1
|
Barros MJ, Acuña LG, Hernández-Vera F, Vásquez-Arriagada P, Peñaloza D, Moya-Beltrán A, Cabezas-Mera F, Parra F, Gil F, Fuentes JA, Calderón IL. The RNA Chaperone Hfq and Small Non-Coding RNAs Modulate the Biofilm Formation of the Fish Pathogen Yersinia ruckeri. Int J Mol Sci 2025; 26:4733. [PMID: 40429875 PMCID: PMC12112432 DOI: 10.3390/ijms26104733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2025] [Revised: 05/11/2025] [Accepted: 05/12/2025] [Indexed: 05/29/2025] Open
Abstract
The fish pathogen Yersinia ruckeri forms biofilms on abiotic surfaces, contributing to recurrent infections in aquaculture. Increasing evidence suggests that the RNA chaperone Hfq and small non-coding RNAs (sRNAs) are key regulators of bacterial biofilm formation. However, the regulatory mechanisms mediated by these factors remain largely unexplored in Y. ruckeri. In this study, we investigated the roles of Hfq and the Hfq-dependent sRNAs RprA, ArcZ, and RybB in the biofilm formation of Y. ruckeri. We first characterized the sRNAome of biofilm-forming cells, identifying the conserved RprA, ArcZ, and RybB, among the upregulated sRNAs. We then evaluated motility, biofilm formation, and architecture in strains lacking either hfq (Δhfq) or these sRNAs (ΔsRNA). Our results reveal that both Δhfq and ΔsRNA strains exhibit significant alterations in biofilm and motility phenotypes, including changes in bacterial morphology and extracellular matrix. Furthermore, expression analyses indicate that these sRNAs modulate the transcription of key regulatory factors, flagellar and phosphodiesterase genes, ultimately influencing intracellular cyclic di-GMP levels, a key second messenger in biofilm formation. Together, our findings demonstrate that Hfq and its associated sRNAs play critical regulatory roles in Y. ruckeri biofilm formation by controlling the expression of genes involved in motility, bacterial envelope proteins, and c-di-GMP metabolism.
Collapse
Affiliation(s)
- María J. Barros
- Laboratorio de RNAs Bacterianos, Centro de Investigación de Resiliencia a Pandemias, Universidad Andres Bello, Santiago 8370186, Chile; (M.J.B.); (F.H.-V.); (P.V.-A.); (D.P.)
| | - Lillian G. Acuña
- Laboratorio de RNAs Bacterianos, Departamento de Ciencias Biológicas, Universidad Andres Bello, Santiago 8370186, Chile;
| | - Felipe Hernández-Vera
- Laboratorio de RNAs Bacterianos, Centro de Investigación de Resiliencia a Pandemias, Universidad Andres Bello, Santiago 8370186, Chile; (M.J.B.); (F.H.-V.); (P.V.-A.); (D.P.)
| | - Pía Vásquez-Arriagada
- Laboratorio de RNAs Bacterianos, Centro de Investigación de Resiliencia a Pandemias, Universidad Andres Bello, Santiago 8370186, Chile; (M.J.B.); (F.H.-V.); (P.V.-A.); (D.P.)
| | - Diego Peñaloza
- Laboratorio de RNAs Bacterianos, Centro de Investigación de Resiliencia a Pandemias, Universidad Andres Bello, Santiago 8370186, Chile; (M.J.B.); (F.H.-V.); (P.V.-A.); (D.P.)
- Doctorado en Biotecnología, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370186, Chile;
| | - Ana Moya-Beltrán
- Departamento de Informática y Computación, Facultad de Ingeniería, Universidad Tecnológica Metropolitana, Santiago 7800002, Chile;
| | - Fausto Cabezas-Mera
- Programa de Doctorado en Informática Aplicada a Salud y Medio Ambiente, Escuela de Postgrado, Universidad Tecnológica Metropolitana, Santiago 8330300, Chile;
| | - Francisco Parra
- Doctorado en Biotecnología, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370186, Chile;
- Laboratorio de Genética y Patogénesis Bacteriana, Centro de Investigación de Resiliencia a Pandemias, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370186, Chile
| | - Fernando Gil
- Microbiota-Host Interactions & Clostridia Research Group, Center for Biomedical Research and Innovation (CIIB), Universidad de los Andes, Santiago 7620001, Chile;
- School of Medicine, Faculty of Medicine, Universidad de los Andes, Santiago 7620001, Chile
| | - Juan A. Fuentes
- Laboratorio de Genética y Patogénesis Bacteriana, Centro de Investigación de Resiliencia a Pandemias, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370186, Chile
| | - Iván L. Calderón
- Laboratorio de RNAs Bacterianos, Centro de Investigación de Resiliencia a Pandemias, Universidad Andres Bello, Santiago 8370186, Chile; (M.J.B.); (F.H.-V.); (P.V.-A.); (D.P.)
| |
Collapse
|
2
|
Recinella L, Pinti M, Di Lodovico S, Brenciani A, Giovanetti E, Diban F, Di Giulio M, Brunetti L, Leone S. A New Bromelain-Based Polyenzymatic Complex Plus N-Acetylcysteine: A Promising Approach for the Treatment of Urinary Tract Infections. Int J Mol Sci 2025; 26:4639. [PMID: 40429784 PMCID: PMC12111221 DOI: 10.3390/ijms26104639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Revised: 05/09/2025] [Accepted: 05/11/2025] [Indexed: 05/29/2025] Open
Abstract
Biofilm plays a crucial role in the pathogenesis and chronicity of urinary tract infections (UTIs). The present work aimed to evaluate the anti-biofilm effects of Formulation (DIF17BRO® plus NAC) in combination with ciprofloxacin (CPX) on Escherichia coli strains. The antimicrobial activity of ciprofloxacin was evaluated by minimum inhibitory concentration (MIC) determination, and the antibiofilm effects of ciprofloxacin alone and combined with Formulation were evaluated on E. coli ATCC700926, E. coli ATCC10536, E. coli PNT, and E. coli PCA mature biofilms in terms of CFU/mL and biomass quantifications. Moreover, the potential protective effects of Formulation plus ciprofloxacin was tested in a Galleria mellonella in vivo infection assay. Our results underlined the increased microbial reduction in the mature biofilm in the presence of the combination Formulation and CPX, even at a lower concentration of CPX. Formulation increased the percentage of biofilm biomass reduction, inducing a disruption of the biofilm structure itself. Our present findings confirm that MIC CPX combined with Formulation also induced an antimicrobial effect in the G. mellonella assay. Formulation facilitated the perturbation of the biofilm polymeric matrix, enhancing the antibiotic penetration and its antimicrobial action on bacteria, underlining Formulation's role as an enhancer of ciprofloxacin antibacterial action.
Collapse
Affiliation(s)
- Lucia Recinella
- Department of Pharmacy, “G. d’Annunzio” University, 66100 Chieti, Italy; (L.R.); (M.P.); (S.D.L.); (F.D.); (S.L.)
| | - Morena Pinti
- Department of Pharmacy, “G. d’Annunzio” University, 66100 Chieti, Italy; (L.R.); (M.P.); (S.D.L.); (F.D.); (S.L.)
| | - Silvia Di Lodovico
- Department of Pharmacy, “G. d’Annunzio” University, 66100 Chieti, Italy; (L.R.); (M.P.); (S.D.L.); (F.D.); (S.L.)
| | - Andrea Brenciani
- Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, 60020 Ancona, Italy;
| | - Eleonora Giovanetti
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy;
| | - Firas Diban
- Department of Pharmacy, “G. d’Annunzio” University, 66100 Chieti, Italy; (L.R.); (M.P.); (S.D.L.); (F.D.); (S.L.)
| | - Mara Di Giulio
- Department of Pharmacy, “G. d’Annunzio” University, 66100 Chieti, Italy; (L.R.); (M.P.); (S.D.L.); (F.D.); (S.L.)
| | - Luigi Brunetti
- Department of Pharmacy, “G. d’Annunzio” University, 66100 Chieti, Italy; (L.R.); (M.P.); (S.D.L.); (F.D.); (S.L.)
| | - Sheila Leone
- Department of Pharmacy, “G. d’Annunzio” University, 66100 Chieti, Italy; (L.R.); (M.P.); (S.D.L.); (F.D.); (S.L.)
| |
Collapse
|
3
|
Merino LE, Llana MN, Garófalo A, Trejo FM, Golowczyc MA. Antibiofilm properties of lactic acid bacteria and their metabolites against Salmonella enterica serotype Enteritidis on eggshell surface. CURRENT RESEARCH IN MICROBIAL SCIENCES 2025; 8:100384. [PMID: 40255247 PMCID: PMC12008649 DOI: 10.1016/j.crmicr.2025.100384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2025] Open
Abstract
Salmonella enteritidis (SE) is a pathogenic bacterium commonly found on the surface of eggshells. In this study, we investigated the biofilm formation of a specific strain of S. enteritidis, CIDCA 115 (SE 115) on eggshells. Additionally, we examined the impact of Lentilactobacillus kefiri strains 83113 and 8321, as well as Lactiplantibacillus plantarum 83114, and their metabolites present in the supernatant on the biofilm formation of SE 115. Scanning electron microscopy revealed that SE 115 formed a mature biofilm structure on the eggshell. During co-incubation and pre-incubation, lactic acid bacteria strains significantly reduced the formation of SE 115 biofilm (p < 0.05 and p < 0.01, respectively) compared to SE 115 grown alone. The cell-free supernatants of lactic acid bacteria also exhibited a reduction in SE 115 biofilm formation and modified its structure. Co-incubation with SE 115 induced alterations in the composition of biofilm matrix components, notably in the levels of fimbria curli and cellulose. The qPCR analysis revealed that, after 48 h of incubation, the expression of the csgD gene, a critical regulator of biofilm formation, remained unchanged compared to planktonic cells. However, genes associated with the production of biofilm matrix components, curli (csgA) and cellulose (bcsA), exhibited heightened expression in the presence of lactic acid bacteria compared to the planktonic state. This study highlights the potential of lactic acid bacteria strains and their metabolites as innovative strategies for managing Salmonella biofilm formation in the context of poultry production.
Collapse
Affiliation(s)
- Lina E. Merino
- Universidad Nacional de Hurlingham, Av. Gdor. Vergara 2222, Hurlingham, Buenos Aires, B1688GEZ, Argentina
- Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CICPBA), Argentina
| | - Mariángeles Noto Llana
- Instituto de investigaciones en Microbiología y Parasitología Médica (IMPaM), Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Buenos Aires, Argentina
- Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Ailín Garófalo
- Instituto de investigaciones en Microbiología y Parasitología Médica (IMPaM), Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Fernando M. Trejo
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA, CONICET-CICPBA-UNLP), Facultad de Ciencias Exactas, UNLP, 47 y 116, La Plata, 1900, Argentina
- Universidad Nacional Arturo Jauretche - UNAJ, Av. Calchaquí 6200 (1888), Florencio Varela, Argentina
| | - Marina A. Golowczyc
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA, CONICET-CICPBA-UNLP), Facultad de Ciencias Exactas, UNLP, 47 y 116, La Plata, 1900, Argentina
| |
Collapse
|
4
|
Bergman S, Birk C, Holmqvist E. ProQ prevents mRNA degradation through inhibition of poly(A) polymerase. Nucleic Acids Res 2025; 53:gkaf103. [PMID: 40036335 PMCID: PMC12086684 DOI: 10.1093/nar/gkaf103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/29/2025] [Accepted: 02/09/2025] [Indexed: 03/06/2025] Open
Abstract
The RNA-binding protein ProQ interacts with many transcripts in the bacterial cell. ProQ binding is associated with increased messenger RNA (mRNA) levels, but a mechanistic explanation for this effect has been lacking. In Salmonella Typhimurium, ProQ affects key traits associated with infection, including motility and intracellular survival. However, the direct links between ProQ activity and these phenotypes are not well understood. Here, we demonstrate that ProQ promotes biofilm formation, another virulence-associated phenotype. This effect is strictly dependent on sigma factor RpoS. ProQ increases both RpoS protein and rpoS mRNA levels, but neither affects rpoS transcription nor translation. The rpoS mRNA is a ProQ target, and expression of the rpoS 3'UTR alone is strongly dependent on ProQ. RpoS expression becomes independent of ProQ in strains lacking poly(A) polymerase I (PAPI), indicating that ProQ protects against 3' end-dependent decay. Indeed, purified ProQ inhibits PAPI-mediated polyadenylation at RNA 3' ends. Finally, PAPI is required for ProQ's effect on expression of genes involved in biofilm, motility, osmotic stress, and virulence, indicating that inhibition of polyadenylation is a general function of ProQ.
Collapse
Affiliation(s)
- Sofia Bergman
- Department of Cell and Molecular Biology, Biomedical Centre, Uppsala University, 75124 Uppsala, Sweden
| | | | - Erik Holmqvist
- Department of Cell and Molecular Biology, Biomedical Centre, Uppsala University, 75124 Uppsala, Sweden
| |
Collapse
|
5
|
Chen K, Li L, Wang N, Zhou Z, Pan P, Xu C, Sun D, Li J, Dai C, Kuang D, Liao M, Zhang J. Newly identified c-di-GMP pathway putative EAL domain gene STM0343 regulates stress resistance and virulence in Salmonella enterica serovar Typhimurium. Vet Res 2025; 56:13. [PMID: 39815376 PMCID: PMC11737180 DOI: 10.1186/s13567-024-01437-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 10/14/2024] [Indexed: 01/18/2025] Open
Abstract
S. Typhimurium is a significant zoonotic pathogen, and its survival and transmission rely on stress resistance and virulence factors. Therefore, identifying key regulatory elements is crucial for preventing and controlling S. Typhimurium. We performed transcriptomic analysis and screened for a c-di-GMP pathway key gene STM0343, a putative EAL domain protein with an unknown function. Our findings revealed that the deletion of this gene (269ΔSTM0343) led to a 29.85% increase in c-di-GMP. In terms of stress resistance, the strain 269ΔSTM0343 showed significant improvements compared to the wild strain WT269. Specifically, it exhibited increases of 95.74% in extracellular protein and 35.96% in exopolysaccharide production by upregulating the expression of relevant genes. As a result, the biofilm formation ability of 269ΔSTM0343 was enhanced by 21.54%, accompanied by a more pronounced red, dry, and rough colony morphology. 269ΔSTM0343 also showed a 19.03% decrease in motility due to the downregulation of flhD expression. As a result, 269ΔSTM0343 increased resistance to various antibiotics, as well as to acidic conditions, oxidative stress, and disinfectants. In terms of virulence, compared to WT269, the adhesion and invasive ability of 269ΔSTM0343 to HeLa cells was enhanced by onefold and 25.67%, respectively. In in vivo experiments, mice challenged with 269ΔSTM0343 experienced greater weight loss, and the bacterial loads in the spleen, liver, and intestines were elevated by fivefold, 30-fold, and 21-fold, respectively, accompanied by more severe pathological damage. Mechanistic studies revealed that the adhesion and invasion capacities of 269ΔSTM0343ΔCsgB decreased by 29.41% and 68.58%, respectively, compared to 269ΔSTM0343. Additionally, LacZ gene reporting indicated that STM0343 inhibited the expression of CsgB. This suggests that STM0343 suppresses virulence by downregulating CsgB expression. This study provides insights into the regulatory mechanisms by which STM0343 reduces the stress resistance and pathogenicity of S. Typhimurium.
