1
|
Terlizzi V, Lopes-Pacheco M. Cystic fibrosis: new challenges and perspectives beyond elexacaftor/tezacaftor/ivacaftor. Ther Adv Respir Dis 2025; 19:17534666251323194. [PMID: 40163448 PMCID: PMC11960163 DOI: 10.1177/17534666251323194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 02/07/2025] [Indexed: 04/02/2025] Open
Abstract
Over the past decade, major clinical advances have been made in the healthcare and therapeutic development for cystic fibrosis (CF), a lethal genetic disease caused by mutations in the gene encoding the CF transmembrane conductance regulator (CFTR) protein. CFTR modulators represent innovative treatments that directly target the primary defects in the mutated CFTR protein and have demonstrated significant clinical benefits for many people with CF (pwCF) who are eligible for these treatments. In particular, the triple combination therapy composed of elexacaftor, tezacaftor, and ivacaftor (ETI) has changed the CF therapeutic landscape by significantly improving lung function, quality of life, and predicted survival rates. Here, we provided a comprehensive summary of the impact of ETI on clinical outcomes and the need for further research on long-term efficacy, side effects, pregnancy, possible drug-drug interactions, and extra-pulmonary manifestations. Moreover, a significant number of pwCF are unresponsive to these drugs or cannot afford their high costs. We, therefore, discussed health inequity issues and alternative therapeutic strategies under development aiming to obtain effective therapies for all pwCF.
Collapse
Affiliation(s)
- Vito Terlizzi
- Department of Pediatric Medicine, Cystic Fibrosis Regional Reference Center, Meyer Children’s Hospital IRCCS, Viale Gaetano Pieraccini 24, Florence, Italy
| | - Miquéias Lopes-Pacheco
- Department of Pediatrics, Cystic Fibrosis and Airway Disease Research Center, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
2
|
Bacalhau M, Ferreira FC, Azevedo MFMF, Rosa TP, Buarque CD, Lopes-Pacheco M. Rescue of Mutant CFTR Channel Activity by Investigational Co-Potentiator Therapy. Biomedicines 2025; 13:82. [PMID: 39857666 PMCID: PMC11762957 DOI: 10.3390/biomedicines13010082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 12/28/2024] [Accepted: 12/30/2024] [Indexed: 01/27/2025] Open
Abstract
Background: The potentiator VX-770 (ivacaftor) has been approved as a monotherapy for over 95 cystic fibrosis (CF)-causing variants associated with gating/conductance defects of the CF transmembrane conductance regulator (CFTR) channel. However, despite its therapeutic success, VX-770 only partially restores CFTR activity for many of these variants, indicating they may benefit from the combination of potentiators exhibiting distinct mechanisms of action (i.e., co-potentiators). We previously identified LSO-24, a hydroxy-1,2,3-triazole-based compound, as a modest potentiator of p.Arg334Trp-CFTR, a variant with a conductance defect for which no modulator therapy is currently approved. Objective/Methods: We synthesized a new set of LSO-24 structure-based compounds, screened their effects on p.Arg334Trp-CFTR activity, and assessed the additivity of hit compounds to VX-770, ABBV-974, ABBV-3067, and apigenin. After validation by electrophysiological assays, the most promising hits were also assessed in cells expressing other variants with defective gating/conductance, namely p.Pro205Ser, p.Ser549Arg, p.Gly551Asp, p.Ser945Leu, and p.Gly1349Asp. Results: We found that five compounds were able to increase p.Arg334Trp-CFTR activity with similar efficacy, but slightly greater potency promoted by LSO-150 and LSO-153 (EC50: 1.01 and 1.26 μM, respectively). These two compounds also displayed a higher rescue of p.Arg334Trp-CFTR activity in combination with VX-770, ABBV-974, and ABBV-3067, but not with apigenin. When tested in cells expressing other CFTR variants, LSO-24 and its derivative LSO-150 increased CFTR activity for the variants p.Ser549Arg, p.Gly551Asp, and p.Ser945Leu with a further effect in combination with VX-770 or ABBV-3067. No potentiator was able to rescue CFTR activity in p.Pro205Ser-expressing cells, while p.Gly1349Asp-CFTR responded to VX-770 and ABBV-3067 but not to LSO-24 or LSO-150. Conclusions: Our data suggest that these new potentiators might share a common mechanism with apigenin, which is conceivably distinct from that of VX-770 and ABBV-3067. The additive rescue of p.Arg334Trp-, p.Ser549Arg-, p.Gly551Asp-, and p.Ser945Leu-CFTR also indicates that these variants could benefit from the development of a co-potentiator therapy.
Collapse
Affiliation(s)
- Mafalda Bacalhau
- Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
| | - Filipa C. Ferreira
- Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
| | | | - Talita P. Rosa
- Department of Chemistry, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro 22541-041, Brazil
| | - Camilla D. Buarque
- Department of Chemistry, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro 22541-041, Brazil
| | - Miquéias Lopes-Pacheco
- Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
| |
Collapse
|
3
|
Oliver KE, Carlon MS, Pedemonte N, Lopes-Pacheco M. The revolution of personalized pharmacotherapies for cystic fibrosis: what does the future hold? Expert Opin Pharmacother 2023; 24:1545-1565. [PMID: 37379072 PMCID: PMC10528905 DOI: 10.1080/14656566.2023.2230129] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/16/2023] [Accepted: 06/23/2023] [Indexed: 06/29/2023]
Abstract
INTRODUCTION Cystic fibrosis (CF), a potentially fatal genetic disease, is caused by loss-of-function mutations in the gene encoding for the CFTR chloride/bicarbonate channel. Modulator drugs rescuing mutant CFTR traffic and function are now in the clinic, providing unprecedented breakthrough therapies for people with CF (PwCF) carrying specific genotypes. However, several CFTR variants are unresponsive to these therapies. AREA COVERED We discussed several therapeutic approaches that are under development to tackle the fundamental cause of CF, including strategies targeting defective CFTR mRNA and/or protein expression and function. Alternatively, defective chloride secretion and dehydration in CF epithelia could be restored by exploiting pharmacological modulation of alternative targets, i.e., ion channels/transporters that concur with CFTR to maintain the airway surface liquid homeostasis (e.g., ENaC, TMEM16A, SLC26A4, SLC26A9, and ATP12A). Finally, we assessed progress and challenges in the development of gene-based therapies to replace or correct the mutant CFTR gene. EXPERT OPINION CFTR modulators are benefiting many PwCF responsive to these drugs, yielding substantial improvements in various clinical outcomes. Meanwhile, the CF therapy development pipeline continues to expand with the development of novel CFTR modulators and alternative therapeutic strategies with the ultimate goal of providing effective therapies for all PwCF in the foreseeable future.
Collapse
Affiliation(s)
- Kathryn E. Oliver
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
- Center for Cystic Fibrosis and Airways Disease Research, Emory University and Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Marianne S. Carlon
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
- Center for Molecular Medicine, KU Leuven, Leuven, Belgium
| | | | - Miquéias Lopes-Pacheco
- Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| |
Collapse
|
4
|
Chen J, Thrasher K, Fu L, Wang W, Aghamohammadzadeh S, Wen H, Tang L, Keeling KM, Falk Libby E, Bedwell DM, Rowe SM. The synthetic aminoglycoside ELX-02 induces readthrough of G550X-CFTR producing superfunctional protein that can be further enhanced by CFTR modulators. Am J Physiol Lung Cell Mol Physiol 2023; 324:L756-L770. [PMID: 37014818 PMCID: PMC10202470 DOI: 10.1152/ajplung.00038.2023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/29/2023] [Accepted: 04/02/2023] [Indexed: 04/05/2023] Open
Abstract
Ten percent of cystic fibrosis (CF) patients carry a premature termination codon (PTC); no mutation-specific therapies exist for these individuals. ELX-02, a synthetic aminoglycoside, suppresses translation termination at PTCs (i.e., readthrough) by promoting the insertion of an amino acid at the PTC and restoring expression of full-length CFTR protein. The identity of amino acids inserted at PTCs affects the processing and function of the resulting full-length CFTR protein. We examined readthrough of the rare G550X-CFTR nonsense mutation due to its unique properties. We found that forskolin-induced swelling in G550X patient-derived intestinal organoids (PDOs) was significantly higher than in G542X PDOs (both UGA PTCs) with ELX-02 treatment, indicating greater CFTR function from the G550X allele. Using mass spectrometry, we identified tryptophan as the sole amino acid inserted in the G550X position during ELX-02- or G418-mediated readthrough, which differs from the three amino acids (cysteine, arginine, and tryptophan) inserted in the G542X position after treatment with G418. Compared with wild-type CFTR, Fischer rat thyroid (FRT) cells expressing the G550W-CFTR variant protein exhibited significantly increased forskolin-activated Cl- conductance, and G550W-CFTR channels showed increased PKA sensitivity and open probability. After treatment with ELX-02 and CFTR correctors, CFTR function rescued from the G550X allele in FRTs reached 20-40% of the wild-type level. These results suggest that readthrough of G550X produces greater CFTR function because of gain-of-function properties of the CFTR readthrough product that stem from its location in the signature LSGGQ motif found in ATP-binding cassette (ABC) transporters. G550X may be a particularly sensitive target for translational readthrough therapy.NEW & NOTEWORTHY We found that forskolin-induced swelling in G550X-CFTR patient-derived intestinal organoids (PDOs) was significantly higher than in G542X-CFTR PDOs after treatment with ELX-02. Tryptophan (W) was the sole amino acid inserted in the G550X position after readthrough. Resulting G550W-CFTR protein exhibited supernormal CFTR activity, PKA sensitivity, and open probability. These results show that aminoglycoside-induced readthrough of G550X produces greater CFTR function because of the gain-of-function properties of the CFTR readthrough product.
Collapse
Affiliation(s)
- Jianguo Chen
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Kari Thrasher
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama, United States
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Lianwu Fu
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama, United States
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Wei Wang
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | | | - Hui Wen
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Liping Tang
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Kim M Keeling
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama, United States
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Emily Falk Libby
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - David M Bedwell
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama, United States
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Steven M Rowe
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, United States
| |
Collapse
|
5
|
Ravatin M, Odolczyk N, Servel N, Guijarro JI, Tagat E, Chevalier B, Baatallah N, Corringer PJ, Lukács GL, Edelman A, Zielenkiewicz P, Chambard JM, Hinzpeter A, Faure G. Design of Crotoxin-Based Peptides with Potentiator Activity Targeting the ΔF508NBD1 Cystic Fibrosis Transmembrane Conductance Regulator. J Mol Biol 2023; 435:167929. [PMID: 36566799 DOI: 10.1016/j.jmb.2022.167929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/16/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022]
Abstract
We have previously shown that the CBb subunit of crotoxin, a β-neurotoxin with phospholipase A2 (PLA2) activity, targets the human ΔF508CFTR chloride channel implicated in cystic fibrosis (CF). By direct binding to the nucleotide binding domain 1 (NBD1) of ΔF508CFTR, this neurotoxic PLA2 acts as a potentiator increasing chloride channel current and corrects the trafficking defect of misfolded ΔF508CFTR inside the cell. Here, for a therapeutics development of new anti-cystic fibrosis agents, we use a structure-based in silico approach to design peptides mimicking the CBb-ΔF508NBD1 interface. Combining biophysical and electrophysiological methods, we identify several peptides that interact with the ΔF508NBD1 domain and reveal their effects as potentiators on phosphorylated ΔF508CFTR. Moreover, protein-peptide interactions and electrophysiological studies allowed us to identify key residues of ΔF508NBD1 governing the interactions with the novel potentiators. The designed peptides bind to the same region as CBb phospholipase A2 on ΔF508NBD1 and potentiate chloride channel activity. Certain peptides also show an additive effect towards the clinically approved VX-770 potentiator. The identified CF therapeutics peptides represent a novel class of CFTR potentiators and illustrate a strategy leading to reproducing the effect of specific protein-protein interactions.
