1
|
Zhou Y, Yan X, Wu Y, Qi Y, Yu T, Pan F, He L, Guo Z, Hu Z. Bacteria escape macrophage-mediated phagocytosis via targeting apurinic/apyrimidinic endonuclease 1 in sepsis. Int J Biol Macromol 2025; 305:141278. [PMID: 39984093 DOI: 10.1016/j.ijbiomac.2025.141278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 02/07/2025] [Accepted: 02/17/2025] [Indexed: 02/23/2025]
Abstract
Sepsis is a serious disease resulting from an imbalanced host response to bacterial infection, in which macrophages play a crucial role. However, the connection between bacterial infection and macrophage phagocytosis remains largely unknown. Here, we provide evidence supporting the role of apurinic/apyrimidinic endonuclease 1 (APE1) in regulating bacterial infection and macrophage immune function during sepsis. We confirmed down-regulation of APE1 expression in macrophages from both in vitro and in vivo septic models. APE1 deficiency significantly increases the mortality rate of septic mice. Experiments using fluorescent latex beads and Escherichia coli uptake demonstrated that reduced APE1 levels inhibit macrophage phagocytosis. Specifically, APE1 deficiency activates GSK3β, leading to the ubiquitination and subsequent proteasomal degradation of NRF2, thereby reducing the expression of phagocytic receptors. Additionally, APE1 participates in the process through its redox function. In conclusion, APE1 is a critical protein involved in the evasion of macrophage phagocytosis by bacteria. Our study suggests that targeting the APE1/NRF2 axis could serve as a promising therapeutic strategy for sepsis and bacterial infections.
Collapse
Affiliation(s)
- Yu Zhou
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 WenYuan Road, Nanjing 210023, China
| | - Xinyu Yan
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 WenYuan Road, Nanjing 210023, China
| | - Ya Wu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 WenYuan Road, Nanjing 210023, China
| | - Yannan Qi
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 WenYuan Road, Nanjing 210023, China
| | - Tingting Yu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 WenYuan Road, Nanjing 210023, China
| | - Feiyan Pan
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 WenYuan Road, Nanjing 210023, China
| | - Lingfeng He
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 WenYuan Road, Nanjing 210023, China
| | - Zhigang Guo
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 WenYuan Road, Nanjing 210023, China.
| | - Zhigang Hu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 WenYuan Road, Nanjing 210023, China.
| |
Collapse
|
2
|
Chen L, Bai D, Du J, Zhao J, Zhou C, Gu C, Wang Y, Zhang L, Lu N, Zhao Y. GL-V9 inhibits Caspase-11 activation-induced pyroptosis by suppressing ALOX12-mediated lipid peroxidation to alleviate sepsis. Br J Pharmacol 2025. [PMID: 40233936 DOI: 10.1111/bph.70053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 03/13/2025] [Accepted: 03/17/2025] [Indexed: 04/17/2025] Open
Abstract
BACKGROUND AND PURPOSE Sepsis, caused by pathogen infection, poses a serious threat to human life. While the link between sepsis and pyroptosis via Caspase-11 non-canonical inflammasome activation is known, effective treatments remain lacking. Previous studies have confirmed that GL-V9 has antifibrotic and antitumor activities, but whether it has a therapeutic effect on sepsis is unclear. The aim of this study was to investigate the anti-inflammatory activity of GL-V9 and its possible mechanism. EXPERIMENTAL APPROACH The caecal ligation and puncture (CLP) model was used to assess the antiseptic effects of GL-V9 in vivo. Mouse bone marrow derived macrophages (BMDMs) and murine macrophages line J774A.1 also served as an in vitro Caspase-11 activation induced pyroptosis model. Cellular functions and molecular mechanism were analysed using cell viability assay, PI uptake assay, western blotting, immunofluorescence and co-immunoprecipitation. KEY RESULTS GL-V9 reduced tissue damage and mortality in mice with sepsis, and decreased the secretion of inflammatory factors in vivo. In vitro, GL-V9 suppressed Caspase-11-induced pyroptosis and prevented the release of LPS from early endosomes. Mechanistic studies revealed that GL-V9 limits Caspase-11 activation by inhibiting ALOX12-mediated lipid peroxidation. Further studies confirmed that GL-V9 did not further alleviate the symptoms and inflammatory response of septic mice in Alox12 deficient mice. CONCLUSION AND IMPLICATIONS GL-V9 exerts a powerful anti-sepsis effect in vivo, which is associated with the inhibition of Caspase-11 activation. Mechanistically, GL-V9 may block LPS release from early endosomes by inhibiting ALOX12-mediated lipid peroxidation. This suggests that GL-V9 is a potential candidate for the treatment of sepsis.
Collapse
Affiliation(s)
- Li Chen
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, Department of Physiology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Dongsheng Bai
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, Department of Physiology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Jiaying Du
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, Department of Physiology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Jiawei Zhao
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, Department of Physiology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Chen Zhou
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, Department of Physiology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Chunyang Gu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, Department of Physiology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Yuxiang Wang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, Department of Physiology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Lulu Zhang
- Department of Clinical Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Na Lu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, Department of Physiology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Yue Zhao
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, Department of Physiology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| |
Collapse
|
3
|
Rijal R, Gomer RH. Pharmacological inhibition of host pathways enhances macrophage killing of intracellular bacterial pathogens. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.06.647500. [PMID: 40291742 PMCID: PMC12026824 DOI: 10.1101/2025.04.06.647500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
After ingestion into macrophage phagosomes, some bacterial pathogens such as Mycobacterium tuberculosis ( Mtb ) evade killing by preventing phagosome acidification and fusion of the phagosome with a lysosome. Mtb accumulates extracellular polyphosphate (polyP), and polyP inhibits macrophage phagosome acidification and bacterial killing. In Dictyostelium discoideum , polyP also inhibits bacterial killing, and we identified some proteins in D. discoideum that polyP requires to suppress the killing of ingested bacteria. Here, we find that pharmacological inhibition of human orthologues of the D. discoideum proteins, including P2Y1 receptors, mammalian Target of Rapamycin (mTOR), and inositol hexakisphosphate kinase, enhances the killing of Mtb , Legionella pneumophila , and Listeria monocytogenes by human macrophages. Mtb inhibits phagosome acidification, expression of the proinflammatory marker CD54, and autophagy, and increases expression of the anti-inflammatory marker CD206. In Mtb -infected macrophages, the polyP-degrading enzyme polyphosphatase (ScPPX) and inhibitors reversed these effects, with ScPPX increasing CD54 expression more in female macrophages compared to male macrophages. In addition, Mtb inhibits proteasome activity, and some, but not all, inhibitors reversed these effects. While the existence of a dedicated polyP signaling pathway remains uncertain, our findings suggest that pharmacological inhibition of select host proteins can restore macrophage function and enhances the killing of intracellular pathogens. Importance Human macrophages engulf bacteria into phagosomes, which then fuse with lysosomes to kill the bacteria. However, after engulfment, pathogenic bacteria such as Mycobacterium tuberculosis , Legionella pneumophila , and Listeria monocytogenes can block phagosome-lysosome fusion, allowing their survival. Here, we show that pharmacological inhibition of specific macrophage proteins reverses these effects and enhances bacterial killing. These findings suggest that targeting host factors involved in these processes may provide a therapeutic strategy to improve macrophage function against infections such as tuberculosis, Legionnaires' disease, and listeriosis.
Collapse
|
4
|
D'Angelo E, Rampado R, Sensi F, Marangio A, Rossi AD, Repetto O, Steffan A, Corallo D, Aveic S, Bianchi G, Collino F, Caliceti P, Spolverato G, Agostini M. Tumor microenvironment-mimicking macrophage nanovesicles as a targeted therapy platform for colorectal cancer. Int J Pharm 2025; 670:125169. [PMID: 39756598 DOI: 10.1016/j.ijpharm.2025.125169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 01/01/2025] [Accepted: 01/02/2025] [Indexed: 01/07/2025]
Abstract
Macrophages are a pivotal immune cell population in the tumor microenvironment of colorectal cancer (CRC). Differently-polarized macrophages could be exploited to yield naturally-tailored biomimetic nanoparticles for CRC targeting. Here, membrane proteins were isolated from the THP-1 cell line, and anti-tumor macrophages (M1) were obtained from differentiation of THP-1. Membrane proteins were isolated from THP-1 and M1 and used to produce lipid nanovesicles (LNVs; T-LNVs and M1-LNVs) by microfluidic process, which were loaded with doxorubicin (DOXO). The DOXO loaded T-LNVs and M1-LNVs showed similar size (120-145 nm), PDI (0.11-0.28), zeta potential (-15 to -30 mV) and drug loading efficiency (65-75 %). Mass-spectrometry confirmed the presence of the membrane proteins in the LNVs. The abundance of proteins related to stealth properties, cancer targeting, endothelial adhesion and immune-related markers was significantly different in T-LNVs and M1-LNVs. Cell culture studies showed that M1-LNVs possessed higher cancer cell targeting, uptake and cytotoxicity compared to T-LNVs. In vivo studies performed with zebrafish embryos showed that M1-LNVs yielded higher cancer cell targeting and cytotoxicity while systemic cytotoxicity was lower compared to free DOXO. These findings confirm the potentiality and versatility of M1-LNVs for cancer treatment, which could be exploited as new avenue of nanoparticles-based therapies for precision medicine.
