1
|
Li R, Wang C, Xu K, Zhan Z, He S, Ren J, Li F, Tao N, Li Z, Yang Z, Yu H. Asiatic acid inhibits HBV cccDNA transcription by promoting HBx degradation. Virol J 2024; 21:268. [PMID: 39468627 PMCID: PMC11520515 DOI: 10.1186/s12985-024-02535-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 10/13/2024] [Indexed: 10/30/2024] Open
Abstract
BACKGROUND Hepatitis B virus (HBV) infection is a persistent global public health problem, and curing for chronic hepatitis B (CHB) through the application of existing antiviral drugs is beset by numerous challenges. The viral protein HBx is a critical regulatory factor in the life cycle of HBV. Targeting HBx is a promising possibility for the development of novel therapeutic strategies. METHODS The Nano-Glo® HiBiT Lysis Detection System was used to screen the herbal monomer compound library for compounds that inhibit HBx expression. Western blotting was used to examine proteins expression. Southern blotting or Northern blotting were used to detect HBV DNA or HBV RNA. ELISA was performed to detect the HBsAg level. The effect of asiatic acid on HBV in vivo was investigated by using recombinant cccDNA mouse model. RESULTS Asiatic acid, an extract of Centella asiatica, significantly reduced the HBx level. Mechanistic studies demonstrated that asiatic acid may promote the degradation of HBx in an autophagy pathway-dependent manner. Subsequently, asiatic acid was found to reduce the amount of HBx bound to covalently closed circular DNA (cccDNA) microchromosomes, and repressive chromatin modifications then occurred, ultimately inhibiting cccDNA transcriptional activity. Moreover, in HBV-infected cells and a mouse model of persistent HBV infection, asiatic acid exhibited potent anti-HBV activity, as evidenced by decreased levels of HBV RNAs, HBV DNA and HBsAg. CONCLUSIONS Asiatic acid was identified as a compound that targets HBx, revealing its potential for application as an anti-HBV agent.
Collapse
Grants
- 82372996 National Natural Science Foundation of China
- 82372996 National Natural Science Foundation of China
- 82372996 National Natural Science Foundation of China
- 82372996 National Natural Science Foundation of China
- 82372996 National Natural Science Foundation of China
- 82372996 National Natural Science Foundation of China
- 82372996 National Natural Science Foundation of China
- 82372996 National Natural Science Foundation of China
- 82372996 National Natural Science Foundation of China
- 82372996 National Natural Science Foundation of China
- 82372996 National Natural Science Foundation of China
- CSTB2022NSCQ-MSX0864, CSTB2023NSCQ-BHX0170, cstc2021jcyj-bshX0179, CSTB2023NSCQ-MSX0480 the Chongqing Natural Science Foundation
- CSTB2022NSCQ-MSX0864, CSTB2023NSCQ-BHX0170, cstc2021jcyj-bshX0179, CSTB2023NSCQ-MSX0480 the Chongqing Natural Science Foundation
- CSTB2022NSCQ-MSX0864, CSTB2023NSCQ-BHX0170, cstc2021jcyj-bshX0179, CSTB2023NSCQ-MSX0480 the Chongqing Natural Science Foundation
- CSTB2022NSCQ-MSX0864, CSTB2023NSCQ-BHX0170, cstc2021jcyj-bshX0179, CSTB2023NSCQ-MSX0480 the Chongqing Natural Science Foundation
- CSTB2022NSCQ-MSX0864, CSTB2023NSCQ-BHX0170, cstc2021jcyj-bshX0179, CSTB2023NSCQ-MSX0480 the Chongqing Natural Science Foundation
- CSTB2022NSCQ-MSX0864, CSTB2023NSCQ-BHX0170, cstc2021jcyj-bshX0179, CSTB2023NSCQ-MSX0480 the Chongqing Natural Science Foundation
- CSTB2022NSCQ-MSX0864, CSTB2023NSCQ-BHX0170, cstc2021jcyj-bshX0179, CSTB2023NSCQ-MSX0480 the Chongqing Natural Science Foundation
- CSTB2022NSCQ-MSX0864, CSTB2023NSCQ-BHX0170, cstc2021jcyj-bshX0179, CSTB2023NSCQ-MSX0480 the Chongqing Natural Science Foundation
- CSTB2022NSCQ-MSX0864, CSTB2023NSCQ-BHX0170, cstc2021jcyj-bshX0179, CSTB2023NSCQ-MSX0480 the Chongqing Natural Science Foundation
- CSTB2022NSCQ-MSX0864, CSTB2023NSCQ-BHX0170, cstc2021jcyj-bshX0179, CSTB2023NSCQ-MSX0480 the Chongqing Natural Science Foundation
- CSTB2022NSCQ-MSX0864, CSTB2023NSCQ-BHX0170, cstc2021jcyj-bshX0179, CSTB2023NSCQ-MSX0480 the Chongqing Natural Science Foundation
- KJQN202100429, KJQN202300483 Sci-ence and Technology Research Project of Chongqing Municipal Education Commis-sion
- KJQN202100429, KJQN202300483 Sci-ence and Technology Research Project of Chongqing Municipal Education Commis-sion
- KJQN202100429, KJQN202300483 Sci-ence and Technology Research Project of Chongqing Municipal Education Commis-sion
- KJQN202100429, KJQN202300483 Sci-ence and Technology Research Project of Chongqing Municipal Education Commis-sion
- KJQN202100429, KJQN202300483 Sci-ence and Technology Research Project of Chongqing Municipal Education Commis-sion
- KJQN202100429, KJQN202300483 Sci-ence and Technology Research Project of Chongqing Municipal Education Commis-sion
- KJQN202100429, KJQN202300483 Sci-ence and Technology Research Project of Chongqing Municipal Education Commis-sion
- KJQN202100429, KJQN202300483 Sci-ence and Technology Research Project of Chongqing Municipal Education Commis-sion
- KJQN202100429, KJQN202300483 Sci-ence and Technology Research Project of Chongqing Municipal Education Commis-sion
- KJQN202100429, KJQN202300483 Sci-ence and Technology Research Project of Chongqing Municipal Education Commis-sion
- KJQN202100429, KJQN202300483 Sci-ence and Technology Research Project of Chongqing Municipal Education Commis-sion
- W0040 Future Medical Youth Innovation Team of Chongqing Medical University
- W0040 Future Medical Youth Innovation Team of Chongqing Medical University
- W0040 Future Medical Youth Innovation Team of Chongqing Medical University
- W0040 Future Medical Youth Innovation Team of Chongqing Medical University
- W0040 Future Medical Youth Innovation Team of Chongqing Medical University
- W0040 Future Medical Youth Innovation Team of Chongqing Medical University
- W0040 Future Medical Youth Innovation Team of Chongqing Medical University
- W0040 Future Medical Youth Innovation Team of Chongqing Medical University
- W0040 Future Medical Youth Innovation Team of Chongqing Medical University
- W0040 Future Medical Youth Innovation Team of Chongqing Medical University
- W0040 Future Medical Youth Innovation Team of Chongqing Medical University
Collapse
Affiliation(s)
- Ranran Li
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Chunduo Wang
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Kexin Xu
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Zongzhu Zhan
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Siyi He
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Jihua Ren
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Fan Li
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Nana Tao
- Department Department of Clinical Laboratory, Chongqing Traditional Chinese Medicine Hospital, Chongqing, China.
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, Chongqing, China.