Collapse
Affiliation(s)
- Kaifeng Chen
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Key Laboratory of Zoonoses, Ministry of Agriculture, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Lili Li
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Key Laboratory of Zoonoses, Ministry of Agriculture, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Nanwei Wang
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Key Laboratory of Zoonoses, Ministry of Agriculture, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Zhouping Zhou
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Key Laboratory of Zoonoses, Ministry of Agriculture, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Peng Pan
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Key Laboratory of Zoonoses, Ministry of Agriculture, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Chenggang Xu
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Key Laboratory of Zoonoses, Ministry of Agriculture, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Dage Sun
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Key Laboratory of Zoonoses, Ministry of Agriculture, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Jiayi Li
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Key Laboratory of Zoonoses, Ministry of Agriculture, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Changzhi Dai
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Key Laboratory of Zoonoses, Ministry of Agriculture, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Dai Kuang
- National Health Commission (NHC) Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou, China
| | - Ming Liao
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Key Laboratory of Zoonoses, Ministry of Agriculture, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Jianmin Zhang
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Key Laboratory of Zoonoses, Ministry of Agriculture, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
6
|
Zhang T, Ray S, Melican K, Richter-Dahlfors A. The maturation of native uropathogenic Escherichia coli biofilms seen through a non-interventional lens. Biofilm 2024; 8:100212. [PMID: 39114648 PMCID: PMC11305213 DOI: 10.1016/j.bioflm.2024.100212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/03/2024] [Accepted: 07/03/2024] [Indexed: 08/10/2024] Open
Abstract
Urinary tract infections (UTI) caused by uropathogenic Escherichia coli (UPEC) are a significant global health challenge. The UPEC biofilm lifestyle is believed to play an important role in infection recurrency and treatment resistance, but our understanding of how the extracellular matrix (ECM) components curli and cellulose contribute to biofilm formation and pathogenicity is limited. Here, we study the spatial and temporal development of native UPEC biofilm using agar-based detection methods where the non-toxic, optically active fluorescent tracer EbbaBiolight 680 reports the expression and structural location of curli in real-time. An in vitro screen of the biofilm capacity of common UPEC strains reveals significant strain variability and identifies UPEC No. 12 (UPEC12) as a strong biofilm former at 28 °C and 37 °C. Non-interventional microscopy, including time-lapse and 2-photon, reveal significant horizontal and vertical heterogeneity in the UPEC12 biofilm structure. We identify region-specific expression of curli, with a shift in localization from the bottom of the flat central regions of the biofilm to the upper surface in the topographically dramatic intermediate region. When investigating if the rdar morphotype affects wettability of the biofilm surface, we found that the nano-architecture of curli guided by cellulose, rather than the rdar macrostructures, leads to increased hydrophobicity of the biofilm. By providing new insights at exceptional temporal and spatial resolution, we demonstrate how non-interventional analysis of native biofilms will facilitate the next generation of understanding into the roles of ECM components during growth of UPEC biofilms and their contribution to the pathogenesis of UTI.
Collapse
Affiliation(s)
- Tianqi Zhang
- AIMES-Center for the Advancement of Integrated Medical and Engineering Sciences, Karolinska Institutet and KTH Royal Institute of Technology, SE-171 77, Stockholm, Sweden
- Department of Neuroscience, Karolinska Institutet, SE-171 77, Stockholm, Sweden
| | - Sanhita Ray
- AIMES-Center for the Advancement of Integrated Medical and Engineering Sciences, Karolinska Institutet and KTH Royal Institute of Technology, SE-171 77, Stockholm, Sweden
- Department of Neuroscience, Karolinska Institutet, SE-171 77, Stockholm, Sweden
| | - Keira Melican
- AIMES-Center for the Advancement of Integrated Medical and Engineering Sciences, Karolinska Institutet and KTH Royal Institute of Technology, SE-171 77, Stockholm, Sweden
- Department of Neuroscience, Karolinska Institutet, SE-171 77, Stockholm, Sweden
| | - Agneta Richter-Dahlfors
- AIMES-Center for the Advancement of Integrated Medical and Engineering Sciences, Karolinska Institutet and KTH Royal Institute of Technology, SE-171 77, Stockholm, Sweden
- Department of Neuroscience, Karolinska Institutet, SE-171 77, Stockholm, Sweden
| |
Collapse
|
7
|
Dubois Q, Brual T, Oriol C, Mandin P, Condemine G, Gueguen E. Function and mechanism of action of the small regulatory RNA ArcZ in Enterobacterales. RNA (NEW YORK, N.Y.) 2024; 30:1107-1121. [PMID: 38839110 PMCID: PMC11331407 DOI: 10.1261/rna.080010.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 05/15/2024] [Indexed: 06/07/2024]
Abstract
ArcZ is a small regulatory RNA conserved in Enterobacterales It is an Hfq-dependent RNA that is cleaved by RNase E in a processed form of 55-60 nucleotides. This processed form is highly conserved for controlling the expression of target mRNAs. ArcZ expression is induced by abundant oxygen levels and reaches its peak during the stationary growth phase. This control is mediated by the oxygen-responsive two-component system ArcAB, leading to the repression of arcZ transcription under low-oxygen conditions in most bacteria in which it has been studied. ArcZ displays multiple targets, and it can control up to 10% of a genome and interact directly with more than 300 mRNAs in Escherichia coli and Salmonella enterica ArcZ displays a multifaceted ability to regulate its targets through diverse mechanisms such as RNase recruitment, modulation of ribosome accessibility on the mRNA, and interaction with translational enhancing regions. By influencing stress response, motility, and virulence through the regulation of master regulators such as FlhDC or RpoS, ArcZ emerges as a major orchestrator of cell physiology within Enterobacterales.
Collapse
Affiliation(s)
- Quentin Dubois
- Université Lyon, Université Claude Bernard Lyon 1, CNRS, INSA Lyon, UMR5240 MAP Lyon, France
| | - Typhaine Brual
- Université Lyon, Université Claude Bernard Lyon 1, CNRS, INSA Lyon, UMR5240 MAP Lyon, France
| | - Charlotte Oriol
- CNRS, Aix-Marseille Université, Laboratoire de Chimie Bactérienne, UMR7283, IMM, IM2B, F-13009 Marseille, France
| | - Pierre Mandin
- CNRS, Aix-Marseille Université, Laboratoire de Chimie Bactérienne, UMR7283, IMM, IM2B, F-13009 Marseille, France
| | - Guy Condemine
- Université Lyon, Université Claude Bernard Lyon 1, CNRS, INSA Lyon, UMR5240 MAP Lyon, France
| | - Erwan Gueguen
- Université Lyon, Université Claude Bernard Lyon 1, CNRS, INSA Lyon, UMR5240 MAP Lyon, France
| |
Collapse
|
8
|
Ray S, Löffler S, Richter‐Dahlfors A. High-Resolution Large-Area Image Analysis Deciphers the Distribution of Salmonella Cells and ECM Components in Biofilms Formed on Charged PEDOT:PSS Surfaces. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307322. [PMID: 38225703 PMCID: PMC11251553 DOI: 10.1002/advs.202307322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/12/2023] [Indexed: 01/17/2024]
Abstract
Biofilms, comprised of cells embedded in extracellular matrix (ECM), enable bacterial surface colonization and contribute to pathogenesis and biofouling. Yet, antibacterial surfaces are mainly evaluated for their effect on bacterial cells rather than the ECM. Here, a method is presented to separately quantify amounts and distribution of cells and ECM in Salmonella biofilms grown on electroactive poly(3,4-ethylenedioxythiophene):polystyrenesulfonate (PEDOT:PSS). Within a custom-designed biofilm reactor, biofilm forms on PEDOT:PSS surfaces electrically addressed with a bias potential and simultaneous recording of the resulting current. The amount and distribution of cells and ECM in biofilms are analyzed using a fluorescence-based spectroscopic mapping technique and fluorescence confocal microscopy combined with advanced image processing. The study shows that surface charge leads to upregulated ECM production, leaving the cell counts largely unaffected. An altered texture is also observed, with biofilms forming small foci or more continuous structures. Supported by mutants lacking ECM production, ECM is identified as an important target when developing antibacterial strategies. Also, a central role for biofilm distribution is highlighted that likely influences antimicrobial susceptibility in biofilms. This work provides yet a link between conductive polymer materials and bacterial metabolism and reveals for the first time a specific effect of electrochemical addressing on bacterial ECM formation.
Collapse
Affiliation(s)
- Sanhita Ray
- AIMES – Center for the Advancement of Integrated Medical and Engineering Sciences at Karolinska Institutet and KTH Royal Institute of TechnologyStockholmSE‐171 77Sweden
- Department of NeuroscienceKarolinska InstitutetStockholmSE‐171 77Sweden
| | - Susanne Löffler
- AIMES – Center for the Advancement of Integrated Medical and Engineering Sciences at Karolinska Institutet and KTH Royal Institute of TechnologyStockholmSE‐171 77Sweden
- Department of NeuroscienceKarolinska InstitutetStockholmSE‐171 77Sweden
| | - Agneta Richter‐Dahlfors
- AIMES – Center for the Advancement of Integrated Medical and Engineering Sciences at Karolinska Institutet and KTH Royal Institute of TechnologyStockholmSE‐171 77Sweden
- Department of NeuroscienceKarolinska InstitutetStockholmSE‐171 77Sweden
| |
Collapse
|
9
|
Musa L, Toppi V, Stefanetti V, Spata N, Rapi MC, Grilli G, Addis MF, Di Giacinto G, Franciosini MP, Casagrande Proietti P. High Biofilm-Forming Multidrug-Resistant Salmonella Infantis Strains from the Poultry Production Chain. Antibiotics (Basel) 2024; 13:595. [PMID: 39061277 PMCID: PMC11273867 DOI: 10.3390/antibiotics13070595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
The ability of Salmonella species to adhere to surfaces and form biofilms, leading to persistent environmental reservoirs, might represent a direct link between environmental contamination and food processing contamination. The purpose of this study was to investigate the biofilm-forming ability of 80 multidrug-resistant (MDR) and extended-spectrum beta-lactamase (ESBL) producing Salmonella enterica serovar Infantis strains isolated from the broiler food chain production through whole genome sequencing (WGS), PCR, and morphotype association assays. Biofilm formation was quantified by testing the strains at two different temperatures, using 96-well polystyrene plates. The rough and dry colony (rdar) morphotype was assessed visually on Congo red agar (CRA) plates. Based on our results, all tested S. Infantis strains produced biofilm at 22 °C with an rdar morphotype, while at 37 °C, all the isolates tested negative, except one positive. Most isolates (58.75%) exhibited strong biofilm production, while 36.25% showed moderate production. Only 5 out of 80 (6.25%) were weak biofilm producers. WGS analysis showed the presence of the fim cluster (fimADF) and the csg cluster (csgBAC and csgDEFG), also described in S. Typhimurium, which are responsible for fimbriae production. PCR demonstrated the presence of csgD, csgB, and fimA in all 80 S. Infantis strains. To our knowledge, this is the first study comparing the effects of two different temperatures on the biofilm formation capacity of ESBL producing S. Infantis from the broiler production chain. This study highlights that the initial biofilm components, such as curli and cellulose, are specifically expressed at lower temperatures. It is important to emphasize that within the broiler farm, the environmental temperature ranges between 18-22 °C, which is the optimum temperature for in vitro biofilm formation by Salmonella spp. This temperature range facilitates the expression of biofilm-associated genes, contributing to the persistence of S. Infantis in the environment. This complicates biosecurity measures and makes disinfection protocols on the farm and in the production chain more difficult, posing serious public health concerns.
Collapse
Affiliation(s)
- Laura Musa
- Department of Veterinary Medicine and Animal Sciences, University of Milan, 26900 Lodi, Italy; (L.M.); (M.C.R.); (G.G.); (M.F.A.)
| | - Valeria Toppi
- Department of Veterinary Medicine, University of Perugia, 06126 Perugia, Italy; (V.T.); (V.S.); (N.S.); (M.P.F.)
| | - Valentina Stefanetti
- Department of Veterinary Medicine, University of Perugia, 06126 Perugia, Italy; (V.T.); (V.S.); (N.S.); (M.P.F.)
- Department of Human Science and Promotion of Quality Life, San Raffaele Telematic University, 00166 Rome, Italy
| | - Noah Spata
- Department of Veterinary Medicine, University of Perugia, 06126 Perugia, Italy; (V.T.); (V.S.); (N.S.); (M.P.F.)
| | - Maria Cristina Rapi
- Department of Veterinary Medicine and Animal Sciences, University of Milan, 26900 Lodi, Italy; (L.M.); (M.C.R.); (G.G.); (M.F.A.)
| | - Guido Grilli
- Department of Veterinary Medicine and Animal Sciences, University of Milan, 26900 Lodi, Italy; (L.M.); (M.C.R.); (G.G.); (M.F.A.)
- Laboratorio di Malattie Infettive degli Animali (MiLab), University of Milan, 26900 Lodi, Italy
| | - Maria Filippa Addis
- Department of Veterinary Medicine and Animal Sciences, University of Milan, 26900 Lodi, Italy; (L.M.); (M.C.R.); (G.G.); (M.F.A.)
- Laboratorio di Malattie Infettive degli Animali (MiLab), University of Milan, 26900 Lodi, Italy
| | | | - Maria Pia Franciosini
- Department of Veterinary Medicine, University of Perugia, 06126 Perugia, Italy; (V.T.); (V.S.); (N.S.); (M.P.F.)
| | - Patrizia Casagrande Proietti
- Department of Veterinary Medicine, University of Perugia, 06126 Perugia, Italy; (V.T.); (V.S.); (N.S.); (M.P.F.)
| |
Collapse
|
10
|
Prakash A, Dutta D. Bicyclomycin generates ROS and blocks cell division in Escherichia coli. PLoS One 2024; 19:e0293858. [PMID: 38551933 PMCID: PMC10980228 DOI: 10.1371/journal.pone.0293858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 02/27/2024] [Indexed: 04/01/2024] Open
Abstract
The role of reactive oxygen species (ROS) in the killing exerted by antibiotics on bacteria is debated. Evidence attributes part of toxicity of many antibiotics to their ability to generate ROS by interfering with cellular metabolism, but some studies dismiss the role of ROS. Bicyclomycin (BCM) is a broad-spectrum antibiotic that is the only known compound to inhibit E. coli transcription terminator factor Rho with no known other cellular targets. In the present study, we addressed this question by checking whether the induction of oxidative stress could explain the increased sensitivity to Bicyclomycin in the hns deleted strain even in Δkil background in E. coli. BCM evoked the generation of ROS in E. coli cells. BCM is known to cause the cell filamentation phenotype in E. coli. Performing fluorescence microscopic analysis, we show that bicyclomycin-dependent cell filamentation is associated with SOS response. RecA-GFP filaments were found to colocalize with the damaged DNA sites in the cell. Further analysis revealed that the genomic DNA was partitioned but the cell septum formation was severely affected under BCM treatment. Furthermore, we observed biofilm formation by E. coli after BCM treatment. We hypothesize that ROS production after BCM treatment could lead to cell filamentation in bacteria. A better understanding of the mode of toxicity of BCM will help us design better antibiotic treatment regimes for clinical practices, including combinatorial drug therapies. The cell filamentation phenotype observed after BCM treatment makes this antibiotic a promising drug for phage-antibiotic synergy (PAS) therapy.