Collapse
Affiliation(s)
- Edoardo D'Angelo
- General Surgery 3, Department of Surgery, Oncology and Gastroenterology, University of Padova, via Giustiniani 2, 35128 Padua, Italy; NanoInspired Biomedicine Lab, Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padua, Italy.
| | - Riccardo Rampado
- Laboratory of Precision Nanomedicine, Shmunis School of Biomedicine and Cancer, Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel; Department of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel; Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel; Cancer Biology Research Center, Tel Aviv University, Tel Aviv, Israel; Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Via F. Marzolo 5, 35131 Padua, Italy
| | - Francesca Sensi
- NanoInspired Biomedicine Lab, Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padua, Italy; Department of Women and Children's Health, University of Padova, via Giustiniani 2, 35128 Padua, Italy
| | - Asia Marangio
- General Surgery 3, Department of Surgery, Oncology and Gastroenterology, University of Padova, via Giustiniani 2, 35128 Padua, Italy
| | - Anna De Rossi
- Department of Women and Children's Health, University of Padova, via Giustiniani 2, 35128 Padua, Italy
| | - Ombretta Repetto
- Immunopathology and Cancer Biomarkers, CRO Aviano, National Cancer Institute, IRCCS, 33081 Aviano, Italy
| | - Agostino Steffan
- Immunopathology and Cancer Biomarkers, CRO Aviano, National Cancer Institute, IRCCS, 33081 Aviano, Italy
| | - Diana Corallo
- Laboratory of Target Discovery and Biology of Neuroblastoma, Istituto di Ricerca Pediatrica (IRP), Fondazione Città della Speranza, 35127 Padova, Italy
| | - Sanja Aveic
- Laboratory of Target Discovery and Biology of Neuroblastoma, Istituto di Ricerca Pediatrica (IRP), Fondazione Città della Speranza, 35127 Padova, Italy
| | - Gaia Bianchi
- Laboratory of Translational Research in Paediatric Nephro-Urology, Fondazione Ca' Granda IRCCS Ospedale Maggiore Policlinico, Milan, Italy; Department of Clinical Sciences and Community Health, Dipartimento di Eccellenza 2023-2027, University of Milano, Milan, Italy
| | - Federica Collino
- Laboratory of Translational Research in Paediatric Nephro-Urology, Fondazione Ca' Granda IRCCS Ospedale Maggiore Policlinico, Milan, Italy; Department of Clinical Sciences and Community Health, Dipartimento di Eccellenza 2023-2027, University of Milano, Milan, Italy; Pediatric Nephrology, Dialysis and Transplant Unit, Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, Milano, Italy
| | - Paolo Caliceti
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Via F. Marzolo 5, 35131 Padua, Italy
| | - Gaya Spolverato
- General Surgery 3, Department of Surgery, Oncology and Gastroenterology, University of Padova, via Giustiniani 2, 35128 Padua, Italy
| | - Marco Agostini
- General Surgery 3, Department of Surgery, Oncology and Gastroenterology, University of Padova, via Giustiniani 2, 35128 Padua, Italy; NanoInspired Biomedicine Lab, Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padua, Italy
| |
Collapse
|
5
|
Chen S, Yu W, Shen Y, Lu L, Meng X, Liu J. Unraveling the mechanisms underlying air pollution-induced dysfunction of the oral-gut-brain axis: implications for human health and well-being. ASIAN BIOMED 2025; 19:21-35. [PMID: 40231163 PMCID: PMC11994223 DOI: 10.2478/abm-2025-0002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
Abstract
Air pollution exposure has become an international health issue that poses many risks to life and health. The bidirectional regulatory network, known as the oral-gut-brain axis connects the oral cavity, intestine, and central nervous system, as well as its influence on health outcomes from exposure to air pollution is receiving increased attention. This article systematically details the epidemiological evidence linking air pollutants to diseases affecting the oral, respiratory, intestinal, and nervous systems, while also explaining the route of air pollutants via the oral-gut-brain axis. The oral-gut-brain axis anomalies resulting from air pollution and their underlying molecular processes are also covered. The study provides a fresh viewpoint on how exposure to air pollution affects health and investigates cutting-edge preventative and therapeutic techniques.
Collapse
Affiliation(s)
- Sisi Chen
- Department of Stomatology, Huzhou Wuxing District People's Hospital, Huzhou Wuxing District Maternal and Child Health Hospital,Huzhou, 313008, China
| | - Wenlei Yu
- Department of Stomatology, Huzhou Wuxing District People's Hospital, Huzhou Wuxing District Maternal and Child Health Hospital,Huzhou, 313008, China
| | - Yiwen Shen
- Department of Oncology, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, 210009, China
| | - Linjie Lu
- Department of Stomatology, Haining Hospital of Traditional Chinese Medicine,Jiaxing, 314400, China
| | - Xiangyong Meng
- Department of Stomatology, Medical School, Huzhou University, Huzhou, 313000, China
- Department of Stomatology, The First Affiliated Hospital of Huzhou University, Huzhou, 313099, China
| | - Jun Liu
- Department of Stomatology, Medical School, Huzhou University, Huzhou, 313000, China
- Department of Stomatology, The First Affiliated Hospital of Huzhou University, Huzhou, 313099, China
| |
Collapse
|
6
|
Li X, Wang B, Li X, He J, Shi Y, Wang R, Li D, Haitao D. Analysis and validation of serum biomarkers in brucellosis patients through proteomics and bioinformatics. Front Cell Infect Microbiol 2025; 14:1446339. [PMID: 39872944 PMCID: PMC11769985 DOI: 10.3389/fcimb.2024.1446339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 12/24/2024] [Indexed: 01/30/2025] Open
Abstract
Introduction This study aims to utilize proteomics, bioinformatics, and machine learning algorithms to identify diagnostic biomarkers in the serum of patients with acute and chronic brucellosis. Methods Proteomic analysis was conducted on serum samples from patients with acute and chronic brucellosis, as well as from healthy controls. Differential expression analysis was performed to identify proteins with altered expression, while Weighted Gene Co-expression Network Analysis (WGCNA) was applied to detect co-expression modules associated with clinical features of brucellosis. Machine learning algorithms were subsequently used to identify the optimal combination of diagnostic biomarkers. Finally, ELISA was employed to validate the identified proteins. Results A total of 1,494 differentially expressed proteins were identified, revealing two co-expression modules significantly associated with the clinical characteristics of brucellosis. The Gaussian Mixture Model (GMM) algorithm identified six proteins that were concurrently present in both the differentially expressed and co-expression modules, demonstrating promising diagnostic potential. After ELISA validation, five proteins were ultimately selected. Discussion These five proteins are implicated in the innate immune processes of brucellosis, potentially associated with its pathogenic mechanisms and chronicity. Furthermore, we highlighted their potential as diagnostic biomarkers for brucellosis. This study further enhances our understanding of brucellosis at the protein level, paving the way for future research endeavors.
Collapse
Affiliation(s)
- Xiao Li
- Department of Inner Mongolia Clinical Medicine College, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Bo Wang
- Department of Clinical Laboratory Medicine Center, Inner Mongolia Autonomous Region People’s Hospital, Hohhot, Inner Mongolia, China
| | - Xiaocong Li
- Department of Clinical Laboratory Medicine Center, Inner Mongolia Autonomous Region People’s Hospital, Hohhot, Inner Mongolia, China
| | - Juan He
- Department of Clinical Laboratory Medicine Center, Inner Mongolia Autonomous Region People’s Hospital, Hohhot, Inner Mongolia, China
| | - Yue Shi
- Department of Clinical Laboratory Medicine Center, Inner Mongolia Autonomous Region People’s Hospital, Hohhot, Inner Mongolia, China
| | - Rui Wang
- Department of Clinical Laboratory Medicine Center, Inner Mongolia Autonomous Region People’s Hospital, Hohhot, Inner Mongolia, China
| | - Dongwei Li
- Department of Inner Mongolia Clinical Medicine College, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Ding Haitao
- Department of Clinical Laboratory Medicine Center, Inner Mongolia Autonomous Region People’s Hospital, Hohhot, Inner Mongolia, China
- Inner Mongolia Academy of Medical Sciences, Hohhot, Inner Mongolia, China
| |
Collapse
|
7
|
Lee JK, Guevara V, Akanbi OD, Hoff JD, Kupor D, Brannon ER, Eniola-Adefeso O. Deciphering neutrophil dynamics: Enhanced phagocytosis of elastic particles and impact on vascular-targeted carrier performance. SCIENCE ADVANCES 2025; 11:eadp1461. [PMID: 39752488 PMCID: PMC11698085 DOI: 10.1126/sciadv.adp1461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 11/27/2024] [Indexed: 01/06/2025]
Abstract
Particle elasticity has widely been established to substantially influence immune cell clearance and circulation time of vascular-targeted carriers (VTCs). However, prior studies have primarily investigated interactions with macrophages, monocytic cell lines, and in vivo murine models. Interactions between particles and human neutrophils remain largely unexplored, although they represent a critical aspect of VTC performance. Here, we explore the impact of particle elasticity on primary human neutrophil phagocytosis using polyethylene glycol-based particles of different elastic moduli. We found that neutrophils effectively phagocytose deformable particles irrespective of their modulus, indicating a departure from established phagocytosis trends seen with other types of immune cells. These findings highlight the observed phenotypic difference between different types of phagocytes and underscore the need to characterize VTC performance using various cell types and animal models that represent human systems closely.