Collapse
Affiliation(s)
- Marc Ravatin
- Institut Pasteur, Université de Paris Cité, CNRS UMR 3571, Récepteurs-Canaux, Département de Neuroscience, 25, rue du Dr. Roux, F-75015 Paris, France; Sanofi, R&D, Integrated Drug Discovery, In Vitro Biology, Vitry-sur-Seine, France
| | - Norbert Odolczyk
- Institut Pasteur, Université de Paris Cité, CNRS UMR 3571, Récepteurs-Canaux, Département de Neuroscience, 25, rue du Dr. Roux, F-75015 Paris, France; Department of Systems Biology, Institute of Experimental Plant Biology and Biotechnology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland; Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Nathalie Servel
- INSERM, U1151, Université de Paris Cité, Institut Necker Enfants Malades (INEM), CNRS, UMR 8253, 160 rue de Vaugirard, F-75015 Paris, France
| | - J Iñaki Guijarro
- Institut Pasteur, Université de Paris Cité, CNRS UMR 3528, Biological NMR and HDX-MS Technological Platform, 28 rue du Dr. Roux, F-75015 Paris, France
| | - Eric Tagat
- Sanofi, R&D, Integrated Drug Discovery, In Vitro Biology, Vitry-sur-Seine, France
| | - Benoit Chevalier
- INSERM, U1151, Université de Paris Cité, Institut Necker Enfants Malades (INEM), CNRS, UMR 8253, 160 rue de Vaugirard, F-75015 Paris, France
| | - Nesrine Baatallah
- INSERM, U1151, Université de Paris Cité, Institut Necker Enfants Malades (INEM), CNRS, UMR 8253, 160 rue de Vaugirard, F-75015 Paris, France
| | - Pierre-Jean Corringer
- Institut Pasteur, Université de Paris Cité, CNRS UMR 3571, Récepteurs-Canaux, Département de Neuroscience, 25, rue du Dr. Roux, F-75015 Paris, France
| | - Gergely L Lukács
- Department of Physiology and Biochemistry, McGill University, Montréal, Quebec, Canada
| | - Aleksander Edelman
- INSERM, U1151, Université de Paris Cité, Institut Necker Enfants Malades (INEM), CNRS, UMR 8253, 160 rue de Vaugirard, F-75015 Paris, France
| | - Piotr Zielenkiewicz
- Department of Systems Biology, Institute of Experimental Plant Biology and Biotechnology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland; Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Jean-Marie Chambard
- Sanofi, R&D, Integrated Drug Discovery, In Vitro Biology, Vitry-sur-Seine, France
| | - Alexandre Hinzpeter
- INSERM, U1151, Université de Paris Cité, Institut Necker Enfants Malades (INEM), CNRS, UMR 8253, 160 rue de Vaugirard, F-75015 Paris, France.
| | - Grazyna Faure
- Institut Pasteur, Université de Paris Cité, CNRS UMR 3571, Récepteurs-Canaux, Département de Neuroscience, 25, rue du Dr. Roux, F-75015 Paris, France.
| |
Collapse
|
6
|
Bacalhau M, Ferreira FC, Silva IAL, Buarque CD, Amaral MD, Lopes-Pacheco M. Additive Potentiation of R334W-CFTR Function by Novel Small Molecules. J Pers Med 2023; 13:jpm13010102. [PMID: 36675763 PMCID: PMC9862739 DOI: 10.3390/jpm13010102] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 01/04/2023] Open
Abstract
The R334W (c.1000C>T, p.Arg334Trp) is a rare cystic fibrosis (CF)-causing mutation for which no causal therapy is currently approved. This mutation leads to a significant reduction of CF transmembrane conductance regulator (CFTR) channel conductance that still allows for residual function. Potentiators are small molecules that interact with CFTR protein at the plasma membrane to enhance CFTR-dependent chloride secretion, representing thus pharmacotherapies targeting the root cause of the disease. Here, we generated a new CF bronchial epithelial (CFBE) cell line to screen a collection of compounds and identify novel potentiators for R334W-CFTR. The active compounds were then validated by electrophysiological assays and their additive effects in combination with VX-770, genistein, or VX-445 were exploited in this cell line and further confirmed in intestinal organoids. Four compounds (LSO-24, LSO-25, LSO-38, and LSO-77) were active in the functional primary screen and their ability to enhance R334W-CFTR-dependent chloride secretion was confirmed using electrophysiological measurements. In silico ADME analyses demonstrated that these compounds follow Lipinski’s rule of five and are thus suggested to be orally bioavailable. Dose−response relationships revealed nevertheless suboptimal efficacy and weak potency exerted by these compounds. VX-770 and genistein also displayed a small potentiation of R334W-CFTR function, while VX-445 demonstrated no potentiator activity for this mutation. In the R334W-expressing cell line, CFTR function was further enhanced by the combination of LSO-24, LSO-25, LSO-38, or LSO-77 with VX-770, but not with genistein. The efficacy of potentiator VX-770 combined with active LSO compounds was further confirmed in intestinal organoids (R334W/R334W genotype). Taken together, these molecules were demonstrated to potentiate R334W-CFTR function by a different mechanism than that of VX-770. They may provide a feasible starting point for the design of analogs with improved CFTR-potentiator activity.
Collapse
Affiliation(s)
- Mafalda Bacalhau
- Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
| | - Filipa C. Ferreira
- Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
| | - Iris A. L. Silva
- Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
| | - Camilla D. Buarque
- Department of Chemistry, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro 22541-041, Brazil
| | - Margarida D. Amaral
- Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
| | - Miquéias Lopes-Pacheco
- Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
- Correspondence:
| |
Collapse
|
7
|
Fossa P, Uggeri M, Orro A, Urbinati C, Rondina A, Milanesi M, Pedemonte N, Pesce E, Padoan R, Ford RC, Meng X, Rusnati M, D’Ursi P. Virtual Drug Repositioning as a Tool to Identify Natural Small Molecules That Synergize with Lumacaftor in F508del-CFTR Binding and Rescuing. Int J Mol Sci 2022; 23:ijms232012274. [PMID: 36293130 PMCID: PMC9602983 DOI: 10.3390/ijms232012274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 11/16/2022] Open
Abstract
Cystic fibrosis is a hereditary disease mainly caused by the deletion of the Phe 508 (F508del) of the cystic fibrosis transmembrane conductance regulator (CFTR) protein that is thus withheld in the endoplasmic reticulum and rapidly degraded by the ubiquitin/proteasome system. Cystic fibrosis remains a potentially fatal disease, but it has become treatable as a chronic condition due to some CFTR-rescuing drugs that, when used in combination, increase in their therapeutic effect due to a synergic action. Also, dietary supplementation of natural compounds in combination with approved drugs could represent a promising strategy to further alleviate cystic fibrosis symptoms. On these bases, we screened by in silico drug repositioning 846 small synthetic or natural compounds from the AIFA database to evaluate their capacity to interact with the highly druggable lumacaftor binding site of F508del-CFTR. Among the identified hits, nicotinamide (NAM) was predicted to accommodate into the lumacaftor binding region of F508del-CFTR without competing against the drug but rather stabilizing its binding. The effective capacity of NAM to bind F508del-CFTR in a lumacaftor-uncompetitive manner was then validated experimentally by surface plasmon resonance analysis. Finally, the capacity of NAM to synergize with lumacaftor increasing its CFTR-rescuing activity was demonstrated in cell-based assays. This study suggests the possible identification of natural small molecules devoid of side effects and endowed with the capacity to synergize with drugs currently employed for the treatment of cystic fibrosis, which hopefully will increase the therapeutic efficacy with lower doses.
Collapse
Affiliation(s)
- Paola Fossa
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, 16132 Genoa, Italy
| | - Matteo Uggeri
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, 16132 Genoa, Italy
- Institute for Biomedical Technologies, National Research Council (ITB-CNR), 20054 Segrate, Italy
| | - Alessandro Orro
- Institute for Biomedical Technologies, National Research Council (ITB-CNR), 20054 Segrate, Italy
| | - Chiara Urbinati
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Alessandro Rondina
- Institute for Biomedical Technologies, National Research Council (ITB-CNR), 20054 Segrate, Italy
| | - Maria Milanesi
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | | | - Emanuela Pesce
- UOC Genetica Medica, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy
| | - Rita Padoan
- Department of Pediatrics, Regional Support Centre for Cystic Fibrosis, Children’s Hospital—ASST Spedali Civili, University of Brescia, 25123 Brescia, Italy
| | - Robert C. Ford
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK
| | - Xin Meng
- Cellular Degradation Systems Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Marco Rusnati
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
- Correspondence: (M.R.); (P.D.)
| | - Pasqualina D’Ursi
- Institute for Biomedical Technologies, National Research Council (ITB-CNR), 20054 Segrate, Italy
- Correspondence: (M.R.); (P.D.)
| |
Collapse
|
8
|
Liu J, Berg AP, Wang Y, Jantarajit W, Sutcliffe KJ, Stevens EB, Cao L, Pregel MJ, Sheppard DN. A small molecule CFTR potentiator restores ATP-dependent channel gating to the cystic fibrosis mutant G551D-CFTR. Br J Pharmacol 2021; 179:1319-1337. [PMID: 34644413 PMCID: PMC9304199 DOI: 10.1111/bph.15709] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 08/30/2021] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE Cystic fibrosis transmembrane conductance regulator (CFTR) potentiators are small molecules developed to treat the genetic disease cystic fibrosis (CF). They interact directly with CFTR Cl- channels at the plasma membrane to enhance channel gating. Here, we investigate the action of a new CFTR potentiator, CP-628006 with a distinct chemical structure. EXPERIMENTAL APPROACH Using electrophysiological assays with CFTR-expressing heterologous cells and CF patient-derived human bronchial epithelial (hBE) cells, we compared the effects of CP-628006 with the marketed CFTR potentiator ivacaftor. KEY RESULTS CP-628006 efficaciously potentiated CFTR function in epithelia from cultured hBE cells. Its effects on the predominant CFTR variant F508del-CFTR were larger than those with the gating variant G551D-CFTR. In excised inside-out membrane patches, CP-628006 potentiated wild-type, F508del- and G551D-CFTR by increasing the frequency and duration of channel openings. CP-628006 increased the affinity and efficacy of F508del-CFTR gating by ATP. In these respects, CP-628006 behaved like ivacaftor. CP-628006 also demonstrated notable differences with ivacaftor. Its potency and efficacy were lower than those of ivacaftor. CP-628006 conferred ATP-dependent gating on G551D-CFTR, whereas the action of ivacaftor was ATP-independent. For G551D-CFTR, but not F508del-CFTR, the action of CP-628006 plus ivacaftor was greater than ivacaftor alone. CP-628006 delayed, but did not prevent, the deactivation of F508del-CFTR at the plasma membrane, whereas ivacaftor accentuated F508del-CFTR deactivation. CONCLUSIONS AND IMPLICATIONS CP-628006 has distinct effects compared to ivacaftor, suggesting a different mechanism of CFTR potentiation. The emergence of CFTR potentiators with diverse modes of action makes therapy with combinations of potentiators a possibility.
Collapse
Affiliation(s)
- Jia Liu
- Neuroscience and Pain Research Unit, Pfizer Inc., Granta Park, Great Abington, Cambridge, UK.,School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, UK
| | - Allison P Berg
- Rare Disease Research Unit, Pfizer Inc., Cambridge, MA, USA
| | - Yiting Wang
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, UK
| | - Walailak Jantarajit
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, UK.,Center of Calcium and Bone Research and Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Katy J Sutcliffe
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, UK
| | - Edward B Stevens
- Neuroscience and Pain Research Unit, Pfizer Inc., Granta Park, Great Abington, Cambridge, UK
| | - Lishuang Cao
- Neuroscience and Pain Research Unit, Pfizer Inc., Granta Park, Great Abington, Cambridge, UK
| | - Marko J Pregel
- Rare Disease Research Unit, Pfizer Inc., Cambridge, MA, USA
| | - David N Sheppard
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, UK
| |
Collapse
|
9
|
Becq F, Mirval S, Carrez T, Lévêque M, Billet A, Coraux C, Sage E, Cantereau A. The rescue of F508del-CFTR by elexacaftor/tezacaftor/ivacaftor (Trikafta) in human airway epithelial cells is underestimated due to the presence of ivacaftor. Eur Respir J 2021; 59:13993003.00671-2021. [PMID: 34266939 DOI: 10.1183/13993003.00671-2021] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 06/25/2021] [Indexed: 11/05/2022]
Abstract
Trikafta, currently the leading therapeutic in Cystic Fibrosis (CF), has demonstrated a real clinical benefit. This treatment is the triple combination therapy of two folding correctors elexacaftor/tezacaftor (VX445/VX661) plus the gating potentiator ivacaftor (VX770). In this study, our aim was to compare the properties of F508del-CFTR in cells treated with either lumacaftor (VX809), tezacaftor, elexacaftor, elexacaftor/tezacaftor with or without ivacaftor. We studied F508del-CFTR function, maturation and membrane localisation by Ussing chamber and whole-cell patch clamp recordings, Western blot and immunolocalization experiments. With human primary airway epithelial cells and the cell lines CFBE and BHK expressing F508del, we found that, whereas the combination elexacaftor/tezacaftor/ivacaftor was efficient in rescuing F508del-CFTR abnormal maturation, apical membrane location and function, the presence of ivacaftor limits these effects. The basal F508del-CFTR short-circuit current was significantly increased by elexacaftor/tezacaftor/ivacaftor and elexacaftor/tezacaftor compared to other correctors and non-treated cells, an effect dependent on ivacaftor and cAMP. These results suggest that the level of the basal F508del-CFTR current might be a marker for correction efficacy in CF cells. When cells were treated with ivacaftor combined to any correctors, the F508del-CFTR current was unresponsive to the subsequently acute addition of ivacaftor unlike the CFTR potentiators genistein and Cact-A1 which increased elexacaftor/tezacaftor/ivacaftor and elexacaftor/tezacaftor-corrected F508del-CFTR currents. These findings show that ivacaftor reduces the correction efficacy of Trikafta. Thus, combining elexacaftor/tezacaftor with a different potentiator might improve the therapeutic efficacy for treating CF patients.
