1
|
Jeanne F, Pilet S, Bernay B, Lagadu S, Delépée R, Dufour S, Sourdaine P. Characterization of a direct role of GnRHs in the control of spermiogenesis and steroidogenesis in the small-spotted catshark Scyliorhinus canicula. Gen Comp Endocrinol 2025; 368:114734. [PMID: 40254036 DOI: 10.1016/j.ygcen.2025.114734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 04/04/2025] [Accepted: 04/17/2025] [Indexed: 04/22/2025]
Abstract
Hypothalamic gonadotropin-releasing hormone (GnRH) regulates the production of gonadotropins, which control reproduction. In elasmobranchs, unlike other gnathostomes, GnRH is released into the systemic circulation to stimulate gonadotrope cells located in the ventral lobe of the pituitary. The aim of this study was to investigate the potential role of systemic GnRH in the regulation of the testis in Scyliorhinus canicula. Phylogeny and synteny analyses identified three GnRHs and four GnRH receptor (ScGnRHR-I1, -IIa1, -IIa2 and -IIb2). In vitro functional hormone-receptor interactions using synthetic ScGnRHs showed that all ScGnRHs were effective at receptors, except ScGnRHRIIa2, at femtomolar to nanomolar concentrations, with lower efficiency for ScGnRH1/ScGnRHRIIb2. Real-time PCR analyses in a wide range of tissues, including male and female reproductive tracts, showed that all three gnrh were expressed mainly in the brain and all four gnrhr were expressed in the testis, particularly during spermiogenesis. Testicular explants containing cysts with spermatids were treated with ScGnRHs and their protein content analyzed by NanoLC-ESI-MS/MS, highlighting 1677 significantly differentially expressed proteins. Among them, the growth hormone receptor (GHR) and proteins involved in cholesterol and steroid metabolism, including several HSD17bs, were upregulated. In situ hybridization showed that ghr, hsd17b3 and hsd17b12 transcripts were localized in Sertoli cells, which are the main testicular steroidogenic cells in S. canicula. Fifteen steroids were assayed in the culture media, using LC-ESI-HRMS/MS, and an increase in 17β-estradiol concentrations was observed, consistent with hsd17b expressions. Furthermore, proteins involved in transcription and DNA structure were downregulated in response to GnRHs. In conclusion, this study showed that ScGnRHs may play a direct role in the regulation of elasmobranch testes by promoting spermiogenesis and modulating steroidogenesis.
Collapse
Affiliation(s)
- Fabian Jeanne
- Université de Caen Normandie, Marine Ecosystems and Organisms Research Lab (MERSEA), UR 7482, 14032 Caen Cedex 5, France
| | - Stanislas Pilet
- Université de Caen Normandie, Marine Ecosystems and Organisms Research Lab (MERSEA), UR 7482, 14032 Caen Cedex 5, France
| | - Benoît Bernay
- Université de Caen Normandie - Plateforme PROTEOGEN, US EMerode, 14032 Caen Cedex 5, France
| | - Stéphanie Lagadu
- INSERM U1086 "ANTICIPE" Unité de Recherche Interdisciplinaire pour la Prévention et le Traitement des Cancers, Centre de Lutte Contre le Cancer Francois Baclesse, 3 Av. Général Harris, 14076 CAEN Cedex 05, France
| | - Raphaël Delépée
- INSERM U1086 "ANTICIPE" Unité de Recherche Interdisciplinaire pour la Prévention et le Traitement des Cancers, Centre de Lutte Contre le Cancer Francois Baclesse, 3 Av. Général Harris, 14076 CAEN Cedex 05, France
| | - Sylvie Dufour
- Muséum National d'Histoire Naturelle (MNHN), UCN, SU, UA, CNRS, IRD, Laboratoire de Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), UMR 8067, 43, rue Cuvier, CP 26, 75231 Paris Cedex 05, France
| | - Pascal Sourdaine
- Université de Caen Normandie, Marine Ecosystems and Organisms Research Lab (MERSEA), UR 7482, 14032 Caen Cedex 5, France.
| |
Collapse
|
2
|
Lv Z, Sun L, Chen X, Guo P, Xie X, Yao X, Tian S, Wang C, Shao Y, Liu J. TMC7 is required for spermiogenesis and male fertility by regulating TGN-derived vesicles. Int J Biol Macromol 2025; 293:139070. [PMID: 39732242 DOI: 10.1016/j.ijbiomac.2024.139070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/05/2024] [Accepted: 12/19/2024] [Indexed: 12/30/2024]
Abstract
Infertility affects 10-12 % of couples worldwide, 50 % of which are male. Abnormal spermatogenesis is among the main causes of male infertility. We were curious about the possible role of transmembrane channel-like protein 7 (TMC7) in spermatogenesis because of its aberrant expression in several male infertility patients. In this study, we found that deletion of Tmc7, which is highly expressed during spermiogenesis, causes a human oligoasthenoteratozoospermia (OAT)-like phenotype in male mice. By histological analysis, TEM, RNA-seq and library-free data-independent acquisition mass spectrometry (DIA-MS) of TMC7-null mouse testes, we found that Tmc7 deletion caused abnormal swelling of trans-Golgi network (TGN) vesicles in elongated spermatids. Further immunofluorescence localization analysis revealed that these vesicles were defined by synaptophysin-like 1 (SYPL1). In addition, TMC7 may act as a potential chloride transport channel to regulate the size of transport vesicles. In conclusion, this study demonstrated that TMC7 is essential for male fertility and may be used as a potential protein for the identification and recognition of OAT. On the other hand, TMC7 may be a potential male contraceptive target.
Collapse
Affiliation(s)
- Zheng Lv
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Longjie Sun
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xuexue Chen
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Peilan Guo
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xiaomei Xie
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xiaohong Yao
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Shuang Tian
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Chaofan Wang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yujing Shao
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jiali Liu
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
3
|
Babakhanzadeh E, Hoseininasab FA, Khodadadian A, Nazari M, Hajati R, Ghafouri-Fard S. Circular RNAs: novel noncoding players in male infertility. Hereditas 2024; 161:46. [PMID: 39551760 PMCID: PMC11572108 DOI: 10.1186/s41065-024-00346-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 11/05/2024] [Indexed: 11/19/2024] Open
Abstract
Infertility is a global problem being associated with emotional and financial burden. Recent studies have shown contribution of a group of non-coding RNAs, namely circular RNAs (circRNAs) to the etiology of some infertility conditions. CircRNA are transcribed from exons and form a circular RNA molecule, being abundant in eukaryotes. Traditionally classified as non-coding RNA, these transcripts are endogenously produced through either non-canonical back-splicing or linear splicing, typically produced from precursor messenger ribonucleic acid (pre-mRNA). While during the canonical splicing process the 3' end of the exon is joined to the 5' end of the succeeding exon to form linear mRNA, during backsplicing, the 3' end to the 5' end of the same exon is joined to make a circular molecule. circRNAs are involved in the regulation of several aspects of spermatogenesis. They appear to influence how stem germ cells grow and divide during the sperm production process. Malfunctions in circRNA activity could contribute to male infertility issues stemming from abnormalities in spermatogenesis. In the current review, we highlight the exciting potential of circRNAs as key players in the male fertility.
Collapse
Affiliation(s)
- Emad Babakhanzadeh
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Medical Genetics, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | | | - Ali Khodadadian
- Department of Medical Genetics, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Majid Nazari
- Department of Medical Genetics, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Reza Hajati
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Basit A, Lim KB. Systematic approach of polyploidy as an evolutionary genetic and genomic phenomenon in horticultural crops. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 348:112236. [PMID: 39186951 DOI: 10.1016/j.plantsci.2024.112236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 08/15/2024] [Accepted: 08/18/2024] [Indexed: 08/28/2024]
Abstract
Polyploidy is thought to be an evolutionary and systematic mechanism for gene flow and phenotypic advancement in flowering plants. It is a natural phenomenon that promotes diversity by creating new permutations enhancing the prime potentials as compared to progenitors. Two different pathways have been recognized in studying polyploidy in nature; mitotic or somatic chromosome doubling and cytogenetics variation. Secondly, the vital influence of being polyploid is its heritable property (unreduced reproductive cells) formed during first and second-division restitution (FDR & SDR). Different approaches either chemical (Colchicine, Oryzalin, Caffeine, Trifuralin, or phosphoric amides) or gaseous i.e. Nitrous oxide have been deliberated as strong polyploidy causing agents. A wide range of cytogenetic practices like chromosomes study, ploidy, genome analysis, and plant morphology and anatomy have been studied in different plant species. Flow cytometry for ploidy and chromosome analysis through fluorescence and genomic in situ hybridization (FISH & GISH) are the basic methods to evaluate heredity substances sampled from leaves and roots. Many horticultural crops have been developed successfully and released commercially for consumption. Moreover, some deep detailed studies are needed to check the strong relationship between unique morphological features and genetic makeup concerning genes and hormonal expression in a strong approach.
Collapse
Affiliation(s)
- Abdul Basit
- Department of Horticultural Science, Kyungpook National University, Daegu 41566, South Korea.
| | - Ki-Byung Lim
- Department of Horticultural Science, Kyungpook National University, Daegu 41566, South Korea; Institute of Agricultural Science and Technology, Kyungpook National University, Daegu, South Korea.
| |
Collapse
|
5
|
Zhang X, Huang G, Jiang T, Meng L, Li T, Zhang G, Wu N, Chen X, Zhao B, Li N, Wu S, Guo J, Zheng R, Ji Z, Xu Z, Wang Z, Deng D, Tan Y, Xu W. CEP112 coordinates translational regulation of essential fertility genes during spermiogenesis through phase separation in humans and mice. Nat Commun 2024; 15:8465. [PMID: 39349455 PMCID: PMC11443074 DOI: 10.1038/s41467-024-52705-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 09/19/2024] [Indexed: 10/02/2024] Open
Abstract
Spermiogenesis, the complex transformation of haploid spermatids into mature spermatozoa, relies on precise spatiotemporal regulation of gene expression at the post-transcriptional level. The mechanisms underlying this critical process remain incompletely understood. Here, we identify centrosomal protein 112 (CEP112) as an essential regulator of mRNA translation during this critical developmental process. Mutations in CEP112 are discovered in oligoasthenoteratospermic patients, and Cep112-deficient male mice recapitulate key phenotypes of human asthenoteratozoospermia. CEP112 localizes to the neck and atypical centrioles of mature sperm and forms RNA granules during spermiogenesis, enriching target mRNAs such as Fsip2, Cfap61, and Cfap74. Through multi-omics analyses and the TRICK reporter assay, we demonstrate that CEP112 orchestrates the translation of target mRNAs. Co-immunoprecipitation and mass spectrometry identify CEP112's interactions with translation-related proteins, including hnRNPA2B1, EEF1A1, and EIF4A1. In vitro, CEP112 undergoes liquid-liquid phase separation, forming condensates that recruit essential proteins and mRNAs. Moreover, variants in patient-derived CEP112 disrupt phase separation and impair translation efficiency. Our results suggest that CEP112 mediates the assembly of RNA granules through liquid-liquid phase separation to control the post-transcriptional expression of fertility-related genes. This study not only clarifies CEP112's role in spermatogenesis but also highlights the role of phase separation in translational regulation, providing insights into male infertility and suggesting potential therapeutic targets.
Collapse
Affiliation(s)
- Xueguang Zhang
- Joint Lab of Reproductive Medicine of SCU-CUHK, Lab of Reproductive genetics and Epigenetics, Department of Obstetrics/Gynecology, Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, West China Second University Hospital, Sichuan University, 610041, Chengdu, China
| | - Gelin Huang
- Joint Lab of Reproductive Medicine of SCU-CUHK, Lab of Reproductive genetics and Epigenetics, Department of Obstetrics/Gynecology, Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, West China Second University Hospital, Sichuan University, 610041, Chengdu, China
| | - Ting Jiang
- Joint Lab of Reproductive Medicine of SCU-CUHK, Lab of Reproductive genetics and Epigenetics, Department of Obstetrics/Gynecology, Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, West China Second University Hospital, Sichuan University, 610041, Chengdu, China
| | - Lanlan Meng
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive & Genetic Hospital of CITIC-Xiangya, 410008, Changsha, China
| | - Tongtong Li
- Joint Lab of Reproductive Medicine of SCU-CUHK, Lab of Reproductive genetics and Epigenetics, Department of Obstetrics/Gynecology, Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, West China Second University Hospital, Sichuan University, 610041, Chengdu, China
| | - Guohui Zhang
- Key Laboratory of Reproductive Medicine, Sichuan Provincial Maternity and Child Health Care Hospital, 610041, Chengdu, China
| | - Nan Wu
- State Key Laboratory of Cellular Stress Biology, National Institute for Data Science in Health and Medicine, School of Life Sciences, Xiamen University, 361005, Xiamen, China
| | - Xinyi Chen
- Department of Obstetrics, Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University, Chengdu, 610041, China
| | - Bingwang Zhao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Nana Li
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, 266237, Qingdao, China
| | - Sixian Wu
- Joint Lab of Reproductive Medicine of SCU-CUHK, Lab of Reproductive genetics and Epigenetics, Department of Obstetrics/Gynecology, Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, West China Second University Hospital, Sichuan University, 610041, Chengdu, China
| | - Junceng Guo
- Joint Lab of Reproductive Medicine of SCU-CUHK, Lab of Reproductive genetics and Epigenetics, Department of Obstetrics/Gynecology, Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, West China Second University Hospital, Sichuan University, 610041, Chengdu, China
| | - Rui Zheng
- Joint Lab of Reproductive Medicine of SCU-CUHK, Lab of Reproductive genetics and Epigenetics, Department of Obstetrics/Gynecology, Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, West China Second University Hospital, Sichuan University, 610041, Chengdu, China
| | - Zhiliang Ji
- State Key Laboratory of Cellular Stress Biology, National Institute for Data Science in Health and Medicine, School of Life Sciences, Xiamen University, 361005, Xiamen, China
| | - Zhigang Xu
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, 266237, Qingdao, China
| | - Zhenbo Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Dong Deng
- Department of Obstetrics, Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University, Chengdu, 610041, China
| | - Yueqiu Tan
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive & Genetic Hospital of CITIC-Xiangya, 410008, Changsha, China.
| | - Wenming Xu
- Joint Lab of Reproductive Medicine of SCU-CUHK, Lab of Reproductive genetics and Epigenetics, Department of Obstetrics/Gynecology, Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, West China Second University Hospital, Sichuan University, 610041, Chengdu, China.
| |
Collapse
|
6
|
Vieira CP, Martins Lara NDLE, Procópio MS, Avelar GF. Optimization of spermatozoa analysis in mice: A comprehensive protocol. Tissue Cell 2024; 89:102463. [PMID: 38981185 DOI: 10.1016/j.tice.2024.102463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 06/14/2024] [Accepted: 07/03/2024] [Indexed: 07/11/2024]
Abstract
Sperm quality is critical to predict reproductive alterations caused by immunological factors or toxicant agents. Yet, no detailed protocol has been published focusing on analyses of sperm parameters in mice. Our aim was to evaluate the most efficient diluent for mice sperm analyses and to optimize the sperm morphology classification, through the comparison of different staining methods. The diluents assessed were PBS (baseline), HTF, DMEM, 1 % BSA in PBS and 9 % skimmed powdered milk diluted in PBS. Spermatozoa were evaluated for vitality, motility, and morphology, smears were stained with Papanicolaou, HE, Giemsa, and Rapid staining. Sperm vitality and total motility reached better scores in milk based and DMEM diluents. HE raised up as an effective option since its combination with any of the diluents we tested, resulted in a fair staining, which was appropriated to evaluate mice spermatozoa. Finally, based on WHO manual, we have updated the current morphological classification for mice sperm, since we have detailed the head defects as well as included midpiece and tail defects on it. Taken together, we presented a useful, low cost, and reliable method to assess sperm morphology that could be employed worldwide by laboratories dedicated to study reproductive biology on mice model.