Collapse
Affiliation(s)
- Jonathan K. Lee
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Valentina Guevara
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Oluwaseun D. Akanbi
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - J. Damon Hoff
- Small Molecule Analysis Group, Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Daniel Kupor
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Emma R. Brannon
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | | |
Collapse
|
8
|
Nakatsutsumi K, Choi W, Johnston W, Pool K, Park DJ, Weaver JL, Coimbra R, Eliceiri B, Costantini TW. Lung contusion complicated by pneumonia worsens lung injury via the inflammatory effect of alveolar small extracellular vesicles on macrophages and epithelial cells. J Trauma Acute Care Surg 2025; 98:55-63. [PMID: 39621452 DOI: 10.1097/ta.0000000000004499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
BACKGROUND Lung contusion (LC) complicated by pneumonia is associated with a higher risk of acute lung injury (ALI) mediated by activation of immune cells and injury to the lung epithelium. Small extracellular vesicles (sEVs) are essential mediators of cellular crosstalk; however, their role in the development of postinjury ALI remains unclear. We hypothesized that LC complicated by pneumonia increases the pro-inflammatory effect of alveolar sEVs on macrophages and the cytotoxicity of alveolar sEVs to pulmonary epithelial cells, worsening the severity of ALI. METHODS Studies in C57BL/6 mice were designed with four groups: sham, LC, Pneumonia (Pneu), and LC + Pneu. Lung contusion was induced by a cortical controlled impactor, while pneumonia was conducted by intratracheal injection of 10 5 cfu Pseudomonas aeruginosa . Bronchoalveolar lavage fluid (BAL) was harvested 24 hours postinfection, and sEVs were purified by centrifugation and size exclusion chromatography. To evaluate the effect of alveolar sEV on cells, sEVs from each group were cocultured with macrophages (RAW 264.7) to assess cytokine release and lung epithelial cells (MLE 12) to assess epithelial cytotoxicity. RESULTS The LC + Pneu group severely injured lungs histologically and increased the susceptibility to the bacteria. The LC + Pneu group showed higher concentrations of proteins, macrophage inflammatory protein 1-alpha (MIP1α), and intercellular adhesion molecule 1 (ICAM-1) in BAL. MIP1α and ICAM-1 expression in the macrophages increased after incubation with sEVs from the LC + Pneu group. Moreover, the sEVs demonstrated higher cytotoxicity to epithelial cells and increased apoptosis in epithelial cells after incubation with sEVs from the LC + Pneu group. CONCLUSION Lung contusion complicated by pneumonia increased the pro-inflammatory effect of alveolar sEVs on macrophages and the cytotoxicity of alveolar sEVs to pulmonary epithelial cells, worsening the severity of ALI. These results demonstrate the potential importance of alveolar sEVs in lung inflammation following a bacterial infection after trauma.
Collapse
Affiliation(s)
- Keita Nakatsutsumi
- From the Division of Trauma, Surgical Critical Care, Burns and Acute Care Surgery, Department of Surgery (K.N., W.C., W.J., K.P., D.P., J.W., B.E., T.C.), UC San Diego School of Medicine, San Diego; Comparative Effectiveness and Clinical Outcomes Research Center (R.C.), Riverside University Health System, Loma Linda University School of Medicine, Riverside, California; and Trauma and Acute Critical Care Center (K.N.), Tokyo Medical and Dental University Hospital, Bunkyo-ku, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Wu H, Chen C, Li J, Yu D, Wu X, Huang H, Tang Z, Wu Q, Yan S, Wang N, Wang M, Wei F, Yu Y, Wang D, Shi M, Yue X, Cao P, Zheng Z, Li X, Guo B, Shi L, Guo Z. Engineered Magneto-Piezoelectric Nanoparticles-Enhanced Scaffolds Disrupt Biofilms and Activate Oxidative Phosphorylation in Icam1 + Macrophages for Infectious Bone Defect Regeneration. ACS NANO 2024; 18:35575-35594. [PMID: 39690461 DOI: 10.1021/acsnano.4c13562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Infectious bone defects pose significant clinical challenges due to persistent infection and impaired bone healing. Icam1+ macrophages were identified as crucial and previously unrecognized regulators in the repair of bone defects, where impaired oxidative phosphorylation within this macrophage subset represents a significant barrier to effective bone regeneration. To address this challenge, dual-responsive iron-doped barium titanate (BFTO) nanoparticles were synthesized with magnetic and ultrasonic properties. These nanoparticles were further loaded with the anti-inflammatory agent curcumin and coated with engineered mesenchymal stem cell membranes (EMM) modified with γ3 peptide, creating BFTO-Cur@EMM nanoparticles specifically designed to target Icam1+ macrophages. These nanoparticles were shown to disrupt bacterial biofilms under alternating magnetic fields (AMF) and to activate oxidative phosphorylation and osteogenic immune responses in Icam1+ macrophages via low-intensity pulsed ultrasound (LIPUS). Transcriptomic sequencing and validation experiments demonstrated that this approach activates oxidative phosphorylation (OXPHOS) by stimulating the JAK2-STAT3 pathway and inhibiting the MAPK-JNK pathway, thereby promoting the polarization of Icam1+ macrophages toward a pro-reparative phenotype and enhancing the secretion of pro-angiogenic and osteogenic cytokines. These nanoparticles were subsequently integrated into quaternized chitosan (QCS) and tricalcium phosphate (TCP) to create a bioink for three-dimensional (3D) printing anti-infection QT/BFTO-Cur@EMM bone repair scaffolds. In vivo studies indicated that these scaffolds significantly improved the healing of infectious bone defects without causing thermal damage to surrounding tissues. This work highlights the potential of this material and the targeting of Icam1+ macrophages as an effective strategy for simultaneously controlling infection and promoting bone regeneration.
Collapse
Affiliation(s)
- Hao Wu
- Department of Orthopaedics, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, P. R. China
| | - Changcheng Chen
- Department of Orthopaedics, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, P. R. China
| | - Jiangfeng Li
- Institute of Burn Research, Southwest Hospital & State key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), Chongqing 400038, P. R. China
| | - Dongmei Yu
- Department of Orthopaedics, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, P. R. China
| | - Xun Wu
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, P. R. China
| | - Hai Huang
- Department of Orthopaedics, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, P. R. China
| | - Zhen Tang
- Department of Orthopaedics, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, P. R. China
| | - Qi Wu
- Department of Orthopaedics, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, P. R. China
| | - Shichao Yan
- Department of Orthopaedics, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, P. R. China
| | - Ning Wang
- Department of Orthopaedics, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, P. R. China
| | - Mo Wang
- Department of Orthopaedics, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, P. R. China
| | - Feilong Wei
- Department of Orthopaedics, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, P. R. China
| | - Yunlong Yu
- Institute of Burn Research, Southwest Hospital & State key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), Chongqing 400038, P. R. China
| | - Duan Wang
- Orthopaedic Research Institute, Department of Orthopaedics, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Mengting Shi
- Department of Orthopaedics, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, P. R. China
| | - Xusong Yue
- Department of Orthopaedics, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, P. R. China
| | - Pengfei Cao
- Department of Orthopaedics, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, P. R. China
| | - Zenghui Zheng
- Department of Orthopaedics, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, P. R. China
| | - Xiaokang Li
- Department of Orthopaedics, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, P. R. China
| | - Baolin Guo
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, and Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Lei Shi
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P. R. China
| | - Zheng Guo
- Department of Orthopaedics, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, P. R. China
| |
Collapse
|
10
|
Gupta P, Kumar R. Targeting ICAM1 to Ameliorate Vaso-Occlusion and Inflammation in Sickle Cell Disease. Eur J Haematol 2024; 113:730-737. [PMID: 39354752 DOI: 10.1111/ejh.14313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/12/2024] [Accepted: 09/18/2024] [Indexed: 10/03/2024]
Abstract
Sickle cell disease (SCD) is a hereditary disorder characterized by vaso-occlusion, inflammation, and tissue damage. Intercellular adhesion molecule 1 (ICAM-1) plays a crucial role in the pathophysiology of SCD by promoting the adhesion of sickle cells to the endothelium, contributing to vaso-occlusion and tissue damage. The ICAM-1 gene encodes a glycoprotein that interacts with lymphocyte function-associated antigen 1 (LFA-1) and macrophage 1-antigen (Mac-1) receptors, perpetuating inflammation, and oxidative stress. The NF-κB signaling pathway regulates ICAM-1 expression, which is elevated in patients with SCD, leading to increased endothelial cell activation and damage. Targeting ICAM-1 and its interactions with sickle cells and the endothelium has emerged as a potential therapeutic strategy for managing SCD. This review highlights the complex interplay between ICAM-1, sickle cells, and the endothelium, and discusses the potential of ICAM-1-targeted therapies for mitigating VOC and improving the quality of life for patients with SCD.
Collapse
Affiliation(s)
- Parul Gupta
- Division of Genetic Disorders, ICMR-National Institute of Research in Tribal Health, Jabalpur, India
| | - Ravindra Kumar
- Division of Genetic Disorders, ICMR-National Institute of Research in Tribal Health, Jabalpur, India
| |
Collapse
|
11
|
Hoste L, Meertens B, Ogunjimi B, Sabato V, Guerti K, van der Hilst J, Bogie J, Joos R, Claes K, Debacker V, Janssen F, Tavernier SJ, Jacques P, Callens S, Dehoorne J, Haerynck F. Identification of a 5-Plex Cytokine Signature that Differentiates Patients with Multiple Systemic Inflammatory Diseases. Inflammation 2024:10.1007/s10753-024-02183-3. [PMID: 39528768 DOI: 10.1007/s10753-024-02183-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/30/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
Patients with non-infectious systemic inflammation may suffer from one of many diseases, including hyperinflammation (HI), autoinflammatory disorders (AID), and systemic autoimmune disease (AI). Despite their clinical overlap, the pathophysiology and patient management differ between these disorders. We aimed to investigate blood biomarkers able to discriminate between patient groups. We included 44 patients with active clinical and/or genetic systemic inflammatory disease (9 HI, 27 AID, 8 systemic AI) and 16 healthy controls. We quantified 55 serum proteins and combined multiple machine learning algorithms to identify five proteins (CCL26, CXCL10, ICAM-1, IL-27, and SAA) that maximally separated patient groups. High ICAM-1 was associated with HI. AID was characterized by an increase in SAA and decrease in CXCL10 levels. A trend for higher CXCL10 and statistically lower SAA was observed in patients with systemic AI. Principal component analysis and unsupervised hierarchical clustering confirmed separation of disease groups. Logistic regression modelling revealed a high statistical significance for HI (P = 0.001), AID, and systemic AI (P < 0.0001). Predictive accuracy was excellent for systemic AI (AUC 0.94) and AID (0.91) and good for HI (0.81). Further research is needed to validate findings in a larger prospective cohort. Results will contribute to a better understanding of the pathophysiology of systemic inflammatory disorders and can improve diagnosis and patient management.
