - Tarneem Darwish
- Biostatistics and Bioinformatics Department, Cairo University, Cairo, Egypt
| | - Mamdooh Ghoneum
- Charles R Drew University of Medicine and Science, Department of Otolaryngology, Los Angeles, CA, USA
| |
Collapse
|
19
|
Cao X, Zhang L, Chen C, Wang Q, Guo L, Ma Q, Deng P, Zhu G, Li B, Pi Y, Long C, Zhang L, Yu Z, Zhou Z, Li J. The critical role of ABCG1 and PPARγ/LXRα signaling in TLR4 mediates inflammatory responses and lipid accumulation in vascular smooth muscle cells. Cell Tissue Res 2016; 368:145-157. [DOI: 10.1007/s00441-016-2518-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 09/27/2016] [Indexed: 12/15/2022]
|
20
|
Liu F, Wang Y, Xu J, Liu F, Hu R, Deng H. Effects of Porphyromonas gingivalis lipopolysaccharide on the expression of key genes involved in cholesterol metabolism in macrophages. Arch Med Sci 2016; 12:959-967. [PMID: 27695485 PMCID: PMC5016584 DOI: 10.5114/aoms.2016.61909] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Accepted: 06/27/2014] [Indexed: 12/01/2022] Open
Abstract
INTRODUCTION Cardiovascular diseases are positively correlated with periodontal disease. However, the molecular mechanisms linking atherosclerosis and periodontal infection are not clear. This study aimed to determine whether Porphyromonas gingivalis lipopolysaccharide (Pg-LPS) altered the expression of genes regulating cholesterol metabolism in macrophages in the presence of low-density lipoprotein (LDL). MATERIAL AND METHODS THP-1-derived macrophages were exposed to different concentrations (0.1, 1, 10 µg/ml) of LPS in the presence of 50 µg/ml native LDL. Macrophages were also incubated with 1 µg/ml LPS for varying times (0, 24, 48, or 72 h) in the presence of native LDL. Foam cell formation was determined by oil red O staining and cholesterol content quantification. CD36, lectin-like oxidized LDL receptor-1 (LOX-1), ATP-binding cassette G1 (ABCG1), and acetyl CoA acyltransferase 1 (ACAT1) expression levels were measured by western blot and qRT-PCR. RESULTS Foam cell formation was induced in a time- and concentration-dependent manner as assessed by both morphological and biochemical criteria. Pg-LPS caused downregulation of CD36 and ABCG1 but upregulation of ACAT1, while LOX-1 expression was not affected (p = 0.137). CONCLUSIONS Pg-LPS appears to be an important link in the development of atherosclerosis by mechanisms targeting cholesterol homeostasis, namely, excess cholesterol ester formation via ACAT1 and reduced cellular cholesterol efflux via ABCG1.
Collapse
Affiliation(s)
- Fen Liu
- Department of Histology and Embryology, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yi Wang
- Department of Orthodontics, School of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jing Xu
- Department of Periodontics, School of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Fangqiang Liu
- Department of Periodontics, School of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Rongdang Hu
- Department of Orthodontics, School of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Hui Deng
- Department of Periodontics, School of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
21
|
Abstract
PURPOSE OF REVIEW Studies have shown that chronic inflammatory disorders, such as rheumatoid arthritis, systemic lupus erythematosus, and psoriasis are associated with an increased risk of atherosclerotic cardiovascular disease. The mechanism by which inflammation increases cardiovascular disease is likely multifactorial but changes in HDL structure and function that occur during inflammation could play a role. RECENT FINDINGS HDL levels decrease with inflammation and there are marked changes in HDL-associated proteins. Serum amyloid A markedly increases whereas apolipoprotein A-I, lecithin:cholesterol acyltransferase, cholesterol ester transfer protein, paraoxonase 1, and apolipoprotein M decrease. The exact mechanism by which inflammation decreases HDL levels is not defined but decreases in apolipoprotein A-I production, increases in serum amyloid A, increases in endothelial lipase and secretory phospholipase A2 activity, and decreases in lecithin:cholesterol acyltransferase activity could all contribute. The changes in HDL induced by inflammation reduce the ability of HDL to participate in reverse cholesterol transport and protect LDL from oxidation. SUMMARY During inflammation multiple changes in HDL structure occur leading to alterations in HDL function. In the short term, these changes may be beneficial resulting in an increase in cholesterol in peripheral cells to improve host defense and repair but over the long term these changes may increase the risk of atherosclerosis.