- , Seventh Floor, Building A, 1 North District Road, Yuzhong District, Chongqing, 400013, China.
| | - Zhihong Li
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
- , Seventh Floor, Building A, 1 North District Road, Yuzhong District, Chongqing, 400013, China.
| | - Zhen Yang
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Af-filiated Hospital of Soochow University, 188 Shizi Street, Suzhou, Gusu District, 215006, China.
| | - Haibo Yu
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
- , Seventh Floor, Building A, 1 North District Road, Yuzhong District, Chongqing, 400013, China.
| |
Collapse
|
2
|
Lv S, Yang N, Lu Y, Zhang G, Zhong X, Cui Y, Huang Y, Teng J, Sai Y. The therapeutic potential of traditional Chinese medicine in depression: focused on the modulation of neuroplasticity. Front Pharmacol 2024; 15:1426769. [PMID: 39253375 PMCID: PMC11381291 DOI: 10.3389/fphar.2024.1426769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 08/06/2024] [Indexed: 09/11/2024] Open
Abstract
Depression, a mood disorder characterized by a persistent low mood and lack of enjoyment, is considered the leading cause of non-fatal health losses worldwide. Neuroplasticity refers to the brain's ability to adapt to external or internal stimuli, resulting in functional and structural changes. This process plays a crucial role in the development of depression. Traditional Chinese Medicine (TCM) shows significant potential as a complementary and alternative therapy for neurological diseases, including depression. However, there has been no systematic summary of the role of neuroplasticity in the pathological development of depression and TCM Interventions currently. This review systematically summarized recent literature on changes in neuroplasticity in depression and analyzed the regulatory mechanisms of active metabolites in TCM and TCM formulas on neuroplasticity in antidepressant treatment. Additionally, this review discussed the limitations of current research and the application prospects of TCM in regulating neuroplasticity in antidepressant research.
Collapse
Affiliation(s)
- Shimeng Lv
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ni Yang
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yitong Lu
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Guangheng Zhang
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xia Zhong
- Institute of Child and Adolescent Health, School of Public Health, Peking University, Beijing, China
| | - Yaru Cui
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yufei Huang
- Ruijin Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jing Teng
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yanyan Sai
- University Town Hospital, Afiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
3
|
Zhong Y, Li J, Zhu X, Huang N, Liu R, Sun R. A comprehensive review of bupleuri radix and its bioactive components: with a major focus on treating chronic liver diseases. JOURNAL OF ETHNOPHARMACOLOGY 2024; 330:118244. [PMID: 38663781 DOI: 10.1016/j.jep.2024.118244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 04/30/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Bupleuri Radix (BR) has been recognized as an essential herbal medicine for relieving liver depression for thousands of years. Contemporary research has provided compelling evidence of its pharmacological effects, including anti-inflammatory, immunomodulatory, metabolic regulation, and anticancer properties, positioning it as a promising treatment option for various liver diseases. Hepatitis, steatohepatitis, cirrhosis, and liver cancer are among the prevalent and impactful liver diseases worldwide. However, there remains a lack of comprehensive systematic reviews that explore the prescription, bio-active components, and underlying mechanisms of BR in treating liver diseases. AIM OF THE REVIEW To summarize the BR classical Chinese medical prescription and ingredients in treating liver diseases and their mechanisms to inform reference for further development and research. MATERIALS AND METHODS Literature in the last three decades of BR and its classical Chinese medical prescription and ingredients were collated and summarized by searching PubMed, Wiley, Springer, Google Scholar, Web of Science, CNKI, etc. RESULTS: BR and its classical prescriptions, such as Xiao Chai Hu decoction, Da Chai Hu decoction, Si Ni San, and Chai Hu Shu Gan San, have been utilized for centuries as effective therapies for liver diseases, including hepatitis, steatohepatitis, cirrhosis, and liver cancer. BR is a rich source of active ingredients, such as saikosaponins, polysaccharides, flavonoids, sterols, organic acids, and so on. These bioactive compounds exhibit a wide range of beneficial effects, including anti-inflammatory, antioxidant, immunomodulatory, and lipid metabolism regulation. However, it is important to acknowledge that BR and its constituents can also possess hepatotoxicity, which is associated with cytochrome P450 (CYP450) enzymes and oxidative stress. Therefore, caution should be exercised when using BR in therapeutic applications to ensure the safe and appropriate utilization of its potential benefits while minimizing any potential risks. CONCLUSIONS To sum up, BR, its compounds, and its based traditional Chinese medicine are effective in liver diseases through multiple targets, multiple pathways, and multiple effects. Advances in pharmacological and toxicological investigations of BR and its bio-active components in the future will provide further contributions to the discovery of novel therapeutics for liver diseases.
Collapse
Affiliation(s)
- Ying Zhong
- The Second Hospital of Shandong University, 247 Beiyuan Ave, Jinan, Shandong, 250033, China.
| | - Jianchao Li
- Shandong University of Traditional Chinese Medicine, 4655 Daxue Road, Jinan, Shandong, 250355, China.
| | - Xiaomin Zhu
- The Second Hospital of Shandong University, 247 Beiyuan Ave, Jinan, Shandong, 250033, China.
| | - Nana Huang
- The Second Hospital of Shandong University, 247 Beiyuan Ave, Jinan, Shandong, 250033, China; Shandong University of Traditional Chinese Medicine, 4655 Daxue Road, Jinan, Shandong, 250355, China.
| | - Runping Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Rong Sun
- The Second Hospital of Shandong University, 247 Beiyuan Ave, Jinan, Shandong, 250033, China; Advanced Medical Research Institute, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong, 250012, China.
| |
Collapse
|
4
|
Li N, Feng X, An C, Liu G, Liu C. Metabolites from traditional Chinese botanical drugs with anti-hepatitis B virus activity - a review. Front Pharmacol 2024; 15:1331967. [PMID: 39070799 PMCID: PMC11272473 DOI: 10.3389/fphar.2024.1331967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 06/13/2024] [Indexed: 07/30/2024] Open
Abstract
Hepatitis B virus (HBV)-related liver disease poses a major threat to human health worldwide. Although interferon and nucleoside analogues are commonly administered for treating chronic HBV infection, their use is limited by considerable side effects, drug resistance and incapacity for HBV elimination. Hence, novel HBV therapeutics are urgently required. For numerous years, traditional Chinese botanical drugs have been widely used to treat HBV-related diseases. The natural metabolites derived from these traditional drugs exhibit significant anti-HBV effects and serve as potential novel drugs for treating HBV. For overall understanding the therapeutic potential of these metabolites, the anti-HBV effects and mechanisms of action of 107 natural metabolites are summarized in this article. Mechanistically, these natural metabolites exert their anti-HBV effects by influencing the expression and function of host and/or viral genes, which differs from the mechanism of action of nucleoside analogues. Indeed, combining natural metabolites with nucleoside analogues can exert synergistic effects. Accordingly, natural metabolites or their chemically modified derivatives represent potential novel drugs and adjuvants for anti-HBV treatment.