Collapse
Affiliation(s)
- Levi Hoste
- Primary Immune Deficiency Research Laboratory, Department of Internal Diseases and Pediatrics, Centre for Primary Immunodeficiency Ghent, Jeffrey Modell Diagnosis and Research Centre, Ghent University Hospital, Corneel Heymanslaan 10, 9000, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Division of Pediatric Pulmonology, Infectious Diseases and Inborn Errors of Immunity ,Ghent University Hospital, European Reference Network for Rare Immunodeficiency, Autoinflammatory and Autoimmune Diseases Network (ERN-RITA) Center, Ghent, Belgium
| | - Bram Meertens
- Primary Immune Deficiency Research Laboratory, Department of Internal Diseases and Pediatrics, Centre for Primary Immunodeficiency Ghent, Jeffrey Modell Diagnosis and Research Centre, Ghent University Hospital, Corneel Heymanslaan 10, 9000, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Division of Pediatric Pulmonology, Infectious Diseases and Inborn Errors of Immunity ,Ghent University Hospital, European Reference Network for Rare Immunodeficiency, Autoinflammatory and Autoimmune Diseases Network (ERN-RITA) Center, Ghent, Belgium
| | - Benson Ogunjimi
- Rheumatology Department, Antwerp Hospital Network, Antwerp, Belgium
- Division of Pediatric Rheumatology, Antwerp University Hospital, Edegem, Belgium
- Antwerp Center for Pediatric Rheumatology and Autoinflammatory Diseases, Antwerp, Belgium
- Division of Pediatric Rheumatology, Brussels University Hospital, Jette, Belgium
- Antwerp Center for Translational Immunology and Virology (ACTIV), Vaccine and Infectious Disease Institute (VAXINFECTIO) ,Centre for Health Economics Research and Modeling Infectious Diseases (CHERMID), University of Antwerp, Antwerp, Belgium
| | - Vito Sabato
- Department of Immunology, Allergology, and Rheumatology, Antwerp University Hospital, Edegem, Belgium
| | - Khadija Guerti
- Department of Clinical Chemistry, Antwerp University Hospital, Edegem, Belgium
| | - Jeroen van der Hilst
- Department of Infectious Diseases and Immune Pathology, Jessa General Hospital, Hasselt, Belgium
- Limburg Clinical Research Center, Hasselt University, Hasselt, Belgium
| | - Jeroen Bogie
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Hasselt, Belgium
- University MS Centre, Hasselt University, Hasselt, Belgium
| | - Rik Joos
- Division of Pediatric Rheumatology, Antwerp University Hospital, Edegem, Belgium
- Department of Immunology, Allergology, and Rheumatology, Antwerp University Hospital, Edegem, Belgium
- Department of Pediatric Rheumatology, Ghent University Hospital, European Reference Network for Rare Immunodeficiency, Autoinflammatory and Autoimmune Diseases (ERN-RITA) Center, Ghent, Belgium
| | - Karlien Claes
- Primary Immune Deficiency Research Laboratory, Department of Internal Diseases and Pediatrics, Centre for Primary Immunodeficiency Ghent, Jeffrey Modell Diagnosis and Research Centre, Ghent University Hospital, Corneel Heymanslaan 10, 9000, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Division of Pediatric Pulmonology, Infectious Diseases and Inborn Errors of Immunity ,Ghent University Hospital, European Reference Network for Rare Immunodeficiency, Autoinflammatory and Autoimmune Diseases Network (ERN-RITA) Center, Ghent, Belgium
| | - Veronique Debacker
- Primary Immune Deficiency Research Laboratory, Department of Internal Diseases and Pediatrics, Centre for Primary Immunodeficiency Ghent, Jeffrey Modell Diagnosis and Research Centre, Ghent University Hospital, Corneel Heymanslaan 10, 9000, Ghent, Belgium
| | - Fleur Janssen
- Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Simon J Tavernier
- Primary Immune Deficiency Research Laboratory, Department of Internal Diseases and Pediatrics, Centre for Primary Immunodeficiency Ghent, Jeffrey Modell Diagnosis and Research Centre, Ghent University Hospital, Corneel Heymanslaan 10, 9000, Ghent, Belgium
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Unit of Molecular Signal Transduction in Inflammation, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Peggy Jacques
- Department of Rheumatology, University Hospital Ghent, Ghent, Belgium
| | - Steven Callens
- Department of General Internal Medicine, Ghent University Hospital, Ghent, Belgium
| | - Joke Dehoorne
- Department of Pediatric Rheumatology, Ghent University Hospital, European Reference Network for Rare Immunodeficiency, Autoinflammatory and Autoimmune Diseases (ERN-RITA) Center, Ghent, Belgium
| | - Filomeen Haerynck
- Primary Immune Deficiency Research Laboratory, Department of Internal Diseases and Pediatrics, Centre for Primary Immunodeficiency Ghent, Jeffrey Modell Diagnosis and Research Centre, Ghent University Hospital, Corneel Heymanslaan 10, 9000, Ghent, Belgium.
- Department of Internal Medicine and Pediatrics, Division of Pediatric Pulmonology, Infectious Diseases and Inborn Errors of Immunity ,Ghent University Hospital, European Reference Network for Rare Immunodeficiency, Autoinflammatory and Autoimmune Diseases Network (ERN-RITA) Center, Ghent, Belgium.
| |
Collapse
|
12
|
Zhang L, Chen S, Zheng Z, Lin Y, Wang C, Gong Y, Qin A, Su J, Tang S. Artificial Neutrophil-Mediated CEBPA-saRNA Delivery to Ameliorate ALI/ARDS. ACS APPLIED MATERIALS & INTERFACES 2024; 16:51957-51969. [PMID: 39305228 DOI: 10.1021/acsami.4c09022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Acute lung injury/acute respiratory distress syndrome (ALI/ARDS) still faces great challenges due to uncontrollable inflammation disorders, complicated causes of occurrence, and high mortality. Small-activating RNA (saRNA) has emerged as a novel and powerful gene-activating tool that may be useful in the treatment of ALI/ARDS. However, effective saRNA therapy is still challenged by the lack of effective and safe gene delivery vehicles. In this study, we develop a type of artificial neutrophil that is used to deliver saRNAs for ALI/ARDS treatment. The saRNA targeting CCAAT-enhancer binding protein α (CEBPA-saRNA) is complexed with H1 histone and further camouflaged with neutrophil membranes (NHR). Interestingly, we are the first to find that the H1 histone possesses the most effective binding capability to saRNA, compared to other subtypes. The prepared NHR shows excellent physicochemical properties, effective cellular uptake by the inflammatory M1 macrophages, and efficient activation of CEBPA, leading to significant M2 polarization. NHR shows an extended circulation lifetime and high-level accumulation in the inflamed lungs. The in vivo experiments indicate that NHR ameliorates ALI in a mouse model. This type of artificial neutrophil shows powerful inflammatory inhibition both in vitro and in vivo, which opens a new avenue for the treatment of ALI/ARDS.
Collapse
Affiliation(s)
- Lingmin Zhang
- Department of Biomedical Engineering, Jinan University, No. 601 Huangpu Road, Guangzhou 510632, China
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Panyu Central Hospital and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Sheng Chen
- Department of Biomedical Engineering, Jinan University, No. 601 Huangpu Road, Guangzhou 510632, China
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Panyu Central Hospital and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - ZhouYikang Zheng
- Department of Biomedical Engineering, Jinan University, No. 601 Huangpu Road, Guangzhou 510632, China
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Panyu Central Hospital and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Yinshan Lin
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Panyu Central Hospital and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Chen Wang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Panyu Central Hospital and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Yingjie Gong
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Panyu Central Hospital and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Aiping Qin
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Panyu Central Hospital and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Jianfen Su
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Panyu Central Hospital and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Shunqing Tang
- Department of Biomedical Engineering, Jinan University, No. 601 Huangpu Road, Guangzhou 510632, China
| |
Collapse
|
13
|
Liu Y, Feng Y, Kong X, Wei Y, Zhan M, Wang J, Dai X, Wang L, Ma L, Chen H, Jiang L. A microRNA sponge, LINC02193, promotes neutrophil activation by upregulating ICAM1 and is correlated with ANCA-associated vasculitis. Rheumatology (Oxford) 2024; 63:2295-2306. [PMID: 37963065 DOI: 10.1093/rheumatology/kead605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/18/2023] [Accepted: 10/25/2023] [Indexed: 11/16/2023] Open
Abstract
OBJECTIVE To investigate the pathogenic role and underlying mechanisms of long noncoding RNAs (lncRNAs) in ANCA-associated vasculitis (AAV). METHODS RNA-sequencing (RNA-seq) was applied to screen the expression profile of lncRNAs in peripheral leukocytes from five AAV patients and five healthy controls (HC). Candidate lncRNAs were preliminarily verified in peripheral leukocytes from 46 AAV patients and 35 HC by qRT-PCR. Then, the identified LINC02193 was further validated in peripheral neutrophils from 67 AAV patients, 45 HC and 64 disease controls. Correlation between LINC02193 levels and disease activity was analysed. Then, a loss-of-function study was conducted to investigate the role of LINC02193 in neutrophils activation. Furthermore, bioinformatics analysis, dual luciferase reporter and RNA immunoprecipitation assays were performed to explore the mechanism of LINC02193 regulating neutrophils activation. RESULTS A total of 467 upregulated and 412 downregulated lncRNAs were identified in AAV patients. From the top five upregulated lncRNAs, an elevation of LINC02193 was validated in a larger sample of AAV patients, and positively correlated with disease activity. Knockdown of LINC02193 inhibited reactive oxygen species and nitric oxide production, neutrophil extracellular traps release and adhesion to endothelial cells of differentiated human promyelocytic leukaemia HL-60 cells, whereas overexpression of ICAM1 counteracted these effects. Mechanistic analysis demonstrated that LINC02193 acted as an miR-485-5p sponge to relieve the repressive effect of miR-485-5p on ICAM1, thus promoting ICAM1 expression. CONCLUSION LINC02193, a novel lncRNA identified in AAV, could function as competing endogenous RNAs for miR-485-5p to promote ICAM1 expression and neutrophils activation, suggesting its potential as a therapeutic target of AAV.