Collapse
Affiliation(s)
- Anand Prakash
- CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Dipak Dutta
- CSIR-Institute of Microbial Technology, Chandigarh, India
| |
Collapse
|
11
|
Lamichhane B, Mawad AMM, Saleh M, Kelley WG, Harrington PJ, Lovestad CW, Amezcua J, Sarhan MM, El Zowalaty ME, Ramadan H, Morgan M, Helmy YA. Salmonellosis: An Overview of Epidemiology, Pathogenesis, and Innovative Approaches to Mitigate the Antimicrobial Resistant Infections. Antibiotics (Basel) 2024; 13:76. [PMID: 38247636 PMCID: PMC10812683 DOI: 10.3390/antibiotics13010076] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/24/2023] [Accepted: 01/10/2024] [Indexed: 01/23/2024] Open
Abstract
Salmonella is a major foodborne pathogen and a leading cause of gastroenteritis in humans and animals. Salmonella is highly pathogenic and encompasses more than 2600 characterized serovars. The transmission of Salmonella to humans occurs through the farm-to-fork continuum and is commonly linked to the consumption of animal-derived food products. Among these sources, poultry and poultry products are primary contributors, followed by beef, pork, fish, and non-animal-derived food such as fruits and vegetables. While antibiotics constitute the primary treatment for salmonellosis, the emergence of antibiotic resistance and the rise of multidrug-resistant (MDR) Salmonella strains have highlighted the urgency of developing antibiotic alternatives. Effective infection management necessitates a comprehensive understanding of the pathogen's epidemiology and transmission dynamics. Therefore, this comprehensive review focuses on the epidemiology, sources of infection, risk factors, transmission dynamics, and the host range of Salmonella serotypes. This review also investigates the disease characteristics observed in both humans and animals, antibiotic resistance, pathogenesis, and potential strategies for treatment and control of salmonellosis, emphasizing the most recent antibiotic-alternative approaches for infection control.
Collapse
Affiliation(s)
- Bibek Lamichhane
- Department of Veterinary Science, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA
| | - Asmaa M. M. Mawad
- Botany and Microbiology Department, Faculty of Science, Assiut University, Assiut 71516, Egypt
| | - Mohamed Saleh
- Department of Veterinary Science, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA
| | - William G. Kelley
- Department of Veterinary Science, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA
| | - Patrick J. Harrington
- Department of Veterinary Science, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA
| | - Cayenne W. Lovestad
- Department of Veterinary Science, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA
| | - Jessica Amezcua
- Department of Veterinary Science, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA
| | - Mohamed M. Sarhan
- Faculty of Pharmacy, King Salman International University (KSIU), Ras Sudr 8744304, Egypt
| | - Mohamed E. El Zowalaty
- Veterinary Medicine and Food Security Research Group, Medical Laboratory Sciences Program, Faculty of Health Sciences, Abu Dhabi Women’s Campus, Higher Colleges of Technology, Abu Dhabi 41012, United Arab Emirates
| | - Hazem Ramadan
- Hygiene and Zoonoses Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Melissa Morgan
- Department of Animal and Food Sciences, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA
| | - Yosra A. Helmy
- Department of Veterinary Science, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA
| |
Collapse
|
12
|
Nucci A, Janaszkiewicz J, Rocha EPC, Rendueles O. Emergence of novel non-aggregative variants under negative frequency-dependent selection in Klebsiella variicola. MICROLIFE 2023; 4:uqad038. [PMID: 37781688 PMCID: PMC10540941 DOI: 10.1093/femsml/uqad038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/05/2023] [Accepted: 09/09/2023] [Indexed: 10/03/2023]
Abstract
Klebsiella variicola is an emergent human pathogen causing diverse infections, some of which in the urinary tract. However, little is known about the evolution and maintenance of genetic diversity in this species, the molecular mechanisms and their population dynamics. Here, we characterized the emergence of a novel rdar-like (rough and dry) morphotype which is contingent both on the genetic background and the environment. We show that mutations in either the nitrogen assimilation control gene (nac) or the type III fimbriae regulator, mrkH, suffice to generate rdar-like colonies. These morphotypes are primarily selected for the reduced inter-cellular aggregation as a result of MrkH loss-of-function which reduces type 3 fimbriae expression. Additionally, these clones also display increased growth rate and reduced biofilm formation. Direct competitions between rdar and wild type clones show that mutations in mrkH provide large fitness advantages. In artificial urine, the morphotype is under strong negative frequency-dependent selection and can socially exploit wild type strains. An exhaustive search for mrkH mutants in public databases revealed that ca 8% of natural isolates analysed had a truncated mrkH gene many of which were due to insertions of IS elements, including a reported clinical isolate with rdar morphology. These strains were rarely hypermucoid and often isolated from human, mostly from urine and blood. The decreased aggregation of these mutants could have important clinical implications as we hypothesize that such clones could better disperse within the host allowing colonisation of other body sites and potentially leading to systemic infections.
Collapse
Affiliation(s)
- Amandine Nucci
- Institut Pasteur, Université Paris Cité, CNRS, UMR3525, Microbial Evolutionary Genomics, F-75015, Paris, France
| | - Juliette Janaszkiewicz
- Institut Pasteur, Université Paris Cité, CNRS, UMR3525, Microbial Evolutionary Genomics, F-75015, Paris, France
| | - Eduardo P C Rocha
- Institut Pasteur, Université Paris Cité, CNRS, UMR3525, Microbial Evolutionary Genomics, F-75015, Paris, France
| | - Olaya Rendueles
- Institut Pasteur, Université Paris Cité, CNRS, UMR3525, Microbial Evolutionary Genomics, F-75015, Paris, France
| |
Collapse
|
13
|
Bai M, Dai J, Li C, Cui H, Lin L. Antibacterial and antibiofilm performance of low-frequency ultrasound against Escherichia coli O157:H7 and its application in fresh produce. Int J Food Microbiol 2023; 400:110266. [PMID: 37263173 DOI: 10.1016/j.ijfoodmicro.2023.110266] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 05/02/2023] [Accepted: 05/25/2023] [Indexed: 06/03/2023]
Abstract
Ultrasound technology has been focused on due to its unique advantages in biofilm removal compared with traditional antibacterial methods. Herein, the anti-biofilm properties of low-frequency ultrasound (LFUS) were studied against Enterohemorrhagic Escherichia coli O157: H7 (E. coli O157:H7). After ultrasonication (20 kHz, 300 W) for 5 min, the removal rate of biofilm from polystyrene sheets reached up to 99.999 %. However, the bacterial cells could not be inactivated completely even extending the duration of ultrasonic irradiation to 30 min. Fortunately, this study indicated that LFUS could efficiently weaken the metabolic capacity and biofilm-forming ability of bacterial cells separated from biofilm. It could be associated with the removal of cell surface appendages and damage to cell membrane induced by mechanical vibration and acoustic cavitation. Besides, the genetic analysis proved that the transcription level of genes involved in curli formation was significantly down-regulated during ultrasonic irradiation, thus impeding the process of irreversible adhesion and cells aggregation. Finally, the actual application effect of LFUS was also evaluated in different fresh produces model. The results of this study would provide a theoretical basis for the further application of ultrasound in the food preservation.
Collapse
Affiliation(s)
- Mei Bai
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jinming Dai
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Changzhu Li
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410007, China
| | - Haiying Cui
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Lin Lin
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410007, China.
| |
Collapse
|
14
|
Cimdins-Ahne A, Naemi AO, Li F, Simm R, Römling U. Characterisation of Variants of Cyclic di-GMP Turnover Proteins Associated with Semi-Constitutive rdar Morphotype Expression in Commensal and Uropathogenic Escherichia coli Strains. Microorganisms 2023; 11:2048. [PMID: 37630608 PMCID: PMC10459773 DOI: 10.3390/microorganisms11082048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/01/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Expression of rdar (red, dry, and rough) colony morphology-based biofilm formation in Escherichia coli is highly variable. To investigate the molecular mechanisms of semi-constitutive rdar morphotype formation, we compared their cyclic di-GMP turnover protein content and variability to the highly regulated, temperature-dependent morphotype of the historical and modern ST10 isolates E. coli MG1655 and Fec10, respectively. Subsequently, we assessed the effects of cyclic di-GMP turnover protein variants of the EAL phosphodiesterases YcgG and YjcC and the horizontally transferred diguanylate cyclase DgcX on biofilm formation and motility. The two YcgG variants with truncations of the N-terminal CSS signaling domain were oppositely effective in targeting downregulation of rdar biofilm formation compared to the full-length reference protein. Expression of the C-terminal truncated variants YjcCFec67 and YjcCTob1 showed highly diminished apparent phosphodiesterase activity compared to the reference YjcCMG1655. For YjcCFec101, substitution of the C-terminus led to an apparently inactive enzyme. Overexpression of the diguanylate cyclase DgcX contributed to upregulation of cellulose biosynthesis but not to elevated expression of the major biofilm regulator csgD in the "classical" rdar-expressing commensal strain E. coli Fec10. Thus, the c-di-GMP regulating network is highly complex with protein variants displaying substantially different apparent enzymatic activities.
Collapse
Affiliation(s)
- Annika Cimdins-Ahne
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77 Stockholm, Sweden; (A.C.-A.); (F.L.)
| | - Ali-Oddin Naemi
- Institute of Oral Biology, University of Oslo, 0313 Oslo, Norway; (A.-O.N.); (R.S.)
| | - Fengyang Li
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77 Stockholm, Sweden; (A.C.-A.); (F.L.)
| | - Roger Simm
- Institute of Oral Biology, University of Oslo, 0313 Oslo, Norway; (A.-O.N.); (R.S.)
- Norwegian Veterinary Institute, 0106 Oslo, Norway
| | - Ute Römling
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77 Stockholm, Sweden; (A.C.-A.); (F.L.)
| |
Collapse
|
15
|
Sivasankar C, Hewawaduge C, Lee JH. Screening of lipid-A related genes and development of low-endotoxicity live-attenuated Salmonella gallinarum by arnT deletion that elicits immune responses and protection against fowl typhoid in chickens. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 145:104707. [PMID: 37044268 DOI: 10.1016/j.dci.2023.104707] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/30/2023] [Accepted: 04/03/2023] [Indexed: 05/27/2023]
Abstract
In the present study, lipid-A gene mutants of Salmonella gallinarum (SG) were screened, and the arnT mutant exhibited optimal acidic and oxidative-stress and macrophage-survival. Modifying lipid-A by arnT-deletion resulted in significantly reduced endotoxicity, virulence, and mortality. Therefore, the arnT-deleted vaccine-candidate strain JOL2841 was constructed and demonstrated to be safe due to appropriate clearance by the chicken immune system. The reduced-endotoxicity of JOL2841 was evident from the downregulation of TNFα and IL-1β inflammatory cytokines, no inflammatory signs in organ gross-examination, and histopathological analysis. The IgY and IgA antibody titres, CD4, and CD8 T-cell population improvements, and IL-4, IL-2, and INFγ expression decipher the profound Th2 and Th1 immunogenicity. Consequently, JOL2841 exhibited prominent protection against wild-type SG challenge, as revealed by organ pathogen-load determination, organ gross-examination, and histopathological examination. Overall, the study represented the first report of arnT deficient SG resulted in negligible endotoxicity, low-virulence, safety and coordinated elicitation of humoral and cell-mediated immune response in chickens.
Collapse
Affiliation(s)
- Chandran Sivasankar
- College of Veterinary Medicine, Jeonbuk National University, Iksan Campus, 54596, Republic of Korea
| | - Chamith Hewawaduge
- College of Veterinary Medicine, Jeonbuk National University, Iksan Campus, 54596, Republic of Korea
| | - John Hwa Lee
- College of Veterinary Medicine, Jeonbuk National University, Iksan Campus, 54596, Republic of Korea.
| |
Collapse
|
16
|
Segura A, Molina L. LuxR402 of Novosphingobium sp. HR1a regulates the correct configuration of cell envelopes. Front Microbiol 2023; 14:1205860. [PMID: 37577419 PMCID: PMC10413115 DOI: 10.3389/fmicb.2023.1205860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 07/10/2023] [Indexed: 08/15/2023] Open
Abstract
Although there is some evidence to suggest that LuxR-solo proteins participate in inter-species or even inter-kingdom communication, most of the LuxR-solo protein functions are unknown. We have characterized the LuxR402 regulator of Novosphingobium sp. HR1a, a bacterial strain with the ability to establish high numbers in the plant rhizosphere and able to degrade a wide range of polycyclic aromatic hydrocarbons. LuxR402 controls the aggregation state of the bacterial culture; cultures of a mutant strain lacking this regulator flocculate in less than 3 h without agitation. We have demonstrated that the bacterial surface of the mutant is highly hydrophobic and that the mutant cells assimilate sugars slower than the wild-type. The flocculation mechanism has been demonstrated to be involved in the survival of the strain under unfavorable conditions; the luxR402 gene is repressed and produces flocculation in the presence of salicylate, a substrate that, although being assimilated by Novosphingobium, is toxic to cells at high concentrations. The flocculation of cultures in industrial setups has mainly been achieved through the addition of chemicals; these studies open up the possibility of controlling the flocculation by regulating the level of expression of the luxR402 gene.
