1
|
Chen X, Huang X, Zhang X, Chen Z. Metabolism-epigenetic interaction-based bone and dental regeneration: From impacts and mechanisms to treatment potential. Bone 2025; 192:117382. [PMID: 39730093 DOI: 10.1016/j.bone.2024.117382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 12/11/2024] [Accepted: 12/23/2024] [Indexed: 12/29/2024]
Abstract
Metabolic pathways exhibit fluctuating activities during bone and dental loss and defects, suggesting a regulated metabolic plasticity. Skeletal remodeling is an energy-demanding process related to altered metabolic activities. These metabolic changes are frequently associated with epigenetic modifications, including variations in the expression or activity of enzymes modified through epigenetic mechanisms, which directly or indirectly impact cellular metabolism. Metabolic reprogramming driven by bone and dental conditions alters the epigenetic landscape by modulating the activities of DNA and histone modification enzymes at the metabolite level. Epigenetic mechanisms modulate the expression of metabolic genes, consequently influencing the metabolome. The interplay between epigenetics and metabolomics is crucial in maintaining bone and dental homeostasis by preserving cell proliferation and pluripotency. This review, therefore, aims to examine the effects of metabolic reprogramming in bone and dental-related cells on the regulation of epigenetic modifications, particularly acetylation, methylation, and lactylation. We also discuss the effects of chromatin-modifying enzymes on metabolism and the potential therapeutic benefits of dietary compounds as epigenetic modulators. In this review, we highlight the inconsistencies in current research findings and suggest potential approaches to translate fundamental insights into clinical treatments for bone and tooth diseases.
Collapse
Affiliation(s)
- Xinyi Chen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Centre for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Centre of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China
| | - Xiaoyuan Huang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Centre for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Centre of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China
| | - Xiatong Zhang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Centre for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Centre of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China
| | - Zhuo Chen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Centre for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Centre of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China.
| |
Collapse
|
2
|
Rodríguez-Rodríguez R, Baena M, Zagmutt S, Paraiso WK, Reguera AC, Fadó R, Casals N. International Union of Basic and Clinical Pharmacology: Fundamental insights and clinical relevance regarding the carnitine palmitoyltransferase family of enzymes. Pharmacol Rev 2025; 77:100051. [PMID: 40106976 DOI: 10.1016/j.pharmr.2025.100051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 02/14/2025] [Indexed: 03/22/2025] Open
Abstract
The carnitine palmitoyltransferases (CPTs) play a key role in controlling the oxidation of long-chain fatty acids and are potential therapeutic targets for diseases with a strong metabolic component, such as obesity, diabetes, and cancer. Four distinct proteins are CPT1A, CPT1B, CPT1C, and CPT2, differing in tissue expression and catalytic activity. CPT1s are finely regulated by malonyl-CoA, a metabolite whose intracellular levels reflect the cell's nutritional state. Although CPT1C does not exhibit significant catalytic activity, it is capable of modulating the functioning of other neuronal proteins. Structurally, all CPTs share a Y-shaped catalytic tunnel that allows the entry of 2 substrates and accommodation of the acyl group in a hydrophobic pocket. Several molecules targeting these enzymes have been described, some showing potential in normalizing blood glucose levels in diabetic patients, and others that, through a central mechanism, are anorexigenic and enhance energy expenditure. However, given the critical roles that CPTs play in certain tissues, such as the heart, liver, and brain, it is essential to fully understand the differences between the various isoforms. We analyze in detail the structure of these proteins, their cellular and physiological functions, and their potential as therapeutic targets in diseases such as obesity, diabetes, and cancer. We also describe drugs identified to date as having inhibitory or activating capabilities for these proteins. This knowledge will support the design of new drugs specific to each isoform, and the development of nanomedicines that can selectively target particular tissues or cells. SIGNIFICANCE STATEMENT: Carnitine palmitoyltransferase (CPT) proteins, as gatekeepers of fatty acid oxidation, have great potential as pharmacological targets to treat metabolic diseases like obesity, diabetes, and cancer. In recent years, significant progress has been made in understanding the 3-dimensional structure of CPTs and their pathophysiological functions. A deeper understanding of the differences between the various CPT family members will enable the design of selective drugs and therapeutic approaches with fewer side effects.
Collapse
Affiliation(s)
- Rosalía Rodríguez-Rodríguez
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya (UIC), Sant Cugat del Vallès, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain.