Collapse
Affiliation(s)
- Yun Liu
- Department of Rheumatology, Zhongshan Hospital, Fudan University, Shanghai, PR China
| | - Yifan Feng
- Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai, PR China
| | - Xiufang Kong
- Department of Rheumatology, Zhongshan Hospital, Fudan University, Shanghai, PR China
| | - Yuanyuan Wei
- Shanghai Key Laboratory of Bioactive Small Molecules, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai, PR China
| | - Minglang Zhan
- Department of Rheumatology, Xiamen Hospital, Zhongshan Hospital, Fudan University, Xiamen, China
| | - Jinghua Wang
- Department of Rheumatology, Zhongshan Hospital, Fudan University, Shanghai, PR China
| | - Xiaojuan Dai
- Department of Rheumatology, Zhongshan Hospital, Fudan University, Shanghai, PR China
| | - Li Wang
- Department of Rheumatology, Zhongshan Hospital, Fudan University, Shanghai, PR China
| | - Lili Ma
- Department of Rheumatology, Zhongshan Hospital, Fudan University, Shanghai, PR China
| | - Huiyong Chen
- Department of Rheumatology, Zhongshan Hospital, Fudan University, Shanghai, PR China
| | - Lindi Jiang
- Department of Rheumatology, Zhongshan Hospital, Fudan University, Shanghai, PR China
- Center of Clinical Epidemiology and Evidence-based Medicine, Fudan University, Shanghai, PR China
| |
Collapse
|
14
|
Li J, Feng J, Li Z, Ni Y, Liu L, Lei X, Chai Z, Zhuang N, Xu J, He Y, Shan J, Qian C. B cell lymphoma 6 promotes hepatocellular carcinoma progression by inhibiting tumor infiltrating CD4 +T cell cytotoxicity through ESM1. NPJ Precis Oncol 2024; 8:139. [PMID: 38956432 PMCID: PMC11220024 DOI: 10.1038/s41698-024-00625-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 06/02/2024] [Indexed: 07/04/2024] Open
Abstract
Immunotherapy exhibited potential effects for advanced hepatocellular carcinoma, unfortunately, the clinical benefits are often countered by cancer adaptive immune suppressive response. Uncovering the mechanism how cancer cells evade immune surveillance would help to develop new immunotherapy approaches and combination therapy. In this article, by analyzing the transcriptional factors which modulate the differentially expressed genes between T cell infiltration high group and low group, we identified oncoprotein B cell lymphoma 6 (BCL6) suppresses the infiltration and activation of tumor infiltrating T lymphocytes, thus correlated with poorer clinical outcome. By using antibody deletion experiment, we further demonstrated that CD4+T cells but not CD8+T cells are the main lymphocyte population suppressed by Bcl6 to promote HCC development. Mechanistically, BCL6 decreases cancer cell expression of pro-inflammatory cytokines and T lymphocyte chemokines such as IL6, IL1F6, and CCL5. Moreover, BCL6 upregulates Endothelial cell-specific molecule 1 (ESM1) to inhibit T lymphocyte recruitment and activation possibly through ICAM-1/LFA-1 signaling pathway. Our findings uncovered an unappreciated paracrine mechanism how cancer cell-derived BCL6 assists cancer cell immune evasion, and highlighted the role of CD4+T cells in HCC immune surveillance.
Collapse
Affiliation(s)
- Jiatao Li
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Juan Feng
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Ziyong Li
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, 400030, China
- School of Medicine Chongqing University, Chongqing, 400030, China
| | - Yuanli Ni
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Limei Liu
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Xia Lei
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, 400030, China
- School of Medicine Chongqing University, Chongqing, 400030, China
| | - Zixuan Chai
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Na Zhuang
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Jiake Xu
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Yongpeng He
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Juanjuan Shan
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, 400030, China.
- School of Medicine Chongqing University, Chongqing, 400030, China.
| | - Cheng Qian
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, 400030, China.
- School of Medicine Chongqing University, Chongqing, 400030, China.
| |
Collapse
|
15
|
Ferris CL, Ulanova M. Invasive and Non-invasive Clinical Haemophilus influenzae Type A Isolates Activate Differentiated HL-60 Cells In Vitro. Pathog Immun 2024; 9:38-55. [PMID: 38774126 PMCID: PMC11107419 DOI: 10.20411/pai.v9i1.659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/30/2024] [Indexed: 05/24/2024] Open
Abstract
Background The effective elimination of encapsulated bacteria like Haemophilus influenzae type a (Hia) relies on immune mechanisms such as complement-mediated opsonophagocytosis by neutrophils in coordination with opsonization by anti-capsular antibodies. This study evaluated if Hia could activate the immune response through neutrophils and if these responses differed between encapsulated versus unencapsulated or invasive versus non-invasive strains. Methods HL-60-derived neutrophil-like cells (dHL-60), differentiated with 1.25% dimethyl sulfoxide over 9 days, were used in an opsonophagocytosis assay and in vitro infection model to measure Hia's susceptibility to killing and dHL-60 surface molecule expression, respectively. The impact of strain-specific features on the immune response was investigated using clinical isolates of a dominant North American sequence type (ST)-23, including Hia 11-139 (encapsulated, invasive), 14-61 (encapsulated, non-invasive), 13-0074 (unencapsulated, invasive), as well as a representative ST-4 isolate (Hia 13-240, encapsulated, invasive), and a nontypeable strain (NTHi 375, unencapsulated, non-invasive). Results Unencapsulated and non-invasive Hi strains were more susceptible to killing by the innate immune response while the ST-23 invasive strain, Hia 11-139 required serum antibodies for destruction. Flow cytometry analysis showed increased expression of co-stimulatory molecule ICAM-1 and Fc receptors (CD89, CD64) but decreased expression of the Fc receptor CD16, revealing potential mechanisms of neutrophil-mediated defense against Hia that extend to both non-invasive and invasive strains. Conclusions Hia clinical isolates with diverse pathogenicity illustrated contrasting susceptibility to killing by immune mechanisms while maintaining the same capacity to activate neutrophil-like cells, further underscoring the need for additional studies on Hia's pathogenesis.
Collapse
Affiliation(s)
| | - Marina Ulanova
- Department of Biology, Lakehead University, Thunder Bay, ON, Canada
- Northern Ontario School of Medicine University, Thunder Bay, ON, Canada
| |
Collapse
|
16
|
Wang Y, Li C, Chen J, Cui X, Wang B, Wang Y, Wang D, Liu J, Li J. Pyxinol Fatty Acid Ester Derivatives J16 against AKI by Selectively Promoting M1 Transition to M2c Macrophages. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:7074-7088. [PMID: 38525502 DOI: 10.1021/acs.jafc.3c06979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
Acute kidney injury (AKI) is a common, multicause clinical condition that, if ignored, often progresses to chronic kidney disease (CKD) and end-stage kidney disease, with a mortality rate of 40-50%. However, there is a lack of universal treatment for AKI. Inflammation is the basic pathological change of early kidney injury, and inflammation can exacerbate AKI. Macrophages are the primary immune cells involved in the inflammatory microenvironment of kidney disease. Therefore, regulating the function of macrophages is a crucial breakthrough for the AKI intervention. Our team chemically modified pyxinol, an ocotillol-type ginsenoside, to prepare PJ16 with higher solubility and bioavailability. In vitro, using a model of macrophages stimulated by LPS, it was found that PJ16 could regulate macrophage function, including inhibiting the secretion of inflammatory factors, promoting phagocytosis, inhibiting M1 macrophages, and promoting M1 transition to the M2c macrophage. Further investigation revealed that PJ16 may shield renal tubular epithelial cells (HK-2) damaged by LPS in vitro. Based on this, PJ16 was validated in the animal model of unilateral ureteral obstruction, which showed that it improves renal function and inhibits renal tissue fibrosis by decreasing inflammatory responses, reducing macrophage inflammatory infiltration, and preferentially upregulating M2c macrophages. In conclusion, our study is the first to show that PJ16 resists AKI and fibrosis by mechanistically regulating macrophage function by modulating the phenotypic transition from M1 to M2 macrophages, mainly M2c macrophages.
Collapse
Affiliation(s)
- Yaru Wang
- Department of Pharmacology, College of Basic Medicine of Jilin University, Changchun, Jilin 130012, China
| | - Changcheng Li
- Department of Pharmacology, College of Basic Medicine of Jilin University, Changchun, Jilin 130012, China
| | - Jingyi Chen
- China-Japan Union Hospital of Jilin University, Changchun, Jilin 130022, China
| | - Xiaoli Cui
- Department of Pharmacology, College of Basic Medicine of Jilin University, Changchun, Jilin 130012, China
| | - Binghuan Wang
- Department of Pharmacology, College of Basic Medicine of Jilin University, Changchun, Jilin 130012, China
| | - Yuezeng Wang
- Department of Pharmacology, College of Basic Medicine of Jilin University, Changchun, Jilin 130012, China
| | - Dayu Wang
- China-Japan Union Hospital of Jilin University, Changchun, Jilin 130022, China
| | - Jinping Liu
- Research Center of Natural Drug, School of Pharmaceutical Sciences of Jilin University, Changchun, Jilin 130012, China
| | - Jing Li
- Department of Pharmacology, College of Basic Medicine of Jilin University, Changchun, Jilin 130012, China
| |
Collapse
|
17
|
Xiao X, Han Y, Li Q, Zheng D, Cheng CY, Ni Y. Exploring the evolving function of soluble intercellular adhesion molecule-1 in junction dynamics during spermatogenesis. Front Endocrinol (Lausanne) 2024; 14:1281812. [PMID: 38260159 PMCID: PMC10801026 DOI: 10.3389/fendo.2023.1281812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 12/15/2023] [Indexed: 01/24/2024] Open
Abstract
Intercellular adhesion molecule-1 (ICAM-1) is a transmembrane glycoprotein expressed on immune, endothelial, and epithelial cells. Its ectodomain can be proteolytically cleaved to release a circulating soluble form called sICAM-1. Clinical studies demonstrate sICAM-1 is upregulated in various diseases and associated with disease severity. Research has identified sICAM-1 as a regulator of the blood-testis barrier (BTB) and spermatogenesis. Overexpression of sICAM-1 weakened the BTB in vitro and in vivo, downregulated junction proteins including N-cadherin, γ-catenin, and connexin 43, and caused germ cell loss. This contrasts with barrier-strengthening effects of membrane-bound ICAM-1. sICAM-1 may act as a molecular switch enabling germ cells to open BTB and Sertoli-germ cell adhesion for transport across the seminiferous epithelium. While the mechanism remains unclear, reduced SRC family kinase (SFK) signaling was observed following sICAM-1 overexpression. SRC promotes BTB protein endocytosis and degradation, influences cytoskeletal dynamics, and affects cell polarity. As sICAM-1 overexpression phenocopies SRC inhibition, SRC may operate downstream of sICAM-1 in regulating BTB dynamics and spermatogenesis. Investigating sICAM-1's structure-function regions and downstream targets will elucidate the molecular mechanisms of junction disruption. This knowledge could enable strategies targeting sICAM-1/SRC to modulate BTB permeability and treat male infertility or diseases involving endothelial/epithelial barrier dysfunction.
