1
|
Dickson KB, Stadnyk AW, Zhou J, Lehmann C. Mucosal Immunity: Lessons from the Lower Respiratory and Small Intestinal Epithelia. Biomedicines 2025; 13:1052. [PMID: 40426880 PMCID: PMC12108762 DOI: 10.3390/biomedicines13051052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Revised: 04/23/2025] [Accepted: 04/24/2025] [Indexed: 05/29/2025] Open
Abstract
Mucosal epithelia represent a diverse group of tissues that function as a barrier against the external environment and exert a wide variety of tissue-specific secondary functions. This review focuses on the lower respiratory tract and small intestinal epithelia, which serve as two distinct sites within the body with respect to their physiological functions. This review provides an overview of their physiology, including both physiological and mechanical defense systems, and their immune responses, which allow both tissues to tolerate commensal organisms while mounting a response against potential pathogens. By highlighting the commonalities and differences across the two tissue types, opportunities to learn from these tissues emerge, which can inform the development of novel therapeutic strategies that harness the unique properties of mucosal epithelia.
Collapse
Affiliation(s)
- Kayle B. Dickson
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H 4R2, Canada; (K.B.D.); (A.W.S.)
| | - Andrew W. Stadnyk
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H 4R2, Canada; (K.B.D.); (A.W.S.)
- Department of Pediatrics, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Juan Zhou
- Department of Anesthesiology, Pain Management and Perioperative Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada;
| | - Christian Lehmann
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H 4R2, Canada; (K.B.D.); (A.W.S.)
- Department of Anesthesiology, Pain Management and Perioperative Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada;
- Department of Pharmacology, Dalhousie University, Halifax, NS B3H 4R2, Canada
- Department of Physiology and Biophysics, Dalhousie University, Halifax, NS B3H 4R2, Canada
| |
Collapse
|
2
|
Ashtiwi NM, Kim SO, Chandler JD, Rada B. The therapeutic potential of thiocyanate and hypothiocyanous acid against pulmonary infections. Free Radic Biol Med 2024; 219:104-111. [PMID: 38608822 PMCID: PMC11088529 DOI: 10.1016/j.freeradbiomed.2024.04.217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 03/18/2024] [Accepted: 04/09/2024] [Indexed: 04/14/2024]
Abstract
Hypothiocyanous acid (HOSCN) is an endogenous oxidant produced by peroxidase oxidation of thiocyanate (SCN-), an ubiquitous sulfur-containing pseudohalide synthesized from cyanide. HOSCN serves as a potent microbicidal agent against pathogenic bacteria, viruses, and fungi, functioning through thiol-targeting mechanisms, independent of currently approved antimicrobials. Additionally, SCN- reacts with hypochlorous acid (HOCl), a highly reactive oxidant produced by myeloperoxidase (MPO) at sites of inflammation, also producing HOSCN. This imparts both antioxidant and antimicrobial potential to SCN-. In this review, we discuss roles of HOSCN/SCN- in immunity and potential therapeutic implications for combating infections.
Collapse
Affiliation(s)
- Nuha Milad Ashtiwi
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Susan O Kim
- Pediatrics, Division of Pulmonary, Allergy & Immunology, Cystic Fibrosis, and Sleep Medicine, Emory University, Atlanta, GA, USA
| | - Joshua D Chandler
- Pediatrics, Division of Pulmonary, Allergy & Immunology, Cystic Fibrosis, and Sleep Medicine, Emory University, Atlanta, GA, USA; Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Balázs Rada
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA.
| |
Collapse
|
3
|
Gupta T, Sarr D, Fantone K, Ashtiwi NM, Sakamoto K, Quinn FD, Rada B. Dual oxidase 1 is dispensable during Mycobacterium tuberculosis infection in mice. Front Immunol 2023; 14:1044703. [PMID: 36936954 PMCID: PMC10020924 DOI: 10.3389/fimmu.2023.1044703] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 02/16/2023] [Indexed: 03/06/2023] Open
Abstract
Introduction Mycobacterium tuberculosis (Mtb) is the primary cause of human tuberculosis (TB) and is currently the second most common cause of death due to a singleinfectious agent. The first line of defense against airborne pathogens, including Mtb, is the respiratory epithelium. One of the innate defenses used by respiratory epithelial cells to prevent microbial infection is an oxidative antimicrobial system consisting of the proteins, lactoperoxidase (LPO) and Dual oxidase 1 (Duox1), the thiocyanate anion (SCN-) and hydrogen peroxide (H2O2), which together lead to the generation of antimicrobial hypothiocyanite (OSCN-) in the airway lumen. OSCN- kills bacteria and viruses in vitro, but the role of this Duox1-based system in bacterial infections in vivo remains largely unknown. The goal of this study was to assess whether Duox1 contributes to the immune response against the unique respiratory pathogen, Mtb. Methods Duox1-deficient (Duox1 KO) and wild-type (WT) mice were infected with Mtb aerosols and bacterial titers, lung pathology, cytokines and immune cell recruitment were assessed. Results and discussion Mtb titers in the lung, spleen and liver were not different 30 days after infection between WT and Duox1 KO mice. Duox1 did not affect lung histology assessed at days 0, 30, and 90 post-Mtb infection. Mtb-infected Duox1 KO animals exhibited enhanced production of certain cytokines and chemokines in the airway; however, this response was not associated with significantly higher numbers of macrophages or neutrophils in the lung. B cell numbers were lower, while apoptosis was higher in the pulmonary lesions of Mtb-infected Duox1 KO mice compared to infected WT animals. Taken together, these data demonstrate that while Duox1 might influence leukocyte recruitment to inflammatory cell aggregates, Duox1 is dispensable for the overall clinical course of Mtb lung infection in a mouse model.