Collapse
Affiliation(s)
- Frédéric Becq
- Laboratoire Signalisation et Transports Ioniques Membranaires, Université de Poitiers, France
| | - Sandra Mirval
- Laboratoire Signalisation et Transports Ioniques Membranaires, Université de Poitiers, France
| | - Thomas Carrez
- Laboratoire Signalisation et Transports Ioniques Membranaires, Université de Poitiers, France.,ManRos therapeutics, Presqu'île de Perharidy, Roscoff, France
| | - Manuella Lévêque
- Laboratoire Signalisation et Transports Ioniques Membranaires, Université de Poitiers, France
| | - Arnaud Billet
- Laboratoire Signalisation et Transports Ioniques Membranaires, Université de Poitiers, France
| | - Christelle Coraux
- INSERM UMR-S 1250, Université de Reims-Champagne Ardenne, Reims, France
| | - Edouard Sage
- INRAE UMR 0892, Université Versailles-Saint-Quentin-en-Yvelines, Versailles, France.,Service de chirurgie thoracique et transplantation pulmonaire, Hôpital Foch, Suresnes, France
| | - Anne Cantereau
- Laboratoire Signalisation et Transports Ioniques Membranaires, Université de Poitiers, France
| |
Collapse
|
10
|
Lopes-Pacheco M, Pedemonte N, Veit G. Discovery of CFTR modulators for the treatment of cystic fibrosis. Expert Opin Drug Discov 2021; 16:897-913. [PMID: 33823716 DOI: 10.1080/17460441.2021.1912732] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
INTRODUCTION Cystic fibrosis (CF) is a life-threatening inherited disease caused by mutations in the gene encoding the CF transmembrane conductance regulator (CFTR) protein, an anion channel expressed at the apical membrane of secretory epithelia. CF leads to multiorgan dysfunction with progressive deterioration of lung function being the major cause of untimely death. Conventional CF therapies target only symptoms and consequences downstream of the primary genetic defect and the current life expectancy and quality of life of these individuals are still very limited. AREA COVERED CFTR modulator drugs are novel-specialized therapies that enhance or even restore functional expression of CFTR mutants and have been approved for clinical use for individuals with specific CF genotypes. This review summarizes classical approaches used for the pre-clinical development of CFTR correctors and potentiators as well as emerging strategies aiming to accelerate modulator development and expand theratyping efforts. EXPERT OPINION Highly effective CFTR modulator drugs are expected to deeply modify the disease course for the majority of individuals with CF. A multitude of experimental approaches have been established to accelerate the development of novel modulators. CF patient-derived specimens are valuable cell models to predict therapeutic effectiveness of existing (and novel) modulators in a precision medicine approach.
Collapse
Affiliation(s)
| | | | - Guido Veit
- Department of Physiology, McGill University, Montréal, Canada
| |
Collapse
|
11
|
Orro A, Uggeri M, Rusnati M, Urbinati C, Pedemonte N, Pesce E, Moscatelli M, Padoan R, Cichero E, Fossa P, D'Ursi P. In silico drug repositioning on F508del-CFTR: A proof-of-concept study on the AIFA library. Eur J Med Chem 2021; 213:113186. [PMID: 33472120 DOI: 10.1016/j.ejmech.2021.113186] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 01/07/2021] [Accepted: 01/07/2021] [Indexed: 12/14/2022]
Abstract
Computational drug repositioning is of growing interest to academia and industry, for its ability to rapidly screen a huge number of candidates in silico (exploiting comprehensive drug datasets) together with reduced development cost and time. The potential of drug repositioning has not been fully evaluated yet for cystic fibrosis (CF), a disease mainly caused by deletion of Phe 508 (F508del) of the cystic fibrosis transmembrane conductance regulator (CFTR) protein. F508del-CFTR is thus withheld in the endoplasmic reticulum and rapidly degraded by the ubiquitin/proteasome system. CF is still a fatal disease. Nowadays, it is treatable by some CFTR-rescuing drugs, but new-generation drugs with stronger therapeutic benefits and fewer side effects are still awaited. In this manuscript we report about the results of a pilot computational drug repositioning screening in search of F508del-CFTR-targeted drugs performed on AIFA library by means of a dedicated computational pipeline and surface plasmon resonance binding assay to experimentally validate the computational findings.
Collapse
Affiliation(s)
- Alessandro Orro
- Institute for Biomedical Technologies, National Research Council (ITB-CNR), Segrate, MI, Italy
| | - Matteo Uggeri
- Institute for Biomedical Technologies, National Research Council (ITB-CNR), Segrate, MI, Italy; Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genova, Genova, Italy
| | - Marco Rusnati
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Chiara Urbinati
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | | | - Emanuela Pesce
- UOC Genetica Medica, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Marco Moscatelli
- Institute for Biomedical Technologies, National Research Council (ITB-CNR), Segrate, MI, Italy
| | - Rita Padoan
- Department of Pediatrics, Regional Support Centre for Cystic Fibrosis, Children's Hospital-ASST Spedali Civili, University of Brescia, Brescia, Italy
| | - Elena Cichero
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genova, Genova, Italy
| | - Paola Fossa
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genova, Genova, Italy
| | - Pasqualina D'Ursi
- Institute for Biomedical Technologies, National Research Council (ITB-CNR), Segrate, MI, Italy.
| |
Collapse
|
12
|
Bradbury NA. Cystic Fibrosis and Genotype-Dependent Therapy: Is There a Need for a Sex-Specific Therapy? GENDER AND THE GENOME 2020. [DOI: 10.1177/2470289720937025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cystic fibrosis (CF) is an autosomal recessive genetic disease caused by mutations in the cystic fibrosis transmembrane conductance regulation (CFTR) anion channel. Loss of CFTR protein and/or function disrupts chloride, bicarbonate, and fluid transport and also impacts epithelial sodium transport. Such altered ion and fluid transport produces mucus obstruction, inflammation, pulmonary infection, and damage to multiple organs. Although an autosomal disease, it is apparent that gender differences in life expectancy and quality of life do exist. Conventionally established therapies have treated the downstream sequelae of CFTR dysfunction and have led to a steady increase in life expectancy. Physicians now have access to medications that treat the basic defect in CF, in the form of CFTR modulators. These drugs target the trafficking and/or function of CFTR to improve clinical outcomes for patients. This review summarizes the science behind CFTR modulators and shows how these drugs have dramatically changed how patients with CF are treated. Surprisingly, although the drug target(s) are identical in males and females, CF females seem to display a greater improvement than their male counterparts.
Collapse
Affiliation(s)
- Neil A. Bradbury
- Department of Physiology and Biophysics and Center for Genetic Diseases, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| |
Collapse
|
13
|
Spanò V, Venturini A, Genovese M, Barreca M, Raimondi MV, Montalbano A, Galietta LJV, Barraja P. Current development of CFTR potentiators in the last decade. Eur J Med Chem 2020; 204:112631. [PMID: 32898816 DOI: 10.1016/j.ejmech.2020.112631] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/28/2020] [Accepted: 06/28/2020] [Indexed: 12/17/2022]
Abstract
Cystic fibrosis (CF) is a genetic disorder produced by the loss of function of CFTR, a main chloride channel involved in transepithelial salt and water transport. CFTR function can be rescued by small molecules called "potentiators" which increase gating activity of CFTR on epithelial surfaces. High throughput screening (HTS) assays allowed the identification of new chemical entities endowed with potentiator properties, further improved through medicinal chemistry optimization. In this review, the most relevant classes of CFTR potentiators developed in the last decade were explored, focusing on structure-activity relationships (SAR) of the different chemical entities, as a useful tool for the improvement of their pharmacological activity.
Collapse
Affiliation(s)
- Virginia Spanò
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123, Palermo, Italy
| | - Arianna Venturini
- Telethon Institute of Genetics and Medicine (TIGEM), Campi Flegrei 34, 80078, Pozzuoli, NA, Italy
| | - Michele Genovese
- Telethon Institute of Genetics and Medicine (TIGEM), Campi Flegrei 34, 80078, Pozzuoli, NA, Italy
| | - Marilia Barreca
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123, Palermo, Italy
| | - Maria Valeria Raimondi
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123, Palermo, Italy
| | - Alessandra Montalbano
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123, Palermo, Italy.
| | - Luis J V Galietta
- Telethon Institute of Genetics and Medicine (TIGEM), Campi Flegrei 34, 80078, Pozzuoli, NA, Italy; Department of Translational Medical Sciences (DISMET), University of Naples, "Federico II", Via Sergio Pansini 5, 80131, Naples, Italy
| | - Paola Barraja
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123, Palermo, Italy
| |
Collapse
|
14
|
Recent Strategic Advances in CFTR Drug Discovery: An Overview. Int J Mol Sci 2020; 21:ijms21072407. [PMID: 32244346 PMCID: PMC7177952 DOI: 10.3390/ijms21072407] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 03/25/2020] [Accepted: 03/27/2020] [Indexed: 12/13/2022] Open
Abstract
Cystic fibrosis transmembrane conductance regulator (CFTR)-rescuing drugs have already transformed cystic fibrosis (CF) from a fatal disease to a treatable chronic condition. However, new-generation drugs able to bind CFTR with higher specificity/affinity and to exert stronger therapeutic benefits and fewer side effects are still awaited. Computational methods and biosensors have become indispensable tools in the process of drug discovery for many important human pathologies. Instead, they have been used only piecemeal in CF so far, calling for their appropriate integration with well-tried CF biochemical and cell-based models to speed up the discovery of new CFTR-rescuing drugs. This review will give an overview of the available structures and computational models of CFTR and of the biosensors, biochemical and cell-based assays already used in CF-oriented studies. It will also give the reader some insights about how to integrate these tools as to improve the efficiency of the drug discovery process targeted to CFTR.
Collapse
|
15
|
Boswell ZK, Canny MD, Buschmann TA, Sang J, Latham MP. Adjacent mutations in the archaeal Rad50 ABC ATPase D-loop disrupt allosteric regulation of ATP hydrolysis through different mechanisms. Nucleic Acids Res 2020; 48:2457-2472. [PMID: 31889185 PMCID: PMC7049730 DOI: 10.1093/nar/gkz1228] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 11/25/2019] [Accepted: 12/20/2019] [Indexed: 11/29/2022] Open
Abstract
DNA damage is the driving force for mutation and genomic instability, which can both lead to cell death or carcinogenesis. DNA double strand breaks are detected and processed in part by the Mre11-Rad50-Nbs1 protein complex. Although the Mre11-Rad50-Nbs1 complex is essential, several spontaneous mutations have been noted in various cancers. One of these mutations, within a conserved motif of Rad50, resulted in an outlier curative response in a clinical trial. We show through biochemical and biophysical characterization that this cancer-associated mutation and a second mutation to the adjacent residue, previously described in a breast cancer patient, both have gain-of-function Rad50 ATP hydrolysis activity that results not from faster association of the ATP-bound form but faster dissociation leading to less stable Rad50 dimer. This disruption impairs the regulatory functions of the protein complex leading to a loss of exonuclease activity from Mre11. Interestingly, these two mutations affect Rad50 structure and dynamics quite differently. These studies describe the relationship between function, structure, and molecular motions in improperly regulated Rad50, which reveal the underlying biophysical mechanism for how these two cancer-associated mutations affect the cell.
Collapse
Affiliation(s)
- Zachary K Boswell
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061, USA
| | - Marella D Canny
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061, USA
| | - Tanner A Buschmann
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061, USA
| | - Julie Sang
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061, USA
| | - Michael P Latham
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061, USA
| |
Collapse
|
16
|
Froux L, Elbahnsi A, Boucherle B, Billet A, Baatallah N, Hoffmann B, Alliot J, Zelli R, Zeinyeh W, Haudecoeur R, Chevalier B, Fortuné A, Mirval S, Simard C, Lehn P, Mornon JP, Hinzpeter A, Becq F, Callebaut I, Décout JL. Targeting different binding sites in the CFTR structures allows to synergistically potentiate channel activity. Eur J Med Chem 2020; 190:112116. [DOI: 10.1016/j.ejmech.2020.112116] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 01/24/2020] [Accepted: 02/03/2020] [Indexed: 02/06/2023]
|
17
|
Towards next generation therapies for cystic fibrosis: Folding, function and pharmacology of CFTR. J Cyst Fibros 2020; 19 Suppl 1:S25-S32. [PMID: 31902693 PMCID: PMC7052731 DOI: 10.1016/j.jcf.2019.12.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 12/16/2019] [Accepted: 12/18/2019] [Indexed: 12/19/2022]
Abstract
The treatment of cystic fibrosis (CF) has been transformed by orally-bioavailable small molecule modulators of the cystic fibrosis transmembrane conductance regulator (CFTR), which restore function to CF mutants. However, CFTR modulators are not available to all people with CF and better modulators are required to prevent disease progression. Here, we review selectively recent advances in CFTR folding, function and pharmacology. We highlight ensemble and single-molecule studies of CFTR folding, which provide new insight into CFTR assembly, its perturbation by CF mutations and rescue by CFTR modulators. We discuss species-dependent differences in the action of the F508del-CFTR mutation on CFTR expression, stability and function, which might influence pharmacological studies of CFTR modulators in CF animal models. Finally, we illuminate the identification of combinations of two CFTR potentiators (termed co-potentiators), which restore therapeutically-relevant levels of CFTR activity to rare CF mutations. Thus, mechanistic studies of CFTR folding, function and pharmacology inform the development of highly effective CFTR modulators.