Collapse
Affiliation(s)
| | | | - Cheng An
- Clinical Laboratory, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Guijian Liu
- Clinical Laboratory, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chao Liu
- Clinical Laboratory, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
5
|
Zhang F, Ju J, Diao H, Song J, Bian Y, Yang B. Innovative pharmacotherapy for hepatic metabolic and chronic inflammatory diseases in China. Br J Pharmacol 2024. [PMID: 38514420 DOI: 10.1111/bph.16342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/04/2024] [Accepted: 01/27/2024] [Indexed: 03/23/2024] Open
Abstract
Liver disease constitutes a significant global health concern, particularly in China where it has distinctive characteristics. China grapples with a staggering 300 million cases, predominantly due to hepatitis B and metabolic non-alcoholic fatty liver disease. Additionally, hepatocellular carcinoma has become a prevalent which is a lethal type of cancer. Despite the scarcity of innovative treatment options, Chinese hepatologists and researchers have achieved notable breakthroughs in the prevention, diagnosis, management and treatment of liver diseases. Traditional Chinese medicines have found widespread application in the treatment of various liver ailments owing to their commendable pharmacological efficacy and minimal side effects. Furthermore, there is a growing body of research in extracellular vesicles, cell therapy and gene therapy, offering new hope in the fight against liver diseases. This paper provides a comprehensive overview of the epidemiological characteristics of liver diseases and the diverse array of treatments that Chinese scholars and scientists have pursued in critical field.
Collapse
Affiliation(s)
- Feng Zhang
- Department of Pharmacology (State Key Laboratory of Frigid Zone Cardiovascular Diseases, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Jiaming Ju
- Department of Pharmacology (State Key Laboratory of Frigid Zone Cardiovascular Diseases, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Hongtao Diao
- Department of Pharmacology (State Key Laboratory of Frigid Zone Cardiovascular Diseases, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Jinglun Song
- Department of Pharmacology (State Key Laboratory of Frigid Zone Cardiovascular Diseases, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Yu Bian
- Department of Pharmacology (State Key Laboratory of Frigid Zone Cardiovascular Diseases, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Baofeng Yang
- Department of Pharmacology (State Key Laboratory of Frigid Zone Cardiovascular Diseases, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| |
Collapse
|
6
|
Chen S, Wang K, Wang H, Gao Y, Nie K, Jiang X, Su H, Tang Y, Lu F, Dong H, Wang Z. The therapeutic effects of saikosaponins on depression through the modulation of neuroplasticity: From molecular mechanisms to potential clinical applications. Pharmacol Res 2024; 201:107090. [PMID: 38309381 DOI: 10.1016/j.phrs.2024.107090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/07/2024] [Accepted: 01/30/2024] [Indexed: 02/05/2024]
Abstract
Depression is a major global health issue that urgently requires innovative and precise treatment options. In this context, saikosaponin has emerged as a promising candidate, offering a variety of therapeutic benefits that may be effective in combating depression. This review delves into the multifaceted potential of saikosaponins in alleviating depressive symptoms. We summarized the effects of saikosaponins on structural and functional neuroplasticity, elaborated the regulatory mechanism of saikosaponins in modulating key factors that affect neuroplasticity, such as inflammation, the hypothalamic-pituitary-adrenal (HPA) axis, oxidative stress, and the brain-gut axis. Moreover, this paper highlights existing gaps in current researches and outlines directions for future studies. A detailed plan is provided for the future clinical application of saikosaponins, advocating for more targeted researches to speed up its transition from preclinical trials to clinical practice.
Collapse
Affiliation(s)
- Shen Chen
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Ke Wang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Hongzhan Wang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yang Gao
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Kexin Nie
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Xinyue Jiang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Hao Su
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yueheng Tang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Fuer Lu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Hui Dong
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| | - Zhi Wang
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| |
Collapse
|
7
|
Al-Qahtani AA, Alhamlan FS, Al-Qahtani AA. Pro-Inflammatory and Anti-Inflammatory Interleukins in Infectious Diseases: A Comprehensive Review. Trop Med Infect Dis 2024; 9:13. [PMID: 38251210 PMCID: PMC10818686 DOI: 10.3390/tropicalmed9010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/29/2023] [Accepted: 12/10/2023] [Indexed: 01/23/2024] Open
Abstract
Interleukins (ILs) are signaling molecules that are crucial in regulating immune responses during infectious diseases. Pro-inflammatory ILs contribute to the activation and recruitment of immune cells, whereas anti-inflammatory ILs help to suppress excessive inflammation and promote tissue repair. Here, we provide a comprehensive overview of the role of pro-inflammatory and anti-inflammatory ILs in infectious diseases, with a focus on the mechanisms underlying their effects, their diagnostic and therapeutic potential, and emerging trends in IL-based therapies.
Collapse
Affiliation(s)
- Arwa A. Al-Qahtani
- Department of Family Medicine, College of Medicine, Al-Imam Mohammad Ibn Saud Islamic University, Riyadh 11432, Saudi Arabia;
| | - Fatimah S. Alhamlan
- Department of Infection and Immunity, King Faisal Specialist Hospital & Research Center, Riyadh 11211, Saudi Arabia;
- Department of Microbiology and Immunology, College of Medicine, Alfaisal University, Riyadh 11211, Saudi Arabia
| | - Ahmed Ali Al-Qahtani
- Department of Infection and Immunity, King Faisal Specialist Hospital & Research Center, Riyadh 11211, Saudi Arabia;
- Department of Microbiology and Immunology, College of Medicine, Alfaisal University, Riyadh 11211, Saudi Arabia
| |
Collapse
|
8
|
Pi Y, Li Y, Yan Q, Luo H, Zhou P, Chang W, Gong D, Hu Y, Wang K, Tang N, Huang A, Chen Y. SPOP inhibits HBV transcription and replication by ubiquitination and degradation of HNF1α. J Med Virol 2023; 95:e29254. [PMID: 38018242 DOI: 10.1002/jmv.29254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/20/2023] [Accepted: 11/11/2023] [Indexed: 11/30/2023]
Abstract
Hepatitis B virus (HBV) infection remains a significant public health burden worldwide. The persistence of covalently closed circular DNA (cccDNA) within the nucleus of infected hepatocytes is responsible for the failure of antiviral treatments. The ubiquitin proteasome system (UPS) has emerged as a promising antiviral target, as it can regulate HBV replication by promoting critical protein degradation in steps of viral life cycle. Speckle-type POZ protein (SPOP) is a critical adaptor for Cul3-RBX1 E3 ubiquitin ligase complex, but the effect of SPOP on HBV replication is less known. Here, we identified SPOP as a novel host antiviral factor against HBV infection. SPOP overexpression significantly inhibited the transcriptional activity of HBV cccDNA without affecting cccDNA level in HBV-infected HepG2-NTCP and primary human hepatocyte cells. Mechanism studies showed that SPOP interacted with hepatocyte nuclear factor 1α (HNF1α), and induced HNF1α degradation through host UPS pathway. Moreover, the antiviral role of SPOP was also confirmed in vivo. Together, our findings reveal that SPOP is a novel host factor which inhibits HBV transcription and replication by ubiquitination and degradation of HNF1α, providing a potential therapeutic strategy for the treatment of HBV infection.