Collapse
Affiliation(s)
- Carolina Pinhol Vieira
- Laboratory of Cellular Biology, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Marcela Santos Procópio
- Laboratory of Cellular Biology, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Gleide Fernandes Avelar
- Laboratory of Cellular Biology, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
7
|
Matter AF, Raslan WS, Soror EI, Khalil EK, Kadah A, Youssef HA. Comparable to 17α- methyl testosterone, dietary supplements of Tribulus terrestris and Mucuna pruriens promote the development of mono-sex, all-male tilapia fry, growth, survival rate and sex-related genes (Amh, Sox9, Foxl2, Dmrt1). BMC Vet Res 2024; 20:326. [PMID: 39026327 PMCID: PMC11264505 DOI: 10.1186/s12917-024-04162-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 06/26/2024] [Indexed: 07/20/2024] Open
Abstract
To evaluate Tribulus terrestris and Mucuna pruriens for inducing all-male tilapia, mixed-sex Nile tilapia, Oreochromis niloticus, (mean weight 0.025 ± 0.009 g; mean length 1.25 ± 0.012 cm), were given a meal supplemented with either T. terrestris powder (commercial fish feed, 40% crude protein) (TT group), M. pruriens seed extract (MP group), MP + TT (mixed group), 17α-methyl testosterone (MT, control positive), or without supplements (control negative). The MP extracts significantly increased (P < 0.05) the final weight, weight gain, weight gain rate, and specific growth rate while feed conversion ratio was significantly decreased (P < 0.05). Plant extracts markedly improved (P < 0.05) the survival rate, proportion of males, and total testosterone compared to control and MT. Estrogen levels were lower in groups with plant extract than other groups. Fifteen days post-feeding, the Amh gene was expressed in the brain of O. niloticus fries with higher levels in MP, TT, and MT groups. Additionally, the expression of the Sox9 and Dmrt1 genes as a male related genes in fish fry gonads revealed significantly (P < 0.05) higher levels in groups fed on MP, TT, and MT compared to control after 30-day post-feeding, whereas; Foxl2 gene expression as a female related gene was significantly (P < 0.05) lower in fish fed on MP, TT, and MT compared to other groups after 30 days post feeding. Histologically, MT, MP, TT, and the mixture all exhibited solely male reproductive traits without noticeable abnormalities. This study concluded that each of the TT or MP extracts can induce sex reversal in tilapia while having no negative health impact compared to MT as the growth and survival rate in the treated groups with TT and MP were higher than control and group treated with MT.
Collapse
Affiliation(s)
- Aya F Matter
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine at Moshtohor, Benha University, Benha, Egypt.
| | - Walaa S Raslan
- Department of Physiology, Faculty of Veterinary Medicine at Moshtohor, Benha University, Benha, Egypt
| | - Eman I Soror
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine at Moshtohor, Benha University, Benha, Egypt.
| | - Eman K Khalil
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine at Moshtohor, Benha University, Benha, Egypt
| | - Amgad Kadah
- Department of Physiology, Faculty of Veterinary Medicine at Moshtohor, Benha University, Benha, Egypt
| | - Hadeer A Youssef
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine at Moshtohor, Benha University, Benha, Egypt
| |
Collapse
|
8
|
Liu Y, Lin Z, Yan J, Zhang X, Tong MH. A Rad50-null mutation in mouse germ cells causes reduced DSB formation, abnormal DSB end resection and complete loss of germ cells. Development 2024; 151:dev202312. [PMID: 38512324 DOI: 10.1242/dev.202312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 03/13/2024] [Indexed: 03/22/2024]
Abstract
The conserved MRE11-RAD50-NBS1/Xrs2 complex is crucial for DNA break metabolism and genome maintenance. Although hypomorphic Rad50 mutation mice showed normal meiosis, both null and hypomorphic rad50 mutation yeast displayed impaired meiosis recombination. However, the in vivo function of Rad50 in mammalian germ cells, particularly its in vivo role in the resection of meiotic double strand break (DSB) ends at the molecular level remains elusive. Here, we have established germ cell-specific Rad50 knockout mouse models to determine the role of Rad50 in mitosis and meiosis of mammalian germ cells. We find that Rad50-deficient spermatocytes exhibit defective meiotic recombination and abnormal synapsis. Mechanistically, using END-seq, we demonstrate reduced DSB formation and abnormal DSB end resection occurs in mutant spermatocytes. We further identify that deletion of Rad50 in gonocytes leads to complete loss of spermatogonial stem cells due to genotoxic stress. Taken together, our results reveal the essential role of Rad50 in mammalian germ cell meiosis and mitosis, and provide in vivo views of RAD50 function in meiotic DSB formation and end resection at the molecular level.
Collapse
Affiliation(s)
- Yuefang Liu
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou 310024, China
| | - Zhen Lin
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Junyi Yan
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xi Zhang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ming-Han Tong
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou 310024, China
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
9
|
Ke L, Lin X, Luo Y, Tao S, Yan C, He Y, Wu Y, Liu N, Qin Y. Autophagy core protein BECN1 is vital for spermatogenesis and male fertility in mice†. Biol Reprod 2024; 110:599-614. [PMID: 37975917 DOI: 10.1093/biolre/ioad160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 10/17/2023] [Accepted: 11/14/2023] [Indexed: 11/19/2023] Open
Abstract
Mammalian spermatogenesis is a highly complex multi-step biological process, and autophagy has been demonstrated to be involved in the process of spermatogenesis. Beclin-1/BECN1, a core autophagy factor, plays a critical role in many biological processes and diseases. However, its function in spermatogenesis remains largely unclear. In the present study, germ cell-specific Beclin 1 (Becn1) knockout mice were generated and were conducted to determine the role of Becn1 in spermatogenesis and fertility of mice. Results indicate that Becn1 deficiency leads to reduced sperm motility and quantity, partial failure of spermiation, actin network disruption, excessive residual cytoplasm, acrosome malformation, and aberrant mitochondrial accumulation of sperm, ultimately resulting in reduced fertility in male mice. Furthermore, inhibition of autophagy was observed in the testes of germ cell-specific Becn1 knockout mice, which may contribute to impaired spermiogenesis and reduced fertility. Collectively, our results reveal that Becn1 is essential for fertility and spermiogenesis in mice.
Collapse
Affiliation(s)
- Lu Ke
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xinyi Lin
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yuchuan Luo
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Siming Tao
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Chang Yan
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yifeilong He
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yingjie Wu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Ning Liu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, China
| | - Yinghe Qin
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
10
|
Liu R, Qu R, Li Q, Chen B, Mu J, Zeng Y, Luo Y, Xu F, Wang L, Zhang Z, Sang Q. ARRDC5 deficiency impairs spermatogenesis by affecting SUN5 and NDC1. Development 2023; 150:dev201959. [PMID: 37997706 DOI: 10.1242/dev.201959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 11/17/2023] [Indexed: 11/25/2023]
Abstract
Sperm with normal morphology and motility are essential for successful fertilization, and the strong attachment of the sperm head-tail coupling apparatus to the nuclear envelope during spermatogenesis is required to ensure the integrity of sperm for capacitation and fertilization. Here, we report that Arrdc5 is associated with spermatogenesis. The Arrdc5 knockout mouse model showed male infertility characterized by a high bent-head rate and reduced motility in sperm, which led to capacitation defects and subsequent fertilization failure. Through mass spectrometry, we found that ARRDC5 affects spermatogenesis by affecting NDC1 and SUN5. We further found that ARRDC5 might affect the vesicle-trafficking protein SEC22A-mediated transport and localization of NDC1, SUN5 and other head-tail coupling apparatus-related proteins that are responsible for initiating the attachment of the sperm head and tail. We finally performed intracytoplasmic sperm injection as a way to explore therapeutic strategies. Our findings demonstrate the essential role and the underlying molecular mechanism of ARRDC5 in anchoring the sperm head to the tail during spermatogenesis.
Collapse
Affiliation(s)
- Ruyi Liu
- Institute of Pediatrics, Children's Hospital of Fudan University, the Institutes of Biomedical Sciences, and the State Key Laboratory of Genetic Engineering, Fudan University, Shanghai 200032, China
| | - Ronggui Qu
- Institute of Pediatrics, Children's Hospital of Fudan University, the Institutes of Biomedical Sciences, and the State Key Laboratory of Genetic Engineering, Fudan University, Shanghai 200032, China
| | - Qun Li
- Institute of Pediatrics, Children's Hospital of Fudan University, the Institutes of Biomedical Sciences, and the State Key Laboratory of Genetic Engineering, Fudan University, Shanghai 200032, China
| | - Biaobang Chen
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Fudan University, Shanghai 200032, China
| | - Jian Mu
- Institute of Pediatrics, Children's Hospital of Fudan University, the Institutes of Biomedical Sciences, and the State Key Laboratory of Genetic Engineering, Fudan University, Shanghai 200032, China
| | - Yang Zeng
- Institute of Pediatrics, Children's Hospital of Fudan University, the Institutes of Biomedical Sciences, and the State Key Laboratory of Genetic Engineering, Fudan University, Shanghai 200032, China
| | - Yuxi Luo
- Institute of Pediatrics, Children's Hospital of Fudan University, the Institutes of Biomedical Sciences, and the State Key Laboratory of Genetic Engineering, Fudan University, Shanghai 200032, China
| | - Fangzhou Xu
- Institute of Pediatrics, Children's Hospital of Fudan University, the Institutes of Biomedical Sciences, and the State Key Laboratory of Genetic Engineering, Fudan University, Shanghai 200032, China
| | - Lei Wang
- Institute of Pediatrics, Children's Hospital of Fudan University, the Institutes of Biomedical Sciences, and the State Key Laboratory of Genetic Engineering, Fudan University, Shanghai 200032, China
| | - Zhihua Zhang
- Institute of Pediatrics, Children's Hospital of Fudan University, the Institutes of Biomedical Sciences, and the State Key Laboratory of Genetic Engineering, Fudan University, Shanghai 200032, China
| | - Qing Sang
- Institute of Pediatrics, Children's Hospital of Fudan University, the Institutes of Biomedical Sciences, and the State Key Laboratory of Genetic Engineering, Fudan University, Shanghai 200032, China
| |
Collapse
|
11
|
Sha Y, Liu W, Tang S, Zhang X, Xiao Z, Xiao Y, Deng H, Zhou H, Wei X. TENT5D disruption causes oligoasthenoteratozoospermia and male infertility. Andrology 2023; 11:1121-1131. [PMID: 36746179 DOI: 10.1111/andr.13407] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 01/06/2023] [Accepted: 01/31/2023] [Indexed: 02/08/2023]
Abstract
BACKGROUND Oligoasthenoteratozoospermia (OAT) is one of the most complex aggregators of male gametic problems. However, the genetic etiology of OAT is still largely unknown. OBJECTIVES To reveal the new genetic factors responsible for male infertility owning to OAT and reveal the outcomes of the affected patients from intracytoplasmic sperm injection (ICSI). MATERIALS AND METHODS Two infertile men with typical OAT were recruited in 2018 and retrospected a cohort that included 47 patients with OAT from 2013 to 2021. Fifty healthy men with proven fertility served as control subjects. To identify the novel pathogenic variants, whole-exome sequencing and Sanger sequencing were used. In silico analysis revealed the affecting of the variants. Field emission scanning electron microscopy was employed to observe the morphological defects of the spermatozoa. Immunofluorescence was used to analyze the expression and localization of the related protein. CRISPR/Cas9 was used to generate the mouse model. ICSI was used as a treatment for the patients and to assess the effects of the pathogenic variant on fertilization and embryo development. RESULTS We identified a loss-of-function mutation NM_001170574.2:c.823G > T (p.Glu275*) in X-linked TENT5D from two patients with OAT. This variant is highly deleterious and has not been found in the human population. The count of patients' spermatozoa is dramatically decreased and displays multiple morphologic abnormalities with poor motility. Tent5d knockout mice are infertile and exhibit parallel defects. ICSI could rescue the infertility of the Tent5d knockout male mice. Moreover, the proband was treated with ICSI and achieved a successful pregnancy outcome for the first time. Subsequent mutation screening identified no TENT5D mutations among 47 additional patients with OAT and 50 control subjects. CONCLUSION Mutation in TENT5D results in OAT and male infertility, and this terrible situation could be rescued by ICSI.