Collapse
Affiliation(s)
- Tuhina Gupta
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Demba Sarr
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Kayla Fantone
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Nuha Milad Ashtiwi
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Kaori Sakamoto
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Frederick D. Quinn
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Balázs Rada
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| |
Collapse
|
4
|
Supporting the Aspecific Physiological Defenses of Upper Airways against Emerging SARS-CoV-2 Variants. Pathogens 2023; 12:pathogens12020211. [PMID: 36839483 PMCID: PMC9964793 DOI: 10.3390/pathogens12020211] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 01/23/2023] [Accepted: 01/27/2023] [Indexed: 02/03/2023] Open
Abstract
The rapid rollout of COVID-19 vaccines in 2021 sparked general optimism toward controlling the severe form of the disease, preventing hospitalizations and COVID-19-associated mortality, and the transmissibility of SARS-CoV-2 infection [...].
Collapse
|
5
|
Ashtiwi NM, Sarr D, Nagy T, Reneer ZB, Tripp RA, Rada B. The Hypothiocyanite and Amantadine Combination Treatment Prevents Lethal Influenza A Virus Infection in Mice. Front Immunol 2022; 13:859033. [PMID: 35663985 PMCID: PMC9159274 DOI: 10.3389/fimmu.2022.859033] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 04/12/2022] [Indexed: 11/21/2022] Open
Abstract
The influenza virus has a large clinical burden and is associated with significant mortality and morbidity. The development of effective drugs for the treatment or prevention of influenza is important in order to reduce its impact. Adamantanes and neuraminidase inhibitors are two classes of anti-influenza drugs in which resistance has developed; thus, there is an urgent need to explore new therapeutic options. Boosting antiviral innate immune mechanisms in the airways represents an attractive approach. Hypothiocyanite (OSCN-) is produced by the airway epithelium and is effective in reducing the replication of several influenza A virus strains in vitro. It remains, however, largely unexplored whether OSCN- has such an antiviral effect in vivo. Here we determined the therapeutic potential of OSCN-, alone or in combination with amantadine (AMT), in preventing lethal influenza A virus replication in mice and in vitro. Mice intranasally infected with a lethal dose of A/Puerto Rico/8/1934 (H1N1) or A/Hong Kong/8/1968 (H3N2) were cured by the combination treatment of OSCN- and AMT. Monotherapy with OSCN- or AMT alone did not substantially improve survival outcomes. However, AMT+OSCN- treatment significantly inhibited viral replication, and in vitro treatment inhibited viral entry and nuclear transport of different influenza A virus strains (H1N1 and H3N2) including the AMT-resistant strain A/WSN/33 (H1N1). A triple combination treatment consisting of AMT, oseltamivir, and OSCN- was also tested and further inhibited in vitro viral replication of the AMT-resistant A/WSN/33 strain. These results suggest that OSCN- is a promising anti-influenza treatment option when combined with other antiviral drugs.
Collapse
Affiliation(s)
- Nuha Milad Ashtiwi
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Demba Sarr
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Tamás Nagy
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Z. Beau Reneer
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Ralph A. Tripp
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Balázs Rada
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| |
Collapse
|
6
|
Microbicidal Activity of Hypothiocyanite against Pneumococcus. Antibiotics (Basel) 2021; 10:antibiotics10111313. [PMID: 34827251 PMCID: PMC8614991 DOI: 10.3390/antibiotics10111313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/21/2021] [Accepted: 10/26/2021] [Indexed: 11/17/2022] Open
Abstract
Infections caused by Streptococcus pneumoniae (pneumococcus, Spn) manifest in several forms such as pneumonia, meningitis, sinusitis or otitis media and are associated with severe morbidity and mortality worldwide. While current vaccines and antibiotics are available to treat Spn infections, the rise of antibiotic resistance and limitations of the vaccines to only certain Spn serotypes urge the development of novel treatments against Spn. Hypothiocyanite (OSCN-) is a natural antimicrobial product produced by the body's own innate immune system to fight a variety of pathogens. We recently showed that OSCN- is also capable of killing Spn in vitro. OSCN- is an oxidative agent attacking microbes in a nonspecific manner, is safe for the host and also has anti-inflammatory effects that make it an ideal candidate to treat a variety of infections in humans. However, OSCN- has a short life span that makes its use, dosage and administration more problematic. This minireview discusses the antimicrobial mechanism of action of OSCN- against Spn and elaborates on the potential therapeutic use of OSCN- against Spn and other infectious agents, either alone or in combination with other therapeutic approaches.