Collapse
Affiliation(s)
- Yubo Pi
- Key Laboratory of Molecular Biology for Infectious Diseases, Department of Infectious Diseases, Ministry of Education, The Second Affiliated Hospital of Chongqing Medical University, Institute for Viral Hepatitis, Chongqing, China
| | - Yang Li
- Chongqing Big Data Research Institute of Peking University, Chongqing, China
| | - Qi Yan
- Key Laboratory of Molecular Biology for Infectious Diseases, Department of Infectious Diseases, Ministry of Education, The Second Affiliated Hospital of Chongqing Medical University, Institute for Viral Hepatitis, Chongqing, China
| | - Huimin Luo
- Key Laboratory of Molecular Biology for Infectious Diseases, Department of Infectious Diseases, Ministry of Education, The Second Affiliated Hospital of Chongqing Medical University, Institute for Viral Hepatitis, Chongqing, China
| | - Peng Zhou
- Key Laboratory of Molecular Biology for Infectious Diseases, Department of Infectious Diseases, Ministry of Education, The Second Affiliated Hospital of Chongqing Medical University, Institute for Viral Hepatitis, Chongqing, China
| | - Wenyi Chang
- Key Laboratory of Molecular Biology for Infectious Diseases, Department of Infectious Diseases, Ministry of Education, The Second Affiliated Hospital of Chongqing Medical University, Institute for Viral Hepatitis, Chongqing, China
| | - Deao Gong
- Key Laboratory of Molecular Biology for Infectious Diseases, Department of Infectious Diseases, Ministry of Education, The Second Affiliated Hospital of Chongqing Medical University, Institute for Viral Hepatitis, Chongqing, China
| | - Yuan Hu
- Key Laboratory of Molecular Biology for Infectious Diseases, Department of Infectious Diseases, Ministry of Education, The Second Affiliated Hospital of Chongqing Medical University, Institute for Viral Hepatitis, Chongqing, China
| | - Kai Wang
- Key Laboratory of Molecular Biology for Infectious Diseases, Department of Infectious Diseases, Ministry of Education, The Second Affiliated Hospital of Chongqing Medical University, Institute for Viral Hepatitis, Chongqing, China
| | - Ni Tang
- Key Laboratory of Molecular Biology for Infectious Diseases, Department of Infectious Diseases, Ministry of Education, The Second Affiliated Hospital of Chongqing Medical University, Institute for Viral Hepatitis, Chongqing, China
| | - Ailong Huang
- Key Laboratory of Molecular Biology for Infectious Diseases, Department of Infectious Diseases, Ministry of Education, The Second Affiliated Hospital of Chongqing Medical University, Institute for Viral Hepatitis, Chongqing, China
| | - Yanmeng Chen
- Key Laboratory of Laboratory Medical Diagnostics, Department of Laboratory Medicine, Ministry of Education, Chongqing Medical University, Chongqing, China
| |
Collapse
|
9
|
Lou B, Ma G, Yu X, Lv F, Xu F, Sun C, Chen Y. Deubiquitinase OTUD5 promotes hepatitis B virus replication by removing K48-linked ubiquitination of HBV core/precore and upregulates HNF4ɑ expressions by inhibiting the ERK1/2/mitogen-activated protein kinase pathway. Cell Mol Life Sci 2023; 80:336. [PMID: 37897511 PMCID: PMC10613150 DOI: 10.1007/s00018-023-04995-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/25/2023] [Accepted: 09/29/2023] [Indexed: 10/30/2023]
Abstract
Hepatitis B virus (HBV) infection is a major public health problem worldwide, causing nearly one million deaths annually. OTUD5 is a deubiquitinase associated with cancer development and innate immunity response. However, the regulatory mechanisms of OTUD5 underlying HBV replication need to be deeply elucidated. In the present investigation, we found that HBV induced significant up-regulation of OTUD5 protein in HBV-infected cells. Further study showed that OTUD5 interacted with HBV core/precore, removing their K48-linked ubiquitination chains and protecting their stability. Meanwhile, overexpression of OTUD5 could inhibit the MAPK pathway and then increase the expression of HNF4ɑ, and ERK1/2 signaling was required for OTUD5-mediated activation of HNF4α, promoting HBV replication. Together, these data indicate that OTUD5 could deubiquitinate HBV core protein degradation by its deubiquitinase function and promote HBV activity by up-regulating HNF4α expression via inhibition of the ERK1/2 pathway. These results might present a novel therapeutic strategy against HBV infection.
Collapse
Affiliation(s)
- Bin Lou
- Department of Laboratory Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Qingchun Road, Hangzhou, 310003, China
- Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province, Hangzhou, 310003, China
- Institute of Laboratory Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Guanghua Ma
- Department of Laboratory Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Qingchun Road, Hangzhou, 310003, China
| | - Xiaopeng Yu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, 310003, China
| | - Feifei Lv
- Department of Laboratory Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Qingchun Road, Hangzhou, 310003, China
| | - Fanjie Xu
- The Shengzhou Hospital of Traditional Chinese Medicine, Shaoxing, 312432, Zhejiang, China
| | - Chengdi Sun
- Department of Laboratory Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Qingchun Road, Hangzhou, 310003, China
| | - Yu Chen
- Department of Laboratory Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Qingchun Road, Hangzhou, 310003, China.
- Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province, Hangzhou, 310003, China.
- Institute of Laboratory Medicine, Zhejiang University, Hangzhou, 310003, China.
| |
Collapse
|
10
|
Zhu Y, Lai Y. Pharmacological properties and derivatives of saikosaponins-a review of recent studies. J Pharm Pharmacol 2023:7194607. [PMID: 37307427 DOI: 10.1093/jpp/rgad052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 05/16/2023] [Indexed: 06/14/2023]
Abstract
OBJECTIVES Saikosaponins (SSs) constitute a class of medicinal monomers characterised by a triterpene tricyclic structure. Despite their potential therapeutic effects for various pathological conditions, the underlying mechanisms of their actions have not been systematically analysed. Here, we mainly review the important anti-inflammatory, anticancer, and antiviral mechanisms underlying SS actions. METHODS Information from multiple scientific databases, such as PubMed, the Web of Science, and Google Scholar, was collected between 2018 and 2023. The search term used was saikosaponin. KEY FINDINGS Numerous studies have shown that Saikosaponin A exerts anti-inflammatory effects by modulating cytokine and reactive oxygen species (ROS) production and lipid metabolism. Moreover, saikosaponin D exerts antitumor effects by inhibiting cell proliferation and inducing apoptosis and autophagy, and the antiviral mechanisms of SSs, especially against SARS-CoV-2, have been partially revealed. Interestingly, an increasing body of experimental evidence suggests that SSs show the potential for use as anti-addiction, anxiolytic, and antidepressant treatments, and therefore, the related molecular mechanisms warrant further study. CONCLUSIONS An increasing amount of data have indicated diverse SS pharmacological properties, indicating crucial clues for future studies and the production of novel saikosaponin-based anti-inflammatory, efficacious anticancer, and anti-novel-coronavirus agents with improved efficacy and reduced toxicity.
Collapse
Affiliation(s)
- Yingchao Zhu
- Clinical Medical College of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yu Lai
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
11
|
Dihydromyricetin inhibits Hepatitis B virus replication by activating NF-κB, MAPKs, and autophagy in HepG2.2.15 cells. Mol Biol Rep 2023; 50:1403-1414. [PMID: 36474061 DOI: 10.1007/s11033-022-07971-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 09/21/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND Hepatitis B virus (HBV) infection is a severe global health problem, and there has been no effective method to eliminate HBV. This study was designed to explore the pharmacological mechanism of Dihydromyricetin (DHM) treatment on HBV replication in vitro. METHODS AND RESULTS DHM is a flavonoid compound from Ampelopsis grossedentata. Using HepG2.2.15 cells, which can stably express HBV in vitro, we demonstrated that DHM treatment dramatically reduced HBV replication and secretions of HBsAg and HBeAg. Meanwhile, DHM inhibited mRNA expression of HBV RNAs in HepG2.2.15 cells, including Total HBV RNA, HBV pregenomic RNA (pgRNA), and HBV precore mRNA (pcRNA). Also, DHM elevated the mRNA expressions of inflammatory cytokines and antiviral effectors. In contrast, DHM decreased the mRNA level of HNF4α, which positively correlated with HBV replication. Further studies show that the activation of nuclear factor-kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathway played a critical role in DHM-initiated inhibition of HBV replication in HepG2.2.15 cells. Besides, activated autophagy was another contributor that may accelerate the clearance of HBV components. CONCLUSION In summary, DHM could suppress HBV replication by activating NF-κB, MAPKs, and autophagy in HepG2.2.15 cells. Our studies shed light on the future application of DHM for the clinical treatment of HBV infection.