Collapse
|
18
|
Phuan PW, Tan JA, Rivera AA, Zlock L, Nielson DW, Finkbeiner WE, Haggie PM, Verkman AS. Nanomolar-potency 'co-potentiator' therapy for cystic fibrosis caused by a defined subset of minimal function CFTR mutants. Sci Rep 2019; 9:17640. [PMID: 31776420 PMCID: PMC6881293 DOI: 10.1038/s41598-019-54158-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 11/07/2019] [Indexed: 12/11/2022] Open
Abstract
Available CFTR modulators provide no therapeutic benefit for cystic fibrosis (CF) caused by many loss-of-function mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel, including N1303K. We previously introduced the concept of ‘co-potentiators’ (combination-potentiators) to rescue CFTR function in some minimal function CFTR mutants. Herein, a screen of ~120,000 drug-like synthetic small molecules identified active co-potentiators of pyrazoloquinoline, piperidine-pyridoindole, tetrahydroquinoline and phenylazepine classes, with EC50 down to ~300 nM following initial structure-activity studies. Increased CFTR chloride conductance by up to 8-fold was observed when a co-potentiator (termed ‘Class II potentiator’) was used with a classical potentiator (‘Class I potentiator’) such as VX-770 or GLPG1837. To investigate the range of CFTR mutations benefitted by co-potentiators, 14 CF-associated CFTR mutations were studied in transfected cell models. Co-potentiator efficacy was found for CFTR missense, deletion and nonsense mutations in nucleotide binding domain-2 (NBD2), including W1282X, N1303K, c.3700A > G and Q1313X (with corrector for some mutations). In contrast, CFTR mutations G85E, R334W, R347P, V520F, R560T, A561E, M1101K and R1162X showed no co-potentiator activity, even with corrector. Co-potentiator efficacy was confirmed in primary human bronchial epithelial cell cultures generated from a N1303K homozygous CF subject. The Class II potentiators identified here may have clinical benefit for CF caused by mutations in the NBD2 domain of CFTR.
Collapse
Affiliation(s)
- Puay-Wah Phuan
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA.
| | - Joseph-Anthony Tan
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Amber A Rivera
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Lorna Zlock
- Department of Pathology, University of California, San Francisco, San Francisco, CA, USA
| | - Dennis W Nielson
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA
| | - Walter E Finkbeiner
- Department of Pathology, University of California, San Francisco, San Francisco, CA, USA
| | - Peter M Haggie
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Alan S Verkman
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA.,Department of Physiology, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
19
|
Mutation-specific dual potentiators maximize rescue of CFTR gating mutants. J Cyst Fibros 2019; 19:236-244. [PMID: 31678009 DOI: 10.1016/j.jcf.2019.10.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/04/2019] [Accepted: 10/08/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND The potentiator ivacaftor (VX-770) has been approved for therapy of 38 cystic fibrosis (CF) mutations (∼10% of the patient population) associated with a gating defect of the CF transmembrane conductance regulator (CFTR). Despite the success of VX-770 treatment of patients carrying at least one allele of the most common gating mutation G551D-CFTR, some lung function decline and P. aeruginosa colonization persist. This study aims at identifying potentiator combinations that can considerably enhance the limited channel activity of a panel of CFTR gating mutants over monotherapy. METHODS The functional response of 13 CFTR mutants to single potentiators or systematic potentiator combinations was determined in the human bronchial epithelial cell line CFBE41o- and a subset of them was confirmed in primary human nasal epithelia (HNE). RESULTS In six out of thirteen CFTR missense mutants the fractional plasma membrane (PM) activity, a surrogate measure of CFTR channel gating, reached only ∼10-50% of WT channel activity upon VX-770 treatment, indicating incomplete gating correction. Combinatorial potentiator profiling and cluster analysis of mutant responses to 24 diverse investigational potentiators identified several compound pairs that improved the gating activity of R352Q-, S549R-, S549N-, G551D-, and G1244E-CFTR to ∼70-120% of the WT. Similarly, the potentiator combinations were able to confer WT-like function to G551D-CFTR in patient-derived human nasal epithelia. CONCLUSION This study suggests that half of CF patients with missense mutations approved for VX-770 administration, could benefit from the development of dual potentiator therapy.
Collapse
|
20
|
Kinting S, Li Y, Forstner M, Delhommel F, Sattler M, Griese M. Potentiation of ABCA3 lipid transport function by ivacaftor and genistein. J Cell Mol Med 2019; 23:5225-5234. [PMID: 31210424 PMCID: PMC6652914 DOI: 10.1111/jcmm.14397] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 04/15/2019] [Accepted: 05/03/2019] [Indexed: 12/27/2022] Open
Abstract
ABCA3 is a phospholipid transporter implicated in pulmonary surfactant homoeostasis and localized at the limiting membrane of lamellar bodies, the storage compartment for surfactant in alveolar type II cells. Mutations in ABCA3 display a common genetic cause for diseases caused by surfactant deficiency like respiratory distress in neonates and interstitial lung disease in children and adults, for which currently no causal therapy exists. In this study, we investigated the effects of ivacaftor and genistein, two potentiators of the cystic fibrosis transmembrane conductance regulator (CFTR), on ABCA3-specific lipid transport function. Wild-type (WT) and functional ABCA3 mutations N568D, F629L, G667R, T1114M and L1580P were stably expressed in A549 cells. Three-dimensional modelling predicted functional impairment for all five mutants that was confirmed by in vitro experiments (all <14% of WT functional activity). Treatment with potentiators rescued the mutants N568D (up to 114% of WT), F629L (up to 47% of WT), and G667R (up to 60% of WT), the latter variation needing higher concentrations of genistein, showing reduced affinity of the potentiator to the mutant protein. Our results present a first proof that functional ABCA3 mutations are rescued by CFTR potentiators, making them a potential therapeutical option for patients suffering from surfactant deficiency due to ABCA3 mutations.
Collapse
Affiliation(s)
- Susanna Kinting
- Department of Pediatrics, Dr. von Hauner Children's HospitalUniversity Hospital, LMU MunichMunichGermany
- Member of the German Center for Lung Research (DZL)MunichGermany
| | - Yang Li
- Department of Pediatrics, Dr. von Hauner Children's HospitalUniversity Hospital, LMU MunichMunichGermany
| | - Maria Forstner
- Department of Pediatrics, Dr. von Hauner Children's HospitalUniversity Hospital, LMU MunichMunichGermany
- Member of the German Center for Lung Research (DZL)MunichGermany
| | - Florent Delhommel
- Institute of Structural BiologyHelmholtz Zentrum MünchenNeuherbergGermany
- Center for Integrated Protein Science Munich at Department ChemieTechnical University of MunichGarchingGermany
| | - Michael Sattler
- Institute of Structural BiologyHelmholtz Zentrum MünchenNeuherbergGermany
- Center for Integrated Protein Science Munich at Department ChemieTechnical University of MunichGarchingGermany
| | - Matthias Griese
- Department of Pediatrics, Dr. von Hauner Children's HospitalUniversity Hospital, LMU MunichMunichGermany
- Member of the German Center for Lung Research (DZL)MunichGermany
| |
Collapse
|
21
|
Berg A, Hallowell S, Tibbetts M, Beasley C, Brown-Phillips T, Healy A, Pustilnik L, Doyonnas R, Pregel M. High-Throughput Surface Liquid Absorption and Secretion Assays to Identify F508del CFTR Correctors Using Patient Primary Airway Epithelial Cultures. SLAS DISCOVERY 2019; 24:724-737. [PMID: 31107611 DOI: 10.1177/2472555219849375] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
High-throughput screening for drug discovery is increasingly utilizing cellular systems of high physiological relevance, such as patient primary cells and organoid cultures. We used 3D-cultured cystic fibrosis patient bronchial epithelial cells to screen for new small-molecule correctors of the disease-causing F508del mutation in CFTR. Impaired mucociliary clearance due to insufficient airway hydration is a hallmark of cystic fibrosis and we used a simple measure of surface liquid levels to quantify F508del CFTR correction in cultured bronchial epithelial cells. Two robust assay formats were configured and used to screen more than 100,000 compounds as mixtures or individual compounds in 96-well format. The corrector discovery success rate, as measured by the number of hits confirmed by an electrophysiology assay on patient primary bronchial epithelial cells, was superior to screens in cell lines expressing recombinant F508del CFTR. Several novel corrector scaffolds were discovered that when combined with the clinical corrector VX-809 delivered combination responses greater than double that of VX-809 alone. This work exemplifies the advantages of a disease-relevant readout and 3D-cultured patient primary cells for the discovery of new drug candidates.
Collapse
Affiliation(s)
- Allison Berg
- 1 Rare Disease Research, Pfizer Inc., Cambridge, MA, USA
| | - Shawn Hallowell
- 2 Primary Pharmacology Group, Medicine Design, Pfizer Inc., Groton, CT, USA
| | - Mark Tibbetts
- 2 Primary Pharmacology Group, Medicine Design, Pfizer Inc., Groton, CT, USA
| | - Chad Beasley
- 2 Primary Pharmacology Group, Medicine Design, Pfizer Inc., Groton, CT, USA
| | | | - Anita Healy
- 2 Primary Pharmacology Group, Medicine Design, Pfizer Inc., Groton, CT, USA
| | - Leslie Pustilnik
- 2 Primary Pharmacology Group, Medicine Design, Pfizer Inc., Groton, CT, USA
| | - Regis Doyonnas
- 2 Primary Pharmacology Group, Medicine Design, Pfizer Inc., Groton, CT, USA
| | - Marko Pregel
- 1 Rare Disease Research, Pfizer Inc., Cambridge, MA, USA
| |
Collapse
|
22
|
Wang Y, Cai Z, Gosling M, Sheppard DN. Potentiation of the cystic fibrosis transmembrane conductance regulator Cl− channel by ivacaftor is temperature independent. Am J Physiol Lung Cell Mol Physiol 2018; 315:L846-L857. [DOI: 10.1152/ajplung.00235.2018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Ivacaftor is the first drug to target directly defects in the cystic fibrosis transmembrane conductance regulator (CFTR), which causes cystic fibrosis (CF). To understand better how ivacaftor potentiates CFTR channel gating, here we investigated the effects of temperature on its action. As a control, we studied the benzimidazolone UCCF-853, which potentiates CFTR by a different mechanism. Using the patch-clamp technique and cells expressing recombinant CFTR, we studied the single-channel behavior of wild-type and F508del-CFTR, the most common CF mutation. Raising the temperature of the intracellular solution from 23 to 37°C increased the frequency but reduced the duration of wild-type and F508del-CFTR channel openings. Although the open probability ( Po) of wild-type CFTR increased progressively as temperature was elevated, the relationship between Po and temperature for F508del-CFTR was bell-shaped with a maximum Po at ~30°C. For wild-type CFTR and to a greatly reduced extent F508del-CFTR, the temperature dependence of channel gating was asymmetric with the opening rate demonstrating greater temperature sensitivity than the closing rate. At all temperatures tested, ivacaftor and UCCF-853 potentiated wild-type and F508del-CFTR. Strikingly, ivacaftor but not UCCF-853 abolished the asymmetric temperature dependence of CFTR channel gating. At all temperatures tested, Po values of wild-type CFTR in the presence of ivacaftor were approximately double those of F508del-CFTR, which were equivalent to or greater than those of wild-type CFTR at 37°C in the absence of the drug. We conclude that the principal effect of ivacaftor is to promote channel opening to abolish the temperature dependence of CFTR channel gating.
Collapse
Affiliation(s)
- Yiting Wang
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, United Kingdom
| | - Zhiwei Cai
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, United Kingdom
| | - Martin Gosling
- Enterprise Therapeutics, Sussex Innovation Centre, University of Sussex, Science Park Square, Brighton, United Kingdom
- Sussex Drug Discovery Centre, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - David N. Sheppard
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, United Kingdom
| |
Collapse
|
23
|
Cho DY, Zhang S, Lazrak A, Grayson JW, Peña Garcia JA, Skinner DF, Lim DJ, Mackey C, Banks C, Matalon S, Woodworth BA. Resveratrol and ivacaftor are additive G551D CFTR-channel potentiators: therapeutic implications for cystic fibrosis sinus disease. Int Forum Allergy Rhinol 2018; 9:100-105. [PMID: 30152192 DOI: 10.1002/alr.22202] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 06/19/2018] [Accepted: 07/15/2018] [Indexed: 01/04/2023]
Abstract
BACKGROUND Mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene result in defective Cl- transport and cause chronic bacterial infections in the upper and lower airways of cystic fibrosis (CF) patients. Ivacaftor is a CFTR potentiator that improves Cl- transport in CF patients with at least 1 copy of the G551D mutation. Resveratrol is also a potent CFTR potentiator that increases determinants of mucociliary transport. The objective of this study is to determine whether resveratrol and ivacaftor improve Cl- secretion in G551D CFTR over either agent alone. METHODS Fisher rat thyroid cells (FRT) transfected with G551D CFTR and human sinonasal epithelial cells (HSNE) containing the CFTR G551D mutation were subjected to pharmacologic manipulation of transepithelial ion transport in Ussing chambers. Activity was further evaluated using whole-cell patch clamp methods in G551D FRT cells. RESULTS In G551D FRT cells, resveratrol (100 μM) and ivacaftor (10 μM) significantly increased Cl- transport (change in short-circuit current, δISC = μA/cm2 ) compared with single-agent and dimethylsulfoxide vehicle controls (resveratrol + ivacaftor 4.97 ± 0.57 vs ivacaftor 0.74 ± 0.12 vs resveratrol 2.96 ± 0.52 vs control 0.74 ± 0.12; p < 0.001). Maximal Cl- secretion (20 μM forskolin) was also significantly enhanced (p < 0.0001). Activity was confirmed in G551D HSNE (resveratrol + ivacaftor 4.48 ± 0.39 vs ivacaftor 1.05 ± 0.11 vs. resveratrol 0.84 ± 0.3 vs control, 0.0 ± 0.02; p < 0.001), and whole-cell patch clamp analysis in G551D FRT cells (resveratrol + ivacaftor -2535 ± 179.3 pA vs ivacaftor -1408.9 ± 101.3 pA vs resveratrol; -766.2 ± 71.2 pA; p < 0.0001). CONCLUSION Additive improvement in G551D CFTR-mediated Cl- secretion suggests that resveratrol could enhance ivacaftor therapy in these patients and improve CF-related rhinosinusitis.