Collapse
Affiliation(s)
| | - Lázaro Molina
- Environmental Protection Department, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| |
Collapse
|
17
|
Lopez LR, Miller CM, Jeyachandran JN, Li C, Simpson KW, Arthur JC. Heterogeneity among Clinical Intestinal Escherichia coli Isolates upon Acquired Streptomycin Resistance. Microbiol Spectr 2023; 11:e0350022. [PMID: 37184392 PMCID: PMC10269711 DOI: 10.1128/spectrum.03500-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/25/2023] [Indexed: 05/16/2023] Open
Abstract
Escherichia coli isolates from inflammatory bowel disease (IBD) patients are often multidrug resistant, including to streptomycin. Streptomycin resistance (StrR) mutations can alter bacterial behavior, which may influence intestinal disease. We generated a spontaneous StrR strain of the intestinal adherent-invasive E. coli (AIEC) strain NC101. Whole-genome sequencing revealed a single missense mutation in rpsL that commonly confers StrR, rpsL-K43N. StrR NC101 exhibited a striking loss of aggregation and significantly increased motility, behaviors that can impact host-microbe interactions. Behavioral changes were associated with reduced transcription of csgA, encoding the biofilm component curli, and increased transcription of fliC, encoding flagellin. Scanning electron microscopy (SEM) detailed morphologic changes consistent with the observed alterations in multicellular behavior. Because intestinal E. coli isolates exhibit remarkable strain-specific differences, we generated spontaneous StrR mutants of 10 clinical E. coli phylotype B2 strains from patients with IBD, colorectal cancer, and urinary tract infection. Out of these 10 StrR clinical strains, two had altered colony morphology on Congo red agar (suggesting changes in extracellular products), and three had significant changes in motility. These changes were not associated with a particular rpsL mutation nor with the presence of virulence genes encoding the inflammation-associated E. coli metabolites yersiniabactin or colibactin. We conclude that common mutations in rpsL, which confer StrR, can differentially alter disease-associated phenotypes across intestinal E. coli strains. These findings highlight the heterogeneity among seemingly similar intestinal E. coli strains and reveal the need to carefully study the strain-specific effects of antibiotic resistance mutations, particularly when using these mutations during strain selection studies. IMPORTANCE We demonstrate that StrR, commonly acquired through a single point mutation in rpsL (a gene encoding part of the 30S bacterial ribosome), strikingly alters the morphology and behavior of a key intestinal AIEC strain, NC101. These changes include remarkably diminished aggregation and significantly increased motility, traits that are linked to AIEC-defining features and disease development. Phenotypic changes were heterogeneous among other StrR clinical E. coli strains, underscoring the need to evaluate the strain-specific effects of commonly acquired antibiotic resistance mutations. This is important, as the results of studies using mutant StrR Enterobacteriaceae strains (e.g., for cloning or in vivo selection) may be confounded beyond our demonstrated effects. Long term, these findings can help researchers better distinguish the contribution of specific E. coli traits to functional changes in the microbiota. Evaluating these strain-level differences could provide insight into the diversity of IBD symptoms and lead to improved therapies for microbiota-driven intestinal disorders.
Collapse
Affiliation(s)
- Lacey R. Lopez
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Claire M. Miller
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Joanna N. Jeyachandran
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Chuang Li
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Kenneth W. Simpson
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Janelle C. Arthur
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
18
|
Bleem A, Prosswimmer T, Chen R, Hady TF, Li J, Bryers JD, Daggett V. Designed α-sheet peptides disrupt uropathogenic E. coli biofilms rendering bacteria susceptible to antibiotics and immune cells. Sci Rep 2023; 13:9272. [PMID: 37286572 PMCID: PMC10247742 DOI: 10.1038/s41598-023-36343-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 06/01/2023] [Indexed: 06/09/2023] Open
Abstract
Uropathogenic Escherichia coli account for the largest proportion of nosocomial infections in the United States. Nosocomial infections are a major source of increased costs and treatment complications. Many infections are biofilm associated, rendering antibiotic treatments ineffective or cause additional complications (e.g., microbiome depletion). This work presents a potentially complementary non-antibiotic strategy to fight nosocomial infections by inhibiting the formation of amyloid fibrils, a proteinaceous structural reinforcement known as curli in E. coli biofilms. Despite extensive characterization of the fibrils themselves and their associated secretion system, mechanistic details of curli assembly in vivo remain unclear. We hypothesized that, like other amyloid fibrils, curli polymerization involves a unique secondary structure termed "α-sheet". Biophysical studies herein confirmed the presence of α-sheet structure in prefibrillar species of CsgA, the major component of curli, as it aggregated. Binding of synthetic α-sheet peptides to the soluble α-sheet prefibrillar species inhibited CsgA aggregation in vitro and suppressed amyloid fibril formation in biofilms. Application of synthetic α-sheet peptides also enhanced antibiotic susceptibility and dispersed biofilm-resident bacteria for improved uptake by phagocytic cells. The ability of synthetic α-sheet peptides to reduce biofilm formation, improve antibiotic susceptibility, and enhance clearance by macrophages has broad implications for combating biofilm-associated infections.
Collapse
Affiliation(s)
- Alissa Bleem
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
| | - Tatum Prosswimmer
- Molecular Engineering Program, University of Washington, Seattle, WA, 98195, USA
| | - Ruying Chen
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
- Department of Surgery and Center for Lung Biology, University of Washington, Seattle, WA, 98109, USA
| | - Thomas F Hady
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
| | - Jinzheng Li
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA
| | - James D Bryers
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
- Department of Surgery and Center for Lung Biology, University of Washington, Seattle, WA, 98109, USA
| | - Valerie Daggett
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA.
- Molecular Engineering Program, University of Washington, Seattle, WA, 98195, USA.
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
19
|
Haque MM, Khatun M, Mosharaf MK, Rahman A, Haque MA, Nahar K. Biofilm producing probiotic bacteria enhance productivity and bioactive compounds in tomato. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2023. [DOI: 10.1016/j.bcab.2023.102673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
20
|
Baek J, Yoon H. Cyclic di-GMP Modulates a Metabolic Flux for Carbon Utilization in Salmonella enterica Serovar Typhimurium. Microbiol Spectr 2023; 11:e0368522. [PMID: 36744926 PMCID: PMC10100716 DOI: 10.1128/spectrum.03685-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 01/16/2023] [Indexed: 02/07/2023] Open
Abstract
Salmonella enterica serovar Typhimurium is an enteric pathogen spreading via the fecal-oral route. Transmission across humans, animals, and environmental reservoirs has forced this pathogen to rapidly respond to changing environments and adapt to new environmental conditions. Cyclic di-GMP (c-di-GMP) is a second messenger that controls the transition between planktonic and sessile lifestyles, in response to environmental cues. Our study reveals the potential of c-di-GMP to alter the carbon metabolic pathways in S. Typhimurium. Cyclic di-GMP overproduction decreased the transcription of genes that encode components of three phosphoenolpyruvate (PEP):carbohydrate phosphotransferase systems (PTSs) allocated for the uptake of glucose (PTSGlc), mannose (PTSMan), and fructose (PTSFru). PTS gene downregulation by c-di-GMP was alleviated in the absence of the three regulators, SgrS, Mlc, and Cra, suggesting their intermediary roles between c-di-GMP and PTS regulation. Moreover, Cra was found to bind to the promoters of ptsG, manX, and fruB. In contrast, c-di-GMP increased the transcription of genes important for gluconeogenesis. However, this effect of c-di-GMP in gluconeogenesis disappeared in the absence of Cra, indicating that Cra is a pivotal regulator that coordinates the carbon flux between PTS-mediated sugar uptake and gluconeogenesis, in response to cellular c-di-GMP concentrations. Since gluconeogenesis supplies precursor sugars required for extracellular polysaccharide production, Salmonella may exploit c-di-GMP as a dual-purpose signal that rewires carbon flux from glycolysis to gluconeogenesis and promotes biofilm formation using the end products of gluconeogenesis. This study sheds light on a new role for c-di-GMP in modulating carbon flux, to coordinate bacterial behavior in response to hostile environments. IMPORTANCE Cyclic di-GMP is a central signaling molecule that determines the transition between motile and nonmotile lifestyles in many bacteria. It stimulates biofilm formation at high concentrations but leads to biofilm dispersal and planktonic status at low concentrations. This study provides new insights into the role of c-di-GMP in programming carbon metabolic pathways. An increase in c-di-GMP downregulated the expression of PTS genes important for sugar uptake, while simultaneously upregulating the transcription of genes important for bacterial gluconeogenesis. The directly opposing effects of c-di-GMP on sugar metabolism were mediated by Cra (catabolite repressor/activator), a dual transcriptional regulator that modulates the direction of carbon flow. Salmonella may potentially harness c-di-GMP to promote its survival and fitness in hostile environments via the coordination of carbon metabolic pathways and the induction of biofilm formation.
Collapse
Affiliation(s)
- Jiwon Baek
- Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
| | - Hyunjin Yoon
- Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
- Department of Applied Chemistry and Biological Engineering, Ajou University, Suwon, Republic of Korea
| |
Collapse
|
21
|
Eckert JA, Rosenberg M, Rhen M, Choong FX, Richter-Dahlfors A. An optotracer-based antibiotic susceptibility test specifically targeting the biofilm lifestyle of Salmonella. Biofilm 2022; 4:100083. [PMID: 36117547 PMCID: PMC9474290 DOI: 10.1016/j.bioflm.2022.100083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 11/25/2022] Open
Abstract
Antimicrobial resistance is a medical threat of global dimensions. Proper antimicrobial susceptibility testing (AST) for drug development, patient diagnosis and treatment is crucial to counteract ineffective drug use and resistance development. Despite the important role of bacterial biofilms in chronic and device-associated infections, the efficacy of antibiotics is determined using planktonic cultures. To address the need for antibiotics targeting bacteria in the biofilm lifestyle, we here present an optotracing-based biofilm-AST using Salmonella as model. Our non-disruptive method enables real-time recording of the extracellular matrix (ECM) components, providing specific detection of the biofilm lifestyle. Biofilm formation prior to antibiotic challenge can thus be confirmed and pre-treatment data collected. By introducing Kirby-Bauer discs, we performed a broad screen of the effects of antibiotics representing multiple classes, and identified compounds with ECM inhibitory as well as promoting effects. These compounds were further tested in agar-based dose-response biofilm-AST assays. By quantifying the ECM based on the amount of curli, and by visualizing the biofilm size and morphology, we achieved new information directly reflecting the treated biofilm. This verified the efficacy of several antibiotics that were effective in eradicating pre-formed biofilms, and it uncovered intriguing possible resistance mechanisms initiated in response to treatments. By providing deeper insights into the resistances and susceptibilities of microbes, expanded use of the biofilm-AST will contribute to more effective treatments of infections and reduced resistance development.
Collapse
Affiliation(s)
- Johannes A Eckert
- AIMES - Center for the Advancement of Integrated Medical and Engineering Sciences, Karolinska Institutet and KTH Royal Institute of Technology, Stockholm, Sweden.,Department of Neuroscience, Karolinska Institutet, Solnavägen 9, SE-171 77, Stockholm, Sweden
| | - Ming Rosenberg
- AIMES - Center for the Advancement of Integrated Medical and Engineering Sciences, Karolinska Institutet and KTH Royal Institute of Technology, Stockholm, Sweden.,Department of Neuroscience, Karolinska Institutet, Solnavägen 9, SE-171 77, Stockholm, Sweden
| | - Mikael Rhen
- AIMES - Center for the Advancement of Integrated Medical and Engineering Sciences, Karolinska Institutet and KTH Royal Institute of Technology, Stockholm, Sweden.,Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solnavägen 9, SE-171 77, Stockholm, Sweden
| | - Ferdinand X Choong
- AIMES - Center for the Advancement of Integrated Medical and Engineering Sciences, Karolinska Institutet and KTH Royal Institute of Technology, Stockholm, Sweden.,Department of Neuroscience, Karolinska Institutet, Solnavägen 9, SE-171 77, Stockholm, Sweden
| | - Agneta Richter-Dahlfors
- AIMES - Center for the Advancement of Integrated Medical and Engineering Sciences, Karolinska Institutet and KTH Royal Institute of Technology, Stockholm, Sweden.,Department of Neuroscience, Karolinska Institutet, Solnavägen 9, SE-171 77, Stockholm, Sweden
| |
Collapse
|
22
|
Sithole TR, Ma YX, Qin Z, Wang XD, Liu HM. Peanut Butter Food Safety Concerns-Prevalence, Mitigation and Control of Salmonella spp., and Aflatoxins in Peanut Butter. Foods 2022; 11:1874. [PMID: 35804689 PMCID: PMC9265579 DOI: 10.3390/foods11131874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 12/02/2022] Open
Abstract
Peanut butter has a very large and continuously increasing global market. The food safety risks associated with its consumption are also likely to have impacts on a correspondingly large global population. In terms of prevalence and potential magnitude of impact, contamination by Salmonella spp., and aflatoxins, are the major food safety risks associated with peanut butter consumption. The inherent nature of the Salmonella spp., coupled with the unique chemical composition and structure of peanut butter, present serious technical challenges when inactivating Salmonella spp. in contaminated peanut butter. Thermal treatment, microwave, radiofrequency, irradiation, and high-pressure processing all are of limited efficacy in inactivating Salmonella spp. in contaminated peanut butter. The removal of aflatoxins in contaminated peanut butter is equally problematic and for all practical purposes almost impossible at the moment. Adopting good manufacturing hygiene practices from farm to table and avoiding the processing of contaminated peanuts are probably some of the few practically viable strategies for minimising these peanut butter food safety risks. The purpose of this review is to highlight the nature of food safety risks associated with peanut butter and to discuss the effectiveness of the initiatives that are aimed at minimising these risks.
Collapse
Affiliation(s)
| | | | | | - Xue-De Wang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China; (T.R.S.); (Y.-X.M.); (Z.Q.); (H.-M.L.)
| | | |
Collapse
|
23
|
Li F, Cao L, Bähre H, Kim SK, Schroeder K, Jonas K, Koonce K, Mekonnen SA, Mohanty S, Bai F, Brauner A, Lee VT, Rohde M, Römling U. Patatin-like phospholipase CapV in Escherichia coli - morphological and physiological effects of one amino acid substitution. NPJ Biofilms Microbiomes 2022; 8:39. [PMID: 35546554 PMCID: PMC9095652 DOI: 10.1038/s41522-022-00294-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 03/22/2022] [Indexed: 11/09/2022] Open
Abstract
In rod-shaped bacteria, morphological plasticity occurs in response to stress, which blocks cell division to promote filamentation. We demonstrate here that overexpression of the patatin-like phospholipase variant CapVQ329R, but not CapV, causes pronounced sulA-independent pyridoxine-inhibited cell filamentation in the Escherichia coli K-12-derivative MG1655 associated with restriction of flagella production and swimming motility. Conserved amino acids in canonical patatin-like phospholipase A motifs, but not the nucleophilic serine, are required to mediate CapVQ329R phenotypes. Furthermore, CapVQ329R production substantially alters the lipidome and colony morphotype including rdar biofilm formation with modulation of the production of the biofilm activator CsgD, and affects additional bacterial traits such as the efficiency of phage infection and antimicrobial susceptibility. Moreover, genetically diverse commensal and pathogenic E. coli strains and Salmonella typhimurium responded with cell filamentation and modulation in colony morphotype formation to CapVQ329R expression. In conclusion, this work identifies the CapV variant CapVQ329R as a pleiotropic regulator, emphasizes a scaffold function for patatin-like phospholipases, and highlights the impact of the substitution of a single conserved amino acid for protein functionality and alteration of host physiology.
Collapse
Affiliation(s)
- Fengyang Li
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177, Stockholm, Sweden.