Collapse
|
12
|
(-)-Lariciresinol Isolated from the Roots of Isatis indigotica Fortune ex Lindl. Inhibits Hepatitis B Virus by Regulating Viral Transcription. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27103223. [PMID: 35630700 PMCID: PMC9143483 DOI: 10.3390/molecules27103223] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/13/2022] [Accepted: 05/14/2022] [Indexed: 11/17/2022]
Abstract
Chronic hepatitis induced by hepatitis B virus (HBV) infection is a serious public health problem, leading to hepatic cirrhosis and liver cancer. Although the currently approved medications can reliably decrease the virus load and prevent the development of hepatic diseases, they fail to induce durable off-drug control of HBV replication in the majority of patients. The roots of Isatis indigotica Fortune ex Lindl., a traditional Chinese medicine, were frequently used for the prevention of viral disease in China. In the present study, (-)-lariciresinol ((-)-LRSL), isolated from the roots of Isatis indigotica Fortune ex Lindl., was found to inhibit HBV DNA replication of both wild-type and nucleos(t)ide analogues (NUCs)-resistant strains in vitro. Mechanism studies revealed that (-)-LRSL could block RNA production after treatment, followed by viral proteins, and then viral particles and DNA. Promoter reporter assays and RNA decaying dynamic experiments indicated that (-)-LRSL mediated HBV RNA reduction was mainly due to transcriptional inhibition rather than degradation. Moreover, (-)-LRSL in a dose-dependent manner also inhibited other animal hepadnaviruses, including woodchuck hepatitis virus (WHV) and duck hepatitis B virus (DHBV). Combining the analysis of RNA-seq, we further found that the decrease in HBV transcriptional activity by (-)-LRSL may be related to hepatocyte nuclear factor 1α (HNF1α). Taken together, (-)-LRSL represents a novel chemical entity that inhibits HBV replication by regulating HNF1α mediated HBV transcription, which may provide a new perspective for HBV therapeutics.
Collapse
|
13
|
Jia A, Yang X, Zou B, Li J, Wang Y, Ma R, Li J, Yao Y. Saikosaponins: A Review of Structures and Pharmacological Activities. Nat Prod Commun 2022. [DOI: 10.1177/1934578x221094908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Radix Bupleuri is a traditional medicine widely used in China and other Asian countries. Phytochemistry and pharmacology study reveal that saikosaponins(SSs) are the main bioactive compounds in Radix Bupleuri. SSs are complex compounds composed of triterpene aglycone and carbohydrate part containing 1-13 monosaccharides, which can be divided into seven types based on their structural characteristics. Many different kinds of SSs have been isolated from plants of Bupleurum L. SSs show a variety of biological activities, such as central nervous system protection, liver protection, antivirus, anti-tumor, anti-inflammation, hormone-like effects, and immune regulation functions. Due to their broad activity and favorable safety profile, SSs attract an increasing amount of attention in recent years. In this review, the structures of 86 SSs are summarized based on the different aglycones due to the diverse structures of saikosaponin(SS). The pharmacological effects and related mechanism of SSs are thoroughly reviewed, and perspectives for future research are further discussed.
Collapse
Affiliation(s)
- Ao Jia
- School of pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Xinhe Yang
- School of pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Bin Zou
- School of pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Jia Li
- School of pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Yefeng Wang
- School of Public Health & Management, Ningxia Medical University, Yinchuan 750004, China
| | - Ruixia Ma
- School of pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Juan Li
- School of pharmacy, Ningxia Medical University, Yinchuan 750004, China
- Key Laboratory of Modernization of Traditional Chinese Medicine, Ministry of Education, Yinchuan 750004, China
| | - Yao Yao
- School of Basic Medical Science, Ningxia Medical University, Yinchuan 750004, China
| |
Collapse
|
14
|
Chen GY, Pan YC, Wu TY, Yao TY, Wang WJ, Shen WJ, Ahmed A, Chan ST, Tang CH, Huang WC, Hung MC, Yang JC, Wu YC. Potential natural products that target the SARS-CoV-2 spike protein identified by structure-based virtual screening, isothermal titration calorimetry and lentivirus particles pseudotyped (Vpp) infection assay. J Tradit Complement Med 2022; 12:73-89. [PMID: 34549024 PMCID: PMC8443859 DOI: 10.1016/j.jtcme.2021.09.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND AND AIM Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) enters cells through the binding of the viral spike protein with human angiotensin-converting enzyme 2 (ACE2), resulting in the development of coronavirus disease 2019 (COVID-19). To date, few antiviral drugs are available that can effectively block viral infection. This study aimed to identify potential natural products from Taiwan Database of Extracts and Compounds (TDEC) that may prevent the binding of viral spike proteins with human ACE2 proteins. METHODS The structure-based virtual screening was performed using the AutoDock Vina program within PyRX software, the binding affinities of compounds were verified using isothermal titration calorimetry (ITC), the inhibitions of SARS-CoV-2 viral infection efficacy were examined by lentivirus particles pseudotyped (Vpp) infection assay, and the cell viability was tested by 293T cell in MTT assay. RESULTS AND CONCLUSION We identified 39 natural products targeting the viral receptor-binding domain (RBD) of the SARS-CoV-2 spike protein in silico. In ITC binding assay, dioscin, celastrol, saikosaponin C, epimedin C, torvoside K, and amentoflavone showed dissociation constant (K d) = 0.468 μM, 1.712 μM, 6.650 μM, 2.86 μM, 3.761 μM and 4.27 μM, respectively. In Vpp infection assay, the compounds have significantly and consistently inhibition with the 50-90% inhibition of viral infection efficacy. In cell viability, torvoside K, epimedin, amentoflavone, and saikosaponin C showed IC50 > 100 μM; dioscin and celastrol showed IC50 = 1.5625 μM and 0.9866 μM, respectively. These natural products may bind to the viral spike protein, preventing SARS-CoV-2 from entering cells. SECTION 1 Natural Products. TAXONOMY CLASSIFICATION BY EVISE SARS-CoV-2, Structure-Based Virtual Screening, Isothermal Titration Calorimetry and Lentivirus Particles Pseudotyped (Vpp) Infection Assay, in silico and in vitro study.