| | - Miguel Baena
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya (UIC), Sant Cugat del Vallès, Spain
| | - Sebastián Zagmutt
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya (UIC), Sant Cugat del Vallès, Spain
| | - West Kristian Paraiso
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya (UIC), Sant Cugat del Vallès, Spain
| | - Ana Cristina Reguera
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya (UIC), Sant Cugat del Vallès, Spain
| | - Rut Fadó
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya (UIC), Sant Cugat del Vallès, Spain
| | - Núria Casals
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya (UIC), Sant Cugat del Vallès, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
3
|
Volpicella M, Sgobba MN, Laera L, Francavilla AL, De Luca DI, Guerra L, Pierri CL, De Grassi A. Carnitine O-Acetyltransferase as a Central Player in Lipid and Branched-Chain Amino Acid Metabolism, Epigenetics, Cell Plasticity, and Organelle Function. Biomolecules 2025; 15:216. [PMID: 40001519 PMCID: PMC11852590 DOI: 10.3390/biom15020216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 01/23/2025] [Accepted: 01/30/2025] [Indexed: 02/27/2025] Open
Abstract
Carnitine O-acetyltransferase (CRAT) is a key mitochondrial enzyme involved in maintaining metabolic homeostasis by mediating the reversible transfer of acetyl groups between acetyl-CoA and carnitine. This enzymatic activity ensures the optimal functioning of mitochondrial carbon flux by preventing acetyl-CoA accumulation, buffering metabolic flexibility, and regulating the balance between fatty acid and glucose oxidation. CRAT's interplay with the mitochondrial carnitine shuttle, involving carnitine palmitoyltransferases (CPT1 and CPT2) and the carnitine carrier (SLC25A20), underscores its critical role in energy metabolism. Emerging evidence highlights the structural and functional diversity of CRAT and structurally related acetyltransferases across cellular compartments, illustrating their coordinated role in lipid metabolism, amino acid catabolism, and mitochondrial bioenergetics. Moreover, the structural insights into CRAT have paved the way for understanding its regulation and identifying potential modulators with therapeutic applications for diseases such as diabetes, mitochondrial disorders, and cancer. This review examines CRAT's structural and functional aspects, its relationships with carnitine shuttle members and other carnitine acyltransferases, and its broader role in metabolic health and disease. The potential for targeting CRAT and its associated pathways offers promising avenues for therapeutic interventions aimed at restoring metabolic equilibrium and addressing metabolic dysfunction in disease states.
Collapse
Affiliation(s)
- Mariateresa Volpicella
- Department of Biosciences, Biotechnologies and Environment, University of Bari “Aldo Moro”; Via E. Orabona 4, 70125 Bari, Italy; (M.V.); (M.N.S.); (L.L.); (A.L.F.); (D.I.D.L.); (L.G.)
| | - Maria Noemi Sgobba
- Department of Biosciences, Biotechnologies and Environment, University of Bari “Aldo Moro”; Via E. Orabona 4, 70125 Bari, Italy; (M.V.); (M.N.S.); (L.L.); (A.L.F.); (D.I.D.L.); (L.G.)
| | - Luna Laera
- Department of Biosciences, Biotechnologies and Environment, University of Bari “Aldo Moro”; Via E. Orabona 4, 70125 Bari, Italy; (M.V.); (M.N.S.); (L.L.); (A.L.F.); (D.I.D.L.); (L.G.)
| | - Anna Lucia Francavilla
- Department of Biosciences, Biotechnologies and Environment, University of Bari “Aldo Moro”; Via E. Orabona 4, 70125 Bari, Italy; (M.V.); (M.N.S.); (L.L.); (A.L.F.); (D.I.D.L.); (L.G.)
| | - Danila Imperia De Luca
- Department of Biosciences, Biotechnologies and Environment, University of Bari “Aldo Moro”; Via E. Orabona 4, 70125 Bari, Italy; (M.V.); (M.N.S.); (L.L.); (A.L.F.); (D.I.D.L.); (L.G.)
| | - Lorenzo Guerra
- Department of Biosciences, Biotechnologies and Environment, University of Bari “Aldo Moro”; Via E. Orabona 4, 70125 Bari, Italy; (M.V.); (M.N.S.); (L.L.); (A.L.F.); (D.I.D.L.); (L.G.)
| | - Ciro Leonardo Pierri
- Laboratory of Biochemistry, Structural and Molecular Biology, Department of Pharmacy—Pharmaceutical Sciences, University of Bari “Aldo Moro”, Via E. Orabona 4, 70125 Bari, Italy
| | - Anna De Grassi
- Department of Biosciences, Biotechnologies and Environment, University of Bari “Aldo Moro”; Via E. Orabona 4, 70125 Bari, Italy; (M.V.); (M.N.S.); (L.L.); (A.L.F.); (D.I.D.L.); (L.G.)
| |
Collapse
|
4
|
Liu S, Chen J, Guan L, Xu L, Cai H, Wang J, Zhu DM, Zhu J, Yu Y. The brain, rapid eye movement sleep, and major depressive disorder: A multimodal neuroimaging study. Prog Neuropsychopharmacol Biol Psychiatry 2025; 136:111151. [PMID: 39326695 DOI: 10.1016/j.pnpbp.2024.111151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/10/2024] [Accepted: 09/22/2024] [Indexed: 09/28/2024]
Abstract
BACKGROUND Evidence has established the prominent involvement of rapid eye movement (REM) sleep disturbance in major depressive disorder (MDD). However, the neural correlates of REM sleep in MDD and their clinical significance are less clear. METHODS Cross-sectional and longitudinal polysomnography and resting-state functional MRI data were collected from 131 MDD patients and 71 healthy controls to measure REM sleep and voxel-mirrored homotopic connectivity (VMHC). Correlation and mediation analyses were performed to examine the associations between REM sleep, VMHC, and clinical variables. Moreover, we conducted spatial correlations between the neural correlates of REM sleep and a multimodal collection of reference brain maps to facilitate genetic, structural and functional annotations. RESULTS MDD patients exhibited REM sleep abnormalities manifesting as higher REM sleep latency and lower REM sleep duration, which were correlated with decreased VMHC of the precentral gyrus and inferior parietal lobe and mediated their associations with more severe anxiety symptoms. Longitudinal data showed that VMHC increase of the inferior parietal lobe was related to improvement of depression symptoms in MDD patients. Spatial correlation analyses revealed that the neural correlates of REM sleep in MDD were linked to gene categories primarily involving cellular metabolic process, signal pathway, and ion channel activity as well as linked to cortical microstructure, metabolism, electrophysiology, and cannabinoid receptor. CONCLUSION These findings may add important context to the growing literature on the complex interplay between sleep and MDD, and more broadly may inform future treatment for depression via regulating sleep.