Collapse
Affiliation(s)
- Yanwei Sha
- Department of Andrology, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, China
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen, Fujian, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, Fujian, China
| | - Wensheng Liu
- NHC Key Laboratory of Male Reproduction and Genetics, Guangdong Provincial Reproductive Science Institute (Guangdong Provincial Fertility Hospital), Guangzhou, Guangdong, China
| | - Songxi Tang
- Department of Andrology, First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Xiaoya Zhang
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China
| | - Ziyi Xiao
- School of Medicine, Yunnan University, Kunming, Yunnan, China
| | - Yuwei Xiao
- School of Medicine, Yunnan University, Kunming, Yunnan, China
| | - Hongjing Deng
- School of Medicine, Yunnan University, Kunming, Yunnan, China
| | - Huiliang Zhou
- Department of Andrology, First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Xiaoli Wei
- School of Medicine, Yunnan University, Kunming, Yunnan, China
| |
Collapse
|
12
|
Thiangthientham P, Kallayanathum W, Anakkul N, Suwimonteerabutr J, Santiviparat S, Techakumphu M, Loi P, Tharasanit T. Effects of freeze-drying on the quality and fertilising ability of goat sperm recovered from different parts of the epididymis. Theriogenology 2023; 195:31-39. [DOI: 10.1016/j.theriogenology.2022.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 10/06/2022] [Accepted: 10/09/2022] [Indexed: 11/07/2022]
|
13
|
Ahn J, Kim DH, Park MR, Suh Y, Lee H, Hwang S, Mamuad LL, Lee SS, Lee K. A novel testis-enriched gene, Samd4a, regulates spermatogenesis as a spermatid-specific factor. Front Cell Dev Biol 2022; 10:978343. [PMID: 36274854 PMCID: PMC9579339 DOI: 10.3389/fcell.2022.978343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Spermatogenesis is the highly orchestrated process involving expression of a series of testicular genes. Testis-enriched genes are critical for cellular processes during spermatogenesis whose disruption leads to impaired spermatogenesis and male infertility. Nevertheless, among poorly investigated testicular genes are the mouse Samd4a and human SAMD4A which were identified in the current study as novel testis-enriched genes through transcriptomic analyses. In particular, as orthologous alternative splicing isoforms, mouse Samd4a E-form and human SAMD4AC-form containing the SAM domain were specific to testes. Western blot analyses revealed that the murine SAMD4AE-form was predominantly found in the testis. Analyses on GEO2R and single-cell RNA-seq datasets revealed that the Samd4a/SAMD4A expression was enriched in spermatids among various types of cells in adult testes. To investigate in vivo functions of Samd4a, Samd4a knockout mice were generated using the CRISPR/Cas9 system. The Samd4a deficiency resulted in lower testis weight, absence of elongated spermatids, and an increased number of apoptotic cells. Profiling of gene expression in human testis samples revealed that the SAMD4A expression was comparable between obstructive azoospermia patients and normal controls, but significantly lowered in nonobstructive azoospermia (NOA) patients. Among three subgroups of NOA, pre-meiotic arrest (NOA-pre), meiotic arrest (NOA-mei), and post-meiotic arrest (NOA-post), expression level of SAMD4A was higher in the NOA-post than the NOA-mei, but there was no difference between the NOA-pre and NOA-mei. The current studies demonstrated spermatid stage-specific expression of Samd4a/SAMD4A, and impairment of the late stages of spermatogenesis by disruption of the mouse Samd4a gene. These data suggest that Samd4a/SAMD4A plays an essential role in normal spermatogenesis, and SAMD4A, as a spermatid specific marker, can be used for subcategorizing NOA patients. Further understanding the molecular role of SAMD4A will advance our knowledge on genetic regulations in male infertility.
Collapse
Affiliation(s)
- Jinsoo Ahn
- Department of Animal Sciences, The Ohio State University, Columbus, OH, United States
| | - Dong-Hwan Kim
- Department of Animal Sciences, The Ohio State University, Columbus, OH, United States
| | - Mi-Ryung Park
- Animal Biotechnology Division, National Institute of Animal Science, Wanju, South Korea
| | - Yeunsu Suh
- Department of Animal Sciences, The Ohio State University, Columbus, OH, United States
| | - Haesun Lee
- Animal Biotechnology Division, National Institute of Animal Science, Wanju, South Korea
| | - Seongsoo Hwang
- Animal Biotechnology Division, National Institute of Animal Science, Wanju, South Korea
| | - Lovelia L. Mamuad
- Department of Animal Science and Technology, Sunchon National University, Suncheon, South Korea
| | - Sang Suk Lee
- Department of Animal Science and Technology, Sunchon National University, Suncheon, South Korea
- *Correspondence: Sang Suk Lee, ; Kichoon Lee,
| | - Kichoon Lee
- Department of Animal Sciences, The Ohio State University, Columbus, OH, United States
- *Correspondence: Sang Suk Lee, ; Kichoon Lee,
| |
Collapse
|
14
|
LIN28 Family in Testis: Control of Cell Renewal, Maturation, Fertility and Aging. Int J Mol Sci 2022; 23:ijms23137245. [PMID: 35806250 PMCID: PMC9266904 DOI: 10.3390/ijms23137245] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/20/2022] [Accepted: 06/25/2022] [Indexed: 12/12/2022] Open
Abstract
Male reproductive development starts early in the embryogenesis with somatic and germ cell differentiation in the testis. The LIN28 family of RNA-binding proteins promoting pluripotency has two members—LIN28A and LIN28B. Their function in the testis has been investigated but many questions about their exact role based on the expression patterns remain unclear. LIN28 expression is detected in the gonocytes and the migrating, mitotically active germ cells of the fetal testis. Postnatal expression of LIN28 A and B showed differential expression, with LIN28A expressed in the undifferentiated spermatogonia and LIN28B in the elongating spermatids and Leydig cells. LIN28 interferes with many signaling pathways, leading to cell proliferation, and it is involved in important testicular physiological processes, such as cell renewal, maturation, fertility, and aging. In addition, aberrant LIN28 expression is associated with testicular cancer and testicular disorders, such as hypogonadotropic hypogonadism and Klinefelter’s syndrome. This comprehensive review encompasses current knowledge of the function of LIN28 paralogs in testis and other tissues and cells because many studies suggest LIN28AB as a promising target for developing novel therapeutic agents.
Collapse
|
15
|
Arévalo L, Merges GE, Schneider S, Oben FE, Neumann IS, Schorle H. Loss of the cleaved-protamine 2 domain leads to incomplete histone-to-protamine exchange and infertility in mice. PLoS Genet 2022; 18:e1010272. [PMID: 35763544 PMCID: PMC9273070 DOI: 10.1371/journal.pgen.1010272] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 07/11/2022] [Accepted: 05/24/2022] [Indexed: 12/13/2022] Open
Abstract
Protamines are unique sperm-specific proteins that package and protect paternal chromatin until fertilization. A subset of mammalian species expresses two protamines (PRM1 and PRM2), while in others PRM1 is sufficient for sperm chromatin packaging. Alterations of the species-specific ratio between PRM1 and PRM2 are associated with infertility. Unlike PRM1, PRM2 is generated as a precursor protein consisting of a highly conserved N-terminal domain, termed cleaved PRM2 (cP2), which is consecutively trimmed off during chromatin condensation. The carboxyterminal part, called mature PRM2 (mP2), interacts with DNA and together with PRM1, mediates chromatin-hypercondensation. The removal of the cP2 domain is believed to be imperative for proper chromatin condensation, yet, the role of cP2 is not yet understood. We generated mice lacking the cP2 domain while the mP2 is still expressed. We show that the cP2 domain is indispensable for complete sperm chromatin protamination and male mouse fertility. cP2 deficient sperm show incomplete protamine incorporation and a severely altered protamine ratio, retention of transition proteins and aberrant retention of the testis specific histone variant H2A.L.2. During epididymal transit, cP2 deficient sperm seem to undergo ROS mediated degradation leading to complete DNA fragmentation. The cP2 domain therefore seems to be a key aspect in the complex crosstalk between histones, transition proteins and protamines during sperm chromatin condensation. Overall, we present the first step towards understanding the role of the cP2 domain in paternal chromatin packaging and open up avenues for further research. Protamines are small sperm-specific proteins crucial to packaging and protecting the paternal genome on its way to the fertilization site. Most mammalian species express only protamine 1. However, primates and rodents additionally express protamine 2. Protamine 2 differs mainly in its N-terminal domain (cP2), which is sequentially cleaved off during paternal chromatin packaging. Alteration in this process has been associated with infertility. However, the precise role of cP2 is still a mystery. We generated cP2 deficient mice and demonstrate, that loss of cP2 results in incomplete histone-to-protamine transition, resulting in sperm DNA degradation and infertility. Evidently, cP2 helps in orchestrating the fine-tuned dynamics of DNA-hypercondensation while protecting DNA integrity and aiding removal of DNA-bound transition proteins.
Collapse
Affiliation(s)
- Lena Arévalo
- Department of Developmental Pathology, Institute of Pathology, University Hospital Bonn, Bonn, Germany
- * E-mail: (LA); (HS)
| | - Gina Esther Merges
- Department of Developmental Pathology, Institute of Pathology, University Hospital Bonn, Bonn, Germany
| | - Simon Schneider
- Department of Developmental Pathology, Institute of Pathology, University Hospital Bonn, Bonn, Germany
| | - Franka Enow Oben
- Department of Developmental Pathology, Institute of Pathology, University Hospital Bonn, Bonn, Germany
| | - Isabelle Sophie Neumann
- Department of Developmental Pathology, Institute of Pathology, University Hospital Bonn, Bonn, Germany
| | - Hubert Schorle
- Department of Developmental Pathology, Institute of Pathology, University Hospital Bonn, Bonn, Germany
- * E-mail: (LA); (HS)
| |
Collapse
|
16
|
Wang M, Zeng L, Su P, Ma L, Zhang M, Zhang YZ. Autophagy: a multifaceted player in the fate of sperm. Hum Reprod Update 2021; 28:200-231. [PMID: 34967891 PMCID: PMC8889000 DOI: 10.1093/humupd/dmab043] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 11/11/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Autophagy is an intracellular catabolic process of degrading and recycling proteins and organelles to modulate various physiological and pathological events, including cell differentiation and development. Emerging data indicate that autophagy is closely associated with male reproduction, especially the biosynthetic and catabolic processes of sperm. Throughout the fate of sperm, a series of highly specialized cellular events occur, involving pre-testicular, testicular and post-testicular events. Nonetheless, the most fundamental question of whether autophagy plays a protective or harmful role in male reproduction, especially in sperm, remains unclear. OBJECTIVE AND RATIONALE We summarize the functional roles of autophagy in the pre-testicular (hypothalamic–pituitary–testis (HPG) axis), testicular (spermatocytogenesis, spermatidogenesis, spermiogenesis, spermiation) and post-testicular (sperm maturation and fertilization) processes according to the timeline of sperm fate. Additionally, critical mechanisms of the action and clinical impacts of autophagy on sperm are identified, laying the foundation for the treatment of male infertility. SEARCH METHODS In this narrative review, the PubMed database was used to search peer-reviewed publications for summarizing the functional roles of autophagy in the fate of sperm using the following terms: ‘autophagy’, ‘sperm’, ‘hypothalamic–pituitary–testis axis’, ‘spermatogenesis’, ‘spermatocytogenesis’, ‘spermatidogenesis’, ‘spermiogenesis’, ‘spermiation’, ‘sperm maturation’, ‘fertilization’, ‘capacitation’ and ‘acrosome’ in combination with autophagy-related proteins. We also performed a bibliographic search for the clinical impact of the autophagy process using the keywords of autophagy inhibitors such as ‘bafilomycin A1’, ‘chloroquine’, ‘hydroxychloroquine’, ‘3-Methyl Adenine (3-MA)’, ‘lucanthone’, ‘wortmannin’ and autophagy activators such as ‘rapamycin’, ‘perifosine’, ‘metformin’ in combination with ‘disease’, ‘treatment’, ‘therapy’, ‘male infertility’ and equivalent terms. In addition, reference lists of primary and review articles were reviewed for additional relevant publications. All relevant publications until August 2021 were critically evaluated and discussed on the basis of relevance, quality and timelines. OUTCOMES (i) In pre-testicular processes, autophagy-related genes are involved in the regulation of the HPG axis; and (ii) in testicular processes, mTORC1, the main gate to autophagy, is crucial for spermatogonia stem cell (SCCs) proliferation, differentiation, meiotic progression, inactivation of sex chromosomes and spermiogenesis. During spermatidogenesis, autophagy maintains haploid round spermatid chromatoid body homeostasis for differentiation. During spermiogenesis, autophagy participates in acrosome biogenesis, flagella assembly, head shaping and the removal of cytoplasm from elongating spermatid. After spermatogenesis, through PDLIM1, autophagy orchestrates apical ectoplasmic specialization and basal ectoplasmic specialization to handle cytoskeleton assembly, governing spermatid movement and release during spermiation. In post-testicular processes, there is no direct evidence that autophagy participates in the process of capacitation. However, autophagy modulates the acrosome reaction, paternal mitochondria elimination and clearance of membranous organelles during fertilization. WIDER IMPLICATIONS Deciphering the roles of autophagy in the entire fate of sperm will provide valuable insights into therapies for diseases, especially male infertility.