Collapse
Affiliation(s)
- Do-Yeon Cho
- Department of Otolaryngology, University of Alabama at Birmingham, Birmingham, AL.,Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL
| | - Shaoyan Zhang
- Department of Otolaryngology, University of Alabama at Birmingham, Birmingham, AL.,Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL
| | - Ahmed Lazrak
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL.,Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Jessica W Grayson
- Department of Otolaryngology, University of Alabama at Birmingham, Birmingham, AL
| | - Jaime A Peña Garcia
- Department of Otolaryngology, University of Alabama at Birmingham, Birmingham, AL
| | - Daniel F Skinner
- Department of Otolaryngology, University of Alabama at Birmingham, Birmingham, AL.,Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL
| | - Dong Jin Lim
- Department of Otolaryngology, University of Alabama at Birmingham, Birmingham, AL.,Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL
| | - Calvin Mackey
- Department of Otolaryngology, University of Alabama at Birmingham, Birmingham, AL.,Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL
| | - Catherine Banks
- Department of Otolaryngology, University of Alabama at Birmingham, Birmingham, AL
| | - Sadis Matalon
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL.,Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Bradford A Woodworth
- Department of Otolaryngology, University of Alabama at Birmingham, Birmingham, AL.,Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL
| |
Collapse
|
24
|
Cossu C, Fiore M, Baroni D, Capurro V, Caci E, Garcia-Valverde M, Quesada R, Moran O. Anion-Transport Mechanism of a Triazole-Bearing Derivative of Prodigiosine: A Candidate for Cystic Fibrosis Therapy. Front Pharmacol 2018; 9:852. [PMID: 30131695 PMCID: PMC6090297 DOI: 10.3389/fphar.2018.00852] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 07/13/2018] [Indexed: 12/31/2022] Open
Abstract
Cystic fibrosis (CF) is a genetic lethal disease, originated from the defective function of the CFTR protein, a chloride and bicarbonate permeable transmembrane channel. CF mutations affect CFTR protein through a variety of molecular mechanisms which result in different functional defects. Current therapeutic approaches are targeted to specific groups of patients that share a common functional defect. We seek to develop an innovative therapeutic approach for the treatment of CF using anionophores, small molecules that facilitate the transmembrane transport of anions. We have characterized the anion transport mechanism of a synthetic molecule based on the structure of prodigiosine, a red pigment produced by bacteria. Anionophore-driven chloride efflux from large unilamellar vesicles is consistent with activity of an uniporter carrier that facilitates the transport of anions through lipid membranes down the electrochemical gradient. There are no evidences of transport coupling with protons. The selectivity sequence of the prodigiosin inspired EH160 ionophore is formate > acetate > nitrate > chloride > bicarbonate. Sulfate, phosphate, aspartate, isothionate, and gluconate are not significantly transported by these anionophores. Protonation at acidic pH is important for the transport capacity of the anionophore. This prodigiosin derived ionophore induces anion transport in living cells. Its low toxicity and capacity to transport chloride and bicarbonate, when applied at low concentration, constitute a promising starting point for the development of drug candidates for CF therapy.
Collapse
Affiliation(s)
- Claudia Cossu
- Istituto di Biofisica, Consiglio Nazionale Delle Ricerche, Genova, Italy
| | - Michele Fiore
- Istituto di Biofisica, Consiglio Nazionale Delle Ricerche, Genova, Italy
| | - Debora Baroni
- Istituto di Biofisica, Consiglio Nazionale Delle Ricerche, Genova, Italy
| | - Valeria Capurro
- U.O.C. Genetica Medica, Istituto Giannina Gaslini, Genova, Italy
| | - Emanuela Caci
- U.O.C. Genetica Medica, Istituto Giannina Gaslini, Genova, Italy
| | | | - Roberto Quesada
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Burgos, Spain
| | - Oscar Moran
- Istituto di Biofisica, Consiglio Nazionale Delle Ricerche, Genova, Italy
| |
Collapse
|
25
|
Hwang TC, Yeh JT, Zhang J, Yu YC, Yeh HI, Destefano S. Structural mechanisms of CFTR function and dysfunction. J Gen Physiol 2018; 150:539-570. [PMID: 29581173 PMCID: PMC5881446 DOI: 10.1085/jgp.201711946] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 03/05/2018] [Indexed: 12/18/2022] Open
Abstract
Hwang et al. integrate new structural insights with prior functional studies to reveal the functional anatomy of CFTR chloride channels. Cystic fibrosis (CF) transmembrane conductance regulator (CFTR) chloride channel plays a critical role in regulating transepithelial movement of water and electrolyte in exocrine tissues. Malfunction of the channel because of mutations of the cftr gene results in CF, the most prevalent lethal genetic disease among Caucasians. Recently, the publication of atomic structures of CFTR in two distinct conformations provides, for the first time, a clear overview of the protein. However, given the highly dynamic nature of the interactions among CFTR’s various domains, better understanding of the functional significance of these structures requires an integration of these new structural insights with previously established biochemical/biophysical studies, which is the goal of this review.
Collapse
Affiliation(s)
- Tzyh-Chang Hwang
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO .,Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO.,Department of Biological Engineering, University of Missouri, Columbia, MO
| | - Jiunn-Tyng Yeh
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO
| | - Jingyao Zhang
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO.,Department of Biological Engineering, University of Missouri, Columbia, MO
| | - Ying-Chun Yu
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO.,Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO
| | - Han-I Yeh
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO.,Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO
| | - Samantha Destefano
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO.,Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO
| |
Collapse
|
26
|
Speeding Up the Identification of Cystic Fibrosis Transmembrane Conductance Regulator-Targeted Drugs: An Approach Based on Bioinformatics Strategies and Surface Plasmon Resonance. Molecules 2018; 23:molecules23010120. [PMID: 29316712 PMCID: PMC6017603 DOI: 10.3390/molecules23010120] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 12/29/2017] [Accepted: 01/04/2018] [Indexed: 01/09/2023] Open
Abstract
Cystic fibrosis (CF) is mainly caused by the deletion of Phe 508 (ΔF508) in the cystic fibrosis transmembrane conductance regulator (CFTR) protein that is thus withheld in the endoplasmic reticulum and rapidly degraded by the ubiquitin/proteasome system. New drugs able to rescue ΔF508-CFTR trafficking are eagerly awaited. An integrated bioinformatics and surface plasmon resonance (SPR) approach was here applied to investigate the rescue mechanism(s) of a series of CFTR-ligands including VX809, VX770 and some aminoarylthiazole derivatives (AAT). Computational studies tentatively identified a large binding pocket in the ΔF508-CFTR nucleotide binding domain-1 (NBD1) and predicted all the tested compounds to bind to three sub-regions of this main pocket. Noticeably, the known CFTR chaperone keratin-8 (K8) seems to interact with some residues located in one of these sub-pockets, potentially interfering with the binding of some ligands. SPR results corroborated all these computational findings. Moreover, for all the considered ligands, a statistically significant correlation was determined between their binding capability to ΔF508-NBD1 measured by SPR and the pockets availability measured by computational studies. Taken together, these results demonstrate a strong agreement between the in silico prediction and the SPR-generated binding data, suggesting a path to speed up the identification of new drugs for the treatment of cystic fibrosis.
Collapse
|
27
|
Callebaut I, Hoffmann B, Mornon JP. The implications of CFTR structural studies for cystic fibrosis drug development. Curr Opin Pharmacol 2017; 34:112-118. [PMID: 29096277 DOI: 10.1016/j.coph.2017.09.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 09/12/2017] [Accepted: 09/14/2017] [Indexed: 02/08/2023]
Abstract
Development of Cystic Fibrosis Transmembrane conductance Regulator (CFTR) modulators, targeting the root cause of cystic fibrosis (CF), represents a challenge in the era of personalized medicine, as CFTR mutations lead to a variety of phenotypes, which likely require different, specific treatments. CF drug development is also complicated by the need to preserve the right balance between stability and flexibility, required for optimal function of the CFTR protein. In this review, we highlight how structural data can be exploited in this context to understand the molecular mechanisms of disease-associated mutations, to characterize the mechanisms of action of known modulators and to rationalize the search for novel, specific compounds.
Collapse
Affiliation(s)
- Isabelle Callebaut
- CNRS UMR7590, Sorbonne Universités, Université Pierre et Marie Curie - Paris 6 - MNHN - IRD - IUC, Paris, France.
| | - Brice Hoffmann
- CNRS UMR7590, Sorbonne Universités, Université Pierre et Marie Curie - Paris 6 - MNHN - IRD - IUC, Paris, France
| | - Jean-Paul Mornon
- CNRS UMR7590, Sorbonne Universités, Université Pierre et Marie Curie - Paris 6 - MNHN - IRD - IUC, Paris, France
| |
Collapse
|
28
|
Affiliation(s)
- George M. Burslem
- Departments of Molecular,
Cellular, and Developmental Biology, Chemistry, and Pharmacology, Yale University, 219 Prospect Street, New Haven, Connecticut 06511, United States
| | - Craig M. Crews
- Departments of Molecular,
Cellular, and Developmental Biology, Chemistry, and Pharmacology, Yale University, 219 Prospect Street, New Haven, Connecticut 06511, United States
| |
Collapse
|
29
|
Delaunay JL, Bruneau A, Hoffmann B, Durand-Schneider AM, Barbu V, Jacquemin E, Maurice M, Housset C, Callebaut I, Aït-Slimane T. Functional defect of variants in the adenosine triphosphate-binding sites of ABCB4 and their rescue by the cystic fibrosis transmembrane conductance regulator potentiator, ivacaftor (VX-770). Hepatology 2017; 65:560-570. [PMID: 28012258 DOI: 10.1002/hep.28929] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 09/22/2016] [Accepted: 10/11/2016] [Indexed: 12/16/2022]
Abstract
UNLABELLED ABCB4 (MDR3) is an adenosine triphosphate (ATP)-binding cassette (ABC) transporter expressed at the canalicular membrane of hepatocytes, where it mediates phosphatidylcholine (PC) secretion. Variations in the ABCB4 gene are responsible for several biliary diseases, including progressive familial intrahepatic cholestasis type 3 (PFIC3), a rare disease that can be lethal in the absence of liver transplantation. In this study, we investigated the effect and potential rescue of ABCB4 missense variations that reside in the highly conserved motifs of ABC transporters, involved in ATP binding. Five disease-causing variations in these motifs have been identified in ABCB4 (G535D, G536R, S1076C, S1176L, and G1178S), three of which are homologous to the gating mutations of cystic fibrosis transmembrane conductance regulator (CFTR or ABCC7; i.e., G551D, S1251N, and G1349D), that were previously shown to be function defective and corrected by ivacaftor (VX-770; Kalydeco), a clinically approved CFTR potentiator. Three-dimensional structural modeling predicted that all five ABCB4 variants would disrupt critical interactions in the binding of ATP and thereby impair ATP-induced nucleotide-binding domain dimerization and ABCB4 function. This prediction was confirmed by expression in cell models, which showed that the ABCB4 mutants were normally processed and targeted to the plasma membrane, whereas their PC secretion activity was dramatically decreased. As also hypothesized on the basis of molecular modeling, PC secretion activity of the mutants was rescued by the CFTR potentiator, ivacaftor (VX-770). CONCLUSION Disease-causing variations in the ATP-binding sites of ABCB4 cause defects in PC secretion, which can be rescued by ivacaftor. These results provide the first experimental evidence that ivacaftor is a potential therapy for selected patients who harbor mutations in the ATP-binding sites of ABCB4. (Hepatology 2017;65:560-570).