Collapse
Affiliation(s)
- Siyu Liu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Research Center of Clinical Medical Imaging, Anhui Province, Hefei 230032, China; Anhui Provincial Institute of Translational Medicine, Hefei 230032, China; Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Hefei 230032, China
| | - Jingyao Chen
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Research Center of Clinical Medical Imaging, Anhui Province, Hefei 230032, China; Anhui Provincial Institute of Translational Medicine, Hefei 230032, China; Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Hefei 230032, China
| | - Lianzi Guan
- The School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei 230032, China; Department of Sleep Disorders, Affiliated Psychological Hospital of Anhui Medical University, Hefei 230022, China; Hefei Fourth People's Hospital, Hefei 230022, China; Anhui Mental Health Center, Hefei 230022, China
| | - Li Xu
- The School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei 230032, China; Department of Sleep Disorders, Affiliated Psychological Hospital of Anhui Medical University, Hefei 230022, China; Hefei Fourth People's Hospital, Hefei 230022, China; Anhui Mental Health Center, Hefei 230022, China
| | - Huanhuan Cai
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Research Center of Clinical Medical Imaging, Anhui Province, Hefei 230032, China; Anhui Provincial Institute of Translational Medicine, Hefei 230032, China; Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Hefei 230032, China
| | - Jie Wang
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Research Center of Clinical Medical Imaging, Anhui Province, Hefei 230032, China; Anhui Provincial Institute of Translational Medicine, Hefei 230032, China; Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Hefei 230032, China
| | - Dao-Min Zhu
- The School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei 230032, China; Department of Sleep Disorders, Affiliated Psychological Hospital of Anhui Medical University, Hefei 230022, China; Hefei Fourth People's Hospital, Hefei 230022, China; Anhui Mental Health Center, Hefei 230022, China.
| | - Jiajia Zhu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Research Center of Clinical Medical Imaging, Anhui Province, Hefei 230032, China; Anhui Provincial Institute of Translational Medicine, Hefei 230032, China; Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Hefei 230032, China.
| | - Yongqiang Yu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Research Center of Clinical Medical Imaging, Anhui Province, Hefei 230032, China; Anhui Provincial Institute of Translational Medicine, Hefei 230032, China; Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Hefei 230032, China.
| |
Collapse
|
5
|
Ye J, Chen Y, Shao Z, Wu Y, Li Y, Fang S, Wu S. TRF-16 Inhibits Lung Cancer Progression by Hindering the N6-Methyladenosine Modification of CPT1A mRNA. J Cell Mol Med 2024; 28:e70291. [PMID: 39679845 DOI: 10.1111/jcmm.70291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/20/2024] [Accepted: 12/04/2024] [Indexed: 12/17/2024] Open
Abstract
Transfer RNA-derived fragments (tRFs) are a new class of small non-coding RNAs. Recent studies suggest that tRFs participate in some pathological processes. However, the biological activities and processes of tRFs in lung cancer cells remain mainly unclear. In the present investigation, we employed tRNA-derived small RNA (tsRNA) sequencing to predict differentially expressed tsRNAs in lung cancer cells, and nine tsRNAs with significant expression alterations were validated using qPCR. Wound healing, colony formation, transwell invasion and CCK-8 assays were performed to detect the effects of tRF-16 on cell function. Western blotting evaluated the relationship between tRF-16 and the IGF2BP1 axis. Our findings demonstrated that tRF-16 expression was substantially downregulated in lung cancer cells. TRF-16 could inhibit lung cancer cells' ability to increase, migrate, invade and obtain radiation resistance. Furthermore, tRF-16 decreases the stability of CPT1A by impairing the binding of IGF2BP1 to CPT1A. As a result, the fatty acid metabolism in lung cancer cells was inhibited. Finally, tRF-16 also inhibits lung cancer cell proliferation in vivo. This study shows that tRF-16 plays a crucial regulatory role in the proliferation of lung cancer cells and may represent a novel avenue for their regulation.