Collapse
Affiliation(s)
- Xiang Xiao
- Center for Reproductive Health, School of Pharmaceutical Sciences, Hangzhou Medical College (Zhejiang Academy of Medical Sciences), Hangzhou, China
- Engineering Research Center of Novel Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
| | - Yating Han
- Center for Reproductive Health, School of Pharmaceutical Sciences, Hangzhou Medical College (Zhejiang Academy of Medical Sciences), Hangzhou, China
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| | - Qin Li
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, China
| | - Dongwang Zheng
- Center for Reproductive Health, School of Pharmaceutical Sciences, Hangzhou Medical College (Zhejiang Academy of Medical Sciences), Hangzhou, China
| | - C. Yan Cheng
- Department of Urology and Andrology, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ya Ni
- Center for Reproductive Health, School of Pharmaceutical Sciences, Hangzhou Medical College (Zhejiang Academy of Medical Sciences), Hangzhou, China
| |
Collapse
|
18
|
Alves SAS, Teixeira DE, Peruchetti DB, Silva LS, Brandão LFP, Caruso-Neves C, Pinheiro AAS. Bradykinin produced during Plasmodium falciparum erythrocytic cycle drives monocyte adhesion to human brain microvascular endothelial cells. Brain Res 2024; 1822:148669. [PMID: 37951562 DOI: 10.1016/j.brainres.2023.148669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/30/2023] [Accepted: 11/06/2023] [Indexed: 11/14/2023]
Abstract
Cerebral malaria (CM) pathogenesis is described as a multistep mechanism. In this context, monocytes have been implicated in CM pathogenesis by increasing the sequestration of infected red blood cells to the brain microvasculature. In disease, endothelial activation is followed by reduced monocyte rolling and increased adhesion. Nowadays, an important challenge is to identify potential pro-inflammatory stimuli that can modulate monocytes behavior. Our group have demonstrated that bradykinin (BK), a pro-inflammatory peptide involved in CM, is generated during the erythrocytic cycle of P. falciparum and is detected in culture supernatant (conditioned medium). Herein we investigated the role of BK in the adhesion of monocytes to endothelial cells of blood brain barrier (BBB). To address this issue human monocytic cell line (THP-1) and human brain microvascular endothelial cells (hBMECs) were used. It was observed that 20% conditioned medium from P. falciparum infected erythrocytes (Pf-iRBC sup) increased the adhesion of THP-1 cells to hBMECs. This effect was mediated by BK through the activation of B2 and B1 receptors and involves the increase in ICAM-1 expression in THP-1 cells. Additionally, it was observed that angiotensin-converting enzyme (ACE) inhibitor, captopril, enhanced the effect of both BK and Pf-iRBC sup on THP-1 adhesion. Together these data show that BK, generated during the erythrocytic cycle of P. falciparum, could play an important role in adhesion of monocytes in endothelial cells lining the BBB.
Collapse
Affiliation(s)
- Sarah A S Alves
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Douglas E Teixeira
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Diogo B Peruchetti
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Leandro S Silva
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luiz Felipe P Brandão
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Celso Caruso-Neves
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Instituto Nacional de Ciência e Tecnologia em Medicina Regenerativa, INCT-Regenera, Conselho Nacional de Desenvolvimento Científico e Tecnológico/MCTIC, Rio de Janeiro, Brazil; Rio de Janeiro Innovation Network in Nanosystems for Health - NanoSAUDE/FAPERJ, Rio de Janeiro, Brazil
| | - Ana Acacia S Pinheiro
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Rio de Janeiro Innovation Network in Nanosystems for Health - NanoSAUDE/FAPERJ, Rio de Janeiro, Brazil.
| |
Collapse
|
19
|
Tapeinos C, Torrieri G, Wang S, Martins JP, Santos HA. Evaluation of cell membrane-derived nanoparticles as therapeutic carriers for pancreatic ductal adenocarcinoma using an in vitro tumour stroma model. J Control Release 2023; 362:225-242. [PMID: 37625597 DOI: 10.1016/j.jconrel.2023.08.045] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 08/19/2023] [Accepted: 08/22/2023] [Indexed: 08/27/2023]
Abstract
Here, we fabricated nanoparticles made solely from the membrane of cells found in the pancreatic tumour's microenvironment (TME), like the human MiaPaCa-2 cells and M2-polarized macrophages. The cell membrane-derived nanoparticles (CMNPs) deriving from the MiaPaCa-2 cells (MPC2-CMNPs) were loaded with the chemotherapeutic drug paclitaxel (PTX), and the CMNPs deriving from M2-polarized macrophages (M2-CMNPs) were loaded with the colony-stimulating factor 1 receptor inhibitor, pexidartinib (PXDB). The CMNPs' thorough morphological and physicochemical characterisation was followed by an in-depth study of their targeting ability and the endocytosis pathway involved during their internalisation. An in vitro model of the desmoplastic stroma comprising cancer-associated fibroblast-mimicking cells and M2-polarized macrophages was also developed. The model was characterised by collagen and α-smooth muscle actin (α-SMA) expression (overexpressed in desmoplasia) and was used to assess the CMNPs' ability to cross the stroma and target the tumour cells. Moreover, we assessed the effect of PXDB-loaded M2-CMNPs on the expression of M1 (CD80/CD86) and M2 (CD206/CD209) polarisation markers on activated macrophages. Finally, we evaluated the PTX and PXDB-loaded CMNPs' effect on the viability of all the used TME cell lines alone or in combination. Overall, this pilot study showed the potential of the CMNPs to cross an in vitro stroma model and act synergistically to treat PDAC.
Collapse
Affiliation(s)
- Christos Tapeinos
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5E, Helsinki FI-00014, Finland; Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, University of Manchester, Stopford Building, Oxford Road, Manchester M13 9PT, UK.
| | - Giulia Torrieri
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5E, Helsinki FI-00014, Finland
| | - Shiqi Wang
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5E, Helsinki FI-00014, Finland
| | - João P Martins
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5E, Helsinki FI-00014, Finland
| | - Hélder A Santos
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5E, Helsinki FI-00014, Finland; Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Groningen 9713, AV, the Netherlands; W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, Groningen, 9713, AV, the Netherlands.
| |
Collapse
|
20
|
Kim TH, Heo SY, Han JS, Jung WK. Anti-inflammatory effect of polydeoxyribonucleotides (PDRN) extracted from red alga (Porphyra sp.) (Ps-PDRN) in RAW 264.7 macrophages stimulated with Escherichia coli lipopolysaccharides: A comparative study with commercial PDRN. Cell Biochem Funct 2023; 41:889-897. [PMID: 37589166 DOI: 10.1002/cbf.3840] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/23/2023] [Accepted: 08/07/2023] [Indexed: 08/18/2023]
Abstract
Polydeoxyribonucleotide (PDRN) is a DNA-derived drug extracted from the sperm cells of Oncorhynchus mykiss or O. keta. PDRN exhibits wound healing and anti-inflammatory activities by activating adenosine A2A receptor and salvage pathways. However, commercial PDRN products (e.g., Placentex, Rejuvenex, and HiDr) have limitations as they are exclusively extracted O. mykiss and O. keta, which are expensive and can only be used as extraction sources during a specific period when their sperm cells are activated. Therefore, this study aimed to extract PDRN from Porphyra sp. (Ps-PDRN) and investigate whether it has anti-inflammatory activity through a comparative study with commercial product. The results indicated that Ps-PDRN had an anti-inflammatory effect on Escherichia coli lipopolysaccharides (LPS)-stimulated RAW 264.7 macrophages. It inhibited nitric oxide production and inducible nitric oxygen synthase protein expression by suppressing phosphorylation of p38 and ERK, without cytotoxicity. Furthermore, Ps-PDRN promoted cell proliferation and collagen production in human dermal fibroblast. In conclusion, our study confirms that Ps-PDRN exhibits both anti-inflammatory and cell proliferative effects. These results indicated that Ps-PDRN has the potential as a bioactive drug for tissue engineering.