Collapse
Affiliation(s)
- Mei Wang
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P.R. China.,Harvard Reproductive Endocrine Science Center and Reproductive Endocrine Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Clinical Medicine Research Center of Prenatal Diagnosis and Birth Health in Hubei Province, Wuhan, Hubei, P.R. China
| | - Ling Zeng
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Ping Su
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Ling Ma
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P.R. China.,Clinical Medicine Research Center of Prenatal Diagnosis and Birth Health in Hubei Province, Wuhan, Hubei, P.R. China
| | - Ming Zhang
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P.R. China.,Clinical Medicine Research Center of Prenatal Diagnosis and Birth Health in Hubei Province, Wuhan, Hubei, P.R. China
| | - Yuan Zhen Zhang
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P.R. China.,Clinical Medicine Research Center of Prenatal Diagnosis and Birth Health in Hubei Province, Wuhan, Hubei, P.R. China
| |
Collapse
|
17
|
Karimian M, Parvaresh L, Behjati M. Genetic variations as molecular diagnostic factors for idiopathic male infertility: current knowledge and future perspectives. Expert Rev Mol Diagn 2021; 21:1191-1210. [PMID: 34555965 DOI: 10.1080/14737159.2021.1985469] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Infertility is a major health problem, worldwide, which affects 10-15% of couples. About half a percent of infertility cases are related to male-related factors. Male infertility is a complex disease that is the result of various insults as lifestyle issues, genetics, and epigenetic factors. Idiopathic infertility is responsible for 30% of total cases. The genetic factors responsible for male infertility include chromosomal abnormalities, deletions of chromosome Y, and mutations and genetic variations of key genes. AREAS COVERED In this review article, we aim to narrate performed studies on polymorphisms of essential genes involved in male infertility including folate metabolizing genes, oxidative stress-related genes, inflammation, and cellular pathways related to spermatogenesis. Moreover, possible pathophysiologic mechanisms responsible for genetic polymorphisms are discussed. EXPERT OPINION Analysis and assessment of these genetic variations could help in screening, diagnosis, and treatment of idiopathic male infertility.
Collapse
Affiliation(s)
- Mohammad Karimian
- Department of Molecular and Cell Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, Iran
| | - Leila Parvaresh
- Department of Anatomy, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohaddeseh Behjati
- Cellular, Molecular and Genetics Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
18
|
Fukuda E, Tanaka H, Yamaguchi K, Takasaka M, Kawamura Y, Okuda H, Isotani A, Ikawa M, Shapiro VS, Tsuchida J, Okada Y, Tsujimura A, Miyagawa Y, Fukuhara S, Kawakami Y, Wada M, Nishimune Y, Goshima N. Identification and characterization of the antigen recognized by the germ cell mAb TRA98 using a human comprehensive wet protein array. Genes Cells 2021; 26:180-189. [PMID: 33527666 DOI: 10.1111/gtc.12832] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 01/20/2021] [Accepted: 01/20/2021] [Indexed: 11/28/2022]
Abstract
TRA98 is a rat monoclonal antibody (mAb) which recognizes a specific antigen in the nuclei of germ cells. mAb TRA98 has been used to understand the mechanism of germ cell development and differentiation in many studies. In mice, the antigen recognized by mAb TRA98 or GCNA1 has been reported to be a GCNA gene product, but despite the demonstration of the immunoreactivity of this mAb in human testis and sperm in 1997, the antigen in humans remains unknown, as of date. To identify the human antigen recognized by mAb TRA98, a human comprehensive wet protein array was developed containing 19,446 proteins derived from human cDNAs. Using this array, it was found that the antigen of mAb TRA98 is not a GCNA gene product, but nuclear factor-κB activating protein (NKAP). In mice, mAb TRA98 recognized both the GCNA gene product and NKAP. Furthermore, conditional knockout of Nkap in mice revealed a phenotype of Sertoli cell-only syndrome. Although NKAP is a ubiquitously expressed protein, NKAP recognized by mAb TRA98 in mouse testis was SUMOylated. These results suggest that NKAP undergoes modifications, such as SUMOylation in the testis, and plays an important role in spermatogenesis.
Collapse
Affiliation(s)
- Eriko Fukuda
- The National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan
| | - Hiromitsu Tanaka
- Molecular Biology Division, Faculty of Pharmaceutical Sciences, Nagasaki International University, Nagasaki, Japan
| | - Kei Yamaguchi
- The National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan
| | - Mieko Takasaka
- Japan Biological Informatics Consortium (JBIC), Tokyo, Japan
| | | | - Hidenobu Okuda
- Department of Urology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Ayako Isotani
- Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Masahito Ikawa
- Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | | | - Junji Tsuchida
- Department of Science for Laboratory Animal Experimentation, Research Institute for Microbial Disease, Osaka University, Osaka, Japan
| | - Yuki Okada
- Laboratory of Pathology and Development, Institute of Molecular and Cellular Biosciences, University of Tokyo, Tokyo, Japan
| | - Akira Tsujimura
- Department of Urology, Juntendo University Urayasu Hospital, Urayasu, Chiba, Japan
| | - Yasushi Miyagawa
- Department of Urology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Shinichiro Fukuhara
- Department of Urology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yoshitaka Kawakami
- The National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan
| | - Morimasa Wada
- Molecular Biology Division, Faculty of Pharmaceutical Sciences, Nagasaki International University, Nagasaki, Japan
| | - Yoshitake Nishimune
- Department of Science for Laboratory Animal Experimentation, Research Institute for Microbial Disease, Osaka University, Osaka, Japan
| | - Naoki Goshima
- The National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan.,Department of Human Sciences, Faculty of Human Sciences, Musasino University, Tokyo, Japan
| |
Collapse
|
19
|
Tanaka H, Tsujimura A. Pervasiveness of intronless genes expressed in haploid germ cell differentiation. Reprod Med Biol 2021; 20:255-259. [PMID: 34262392 PMCID: PMC8254168 DOI: 10.1002/rmb2.12385] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/25/2021] [Accepted: 03/28/2021] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND cDNA libraries derived from the brain and testis contain genes that encode almost all proteins. The brain is composed of various differentiated cells, and the testis also contains various differentiated cells, such as germ cells, and somatic cells that support germ cell differentiation, such as Sertoli and Leydig cells. Many genes appear to be expressed due to tissue complexity. METHODS The Genome Project has sequenced the entire genomes of humans and mice. Recent research using new gene analysis technologies has found that many genes are expressed specifically in male germ cells. MAIN FINDINGS RESULTS Functional intronless genes are significantly enriched in haploid germ cell-specific genes. CONCLUSION Functional intronless genes associated with fertility are more likely to be inherited in haploid germ cells than in somatic cells.
Collapse
Affiliation(s)
- Hiromitsu Tanaka
- Lab. of Molecular BiologyFaculty of Pharmaceutical SciencesNagasaki International UniversitySaseboJapan
| | - Akira Tsujimura
- Department of UrologyJuntendo University HospitalUrayasuJapan
| |
Collapse
|
20
|
Cai Z, Niu Y, Li H. RNA N6-methyladenosine modification, spermatogenesis, and human male infertility. Mol Hum Reprod 2021; 27:6179814. [PMID: 33749751 DOI: 10.1093/molehr/gaab020] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 01/15/2021] [Indexed: 12/28/2022] Open
Abstract
RNA N6-methyladenosine (m6A) modification is one of the main forms of posttranscriptional modification, and its dysregulation is involved in a series of pathological processes. RNA m6A regulators, which mediate dynamic RNA m6A modification, are expressed in almost all types of testicular cells, including spermatogenetic cells and somatic cells. Cumulative studies have found that knockout of RNA m6A regulators in the testis leads to abnormal metabolism of the target mRNAs, which eventually causes spermatogenetic disorders and infertility. To date, a role for dysregulated RNA m6A modification in human male infertility remains elusive; however, dysregulated expression of RNA m6A regulators in abnormal human semen samples, including oligospermia, asthenozoospermia and azoospermia, has been found. Therefore, we speculate that abnormal RNA m6A methylation may be an important mechanism of male infertility. In this review, we summarize the recent findings regarding the spatiotemporal expression of RNA m6A regulators in the testes, mechanisms of RNA m6A modification in spermatogenesis and the relation between dysregulated RNA m6A regulators and human male infertility. In addition, we also discuss future directions in studying the molecular mechanism of male infertility and exploring their clinical applications from the viewpoint of RNA m6A modification.
Collapse
Affiliation(s)
- Zhonglin Cai
- Department of Urology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Yamei Niu
- Department of Pathology, Institute of Basic Medical Sciences Chinese Academy of Medical Science, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Hongjun Li
- Department of Urology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
21
|
Huang YL, Zhang PF, Fu Q, He WT, Xiao K, Zhang M. Novel targets identified by integrated proteomic and phosphoproteomic analysis in spermatogenesis of swamp buffalo (Bubalus bubalis). Sci Rep 2020; 10:15659. [PMID: 32973212 PMCID: PMC7515895 DOI: 10.1038/s41598-020-72353-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 08/28/2020] [Indexed: 02/04/2023] Open
Abstract
To understand mechanisms of spermatogenesis, the proteome and the phosphoproteome in prepubertal and pubertal swamp buffalo (Bubalus bubalis) testes were analyzed using tandem mass tag (TMT) coupled with liquid chromatography-tandem mass spectrometry (LC–MS/MS). In prepubertal testes, 80 proteins were overexpressed, 148 proteins were underexpressed, and 139 and 142 protein sites had higher and lower phosphorylation, respectively, compared to the levels in pubertal testes. Several of these proteins were associated with reproductive processes such as sexual reproduction, spermatogenesis, fertilization, and spermatid development. In particular, outer dense fiber protein 1 (ODF1), protein maelstrom homolog (MAEL), actin-like protein 7B (ACTL7B), tyrosine-(Y)-phosphorylation regulated (CABYR), and tripartite motif containing 36 (TRIM36) were upregulated with age at both the proteome and phosphoproteome levels. Combining proteome and phosphoproteome analysis can be effectively applied to study the protein/phosphorylation patterns of buffalo testes. These data provide new regulatory candidates and evidence for a complex network in spermatogenesis in buffalo testes, and serve as an important resource for exploring the physiological mechanism of spermatogenesis in mammals.
Collapse
Affiliation(s)
- Yu-Lin Huang
- Department of Cell and Genetics, College of Basic Medicine, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Peng-Fei Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning, Guangxi, China
| | - Qiang Fu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning, Guangxi, China
| | - Weng-Tan He
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning, Guangxi, China
| | - Kai Xiao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning, Guangxi, China
| | - Ming Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning, Guangxi, China.
| |
Collapse
|
22
|
Aoki Y, Tsujimura A, Kaseda K, Okabe M, Tokuhiro K, Ohta T, O'Bryan MK, Okuda H, Kitamura K, Ogawa Y, Fujiki T, Wada M, Horie S, Nishimune Y, Tanaka H. Haprin-deficient spermatozoa are incapable of in vitro fertilization. Mol Reprod Dev 2020; 87:534-541. [PMID: 32311190 DOI: 10.1002/mrd.23344] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 04/03/2020] [Indexed: 11/06/2022]
Abstract
Haprin (TRIM36) is a ubiquitin-protein ligase that mediates ubiquitination and subsequent proteasomal degradation of target proteins. It is expressed in the testes in both mice and humans and is thought to be involved in spermiogenesis, the acrosome reaction, and fertilization. However, the functional role of Haprin is poorly understood. The aim of this study was to investigate the physiological role of Haprin in fertility. Homozygous haprin-deficient mice were generated and these mice, and their spermatozoa, were analyzed to detect morphological and fertility-related abnormalities. In these models, normal spermatogenesis was observed but sperm quality was reduced with haprin-deficient mice having poorer sperm morphology and motility than wild-type mice. Interestingly, haprin-deficient mice showed normal in vivo fertility but could not fertilize oocytes under standard in vitro fertilization conditions. In conclusion, this study demonstrated that Haprin deficiency causes morphological abnormalities in spermatozoa, indicating that Haprin is involved in spermiogenesis.
Collapse
Affiliation(s)
- Yusuke Aoki
- Department of Urology, Juntendo University Urayasu Hospital, Urayasu, Chiba, Japan.,Department of Urology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Japan
| | - Akira Tsujimura
- Department of Urology, Juntendo University Urayasu Hospital, Urayasu, Chiba, Japan
| | - Kazuhiro Kaseda
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Masaru Okabe
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Keizo Tokuhiro
- Department of Genome Editing, Institute of Biomedical Science, Kansai Medical University, Hirakata, Osaka, Japan
| | - Tomoe Ohta
- Faculty of Pharmaceutical Sciences, Nagasaki International University, Sasebo, Nagasaki, Japan
| | - Moira K O'Bryan
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
| | - Hidenobu Okuda
- Department of Urology, Osaka University, Suita, Osaka, Japan
| | - Kouichi Kitamura
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yukiko Ogawa
- Faculty of Pharmaceutical Sciences, Nagasaki International University, Sasebo, Nagasaki, Japan
| | - Tsukasa Fujiki
- Faculty of Pharmaceutical Sciences, Nagasaki International University, Sasebo, Nagasaki, Japan
| | - Morimasa Wada
- Faculty of Pharmaceutical Sciences, Nagasaki International University, Sasebo, Nagasaki, Japan
| | - Shigeo Horie
- Department of Urology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Japan
| | - Yoshitake Nishimune
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Hiromitsu Tanaka
- Faculty of Pharmaceutical Sciences, Nagasaki International University, Sasebo, Nagasaki, Japan
| |
Collapse
|
23
|
Tang C, Xie Y, Yu T, Liu N, Wang Z, Woolsey RJ, Tang Y, Zhang X, Qin W, Zhang Y, Song G, Zheng W, Wang J, Chen W, Wei X, Xie Z, Klukovich R, Zheng H, Quilici DR, Yan W. m 6A-dependent biogenesis of circular RNAs in male germ cells. Cell Res 2020; 30:211-228. [PMID: 32047269 PMCID: PMC7054367 DOI: 10.1038/s41422-020-0279-8] [Citation(s) in RCA: 147] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 01/14/2020] [Indexed: 12/15/2022] Open
Abstract
The majority of circular RNAs (circRNAs) spliced from coding genes contain open reading frames (ORFs) and thus, have protein coding potential. However, it remains unknown what regulates the biogenesis of these ORF-containing circRNAs, whether they are actually translated into proteins and what functions they play in specific physiological contexts. Here, we report that a large number of circRNAs are synthesized with increasing abundance when late pachytene spermatocytes develop into round and then elongating spermatids during murine spermatogenesis. For a subset of circRNAs, the back splicing appears to occur mostly at m6A-enriched sites, which are usually located around the start and stop codons in linear mRNAs. Consequently, approximately a half of these male germ cell circRNAs contain large ORFs with m6A-modified start codons in their junctions, features that have been recently shown to be associated with protein-coding potential. Hundreds of peptides encoded by the junction sequences of these circRNAs were detected using liquid chromatography coupled with mass spectrometry, suggesting that these circRNAs can indeed be translated into proteins in both developing (spermatocytes and spermatids) and mature (spermatozoa) male germ cells. The present study discovered not only a novel role of m6A in the biogenesis of coding circRNAs, but also a potential mechanism to ensure stable and long-lasting protein production in the absence of linear mRNAs, i.e., through production of circRNAs containing large ORFs and m6A-modified start codons in junction sequences.