Collapse
Affiliation(s)
- Guan-Yu Chen
- Chinese Medicine Research and Development Center, Sex Hormone Research Center, Department of Obstetrics and Gynecology, Center for Molecular Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Yi-Cheng Pan
- Chinese Medicine Research and Development Center, Sex Hormone Research Center, Department of Obstetrics and Gynecology, Center for Molecular Medicine, China Medical University Hospital, Taichung, Taiwan
- Program for Cancer Biology and Drug Discovery, China Medical University and Academia Sinica, Taichung, Taiwan
| | - Tung-Ying Wu
- Department of Biological Science & Technology, Department of Food Science and Nutrition, Meiho University, Pingtung, Taiwan
| | - Tsung-You Yao
- Chinese Medicine Research and Development Center, Sex Hormone Research Center, Department of Obstetrics and Gynecology, Center for Molecular Medicine, China Medical University Hospital, Taichung, Taiwan
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wei-Jan Wang
- Department of Biological Science and Technology, Research Center for Cancer Biology, New Drug Development Center, China Medical University, Taichung, Taiwan
| | - Wan-Jou Shen
- Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, Taichung, Taiwan
| | - Azaj Ahmed
- Chinese Medicine Research and Development Center, Sex Hormone Research Center, Department of Obstetrics and Gynecology, Center for Molecular Medicine, China Medical University Hospital, Taichung, Taiwan
| | | | - Chih-Hsin Tang
- Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan
- Chinese Medicine Research Center, Drug Development Center, Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Department of Medical Laboratory Science and Biotechnology, College of Medical and Health Science, Asia University, Taichung, Taiwan
| | - Wei-Chien Huang
- Chinese Medicine Research and Development Center, Sex Hormone Research Center, Department of Obstetrics and Gynecology, Center for Molecular Medicine, China Medical University Hospital, Taichung, Taiwan
- Chinese Medicine Research Center, Drug Development Center, Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Department of Medical Laboratory Science and Biotechnology, College of Medical and Health Science, Asia University, Taichung, Taiwan
| | - Mien-Chie Hung
- Chinese Medicine Research and Development Center, Sex Hormone Research Center, Department of Obstetrics and Gynecology, Center for Molecular Medicine, China Medical University Hospital, Taichung, Taiwan
- Department of Biological Science and Technology, Research Center for Cancer Biology, New Drug Development Center, China Medical University, Taichung, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, Taichung, Taiwan
- Department of Medical Laboratory Science and Biotechnology, College of Medical and Health Science, Asia University, Taichung, Taiwan
| | - Juan-Cheng Yang
- Chinese Medicine Research and Development Center, Sex Hormone Research Center, Department of Obstetrics and Gynecology, Center for Molecular Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Yang-Chang Wu
- Chinese Medicine Research and Development Center, Sex Hormone Research Center, Department of Obstetrics and Gynecology, Center for Molecular Medicine, China Medical University Hospital, Taichung, Taiwan
- Department of Medical Laboratory Science and Biotechnology, College of Medical and Health Science, Asia University, Taichung, Taiwan
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| |
Collapse
|
15
|
Teeli AS, Łuczyńska K, Haque E, Gayas MA, Winiarczyk D, Taniguchi H. Disruption of Tumor Suppressors HNF4α/HNF1α Causes Tumorigenesis in Liver. Cancers (Basel) 2021; 13:cancers13215357. [PMID: 34771521 PMCID: PMC8582545 DOI: 10.3390/cancers13215357] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/14/2021] [Accepted: 10/18/2021] [Indexed: 12/18/2022] Open
Abstract
The hepatocyte nuclear factor-4α (HNF4α) and hepatocyte nuclear factor-1α (HNF1α) are transcription factors that influence the development and maintenance of homeostasis in a variety of tissues, including the liver. As such, disruptions in their transcriptional networks can herald a number of pathologies, such as tumorigenesis. Largely considered tumor suppressants in liver cancer, these transcription factors regulate key events of inflammation, epithelial-mesenchymal transition, metabolic reprogramming, and the differentiation status of the cell. High-throughput analysis of cancer cell genomes has identified a number of hotspot mutations in HNF1α and HNF4α in liver cancer. Such results also showcase HNF1α and HNF4α as important therapeutic targets helping us step into the era of personalized medicine. In this review, we update current findings on the roles of HNF1α and HNF4α in liver cancer development and progression. It covers the molecular mechanisms of HNF1α and HNF4α dysregulation and also highlights the potential of HNF4α as a therapeutic target in liver cancer.
Collapse
Affiliation(s)
- Aamir Salam Teeli
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, 05-552 Jastrzebiec, Poland; (A.S.T.); (K.Ł.); (E.H.); (D.W.)
| | - Kamila Łuczyńska
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, 05-552 Jastrzebiec, Poland; (A.S.T.); (K.Ł.); (E.H.); (D.W.)
| | - Effi Haque
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, 05-552 Jastrzebiec, Poland; (A.S.T.); (K.Ł.); (E.H.); (D.W.)
| | - Mohmmad Abrar Gayas
- Department of Surgery and Radiology, Faculty of Veterinary Sciences and Animal Husbandry, SKUAST-K, Jammu 19000, India;
| | - Dawid Winiarczyk
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, 05-552 Jastrzebiec, Poland; (A.S.T.); (K.Ł.); (E.H.); (D.W.)
| | - Hiroaki Taniguchi
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, 05-552 Jastrzebiec, Poland; (A.S.T.); (K.Ł.); (E.H.); (D.W.)
- Correspondence:
| |
Collapse
|
16
|
Ohsaki E, Suwanmanee Y, Ueda K. Chronic Hepatitis B Treatment Strategies Using Polymerase Inhibitor-Based Combination Therapy. Viruses 2021; 13:v13091691. [PMID: 34578273 PMCID: PMC8473100 DOI: 10.3390/v13091691] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/19/2021] [Accepted: 08/25/2021] [Indexed: 12/12/2022] Open
Abstract
Viral polymerase is an essential enzyme for the amplification of the viral genome and is one of the major targets of antiviral therapies. However, a serious concern to be solved in hepatitis B virus (HBV) infection is the difficulty of eliminating covalently closed circular (ccc) DNA. More recently, therapeutic strategies targeting various stages of the HBV lifecycle have been attempted. Although cccDNA-targeted therapies are attractive, there are still many problems to be overcome, and the development of novel polymerase inhibitors remains an important issue. Interferons and nucleos(t)ide reverse transcriptase inhibitors (NRTIs) are the only therapeutic options currently available for HBV infection. Many studies have reported that the combination of interferons and NRTI causes the loss of hepatitis B surface antigen (HBsAg), which is suggestive of seroconversion. Although NRTIs do not directly target cccDNA, they can strongly reduce the serum viral DNA load and could suppress the recycling step of cccDNA formation, improve liver fibrosis/cirrhosis, and reduce the risk of hepatocellular carcinoma. Here, we review recent studies on combination therapies using polymerase inhibitors and discuss the future directions of therapeutic strategies for HBV infection.
Collapse
|
17
|
Sui C, Han WJ, Zhu CR, Wei JH. Recent Progress in Saikosaponin Biosynthesis in Bupleurum. Curr Pharm Biotechnol 2021; 22:329-340. [PMID: 32957882 DOI: 10.2174/1389201021999200918101248] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 04/14/2020] [Accepted: 07/13/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Chaihu is a popular traditional Chinese medicine that has been used for centuries. It is traditionally used to treat cold fever and liver-related diseases. Saikosaponins (SSs) are one of the main active components of chaihu, in addition to essential oils, flavonoids, and polysaccharides. Considerable effort is needed to reveal the biosynthesis and regulation of SSs on the basis of current progress. OBJECTIVE The aim of this study is to provide a reference for further studies and arouse attention by summarizing the recent achievements of SS biosynthesis. METHODS All the data compiled and presented here were obtained from various online resources, such as PubMed Scopus and Baidu Scholar in Chinese, up to October 2019. RESULTS A few genes of the enzymes of SSs participating in the biosynthesis of SSs were isolated. Among these genes, only the P450 gene was verified to catalyze the SS skeleton β-amyrin synthase. Several UDP-glycosyltransferase genes were predicted to be involved in the biosynthesis of SSs. SSs could be largely biosynthesized in the phloem and then transported from the protoplasm, which is the biosynthetic site, to the vacuoles to avoid self-poisoning. As for the other secondary metabolites, the biosynthesis of SSs was strongly affected by environmental factors and the different species belonging to the genus of Bupleurum. Transcriptional regulation was studied at the molecular level. CONCLUSION Profound discoveries in SSs may elucidate the mechanism of diverse the monomer formation of SSs and provide a reference for maintaining the stability of SS content in Radix Bupleuri.