Collapse
Affiliation(s)
- Kenneth R Feingold
- Metabolism Section, Department of Veterans Affairs Medical Center, University of California San Francisco, San Francisco, California, USA
| | | |
Collapse
|
22
|
Lai L, Azzam KM, Lin WC, Rai P, Lowe JM, Gabor KA, Madenspacher JH, Aloor JJ, Parks JS, Näär AM, Fessler MB. MicroRNA-33 Regulates the Innate Immune Response via ATP Binding Cassette Transporter-mediated Remodeling of Membrane Microdomains. J Biol Chem 2016; 291:19651-60. [PMID: 27471270 DOI: 10.1074/jbc.m116.723056] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Indexed: 01/07/2023] Open
Abstract
MicroRNAs (miRNAs) are short non-coding RNAs that regulate gene expression by promoting degradation and/or repressing translation of specific target mRNAs. Several miRNAs have been identified that regulate the amplitude of the innate immune response by directly targeting Toll-like receptor (TLR) pathway members and/or cytokines. miR-33a and miR-33b (the latter present in primates but absent in rodents and lower species) are located in introns of the sterol regulatory element-binding protein (SREBP)-encoding genes and control cholesterol/lipid homeostasis in concert with their host gene products. These miRNAs regulate macrophage cholesterol by targeting the lipid efflux transporters ATP binding cassette (ABC)A1 and ABCG1. We and others have previously reported that Abca1(-/-) and Abcg1(-/-) macrophages have increased TLR proinflammatory responses due to augmented lipid raft cholesterol. Given this, we hypothesized that miR-33 would augment TLR signaling in macrophages via a raft cholesterol-dependent mechanism. Herein, we report that multiple TLR ligands down-regulate miR-33 in murine macrophages. In the case of lipopolysaccharide, this is a delayed, Toll/interleukin-1 receptor (TIR) domain-containing adapter-inducing interferon-β-dependent response that also down-regulates Srebf-2, the host gene for miR-33. miR-33 augments macrophage lipid rafts and enhances proinflammatory cytokine induction and NF-κB activation by LPS. This occurs through an ABCA1- and ABCG1-dependent mechanism and is reversible by interventions upon raft cholesterol and by ABC transporter-inducing liver X receptor agonists. Taken together, these findings extend the purview of miR-33, identifying it as an indirect regulator of innate immunity that mediates bidirectional cross-talk between lipid homeostasis and inflammation.
Collapse
Affiliation(s)
- Lihua Lai
- From the Immunity, Inflammation and Disease Laboratory, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709
| | - Kathleen M Azzam
- From the Immunity, Inflammation and Disease Laboratory, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709
| | - Wan-Chi Lin
- From the Immunity, Inflammation and Disease Laboratory, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709
| | - Prashant Rai
- From the Immunity, Inflammation and Disease Laboratory, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709
| | - Julie M Lowe
- From the Immunity, Inflammation and Disease Laboratory, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709
| | - Kristin A Gabor
- From the Immunity, Inflammation and Disease Laboratory, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709
| | - Jennifer H Madenspacher
- From the Immunity, Inflammation and Disease Laboratory, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709
| | - Jim J Aloor
- From the Immunity, Inflammation and Disease Laboratory, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709
| | - John S Parks
- Section on Molecular Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157
| | - Anders M Näär
- Massachusetts General Hospital Cancer Center, Charlestown, Massachusetts 02129, and Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115
| | - Michael B Fessler
- From the Immunity, Inflammation and Disease Laboratory, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709,
| |
Collapse
|
23
|
PPARγ Agonists Attenuate Palmitate-Induced ER Stress through Up-Regulation of SCD-1 in Macrophages. PLoS One 2015; 10:e0128546. [PMID: 26061913 PMCID: PMC4464548 DOI: 10.1371/journal.pone.0128546] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Accepted: 04/28/2015] [Indexed: 12/18/2022] Open
Abstract
Background Clinical trials have shown that treatment of patients with type 2 diabetes with pioglitazone, a peroxisome proliferator-activated receptor (PPAR)γ agonist, reduces cardiovascular events. However, the effect of PPARγ agonists on endoplasmic reticulum (ER) stress that plays an important role in the progression of atherosclerosis has not been determined. We sought to determine the effect of PPARγ agonists on ER stress induced by palmitate, the most abundant saturated fatty acid in the serum. Methods and Results Protein expression of ER stress marker was evaluated by Western blot analysis and stearoyl-CoA desaturase1 (SCD-1) mRNA expression was evaluated by qRT-PCR. Macrophage apoptosis was detected by flowcytometry. Pioglitazone and rosiglitazone reduced palmitate-induced phosphorylation of PERK, a marker of ER stress, in RAW264.7, a murine macrophage cell line. Pioglitazone also suppressed palmitate-induced apoptosis in association with inhibition of CHOP expression, JNK phosphorylation and cleavage of caspase-3. These effects of pioglitazone were reversed by GW9662, a PPARγ antagonist, indicating that PPARγ is involved in this process. PPARγ agonists increased expression of SCD-1 that introduces a double bond on the acyl chain of long-chain fatty acid. 4-(2-Chlorophenoxy)-N-(3-(3-methylcarbamoyl)phenyl)piperidine-1-carboxamide, an inhibitor of SCD-1, abolished the anti-ER stress and anti-apoptotic effects of pioglitazone. These results suggest that PPARγ agonists attenuate palmitate-induced ER stress and apoptosis through SCD-1 induction. Up-regulation of SCD-1 may contribute to the reduction of cardiovascular events by treatment with PPARγ agonists.