Collapse
|
7
|
Sarr D, Gingerich AD, Asthiwi NM, Almutairi F, Sautto GA, Ecker J, Nagy T, Kilgore MB, Chandler JD, Ross TM, Tripp RA, Rada B. Dual oxidase 1 promotes antiviral innate immunity. Proc Natl Acad Sci U S A 2021; 118:e2017130118. [PMID: 34168077 PMCID: PMC8256044 DOI: 10.1073/pnas.2017130118] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Indexed: 12/30/2022] Open
Abstract
Dual oxidase 1 (DUOX1) is an NADPH oxidase that is highly expre-ssed in respiratory epithelial cells and produces H2O2 in the airway lumen. While a line of prior in vitro observations suggested that DUOX1 works in partnership with an airway peroxidase, lactoperoxidase (LPO), to produce antimicrobial hypothiocyanite (OSCN-) in the airways, the in vivo role of DUOX1 in mammalian organisms has remained unproven to date. Here, we show that Duox1 promotes antiviral innate immunity in vivo. Upon influenza airway challenge, Duox1-/- mice have enhanced mortality, morbidity, and impaired lung viral clearance. Duox1 increases the airway levels of several cytokines (IL-1β, IL-2, CCL1, CCL3, CCL11, CCL19, CCL20, CCL27, CXCL5, and CXCL11), contributes to innate immune cell recruitment, and affects epithelial apoptosis in the airways. In primary human tracheobronchial epithelial cells, OSCN- is generated by LPO using DUOX1-derived H2O2 and inactivates several influenza strains in vitro. We also show that OSCN- diminishes influenza replication and viral RNA synthesis in infected host cells that is inhibited by the H2O2 scavenger catalase. Binding of the influenza virus to host cells and viral entry are both reduced by OSCN- in an H2O2-dependent manner in vitro. OSCN- does not affect the neuraminidase activity or morphology of the influenza virus. Overall, this antiviral function of Duox1 identifies an in vivo role of this gene, defines the steps in the infection cycle targeted by OSCN-, and proposes that boosting this mechanism in vivo can have therapeutic potential in treating viral infections.
Collapse
Affiliation(s)
- Demba Sarr
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602
| | - Aaron D Gingerich
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602
| | - Nuha Milad Asthiwi
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602
| | - Faris Almutairi
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA 30602
| | - Giuseppe A Sautto
- Center for Vaccines and Immunology, University of Georgia, Athens, GA 30602
| | - Jeffrey Ecker
- Center for Vaccines and Immunology, University of Georgia, Athens, GA 30602
| | - Tamás Nagy
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602
| | - Matthew B Kilgore
- Department of Pediatrics, Division of Pulmonary, Allergy and Immunology, Cystic Fibrosis, and Sleep Medicine, Emory University School of Medicine, Atlanta, GA 30322
- Center for Cystic Fibrosis and Airways Disease Research, Children's Healthcare of Atlanta, Atlanta, GA 30322
| | - Joshua D Chandler
- Department of Pediatrics, Division of Pulmonary, Allergy and Immunology, Cystic Fibrosis, and Sleep Medicine, Emory University School of Medicine, Atlanta, GA 30322
- Center for Cystic Fibrosis and Airways Disease Research, Children's Healthcare of Atlanta, Atlanta, GA 30322
| | - Ted M Ross
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602
- Center for Vaccines and Immunology, University of Georgia, Athens, GA 30602
| | - Ralph A Tripp
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602
| | - Balázs Rada
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602;
| |
Collapse
|
8
|
Cegolon L, Mirandola M, Salaris C, Salvati MV, Mastrangelo G, Salata C. Hypothiocyanite and Hypothiocyanite/Lactoferrin Mixture Exhibit Virucidal Activity In Vitro against SARS-CoV-2. Pathogens 2021; 10:pathogens10020233. [PMID: 33669635 PMCID: PMC7922920 DOI: 10.3390/pathogens10020233] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 12/18/2022] Open
Abstract
SARS-CoV-2 replicates efficiently in the upper airways during the prodromal stage, resulting in environmental viral shedding from patients with active COVID-19 as well as from asymptomatic individuals. There is a need to find pharmacological interventions to mitigate the spread of COVID-19. Hypothiocyanite and lactoferrin are molecules of the innate immune system with a large spectrum cidal activity. The Food and Drug Administration and the European Medicines Agency designated the hypothiocyanite and lactoferrin combination as an orphan drug. We report an in vitro study showing that micromolar concentrations of hypothiocyanite exhibit dose- and time-dependent virucidal activity against SARS-CoV-2 and that the latter is slightly enhanced by the simultaneous presence of lactoferrin.