Collapse
Affiliation(s)
- Chong Tang
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, 89557, USA.
- BGI Co. Ltd., Shenzhen, 518083, China.
| | - Yeming Xie
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, 89557, USA
| | - Tian Yu
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, 89557, USA
| | - Na Liu
- BGI Co. Ltd., Shenzhen, 518083, China
| | - Zhuqing Wang
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, 89557, USA
| | - Rebekah J Woolsey
- Nevada Proteomics Center, University of Nevada, Reno, Reno, NV, 89557, USA
| | - Yunge Tang
- Key Laboratory of Male Reproduction and Genetics, National Health and Family Planning Commission, No. 17 Meidong Road, Yuexiu District, Guangzhou, 510600, China
- Family Planning Research Institute of Guangdong Province, No. 17 Meidong Road, Yuexiu District, Guangzhou, 510600, China
| | - Xinzong Zhang
- Key Laboratory of Male Reproduction and Genetics, National Health and Family Planning Commission, No. 17 Meidong Road, Yuexiu District, Guangzhou, 510600, China
- Family Planning Research Institute of Guangdong Province, No. 17 Meidong Road, Yuexiu District, Guangzhou, 510600, China
| | - Weibing Qin
- Key Laboratory of Male Reproduction and Genetics, National Health and Family Planning Commission, No. 17 Meidong Road, Yuexiu District, Guangzhou, 510600, China
- Family Planning Research Institute of Guangdong Province, No. 17 Meidong Road, Yuexiu District, Guangzhou, 510600, China
| | - Ying Zhang
- Key Laboratory of Male Reproduction and Genetics, National Health and Family Planning Commission, No. 17 Meidong Road, Yuexiu District, Guangzhou, 510600, China
- Family Planning Research Institute of Guangdong Province, No. 17 Meidong Road, Yuexiu District, Guangzhou, 510600, China
| | - Ge Song
- Key Laboratory of Male Reproduction and Genetics, National Health and Family Planning Commission, No. 17 Meidong Road, Yuexiu District, Guangzhou, 510600, China
- Family Planning Research Institute of Guangdong Province, No. 17 Meidong Road, Yuexiu District, Guangzhou, 510600, China
| | - Weiwei Zheng
- Key Laboratory of Male Reproduction and Genetics, National Health and Family Planning Commission, No. 17 Meidong Road, Yuexiu District, Guangzhou, 510600, China
- Family Planning Research Institute of Guangdong Province, No. 17 Meidong Road, Yuexiu District, Guangzhou, 510600, China
| | - Juan Wang
- BGI Co. Ltd., Shenzhen, 518083, China
| | | | | | - Zhe Xie
- BGI Co. Ltd., Shenzhen, 518083, China
- Department of Cell Biology and Physiology, University of Copenhagen 13, 2100, Copenhagen, Denmark
| | - Rachel Klukovich
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, 89557, USA
| | - Huili Zheng
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, 89557, USA
| | - David R Quilici
- Nevada Proteomics Center, University of Nevada, Reno, Reno, NV, 89557, USA
| | - Wei Yan
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, 89557, USA.
- Department of Obstetrics and Gynecology, University of Nevada, Reno, School of Medicine, Reno, NV, 89557, USA.
- Department of Biology, University of Nevada, Reno, Reno, NV, 89557, USA.
| |
Collapse
|
24
|
Özbek M, Hitit M, Ergün E, Ergün L, Beyaz F, Erhan F, Yıldırım N, Kandil B, Özgenç Ö, Memili E. Expression profile of Toll-like receptor 4 in rat testis and epididymis throughout postnatal development. Andrologia 2020; 52:e13518. [PMID: 32003057 DOI: 10.1111/and.13518] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/04/2019] [Accepted: 12/28/2019] [Indexed: 12/24/2022] Open
Abstract
Toll-like receptors (TLRs) belonging to pattern recognition receptors are involved in maintaining testicular and epididymal immune homeostasis. The purpose of the current study was to investigate TLR4 expression in rat testis and epididymis throughout postnatal development. Weak staining was detected in peritubular myoid cells and immature Sertoli cells while no staining was observed in gonocytes during prepubertal period. However, TLR4 expression began to appear in spermatocytes in pubertal period and gradually increased in spermatids. An intense staining was observed in steps 5-19 spermatids in post pubertal and mature periods. Similarly, TLR4 expression in the testes steadily increased from pubertal period to mature period. Puberty also caused a significant increase in TLR4 expression in epididymis. TLR4 expression in cauda epididymis was lower as compared to those of other epididymal segments. The majority of epididymal epithelial cells exhibited apical TLR4 expression, whereas basal cells showed intense intracytoplasmic immunoreaction. We detected an intense staining in epididymal smooth muscle cells. The expression levels of TLR4 showed dynamic changes in both spermatogenic cells, and entire testicular and epididymal tissues during postnatal development. These results suggest that TLR4 expression contributes not only to inflammation but also to the development of spermatogenic cells.
Collapse
Affiliation(s)
- Mehmet Özbek
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Burdur Mehmet Akif Ersoy University, Burdur, Turkey
| | - Mustafa Hitit
- Department of Genetics, Faculty of Veterinary Medicine, Kastamonu University, Kastamonu, Turkey
| | - Emel Ergün
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Ankara University, Ankara, Turkey
| | - Levent Ergün
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Ankara University, Ankara, Turkey
| | - Feyzullah Beyaz
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Turkey
| | - Füsun Erhan
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Ankara University, Ankara, Turkey
| | - Nuh Yıldırım
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Ankara University, Ankara, Turkey
| | - Banu Kandil
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Ankara University, Ankara, Turkey
| | - Özge Özgenç
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Ankara University, Ankara, Turkey
| | - Erdoğan Memili
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS, USA
| |
Collapse
|
25
|
Heidari MM, Danafar A, Moezzi F, Khatami M, Talebi AR. The association between TNP2 gene polymorphisms and Iranian infertile men with varicocele: A case-control study. Int J Reprod Biomed 2019; 17:557-566. [PMID: 31583373 PMCID: PMC6745086 DOI: 10.18502/ijrm.v17i8.4821] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 03/02/2019] [Accepted: 05/08/2019] [Indexed: 11/30/2022] Open
Abstract
Background Numerous researches have provided great evidence that revealed the relationship between varicocele and sperm DNA damage. Objective Because of the crucial role of nuclear transition proteins (TPs) in sperm DNA condensation and integrity, this case-control study was designed to study TNP2 gene nucleotide variations in Iranian patients with varicocele. Materials and Methods PCR-SSCP and DNA sequencing were used to search for mutations in exons 1 & 2 of the TNP2 gene in 156 infertile patients with varicocele and 150 fertile men. Results The results of sequencing showed three variants at positions c.301C░>░T (p.R101C), c.391C░>░T (p.R131░W), and g.IVS1-26G░>░C (rs8043625) of TNP2 gene. It was found that varicocele risk in men who have the CC genotype of g.IVS1-26G░>░C SNP is higher than those who don't have these genotypes (according to Co-dominant model, Dominant model, Recessive model, and Over-dominant model). The haplotype-based analysis showed that (C/C/T) and (C/T/T) haplotypes were a risk factor of in patients with varicocele compared to controls (OR░=░3.278, p░=░0.000 and OR░=░9.304, p░=░0.038, respectively). Conclusion Because of the significant difference in the genotype and allele frequencies of g.IVS1-26G░>░C SNP in the intronic region of TNP2 in patients with varicocele compared with controls and also because of the high conservation of this SNP position during evolution, this SNP may be involved in some important processes associated with the expression of this gene like mRNA splicing, but the exact mechanism is not clear.
Collapse
Affiliation(s)
| | | | - Fahime Moezzi
- Department of Biology, Faculty of Science, Yazd University Yazd Iran
| | - Mehri Khatami
- Department of Biology, Faculty of Science, Yazd University Yazd Iran
| | - Ali Reza Talebi
- Research and Clinical Center for Infertility and Department of Anatomy, Shahid Sadoughi University of Medical Sciences Yazd Iran
| |
Collapse
|
26
|
Yamase K, Tanigawa Y, Yamamoto Y, Tanaka H, Komiya T. Mouse TMCO5 is localized to the manchette microtubules involved in vesicle transfer in the elongating spermatids. PLoS One 2019; 14:e0220917. [PMID: 31393949 PMCID: PMC6687282 DOI: 10.1371/journal.pone.0220917] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 07/25/2019] [Indexed: 12/31/2022] Open
Abstract
As a result of a high-throughput in situ hybridization screening for adult mouse testes, we found that the mRNA for Tmco5 is expressed in round and elongating spermatids. Tmco5 belongs to the Tmco (Transmembrane and coiled-coil domains) gene family and has a coiled-coil domain in the N-terminal and a transmembrane domain in the C-terminal region. A monoclonal antibody raised against recombinant TMCO5 revealed that the protein is expressed exclusively in the elongating spermatids of step 9 to 12 and is localized to the manchette, a transiently emerging construction, which predominantly consists of cytoskeleton microtubules and actin filaments. This structure serves in the transport of Golgi-derived non-acrosomal vesicles. Moreover, induced expression of TMCO5 in CHO cells resulted in the co-localization of TMCO5 with β-tubulin besides the reorganization of the Golgi apparatus. Judging from the results and considering the domain structure of TMCO5, we assume that Tmco5 may have a role in vesicle transport along the manchette.
Collapse
Affiliation(s)
- Kenya Yamase
- Department of Biological Function, Graduate School of Science, Osaka City University, Sugimoto, Sumiyoshi, Osaka, Japan
| | - Yoko Tanigawa
- Department of Biological Function, Graduate School of Science, Osaka City University, Sugimoto, Sumiyoshi, Osaka, Japan
| | - Yasufumi Yamamoto
- Department of Biological Function, Graduate School of Science, Osaka City University, Sugimoto, Sumiyoshi, Osaka, Japan
| | - Hiromitsu Tanaka
- Faculty of Pharmaceutical Sciences, Nagasaki International University, Sasebo, Nagasaki, Japan
| | - Tohru Komiya
- Department of Biological Function, Graduate School of Science, Osaka City University, Sugimoto, Sumiyoshi, Osaka, Japan
- * E-mail:
| |
Collapse
|
27
|
Tanaka H, Miyagawa Y, Tsujimura A, Wada M. Genetic Polymorphisms within The Intronless ACTL7A and ACTL7B Genes Encoding Spermatogenesis-Specific Actin-Like Proteins in Japanese Males. INTERNATIONAL JOURNAL OF FERTILITY & STERILITY 2019; 13:245-249. [PMID: 31310081 PMCID: PMC6642428 DOI: 10.22074/ijfs.2019.5702] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Accepted: 02/16/2019] [Indexed: 11/18/2022]
Abstract
Actins play essential roles in cellular morphogenesis. In mice, the T-actin1 and 2 genes, which encode actin-like
proteins, are specifically expressed in haploid germ cells. Both T-ACTIN1/ACTLB and T-ACTIN2/ACTL7A have also
been cloned and studied. The orthologous genes in humans are present on chromosome 9q31.3 as intronless genes.
Defects of germ cell-specific genes can introduce infertility without somatic function impairment. We determined T-
ACTIN1 and 2, specifically expressed in the testis using reverse-transcription polymerase chain reaction (RT-PCR).
To examine whether genetic polymorphisms of the T-ACTIN1 and 2 genes are associated with male infertility, we
screened for T-ACTIN1 and 2 polymorphisms by direct sequencing of DNA from 282 sterile and 89 fertile Japanese
men. We identified five and six single nucleotide polymorphisms (SNPs) in the T-ACTIN1 and 2 regions of the sterile
and fertile subjects respectively. Among these genetic polymorphisms was a novel SNP that was not in the National
Center for Biotechnology Information SNP database. Although we could not determine whether these SNPs cause
infertility, the prevalence of these genetic polymorphisms may be useful for analyzing polymorphisms in future large-
scale genetic analyses.
Collapse
Affiliation(s)
- Hiromitsu Tanaka
- Faculty of Pharmaceutical Sciences, Nagasaki International University, Huis Ten Bosch, Sasebo, Nagasaki, Japan.Electronic Address:
| | - Yasushi Miyagawa
- Department of Urology, Graduate School of Medicine, Osaka University, Yamadaoka, Suita, Osaka, Japan
| | - Akira Tsujimura
- Department of Urology, Juntendo University Hospital, Hongo, bunnkyouku, Tokyo, Japan
| | - Morimasa Wada
- Faculty of Pharmaceutical Sciences, Nagasaki International University, Huis Ten Bosch, Sasebo, Nagasaki, Japan
| |
Collapse
|
28
|
The dynamics and regulation of chromatin remodeling during spermiogenesis. Gene 2019; 706:201-210. [DOI: 10.1016/j.gene.2019.05.027] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 05/08/2019] [Accepted: 05/10/2019] [Indexed: 01/06/2023]
|
29
|
Lu Y, Liao S, Tu W, Yang B, Liu S, Pei X, Tao D, Lu Y, Ma Y, Yang Y, Liu Y. DNA demethylation facilitates the specific transcription of the mouse X-linked Tsga8 gene in round spermatids†. Biol Reprod 2019; 100:994-1007. [PMID: 30541061 DOI: 10.1093/biolre/ioy255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 10/08/2018] [Accepted: 12/11/2018] [Indexed: 02/05/2023] Open
Abstract
Some X-linked genes necessary for spermiogenesis are specifically activated in the postmeiotic germ cells. However, the regulatory mechanism about this activation is not clearly understood. Here, we examined the potential mechanism controlling the transcriptional activation of the mouse testis specific gene A8 (Tsga8) gene in round spermatids. We observed that the Tsga8 expression was negatively correlated with the methylation level of the CpG sites in its core promoter. During spermatogenesis, the Tsga8 promoter was methylated in spermatogonia, and then demethylated in spermatocytes. The demethylation status of Tsga8 promoter was maintained through the postmeiotic germ cells, providing a potentially active chromatin for Tsga8 transcription. In vitro investigation showed that the E12 and Spz1 transcription factors can enhance the Tsga8 promoter activity by binding to the unmethylated E-box motif within the Tsga8 promoter. Additionally, the core Tsga8 promoter drove green fluorescent protein (GFP) expression in the germ cells of Tsga8-GFP transgenic mice, and the GFP expression pattern was similar to that of endogenous Tsga8. Moreover, the DNA methylation profile of the Tsga8-promoter-driven transgene was consistent with that of the endogenous Tsga8 promoter, indicating the existence of a similar epigenetic modification for the Tsga8 promoter to ensure its spatiotemporal expression in vivo. Taken together, this study reports the details of a regulatory mechanism that includes DNA methylation and transcription factors to mediate the postmeiotic expression of an X-linked gene.