Collapse
Affiliation(s)
- Jiankui Ye
- Department of Respiratory Medicine, The Affiliated Lihuili Hospital of Ningbo University, Zhejiang, China
| | - Yu Chen
- Department of Respiratory Medicine, The Affiliated Lihuili Hospital of Ningbo University, Zhejiang, China
- Health Science Center, Ningbo University, Zhejiang, China
| | - Zhuowei Shao
- Department of Respiratory Medicine, The Affiliated Lihuili Hospital of Ningbo University, Zhejiang, China
| | - Yili Wu
- Department of Respiratory Medicine, The Affiliated Lihuili Hospital of Ningbo University, Zhejiang, China
- Health Science Center, Ningbo University, Zhejiang, China
| | - You Li
- Department of Respiratory Medicine, The Affiliated Lihuili Hospital of Ningbo University, Zhejiang, China
| | - Shuai Fang
- Department of Thoracic Surgery, The Affiliated Hospital of Medical School of Ningbo University, Zhejiang, China
| | - Shibo Wu
- Department of Respiratory Medicine, The Affiliated Lihuili Hospital of Ningbo University, Zhejiang, China
| |
Collapse
|
6
|
Duan Y, Liu J, Li A, Liu C, Shu G, Yin G. The Role of the CPT Family in Cancer: Searching for New Therapeutic Strategies. BIOLOGY 2024; 13:892. [PMID: 39596847 PMCID: PMC11592116 DOI: 10.3390/biology13110892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 10/28/2024] [Accepted: 10/31/2024] [Indexed: 11/29/2024]
Abstract
Along with abnormalities in glucose metabolism, disturbances in the balance of lipid catabolism and synthesis have emerged as a new area of cancer metabolism that needs to be studied in depth. Disturbances in lipid metabolic homeostasis, represented by fatty acid oxidation (FAO) imbalance, leading to activation of pro-cancer signals and abnormalities in the expression and activity of related metabolically critical rate-limiting enzymes, have become an important part of metabolic remodeling in cancer. The FAO process is a metabolic pathway that facilitates the breakdown of fatty acids into CO2 and H2O and releases large amounts of energy in the body under aerobic conditions. More and more studies have shown that FAO provides an important energy supply for the development of cancer cells. At the same time, the CPT family, including carnitine palmitoyltransferase 1 (CPT1) and carnitine palmitoyltransferase 2 (CPT2), are key rate-limiting enzymes for FAO that exert a pivotal influence on the genesis and progression of neoplastic growth. Therefore, we look at molecular structural properties of the CPT family, the roles they play in tumorigenesis and development, the target drugs, and the possible regulatory roles of CPTs in energy metabolism reprogramming to help understand the current state of CPT family research and to search for new therapeutic strategies.
Collapse
Affiliation(s)
- Yanxia Duan
- Department of Pathology, Xiangya Hospital, School of Basic Medical Sciences, Central South University, Changsha 410000, China; (Y.D.); (J.L.); (A.L.)
| | - Jiaxin Liu
- Department of Pathology, Xiangya Hospital, School of Basic Medical Sciences, Central South University, Changsha 410000, China; (Y.D.); (J.L.); (A.L.)
| | - Ailin Li
- Department of Pathology, Xiangya Hospital, School of Basic Medical Sciences, Central South University, Changsha 410000, China; (Y.D.); (J.L.); (A.L.)
| | - Chang Liu
- School of Basic Medical Sciences, Central South University, Changsha 410000, China;
| | - Guang Shu
- Department of Pathology, Xiangya Hospital, School of Basic Medical Sciences, Central South University, Changsha 410000, China; (Y.D.); (J.L.); (A.L.)
| | - Gang Yin
- Department of Pathology, Xiangya Hospital, School of Basic Medical Sciences, Central South University, Changsha 410000, China; (Y.D.); (J.L.); (A.L.)
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, School of Basic Medical Sciences, Central South University, Changsha 410000, China
- China-Africa Research Center of Infectious Diseases, School of Basic Medical Sciences, Central South University, Changsha 410000, China
| |
Collapse
|
7
|
Kang Z, Zhang Z, Li J, Deng K, Wang F, Fan Y. Mechanistic of AMPK/ACC2 regulating myoblast differentiation by fatty acid oxidation of goat. Int J Biol Macromol 2024; 270:132243. [PMID: 38744369 DOI: 10.1016/j.ijbiomac.2024.132243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/15/2024] [Accepted: 05/07/2024] [Indexed: 05/16/2024]
Abstract
Myoblast differentiation depends on fatty acid oxidation (FAO),and its rate-limiting enzyme acetyl-CoA carboxylase 2 (ACC2) participate in the regulation skeletal muscle development. However, the precise regulatory mechanism is still unknown. Using previous RNA-sequencing data from our laboratory, we explored the effect of ACC2 on myoblast differentiation, as a candidate gene, since its expression is higher in myoblasts of lamb (first day of age) than that of the fetus (75th day of pregnancy). Our findings show that siACC2 inhibited myoblast proliferation, promoted differentiation, and boosted mitochondrial and fatty acid oxidation activities. The effect of ACC2 on goat muscle cell differentiation was modulated by Etomoxir, a CPT1A inhibitor. Notably, the AMPK/ACC2 pathway was found to regulate fatty acid oxidation and goat muscle cell differentiation. Inhibiting the AMPK/ACC2 pathway significantly reduced CPT1A expression. These findings indicate that AMPK/ACC2 regulate goat myoblast differentiation via fatty acid oxidation, contributing to understanding the mechanism of goat skeletal muscle development.