Collapse
Affiliation(s)
- Luca Cegolon
- Public Health Department, Local Health Unit N.2 “Marca Trevigiana”, 31100 Treviso, Italy
- Correspondence: (L.C.); (C.S.); Tel.: +39-(0)4-9827-2364 (L.C. & C.S.); Fax: +39-(0)4-9827-2355 (L.C. & C.S.)
| | - Mattia Mirandola
- Department of Molecular Medicine, University of Padova, 35121 Padova, Italy; (M.M.); (C.S.); (M.V.S.)
| | - Claudio Salaris
- Department of Molecular Medicine, University of Padova, 35121 Padova, Italy; (M.M.); (C.S.); (M.V.S.)
| | - Maria Vittoria Salvati
- Department of Molecular Medicine, University of Padova, 35121 Padova, Italy; (M.M.); (C.S.); (M.V.S.)
| | - Giuseppe Mastrangelo
- Department of Cardiac, Thoracic, Vascular Sciences & Public Health, University of Padova, 35121 Padova, Italy;
| | - Cristiano Salata
- Department of Molecular Medicine, University of Padova, 35121 Padova, Italy; (M.M.); (C.S.); (M.V.S.)
- Correspondence: (L.C.); (C.S.); Tel.: +39-(0)4-9827-2364 (L.C. & C.S.); Fax: +39-(0)4-9827-2355 (L.C. & C.S.)
| |
Collapse
|
9
|
Al-Shehri SS. Reactive oxygen and nitrogen species and innate immune response. Biochimie 2020; 181:52-64. [PMID: 33278558 DOI: 10.1016/j.biochi.2020.11.022] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 11/21/2020] [Accepted: 11/30/2020] [Indexed: 12/30/2022]
Abstract
The innate immune system is the first line of defense against pathogens and is characterized by its fast but nonspecific response. One important mechanism of this system is the production of the biocidal reactive oxygen and nitrogen species, which are widely distributed within biological systems, including phagocytes and secretions. Reactive oxygen and nitrogen species are short-lived intermediates that are biochemically synthesized by various enzymatic reactions in aerobic organisms and are regulated by antioxidants. The physiological levels of reactive species play important roles in cellular signaling and proliferation. However, higher concentrations and prolonged exposure can fight infections by damaging important microbial biomolecules. One feature of the reactive species generation system is the interaction between its components to produce more biocidal agents. For example, the phagocytic NADPH oxidase complex generates superoxide, which functions as a precursor for antimicrobial hydrogen peroxide synthesis. Peroxide is then used by myeloperoxidase in the same cells to generate hypochlorous acid, a highly microbicidal agent. Studies on animal models and microorganisms have shown that deficiency of these antimicrobial agents is associated with severe recurrent infections and immunocompromised diseases, such as chronic granulomatous disease. There is accumulating evidence that reactive species have important positive aspects on human health and immunity; however, some important promising features of this system remain obscure.
Collapse
Affiliation(s)
- Saad S Al-Shehri
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P. O. Box 11099, Taif, 21944, Saudi Arabia.
| |
Collapse
|
10
|
The Role of Thiocyanate in Modulating Myeloperoxidase Activity during Disease. Int J Mol Sci 2020; 21:ijms21176450. [PMID: 32899436 PMCID: PMC7503669 DOI: 10.3390/ijms21176450] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/31/2020] [Accepted: 09/01/2020] [Indexed: 12/19/2022] Open
Abstract
Thiocyanate (SCN−) is a pseudohalide anion omnipresent across mammals and is particularly concentrated in secretions within the oral cavity, digestive tract and airway. Thiocyanate can outcompete chlorine anions and other halides (F−, Br−, I−) as substrates for myeloperoxidase by undergoing two-electron oxidation with hydrogen peroxide. This forms their respective hypohalous acids (HOX where X− = halides) and in the case of thiocyanate, hypothiocyanous acid (HOSCN), which is also a bactericidal oxidative species involved in the regulation of commensal and pathogenic microflora. Disease may dysregulate redox processes and cause imbalances in the oxidative profile, where typically favoured oxidative species, such as hypochlorous acid (HOCl), result in an overabundance of chlorinated protein residues. As such, the pharmacological capacity of thiocyanate has been recently investigated for its ability to modulate myeloperoxidase activity for HOSCN, a less potent species relative to HOCl, although outcomes vary significantly across different disease models. To date, most studies have focused on therapeutic effects in respiratory and cardiovascular animal models. However, we note other conditions such as rheumatic arthritis where SCN− administration may worsen patient outcomes. Here, we discuss the pathophysiological role of SCN− in diseases where MPO is implicated.