Collapse
Affiliation(s)
- Tae-Hee Kim
- Research Center for Marine-Integrated Bionics Technology, Pukyong National University, Busan, Republic of Korea
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, Republic of Korea
| | - Seong-Yeong Heo
- Jeju Marine Research Center, Korea Institute of Ocean Science & Technology (KIOST), Jeju, Republic of Korea
| | - Ji Sung Han
- All In One GENETECH, Busan, Republic of Korea
| | - Won-Kyo Jung
- Research Center for Marine-Integrated Bionics Technology, Pukyong National University, Busan, Republic of Korea
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, Republic of Korea
- Major of Biomedical Engineering, Division of Smart Healthcare, College of Information Technology and Convergence and New-senior Healthcare Innovation Center (BK21 Plus), Pukyong National University, Busan, Republic of Korea
| |
Collapse
|
21
|
Nong J, Glassman PM, Myerson JW, Zuluaga-Ramirez V, Rodriguez-Garcia A, Mukalel A, Omo-Lamai S, Walsh LR, Zamora ME, Gong X, Wang Z, Bhamidipati K, Kiseleva RY, Villa CH, Greineder CF, Kasner SE, Weissman D, Mitchell MJ, Muro S, Persidsky Y, Brenner JS, Muzykantov VR, Marcos-Contreras OA. Targeted Nanocarriers Co-Opting Pulmonary Intravascular Leukocytes for Drug Delivery to the Injured Brain. ACS NANO 2023; 17:13121-13136. [PMID: 37432926 PMCID: PMC10373654 DOI: 10.1021/acsnano.2c08275] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 06/08/2023] [Indexed: 07/13/2023]
Abstract
Ex vivo-loaded white blood cells (WBC) can transfer cargo to pathological foci in the central nervous system (CNS). Here we tested affinity ligand driven in vivo loading of WBC in order to bypass the need for ex vivo WBC manipulation. We used a mouse model of acute brain inflammation caused by local injection of tumor necrosis factor alpha (TNF-α). We intravenously injected nanoparticles targeted to intercellular adhesion molecule 1 (anti-ICAM/NP). We found that (A) at 2 h, >20% of anti-ICAM/NP were localized to the lungs; (B) of the anti-ICAM/NP in the lungs >90% were associated with leukocytes; (C) at 6 and 22 h, anti-ICAM/NP pulmonary uptake decreased; (D) anti-ICAM/NP uptake in brain increased up to 5-fold in this time interval, concomitantly with migration of WBCs into the injured brain. Intravital microscopy confirmed transport of anti-ICAM/NP beyond the blood-brain barrier and flow cytometry demonstrated complete association of NP with WBC in the brain (98%). Dexamethasone-loaded anti-ICAM/liposomes abrogated brain edema in this model and promoted anti-inflammatory M2 polarization of macrophages in the brain. In vivo targeted loading of WBC in the intravascular pool may provide advantages of coopting WBC predisposed to natural rapid mobilization from the lungs to the brain, connected directly via conduit vessels.
Collapse
Affiliation(s)
- Jia Nong
- Department
of Systems Pharmacology and Translational Therapeutics, Perelman School
of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Patrick M. Glassman
- Department
of Systems Pharmacology and Translational Therapeutics, Perelman School
of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department
of Pharmaceutical Sciences, Temple University
School of Pharmacy, Philadelphia, Pennsylvania 19140, United States
| | - Jacob W. Myerson
- Department
of Systems Pharmacology and Translational Therapeutics, Perelman School
of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Viviana Zuluaga-Ramirez
- Department
of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania 19140, United States
| | - Alba Rodriguez-Garcia
- Department
of Pathology and Laboratory Medicine, Ovarian Cancer Research Center,
Perelman School of Medicine, University
of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Center
for Cellular Immunotherapies, Abramson Cancer Center, Perelman School
of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Alvin Mukalel
- Department
of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Serena Omo-Lamai
- Division
of Pulmonary Allergy, and Critical Care, Department of Medicine, Perelman
School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Landis R. Walsh
- Department
of Systems Pharmacology and Translational Therapeutics, Perelman School
of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Marco E. Zamora
- Department
of Systems Pharmacology and Translational Therapeutics, Perelman School
of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- School
of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Xijing Gong
- Department
of Systems Pharmacology and Translational Therapeutics, Perelman School
of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Division
of Pulmonary Allergy, and Critical Care, Department of Medicine, Perelman
School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Zhicheng Wang
- Department
of Systems Pharmacology and Translational Therapeutics, Perelman School
of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Kartik Bhamidipati
- Department
of Systems Pharmacology and Translational Therapeutics, Perelman School
of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Raisa Y. Kiseleva
- Department
of Systems Pharmacology and Translational Therapeutics, Perelman School
of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Carlos H. Villa
- Department
of Systems Pharmacology and Translational Therapeutics, Perelman School
of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Colin Fred Greineder
- Department
of Systems Pharmacology and Translational Therapeutics, Perelman School
of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Scott E. Kasner
- Department
of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Drew Weissman
- Division
of Infectious Diseases, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Michael J. Mitchell
- Department
of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Abramson
Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Institute
for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Cardiovascular
Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Institute
for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Silvia Muro
- Institute for Bioengineering of Catalonia (IBEC), Barcelona, 08028, Spain
- Institute of Catalonia for Research and
Advanced Studies (ICREA), Barcelona, 08010, Spain
- Institute
for Bioscience and Biotechnology (IBBR), College Park, Maryland 20850, United States
| | - Yuri Persidsky
- Department
of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania 19140, United States
- Center
for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania 19140, United States
| | - Jacob Samuel Brenner
- Department
of Systems Pharmacology and Translational Therapeutics, Perelman School
of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Division
of Pulmonary Allergy, and Critical Care, Department of Medicine, Perelman
School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Vladimir R. Muzykantov
- Department
of Systems Pharmacology and Translational Therapeutics, Perelman School
of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Oscar A. Marcos-Contreras
- Department
of Systems Pharmacology and Translational Therapeutics, Perelman School
of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department
of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
22
|
Zha D, Yang Y, Huang X, Wang Z, Lin H, Yang L, Xu L, Wu Y, Huang H, Wang Y, Xin Z, Wu X, Xiao YF, Li TS, Deng KY, Xin HB, Qian Y. Nicaraven protects against endotoxemia-induced inflammation and organ injury through modulation of AMPK/Sirt1 signaling in macrophages. Eur J Pharmacol 2023; 946:175666. [PMID: 36944380 DOI: 10.1016/j.ejphar.2023.175666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/17/2023] [Accepted: 03/17/2023] [Indexed: 03/23/2023]
Abstract
Endotoxemia is a disease characterized by systemic inflammatory responses and organ injury caused by lipopolysaccharide (LPS) infection, with high mortality. Nicaraven (AVS), a potent hydroxyl radical scavenger, has been proven to regulate the inflammatory response in tumors. To investigate the protective effects and mechanisms of AVS in endotoxemia, mice were injected intraperitoneally with LPS to induce endotoxemia. AVS treatment significantly decreased the levels of pro-inflammatory cytokines in the serum, reduced neutrophil infiltration, attenuated multiple organ injury, and increased the survival rate in LPS-challenged mice. In the LPS-induced inflammatory model of macrophages, AVS inhibited macrophage activation, suppressed nitric oxide (NO) production, and inhibited the expression and secretion of pro-inflammatory cytokines. Mechanistically, AVS treatment up-regulated silence information regulator transcript-1 (Sirt1) expression in a time- and dose-dependent manner. AVS treatment activated the AMP-dependent protein kinase (AMPK)/Sirt1 signaling pathway and suppressed the activation of nuclear factor kappa B (NF-κB) in macrophages exposed to LPS. However, the anti-inflammatory effects of AVS could be reversed by the AMPK, the Sirt1 inhibitor, or the histone deacetylase inhibitor. We confirmed that the AMPK inhibitor inhibited AVS-mediated AMPK/Sirt1 activation and NF-κB p65 acetylation. These results suggested that AVS alleviated endotoxemia by activating the AMPK/Sirt1 signaling pathway in macrophages.
Collapse
Affiliation(s)
- Duoduo Zha
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, 330031, China
| | - Yaqin Yang
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, 330031, China
| | - Xiang Huang
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, 330031, China
| | - Ziwei Wang
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, 330031, China
| | - Hongru Lin
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, 330031, China
| | - Lingyi Yang
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, 330031, China
| | - Luyan Xu
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, 330031, China
| | - Yijia Wu
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, 330031, China
| | - Houda Huang
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, 330031, China
| | - Yihan Wang
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, 330031, China
| | - Zhaochen Xin
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, 330031, China
| | - Xuehan Wu
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, 330031, China
| | - Yun-Fei Xiao
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, 330031, China
| | - Tao-Sheng Li
- Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - Ke-Yu Deng
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, 330031, China
| | - Hong-Bo Xin
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, 330031, China.
| | - Yisong Qian
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, 330031, China.
| |
Collapse
|
23
|
Pandita P, Bhalla R, Saini A, Mani I. Emerging tools for studying receptor endocytosis and signaling. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 194:19-48. [PMID: 36631193 DOI: 10.1016/bs.pmbts.2022.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Ligands, agonists, or antagonists use receptor-mediated endocytosis (RME) to reach their intracellular targets. After the internalization of ligand-receptor complexes, it traffics through different subcellular organelles such as early endosome, recycling endosome, lysosome, etc. Further, after the ligand binding to the receptor, different second messengers are generated, such as cGMP, cAMP, IP3, etc. Several methods have been used, such as radioligand binding assay, western blotting, co-immunoprecipitation (co-IP), qRT-PCR, immunofluorescence and confocal microscopy, microRNA/siRNA, and bioassays to understand the various events, such as internalization, subcellular trafficking, signaling, metabolic degradation, etc. This chapter briefly discusses the key principles and methods used to study internalization, subcellular trafficking, signaling, and metabolic degradation of numerous receptors.
Collapse
Affiliation(s)
- Pratiksha Pandita
- Faculty of Medicine, Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Rhea Bhalla
- ICMR-National Institute of Virology, Pune, Maharashtra, India
| | - Ashok Saini
- Department of Microbiology, Institute of Home Economics, University of Delhi, New Delhi, India
| | - Indra Mani
- Department of Microbiology, Gargi College, University of Delhi, New Delhi, India.
| |
Collapse
|
24
|
Iba T, Levi M, Levy JH. Intracellular communication and immunothrombosis in sepsis. J Thromb Haemost 2022; 20:2475-2484. [PMID: 35979601 PMCID: PMC9804233 DOI: 10.1111/jth.15852] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/22/2022] [Accepted: 08/10/2022] [Indexed: 01/05/2023]
Abstract
Inflammation and coagulation are the critical responses to infection that include leukocytes, platelets, and vascular endothelial cells responding in concert to eradicate the invading pathogen. In sepsis, a variety of cell surface receptors, including toll-like receptors, Fcγ-receptors, G-protein-coupled receptors, and adhesion receptors, detect the pathogens and elicit thromboinflammatory responses. Concurrently, the molecular patterns released from host damaged cells accelerate the immune responses through binding to the same pattern recognition receptors. Cytokines, chemokines, and extracellular vesicles are important mediators for amplifying the responses to distant cells as part of the systemic response to infections. At the same time, cells communicate with each other via direct contact, adhesion molecules, paracrine mediators, and tunneling nanotubes, which are important for regulating inflammation and thrombus formation. Despite increasing attention to immunothrombosis in sepsis, these close communication systems are less understood but play a critical role in host defense mechanisms. In this review, cellular activation and direct intercellular communication systems in sepsis with a focus on the coagulation response will be considered.