Collapse
Affiliation(s)
- Ziqi Kang
- Institute of Sheep and Goat Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhen Zhang
- Institute of Sheep and Goat Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Juan Li
- Institute of Sheep and Goat Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Kaiping Deng
- Institute of Sheep and Goat Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Feng Wang
- Institute of Sheep and Goat Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Yixuan Fan
- Institute of Sheep and Goat Science, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
8
|
Fan Z, Hao Y, Huo Y, Cao F, Li L, Xu J, Song Y, Yang K. Modulators for palmitoylation of proteins and small molecules. Eur J Med Chem 2024; 271:116408. [PMID: 38621327 DOI: 10.1016/j.ejmech.2024.116408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/03/2024] [Accepted: 04/10/2024] [Indexed: 04/17/2024]
Abstract
As an essential form of lipid modification for maintaining vital cellular functions, palmitoylation plays an important role in in the regulation of various physiological processes, serving as a promising therapeutic target for diseases like cancer and neurological disorders. Ongoing research has revealed that palmitoylation can be categorized into three distinct types: N-palmitoylation, O-palmitoylation and S-palmitoylation. Herein this paper provides an overview of the regulatory enzymes involved in palmitoylation, including palmitoyltransferases and depalmitoylases, and discusses the currently available broad-spectrum and selective inhibitors for these enzymes.
Collapse
Affiliation(s)
- Zeshuai Fan
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding, 071002, China
| | - Yuchen Hao
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding, 071002, China
| | - Yidan Huo
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding, 071002, China
| | - Fei Cao
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding, 071002, China; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, Hebei University, Baoding, Hebei, 071002, China
| | - Longfei Li
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding, 071002, China; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, Hebei University, Baoding, Hebei, 071002, China
| | - Jianmei Xu
- Department of hematopathology, Affiliated Hospital of Hebei University, Hebei University, Baoding, 071002, China
| | - Yali Song
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding, 071002, China; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, Hebei University, Baoding, Hebei, 071002, China
| | - Kan Yang
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding, 071002, China; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, Hebei University, Baoding, Hebei, 071002, China.
| |
Collapse
|
9
|
Kuchay MS, Isaacs S, Misra A. Intrahepatic hypothyroidism in MASLD: Role of liver-specific thyromimetics including resmetirom. Diabetes Metab Syndr 2024; 18:103034. [PMID: 38714040 DOI: 10.1016/j.dsx.2024.103034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/29/2024] [Accepted: 05/01/2024] [Indexed: 05/09/2024]
Abstract
BACKGROUND AND AIMS Thyroid hormones are important regulators of hepatic lipid homeostasis and whole-body energy expenditure. Recent evidence suggests that euthyroid individuals with metabolic dysfunction-associated steatohepatitis (MASH) develop intrahepatic hypothyroidism that promotes progression of MASH. METHODS A literature search was performed with Medline (PubMed), Scopus and Google Scholar electronic databases from inception till March 2024, using the following keywords: hypothyroidism and nonalcoholic fatty liver disease; MASLD and thyroid function; intrahepatic hypothyroidism; TRβ agonists; and resmetirom. Relevant studies were extracted that described pathogenesis of MASH in the context of thyroid functions. RESULTS In euthyroid individuals with MASH, there is decreased conversion of prohormone thyroxine (T4) to bioactive tri-iodothyronine (T3) and increased conversion of T4 to inactive metabolite reverse T3 (rT3). Consequently, reduced levels of T3 results in impaired intrahepatic TRβ signaling, a state of intrahepatic hypothyroidism, which promotes progression of MASH. Hepatic TRβ activation leads to metabolically beneficial effects in the liver including mitochondrial fatty acid uptake and β-oxidation, mitochondrial biogenesis, increasing surface low-density lipoprotein (LDL) receptor density and lowering of circulatory LDL-cholesterol. In recent years, selective thyroid hormone mimetics that exhibit TRβ-selective binding and liver-selective uptake have been designed. Resmetirom, a liver-specific thyromimetic, improves intrahepatic TRβ signaling and in clinical trials significantly improved liver inflammation, fibrosis and lipid profile in patients with MASH. CONCLUSIONS In euthyroid individuals with MASH, development of intrahepatic hypothyroidism results in further progression of the disease. In clinical trials, resmetirom treatment results in a significant improvement in steatosis, inflammation and fibrosis and is the first drug approved by the US Food and Drug Administration (FDA) for the treatment of noncirrhotic MASH with moderate to advanced fibrosis.