Collapse
|
11
|
Cegolon L, Javanbakht M, Mastrangelo G. Nasal disinfection for the prevention and control of COVID-19: A scoping review on potential chemo-preventive agents. Int J Hyg Environ Health 2020; 230:113605. [PMID: 32898838 PMCID: PMC7434367 DOI: 10.1016/j.ijheh.2020.113605] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 08/11/2020] [Accepted: 08/12/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND Neither pre-exposure nor post-exposure chemo-prophylaxis agents are currently available to prevent COVID-19. On the other hand, high loads of SARS-CoV-2 are shed from the nasal cavity before and after symptoms onset. OBJECTIVE To conduct a scoping review on the available evidence on tolerable nasal disinfectants with encouraging health outcomes against SARS-CoV-2, i.e., agents effective against at least two different viruses beyond SARS-CoV-2. METHODS Online databases were searched to identify papers published during 2010-2020. Publications were selected if they were relevant to the scoping review. The review was narrative, describing for each treatment the mechanism(s) of action, tolerability, in vitro and in vivo evidence of the effects against SARS-CoV-2 and whether the product had been marketed. RESULTS Eight treatments were scrutinized: hypothiocyanite, lactoferrin, N-chlorotaurine, interferon-alpha, povidone-iodine, quaternary ammonium compounds, alcohol-based nasal antiseptics and hydroxychloroquine. In vitro viricidal effect against SARS-CoV-2 was reported for ethanol, alcohol-based hand sanitizers and povidone-iodine. Inhibition of other coronaviruses was described for lactoferrin, ethanol, hydroxychloroquine and quaternary ammonium compound. No treatment has been tested against SARS-CoV-2 in randomized controlled clinical trials thus far. However, interferon-alpha, lactoferrin and hydroxychloroquine were tested in one-arm open label uncontrolled clinical trial. Oxidant activity (hypothiocyanite, N-chlorotaurine and povidone-iodine), enhancement of endocytic and lysosomal pH (quaternary ammonium compounds and hydroxychloroquine) and destruction of the viral capsid (quaternary ammonium compounds, alcohol-based nasal antiseptics) were the main mechanisms of action. Lactoferrin and interferon-alpha have subtle biological mechanisms. With the exception of N-chlorotaurine, all other products available on the market. CONCLUSIONS Effective and safe chemo-prophylactic drugs against SARS-CoV-2 do not exist yet but most eligible candidates are already in the market. Whilst the human nasal cavity is the port of entry for SARS-CoV-2, the mouth is involved as exit site through emission of respiratory droplets. The well-known hand-to-nose-to-hand cycle of contamination requires appropriate additional strategies for infection control. To narrow down the subsequent laboratory and clinical investigations, a case-control approach could be employed to compare the use of candidate drugs among individuals testing positive and negative to COVID-19 swabs.
Collapse
Affiliation(s)
- L Cegolon
- Public Health Department, Local Health Unit N. 2 "Marca Trevigiana", Treviso, Italy; Institute for Maternal & Child Health, IRCCS "Burlo Garofolo", Trieste, Italy.
| | - M Javanbakht
- Nephrology and Urology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - G Mastrangelo
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua, Padua, Italy
| |
Collapse
|
12
|
Gingerich AD, Doja F, Thomason R, Tóth E, Bradshaw JL, Douglass MV, McDaniel LS, Rada B. Oxidative killing of encapsulated and nonencapsulated Streptococcus pneumoniae by lactoperoxidase-generated hypothiocyanite. PLoS One 2020; 15:e0236389. [PMID: 32730276 PMCID: PMC7392276 DOI: 10.1371/journal.pone.0236389] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 07/06/2020] [Indexed: 01/04/2023] Open
Abstract
Streptococcus pneumoniae (Pneumococcus) infections affect millions of people worldwide, cause serious mortality and represent a major economic burden. Despite recent successes due to pneumococcal vaccination and antibiotic use, Pneumococcus remains a significant medical problem. Airway epithelial cells, the primary responders to pneumococcal infection, orchestrate an extracellular antimicrobial system consisting of lactoperoxidase (LPO), thiocyanate anion and hydrogen peroxide (H2O2). LPO oxidizes thiocyanate using H2O2 into the final product hypothiocyanite that has antimicrobial effects against a wide range of microorganisms. However, hypothiocyanite’s effect on Pneumococcus has never been studied. Our aim was to determine whether hypothiocyanite can kill S. pneumoniae. Bactericidal activity was measured in a cell-free in vitro system by determining the number of surviving pneumococci via colony forming units on agar plates, while bacteriostatic activity was assessed by measuring optical density of bacteria in liquid cultures. Our results indicate that hypothiocyanite generated by LPO exerted robust killing of both encapsulated and nonencapsulated pneumococcal strains. Killing of S. pneumoniae by a commercially available hypothiocyanite-generating product was even more pronounced than that achieved with laboratory reagents. Catalase, an H2O2 scavenger, inhibited killing of pneumococcal by hypothiocyanite under all circumstances. Furthermore, the presence of the bacterial capsule or lytA-dependent autolysis had no effect on hypothiocyanite-mediated killing of pneumococci. On the contrary, a pneumococcal mutant deficient in pyruvate oxidase (main bacterial H2O2 source) had enhanced susceptibility to hypothiocyanite compared to its wild-type strain. Overall, results shown here indicate that numerous pneumococcal strains are susceptible to LPO-generated hypothiocyanite.