Collapse
Affiliation(s)
- Toshiaki Iba
- Department of Emergency and Disaster MedicineJuntendo University Graduate School of MedicineTokyoJapan
| | - Marcel Levi
- Department of Vascular Medicine, Amsterdam University Medical Center, the Netherlands and Department of MedicineUniversity College London Hospitals NHS Foundation Trust, and Cardio‐metabolic Programme‐NIHR UCLH/UCL BRC LondonLondonUK
| | - Jerrold H. Levy
- Department of Anesthesiology, Critical Care, and SurgeryDuke University School of MedicineDurhamNorth CarolinaUSA
| |
Collapse
|
25
|
da Silva CA, Mafra LL, Rossi GR, da Silva Trindade E, Matias WG. A simple method to evaluate the toxic effects of Prorocentrum lima extracts to fish (sea bass) kidney cells. Toxicol In Vitro 2022; 85:105476. [PMID: 36126776 DOI: 10.1016/j.tiv.2022.105476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/13/2022] [Accepted: 09/13/2022] [Indexed: 11/29/2022]
Abstract
The diarrhetic shellfish toxins (DSTs) okadaic acid (OA) and its analogues - the dinophysistoxins (DTXs) - are produced by dinoflagellates such as Prorocentrum lima and can bioaccumulate in filter-feeding organisms as they are transferred through the food web. Although there is no assessment of the harmful effects of these toxins on the fish's immune system, this study developed a primary culture protocol for kidney cells from marine fish Centropomus parallelus and evaluated the immunotoxic effects to P. lima extracts containing DSTs. The cells were obtained by mechanical dissociation, segregated with Percoll gradient, and incubated for 24 h at 28 °C in a Leibovitz culture medium supplemented with 2% fetal bovine serum and antibiotics. The exposed cells were evaluated in flow cytometry using the CD54 PE antibody. We obtained >5.0 × 106 viable cells per 1.0 g of tissue that exhibited no cell differentiation. Exposure to 1.2 or 12 ng DST mL-1 stimulated the immune system activation and increased the proportion of activated macrophages and monocytes in 48 to 52% and in 127 to 146%, respectively. The protocol proved to be an alternative tool to assess the immunotoxic effects of DST exposure on fish's anterior kidney cells.
Collapse
Affiliation(s)
- Cesar Aparecido da Silva
- Center for Marine Studies, Federal University of Paraná, Av. Beira-mar, s/n, P.O. Box: 61, Pontal do Paraná, PR 83255-976, Brazil.
| | - Luiz Laureno Mafra
- Center for Marine Studies, Federal University of Paraná, Av. Beira-mar, s/n, P.O. Box: 61, Pontal do Paraná, PR 83255-976, Brazil
| | - Gustavo Rodrigues Rossi
- Laboratory of Inflammatory and Neoplastic Cells/Laboratory of Sulfated Polysaccharides Investigation, Cell Biology Department, Federal University of Paraná, Av. Cel Francisco H dos Santos, Curitiba, PR 81530-980, Brazil
| | - Edvaldo da Silva Trindade
- Laboratory of Inflammatory and Neoplastic Cells/Laboratory of Sulfated Polysaccharides Investigation, Cell Biology Department, Federal University of Paraná, Av. Cel Francisco H dos Santos, Curitiba, PR 81530-980, Brazil
| | - William Gerson Matias
- Laboratory of Environmental Toxicology, Departament of Sanitary and Environmental Engineering, Federal University of Santa Catarina, P.O. Box 476, Florianópolis, SC 88010-970, Brazil
| |
Collapse
|
26
|
An R. MRTF may be the missing link in a multiscale mechanobiology approach toward macrophage dysfunction in space. Front Cell Dev Biol 2022; 10:997365. [PMID: 36172272 PMCID: PMC9510870 DOI: 10.3389/fcell.2022.997365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 08/10/2022] [Indexed: 11/23/2022] Open
Abstract
Macrophages exhibit impaired phagocytosis, adhesion, migration, and cytokine production in space, hindering their ability to elicit immune responses. Considering that the combined effect of spaceflight microgravity and radiation is multiscale and multifactorial in nature, it is expected that contradictory findings are common in the field. This theory paper reanalyzes research on the macrophage spaceflight response across multiple timescales from seconds to weeks, and spatial scales from the molecular, intracellular, extracellular, to the physiological. Key findings include time-dependence of both pro-inflammatory activation and integrin expression. Here, we introduce the time-dependent, intracellular localization of MRTF-A as a hypothetical confounder of macrophage activation. We discuss the mechanosensitive MRTF-A/SRF pathway dependence on the actin cytoskeleton/nucleoskeleton, microtubules, membrane mechanoreceptors, hypoxia, oxidative stress, and intracellular/extracellular crosstalk. By adopting a multiscale perspective, this paper provides the first mechanistic answer for a three-decade-old question regarding impaired cytokine secretion in microgravity—and strengthens the connection between the recent advances in mechanobiology, microgravity, and the spaceflight immune response. Finally, we hypothesize MRTF involvement and complications in treating spaceflight-induced cardiovascular, skeletal, and immune disease.
Collapse
Affiliation(s)
- Rocky An
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, United States
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, United States
- *Correspondence: Rocky An,
| |
Collapse
|
27
|
Kushwah N, Woeppel K, Dhawan V, Shi D, Cui XT. Effects of neuronal cell adhesion molecule L1 and nanoparticle surface modification on microglia. Acta Biomater 2022; 149:273-286. [PMID: 35764240 PMCID: PMC10018678 DOI: 10.1016/j.actbio.2022.06.038] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 11/19/2022]
Abstract
Microelectrode arrays for neural recording suffer from low yield and stability partly due to the inflammatory host responses. A neuronal cell adhesion molecule L1 coating has been shown to promote electrode-neuron integration, reduce microglia activation and improve recording. Coupling L1 to surface via a nanoparticle (NP) base layer further increased the protein surface density and stability. However, the exact L1-microglia interaction in these coatings has not been studied. Here we cultured primary microglia on L1 modified surfaces (with and without NP) and characterized microglia activation upon phorbol myristate acetate (PMA) and lipopolysaccharide (LPS) stimulation. Results showed L1 coatings reduced microglia's superoxide production in response to PMA and presented intrinsic antioxidant properties. Meanwhile, L1 decreased iNOS, NO, and pro-inflammatory cytokines (TNF alpha, IL-6, IL-1 beta), while increased anti-inflammatory cytokines (TGF beta 1, IL-10) in LPS stimulated microglia. Furthermore, L1 increased Arg-1 expression and phagocytosis upon LPS stimulation. Rougher NP surface showed lower number of microglia attached per area than their smooth counterpart, lower IL-6 release and superoxide production, and higher intrinsic reducing potential. Finally, we examined the effect of L1 and nanoparticle modifications on microglia response in vivo over 8 weeks with 2-photon imaging. Microglial coverage on the implant surface was found to be lower on the L1 modified substrates relative to unmodified, consistent with the in vitro observation. Our results indicate L1 significantly reduces superoxide production and inflammatory response of microglia and promotes wound healing, while L1 immobilization via a nanoparticle base layer brings added benefit without adverse effects. STATEMENT OF SIGNIFICANCE: Surface modification of microelectrode arrays with L1 has been shown to reduce microglia coverage on neural probe surface in vivo and improves neural recording, but the specific mechanism of action is not fully understood. The results in this study show that surface bound L1 reduces superoxide production from cultured microglia via direct reduction reaction and signaling pathways, increases anti-inflammatory cytokine release and phagocytosis in response to PMA or LPS stimulation. Additionally, roughening the surface with nanoparticles prior to L1 immobilization further increased the benefit of L1 in reducing microglia activation and oxidative stress. Together, our findings shed light on the mechanisms of action of nanotextured and neuroadhesive neural implant coatings and guide future development of seamless tissue interface.
Collapse
Affiliation(s)
- Neetu Kushwah
- Neural Tissue/Electrode Interface and Neural Tissue Engineering lab, Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15260, United States
| | - Kevin Woeppel
- Neural Tissue/Electrode Interface and Neural Tissue Engineering lab, Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15260, United States; Center for Neural Basis of Cognition, Pittsburgh, PA 15213, United States
| | - Vaishnavi Dhawan
- Neural Tissue/Electrode Interface and Neural Tissue Engineering lab, Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15260, United States; Center for Neural Basis of Cognition, Pittsburgh, PA 15213, United States
| | - Delin Shi
- Neural Tissue/Electrode Interface and Neural Tissue Engineering lab, Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15260, United States; Center for Neural Basis of Cognition, Pittsburgh, PA 15213, United States
| | - Xinyan Tracy Cui
- Neural Tissue/Electrode Interface and Neural Tissue Engineering lab, Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15260, United States; McGowan Institute for Regenerative Medicine, Pittsburgh, PA 15219, United States; Center for Neural Basis of Cognition, Pittsburgh, PA 15213, United States.
| |
Collapse
|
28
|
Rajamanickam K, Leela V, Suganya G, Basha SH, Parthiban M, Visha P, Elango A. Thermal cum lipopolysaccharide-induced stress challenge downregulates functional response of bovine monocyte-derived macrophages. J Therm Biol 2022; 108:103301. [DOI: 10.1016/j.jtherbio.2022.103301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 06/20/2022] [Accepted: 07/27/2022] [Indexed: 10/16/2022]
|