- College of Veterinary Medicine, Jilin University, Changchun, China.
| | - Lianying Cao
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177, Stockholm, Sweden
| | - Heike Bähre
- Research Core Unit Metabolomics, Hannover Medical School, Hannover, Germany
| | - Soo-Kyoung Kim
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, 20742, USA
| | - Kristen Schroeder
- Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Kristina Jonas
- Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Kira Koonce
- Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Solomon A Mekonnen
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, 20742, USA
| | - Soumitra Mohanty
- Department of Microbiology, Tumor and Cell Biology, Division of Clinical Microbiology, Karolinska Institutet and Karolinska University Hospital, 17176, Stockholm, Sweden
| | - Fengwu Bai
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Annelie Brauner
- Department of Microbiology, Tumor and Cell Biology, Division of Clinical Microbiology, Karolinska Institutet and Karolinska University Hospital, 17176, Stockholm, Sweden
| | - Vincent T Lee
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, 20742, USA
| | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Ute Römling
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177, Stockholm, Sweden.
| |
Collapse
|
24
|
Haque MM, Biswas MS, Mosharaf MK, Haque MA, Islam MS, Nahar K, Islam MM, Shozib HB, Islam MM, Ferdous-E-Elahi. Halotolerant biofilm-producing rhizobacteria mitigate seawater-induced salt stress and promote growth of tomato. Sci Rep 2022; 12:5599. [PMID: 35379908 PMCID: PMC8980105 DOI: 10.1038/s41598-022-09519-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 03/10/2022] [Indexed: 01/16/2023] Open
Abstract
Biofilm-producing rhizobacteria (BPR) enhance productivity and mitigate abiotic stresses in plants. This study showed that 21 out of 65 halotolerant rhizobacteria could build biofilms. The components of the biofilm matrices i.e., extracellular polymeric substances (EPS) are proteins, curli, nanocelloluse, nucleic acids, lipids, and peptidoglycans. Various functional groups including carbonyl, carboxyl, amino, hydroxyl, and phosphate were identified. Positions of these groups were shifted by application of 5% NaCl, suggesting Na+ biosorption. By sequencing, Glutamicibacter arilaitensis (ESK1, ESM4 and ESM7), G. nicotianae (ESK19, ESM8 and ESM16), Enterobacter ludwigii (ESK15, ESK17, ESM2 and ESM17), E. cloacae (ESM5 and ESM12), Exiguobacterium acetylicum (ESM24 and ESM25), Staphylococcus saprophyticus ESK6, Leclercia adecarboxylata ESK12, Pseudomonas poae ESK16, Bacillus subtilis ESM14, and P. putida ESM17 were identified. These rhizobacteria exhibited numerous plant growth-promoting (PGP) activities including producing IAA, ACC deaminase, and siderophores, and solubilizing phosphate. Under non-stress, bacterized plants increased biomass accumulation (8–23.2% roots and 23–49.4% shoots), while under seawater-induced salt stress only ESK12, ESM4, ESM12, and ESM14 enhanced biomass production (5.8–52.9% roots and 8.8–33.4% shoots). Bacterized plants induced antioxidant defense system (19.5–142% catalase and 12.3–24.2% DPPH radical scavenging activity), retained a greater relative water content (17–124%), showed lesser membrane injuries (19.9–26.5%), and a reduced Na+ (6–24% in roots) and increased K+/Na+ ratio (78.8 and 103% in roots by ESK12 and ESM24, respectively) than the non-bacterized plants in saline conditions. Thus, native halotolerant BPR can be utilized as ameliorators of salt stress.
Collapse
|
25
|
Koonjan S, Cardoso Palacios C, Nilsson AS. Population Dynamics of a Two Phages-One Host Infection System Using Escherichia coli Strain ECOR57 and Phages vB_EcoP_SU10 and vB_EcoD_SU57. Pharmaceuticals (Basel) 2022; 15:268. [PMID: 35337066 PMCID: PMC8953519 DOI: 10.3390/ph15030268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/09/2022] [Accepted: 02/18/2022] [Indexed: 02/01/2023] Open
Abstract
In this study, we looked at the population dynamics of a two phages-one host system using phages vB_EcoP_SU10 (SU10) and vB_EcoD_SU57 (SU57) and the bacteria Escherichia coli, strain ECOR57. Phage-specific growth curves were observed where infections by SU10 resulted in a moderate production of phages and infections by SU57 resulted in a fast and extensive production of phage progeny. Sequentially adding SU10 followed by SU57 did not produce a significant change in growth rates, whereas adding SU57 followed by SU10 resulted in a decrease in SU10 titer The efficiency of the plating assays showed that ECOR57 exhibited a resistance spectrum after infection by both the single and combined phages. Phage-resistant bacteria exhibited four different morphotypes (i.e., normal, slimy, edgy, and pointy). The normal and edgy morphotypes had a high frequency of developing resistance. Bacterial growth and biofilm assays indicated that the edgy and pointy morphotypes reached a stationary phase faster and produced more biofilm compared to the wild type. These findings suggest that the dynamic structure of phage-bacteria communities dictate resistance evolution and development. Understanding when and how resistances arise and phage(s)-hosts interactions could aid in the design of phage therapy treatments.
Collapse
Affiliation(s)
- Shazeeda Koonjan
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden;
| | - Carlos Cardoso Palacios
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden;
- Department of Ecology, Grimsö Wildlife Research Station, Swedish University of Agricultural Sciences, SE-739 93 Riddarhyttan, Sweden
| | - Anders S. Nilsson
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden;
| |
Collapse
|
26
|
Kim SH, Jyung S, Kang DH. Comparative study of Salmonella Typhimurium biofilms and their resistance depending on cellulose secretion and maturation temperatures. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112700] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
27
|
Choong FX, Huzell S, Rosenberg M, Eckert JA, Nagaraj M, Zhang T, Melican K, Otzen DE, Richter-Dahlfors A. A semi high-throughput method for real-time monitoring of curli producing Salmonella biofilms on air-solid interfaces. Biofilm 2021; 3:100060. [PMID: 34841245 PMCID: PMC8605384 DOI: 10.1016/j.bioflm.2021.100060] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/02/2021] [Accepted: 11/03/2021] [Indexed: 11/24/2022] Open
Abstract
Biofilms enable bacteria to colonize numerous ecological niches. Bacteria within a biofilm are protected by the extracellular matrix (ECM), of which the fibril-forming amyloid protein curli and polysaccharide cellulose are major components in members of Salmonella, Eschericha and Mycobacterium genus. A shortage of real-time detection methods has limited our understanding of how ECM production contributes to biofilm formation and pathogenicity. Here we present optotracing as a new semi-high throughput method for dynamic monitoring of Salmonella biofilm growth on air-solid interfaces. We show how an optotracer with binding-induced fluorescence acts as a dynamic fluorescent reporter of curli expression during biofilm formation on agar. Using spectrophotometry and microscopic imaging of fluorescence, we analyse in real-time the development of the curli architecture in relation to bacterial cells. With exceptional spatial and temporal precision, this revealed a well-structured, non-uniform distribution of curli organised in distally projecting radial channel patterns. Dynamic monitoring of the biofilm also showed defined regions undergoing different growth phases. ECM structures were found to assemble in regions of late exponential growth phase, suggesting that ECM forms on site after bacteria colonize the surface. As the optotracer biofilm method expedites screening of curli production, providing exceptional spatial-temporal understanding of the surface-associated biofilm lifestyle, this method adds a new technique to further our understanding of bacterial biofilms. Design and evaluation of a method for real-time biofilm experimentation. Optotracing enables real-time monitoring of biofilm formation on solid supports. Definitive biofilm monitoring by selective tracking of ECM components. A method reducing the inherent biases of morphotyping. A semi-high throughput method increasing the ease and efficiency of biofilm detection.
Collapse
Affiliation(s)
- Ferdinand X Choong
- AIMES - Center for the Advancement of Integrated Medical and Engineering Sciences at Karolinska Institutet and KTH Royal Institute of Technology, Stockholm, Sweden.,Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Smilla Huzell
- AIMES - Center for the Advancement of Integrated Medical and Engineering Sciences at Karolinska Institutet and KTH Royal Institute of Technology, Stockholm, Sweden.,Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Ming Rosenberg
- AIMES - Center for the Advancement of Integrated Medical and Engineering Sciences at Karolinska Institutet and KTH Royal Institute of Technology, Stockholm, Sweden.,Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Johannes A Eckert
- AIMES - Center for the Advancement of Integrated Medical and Engineering Sciences at Karolinska Institutet and KTH Royal Institute of Technology, Stockholm, Sweden.,Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Madhu Nagaraj
- iNANO and Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Tianqi Zhang
- AIMES - Center for the Advancement of Integrated Medical and Engineering Sciences at Karolinska Institutet and KTH Royal Institute of Technology, Stockholm, Sweden.,Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Keira Melican
- AIMES - Center for the Advancement of Integrated Medical and Engineering Sciences at Karolinska Institutet and KTH Royal Institute of Technology, Stockholm, Sweden.,Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Daniel E Otzen
- iNANO and Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Agneta Richter-Dahlfors
- AIMES - Center for the Advancement of Integrated Medical and Engineering Sciences at Karolinska Institutet and KTH Royal Institute of Technology, Stockholm, Sweden.,Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
28
|
Lamprokostopoulou A, Römling U. Yin and Yang of Biofilm Formation and Cyclic di-GMP Signaling of the Gastrointestinal Pathogen Salmonella enterica Serovar Typhimurium. J Innate Immun 2021; 14:275-292. [PMID: 34775379 PMCID: PMC9275015 DOI: 10.1159/000519573] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 08/27/2021] [Indexed: 11/24/2022] Open
Abstract
Within the last 60 years, microbiological research has challenged many dogmas such as bacteria being unicellular microorganisms directed by nutrient sources; these investigations produced new dogmas such as cyclic diguanylate monophosphate (cyclic di-GMP) second messenger signaling as a ubiquitous regulator of the fundamental sessility/motility lifestyle switch on the single-cell level. Successive investigations have not yet challenged this view; however, the complexity of cyclic di-GMP as an intracellular bacterial signal, and, less explored, as an extracellular signaling molecule in combination with the conformational flexibility of the molecule, provides endless opportunities for cross-kingdom interactions. Cyclic di-GMP-directed microbial biofilms commonly stimulate the immune system on a lower level, whereas host-sensed cyclic di-GMP broadly stimulates the innate and adaptive immune responses. Furthermore, while the intracellular second messenger cyclic di-GMP signaling promotes bacterial biofilm formation and chronic infections, oppositely, Salmonella Typhimurium cellulose biofilm inside immune cells is not endorsed. These observations only touch on the complexity of the interaction of biofilm microbial cells with its host. In this review, we describe the Yin and Yang interactive concepts of biofilm formation and cyclic di-GMP signaling using S. Typhimurium as an example.
Collapse
Affiliation(s)
| | - Ute Römling
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
29
|
Qasemi A, Rahimi F, Katouli M. Genetic diversity and virulence characteristics of biofilm-producing uropathogenic Escherichia coli. Int Microbiol 2021; 25:297-307. [PMID: 34705131 DOI: 10.1007/s10123-021-00221-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/18/2021] [Accepted: 10/20/2021] [Indexed: 10/20/2022]
Abstract
Uropathogenic E. coli (UPEC) strains exhibit different levels of biofilm formation that help adhesion of the bacteria to uroepithelial cells. We investigated the genetic diversity and virulence-associated genes (VAGs) of biofilm-producing UPEC. A collection of 107 biofilm-producing (BFP) UPEC strains isolated from patients with UTI in Iran were divided into three groups of strong, moderate, and weak BFPs after a quantitative microtiter plate assay, and the involvement of curli and cellulose in adhesion of the strains to T24 cell line was confirmed by the construction of csgD and yedQ mutants of two representative UPEC strains. BFP strains were tested for their genetic diversity, phylogenetic groups, and the presence of 15 VAGs. A significant decrease in adhesion of csgD and yedQ mutant strains confirmed the role of biofilm production in adhesion to uroepithelial cells. A high diversity was found among all three groups of strong (Di = 0.998), moderate (Di = 0.998), and weak (Di = 0.988) BFPs with majority of the strains belonging to phylogroups B2 (44.9%) and A (24.3%). Strong BFP strains carried significantly higher level papEF, hlyA, and iutA than other BFP groups. In contrast, the presence of fimH, focG, sfaS, set-1, and cvaC was more pronounced among weak BFP strains. There exists a high genetic diversity among the BFP strains with different VGA profiles. However, the high prevalence of phylogroup A among BFP strains suggests the fitness of commensal E. coli strains to cause UTI in this country.
Collapse
Affiliation(s)
- Ali Qasemi
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Hezarjarib St., Isfahan, Iran
| | - Fateh Rahimi
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Hezarjarib St., Isfahan, Iran.
| | - Mohammad Katouli
- Genecology Research Center, Maroochydore, QLD, Australia.,School of Science, Technology and Education, University of the Sunshine Coast, Maroochydore, QLD, Australia
| |
Collapse
|
30
|
Serra DO, Hengge R. Bacterial Multicellularity: The Biology of Escherichia coli Building Large-Scale Biofilm Communities. Annu Rev Microbiol 2021; 75:269-290. [PMID: 34343018 DOI: 10.1146/annurev-micro-031921-055801] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Biofilms are a widespread multicellular form of bacterial life. The spatial structure and emergent properties of these communities depend on a polymeric extracellular matrix architecture that is orders of magnitude larger than the cells that build it. Using as a model the wrinkly macrocolony biofilms of Escherichia coli, which contain amyloid curli fibers and phosphoethanolamine (pEtN)-modified cellulose as matrix components, we summarize here the structure, building, and function of this large-scale matrix architecture. Based on different sigma and other transcription factors as well as second messengers, the underlying regulatory network reflects the fundamental trade-off between growth and survival. It controls matrix production spatially in response to long-range chemical gradients, but it also generates distinct patterns of short-range matrix heterogeneity that are crucial for tissue-like elasticity and macroscopic morphogenesis. Overall, these biofilms confer protection and a potential for homeostasis, thereby reducing maintenance energy, which makes multicellularity an emergent property of life itself. Expected final online publication date for the Annual Review of Microbiology, Volume 75 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Diego O Serra
- Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Rosario (UNR), 2000 Rosario, Argentina
| | - Regine Hengge
- Institut für Biologie/Mikrobiologie, Humboldt-Universität zu Berlin, 10115 Berlin, Germany;
| |
Collapse
|
31
|
Wason S, Verma T, Subbiah J. Validation of process technologies for enhancing the safety of low-moisture foods: A review. Compr Rev Food Sci Food Saf 2021; 20:4950-4992. [PMID: 34323364 DOI: 10.1111/1541-4337.12800] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 06/03/2021] [Accepted: 06/10/2021] [Indexed: 01/03/2023]
Abstract
The outbreaks linked to foodborne illnesses in low-moisture foods are frequently reported due to the occurrence of pathogenic microorganisms such as Salmonella Spp. Bacillus cereus, Clostridium spp., Cronobacter sakazakii, Escherichia coli, and Staphylococcus aureus. The ability of the pathogens to withstand the dry conditions and to develop resistance to heat is regarded as the major concern for the food industry dealing with low-moisture foods. In this regard, the present review is aimed to discuss the importance and the use of novel thermal and nonthermal technologies such as radiofrequency, steam pasteurization, plasma, and gaseous technologies for decontamination of foodborne pathogens in low-moisture foods and their microbial inactivation mechanisms. The review also summarizes the various sources of contamination and the factors influencing the survival and thermal resistance of pathogenic microorganisms in low-moisture foods. The literature survey indicated that the nonthermal techniques such as CO2 , high-pressure processing, and so on, may not offer effective microbial inactivation in low-moisture foods due to their insufficient moisture content. On the other hand, gases can penetrate deep inside the commodities and pores due to their higher diffusion properties and are regarded to have an advantage over thermal and other nonthermal processes. Further research is required to evaluate newer intervention strategies and combination treatments to enhance the microbial inactivation in low-moisture foods without significantly altering their organoleptic and nutritional quality.