Collapse
Affiliation(s)
- Aaron D. Gingerich
- Department of Infectious Diseases, College of Veterinary Medicine, The University of Georgia, Athens, Georgia, United States of America
| | - Fayhaa Doja
- Department of Infectious Diseases, College of Veterinary Medicine, The University of Georgia, Athens, Georgia, United States of America
| | - Rachel Thomason
- Department of Infectious Diseases, College of Veterinary Medicine, The University of Georgia, Athens, Georgia, United States of America
| | - Eszter Tóth
- Department of Infectious Diseases, College of Veterinary Medicine, The University of Georgia, Athens, Georgia, United States of America
| | - Jessica L. Bradshaw
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, Mississippi, United States of America
| | - Martin V. Douglass
- Department of Infectious Diseases, College of Veterinary Medicine, The University of Georgia, Athens, Georgia, United States of America
| | - Larry S. McDaniel
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, Mississippi, United States of America
| | - Balázs Rada
- Department of Infectious Diseases, College of Veterinary Medicine, The University of Georgia, Athens, Georgia, United States of America
- * E-mail:
| |
Collapse
|
13
|
Rashid MI, Ali A, Andleeb S. Functional Annotation and Analysis of Dual Oxidase 1 (DUOX1): a Potential Anti-pyocyanin Immune Component. Interdiscip Sci 2018; 11:597-610. [PMID: 30483939 DOI: 10.1007/s12539-018-0308-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 10/24/2018] [Accepted: 10/24/2018] [Indexed: 11/27/2022]
Abstract
Dual Oxidase 1 (DUOX1) is a prominent immune system component primarily expressed in esophagus, lungs, skin, and urinary bladder including others. DUOX1 is involved in lactoperoxidase-mediated innate immunity at mucosal surfaces by generation of antimicrobial hypothiocyanite at the apical surface of epithelial lining. Upon detection of bacterial pathogens mainly Pseudomonas aeruginosa, DUOX1 is activated in bronchial epithelial cells. Both the host and pathogen enter a redox dual with DUOX1 and hypothiocyanite from host and Pyocyanin (PCN) as a redox active virulence factor from P. aeruginosa. The synergy of the both enzymes permanently oxidizes PCN and thus holds the potential to prevent PCN-induced virulence, which otherwise paves the way for establishment of persistent chronic infection. In this study, we structurally and functionally annotated the DUOX1, predicted its 3d structure, physio-chemical properties, post-translational modifications, and genetic polymorphism analysis with subsequent disease-associated single-nucleotide variations and their impact on DUOX1 functionality by employing in silico approaches. DUOX1 holds greater homology with gorilla and chimpanzee than other primates. The localization signal peptide was present at the beginning of the peptide with cleavage site at 22 aa position. Three distinct functional domains were observed based on homology: An_peroxidase, FRQ1, and oxido-reductase domains. Polymorphism analysis revealed > 60 SNPs associated with different cancers with probable damaging effects. No cancer-associated methylated island was observed for DUOX1. Three-dimensional structure was developed via homology modeling strategy. The proper annotation will help in characterization of DUOX1 and enhance our knowledge of its functionality and biological roles.
Collapse
Affiliation(s)
- Muhammad Ibrahim Rashid
- Department of Industrial Biotechnology, Atta ur Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Amjad Ali
- Department of Industrial Biotechnology, Atta ur Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Saadia Andleeb
- Department of Industrial Biotechnology, Atta ur Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan.