Collapse
Affiliation(s)
- Chun Sui
- Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences & Peking Union Medical College (Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education & National Engineering Laboratory for Breeding of Endangered Medicinal Materials), Beijing 100193, China
| | - Wen-Jing Han
- Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences & Peking Union Medical College (Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education & National Engineering Laboratory for Breeding of Endangered Medicinal Materials), Beijing 100193, China
| | - Chu-Ran Zhu
- Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences & Peking Union Medical College (Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education & National Engineering Laboratory for Breeding of Endangered Medicinal Materials), Beijing 100193, China
| | - Jian-He Wei
- Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences & Peking Union Medical College (Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education & National Engineering Laboratory for Breeding of Endangered Medicinal Materials), Beijing 100193, China
| |
Collapse
|
18
|
Zhang Q, Feng Z, Gao M, Guo L. Determining novel candidate anti-hepatocellular carcinoma drugs using interaction networks and molecular docking between drug targets and natural compounds of SiNiSan. PeerJ 2021; 9:e10745. [PMID: 33628636 PMCID: PMC7894118 DOI: 10.7717/peerj.10745] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 12/18/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND SiNiSan (SNS) is an ancient traditional Chinese medicine (TCM) used to treat liver and spleen deficiencies. We studied the unique advantages of using SNS to treat hepatocellular carcinoma (HCC) with multiple components and targets to determine its potential mechanism of action. METHODS The active compounds from the individual herbs in the SNS formula and their targets were mined from Traditional Chinese Medicine Systems Pharmacology Database (TCMSP). HCC-associated targets were collected from the TCGA and GEO databases and samples were collected from patients with stage III hepatocellular carcinoma. A compound-disease target network was constructed, visualized, and analyzed using Cytoscape software. We built a protein-protein interaction (PPI) network using the String database. We enriched and analyzed key targets using GSEA, GO, and KEGG in order to explore their functions. Autodock software was used to simulate the process of SNS molecules acting on HCC targets. RESULTS A total of 113 candidate compounds were taken from SNS, and 64 of the same targets were chosen from HCC and SNS. The predominant targets genes were PTGS2, ESR1, CHEK1, CCNA2, NOS2 and AR; kaempferol and quercetin from SNS were the principal ingredients in HCC treatment. The compounds may work against HCC due to a cellular response to steroid hormones and histone phosphorylation. The P53 signaling pathway was significantly enriched in the gene set GSEA enrichment analysis and differential gene KEGG enrichment analysis. CONCLUSIONS Our results showed that the SNS component has a large number of stage III HCC targets. Among the targets, the sex hormone receptors, the AR and ESR1 genes, are the core targets of SNS component and the most active proteins in the PPI network. In addition, quercetin, which has the most targets, can act on the main targets (BAX, CDK1, CCNB1, SERPINE1, CHEK2, and IGFBP3) of the P53 pathway to treat HCC.
Collapse
Affiliation(s)
- Qin Zhang
- The Fourth Hospital of Hebei Medical University, Department of General Medicine, Shijiazhuang, Hebei, China
| | - Zhangying Feng
- The Fourth Hospital of Hebei Medical University, Department of Clinical Pharmacology, Shijiazhuang, Hebei, China
| | - Mengxi Gao
- The Fourth Hospital of Hebei Medical University, Department of General Medicine, Shijiazhuang, Hebei, China
| | - Liru Guo
- The Fourth Hospital of Hebei Medical University, Department of General Medicine, Shijiazhuang, Hebei, China
| |
Collapse
|
19
|
Xie M, Guo H, Lou G, Yao J, Liu Y, Sun Y, Yang Z, Zheng M. Neddylation inhibitor MLN4924 has anti-HBV activity via modulating the ERK-HNF1α-C/EBPα-HNF4α axis. J Cell Mol Med 2020; 25:840-854. [PMID: 33263949 PMCID: PMC7812279 DOI: 10.1111/jcmm.16137] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 10/25/2020] [Accepted: 11/06/2020] [Indexed: 12/11/2022] Open
Abstract
Hepatitis B virus (HBV) infection is a major public health problem. The high levels of HBV DNA and HBsAg are positively associated with the development of secondary liver diseases, including hepatocellular carcinoma (HCC). Current treatment with nucleos(t)ide analogues mainly reduces viral DNA, but has minimal, if any, inhibitory effect on the viral antigen. Although IFN reduces both HBV DNA and HBsAg, the serious associated side effects limit its use in clinic. Thus, there is an urgent demanding for novel anti‐HBV therapy. In our study, viral parameters were determined in the supernatant of HepG2.2.15 cells, HBV‐expressing Huh7 and HepG2 cells which transfected with HBV plasmids and in the serum of HBV mouse models with hydrodynamic injection of pAAV‐HBV1.2 plasmid. RT‐qPCR and Southern blot were performed to detect 35kb mRNA and cccDNA. RT‐qPCR, Luciferase assay and Western blot were used to determine anti‐HBV effects of MLN4924 and the underlying mechanisms. We found that treatment with MLN4924, the first‐in‐class neddylation inhibitor currently in several phase II clinical trials for anti‐cancer application, effectively suppressed production of HBV DNA, HBsAg, 3.5kb HBV RNA as well as cccDNA. Mechanistically, MLN4924 blocks cullin neddylation and activates ERK to suppress the expression of several transcription factors required for HBV replication, including HNF1α, C/EBPα and HNF4α, leading to an effective blockage in the production of cccDNA and HBV antigen. Our study revealed that neddylation inhibitor MLN4924 has impressive anti‐HBV activity by inhibiting HBV replication, thus providing sound rationale for future MLN4924 clinical trial as a novel anti‐HBV therapy.
Collapse
Affiliation(s)
- Mingjie Xie
- The State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Huiting Guo
- The State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Guohua Lou
- The State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Jiping Yao
- The State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Yanning Liu
- The State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Yi Sun
- Cancer Institute of the Second Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China.,Division of Radiation and Cancer Biology, Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Zhenggang Yang
- The State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Min Zheng
- The State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| |
Collapse
|
20
|
Utilizing methylglyoxal and D-lactate in urine to evaluate saikosaponin C treatment in mice with accelerated nephrotoxic serum nephritis. PLoS One 2020; 15:e0241053. [PMID: 33104740 PMCID: PMC7588094 DOI: 10.1371/journal.pone.0241053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 10/07/2020] [Indexed: 11/19/2022] Open
Abstract
The relationship between methylglyoxal (MGO) and D-lactate during saikosaponin C (SSC) treatment of mice with accelerated nephrotoxic serum (NTS) nephritis was investigated. NTS nephritis was induced by administration of anti-basement membrane antibodies to C57BL/6 mice and three dosages of SSC were administered for 14 days. Proteinuria, blood urea nitrogen, serum creatinine, renal histology, urinary MGO and d-lactate changes were examined. Compared to the NTS control group, the middle dosage (10 mg/kg/day) of SSC significantly alleviated the development of nephritis based on urine protein measurements (34.40 ± 6.85 vs. 17.33 ± 4.79 mg/day, p<0.05). Pathological observation of the glomerular basement membrane (GBM) revealed monocyte infiltration, hypertrophy, and crescents were alleviated, and injury scoring also showed improved efficacy for the middle dose of SSC during nephritis (7.92 ± 1.37 vs. 3.50 ± 1.14, p<0.05). Moreover, the significant decreases in urinary levels of MGO (24.71 ± 3.46 vs. 16.72 ± 2.36 μg/mg, p<0.05) and D-lactate (0.31 ± 0.04 vs. 0.23 ± 0.02 μmol/mg, p<0.05) were consistent with the biochemical and pathological examinations. This study demonstrates that MGO and D-lactate may reflect the extent of damage and the efficacy of SSC in NTS nephritis; further studies are required to enable clinical application.