Collapse
Affiliation(s)
- Surabhi Wason
- Department of Food Science, University of Arkansas System Division of Agriculture, Fayetteville, Arkansas, USA
| | - Tushar Verma
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Jeyamkondan Subbiah
- Department of Food Science, University of Arkansas System Division of Agriculture, Fayetteville, Arkansas, USA.,Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| |
Collapse
|
32
|
Özdemir C, Akçelik N, Neslihan Özdemir F, Evcili İ, Kahraman T, Gürsel İ, Akçelik M. The role of bcsE gene in the pathogenicity of Salmonella. Pathog Dis 2021; 79:6323998. [PMID: 34279609 DOI: 10.1093/femspd/ftab037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 07/14/2021] [Indexed: 11/12/2022] Open
Abstract
The effects of the bcsE gene and BcsE protein on bacterial physiology and pathogenicity in SalmonellaTyphimurium and Salmonella Group C1 were investigated. It was observed that biofilm and pellicle formation did not occur in the bcsE gene mutants of wild-type strains. Besides, the 'rdar' (red, dry, rough) biofilm morphotype in wild-type strains changed significantly in the mutants. In terms of the bcsE gene, the swimming and swarming motility in mutant strains showed a dramatic increase compared to the wild-type strains. The Salmonella bcsE gene was cloned into Escherichia coli BL21, and the his-tagged protein produced in this strain was purified to obtain polyclonal antibodies in BALB/c mice. The antibodies were showed labeled antigen specificity to the BscE protein. As a result of immunization and systemic persistence tests carried out with BALB/c mice, BscE protein was determined to trigger high levels of humoral and cellular responses (Th1 cytokine production, IgG2a/IgG1 > 1). Systemic persistence in the liver and spleen samples decreased by 99.99% and 100% in the bcsE mutant strains. Finally, invasion abilities on HT-29 epithelial cells of wild-type strains were utterly disappeared in their bcsE gene mutant strains.
Collapse
Affiliation(s)
- Caner Özdemir
- UNAM - National Nanotechnology Research Center, Bilkent University, 06800, Ankara, Turkey
| | - Nefise Akçelik
- Biotechnology Institute, Ankara University, Ankara, Turkey
| | | | - İrem Evcili
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
| | - Tamer Kahraman
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
| | - İhsan Gürsel
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
| | - Mustafa Akçelik
- Department of Biology, Ankara University, 06100, Ankara, Turkey
| |
Collapse
|
33
|
Preparation of self-assembling Litsea cubeba essential oil/ diphenylalanine peptide micro/nanotubes with enhanced antibacterial properties against Staphylococcus aureus biofilm. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111394] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
34
|
Haque MM, Mosharaf MK, Haque MA, Tanvir MZH, Alam MK. Biofilm Formation, Production of Matrix Compounds and Biosorption of Copper, Nickel and Lead by Different Bacterial Strains. Front Microbiol 2021; 12:615113. [PMID: 34177820 PMCID: PMC8222582 DOI: 10.3389/fmicb.2021.615113] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 05/06/2021] [Indexed: 12/01/2022] Open
Abstract
Bacterial biofilms play a key role in metal biosorption from wastewater. Recently, Enterobacter asburiae ENSD102, Enterobacter ludwigii ENSH201, Vitreoscilla sp. ENSG301, Acinetobacter lwoffii ENSG302, and Bacillus thuringiensis ENSW401 were shown to form air–liquid (AL) and solid–air–liquid (SAL) biofilms in a static condition at 28 and 37°C, respectively. However, how environmental and nutritional conditions affect biofilm formation; production of curli and cellulose; and biosorption of copper (Cu), nickel (Ni), and lead (Pb) by these bacteria have not been studied yet. In this study, E. asburiae ENSD102, E. ludwigii ENSH201, and B. thuringiensis ENSW401 developed the SAL biofilms at pH 8, while E. asburiae ENSD102 and Vitreoscilla sp. ENSG301 constructed the SAL biofilms at pH 4. However, all these strains produced AL biofilms at pH 7. In high osmolarity and ½-strength media, all these bacteria built fragile AL biofilms, while none of these strains generated the biofilms in anaerobic conditions. Congo red binding results showed that both environmental cues and bacterial strains played a vital role in curli and cellulose production. Calcofluor binding and spectrophotometric results revealed that all these bacterial strains produced significantly lesser amounts of cellulose at 37°C, pH 8, and in high osmotic conditions as compared to the regular media, at 28°C, and pH 7. Metal biosorption was drastically reduced in these bacteria at 37°C than at 28°C. Only Vitreoscilla sp. ENSG301 and B. thuringiensis ENSW401 completely removed (100%) Cu and Ni at an initial concentration of 12.5 mg l–1, while all these bacteria totally removed (100%) Pb at concentrations of 12.5 and 25 mg l–1 at pH 7 and 28°C. At an initial concentration of 100 mg l–1, the removal of Cu (92.5 to 97.8%) and Pb (89.3 to 98.3%) was the highest at pH 6, while it was higher (84.7 to 93.9%) for Ni at pH 7. Fourier transform infrared spectroscopy results showed metal-unloaded biomass biofilms contained amino, hydroxyl, carboxyl, carbonyl, and phosphate groups. The peak positions of these groups were shifted responding to Cu, Ni, and Pb, suggesting biosorption of metals. Thus, these bacterial strains could be utilized to remove Cu, Ni, and Pb from aquatic environment.
Collapse
Affiliation(s)
- Md Manjurul Haque
- Department of Environmental Science, Faculty of Agriculture, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Md Khaled Mosharaf
- Department of Environmental Science, Faculty of Agriculture, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Md Amdadul Haque
- Department of Agro-Processing, Faculty of Agriculture, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Md Zahid Hasan Tanvir
- Department of Environmental Science, Faculty of Agriculture, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Md Khairul Alam
- Soil Science Division, Bangladesh Agricultural Research Institute, Gazipur, Bangladesh
| |
Collapse
|
35
|
Martín‐Rodríguez AJ, Villion K, Yilmaz‐Turan S, Vilaplana F, Sjöling Å, Römling U. Regulation of colony morphology and biofilm formation in Shewanella algae. Microb Biotechnol 2021; 14:1183-1200. [PMID: 33764668 PMCID: PMC8085958 DOI: 10.1111/1751-7915.13788] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 12/17/2022] Open
Abstract
Bacterial colony morphology can reflect different physiological stages such as virulence or biofilm formation. In this work we used transposon mutagenesis to identify genes that alter colony morphology and cause differential Congo Red (CR) and Brilliant Blue G (BBG) binding in Shewanella algae, a marine indigenous bacterium and occasional human pathogen. Microscopic analysis of colonies formed by the wild-type strain S. algae CECT 5071 and three transposon integration mutants representing the diversity of colony morphotypes showed production of biofilm extracellular polymeric substances (EPS) and distinctive morphological alterations. Electrophoretic and chemical analyses of extracted EPS showed differential patterns between strains, although the targets of CR and BBG binding remain to be identified. Galactose and galactosamine were the preponderant sugars in the colony biofilm EPS of S. algae. Surface-associated biofilm formation of transposon integration mutants was not directly correlated with a distinct colony morphotype. The hybrid sensor histidine kinase BarA abrogated surface-associated biofilm formation. Ectopic expression of the kinase and mutants in the phosphorelay cascade partially recovered biofilm formation. Altogether, this work provides the basic analysis to subsequently address the complex and intertwined networks regulating colony morphology and biofilm formation in this poorly understood species.
Collapse
Affiliation(s)
| | - Katia Villion
- Department of Microbiology, Tumor and Cell BiologyKarolinska InstitutetStockholmSweden
| | - Secil Yilmaz‐Turan
- Division of GlycoscienceDepartment of ChemistryKTH Royal Institute of TechnologyAlbaNova University CentreStockholmSweden
| | - Francisco Vilaplana
- Division of GlycoscienceDepartment of ChemistryKTH Royal Institute of TechnologyAlbaNova University CentreStockholmSweden
| | - Åsa Sjöling
- Department of Microbiology, Tumor and Cell BiologyKarolinska InstitutetStockholmSweden
| | - Ute Römling
- Department of Microbiology, Tumor and Cell BiologyKarolinska InstitutetStockholmSweden
| |
Collapse
|
36
|
Ko D, Choi SH. Comparative genomics reveals an SNP potentially leading to phenotypic diversity of Salmonella enterica serovar Enteritidis. Microb Genom 2021; 7:000572. [PMID: 33952386 PMCID: PMC8209725 DOI: 10.1099/mgen.0.000572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/29/2021] [Indexed: 12/25/2022] Open
Abstract
An SNP is a spontaneous genetic change having a potential to modify the functions of the original genes and to lead to phenotypic diversity of bacteria in nature. In this study, a phylogenetic analysis of Salmonella enterica serovar Enteritidis, a major food-borne pathogen, showed that eight strains of S. Enteritidis isolated in South Korea, including FORC_075 and FORC_078, have almost identical genome sequences. Interestingly, however, the abilities of FORC_075 to form biofilms and red, dry and rough (RDAR) colonies were significantly impaired, resulting in phenotypic differences among the eight strains. Comparative genomic analyses revealed that one of the non-synonymous SNPs unique to FORC_075 has occurred in envZ, which encodes a sensor kinase of the EnvZ/OmpR two-component system. The SNP in envZ leads to an amino acid change from Pro248 (CCG) in other strains including FORC_078 to Leu248 (CTG) in FORC_075. Allelic exchange of envZ between FORC_075 and FORC_078 identified that the SNP in envZ is responsible for the impaired biofilm- and RDAR colony-forming abilities of S. Enteritidis. Biochemical analyses demonstrated that the SNP in envZ significantly increases the phosphorylated status of OmpR in S. Enteritidis and alters the expression of the OmpR regulon. Phenotypic analyses further identified that the SNP in envZ decreases motility of S. Enteritidis but increases its adhesion and invasion to both human epithelial cells and murine macrophage cells. In addition to an enhancement of infectivity to the host cells, survival under acid stress was also elevated by the SNP in envZ. Together, these results suggest that the natural occurrence of the SNP in envZ could contribute to phenotypic diversity of S. Enteritidis, possibly improving its fitness and pathogenesis.
Collapse
Affiliation(s)
- Duhyun Ko
- National Research Laboratory of Molecular Microbiology and Toxicology, Department of Agricultural Biotechnology and Center for Food and Bioconvergence, Seoul National University, Seoul, Republic of Korea
| | - Sang Ho Choi
- National Research Laboratory of Molecular Microbiology and Toxicology, Department of Agricultural Biotechnology and Center for Food and Bioconvergence, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
37
|
Biofilm formation in the lung contributes to virulence and drug tolerance of Mycobacterium tuberculosis. Nat Commun 2021; 12:1606. [PMID: 33707445 PMCID: PMC7952908 DOI: 10.1038/s41467-021-21748-6] [Citation(s) in RCA: 124] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 02/05/2021] [Indexed: 01/31/2023] Open
Abstract
Tuberculosis is a chronic disease that displays several features commonly associated with biofilm-associated infections: immune system evasion, antibiotic treatment failures, and recurrence of infection. However, although Mycobacterium tuberculosis (Mtb) can form cellulose-containing biofilms in vitro, it remains unclear whether biofilms are formed during infection in vivo. Here, we demonstrate the formation of Mtb biofilms in animal models of infection and in patients, and that biofilm formation can contribute to drug tolerance. First, we show that cellulose is also a structural component of the extracellular matrix of in vitro biofilms of fast and slow-growing nontuberculous mycobacteria. Then, we use cellulose as a biomarker to detect Mtb biofilms in the lungs of experimentally infected mice and non-human primates, as well as in lung tissue sections obtained from patients with tuberculosis. Mtb strains defective in biofilm formation are attenuated for survival in mice, suggesting that biofilms protect bacilli from the host immune system. Furthermore, the administration of nebulized cellulase enhances the antimycobacterial activity of isoniazid and rifampicin in infected mice, supporting a role for biofilms in phenotypic drug tolerance. Our findings thus indicate that Mtb biofilms are relevant to human tuberculosis.
Collapse
|
38
|
Miller AL, Bessho S, Grando K, Tükel Ç. Microbiome or Infections: Amyloid-Containing Biofilms as a Trigger for Complex Human Diseases. Front Immunol 2021; 12:638867. [PMID: 33717189 PMCID: PMC7952436 DOI: 10.3389/fimmu.2021.638867] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 02/09/2021] [Indexed: 12/14/2022] Open
Abstract
The human microbiota is the community of microorganisms that live upon or within their human host. The microbiota consists of various microorganisms including bacteria, fungi, viruses, and archaea; the gut microbiota is comprised mostly of bacteria. Many bacterial species within the gut microbiome grow as biofilms, which are multicellular communities embedded in an extracellular matrix. Studies have shown that the relative abundances of bacterial species, and therefore biofilms and bacterial byproducts, change during progression of a variety of human diseases including gastrointestinal, autoimmune, neurodegenerative, and cancer. Studies have shown the location and proximity of the biofilms within the gastrointestinal tract might impact disease outcome. Gram-negative enteric bacteria secrete the amyloid curli, which makes up as much as 85% of the extracellular matrix of enteric biofilms. Curli mediates cell-cell attachment and attachment to various surfaces including extracellular matrix components such as fibronectin and laminin. Structurally, curli is strikingly similar to pathological and immunomodulatory human amyloids such as amyloid-β, which has been implicated in Alzheimer's disease, α-synuclein, which is involved in Parkinson's disease, and serum amyloid A, which is secreted during the acute phase of inflammation. The immune system recognizes both bacterial amyloid curli and human amyloids utilizing the same receptors, so curli also induces inflammation. Moreover, recent work indicates that curli can participate in the self-assembly process of pathological human amyloids. Curli is found within biofilms of commensal enteric bacteria as well as invasive pathogens; therefore, evidence suggests that curli contributes to complex human diseases. In this review, we summarize the recent findings on how bacterial biofilms containing curli participate in the pathological and immunological processes in gastrointestinal diseases, systemic autoimmune diseases, and neurodegenerative diseases.