Collapse
Affiliation(s)
- Yongjie Lu
- Department of Medical Genetics and Division of Human Morbid Genomics, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan Province, China
| | - Shunyao Liao
- Diabetic Center and Institute of Transplantation, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan Province, China
| | - Wenling Tu
- Department of Medical Genetics and Division of Human Morbid Genomics, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan Province, China
| | - Bo Yang
- Department of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Shasha Liu
- Diabetic Center and Institute of Transplantation, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan Province, China
| | - Xue Pei
- Department of Medical Genetics and Division of Human Morbid Genomics, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan Province, China
| | - Dachang Tao
- Department of Medical Genetics and Division of Human Morbid Genomics, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan Province, China
| | - Yilu Lu
- Department of Medical Genetics and Division of Human Morbid Genomics, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan Province, China
| | - Yongxin Ma
- Department of Medical Genetics and Division of Human Morbid Genomics, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan Province, China
| | - Yuan Yang
- Department of Medical Genetics and Division of Human Morbid Genomics, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan Province, China
| | - Yunqiang Liu
- Department of Medical Genetics and Division of Human Morbid Genomics, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan Province, China
| |
Collapse
|
30
|
Hirenallur Maheshwarappa Y, Kumar S, Chaudhary R, Mishra C, Ayyar S, Kumar A, Chauhan A, Ghosh SK, Panigrahi M, Mitra A. Identification of sperm motility markers in bovine transition protein genes. Reprod Domest Anim 2018; 54:365-372. [PMID: 30370952 DOI: 10.1111/rda.13369] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Accepted: 10/22/2018] [Indexed: 11/28/2022]
Abstract
Transition proteins (TNPs) are essential in chromatin condensation during spermiogenesis, and hence, they are the candidate genes for identifying sperm motility markers. Coding and in silico predicted promoter regions of these genes were investigated in crossbred and purebred cattle, and also, their mRNA quantification was done to explore its use as a diagnostic tool of infertility. PCR-SSCP analysis revealed two band patterns in fragment III of TNP1 and fragment II of TNP2 gene. Sequence analysis revealed a deletion of "G" nucleotide in 3'UTR region of TNP1 and C>T SNP in intronic region of TNP2 gene. Least square analysis of variance did not reveal any significant influence of nucleotide deletion on any sperm motility parameters in both crossbred and purebred cattle. However, C>T SNP had a significant effect on initial progressive motility (p < 0.05) in purebred cattle and post-thaw motility in overall cattle population. RT-qPCR analysis did not reveal any significant variation in TNP1 and TNP2 gene expression among poorly motile and good quality spermatozoa of Vrindavani bulls.
Collapse
Affiliation(s)
| | - Subodh Kumar
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute (IVRI), Bareilly, India
| | - Rajni Chaudhary
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute (IVRI), Bareilly, India
| | - Chinmoy Mishra
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute (IVRI), Bareilly, India
| | - Sivakumar Ayyar
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute (IVRI), Bareilly, India
| | - Amit Kumar
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute (IVRI), Bareilly, India
| | - Anuj Chauhan
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute (IVRI), Bareilly, India
| | - Subrata Kumar Ghosh
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute (IVRI), Bareilly, India
| | - Manjit Panigrahi
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute (IVRI), Bareilly, India
| | - Abhijit Mitra
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute (IVRI), Bareilly, India
| |
Collapse
|
31
|
Zheng Y, Lei Q, Jongejan A, Mulder CL, van Daalen SKM, Mastenbroek S, Hwang G, Jordan PW, Repping S, Hamer G. The influence of retinoic acid-induced differentiation on the radiation response of male germline stem cells. DNA Repair (Amst) 2018; 70:55-66. [PMID: 30179733 PMCID: PMC6237089 DOI: 10.1016/j.dnarep.2018.08.027] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 08/23/2018] [Accepted: 08/27/2018] [Indexed: 12/19/2022]
Abstract
Lifelong mammalian male fertility is maintained through an intricate balance between spermatogonial proliferation and differentiation. DNA damage in spermatogonia, for instance caused by chemo- or radiotherapy, can induce cell cycle arrest or germ cell apoptosis, possibly resulting in male infertility. Spermatogonia are generally more radiosensitive and prone to undergo apoptosis than somatic cells. Among spermatogonial subtypes the response to DNA damage is differentially modulated; undifferentiated spermatogonia, including the spermatogonial stem cells (SSCs), are relatively radio-resistant, whereas differentiating spermatogonia are very radiosensitive. To investigate the molecular mechanisms underlying this difference, we used an in vitro system consisting of mouse male germline stem (GS) cells that can be induced to differentiate. Using RNA-sequencing analysis, we analyzed the response of undifferentiated and differentiating GS cells to ionizing radiation (IR). At the RNA expression level, both undifferentiated and differentiating GS cells showed a very similar response to IR. Protein localization of several genes found to be involved in either spermatogonial differentiation or radiation response was investigated using mouse testis sections. For instance, we found that the transcription factor PDX1 was specifically expressed in undifferentiated spermatogonia and thus may be a novel marker for these cells. Interestingly, also at the protein level, undifferentiated GS cells showed a more pronounced upregulation of p53 in response to IR than differentiating GS cells. The higher p53 protein level in undifferentiated spermatogonia may preferentially induce cell cycle arrest, thereby giving these cells more time to repair inflicted DNA damage and increase their radio-resistance.
Collapse
Affiliation(s)
- Yi Zheng
- College of Animal Science and Technology, Northwest A&F University, Shaanxi, China; Center for Reproductive Medicine, Amsterdam Research Institute Reproduction and Development, Academic Medical Center, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands
| | - Qijing Lei
- Center for Reproductive Medicine, Amsterdam Research Institute Reproduction and Development, Academic Medical Center, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands
| | - Aldo Jongejan
- Bioinformatics Laboratory, Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Amsterdam Public Health Research Institute, Academic Medical Center Amsterdam, The Netherlands
| | - Callista L Mulder
- Center for Reproductive Medicine, Amsterdam Research Institute Reproduction and Development, Academic Medical Center, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands
| | - Saskia K M van Daalen
- Center for Reproductive Medicine, Amsterdam Research Institute Reproduction and Development, Academic Medical Center, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands
| | - Sebastiaan Mastenbroek
- Center for Reproductive Medicine, Amsterdam Research Institute Reproduction and Development, Academic Medical Center, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands
| | - Grace Hwang
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Philip W Jordan
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Sjoerd Repping
- Center for Reproductive Medicine, Amsterdam Research Institute Reproduction and Development, Academic Medical Center, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands
| | - Geert Hamer
- Center for Reproductive Medicine, Amsterdam Research Institute Reproduction and Development, Academic Medical Center, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands.
| |
Collapse
|
32
|
Expression Characterization of Six Genes Possibly Involved in Gonad Development for Stellate Sturgeon Individuals ( Acipenser stellatus, Pallas 1771). Int J Genomics 2018; 2018:7835637. [PMID: 29785396 PMCID: PMC5896241 DOI: 10.1155/2018/7835637] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 12/12/2017] [Accepted: 03/11/2018] [Indexed: 02/04/2023] Open
Abstract
Nowadays, in sturgeon's aquaculture, there is a necessity for sex identification at early stages in order to increase the efficiency of this commercial activity. The basis for a correct identification is studying the different factors that influence the gonad development. The research has been directed towards molecular methods that have been employed with various degrees of success in identifying genes with different expression patterns between male and female sturgeons during their development stages. For the purpose of understanding the sexual development of 4-year-old stellate sturgeon (Acipenser stellatus) individuals, we have selected six genes (foxl2, cyp17a1, ar, dmrt1, sox9, and star). We analysed the gene expression of the selected genes for gonads, anal fin, liver, body kidney, and white muscle. The cyp17a1, ar, dmrt1, and sox9 genes have a significant higher expression in male gonads than in female gonads, while the data shows no significant differences in the expression of the investigated genes in the other organs. We investigate these genes to shed light on aquaculture sturgeon sexual development.
Collapse
|
33
|
H M Y, Kumar S, Chaudhary R, Mishra C, A S, Kumar A, Chauhan A, Ghosh SK, Mitra A. Nucleotide variability of protamine genes influencing bull sperm motility variables. Anim Reprod Sci 2018; 193:126-139. [PMID: 29657074 DOI: 10.1016/j.anireprosci.2018.04.060] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 03/14/2018] [Accepted: 04/07/2018] [Indexed: 01/27/2023]
Abstract
Protamines (PRMs), important proteins of chromatin condensation in spermiogenesis, are promising candidate genes to explore markers of sperm motility. The coding and in-silico predicted promoter regions of these genes were investigated in 102 crossbred and 32 purebred cattle. Also, mRNA quantification was done to explore its possibility as diagnostic tool of infertility. The PCR-SSCP analysis indicated there were two band patterns only in fragment I of the PRM1 and fragment II of the PRM2 gene. The sequence analysis revealed A152G and G179A transitions in the PRM1 gene. Similarly, G35A, A49G and A64G transitions were identified in the PRM2 gene which resulted in altered amino acid sequences from arginine (R) to glutamine (Q), from arginine (R) to glycine (G) and from arginine (R) to glycine (G), respectively. This caused the reduction in molecular weight of PRM2 from 2157.66 to 1931.33 Da due to reduction in the number of basic amino acids. These altered properties of the PRM2 protein led to the reduction in Mass Motility (MM: P < 0.01), Initial Progressive Motility (IPM; P < 0.05) and Post Thaw Motility (PTM; P < 0.05) in crossbred bulls. The least squares analysis of variance indicated there was an effect of PRM2 haplotypes on MM (P = 0.0069), IPM (P = 0.0306) and PTM (P = 0.0500) in crossbred cattle and on PTM (P = 0.0408) in the overall cattle population. Based on the RT-qPCR analysis, however, there was not any significant variation of PRM1 and PRM2 gene expression among sperm of Vrindavani bulls with relatively lesser and greater sperm motility.
Collapse
Affiliation(s)
- Yathish H M
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute (IVRI), Izatnagar, Bareilly, 243 122, Uttar Pradesh, India.
| | - Subodh Kumar
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute (IVRI), Izatnagar, Bareilly, 243 122, Uttar Pradesh, India
| | - Rajni Chaudhary
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute (IVRI), Izatnagar, Bareilly, 243 122, Uttar Pradesh, India
| | - Chinmoy Mishra
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute (IVRI), Izatnagar, Bareilly, 243 122, Uttar Pradesh, India
| | - Sivakumar A
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute (IVRI), Izatnagar, Bareilly, 243 122, Uttar Pradesh, India
| | - Amit Kumar
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute (IVRI), Izatnagar, Bareilly, 243 122, Uttar Pradesh, India
| | - Anuj Chauhan
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute (IVRI), Izatnagar, Bareilly, 243 122, Uttar Pradesh, India
| | - S K Ghosh
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute (IVRI), Izatnagar, Bareilly, 243 122, Uttar Pradesh, India
| | - Abhijit Mitra
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute (IVRI), Izatnagar, Bareilly, 243 122, Uttar Pradesh, India
| |
Collapse
|
34
|
Jan SZ, Vormer TL, Jongejan A, Röling MD, Silber SJ, de Rooij DG, Hamer G, Repping S, van Pelt AMM. Unraveling transcriptome dynamics in human spermatogenesis. Development 2017; 144:3659-3673. [PMID: 28935708 PMCID: PMC5675447 DOI: 10.1242/dev.152413] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 08/29/2017] [Indexed: 12/25/2022]
Abstract
Spermatogenesis is a dynamic developmental process that includes stem cell proliferation and differentiation, meiotic cell divisions and extreme chromatin condensation. Although studied in mice, the molecular control of human spermatogenesis is largely unknown. Here, we developed a protocol that enables next-generation sequencing of RNA obtained from pools of 500 individually laser-capture microdissected cells of specific germ cell subtypes from fixed human testis samples. Transcriptomic analyses of these successive germ cell subtypes reveals dynamic transcription of over 4000 genes during human spermatogenesis. At the same time, many of the genes encoding for well-established meiotic and post-meiotic proteins are already present in the pre-meiotic phase. Furthermore, we found significant cell type-specific expression of post-transcriptional regulators, including expression of 110 RNA-binding proteins and 137 long non-coding RNAs, most of them previously not linked to spermatogenesis. Together, these data suggest that the transcriptome of precursor cells already contains the genes necessary for cellular differentiation and that timely translation controlled by post-transcriptional regulators is crucial for normal development. These established transcriptomes provide a reference catalog for further detailed studies on human spermatogenesis and spermatogenic failure. Highlighted Article: Using laser capture microscopy, a comprehensive transcriptomic dataset of well-defined and distinct germ cell subtypes based on morphology and localization in the human testis is generated.