Collapse
|
24
|
Polyphenol-rich blackcurrant extract exerts hypocholesterolaemic and hypoglycaemic effects in mice fed a diet containing high fat and cholesterol. Br J Nutr 2015; 113:1697-703. [PMID: 25899149 DOI: 10.1017/s0007114515001105] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Obesity is associated with an increased risk of metabolic abnormalities, such as hyperlipidaemia and hyperglycaemia. We investigated whether polyphenol-rich blackcurrant extract (BCE) can prevent high fat/high cholesterol (HF/HC) diet-induced metabolic disturbances in mice. Male C57BL/6J mice were fed a modified AIN-93M diet containing HF/HC (16% fat, 0·25% cholesterol, w/w) or the same diet supplemented with 0·1% BCE (w/w) for 12 weeks. There were no differences in total body weight and liver weight between groups. Plasma total cholesterol (TC) and glucose levels were significantly lower in BCE group than in controls, while plasma TAG levels were not significantly different. There was a decreasing trend in hepatic TAG levels, and histological evaluation of steatosis grade was markedly lower in the livers of mice fed BCE. Although the mRNA levels of major regulators of hepatic cholesterol metabolism, i.e. 3-hydroxy-3-methyl-glutaryl-CoA reductase (HMGR) and LDL receptor (LDLR), were not significantly altered by BCE supplementation, protein expression of mature sterol-regulatory element-binding protein and LDLR was significantly increased with no change in HMGR protein. The expression of proprotein convertase subtilisin/kexin type 9 that facilitates LDLR protein degradation, as well as one of its transcriptional regulators, i.e. hepatocyte nuclear factor 4α, was significantly decreased in the livers of mice fed BCE. Taken together, BCE supplementation decreased plasma TC and glucose, and inhibited liver steatosis, suggesting that this berry may be consumed to prevent metabolic dysfunctions induced by diets high in fat and cholesterol.
Collapse
|
25
|
Involvement of lipid droplets in hepatic responses to lipopolysaccharide treatment in mice. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1831:1357-67. [DOI: 10.1016/j.bbalip.2013.04.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 04/05/2013] [Accepted: 04/30/2013] [Indexed: 01/07/2023]
|
26
|
Etebari K, Hussain M, Asgari S. Suppression of scavenger receptors transcription by parasitoid factors. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2012; 38:517-524. [PMID: 23000265 DOI: 10.1016/j.dci.2012.08.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 08/28/2012] [Accepted: 08/28/2012] [Indexed: 06/01/2023]
Abstract
Scavenger receptors (SR) are a group of membrane proteins that play central roles in various functions, such as immune responses in insects. Members of different SR classes were identified from Plutella xylostella larval transcriptome. SR B1 and B3 were found to be differentially expressed in larvae and pupae. Expression of P. xylostella SR genes was significantly altered during immune challenge induced in P. xylostella cells (Px) and parasitized larvae. Maternal factors injected into the larvae by the endoparasitoid wasp Diadegma semiclausum at oviposition include venom and ichnovirus (DsIV) genes to suppress the host immune system. Transient expression of two DsIV genes, Vankyrin1 and Repeat element 4 (Rep4), in Px cells led to significant down-regulation of both SR B1 and B3 transcript levels, while DsIV Rep4 expression did not change the relative transcription levels of SR B3. In conclusion, it appears that the two members of the SR family play important roles in innate immune responses in P. xylostella and that each member of this group may play different roles in the host-parasitoid interaction.
Collapse
Affiliation(s)
- Kayvan Etebari
- School of Biological Sciences, The University of Queensland, St. Lucia, Australia
| | | | | |
Collapse
|