Collapse
Affiliation(s)
- Mohammad Shafi Kuchay
- Division of Endocrinology and Diabetes, Medanta the Medicity Hospital, Gurugram, 122001, Haryana, India.
| | - Scott Isaacs
- Emory University School of Medicine, Atlanta, GA, USA
| | - Anoop Misra
- Fortis CDOC Hospital for Diabetes and Allied Sciences, New Delhi, India
| |
Collapse
|
10
|
Pascual G, Majem B, Benitah SA. Targeting lipid metabolism in cancer metastasis. Biochim Biophys Acta Rev Cancer 2024; 1879:189051. [PMID: 38101461 DOI: 10.1016/j.bbcan.2023.189051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 11/29/2023] [Accepted: 12/04/2023] [Indexed: 12/17/2023]
Abstract
This review delves into the most recent research on the metabolic adaptability of cancer cells and examines how their metabolic functions can impact their progression into metastatic forms. We emphasize the growing significance of lipid metabolism and dietary lipids within the tumor microenvironment, underscoring their influence on tumor progression. Additionally, we present an outline of the interplay between metabolic processes and the epigenome of cancer cells, underscoring the importance regarding the metastatic process. Lastly, we examine the potential of targeting metabolism as a therapeutic approach in combating cancer progression, shedding light on innovative drugs/targets currently undergoing preclinical evaluation.
Collapse
Affiliation(s)
- Gloria Pascual
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.
| | - Blanca Majem
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Salvador Aznar Benitah
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain.
| |
Collapse
|
11
|
Kang Y, Ren P, Shen X, Kuang X, Yang X, Liu H, Yan H, Yang H, Kang X, Ding Z, Luo X, Ma J, Yang Y, Fan W. A Newly Synbiotic Combination Alleviates Obesity by Modulating the Gut Microbiota-Fat Axis and Inhibiting the Hepatic TLR4/NF-κB Signaling Pathway. Mol Nutr Food Res 2023; 67:e2300141. [PMID: 37594720 DOI: 10.1002/mnfr.202300141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/11/2023] [Indexed: 08/19/2023]
Abstract
SCOPE Obesity has been recognized as a worldwide public health crisis, this is accompanied by dysregulation of the intestinal microbiota and upregulation of liver steatosis and adipose inflammation. Synbiotic as a novel alternative therapy for obesity have recently gained much attention. METHODS This study innovatively research the anti-obesity properties of a newly synbiotic composed of Lactobacillus acidophilus, Bifidobacterium infantis and konjac glucomannan oligosaccharides. RESULTS The synbiotic treatment can reduce body weight, fat mass, blood sugar, liver steatosis and adipose inflammation in obesity mice fed by high-fat diet (HFD). Meanwhile, synbiotic treatment activated brown adipose tissue and improve energy, glucose and lipid metabolism. In addition, synbiotic treatment not solely enhanced the protection of intestinal barrier, but also ameliorated gut microbiota dysbiosis directly by enhancing beneficial microbes and reducing potentially harmful bacteria. Furthermore, the microbiome phenotype and functional prediction showed that synbiotic treatment can improve the gut microbiota functions involving inflammatory state, immune response, metabolism and pathopoiesia. CONCLUSION The synbiotic may be an effective candidate treatment strategy for the clinical prevention and treatment of obesity and other associated metabolic diseases such as hyperlipidemia, nonalcoholic fatty liver diseases by alleviating inflammatory response, regulating energy metabolism and maintaining the balance of intestinal microecology.
Collapse
Affiliation(s)
- Yongbo Kang
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Peng Ren
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Xiaorong Shen
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Xiaoyu Kuang
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Xiaodan Yang
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Haixia Liu
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Huan Yan
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Hao Yang
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Xing Kang
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Zeyuan Ding
- Laboratory of Morphology, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Xuguang Luo
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Jieqiong Ma
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Ying Yang
- Department of Endocrinology, Affiliated Hospital of Yunnan University, Kunming, Yunnan, 650021, China
| | - Weiping Fan
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| |
Collapse
|
12
|
Szrok-Jurga S, Czumaj A, Turyn J, Hebanowska A, Swierczynski J, Sledzinski T, Stelmanska E. The Physiological and Pathological Role of Acyl-CoA Oxidation. Int J Mol Sci 2023; 24:14857. [PMID: 37834305 PMCID: PMC10573383 DOI: 10.3390/ijms241914857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/27/2023] [Accepted: 09/30/2023] [Indexed: 10/15/2023] Open
Abstract
Fatty acid metabolism, including β-oxidation (βOX), plays an important role in human physiology and pathology. βOX is an essential process in the energy metabolism of most human cells. Moreover, βOX is also the source of acetyl-CoA, the substrate for (a) ketone bodies synthesis, (b) cholesterol synthesis, (c) phase II detoxication, (d) protein acetylation, and (d) the synthesis of many other compounds, including N-acetylglutamate-an important regulator of urea synthesis. This review describes the current knowledge on the importance of the mitochondrial and peroxisomal βOX in various organs, including the liver, heart, kidney, lung, gastrointestinal tract, peripheral white blood cells, and other cells. In addition, the diseases associated with a disturbance of fatty acid oxidation (FAO) in the liver, heart, kidney, lung, alimentary tract, and other organs or cells are presented. Special attention was paid to abnormalities of FAO in cancer cells and the diseases caused by mutations in gene-encoding enzymes involved in FAO. Finally, issues related to α- and ω- fatty acid oxidation are discussed.