| |
Collapse
|
14
|
Nguyen TT, Suzuki S, Sugamata R, Ito F, Tran DH, Yamamoto T, Kawachi S, Suzuki K. Hypothiocyanous Acid Suppresses PolyI:C-Induced Antiviral Responses by Modulating IRF3 Phosphorylation in Human Airway Epithelial Cells. TOHOKU J EXP MED 2018; 245:131-140. [PMID: 29962372 DOI: 10.1620/tjem.245.131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Pattern recognition receptors recognize RNA viruses and trigger type I and III interferon (IFN) production and apoptosis to limit viral replication and spread. Some innate immune cells produce oxidants in response to viral infection to protect against invasion. Recent studies have demonstrated the virucidal activity of hypothiocyanous acid (HOSCN), an oxidant generated by the peroxidase-catalyzed reaction of thiocyanate with hydrogen peroxide. However, the effects of HOSCN on host antiviral responses are still unknown. In this study, we aimed to clarify the role of HOSCN in host antiviral responses against RNA viruses in airway epithelial cells using polyinosinic-polycytidylic acid (polyI:C), a mimic of viral RNA. Our results show that HOSCN repressed antiviral responses in NCI-H292 human airway epithelial cells. HOSCN decreased polyI:C-induced apoptosis and the expression levels of IFNB1, IFNL1, IFNL2 and IFNL3 mRNAs. In addition, the induction of other interferon regulatory factor 3 (IRF3)-dependent genes was also suppressed by HOSCN. Further analyses focused on IRF3 revealed that HOSCN inhibited the phosphorylation of IRF3 at Ser386 and Ser396 as well as its dimerization and nuclear translocation by inhibiting the phosphorylation of TANK-binding kinase 1 (TBK1). Furthermore, HOSCN led to the phosphorylation of IRF3 at residues other than Ser386 and Ser396, implying that HOSCN may cause a conformational change in IRF3 to impair its function. Collectively, these results suggest that HOSCN plays a novel signaling role in the antiviral response, acting as a negative regulator of apoptotic and TBK1-IRF3 signaling pathways and limiting IRF3-dependent gene expression.
Collapse
Affiliation(s)
- Thuy Thu Nguyen
- Department of Health Protection, Graduate School of Medicine, Teikyo University.,Asia International Institute of Infectious Disease Control, Teikyo University
| | - Shoichi Suzuki
- Department of Health Protection, Graduate School of Medicine, Teikyo University.,Asia International Institute of Infectious Disease Control, Teikyo University
| | - Ryuichi Sugamata
- Department of Health Protection, Graduate School of Medicine, Teikyo University.,Asia International Institute of Infectious Disease Control, Teikyo University
| | - Fuyu Ito
- Asia International Institute of Infectious Disease Control, Teikyo University
| | - Dat Huu Tran
- Department of Health Protection, Graduate School of Medicine, Teikyo University.,Asia International Institute of Infectious Disease Control, Teikyo University
| | - Tomoko Yamamoto
- Asia International Institute of Infectious Disease Control, Teikyo University
| | - Shoji Kawachi
- Asia International Institute of Infectious Disease Control, Teikyo University
| | - Kazuo Suzuki
- Department of Health Protection, Graduate School of Medicine, Teikyo University.,Asia International Institute of Infectious Disease Control, Teikyo University
| |
Collapse
|
15
|
Patel U, Gingerich A, Widman L, Sarr D, Tripp RA, Rada B. Susceptibility of influenza viruses to hypothiocyanite and hypoiodite produced by lactoperoxidase in a cell-free system. PLoS One 2018; 13:e0199167. [PMID: 30044776 PMCID: PMC6059396 DOI: 10.1371/journal.pone.0199167] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 06/01/2018] [Indexed: 12/03/2022] Open
Abstract
Lactoperoxidase (LPO) is an enzyme found in several exocrine secretions including the airway surface liquid producing antimicrobial substances from mainly halide and pseudohalide substrates. Although the innate immune function of LPO has been documented against several microbes, a detailed characterization of its mechanism of action against influenza viruses is still missing. Our aim was to study the antiviral effect and substrate specificity of LPO to inactivate influenza viruses using a cell-free experimental system. Inactivation of different influenza virus strains was measured in vitro system containing LPO, its substrates, thiocyanate (SCN-) or iodide (I-), and the hydrogen peroxide (H2O2)-producing system, glucose and glucose oxidase (GO). Physiologically relevant concentrations of the components of the LPO/H2O2/(SCN-/I-) antimicrobial system were exposed to twelve different strains of influenza A and B viruses in vitro and viral inactivation was assessed by determining plaque-forming units of non-inactivated viruses using Madin-Darby canine kidney cells (MDCK) cells. Our data show that LPO is capable of inactivating all influenza virus strains tested: H1N1, H1N2 and H3N2 influenza A viruses (IAV) and influenza B viruses (IBV) of both, Yamagata and Victoria lineages. The extent of viral inactivation, however, varied among the strains and was in part dependent on the LPO substrate. Inactivation of H1N1 and H1N2 viruses by LPO showed no substrate preference, whereas H3N2 influenza strains were inactivated significantly more efficiently when iodide, not thiocyanate, was the LPO substrate. Although LPO-mediated inactivation of the influenza B strains tested was strain-dependent, it showed slight preference towards thiocyanate as the substrate. The results presented here show that the LPO/H2O2/(SCN-/I-) cell-free, in vitro experimental system is a functional tool to study the specificity, efficiency and the molecular mechanism of action of influenza inactivation by LPO. These studies tested the hypothesis that influenza strains are all susceptible to the LPO-based antiviral system but exhibit differences in their substrate specificities. We propose that a LPO-based antiviral system is an important contributor to anti-influenza virus defense of the airways.