Collapse
Affiliation(s)
- Amanda L Miller
- Department of Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Shingo Bessho
- Department of Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Kaitlyn Grando
- Department of Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Çagla Tükel
- Department of Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| |
Collapse
|
39
|
Harrell JE, Hahn MM, D'Souza SJ, Vasicek EM, Sandala JL, Gunn JS, McLachlan JB. Salmonella Biofilm Formation, Chronic Infection, and Immunity Within the Intestine and Hepatobiliary Tract. Front Cell Infect Microbiol 2021; 10:624622. [PMID: 33604308 PMCID: PMC7885405 DOI: 10.3389/fcimb.2020.624622] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 12/17/2020] [Indexed: 12/12/2022] Open
Abstract
Within the species of Salmonella enterica, there is significant diversity represented among the numerous subspecies and serovars. Collectively, these account for microbes with variable host ranges, from common plant and animal colonizers to extremely pathogenic and human-specific serovars. Despite these differences, many Salmonella species find commonality in the ability to form biofilms and the ability to cause acute, latent, or chronic disease. The exact outcome of infection depends on many factors such as the growth state of Salmonella, the environmental conditions encountered at the time of infection, as well as the infected host and immune response elicited. Here, we review the numerous biofilm lifestyles of Salmonella (on biotic and abiotic surfaces) and how the production of extracellular polymeric substances not only enhances long-term persistence outside the host but also is an essential function in chronic human infections. Furthermore, careful consideration is made for the events during initial infection that allow for gut transcytosis which, in conjunction with host immune functions, often determine the progression of disease. Both typhoidal and non-typhoidal salmonellae can cause chronic and/or secondary infections, thus the adaptive immune responses to both types of bacteria are discussed with particular attention to the differences between Salmonella Typhi, Salmonella Typhimurium, and invasive non-typhoidal Salmonella that can result in differential immune responses. Finally, while strides have been made in our understanding of immunity to Salmonella in the lymphoid organs, fewer definitive studies exist for intestinal and hepatobiliary immunity. By examining our current knowledge and what remains to be determined, we provide insight into new directions in the field of Salmonella immunity, particularly as it relates to chronic infection.
Collapse
Affiliation(s)
- Jaikin E Harrell
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, United States
| | - Mark M Hahn
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, United States.,Infectious Diseases Institute, The Ohio State University, Columbus, OH, United States
| | - Shaina J D'Souza
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, United States
| | - Erin M Vasicek
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, United States.,Infectious Diseases Institute, The Ohio State University, Columbus, OH, United States
| | - Jenna L Sandala
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, United States.,Infectious Diseases Institute, The Ohio State University, Columbus, OH, United States
| | - John S Gunn
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, United States.,Infectious Diseases Institute, The Ohio State University, Columbus, OH, United States.,Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - James B McLachlan
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, United States
| |
Collapse
|
40
|
The Effect of Antimicrobial Resistance Plasmids Carrying blaCMY-2 on Biofilm Formation by Escherichia coli from the Broiler Production Chain. Microorganisms 2021; 9:microorganisms9010104. [PMID: 33466318 PMCID: PMC7824781 DOI: 10.3390/microorganisms9010104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 12/05/2022] Open
Abstract
Extended-spectrum cephalosporin-resistant Escherichia coli (ESCR E. coli) with plasmids carrying the blaCMY-2 resistance gene have been isolated from the Norwegian broiler production chain through the Norwegian monitoring program for antimicrobial resistance in animals, food and feed, NORM-VET. The aim of the present study was to investigate the biofilm forming abilities of these strains, and in particular to see whether these might be influenced by the carriage of blaCMY-2 plasmids. The ESCR E. coli from the broiler production chain displayed relatively low biofilm forming abilities in the crystal violet biofilm assay as compared to quinolone-resistant E. coli (QREC) from the same population (mean ± SD = 0.686 ± 0.686 vs. 1.439 ± 0.933, respectively). Acquisition of two different blaCMY-2 plasmids by QREC strains reduced their biofilm production in microtiter plates, but not their biofilm production on Congo Red agar plates. Furthermore, motility was reduced, but not planktonic growth. We hypothesize that genes carried by these plasmids may have caused the observed reduction in biofilm formation, possibly mediated through changes in flagellar expression or function. Furthermore, this may help explain the different biofilm forming abilities observed between ESCR E. coli and QREC. The results also indicate that the risk of biofilm reservoirs of antimicrobial resistant E. coli on in the broiler production is lower for ESCR E. coli than for QREC.
Collapse
|
41
|
Haque MM, Mosharaf MK, Khatun M, Haque MA, Biswas MS, Islam MS, Islam MM, Shozib HB, Miah MMU, Molla AH, Siddiquee MA. Biofilm Producing Rhizobacteria With Multiple Plant Growth-Promoting Traits Promote Growth of Tomato Under Water-Deficit Stress. Front Microbiol 2020; 11:542053. [PMID: 33324354 PMCID: PMC7727330 DOI: 10.3389/fmicb.2020.542053] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 10/29/2020] [Indexed: 01/10/2023] Open
Abstract
Plant growth-promoting rhizobacteria (PGPR) not only enhance plant growth but also control phytopathogens and mitigate abiotic stresses, including water-deficit stress. In this study, 21 (26.9%) rhizobacterial strains isolated from drought-prone ecosystems of Bangladesh were able to form air–liquid (AL) biofilms in the glass test tubes containing salt-optimized broth plus glycerol (SOBG) medium. Based on 16S rRNA gene sequencing, Pseudomonas chlororaphis (ESR3 and ESR15), P. azotoformans ESR4, P. poae ESR6, P. fluorescens (ESR7 and ESR25), P. gessardii ESR9, P. cedrina (ESR12, ESR16, and ESR23), P. veronii (ESR13 and ESR21), P. parafulva ESB18, Stenotrophomonas maltophilia ESR20, Bacillus cereus (ESD3, ESD21, and ESB22), B. horikoshii ESD16, B. aryabhattai ESB6, B. megaterium ESB9, and Staphylococcus saprophyticus ESD8 were identified. Fourier transform infrared spectroscopy studies showed that the biofilm matrices contain proteins, polysaccharides, nucleic acids, and lipids. Congo red binding results indicated that these bacteria produced curli fimbriae and nanocellulose-rich polysaccharides. Expression of nanocellulose was also confirmed by Calcofluor binding assays and scanning electron microscopy. In vitro studies revealed that all these rhizobacterial strains expressed multiple plant growth-promoting traits including N2 fixation, production of indole-3-acetic acid, solubilization of nutrients (P, K, and Zn), and production of ammonia, siderophores, ACC deaminase, catalases, lipases, cellulases, and proteases. Several bacteria were also tolerant to multifarious stresses such as drought, high temperature, extreme pH, and salinity. Among these rhizobacteria, P. cedrina ESR12, P. chlororaphis ESR15, and B. cereus ESD3 impeded the growth of Xanthomonas campestris pv. campestris ATCC 33913, while P. chlororaphis ESR15 and B. cereus ESD21 prevented the progression of Ralstonia solanacearum ATCC® 11696TM. In a pot experiment, tomato plants inoculated with P. azotoformans ESR4, P. poae ESR6, P. gessardii ESR9, P. cedrina ESR12, P. chlororaphis ESR15, S. maltophilia ESR20, P. veronii ESR21, and B. aryabhattai ESB6 exhibited an increased plant growth compared to the non-inoculated plants under water deficit-stressed conditions. Accordingly, the bacterial-treated plants showed a higher antioxidant defense system and a fewer tissue damages than non-inoculated plants under water-limiting conditions. Therefore, biofilm-producing PGPR can be utilized as plant growth promoters, suppressors of plant pathogens, and alleviators of water-deficit stress.
Collapse
Affiliation(s)
- Md Manjurul Haque
- Department of Environmental Science, Faculty of Agriculture, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Md Khaled Mosharaf
- Department of Environmental Science, Faculty of Agriculture, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Moriom Khatun
- Department of Environmental Science, Faculty of Agriculture, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Md Amdadul Haque
- Department of Agro-Processing, Faculty of Agriculture, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Md Sanaullah Biswas
- Department of Horticulture, Faculty of Agriculture, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | | | - Md Mynul Islam
- Plant Pathology Division, Bangladesh Agricultural Research Institute, Gazipur, Bangladesh
| | - Habibul Bari Shozib
- Grain Quality and Nutrition Division, Bangladesh Rice Research Institute, Gazipur, Bangladesh
| | - Md Main Uddin Miah
- Department of Agroforestry and Environment, Faculty of Agriculture, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Abul Hossain Molla
- Department of Environmental Science, Faculty of Agriculture, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Muhammad Ali Siddiquee
- Grain Quality and Nutrition Division, Bangladesh Rice Research Institute, Gazipur, Bangladesh
| |
Collapse
|
42
|
Osland AM, Vestby LK, Nesse LL. The Effect of Disinfectants on Quinolone Resistant E. coli (QREC) in Biofilm. Microorganisms 2020; 8:microorganisms8111831. [PMID: 33233591 PMCID: PMC7699778 DOI: 10.3390/microorganisms8111831] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 11/18/2020] [Indexed: 12/18/2022] Open
Abstract
The aim of disinfection is to reduce the number of microorganisms on surfaces which is a challenge due to biofilms. In the present study, six quinolone resistant Escherichia coli (QREC) strains with three different biofilm matrix compositions were included to assess the log10 colony forming units (CFU) reduction effect of three disinfectants at various exposure times on biofilm of different ages and morphotypes. Biofilm was formed on stainless steel coupons for two and five days before transferred to tubes with Virocid 0, 25%, VirkonS 1%, and TP990 1% and left for various exposure times. The biofilms were scraped off and serial dilutions were spread on blood agar plates where colony forming units (CFU) were counted. A mean log10 CFU reduction ≥4 was seen on two-day-old biofilm with VirkonS and Virocid (30 min) but not on five-day old biofilm. TP990 did not display sufficient effect under the conditions tested. The bactericidal effect was inferior to that reported on planktonic bacteria. The findings of this study should be considered when establishing both disinfectant routines and standard susceptibility tests, which further should accommodate E. coli biofilms and not only Pseudomonas as is the case today.
Collapse
|
43
|
Clarithromycin Exerts an Antibiofilm Effect against Salmonella enterica Serovar Typhimurium rdar Biofilm Formation and Transforms the Physiology towards an Apparent Oxygen-Depleted Energy and Carbon Metabolism. Infect Immun 2020; 88:IAI.00510-20. [PMID: 32839186 DOI: 10.1128/iai.00510-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 08/16/2020] [Indexed: 11/20/2022] Open
Abstract
Upon biofilm formation, production of extracellular matrix components and alteration in physiology and metabolism allows bacteria to build up multicellular communities which can facilitate nutrient acquisition during unfavorable conditions and provide protection toward various forms of environmental stresses to individual cells. Thus, bacterial cells within biofilms become tolerant against antimicrobials and the immune system. In the present study, we evaluated the antibiofilm activity of the macrolides clarithromycin and azithromycin. Clarithromycin showed antibiofilm activity against rdar (red, dry, and rough) biofilm formation of the gastrointestinal pathogen Salmonella enterica serovar Typhimurium ATCC 14028 (Nalr) at a 1.56 μM subinhibitory concentration in standing culture and dissolved cell aggregates at 15 μM in a microaerophilic environment, suggesting that the oxygen level affects the activity of the drug. Treatment with clarithromycin significantly decreased transcription and production of the rdar biofilm activator CsgD, with biofilm genes such as csgB and adrA to be concomitantly downregulated. Although fliA and other flagellar regulon genes were upregulated, apparent motility was downregulated. RNA sequencing showed a holistic cell response upon clarithromycin exposure, whereby not only genes involved in the biofilm-related regulatory pathways but also genes that likely contribute to intrinsic antimicrobial resistance, and the heat shock stress response were differentially regulated. Most significantly, clarithromycin exposure shifted the cells toward an apparent oxygen- and energy-depleted status, whereby the metabolism that channels into oxidative phosphorylation was downregulated, and energy gain by degradation of propane 1,2-diol, ethanolamine and l-arginine catabolism, potentially also to prevent cytosolic acidification, was upregulated. This analysis will allow the subsequent identification of novel intrinsic antimicrobial resistance determinants.
Collapse
|
44
|
Kotian A, Aditya V, Jazeela K, Karunasagar I, Karunasagar I, Deekshit VK. Effect of bile on growth and biofilm formation of non-typhoidal salmonella serovars isolated from seafood and poultry. Res Microbiol 2020; 171:165-173. [PMID: 32569709 DOI: 10.1016/j.resmic.2020.06.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 06/06/2020] [Accepted: 06/08/2020] [Indexed: 11/16/2022]
Abstract
Bacterial cells adopt various strategies to adapt themselves in diverse environmental conditions. Salmonella is one such bacteria with diverse mechanisms to survive, replicate and infect in wide host range. This study aims at investigating the biofilm-forming ability of multidrug-resistant and sensitive Salmonella serovars on exposure to bile. Antibiogram of all the isolates was determined by disk diffusion method and their biofilm-forming ability in the presence or absence of bile was assessed by microtiter plate assay. Biofilm results were validated by calcofluor, Congo red plate and test tube method. Few isolates were selected for further study of their expression of biofilm related genes on exposure to bile using real time PCR. Among the 59 isolates of Salmonella isolated from seafood and poultry, 30 isolates were multi-drug resistant (MDR). Under control conditions, 57% (n = 25) of the serovars were able to form biofilm. While, 86% (n = 51) of the serovars produced biofilm in the presence of bile. The relative gene expression study of the selected serovars for 8 different genes showed a striking difference in the expression levels, supporting the hypothesis that the presence of bile triggers biofilm formation in food associated strains of non-typhoidal Salmonella by upregulation of genes involved in biofilm production.