Collapse
Affiliation(s)
- Jean-Louis Delaunay
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, UMR_S 938, Saint-Antoine Research Center, F-75012, Paris, France
| | - Alix Bruneau
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, UMR_S 938, Saint-Antoine Research Center, F-75012, Paris, France
| | - Brice Hoffmann
- IMPMC, Sorbonne Universités, UPMC Univ Paris 06, UMR CNRS 7590, Museum National d'Histoire Naturelle, IRD UMR 206, IUC, Case 115, 4 Place Jussieu, 75005, Paris Cedex 05, France
| | - Anne-Marie Durand-Schneider
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, UMR_S 938, Saint-Antoine Research Center, F-75012, Paris, France
| | - Véronique Barbu
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, UMR_S 938, Saint-Antoine Research Center, F-75012, Paris, France.,Assistance Publique-Hôpitaux de Paris, Saint-Antoine Hospital, Reference Center for Rare Disease, Inflammatory Biliary Diseases & Hepatology Department, F-75012, Paris, France
| | - Emmanuel Jacquemin
- Assistance Publique-Hôpitaux de Paris, Faculty of Medicine Paris Sud, CHU Bicêtre, Pediatric Hepatology & Pediatric Hepatic Transplant Department, Reference Center for Rare Pediatric Liver Diseases, F-94275, Le Kremlin Bicêtre, France.,Université Paris Sud, INSERM, UMR_S 1174, Hepatinov, Orsay, France
| | - Michèle Maurice
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, UMR_S 938, Saint-Antoine Research Center, F-75012, Paris, France
| | - Chantal Housset
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, UMR_S 938, Saint-Antoine Research Center, F-75012, Paris, France.,Assistance Publique-Hôpitaux de Paris, Saint-Antoine Hospital, Reference Center for Rare Disease, Inflammatory Biliary Diseases & Hepatology Department, F-75012, Paris, France
| | - Isabelle Callebaut
- IMPMC, Sorbonne Universités, UPMC Univ Paris 06, UMR CNRS 7590, Museum National d'Histoire Naturelle, IRD UMR 206, IUC, Case 115, 4 Place Jussieu, 75005, Paris Cedex 05, France
| | - Tounsia Aït-Slimane
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, UMR_S 938, Saint-Antoine Research Center, F-75012, Paris, France
| |
Collapse
|
30
|
Meng X, Wang Y, Wang X, Wrennall JA, Rimington TL, Li H, Cai Z, Ford RC, Sheppard DN. Two Small Molecules Restore Stability to a Subpopulation of the Cystic Fibrosis Transmembrane Conductance Regulator with the Predominant Disease-causing Mutation. J Biol Chem 2017; 292:3706-3719. [PMID: 28087700 PMCID: PMC5339754 DOI: 10.1074/jbc.m116.751537] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 01/12/2017] [Indexed: 12/17/2022] Open
Abstract
Cystic fibrosis (CF) is caused by mutations that disrupt the plasma membrane expression, stability, and function of the cystic fibrosis transmembrane conductance regulator (CFTR) Cl- channel. Two small molecules, the CFTR corrector lumacaftor and the potentiator ivacaftor, are now used clinically to treat CF, although some studies suggest that they have counteracting effects on CFTR stability. Here, we investigated the impact of these compounds on the instability of F508del-CFTR, the most common CF mutation. To study individual CFTR Cl- channels, we performed single-channel recording, whereas to assess entire CFTR populations, we used purified CFTR proteins and macroscopic CFTR Cl- currents. At 37 °C, low temperature-rescued F508del-CFTR more rapidly lost function in cell-free membrane patches and showed altered channel gating and current flow through open channels. Compared with purified wild-type CFTR, the full-length F508del-CFTR was about 10 °C less thermostable. Lumacaftor partially stabilized purified full-length F508del-CFTR and slightly delayed deactivation of individual F508del-CFTR Cl- channels. By contrast, ivacaftor further destabilized full-length F508del-CFTR and accelerated channel deactivation. Chronic (prolonged) co-incubation of F508del-CFTR-expressing cells with lumacaftor and ivacaftor deactivated macroscopic F508del-CFTR Cl- currents. However, at the single-channel level, chronic co-incubation greatly increased F508del-CFTR channel activity and temporal stability in most, but not all, cell-free membrane patches. We conclude that chronic lumacaftor and ivacaftor co-treatment restores stability in a small subpopulation of F508del-CFTR Cl- channels but that the majority remain destabilized. A fuller understanding of these effects and the characterization of the small F508del-CFTR subpopulation might be crucial for CF therapy development.
Collapse
Affiliation(s)
- Xin Meng
- From the Faculty of Biology, Medicine and Health, School of Biological Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PL, United Kingdom and
| | - Yiting Wang
- the School of Physiology, Pharmacology, and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, United Kingdom
| | - Xiaomeng Wang
- From the Faculty of Biology, Medicine and Health, School of Biological Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PL, United Kingdom and
| | - Joe A Wrennall
- the School of Physiology, Pharmacology, and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, United Kingdom
| | - Tracy L Rimington
- From the Faculty of Biology, Medicine and Health, School of Biological Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PL, United Kingdom and
| | - Hongyu Li
- the School of Physiology, Pharmacology, and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, United Kingdom
| | - Zhiwei Cai
- the School of Physiology, Pharmacology, and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, United Kingdom
| | - Robert C Ford
- From the Faculty of Biology, Medicine and Health, School of Biological Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PL, United Kingdom and
| | - David N Sheppard
- the School of Physiology, Pharmacology, and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, United Kingdom
| |
Collapse
|
31
|
Callebaut I, Hoffmann B, Lehn P, Mornon JP. Molecular modelling and molecular dynamics of CFTR. Cell Mol Life Sci 2017; 74:3-22. [PMID: 27717958 PMCID: PMC11107702 DOI: 10.1007/s00018-016-2385-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 09/28/2016] [Indexed: 12/11/2022]
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) protein is a member of the ATP-binding cassette (ABC) transporter superfamily that functions as an ATP-gated channel. Considerable progress has been made over the last years in the understanding of the molecular basis of the CFTR functions, as well as dysfunctions causing the common genetic disease cystic fibrosis (CF). This review provides a global overview of the theoretical studies that have been performed so far, especially molecular modelling and molecular dynamics (MD) simulations. A special emphasis is placed on the CFTR-specific evolution of an ABC transporter framework towards a channel function, as well as on the understanding of the effects of disease-causing mutations and their specific modulation. This in silico work should help structure-based drug discovery and design, with a view to develop CFTR-specific pharmacotherapeutic approaches for the treatment of CF in the context of precision medicine.
Collapse
Affiliation(s)
- Isabelle Callebaut
- UMR CNRS 7590, Museum National d'Histoire Naturelle, IRD UMR 206, IUC, Case 115, IMPMC, Sorbonne Universités, UPMC Univ Paris 06, 4 Place Jussieu, 75005, Paris Cedex 05, France.
| | - Brice Hoffmann
- UMR CNRS 7590, Museum National d'Histoire Naturelle, IRD UMR 206, IUC, Case 115, IMPMC, Sorbonne Universités, UPMC Univ Paris 06, 4 Place Jussieu, 75005, Paris Cedex 05, France
| | - Pierre Lehn
- INSERM U1078, SFR ScInBioS, Université de Bretagne Occidentale, Brest, France
| | - Jean-Paul Mornon
- UMR CNRS 7590, Museum National d'Histoire Naturelle, IRD UMR 206, IUC, Case 115, IMPMC, Sorbonne Universités, UPMC Univ Paris 06, 4 Place Jussieu, 75005, Paris Cedex 05, France
| |
Collapse
|
32
|
Abstract
CFTR protein is an ion channel regulated by cAMP-dependent phosphorylation and expressed in many types of epithelial cells. CFTR-mediated chloride and bicarbonate secretion play an important role in the respiratory and gastrointestinal systems. Pharmacological modulators of CFTR represent promising drugs for a variety of diseases. In particular, correctors and potentiators may restore the activity of CFTR in cystic fibrosis patients. Potentiators are also potentially useful to improve mucociliary clearance in patients with chronic obstructive pulmonary disease. On the other hand, CFTR inhibitors may be useful to block fluid and electrolyte loss in secretory diarrhea and slow down the progression of polycystic kidney disease.
Collapse
Affiliation(s)
- Olga Zegarra-Moran
- U.O.C. Genetica Medica, Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16147, Genoa, Italy
| | - Luis J V Galietta
- U.O.C. Genetica Medica, Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16147, Genoa, Italy.
| |
Collapse
|
33
|
Youn SW, Kim YH. Pd(II)/Ag(I)-Promoted One-Pot Synthesis of Cyclic Ureas from (Hetero)Aromatic Amines and Isocyanates. Org Lett 2016; 18:6140-6143. [DOI: 10.1021/acs.orglett.6b03151] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- So Won Youn
- Center for New Directions
in Organic Synthesis, Department of Chemistry and Institute for Material
Design, Hanyang University, Seoul 04763, Korea
| | - Yi Hyun Kim
- Center for New Directions
in Organic Synthesis, Department of Chemistry and Institute for Material
Design, Hanyang University, Seoul 04763, Korea
| |
Collapse
|
34
|
Schmidt BZ, Haaf JB, Leal T, Noel S. Cystic fibrosis transmembrane conductance regulator modulators in cystic fibrosis: current perspectives. Clin Pharmacol 2016; 8:127-140. [PMID: 27703398 PMCID: PMC5036583 DOI: 10.2147/cpaa.s100759] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Mutations of the CFTR gene cause cystic fibrosis (CF), the most common recessive monogenic disease worldwide. These mutations alter the synthesis, processing, function, or half-life of CFTR, the main chloride channel expressed in the apical membrane of epithelial cells in the airway, intestine, pancreas, and reproductive tract. Lung disease is the most critical manifestation of CF. It is characterized by airway obstruction, infection, and inflammation that lead to fatal tissue destruction. In spite of great advances in early and multidisciplinary medical care, and in our understanding of the pathophysiology, CF is still considerably reducing the life expectancy of patients. This review highlights the current development in pharmacological modulators of CFTR, which aim at rescuing the expression and/or function of mutated CFTR. While only Kalydeco® and Orkambi® are currently available to patients, many other families of CFTR modulators are undergoing preclinical and clinical investigations. Drug repositioning and personalized medicine are particularly detailed in this review as they represent the most promising strategies for restoring CFTR function in CF.
Collapse
Affiliation(s)
- Béla Z Schmidt
- Stem Cell Biology and Embryology, Department of Development and Regeneration, Katholieke Universiteit Leuven, Leuven
| | - Jérémy B Haaf
- Louvain Center for Toxicology and Applied Pharmacology, Université Catholique de Louvain, Brussels, Belgium
| | - Teresinha Leal
- Louvain Center for Toxicology and Applied Pharmacology, Université Catholique de Louvain, Brussels, Belgium
| | - Sabrina Noel
- Louvain Center for Toxicology and Applied Pharmacology, Université Catholique de Louvain, Brussels, Belgium
| |
Collapse
|
35
|
Lin WY, Sohma Y, Hwang TC. Synergistic Potentiation of Cystic Fibrosis Transmembrane Conductance Regulator Gating by Two Chemically Distinct Potentiators, Ivacaftor (VX-770) and 5-Nitro-2-(3-Phenylpropylamino) Benzoate. Mol Pharmacol 2016; 90:275-85. [PMID: 27413118 PMCID: PMC4998663 DOI: 10.1124/mol.116.104570] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 07/12/2016] [Indexed: 01/12/2023] Open
Abstract
Cystic fibrosis (CF) is caused by loss-of-function mutations of the cystic fibrosis transmembrane conductance regulator (CFTR) gene encoding a phosphorylation-activated but ATP-gated chloride channel. Previous studies suggested that VX-770 [ivacaftor, N-(2,4-di-tert-butyl-5-hydroxyphenyl)-4-oxo-1,4-dihydroquinoline-3-carboxamide], a CFTR potentiator now used in clinics, increases the open probability of CFTR by shifting the gating conformational changes to favor the open channel configuration. Recently the chloride channel blocker and CFTR potentiator 5-nitro-2-(3-phenylpropylamino) benzoate (NPPB) has been reported to enhance CFTR activity by a mechanism that exploits the ATP hydrolysis-driven, nonequilibrium gating mechanism unique to CFTR. Surprisingly however, NPPB increased the activity of nonhydrolytic G551D-CFTR, the third most common disease-associated mutation. Here, we further investigated the mechanism of NPPB's effects on CFTR gating by assessing its interaction with well-studied VX-770. Interestingly, once G551D-CFTR was maximally potentiated by VX-770, NPPB further increased its activity. However, quantitative analysis of this drug-drug interaction suggests that this pharmacologic synergism is not due to independent actions of NPPB and VX-770 on CFTR gating; instead, our data support a dependent mechanism involving two distinct binding sites. This latter idea is further supported by the observation that the locked-open time of a hydrolysis-deficient mutant K1250A was shortened by NPPB but prolonged by VX-770. In addition, the effectiveness of NPPB, but not of VX-770, was greatly diminished in a mutant whose second nucleotide-binding domain was completely removed. Interpreting these results under the framework of current understanding of CFTR gating not only reveals insights into the mechanism of action for different CFTR potentiators but also brings us one step forward to a more complete schematic for CFTR gating.