Collapse
Affiliation(s)
- Sabrina Z Jan
- Center for Reproductive Medicine, Amsterdam Research Institute Reproduction and Development, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Tinke L Vormer
- Center for Reproductive Medicine, Amsterdam Research Institute Reproduction and Development, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Aldo Jongejan
- Center for Reproductive Medicine, Amsterdam Research Institute Reproduction and Development, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands.,Bioinformatics Laboratory, Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Academic Medical Center, Amsterdam, The Netherlands
| | - Michael D Röling
- Center for Reproductive Medicine, Amsterdam Research Institute Reproduction and Development, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Sherman J Silber
- Center for Reproductive Medicine, Amsterdam Research Institute Reproduction and Development, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands.,The Infertility Center of St. Louis, St. Luke's Hospital, St. Louis, Missouri, USA
| | - Dirk G de Rooij
- Center for Reproductive Medicine, Amsterdam Research Institute Reproduction and Development, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Geert Hamer
- Center for Reproductive Medicine, Amsterdam Research Institute Reproduction and Development, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Sjoerd Repping
- Center for Reproductive Medicine, Amsterdam Research Institute Reproduction and Development, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Ans M M van Pelt
- Center for Reproductive Medicine, Amsterdam Research Institute Reproduction and Development, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
35
|
Khan FA, Liu H, Zhou H, Wang K, Qamar MTU, Pandupuspitasari NS, Shujun Z. Analysis of Bos taurus and Sus scrofa X and Y chromosome transcriptome highlights reproductive driver genes. Oncotarget 2017; 8:54416-54433. [PMID: 28903352 PMCID: PMC5589591 DOI: 10.18632/oncotarget.17081] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 03/08/2017] [Indexed: 11/25/2022] Open
Abstract
The biology of sperm, its capability of fertilizing an egg and its role in sex ratio are the major biological questions in reproductive biology. To answer these question we integrated X and Y chromosome transcriptome across different species: Bos taurus and Sus scrofa and identified reproductive driver genes based on Weighted Gene Co-Expression Network Analysis (WGCNA) algorithm. Our strategy resulted in 11007 and 10445 unique genes consisting of 9 and 11 reproductive modules in Bos taurus and Sus scrofa, respectively. The consensus module calculation yields an overall 167 overlapped genes which were mapped to 846 DEGs in Bos taurus to finally get a list of 67 dual feature genes. We develop gene co-expression network of selected 67 genes that consists of 58 nodes (27 down-regulated and 31 up-regulated genes) enriched to 66 GO biological process (BP) including 6 GO annotations related to reproduction and two KEGG pathways. Moreover, we searched significantly related TF (ISRE, AP1FJ, RP58, CREL) and miRNAs (bta-miR-181a, bta-miR-17-5p, bta-miR-146b, bta-miR-146a) which targeted the genes in co-expression network. In addition we performed genetic analysis including phylogenetic, functional domain identification, epigenetic modifications, mutation analysis of the most important reproductive driver genes PRM1, PPP2R2B and PAFAH1B1 and finally performed a protein docking analysis to visualize their therapeutic and gene expression regulation ability.
Collapse
Affiliation(s)
- Faheem Ahmed Khan
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education China, College of Animal Science and Technology Huazhong Agricultural University, Wuhan, China
| | - Hui Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education China, College of Animal Science and Technology Huazhong Agricultural University, Wuhan, China
| | - Hao Zhou
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education China, College of Animal Science and Technology Huazhong Agricultural University, Wuhan, China
| | - Kai Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education China, College of Animal Science and Technology Huazhong Agricultural University, Wuhan, China
| | | | - Nuruliarizki Shinta Pandupuspitasari
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education China, College of Animal Science and Technology Huazhong Agricultural University, Wuhan, China.,The Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhang Shujun
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education China, College of Animal Science and Technology Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
36
|
Akpınar M, Lesche M, Fanourgakis G, Fu J, Anasstasiadis K, Dahl A, Jessberger R. TDRD6 mediates early steps of spliceosome maturation in primary spermatocytes. PLoS Genet 2017; 13:e1006660. [PMID: 28263986 PMCID: PMC5358835 DOI: 10.1371/journal.pgen.1006660] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 03/20/2017] [Accepted: 02/26/2017] [Indexed: 12/24/2022] Open
Abstract
Tudor containing protein 6 (TDRD6) is a male germ line-specific protein essential for chromatoid body (ChB) structure, elongated spermatid development and male fertility. Here we show that in meiotic prophase I spermatocytes TDRD6 interacts with the key protein arginine methyl transferase PRMT5, which supports splicing. TDRD6 also associates with spliceosomal core protein SmB in the absence of RNA and in an arginine methylation dependent manner. In Tdrd6-/- diplotene spermatocytes PRMT5 association with SmB and arginine dimethylation of SmB are much reduced. TDRD6 deficiency impairs the assembly of spliceosomes, which feature 3.5-fold increased levels of U5 snRNPs. In the nucleus, these deficiencies in spliceosome maturation correlate with decreased numbers of SMN-positive bodies and Cajal bodies involved in nuclear snRNP maturation. Transcriptome analysis of TDRD6-deficient diplotene spermatocytes revealed high numbers of splicing defects such as aberrant usage of intron and exons as well as aberrant representation of splice junctions. Together, this study demonstrates a novel function of TDRD6 in spliceosome maturation and mRNA splicing in prophase I spermatocytes.
Collapse
Affiliation(s)
- Müge Akpınar
- Institute of Physiological Chemistry, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Mathias Lesche
- Deep Sequencing Group SFB 655, Biotechnology Center, Technische Universität Dresden, Dresden, Germany
| | - Grigorios Fanourgakis
- Institute of Physiological Chemistry, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Jun Fu
- Stem Cell Engineering, Biotechnology Center, Technische Universität Dresden, Dresden, Germany
| | | | - Andreas Dahl
- Deep Sequencing Group SFB 655, Biotechnology Center, Technische Universität Dresden, Dresden, Germany
| | - Rolf Jessberger
- Institute of Physiological Chemistry, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
37
|
Suzuki H, Matsushita S, Suzuki K, Yamada G. 5α-Dihydrotestosterone negatively regulates cell proliferation of the periurethral ventral mesenchyme during urethral tube formation in the murine male genital tubercle. Andrology 2016; 5:146-152. [DOI: 10.1111/andr.12241] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 05/20/2016] [Accepted: 05/23/2016] [Indexed: 11/30/2022]
Affiliation(s)
- H. Suzuki
- Department of Developmental Genetics; Institute of Advanced Medicine; Wakayama Medical University; Wakayama Japan
| | - S. Matsushita
- Department of Developmental Genetics; Institute of Advanced Medicine; Wakayama Medical University; Wakayama Japan
| | - K. Suzuki
- Department of Developmental Genetics; Institute of Advanced Medicine; Wakayama Medical University; Wakayama Japan
| | - G. Yamada
- Department of Developmental Genetics; Institute of Advanced Medicine; Wakayama Medical University; Wakayama Japan
| |
Collapse
|
38
|
The c.−190 C>A transversion in promoter region of protamine1 gene as a genetic risk factor for idiopathic oligozoospermia. Mol Biol Rep 2016; 43:795-802. [DOI: 10.1007/s11033-016-4017-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 05/17/2016] [Indexed: 12/14/2022]
|
39
|
Qiu L, Xu L, Chang G, Guo Q, Liu X, Bi Y, Zhang Y, Wang H, Wang K, Lu W, Ren L, Zhu P, Wu Y, Zhang Y, Xu Q, Chen G. DNA methylation-mediated transcription factors regulate Piwil1 expression during chicken spermatogenesis. J Reprod Dev 2016; 62:367-72. [PMID: 27108736 PMCID: PMC5004792 DOI: 10.1262/jrd.2016-003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The P-element induced wimpy testis (Piwi) protein family is responsible for
initiating spermatogenesis and maintaining the integrity of germ cells and stem
cells, but little is known regarding its transcriptional regulation in poultry. Here,
we characterized the methylation status of the Piwil1 promoter in
five different spermatogenic cell lines using direct bisulfite pyrosequencing and
determined that methylation correlates negatively with germ cell type-specific
expression patterns of piwil1. We demonstrated that methylation of
the −148 CpG site, which is the predicted binding site for the transcription factors
TCF3 and NRF1, was differentially methylated in different spermatogenic cells. This
site was completely methylated in PGCs (primordial germ cells), but was unmethylated
in round spermatids. A similar result was obtained in the region from +121 to +139
CpG sites of the Piwil1 promoter CpG island, which was predicted to
contain SOX2 binding sites. In addition, demethylation assays further demonstrated
that DNA methylation indeed regulates Piwil1 expression during
chicken spermatogenesis. Combined with transcription factor binding site prediction,
we speculate that methylation influences the recruitment of corresponding
transcription factors. Collectively, we show the negative correlation between
promoter methylation and piwil1 expression and that the
spatiotemporal expression of chicken Piwil1 from the PGC stage to
the round spermatid stage is influenced by methylation-mediated transcription factor
regulation.
Collapse
Affiliation(s)
- Lingling Qiu
- College of Animal Science & Technology, Yangzhou University, Jiangsu 225009, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Segretain D, Gilleron J, Bacro JN, Di Marco M, Carette D, Pointis G. Ultrastructural localization and distribution of Nardilysin in mammalian male germ cells. Basic Clin Androl 2016; 26:5. [PMID: 27051521 PMCID: PMC4820967 DOI: 10.1186/s12610-016-0032-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 03/10/2016] [Indexed: 11/16/2022] Open
Abstract
Background NRD convertase, also termed Nardilysin, is a Zn++ metalloendopeptidase that specifically cleaves the N-terminus of arginine and lysine residues into dibasic moieties. Although this enzyme was found located within the testis, its function in male reproduction is largely unknown. In addition, the precise distribution of this enzyme within germ cells remains to be determined. Methods To answer these questions, we developed an immuno-gold electron microscopy analysis to detect Nardilysin at ultrastructural level in mice. In addition, we performed a quantitative analysis of these gold particles to statistically estimate the distribution of Nardilysin in the different subcellular compartments of differentiating late spermatids/spermatozoa. Results Expression of Nardilysin in wild-type mice was restricted to germ cells and markedly increased during the last steps of spermiogenesis. In elongated spermatids, we found the enzyme mainly localized in the cytoplasm, more precisely associated with two microtubular structures, the manchette and the axoneme. No labelling was detected over the membranous organelles of the spermatids. To test whether this localization is dependent of the functional microtubules organization of the flagella, we analysed the localization into a specific mouse mutant ebo/ebo (ébouriffé) known to be sterile due to an impairment of the final organization of the flagellum. In the ebo/ebo, the enzyme was still localized over the microtubules of the axoneme and over the isolated cytoplasmic microtubules doublets. Quantification of gold particles in wild-type and mutant flagella revealed the specific association of the enzyme within the microtubular area of the axoneme. Conclusions The strong and specific accumulation of Nardilysin in the manchette and axoneme suggests that the enzyme probably contributes either to the establishment of these specific microtubular structures and/or to their functional properties.
Collapse
Affiliation(s)
- D Segretain
- UMR S 1147 Université Paris Descartes, 45 rue des Saint-Pères, 75006 Paris, France ; Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Versailles, 78000 France
| | - J Gilleron
- INSERM U 1065, Université Nice Sophia-Antipolis, 151 route Saint-Antoine de Ginestière BP 2 3194, 06204, Nice, cedex 3 France
| | - J N Bacro
- Institut de Mathématiques et de Modélisation de Montpellier (I3M), UMR CNRS 5149 Université Montpellier, CC 51; 4 place Eugène Bataillon 34095, Montpellier, cedex 5 France
| | - M Di Marco
- UMR S 1147 Université Paris Descartes, 45 rue des Saint-Pères, 75006 Paris, France ; Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Versailles, 78000 France
| | - D Carette
- UMR S 1147 Université Paris Descartes, 45 rue des Saint-Pères, 75006 Paris, France ; Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Versailles, 78000 France
| | - G Pointis
- INSERM U 1065, Université Nice Sophia-Antipolis, 151 route Saint-Antoine de Ginestière BP 2 3194, 06204, Nice, cedex 3 France
| |
Collapse
|
41
|
Li HH, Kong LF, Yu R, Yu H, Li Q. Characterization, expression, and functional analysis of testis-specific serine/threonine kinase 1 (Tssk1) in the pen shellAtrina pectinata. INVERTEBR REPROD DEV 2016. [DOI: 10.1080/07924259.2016.1161667] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
42
|
Kashiwabara SI, Tsuruta S, Okada K, Saegusa A, Miyagaki Y, Baba T. Functional compensation for the loss of testis-specific poly(A)-binding protein, PABPC2, during mouse spermatogenesis. J Reprod Dev 2016; 62:305-10. [PMID: 26971890 PMCID: PMC4919295 DOI: 10.1262/jrd.2016-023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Mouse testes contain several isoforms of cytoplasmic poly(A)-binding proteins (PABPCs), including ubiquitous
PABPC1 and testis-specific PABPC2/PABPt. PABPC2 is characterized by its absence from translationally active
polyribosomes and elongating spermatids. To elucidate the function of PABPC2 in spermatogenesis, we produced
mutant mice lacking PABPC2. The PABPC2-null mice showed normal fertility. The processes of spermatogenesis and
sperm migration in the testes and epididymides, respectively, were normal in the mutant mice. When the
involvement of PABPC2 in translational regulation of haploid-specific mRNAs was examined, these mRNAs were
correctly transcribed in round spermatids and translated in elongating spermatids. Moreover, immunoblot
analysis revealed low abundance of PABPC2 relative to PABPC1 in spermatogenic cells. These results suggest
that PABPC2 may be either functionally redundant with other PABPCs (including PABPC1) or largely dispensable
for translational regulation during spermiogenesis.