Collapse
Affiliation(s)
- Sylwia Szrok-Jurga
- Department of Biochemistry, Faculty of Medicine, Medical University of Gdansk, 80-211 Gdansk, Poland; (S.S.-J.); (J.T.); (A.H.)
| | - Aleksandra Czumaj
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Medical University of Gdansk, 80-211 Gdansk, Poland;
| | - Jacek Turyn
- Department of Biochemistry, Faculty of Medicine, Medical University of Gdansk, 80-211 Gdansk, Poland; (S.S.-J.); (J.T.); (A.H.)
| | - Areta Hebanowska
- Department of Biochemistry, Faculty of Medicine, Medical University of Gdansk, 80-211 Gdansk, Poland; (S.S.-J.); (J.T.); (A.H.)
| | - Julian Swierczynski
- Institue of Nursing and Medical Rescue, State University of Applied Sciences in Koszalin, 75-582 Koszalin, Poland;
| | - Tomasz Sledzinski
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Medical University of Gdansk, 80-211 Gdansk, Poland;
| | - Ewa Stelmanska
- Department of Biochemistry, Faculty of Medicine, Medical University of Gdansk, 80-211 Gdansk, Poland; (S.S.-J.); (J.T.); (A.H.)
| |
Collapse
|
13
|
De Paula IF, Santos-Araujo S, Majerowicz D, Ramos I, Gondim KC. Knockdown of carnitine palmitoyltransferase I (CPT1) reduces fat body lipid mobilization and resistance to starvation in the insect vector Rhodnius prolixus. Front Physiol 2023; 14:1201670. [PMID: 37469565 PMCID: PMC10352773 DOI: 10.3389/fphys.2023.1201670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/21/2023] [Indexed: 07/21/2023] Open
Abstract
The energy stored in fatty acids is essential for several critical activities of insects, such as embryogenesis, oviposition, and flight. Rhodnius prolixus is an obligatory hematophagous hemipteran and vector of Chagas disease, and it feeds infrequently on very large blood meals. As digestion slowly occurs, lipids are synthesized and accumulate in the fat body, mainly as triacylglycerol, in lipid droplets. Between feeding bouts, proper mobilization and oxidation of stored lipids are crucial for survival, and released fatty acids are oxidized by mitochondrial β-oxidation. Carnitine palmitoyl transferase I (CPT1) is the enzyme that catalyzes the first reaction of the carnitine shuttle, where the activated fatty acid, acyl-CoA, is converted to acyl-carnitine to be transported into the mitochondria. Here, we investigated the role of CPT1 in lipid metabolism and in resistance to starvation in Rhodnius prolixus. The expression of the CPT1 gene (RhoprCpt1) was determined in the organs of adult females on the fourth day after a blood meal, and the flight muscle showed higher expression levels than the ovary, fat body, and anterior and posterior midgut. RhoprCpt1 expression in the fat body dramatically decreased after feeding, and started to increase again 10 days later, but no changes were observed in the flight muscle. β-oxidation rates were determined in flight muscle and fat body homogenates with the use of 3H-palmitate, and in unfed females, they were higher in the flight muscle. In the fat body, lipid oxidation activity did not show any variation before or at different days after feeding, and was not affected by the presence of etomoxir or malonyl-CoA. We used RNAi and generated RhoprCPT1-deficient insects, which surprisingly did not show a decrease in measured 3H-palmitate oxidation rates. However, the RNAi-knockdown females presented increased amounts of triacylglycerol and larger lipid droplets in the fat body, but not in the flight muscle. When subjected to starvation, these insects had a shorter lifespan. These results indicated that the inhibition of RhoprCpt1 expression compromised lipid mobilization and affected resistance to starvation.
Collapse
Affiliation(s)
- Iron F. De Paula
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Samara Santos-Araujo
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - David Majerowicz
- Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Programa de Pós-Graduação em Biociências, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Isabela Ramos
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Katia C. Gondim
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
14
|
Cobb J, Soliman SSM, Retuerto M, Quijano JC, Orr C, Ghannoum M, Kandeel F, Husseiny MI. Changes in the gut microbiota of NOD mice in response to an oral Salmonella-based vaccine against type 1 diabetes. PLoS One 2023; 18:e0285905. [PMID: 37224176 DOI: 10.1371/journal.pone.0285905] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 05/03/2023] [Indexed: 05/26/2023] Open
Abstract
We developed an oral Salmonella-based vaccine that prevents and reverses diabetes in non-obese diabetic (NOD) mice. Related to this, the gastrointestinal tract harbors a complex dynamic population of microorganisms, the gut microbiome, that influences host homeostasis and metabolism. Changes in the gut microbiome are associated with insulin dysfunction and type 1 diabetes (T1D). Oral administration of diabetic autoantigens as a vaccine can restore immune balance. However, it was not known if a Salmonella-based vaccine would impact the gut microbiome. We administered a Salmonella-based vaccine to prediabetic NOD mice. Changes in the gut microbiota and associated metabolome were assessed using next-generation sequencing and gas chromatography-mass spectrometry (GC-MS). The Salmonella-based vaccine did not cause significant changes in the gut microbiota composition immediately after vaccination although at 30 days post-vaccination changes were seen. Additionally, no changes were noted in the fecal mycobiome between vaccine- and control/vehicle-treated mice. Significant changes in metabolic pathways related to inflammation and proliferation were found after vaccine administration. The results from this study suggest that an oral Salmonella-based vaccine alters the gut microbiome and metabolome towards a more tolerant composition. These results support the use of orally administered Salmonella-based vaccines that induced tolerance after administration.