Collapse
Affiliation(s)
- Wen-Ying Lin
- Department of Medical Pharmacology and Physiology, Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (W.-Y.L., T.-C.H.); Department of Pharmacology, School of Medicine, Keio University, Tokyo Japan (Y.S.)
| | - Yoshiro Sohma
- Department of Medical Pharmacology and Physiology, Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (W.-Y.L., T.-C.H.); Department of Pharmacology, School of Medicine, Keio University, Tokyo Japan (Y.S.)
| | - Tzyh-Chang Hwang
- Department of Medical Pharmacology and Physiology, Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (W.-Y.L., T.-C.H.); Department of Pharmacology, School of Medicine, Keio University, Tokyo Japan (Y.S.)
| |
Collapse
|
36
|
Dekkers JF, Van Mourik P, Vonk AM, Kruisselbrink E, Berkers G, de Winter-de Groot KM, Janssens HM, Bronsveld I, van der Ent CK, de Jonge HR, Beekman JM. Potentiator synergy in rectal organoids carrying S1251N, G551D, or F508del CFTR mutations. J Cyst Fibros 2016; 15:568-78. [PMID: 27160424 DOI: 10.1016/j.jcf.2016.04.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 03/21/2016] [Accepted: 04/18/2016] [Indexed: 12/16/2022]
Abstract
The potentiator VX-770 (ivacaftor/KALYDECO™) targets defective gating of CFTR and has been approved for treatment of cystic fibrosis (CF) subjects carrying G551D, S1251N or one of 8 other mutations. Still, the current potentiator treatment does not normalize CFTR-dependent biomarkers, indicating the need for development of more effective potentiator strategies. We have recently pioneered a functional CFTR assay in primary rectal organoids and used this model to characterize interactions between VX-770, genistein and curcumin, the latter 2 being natural food components with established CFTR potentiation capacities. Results indicated that all possible combinations of VX-770, genistein and curcumin synergistically repaired CFTR-dependent forskolin-induced swelling of organoids with CFTR-S1251N or CFTR-G551D, even under suboptimal CFTR activation and compounds concentrations, conditions that may predominate in vivo. Genistein and curcumin also enhanced forskolin-induced swelling of F508del homozygous organoids that were treated with VX-770 and the prototypical CFTR corrector VX-809. These results indicate that VX-770, genistein and curcumin in double or triple combinations can synergize in restoring CFTR-dependent fluid secretion in primary CF cells and support the use of multiple potentiators for treatment of CF.
Collapse
Affiliation(s)
- Johanna F Dekkers
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Centre, Utrecht, The Netherlands; Laboratory of Translational Immunology, Wilhelmina Children's Hospital, University Medical Centre, Utrecht, The Netherlands
| | - Peter Van Mourik
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Centre, Utrecht, The Netherlands; Laboratory of Translational Immunology, Wilhelmina Children's Hospital, University Medical Centre, Utrecht, The Netherlands
| | - Annelotte M Vonk
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Centre, Utrecht, The Netherlands; Laboratory of Translational Immunology, Wilhelmina Children's Hospital, University Medical Centre, Utrecht, The Netherlands
| | - Evelien Kruisselbrink
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Centre, Utrecht, The Netherlands; Laboratory of Translational Immunology, Wilhelmina Children's Hospital, University Medical Centre, Utrecht, The Netherlands
| | - Gitte Berkers
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Centre, Utrecht, The Netherlands
| | - Karin M de Winter-de Groot
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Centre, Utrecht, The Netherlands
| | - Hettie M Janssens
- Department of Pediatric Pulmonology, Erasmus University Medical Centre/Sophia Children's Hospital, Rotterdam, the Netherlands
| | - Inez Bronsveld
- Department of Pulmonology, University Medical Centre, Utrecht, The Netherlands
| | - Cornelis K van der Ent
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Centre, Utrecht, The Netherlands
| | - Hugo R de Jonge
- Department of Gastroenterology and Hepatology, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Jeffrey M Beekman
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Centre, Utrecht, The Netherlands; Laboratory of Translational Immunology, Wilhelmina Children's Hospital, University Medical Centre, Utrecht, The Netherlands
| |
Collapse
|
37
|
Park J, Khloya P, Seo Y, Kumar S, Lee HK, Jeon DK, Jo S, Sharma PK, Namkung W. Potentiation of ΔF508- and G551D-CFTR-Mediated Cl- Current by Novel Hydroxypyrazolines. PLoS One 2016; 11:e0149131. [PMID: 26863533 PMCID: PMC4749168 DOI: 10.1371/journal.pone.0149131] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 01/27/2016] [Indexed: 12/29/2022] Open
Abstract
The most common mutation of CFTR, affecting approximately 90% of CF patients, is a deletion of phenylalanine at position 508 (F508del, ΔF508). Misfolding of ΔF508-CFTR impairs both its trafficking to the plasma membrane and its chloride channel activity. To identify small molecules that can restore channel activity of ΔF508-CFTR, we synthesized and evaluated eighteen novel hydroxypyrazoline analogues as CFTR potentiators. To elucidate potentiation activities of hydroxypyrazolines for ΔF508-CFTR, CFTR activity was measured using a halide-sensitive YFP assay, Ussing chamber assay and patch-clamp technique. Compounds 7p, 7q and 7r exhibited excellent potentiation with EC50 value <10 μM. Among the compounds, 7q (a novel CFTR potentiator, CP7q) showed the highest potentiation activity with EC50 values of 0.88 ± 0.11 and 4.45 ± 0.31 μM for wild-type and ΔF508-CFTR, respectively. In addition, CP7q significantly potentiated chloride conductance of G551D-CFTR, a CFTR gating mutant; its maximal potentiation activity was 1.9 fold higher than the well-known CFTR potentiator genistein. Combination treatment with CP7q and VX-809, a corrector of ΔF508-CFTR, significantly enhanced functional rescue of ΔF508-CFTR compared with VX-809 alone. CP7q did not alter the cytosolic cAMP level and showed no cytotoxicity at the concentration showing maximum efficacy. The hydroxypyrazolines may be potential development candidates for drug therapy of cystic fibrosis.
Collapse
Affiliation(s)
- Jinhong Park
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon 406–840, Korea
- Department of Integrated OMICS for Biomedical Science, WCU Program of Graduate School, Yonsei University, Seoul 120–749, Korea
| | - Poonam Khloya
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana 136119, India
| | - Yohan Seo
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon 406–840, Korea
- Department of Integrated OMICS for Biomedical Science, WCU Program of Graduate School, Yonsei University, Seoul 120–749, Korea
| | - Satish Kumar
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana 136119, India
| | - Ho K. Lee
- Department of Integrated OMICS for Biomedical Science, WCU Program of Graduate School, Yonsei University, Seoul 120–749, Korea
| | - Dong-Kyu Jeon
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon 406–840, Korea
| | - Sungwoo Jo
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon 406–840, Korea
| | - Pawan K. Sharma
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana 136119, India
- * E-mail: (WN); (PKS)
| | - Wan Namkung
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon 406–840, Korea
- Department of Integrated OMICS for Biomedical Science, WCU Program of Graduate School, Yonsei University, Seoul 120–749, Korea
- * E-mail: (WN); (PKS)
| |
Collapse
|
38
|
Cho DY, Skinner D, Zhang S, Fortenberry J, Sorscher EJ, Dean NR, Woodworth BA. Cystic fibrosis transmembrane conductance regulator activation by the solvent ethanol: implications for topical drug delivery. Int Forum Allergy Rhinol 2015; 6:178-84. [PMID: 26869199 DOI: 10.1002/alr.21638] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Revised: 07/28/2015] [Accepted: 08/04/2015] [Indexed: 02/03/2023]
Abstract
BACKGROUND Decreased cystic fibrosis transmembrane conductance regulator (CFTR)-mediated chloride (Cl) secretion across mucosal surfaces contributes to the development of airway disease by depleting airway surface liquid, increasing mucus viscosity and adhesion, and consequently hindering mucociliary clearance. We serendipitously discovered during testing of drugs solubilized in low concentrations ethanol (0.25%, 43 mM) that the control vehicle produced robust activation of CFTR-mediated Cl(-) transport. The objective of the current study is to investigate low concentrations of ethanol for effects on Cl(-) secretion and ciliary beat frequency (CBF). METHODS Wild-type (WT) and transgenic CFTR(-/-) primary murine nasoseptal epithelial (MNSE) cultures and WT and F508del/F508del human sinonasal epithelial (HSNE) cultures were subjected to transepithelial ion transport measurements using pharmacologic manipulation in Ussing chambers. CBF activation was also monitored. Murine nasal potential difference (NPD) was measured in vivo. RESULTS Ussing chamber tracings revealed ethanol activated CFTR-mediated Cl transport in a dose-dependent fashion in WT MNSE (n = 4, p < 0.05) and HSNE (n = 4, p < 0.05). Ethanol also significantly increased CBF (fold change) in WT MNSE cultures in a dose-dependent fashion (phosphate-buffered saline [PBS], 1.33 ± 0.04; 0.25% ethanol, 1.37 ± 0.09; 0.5% ethanol, 1.53 ± 0.06 [p < 0.05]; 1% ethanol, 1.62 ± 0.1 [p < 0.05]). Lack of stimulation in CFTR(-/-) and F508del/F508del cultures indicated activity was dependent on the presence of intact functional CFTR. Ethanol perfusion (0.5%) resulted in a significant -3.5-mV mean NPD polarization when compared to control solution (p < 0.05). CONCLUSION The observation that brief exposure of ethanol stimulated Cl(-) secretion via CFTR-mediated pathways indicates its possible use as topical aerosol delivered alone or in combination with other CFTR activators for diseases of dysfunctional mucociliary clearance (MCC) in chronic rhinosinusitis (CRS).
Collapse
Affiliation(s)
- Do-Yeon Cho
- Division of Otolaryngology-Head and Neck Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL.,Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Birmingham, AL
| | - Daniel Skinner
- Division of Otolaryngology-Head and Neck Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL
| | - Shaoyan Zhang
- Division of Otolaryngology-Head and Neck Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL
| | - James Fortenberry
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Birmingham, AL
| | - Eric J Sorscher
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Birmingham, AL.,Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Birmingham, AL.,Department of Medicine, University of Alabama at Birmingham, Birmingham, Birmingham, AL
| | - Nichole R Dean
- Division of Otolaryngology-Head and Neck Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL
| | - Bradford A Woodworth
- Division of Otolaryngology-Head and Neck Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL.,Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Birmingham, AL
| |
Collapse
|
39
|
Woodworth BA. Resveratrol ameliorates abnormalities of fluid and electrolyte secretion in a hypoxia-Induced model of acquired CFTR deficiency. Laryngoscope 2015; 125 Suppl 7:S1-S13. [PMID: 25946147 DOI: 10.1002/lary.25335] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 03/24/2015] [Indexed: 01/25/2023]
Abstract
OBJECTIVE/HYPOTHESIS Ineffective mucociliary clearance (MCC) is a common pathophysiologic process that underlies airway inflammation and infection. A dominant fluid and electrolyte secretory pathway in the nasal airways is governed by the cystic fibrosis transmembrane conductance regulator (CFTR). Decreased transepithelial Cl(-) transport secondary to an acquired CFTR deficiency may exacerbate respiratory epithelial dysfunction by diminishing MCC and increasing mucus viscosity. The objectives of the present study are to 1) develop a model of acquired CFTR deficiency in sinonasal epithelium using hypoxia, 2) investigate whether the polyphenol resveratrol promotes CFTR-mediated anion transport, 3) explore resveratrol mechanism of action and determine therapeutic suitability for overcoming acquired CFTR defects, and 4) test the drug in the hypoxic model of acquired CFTR deficiency in preparation for a clinical trial in human sinus disease. We hypothesize that hypoxia will induce depletion of airway surface liquid (ASL) secondary to acquired CFTR deficiency and that resveratrol will restore transepithelial Cl(-) secretion and recover ASL hydration. STUDY DESIGN Basic science. METHODS Murine nasal septal (MNSE) and human sinonasal epithelial (HSNE) cultures were incubated under hypoxic conditions (1% O2 , 5% CO2 ) and transepithelial ion transport (change in short-circuit current = ΔISC ) evaluated in Ussing chambers. Resveratrol was tested using primary cells and HEK293 cells expressing human CFTR by Ussing chamber and patch clamp techniques under both phosphorylating and nonphosphorylating conditions. CFTR activation was evaluated in human explants and by murine in vivo (nasal potential difference) assessment. Cellular cyclic adenosine monophosphate (cAMP) (ELISA) and subsequent CFTR regulatory domain (R-D) phosphorylation (gel-shift assay) were also evaluated. Effects of hypoxia and resveratrol on ASL were tested using confocal laser scanning microscopy (CLSM) and micro-optical coherence tomography (µOCT). RESULTS Hypoxia significantly decreased ΔISC (in µA/cm(2) ) attributable to CFTR at 12 and 24 hours of exposure in both MNSE (13.55 ± 0.46 [12 hours]; 12.75 ± 0.07 [24 hours] vs. 19.23 ± 0.18 [control]; P < 0.05) and HSNE (19.55 ± 0.56 [12 hours]; 17.67 ± 1.13 [24 hours] vs. 25.49 ± 1.48 [control]; P < 0.05). We have shown that resveratrol (100 μM) enhanced CFTR-dependent Cl(-) secretion in HSNE to an extent comparable to the recently Food and Drug Administration-approved CFTR potentiator, ivacaftor. Cl(-) transport across human sinonasal explants (78.42 ± 1.75 vs. 1.75 ± 1.5 [control]; P < 0.05) and in vivo murine nasal epithelium (-4 ± 1.8 vs. -0.8 ± 1.7 mV [control]; P < 0.05) were also significantly increased by the drug. No increase in cAMP or CFTR R-D phosphorylation was detected. Inside-out patches showed increased CFTR open probability (NPo/N (N = channel number]) compared to controls in both MNSE (0.329 ± 0.116 vs. 0.119 ± 0.059 [control]; P < 0.05) and HEK293 cells (0.22 ± 0.048 vs. 0.125 ± 0.07 [control]; P < 0.05). ASL thickness was decreased under hypoxic conditions when measured by CLSM (4.19 ± 0.44 vs. 6.88 ± 0.67 [control]; P < 0.05). A 30-minute apical application of resveratrol increased ASL depth in normal epithelium (8.08 ± 1.68 vs. 6.11 ± 0.47 [control]; P < 0.05). Furthermore, hypoxia-induced abnormalities of fluid and electrolyte secretion in sinonasal epithelium were restored with resveratrol treatment (5.55 ± 0.74 vs. 3.13 ± 0.17 [control]; P < 0.05). CONCLUSIONS CFTR activation with a leading edge Cl(-) secretagogue such as resveratrol represents an innovative approach to overcoming acquired CFTR defects in sinus and nasal airway disease. This exciting new strategy bears further testing in non-CF individuals with chronic rhinosinusitis. LEVEL OF EVIDENCE N/A. Laryngoscope, 125:S1-S13, 2015.