Collapse
Affiliation(s)
- Shin-Ichi Kashiwabara
- Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki 305-8572, Japan
| | | | | | | | | | | |
Collapse
|
43
|
Seipin deficiency increases chromocenter fragmentation and disrupts acrosome formation leading to male infertility. Cell Death Dis 2015; 6:e1817. [PMID: 26181198 PMCID: PMC4650735 DOI: 10.1038/cddis.2015.188] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 06/03/2015] [Accepted: 06/04/2015] [Indexed: 11/16/2022]
Abstract
The Berardinelli–Seip congenital lipodystrophy type 2 (Bscl2, seipin) gene is involved in adipogenesis. Bscl2−/− males were infertile but had normal mating behavior. Both Bscl2−/− cauda epididymis sperm count and sperm motility were ~20 × less than control. Bscl2−/− seminiferous tubules had relatively normal presence of spermatogonia and spermatocytes but had reduced spermatids and sperm. Spatiotemporal expression analyses in Bscl2+/+ testes demonstrated prominent Bscl2 transcriptional activity in spermatocytes with a plateau reached around postnatal day 28. Seipin protein localization was most abundant in postmeiotic spermatids, suggesting translational repression of Bscl2 mRNA in spermatocytes. In situ end-labeling plus detected increased spermatid apoptosis in Bscl2−/− testis and annexin V detected increased percentage of positive Bscl2−/− round spermatids compared with control. Immunofluorescence of marker proteins synaptonemal complex proteins 3 and 1 (SYCP3 and SYCP1), and H3K9me3 (histone H3 trimethylated at lysine 9) in germ cell spreads detected normal meiotic chromosome pairing and homologous chromosome synapsis in Bscl2−/− spermatocytes, but significantly increased percentages of round spermatids with chromocenter fragmentation and late spermatids and sperm with chromatin vacuoles, indicating defective chromatin condensation in Bscl2−/− spermatids. Bscl2−/− late spermatids were disorganized within the seminiferous epithelium, despite normal appearance of Sertoli cells detected by vimentin immunofluorescence. Peanut agglutinin staining revealed various abnormalities of acrosomes in Bscl2−/− late spermatids, including the absence, irregular-shaped, and fragmented acrosomes, indicating defective acrosome formation in Bscl2−/− late spermatids, which may affect late spermatid orientation in the seminiferous epithelium. Mitotracker strongly stained the midpiece of control sperm but only very weakly labeled the midpiece of Bscl2−/− sperm, indicating defective mitochondrial activity that most likely contributed to reduced Bscl2−/− sperm motility. These data demonstrate novel roles of seipin in spermatid chromatin integrity, acrosome formation, and mitochondrial activity. Increased spermatid apoptosis, increased chromocenter fragmentation, defective chromatin condensation, abnormal acrosome formation, and defective mitochondrial activity contributed to decreased sperm production and defective sperm that resulted in Bscl2−/− male infertility.
Collapse
|
44
|
Association of single nucleotide polymorphisms in the USF1, GTF2A1L and OR2W3 genes with non-obstructive azoospermia in the Chinese population. J Assist Reprod Genet 2014; 32:95-101. [PMID: 25374392 DOI: 10.1007/s10815-014-0369-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 10/13/2014] [Indexed: 12/11/2022] Open
Abstract
PURPOSE To research the association between the single nucleotide polymorphisms (SNPs) of three spermatogenesis-related genes (USF1, GTF2A1L and OR2W3) and non-obstruction azoospermia (NOA). METHODS We investigated 361 NOA cases and 368 controls from the Chinese Han population, and we used Sequenom iplex technology to analyze the candidate 9 SNPs from the USF1, GTF2A1L and OR2W3 genes. RESULTS In this study, we found that the variant rs2516838 of USF1 was associated with NOA susceptibility (P = 0.020, OR = 1.436), and the haplotype TCG of the variants rs1556259, rs2516838, and rs2774276 of USF1 conferred an increased risk of NOA (P = 0.019, OR = 1.436). Furthermore, we found that the rs11204546 genotype of OR2W3 and the rs11677854 genotype of GTF2A1L were correlated with the FSH level in the patients (P = 0.004 and P = 0.018, respectively). CONCLUSIONS Our results provided a new insight into susceptibility of USF1 variant with male infertility. Clinically, the SNPs (rs11204546 of OR2W3 and rs11677854 of GTF2A1L ) might be additional valuable molecular predictive markers for assessing the treatment of NOA patients.
Collapse
|
45
|
WANG HAILONG, LI YAN, YANG LIJUAN, YU BAOFENG, YAN PING, PANG MIN, LI XIAOBING, YANG HONG, ZHENG GUOPING, XIE JUN, GUO RUI. Mass spectrometry-based, label-free quantitative proteomics of round spermatids in mice. Mol Med Rep 2014; 10:2009-2024. [PMID: 25109358 PMCID: PMC4148364 DOI: 10.3892/mmr.2014.2460] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 03/10/2014] [Indexed: 01/17/2023] Open
Abstract
Round haploid spermatids are formed at the completion of meiosis. These spermatids then undergo morphological and cytological changes during spermiogenesis. Although sperm proteomes have been extensively studied, relatively few studies have specifically investigated the proteome of round spermatids. We developed a label-free quantitative method in combination with 2D-nano-LC-ESI-MS/MS to investigate the proteome of round spermatids in mice. Analysis of the proteomic data identified 2,331 proteins in the round spermatids. Functional classification of the proteins based on Gene Ontology terms and enrichment analysis further revealed the following: 504 of the identified proteins are predicted to be involved in the generation of precursor metabolites and energy; 343 proteins in translation and protein targeting; 298 proteins in nucleotide and nucleic acid metabolism; 275 and 289 proteins in transport and cellular component organization, respectively. A number of the identified proteins were associated with cytoskeleton organization (183), protein degradation (116) and response to stimulus (115). KEGG pathway analysis identified 68 proteins that are annotated as components of the ribosomal pathway and 17 proteins were related to aminoacyl-tRNA biosynthesis. The round spermatids also contained 28 proteins involved in the proteasome pathway and 40 proteins in the lysosome pathway. A total of 60 proteins were annotated as parts of the spliceosome pathway, in which heterogeneous nuclear RNA is converted to mRNA. Approximately 94 proteins were identified as actin‑binding proteins, involved in the regulation of the actin cytoskeleton. In conclusion, using a label-free shotgun proteomic approach, we identified numerous proteins associated with spermiogenesis in round spermatids.
Collapse
Affiliation(s)
- HAILONG WANG
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - YAN LI
- Fan-Xing Biological Technology Co., Ltd., Beijing 010000, P.R. China
| | - LIJUAN YANG
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - BAOFENG YU
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - PING YAN
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - MIN PANG
- Respiratory Department, The First Affiliated Hospital, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - XIAOBING LI
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - HONG YANG
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - GUOPING ZHENG
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
- Centre for Transplantation and Renal Research, The University of Sydney at Westmead Millennium Institute, Sydney, NSW 2145, Australia
| | - JUN XIE
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - RUI GUO
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| |
Collapse
|
46
|
Li W, Liu G. DNAJB13, a type II HSP40 family member, localizes to the spermatids and spermatozoa during mouse spermatogenesis. BMC DEVELOPMENTAL BIOLOGY 2014; 14:38. [PMID: 25233908 PMCID: PMC4236558 DOI: 10.1186/s12861-014-0038-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 09/10/2014] [Indexed: 01/25/2023]
Abstract
BACKGROUND Hundreds of HSP40s derived from various species have been identified, of which several proteins are involved in spermatogenesis. DNAJB13 is a type II HSP40/DnaJ protein. In a previous study, we cloned mouse Dnajb13, which is up-regulated in cryptorchidism. To date, however, little is known about the localization and functions of DNAJB13 during spermatogenesis. This study intends to identify the expression pattern of DNAJB13 during mammalian spermatogenesis. RESULTS RT-PCR and western blot revealed that the Dnajb13 gene and DNAJB13 protein were expressed not only in the testis but also in several other ciliated cell-containing tissues like the trachea, lung and oviduct. Quantitative PCR showed that the expression of Dnajb13 mRNA in testis was detectable as early as postnatal week 1, and sharply increased from postnatal week 3. Western blotting and immunohistochemistry determined that the DNAJB13 protein, which was located in the cytoplasm of spermatids and the sperm flagellum, was detectable from postnatal week 4. CONCLUSIONS Based on the spatiotemporal expression observed in the cytoplasm of spermatids and sperm flagella, we suggest that DNAJB13 participates in spermiogenesis and the motility of mature spermatozoa.
Collapse
Affiliation(s)
| | - Gang Liu
- Institute of Reproduction and Stem Cell Engineering, Central South University, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha 410078, China.
| |
Collapse
|
47
|
Li W, Wu J, Kim SY, Zhao M, Hearn SA, Zhang MQ, Meistrich ML, Mills AA. Chd5 orchestrates chromatin remodelling during sperm development. Nat Commun 2014; 5:3812. [PMID: 24818823 DOI: 10.1038/ncomms4812] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 04/04/2014] [Indexed: 12/12/2022] Open
Abstract
One of the most remarkable chromatin remodelling processes occurs during spermiogenesis, the post-meiotic phase of sperm development during which histones are replaced with sperm-specific protamines to repackage the genome into the highly compact chromatin structure of mature sperm. Here we identify Chromodomain helicase DNA binding protein 5 (Chd5) as a master regulator of the histone-to-protamine chromatin remodelling process. Chd5 deficiency leads to defective sperm chromatin compaction and male infertility in mice, mirroring the observation of low CHD5 expression in testes of infertile men. Chd5 orchestrates a cascade of molecular events required for histone removal and replacement, including histone 4 (H4) hyperacetylation, histone variant expression, nucleosome eviction and DNA damage repair. Chd5 deficiency also perturbs expression of transition proteins (Tnp1/Tnp2) and protamines (Prm1/2). These findings define Chd5 as a multi-faceted mediator of histone-to-protamine replacement and depict the cascade of molecular events underlying this process of extensive chromatin remodelling.
Collapse
Affiliation(s)
- Wangzhi Li
- 1] Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA [2] Molecular and Cellular Biology Program, Stony Brook University, Stony Brook, New York 11794, USA
| | - Jie Wu
- 1] Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA [2] Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, New York 11794, USA
| | - Sang-Yong Kim
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Ming Zhao
- Department of Experimental Radiation Oncology, MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Stephen A Hearn
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Michael Q Zhang
- 1] Department of Molecular and Cell Biology, Center for Systems Biology, The University of Texas at Dallas, Richardson, Texas 75080, USA [2] MOE Key Laboratory of Bioinformatics and Bioinformatics Division, Center for Synthetic and System Biology, TNLIST/Department of Automation, Tsinghua University, Beijing 100084, China
| | - Marvin L Meistrich
- Department of Experimental Radiation Oncology, MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Alea A Mills
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| |
Collapse
|
48
|
The ubiquilin gene family: evolutionary patterns and functional insights. BMC Evol Biol 2014; 14:63. [PMID: 24674348 PMCID: PMC4230246 DOI: 10.1186/1471-2148-14-63] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Accepted: 03/17/2014] [Indexed: 12/12/2022] Open
Abstract
Background Ubiquilins are proteins that function as ubiquitin receptors in eukaryotes. Mutations in two ubiquilin-encoding genes have been linked to the genesis of neurodegenerative diseases. However, ubiquilin functions are still poorly understood. Results In this study, evolutionary and functional data are combined to determine the origin and diversification of the ubiquilin gene family and to characterize novel potential roles of ubiquilins in mammalian species, including humans. The analysis of more than six hundred sequences allowed characterizing ubiquilin diversity in all the main eukaryotic groups. Many organisms (e. g. fungi, many animals) have single ubiquilin genes, but duplications in animal, plant, alveolate and excavate species are described. Seven different ubiquilins have been detected in vertebrates. Two of them, here called UBQLN5 and UBQLN6, had not been hitherto described. Significantly, marsupial and eutherian mammals have the most complex ubiquilin gene families, composed of up to 6 genes. This exceptional mammalian-specific expansion is the result of the recent emergence of four new genes, three of them (UBQLN3, UBQLN5 and UBQLNL) with precise testis-specific expression patterns that indicate roles in the postmeiotic stages of spermatogenesis. A gene with related features has independently arisen in species of the Drosophila genus. Positive selection acting on some mammalian ubiquilins has been detected. Conclusions The ubiquilin gene family is highly conserved in eukaryotes. The infrequent lineage-specific amplifications observed may be linked to the emergence of novel functions in particular tissues.
Collapse
|
49
|
Cordero-Martínez J, Aguirre-Alvarado C, Wong C, Rodríguez-Páez L. Effect of oxamic analogues on functional mice sperm parameters. Syst Biol Reprod Med 2014; 60:189-98. [PMID: 24654556 DOI: 10.3109/19396368.2014.902144] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The present study evaluates the effect of oxamate derivatives (N-ethyl, N-propyl, N-butyl oxamates) on functional murine sperm parameters, towards a new male non-hormonal contraceptive. These derivatives are selective inhibitors of lactate dehydrogenase-C4 (LDH-C4). LDH-C4 is a sperm-specific enzyme that plays an important role in ATP production for maintaining progressive motility as well as to induce capacitation and hyperactivation. The results demonstrate that all oxamate derivatives selectively inhibited LDH-C4 in mouse sperm extracts. The IC(50) values for hexokinase and glyceraldehyde-3-phosphate dehydrogenase were at least an order of magnitude greater than LDH-C4 IC(50) values. Prodrugs of oxamate derivatives assayed on sperm cells diminished normal sperm motility parameters, acrosome reaction, and cell viability in a concentration dependent manner. Also, we performed in vivo studies to determine the potential toxicity and possible contraceptive ability of these inhibitors. Mouse sperm were more sensitive to the N-butyl oxamate ethyl ester (NBOXet). Furthermore, results showed that NBOXet was of a low toxicity substance that diminished the total and progressive motility as well as the kinematic parameters of sperm cells. Data from in vitro and in vivo studies showed that N-butyl oxamate and its prodrug, are selective inhibitors of sperm LDH-C4, has low toxicity, and inhibits sperm progressive motility, offering some of the desirable characteristics of a male contraceptive: effect, low toxicity, and selectivity.
Collapse
Affiliation(s)
- Joaquín Cordero-Martínez
- Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional , México
| | | | | | | |
Collapse
|
50
|
Gadella BM, Luna C. Cell biology and functional dynamics of the mammalian sperm surface. Theriogenology 2014; 81:74-84. [DOI: 10.1016/j.theriogenology.2013.09.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 09/07/2013] [Accepted: 09/08/2013] [Indexed: 12/11/2022]
|