Collapse
Affiliation(s)
- Akshatha Kotian
- Nitte University Center for Science Education and Research, Division of Infectious Diseases, Nitte (Deemed to Be University), Deralakatte, Mangaluru 575018, Karnataka, India.
| | - Vankadari Aditya
- Nitte University Center for Science Education and Research, Division of Infectious Diseases, Nitte (Deemed to Be University), Deralakatte, Mangaluru 575018, Karnataka, India.
| | - Kadeeja Jazeela
- Nitte University Center for Science Education and Research, Division of Infectious Diseases, Nitte (Deemed to Be University), Deralakatte, Mangaluru 575018, Karnataka, India.
| | - Iddya Karunasagar
- Nitte University Center for Science Education and Research, Division of Infectious Diseases, Nitte (Deemed to Be University), Deralakatte, Mangaluru 575018, Karnataka, India.
| | - Indrani Karunasagar
- Nitte University Center for Science Education and Research, Division of Infectious Diseases, Nitte (Deemed to Be University), Deralakatte, Mangaluru 575018, Karnataka, India.
| | - Vijaya Kumar Deekshit
- Nitte University Center for Science Education and Research, Division of Infectious Diseases, Nitte (Deemed to Be University), Deralakatte, Mangaluru 575018, Karnataka, India.
| |
Collapse
|
45
|
Shafeeq S, Wang X, Lünsdorf H, Brauner A, Römling U. Draft Genome Sequence of the Urinary Catheter Isolate Enterobacter ludwigii CEB04 with High Biofilm Forming Capacity. Microorganisms 2020; 8:microorganisms8040522. [PMID: 32260576 PMCID: PMC7232144 DOI: 10.3390/microorganisms8040522] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/02/2020] [Accepted: 04/02/2020] [Indexed: 01/14/2023] Open
Abstract
Enterobacter ludwigii is a fermentative Gram-negative environmental species and accidental human pathogen that belongs to the Enterobacter cloacae complex with the general characteristics of the genus Enterobacter. The clinical isolate E. ludwigii CEB04 was derived from a urinary tract catheter of an individual not suffering from catheter-associated urinary tract infection. The draft genome sequence of the high biofilm forming E. ludwigii CEB04 was determined by PacBio sequencing. The chromosome of E. ludwigii CEB04 is comprised of one contig of 4,892,375 bps containing 4596 predicted protein-coding genes and 120 noncoding RNAs. E. ludwigii CEB04 harbors several antimicrobial resistance markers and has an extended cyclic-di-GMP signaling network compared to Escherichia coli K-12.
Collapse
Affiliation(s)
- Sulman Shafeeq
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-171 65 Stockholm, Sweden; (S.S.); (X.W.); (A.B.)
| | - Xiaoda Wang
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-171 65 Stockholm, Sweden; (S.S.); (X.W.); (A.B.)
| | - Heinrich Lünsdorf
- Helmholtz Center for Infection Research, DE-38124 Braunschweig, Germany;
| | - Annelie Brauner
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-171 65 Stockholm, Sweden; (S.S.); (X.W.); (A.B.)
- Clinical Microbiology, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | - Ute Römling
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-171 65 Stockholm, Sweden; (S.S.); (X.W.); (A.B.)
- Correspondence:
| |
Collapse
|
46
|
Thakur S, Ray S, Jhunjhunwala S, Nandi D. Insights into coumarin-mediated inhibition of biofilm formation in Salmonella Typhimurium. BIOFOULING 2020; 36:479-491. [PMID: 32546074 DOI: 10.1080/08927014.2020.1773447] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 05/14/2020] [Accepted: 05/15/2020] [Indexed: 06/11/2023]
Abstract
Coumarins have been shown to possess antimicrobial, anti-quorum sensing and anti-biofilm properties against a wide range of pathogenic bacteria. This study aimed to shed light on the effects of non-substituted coumarin on biofilm formation by the foodborne pathogen Salmonella Typhimurium. Additionally, its efficacy was tested in combination with another potent anti-biofilm agent, resveratrol. Coumarin inhibited biofilm formation for prolonged periods in millimolar concentrations with marginal effects on planktonic growth. It attenuated curli and cellulose production, likely by downregulating the transcript levels of major biofilm formation genes csgD, csgA and adrA. Coumarin further restricted motility in a dose-dependent manner. In addition, coumarin with resveratrol exhibited improved anti-biofilm properties compared with the individual compounds alone. Thus, coumarin alone or with resveratrol can be employed for inhibiting biofilms in food storage and processing units.
Collapse
Affiliation(s)
- Samriddhi Thakur
- Department of Undergraduate Studies, Indian Institute of Science, Bangalore, India
| | - Semanti Ray
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Siddharth Jhunjhunwala
- Centre for Biosystems Science and Engineering, Indian Institute of Science, Bangalore, India
| | - Dipankar Nandi
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| |
Collapse
|
47
|
Nesse LL, Osland AM, Mo SS, Sekse C, Slettemeås JS, Bruvoll AEE, Urdahl AM, Vestby LK. Biofilm forming properties of quinolone resistant Escherichia coli from the broiler production chain and their dynamics in mixed biofilms. BMC Microbiol 2020; 20:46. [PMID: 32131730 PMCID: PMC7055085 DOI: 10.1186/s12866-020-01730-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 02/20/2020] [Indexed: 01/06/2023] Open
Abstract
Background Quinolone resistant Escherichia coli (QREC) have been found in samples from Norwegian broiler chicken, despite quinolones not being administered to poultry in Norway. Biofilm production may be one factor contributing to the observed persistence in the broiler production chain. In the present study, 158 QREC strains from chicken caecal and retail meat samples were screened for biofilm production in microtiter plates, biofilm morphotype on Congo Red (CR) agar plates and phylotype by multiplex PCR. Furthermore, the dynamics in mixed biofilms with strains of different morphotypes were studied on glass slides and on CR agar plates. Results All strains but one produced biofilm in microtiter plates and/or on CR agar plates at room temperature. There were no differences between strains from chicken caecum and chicken retail meat in the mean amount of biofilm produced in microtiter plates. Furthermore, no differences in biofilm production were observed between phylotypes. However, significant differences in biofilm production were found between biofilm morphotypes. The morphotype RDAR (red dry and rough, which has both curli and cellulose in the matrix, was displayed by 70% of the strains. Mean biofilm production by these strains were significantly higher than by strains with the morphotypes PDAR (pink dry and rough) with only cellulose or BDAR (brown dry and rough) with only curli. Interestingly, the two latter morphotypes produced biofilms with the morphotype RDAR when grown together. None of the strains achieved significantly higher numbers of colony forming units (cfu) in mixed biofilms than in single strain biofilms on glass slides. Conclusions The results indicate that QREC can form biofilm reservoirs on both inert and organic surfaces in production environments, as well as on meat. This may contribute to persistence and dissemination of the strains. Strains with both curli and cellulose in the biofilm matrix were significantly better biofilm formers than strains lacking one of these components. However, strains with only one of the components could compensate for this by producing mixed biofilms with strains having the other component, and thereby most likely enhance their probabilities of persistence in the production environment.
Collapse
Affiliation(s)
- Live L Nesse
- Norwegian Veterinary Institute, P.O. Box 750 Sentrum, N-0106, Oslo, Norway.
| | - Ane Mohr Osland
- Norwegian Veterinary Institute, P.O. Box 750 Sentrum, N-0106, Oslo, Norway
| | - Solveig S Mo
- Norwegian Veterinary Institute, P.O. Box 750 Sentrum, N-0106, Oslo, Norway
| | - Camilla Sekse
- Norwegian Veterinary Institute, P.O. Box 750 Sentrum, N-0106, Oslo, Norway
| | | | | | | | - Lene K Vestby
- Norwegian Veterinary Institute, P.O. Box 750 Sentrum, N-0106, Oslo, Norway
| |
Collapse
|
48
|
A Cyclic-di-GMP signalling network regulates biofilm formation and surface associated motility of Acinetobacter baumannii 17978. Sci Rep 2020; 10:1991. [PMID: 32029764 PMCID: PMC7005169 DOI: 10.1038/s41598-020-58522-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 01/16/2020] [Indexed: 11/30/2022] Open
Abstract
Acinetobacter baumannii has emerged as an increasing multidrug-resistant threat in hospitals and a common opportunistic nosocomial pathogen worldwide. However, molecular details of the pathogenesis and physiology of this bacterium largely remain to be elucidated. Here we identify and characterize the c-di-GMP signalling network and assess its role in biofilm formation and surface associated motility. Bioinformatic analysis revealed eleven candidate genes for c-di-GMP metabolizing proteins (GGDEF/EAL domain proteins) in the genome of A. baumannii strain 17978. Enzymatic activity of the encoded proteins was assessed by molecular cloning and expression in the model organisms Salmonella typhimurium and Vibrio cholerae. Ten of the eleven GGDEF/EAL proteins altered the rdar morphotype of S. typhimurium and the rugose morphotype of V. cholerae. The over expression of three GGDEF proteins exerted a pronounced effect on colony formation of A. baumannii on Congo Red agar plates. Distinct panels of GGDEF/EAL proteins were found to alter biofilm formation and surface associated motility of A. baumannii upon over expression. The GGDEF protein A1S_3296 appeared as a major diguanylate cyclase regulating macro-colony formation, biofilm formation and the surface associated motility. AIS_3296 promotes Csu pili mediated biofilm formation. We conclude that a functional c-di-GMP signalling network in A. baumannii regulates biofilm formation and surface associated motility of this increasingly important opportunistic bacterial pathogen.
Collapse
|
49
|
Hu Y, Liu X, Ren ATM, Gu JD, Cao B. Optogenetic Modulation of a Catalytic Biofilm for the Biotransformation of Indole into Tryptophan. CHEMSUSCHEM 2019; 12:5142-5148. [PMID: 31621183 DOI: 10.1002/cssc.201902413] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/15/2019] [Indexed: 06/10/2023]
Abstract
In green chemical synthesis, biofilms as biocatalysts have shown great promise. Efficient biofilm-mediated biocatalysis requires the modulation of biofilm formation. Optogenetic tools are ideal to control biofilms because light is noninvasive, easily controllable, and cost-efficient. In this study, a gene circuit responsive to near-infrared (NIR) light was used to modulate the cellular level of bis-(3'-5') cyclic dimeric guanosine monophosphate (c-di-GMP), a central regulator of the prokaryote biofilm lifestyle, which allowed the regulation of biofilm formation by using NIR light. The engineered biofilm was applied to catalyze the biotransformation of indole into tryptophan in submerged biofilm reactors and NIR-light-enhanced biofilm formation resulted in an approximately 30 % increase in tryptophan yield, which demonstrates the feasibility of the application of light to modulate the formation and performance of catalytic biofilms for chemical production. The c-di-GMP-targeted optogenetic approach to modulate catalytic biofilms showcases applications for biofilm-mediated biocatalysis.
Collapse
Affiliation(s)
- Yidan Hu
- Singapore Centre for Environmental Life Sciences Engineering, Interdisciplinary Graduate School, Nanyang Technological University, 60 Nanyang Dr, Singapore, 637551, Singapore
| | - Xiaobo Liu
- Singapore Centre for Environmental Life Sciences Engineering, Interdisciplinary Graduate School, Nanyang Technological University, 60 Nanyang Dr, Singapore, 637551, Singapore
- Laboratory of Environmental Microbiology and Toxicology, School of Biological Sciences, The University of Hong Kong, Hong Kong, P.R. China
| | - Aloysius Teng Min Ren
- Singapore Centre for Environmental Life Sciences Engineering, Interdisciplinary Graduate School, Nanyang Technological University, 60 Nanyang Dr, Singapore, 637551, Singapore
| | - Ji-Dong Gu
- Laboratory of Environmental Microbiology and Toxicology, School of Biological Sciences, The University of Hong Kong, Hong Kong, P.R. China
| | - Bin Cao
- Singapore Centre for Environmental Life Sciences Engineering, Interdisciplinary Graduate School, Nanyang Technological University, 60 Nanyang Dr, Singapore, 637551, Singapore
- School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Ave, Singapore, 639798, Singapore
| |
Collapse
|
50
|
Lucca V, Apellanis Borges K, Quedi Furian T, Borsoi A, Pippi Salle CT, de Souza Moraes HL, Pinheiro do Nascimento V. Influence of the norepinephrine and medium acidification in the growth and adhesion of Salmonella Heidelberg isolated from poultry. Microb Pathog 2019; 138:103799. [PMID: 31614192 DOI: 10.1016/j.micpath.2019.103799] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 08/07/2019] [Accepted: 10/11/2019] [Indexed: 02/03/2023]
Abstract
Salmonella spp. are among the leading pathogens responsible for foodborne illnesses worldwide. Bacterial communities use a quorum sensing (QS) system to control biofilm formation. QS is a cell-to-cell signaling mechanism involving compounds called auto-inducers (AI). Norepinephrine utilizes the same bacterial signaling of AI-3 and serves as a signal of QS. Acid stress is a challenge encountered by microorganisms in food processing environments and in the gastrointestinal tracts of hosts. Thus, adaptation to acidic environments may increase the pathogenicity of the strain. The aim of this study was to evaluate the influence of two concentrations of norepinephrine (100 μM and 250 μM) and acidification (pH 3.0) of the medium on the growth and adhesion of Salmonella Heidelberg strains isolated from poultry sources at 12 °C and 25 °C. Furthermore, three genes associated with the biofilm formation process were detected (adrA, csgD, and sidA). Norepinephrine stimulation did not influence the growth or adhesion of Salmonella Heidelberg strains, regardless of the catecholamine concentration and temperature. On the other hand, the use of acidified medium (pH 3.0) resulted in a significant reduction of growth and a significant increase of S. Heidelberg adhesion at both temperatures, indicating that the acidified medium favors the biofilm formation process. The adrA and sidA genes showed higher detection frequencies than csgD. Experiments analyzing the biofilm production process by S. Heidelberg strains are not common, and further studies are necessary to understand this complex process.
Collapse
Affiliation(s)
- Vivian Lucca
- Universidade Federal do Rio Grande do Sul, Faculdade de Veterinária, Centro de Diagnóstico e Pesquisa em Patologia Aviária, Av. Bento Gonçalves, 8824, Porto Alegre, RS, Brazil
| | - Karen Apellanis Borges
- Universidade Federal do Rio Grande do Sul, Faculdade de Veterinária, Centro de Diagnóstico e Pesquisa em Patologia Aviária, Av. Bento Gonçalves, 8824, Porto Alegre, RS, Brazil.
| | - Thales Quedi Furian
- Universidade Federal do Rio Grande do Sul, Faculdade de Veterinária, Centro de Diagnóstico e Pesquisa em Patologia Aviária, Av. Bento Gonçalves, 8824, Porto Alegre, RS, Brazil
| | - Anderlise Borsoi
- Universidade Tuiuti do Paraná, R. Sydnei Antonio Rangel Santos, 238, Curitiba, PR, Brazil
| | - Carlos Tadeu Pippi Salle
- Universidade Federal do Rio Grande do Sul, Faculdade de Veterinária, Centro de Diagnóstico e Pesquisa em Patologia Aviária, Av. Bento Gonçalves, 8824, Porto Alegre, RS, Brazil
| | - Hamilton Luiz de Souza Moraes
- Universidade Federal do Rio Grande do Sul, Faculdade de Veterinária, Centro de Diagnóstico e Pesquisa em Patologia Aviária, Av. Bento Gonçalves, 8824, Porto Alegre, RS, Brazil
| | - Vladimir Pinheiro do Nascimento
- Universidade Federal do Rio Grande do Sul, Faculdade de Veterinária, Centro de Diagnóstico e Pesquisa em Patologia Aviária, Av. Bento Gonçalves, 8824, Porto Alegre, RS, Brazil
| |
Collapse
|