Collapse
Affiliation(s)
- Urmi Patel
- University of Georgia, College of Veterinary Medicine, Department of Infectious Diseases, Athens, Georgia, United States of America
| | - Aaron Gingerich
- University of Georgia, College of Veterinary Medicine, Department of Infectious Diseases, Athens, Georgia, United States of America
| | - Lauren Widman
- University of Georgia, College of Veterinary Medicine, Department of Infectious Diseases, Athens, Georgia, United States of America
| | - Demba Sarr
- University of Georgia, College of Veterinary Medicine, Department of Infectious Diseases, Athens, Georgia, United States of America
| | - Ralph A. Tripp
- University of Georgia, College of Veterinary Medicine, Department of Infectious Diseases, Athens, Georgia, United States of America
| | - Balázs Rada
- University of Georgia, College of Veterinary Medicine, Department of Infectious Diseases, Athens, Georgia, United States of America
- * E-mail:
| |
Collapse
|
16
|
Antimicrobial actions of dual oxidases and lactoperoxidase. J Microbiol 2018; 56:373-386. [PMID: 29858825 DOI: 10.1007/s12275-018-7545-1] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 02/16/2018] [Accepted: 02/19/2018] [Indexed: 12/11/2022]
Abstract
The NOX/DUOX family of NADPH oxidases are transmembrane proteins generating reactive oxygen species as their primary enzymatic products. NADPH oxidase (NOX) 1-5 and Dual oxidase (DUOX) 1 and 2 are members of this family. These enzymes have several biological functions including immune defense, hormone biosynthesis, fertilization, cell proliferation and differentiation, extracellular matrix formation and vascular regulation. They are found in a variety of tissues such as the airways, salivary glands, colon, thyroid gland and lymphoid organs. The discovery of NADPH oxidases has drastically transformed our view of the biology of reactive oxygen species and oxidative stress. Roles of several isoforms including DUOX1 and DUOX2 in host innate immune defense have been implicated and are still being uncovered. DUOX enzymes highly expressed in the respiratory and salivary gland epithelium have been proposed as the major sources of hydrogen peroxide supporting mucosal oxidative antimicrobial defenses. In this review, we shortly present data on DUOX discovery, structure and function, and provide a detailed, up-to-date summary of discoveries regarding antibacterial, antiviral, antifungal, and antiparasitic functions of DUOX enzymes. We also present all the literature describing the immune functions of lactoperoxidase, an enzyme working in partnership with DUOX to produce antimicrobial substances.
Collapse
|
17
|
El-Fakharany EM, Uversky VN, Redwan EM. Comparative Analysis of the Antiviral Activity of Camel, Bovine, and Human Lactoperoxidases Against Herpes Simplex Virus Type 1. Appl Biochem Biotechnol 2017; 182:294-310. [PMID: 27854033 DOI: 10.1007/s12010-016-2327-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 11/07/2016] [Indexed: 01/08/2023]
Abstract
Lactoperoxidase is a milk hemoprotein that acts as a non-immunoglobulin protective protein and shows strong antimicrobial activity. Bovine milk contains about 15 and 7 times higher levels of lactoperoxidase than human colustrum and camel milk, respectively. Human, bovine, and camel lactoperoxidases (hLPO, bLPO, and cLPO, respectively) were purified as homogeneous samples with specific activities of 4.2, 61.3, and 8.7 u/mg, respectively. The optimal working pH was 7.5 (hLPO and bLPO) and 6.5 (cLPO), whereas the optimal working temperature for these proteins was 40 °C. The K m of hLPO, cLPO, and bLPO were 17, 16, and 19 mM, and their corresponding V max values were 2, 1.7, and 2.7 μmol/min ml. However, in the presence of H2O2, the K m values were 11 mM for hLPO and cLPO and 20 mM for bLPO, while the corresponding V max values were 1.17 for hLPO and 1.4 μmol/min ml for cLPO and bLPO. All three proteins were able to inhibit the herpes simplex virus type 1 (HSV-1) in Vero cell line model. The relative antiviral activities were proportional to the protein concentrations. The highest anti-HSV-1 activity was exhibited by bLPO that inhibited the HSV particles at a concentration of 0.5 mg/ml with the relative activity of 100%.
Collapse
Affiliation(s)
- Esmail M El-Fakharany
- Protective and Therapeutic Proteins Laboratory, Protein Research Department, Genetic Engineering and Biotechnology Research Institute GEBRI, City for Scientific Research and Technology Applications, New Borg El Arab, Alexandria, 21934, Egypt
| | - Vladimir N Uversky
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, PO Box 80203, Jeddah, 21589, Saudi Arabia.
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA.
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia.
| | - Elrashdy M Redwan
- Protective and Therapeutic Proteins Laboratory, Protein Research Department, Genetic Engineering and Biotechnology Research Institute GEBRI, City for Scientific Research and Technology Applications, New Borg El Arab, Alexandria, 21934, Egypt.
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, PO Box 80203, Jeddah, 21589, Saudi Arabia.
| |
Collapse
|