Collapse
Affiliation(s)
- Bradford A Woodworth
- Department of Otolaryngology-Head and Neck Surgery, University of Alabama at Birmingham, Birmingham, Alabama, U.S.A
| |
Collapse
|
40
|
Belmonte L, Moran O. On the interactions between nucleotide binding domains and membrane spanning domains in cystic fibrosis transmembrane regulator: A molecular dynamic study. Biochimie 2015; 111:19-29. [DOI: 10.1016/j.biochi.2015.01.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 01/21/2015] [Indexed: 12/20/2022]
|
41
|
Molecular modelling approaches for cystic fibrosis transmembrane conductance regulator studies. Int J Biochem Cell Biol 2014; 52:39-46. [DOI: 10.1016/j.biocel.2014.04.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 04/01/2014] [Accepted: 04/04/2014] [Indexed: 12/30/2022]
|
42
|
Baroni D, Zegarra-Moran O, Svensson A, Moran O. Direct interaction of a CFTR potentiator and a CFTR corrector with phospholipid bilayers. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2014; 43:341-6. [PMID: 24771136 DOI: 10.1007/s00249-014-0956-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 03/27/2014] [Accepted: 03/31/2014] [Indexed: 11/25/2022]
Abstract
Cystic fibrosis transmembrane conductance regulator (CFTR) potentiators and correctors are new drugs that target the basic CFTR protein defect and are expected to benefit cystic fibrosis patients. To optimize the substances so far proposed for human use, and to minimise unwanted side effects, it is essential to investigate possible interactions between the drugs and cell components. We used small-angle X-ray scattering with synchrotron radiation to analyse the effects of two representative drugs, the potentiator VX-770 (Ivacaftor), approved for human use, and the corrector VX-809 (Lumacaftor), on a model phospholipid membrane. By reconstruction of the electron density profile of unilamellar vesicles treated with VX-770 or VX-809 we found that these drugs penetrate the phospholipid bilayer. VX-809 becomes homogeneously distributed throughout the bilayer whereas VX-770 accumulates predominantly in the internal leaflet, behaviour probably favoured by the asymmetry of the bilayer, because of vesicle curvature. Penetration of the bilayer by these drugs, probably as part of the mechanisms of permeation, causes destabilization of the membrane; this must be taken into account during future drug development.
Collapse
Affiliation(s)
- Debora Baroni
- Istituto di Biofisica, CNR, via De Marini, 6, 16149, Genoa, Italy
| | | | | | | |
Collapse
|
43
|
State-dependent blocker interactions with the CFTR chloride channel: implications for gating the pore. Pflugers Arch 2014; 466:2243-55. [DOI: 10.1007/s00424-014-1501-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 03/10/2014] [Accepted: 03/11/2014] [Indexed: 02/06/2023]
|
44
|
On the structural organization of the intracellular domains of CFTR. Int J Biochem Cell Biol 2014; 52:7-14. [PMID: 24513531 DOI: 10.1016/j.biocel.2014.01.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 01/17/2014] [Accepted: 01/21/2014] [Indexed: 12/17/2022]
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) is a multidomain membrane protein forming an anion selective channel. Mutations in the gene encoding CFTR cause cystic fibrosis (CF). The intracellular side of CFTR constitutes about 80% of the total mass of the protein. This region includes domains involved in ATP-dependent gating and regulatory protein kinase-A phosphorylation sites. The high-resolution molecular structure of CFTR has not yet been solved. However, a range of lower resolution structural data, as well as functional biochemical and electrophysiological data, are now available. This information has enabled the proposition of a working model for the structural architecture of the intracellular domains of the CFTR protein.
Collapse
|
45
|
Odolczyk N, Fritsch J, Norez C, Servel N, da Cunha MF, Bitam S, Kupniewska A, Wiszniewski L, Colas J, Tarnowski K, Tondelier D, Roldan A, Saussereau EL, Melin-Heschel P, Wieczorek G, Lukacs GL, Dadlez M, Faure G, Herrmann H, Ollero M, Becq F, Zielenkiewicz P, Edelman A. Discovery of novel potent ΔF508-CFTR correctors that target the nucleotide binding domain. EMBO Mol Med 2013; 5:1484-501. [PMID: 23982976 PMCID: PMC3799575 DOI: 10.1002/emmm.201302699] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 07/18/2013] [Accepted: 07/19/2013] [Indexed: 12/16/2022] Open
Abstract
The deletion of Phe508 (ΔF508) in the first nucleotide binding domain (NBD1) of CFTR is the most common mutation associated with cystic fibrosis. The ΔF508-CFTR mutant is recognized as improperly folded and targeted for proteasomal degradation. Based on molecular dynamics simulation results, we hypothesized that interaction between ΔF508-NBD1 and housekeeping proteins prevents ΔF508-CFTR delivery to the plasma membrane. Based on this assumption we applied structure-based virtual screening to identify new low-molecular-weight compounds that should bind to ΔF508-NBD1 and act as protein–protein interaction inhibitors. Using different functional assays for CFTR activity, we demonstrated that in silico-selected compounds induced functional expression of ΔF508-CFTR in transfected HeLa cells, human bronchial CF cells in primary culture, and in the nasal epithelium of homozygous ΔF508-CFTR mice. The proposed compounds disrupt keratin8-ΔF508-CFTR interaction in ΔF508-CFTR HeLa cells. Structural analysis of ΔF508-NBD1 in the presence of these compounds suggests their binding to NBD1. We conclude that our strategy leads to the discovery of new compounds that are among the most potent correctors of ΔF508-CFTR trafficking defect known to date.
Collapse
Affiliation(s)
- Norbert Odolczyk
- Department of Bioinformatics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warszawa, Poland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Li MS, Cowley EA, Linsdell P. Pseudohalide anions reveal a novel extracellular site for potentiators to increase CFTR function. Br J Pharmacol 2013; 167:1062-75. [PMID: 22612315 DOI: 10.1111/j.1476-5381.2012.02041.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND AND PURPOSE There is great interest in the development of potentiator drugs to increase the activity of the cystic fibrosis transmembrane conductance regulator (CFTR) in cystic fibrosis. We tested the ability of several anions to potentiate CFTR activity by a novel mechanism. EXPERIMENTAL APPROACH Patch clamp recordings were used to investigate the ability of extracellular pseudohalide anions (Co(CN)(6) (3-) , Co(NO(2) )(6) (3-) , Fe(CN)(6) (3-) , IrCl(6) (3-) , Fe(CN)(6) (4-) ) to increase the macroscopic conductance of mutant CFTR in intact cells via interactions with cytoplasmic blocking anions. Mutagenesis of CFTR was used to identify a possible molecular mechanism of action. Transepithelial short-circuit current recordings from human airway epithelial cells were used to determine effects on net anion secretion. KEY RESULTS Extracellular pseudohalide anions were able to increase CFTR conductance in intact cells, as well as increase anion secretion in airway epithelial cells. This effect appears to reflect the interaction of these substances with a site on the extracellular face of the CFTR protein. CONCLUSIONS AND IMPLICATIONS Our results identify pseudohalide anions as increasing CFTR function by a previously undescribed molecular mechanism that involves an interaction with an extracellular site on the CFTR protein. Future drugs could utilize this mechanism to increase CFTR activity in cystic fibrosis, possibly in conjunction with known intracellularly-active potentiators.
Collapse
Affiliation(s)
- Man-Song Li
- Department of Physiology & Biophysics, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | | |
Collapse
|
47
|
Galfrè E, Galeno L, Moran O. A potentiator induces conformational changes on the recombinant CFTR nucleotide binding domains in solution. Cell Mol Life Sci 2012; 69:3701-13. [PMID: 22752155 PMCID: PMC11114511 DOI: 10.1007/s00018-012-1049-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 05/14/2012] [Accepted: 05/30/2012] [Indexed: 01/23/2023]
Abstract
Nucleotide binding domains (NBD1 and NBD2) of the cystic fibrosis transmembrane conductance regulator (CFTR), the defective protein in cystic fibrosis, are responsible for controlling the gating of the chloride channel and are the putative binding sites for several candidate drugs in the disease treatment. We studied the effects of the application of 2-pyrimidin-7,8-benzoflavone (PBF), a strong potentiator of the CFTR, on the properties of recombinant and equimolar NBD1/NBD2 mixture in solution. The results indicate that the potentiator induces significant conformational changes of the NBD1/NBD2 dimer in solution. The potentiator does not modify the ATP binding constant, but reduces the ATP hydrolysis activity of the NBD1/NBD2 mixture. The intrinsic fluorescence and the guanidinium denaturation measurements indicate that the potentiator induces different conformational changes on the NBD1/NBD2 mixture in the presence and absence of ATP. It was confirmed from small-angle X-ray scattering experiments that, in absence of ATP, the NBD1/NBD2 dimer was disrupted by the potentiator, but in the presence of 2 mM ATP, the two NBDs kept dimerised, and a major change in the size and the shape of the structure was observed. We propose that these conformational changes could modify the NBDs-intracellular loop interaction in a way that would facilitate the open state of the channel.
Collapse
Affiliation(s)
- Elena Galfrè
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Via De Marini, 6, 16149 Genoa, Italy
| | - Lauretta Galeno
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Via De Marini, 6, 16149 Genoa, Italy
| | - Oscar Moran
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Via De Marini, 6, 16149 Genoa, Italy
| |
Collapse
|
48
|
Giampieri M, Vanthuyne N, Nieddu E, Mazzei MT, Anzaldi M, Pedemonte N, Galietta LJV, Roussel C, Mazzei M. Asymmetric 4-aryl-1,4-dihydropyridines potentiate mutant cystic fibrosis transmembrane conductance regulator (CFTR). ChemMedChem 2012; 7:1799-807. [PMID: 22927224 DOI: 10.1002/cmdc.201200311] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Indexed: 11/07/2022]
Abstract
Some of the genetic mutations that cause cystic fibrosis (CF) impair the gating of the cystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) ion channel. This defect can be corrected with pharmacological tools (potentiators) that belong to various chemical families, including the 1,4-dihydropyridines (DHPs). A small set of asymmetric 4-aryl-DHPs was synthesized, and each racemic couple was tested in a functional assay carried out on cells expressing the G1349D, ΔF508, and G551D mutants. The most active racemates were subjected to chiral separation by HPLC, and the pure enantiomers were tested to evaluate any gains in activity. Although three enantiomers demonstrated high potency (K(d) values less than 0.09, 0.1, and 0.5 μM in G1349D, ΔF508, and G551D, respectively), in general, the screening of pure enantiomers did not produce a great diversity in potency values. It is probable that the degree of DHP asymmetry considered in our analysis is still insufficient with respect to that allowed in a putative DHP binding site in CFTR, so that the site could equally accommodate both enantiomers.
Collapse
Affiliation(s)
- Michele Giampieri
- Department of Pharmacy, University of Genova, Viale Benedetto XV, 3, 16132 Genova, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Ivacaftor potentiation of multiple CFTR channels with gating mutations. J Cyst Fibros 2012; 11:237-45. [DOI: 10.1016/j.jcf.2011.12.005] [Citation(s) in RCA: 312] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Revised: 12/21/2011] [Accepted: 12/27/2011] [Indexed: 01/09/2023]
|
50
|
Sheppard DN. CFTR channel pharmacology: insight from a flock of clones. Focus on "Divergent CFTR orthologs respond differently to the channel inhibitors CFTRinh-172, glibenclamide, and GlyH-101". Am J Physiol Cell Physiol 2011; 302:C24-6. [PMID: 21998142 DOI: 10.1152/ajpcell.00376.2011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|