Collapse
|
21
|
Li S, Liu C, Guo F, Taleb SJ, Tong M, Shang D. Traditional Chinese Medicine as Potential Therapy for COVID-19. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2020; 48:1263-1277. [PMID: 32907358 DOI: 10.1142/s0192415x20500627] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In December 2019, a novel coronavirus SARS-CoV-2, causing the disease COVID-19, spread from Wuhan throughout China and has infected people over 200 countries. Thus far, more than 3,400,000 cases and 240,000 deaths have occurred worldwide, and the coronavirus pandemic continues to grip the globe. While numbers of cases in China have been steadying, the number of infections outside China is increasing at a worrying pace. We face an urgent need to control the spread of the COVID-19 epidemic, which is currently expanding to a global pandemic. Efforts have focused on testing antiviral drugs and vaccines, but there is currently no treatment specifically approved. Traditional Chinese medicine (TCM) is grounded in empirical observations and the Chinese people use TCM to overcome these sorts of plagues many times in thousands of years of history. Currently, the Chinese National Health Commission recommended a TCM prescription of Qing-Fei-Pai-Du-Tang (QFPDT) in the latest version of the "Diagnosis and Treatment guidelines of COVID-19" which has been reported to provide reliable effects for COVID-19. While doubts about TCM still exist today, this review paper will describe the rationalities that QFPDT is likely to bring a safe and effective treatment of COVID-19.
Collapse
Affiliation(s)
- Shuang Li
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, P. R. China.,Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, P. R. China.,Institute of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, P. R. China
| | - Chang Liu
- Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, P. R. China.,Institute of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, P. R. China
| | - Fangyue Guo
- Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, P. R. China.,Institute of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, P. R. China
| | - Sarah J Taleb
- Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Mengying Tong
- Department of Ultrasound, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, P. R. China
| | - Dong Shang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, P. R. China.,Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, P. R. China.,Institute of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, P. R. China.,Leishenshan Hospital, Wuhan, Hubei, P. R. China
| |
Collapse
|
22
|
Jiang H, Yang L, Hou A, Zhang J, Wang S, Man W, Zheng S, Yu H, Wang X, Yang B, Wang Q, Kuang H. Botany, traditional uses, phytochemistry, analytical methods, processing, pharmacology and pharmacokinetics of Bupleuri Radix: A systematic review. Biomed Pharmacother 2020; 131:110679. [PMID: 32858498 DOI: 10.1016/j.biopha.2020.110679] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/19/2020] [Accepted: 08/20/2020] [Indexed: 02/06/2023] Open
Abstract
Bupleuri Radix (BR) is the dry root of Bupleurum chinense DC. and Bupleurum scorzonerifolium Willd. It has the functions of evacuation and antipyretic, soothing liver and relieving depression and often used to treat cold fever, chest and rib swelling pain, irregular menstruation, uterine prolapse, rectocele and other diseases. In this paper, the botany, traditional application, phytochemistry, pharmacology and toxicity of BR were reviewed. On the basis of limited literature, the analytical method, quality control, processing method, processing effect and pharmacokinetics of BR were summarized and analyzed for the first time. This review makes an in-depth discussion on the shortcomings of the current research on BR, and puts forward its own views and solutions. This has never been summarized in the previous review of BR. It is of great practical significance for future scholars to find a breakthrough point in the study of BR. So far, its mechanism has not been satisfactorily explained. Moreover, the comprehensive quality evaluation and multi-target network pharmacology of BR need to be further studied. In the future, more in vitro and in vivo experiments are needed to give full play to the therapeutic potential of BR.
Collapse
Affiliation(s)
- Hai Jiang
- Key Laboratory of Chinese Materia Medica, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin, 150040, China
| | - Liu Yang
- Key Laboratory of Chinese Materia Medica, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin, 150040, China
| | - Ajiao Hou
- Key Laboratory of Chinese Materia Medica, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin, 150040, China
| | - Jiaxu Zhang
- Key Laboratory of Chinese Materia Medica, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin, 150040, China
| | - Song Wang
- Key Laboratory of Chinese Materia Medica, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin, 150040, China
| | - Wenjing Man
- Key Laboratory of Chinese Materia Medica, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin, 150040, China
| | - Senwang Zheng
- Key Laboratory of Chinese Materia Medica, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin, 150040, China
| | - Huan Yu
- Key Laboratory of Chinese Materia Medica, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin, 150040, China
| | - Xuejiao Wang
- Key Laboratory of Chinese Materia Medica, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin, 150040, China
| | - Bingyou Yang
- Key Laboratory of Chinese Materia Medica, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin, 150040, China
| | - Qiuhong Wang
- Key Laboratory of Chinese Materia Medica, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin, 150040, China; School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 528458, China.
| | - Haixue Kuang
- Key Laboratory of Chinese Materia Medica, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin, 150040, China.
| |
Collapse
|
23
|
Combination of saikosaponin c and telbivudine synergistically enhances the anti-HBV activity. Inflamm Res 2020; 69:545-547. [PMID: 32313973 DOI: 10.1007/s00011-020-01336-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 02/28/2020] [Accepted: 03/07/2020] [Indexed: 01/10/2023] Open
Abstract
OBJECTIVE The present study was undertaken to obtain data using the combination of SSc and lamivudine (LAM), entecavir (ETV) or telbivudine (LdT) in HepG2.2.15 cells to explore whether SSc acts as a potent adjuvant of nucleoside analogues in anti-HBV treatment. METHODS HepG2.2.15 cells were incubated with either SSc combined with any one of three nucleoside analogues (NAs) LAM, ETV, LdT or only one of them for 48 h. The expression profiles of HBV DNA, HBsAg, HBeAg, and HBcAg were examined by real-time quantitative PCR, ELISA, and western blot. RESULTS Compared with mono-drug treatment, the combination of SSc and any of the three nucleoside analogues significantly promoted additional reduction on HBV DNA level. Declined levels of HBsAg, HBeAg, and HBcAg were observed in SSc and LdT combination group. CONCLUSION These in vitro results indicated that SSc acted as a promising nucleoside analogue adjuvant, especially for telbivudine in the therapeutic strategies against HBV infection.
Collapse
|
24
|
Wang Y, Peng M. Research Progress on Classical Traditional Chinese Medicine Jieyu Pills in the Treatment of Depression. Neuropsychiatr Dis Treat 2020; 16:3023-3033. [PMID: 33324063 PMCID: PMC7733407 DOI: 10.2147/ndt.s282384] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 11/23/2020] [Indexed: 12/25/2022] Open
Abstract
Depression is a common clinical psychological disease, which is called "yu zheng" in traditional Chinese medicine (TCM). TCM has a long history in the treatment of depression (yu zheng), which has unique advantages. Jieyu pill (JYP), a classical TCM formula, has been widely used for treating depression because of its clear clinical efficacy, low side effects, and high compliance. In this review, we systematically introduce recent clinical and animal experimental studies on JYP and depression, and review the pharmacological mechanism and active ingredients of JYP, as well as its clinical application in depression therapy. This systematic review provides a deep understanding of TCM prescriptions, pharmacological mechanisms, and disease-medicine interactions, and lays the foundation for developing new treatments for depression.
Collapse
Affiliation(s)
- Yuan Wang
- Department of Psychiatry, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Miao Peng
- Department of Psychiatry, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| |
Collapse
|