Collapse
Affiliation(s)
- Jacob Cobb
- Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, United States of America
| | - Sameh S M Soliman
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
| | - Mauricio Retuerto
- Center for Medical Mycology, Department of Dermatology, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Janine C Quijano
- Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, United States of America
| | - Chris Orr
- Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, United States of America
| | - Mahmoud Ghannoum
- Center for Medical Mycology, Department of Dermatology, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Fouad Kandeel
- Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, United States of America
| | - Mohamed I Husseiny
- Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, United States of America
- Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| |
Collapse
|
15
|
Huang J, Sigon G, Mullish BH, Wang D, Sharma R, Manousou P, Forlano R. Applying Lipidomics to Non-Alcoholic Fatty Liver Disease: A Clinical Perspective. Nutrients 2023; 15:nu15081992. [PMID: 37111211 PMCID: PMC10143024 DOI: 10.3390/nu15081992] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 04/29/2023] Open
Abstract
The prevalence of Non-alcoholic fatty liver disease (NAFLD) and associated complications, such as hepatocellular carcinoma (HCC), is growing worldwide, due to the epidemics of metabolic risk factors, such as obesity and type II diabetes. Among other factors, an aberrant lipid metabolism represents a crucial step in the pathogenesis of NAFLD and the development of HCC in this population. In this review, we summarize the evidence supporting the application of translational lipidomics in NAFLD patients and NAFLD associated HCC in clinical practice.
Collapse
Affiliation(s)
- Jian Huang
- Liver Unit, Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London W21NY, UK
| | - Giordano Sigon
- Liver Unit, Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London W21NY, UK
| | - Benjamin H Mullish
- Liver Unit, Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London W21NY, UK
| | - Dan Wang
- Liver Unit, Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London W21NY, UK
| | - Rohini Sharma
- Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital, London W21NY, UK
| | - Pinelopi Manousou
- Liver Unit, Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London W21NY, UK
| | - Roberta Forlano
- Liver Unit, Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London W21NY, UK
| |
Collapse
|
16
|
Yao M, Zhou P, Qin YY, Wang L, Yao DF. Mitochondrial carnitine palmitoyltransferase-II dysfunction: A possible novel mechanism for nonalcoholic fatty liver disease in hepatocarcinogenesis. World J Gastroenterol 2023; 29:1765-1778. [PMID: 37032731 PMCID: PMC10080702 DOI: 10.3748/wjg.v29.i12.1765] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/04/2022] [Accepted: 03/09/2023] [Indexed: 03/28/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) or metabolic-associated fatty liver disease has been characterized by the lipid accumulation with injury of hepatocytes and has become one of the most common chronic liver diseases in the world. The complex mechanisms of NAFLD formation are still under identification. Carnitine palmitoyltransferase-II (CPT-II) on inner mitochondrial membrane (IMM) regulates long chain fatty acid β-oxidation, and its abnormality has had more and more attention paid to it by basic and clinical research in NAFLD. The sequences of its peptide chain and DNA nucleotides have been identified, and the catalytic activity of CPT-II is affected on its gene mutations, deficiency, enzymatic thermal instability, circulating carnitine level and so on. Recently, the CPT-II dysfunction has been discovered in models of liver lipid accumulation. Meanwhile, the malignant transformation of hepatocyte-related CD44+ stem T cell activation, high levels of tumor-related biomarkers (AFP, GPC3) and abnormal activation of Wnt3a expression as a key signal molecule of the Wnt/β-catenin pathway run parallel to the alterations of hepatocyte pathology. This review focuses on some of the progress of CPT-II inactivity on IMM with liver fatty accumulation as a possible novel pathogenesis for NAFLD in hepatocarcinogenesis.
Collapse
Affiliation(s)
- Min Yao
- Department of Medical Immunology, Medical School of Nantong University & Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Ping Zhou
- Department of Medical Immunology, Medical School of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Yan-Yan Qin
- Department of Medical Immunology, Medical School of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Li Wang
- Research Center for Intelligent Information Technology, Nantong University, Nantong 226019, Jiangsu Province, China
| | - Deng-Fu Yao
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| |
Collapse
|
17
|
Tsurumi A, Flaherty PJ, Que YA, Ryan CM, Banerjee A, Chakraborty A, Almpani M, Shankar M, Goverman J, Schulz JT, Sheridan RL, Friedstat J, Hickey SA, Tompkins RG, Rahme LG. A PREVENTIVE TOOL FOR PREDICTING BLOODSTREAM INFECTIONS IN CHILDREN WITH BURNS. Shock 2023; 59:393-399. [PMID: 36597771 PMCID: PMC9991965 DOI: 10.1097/shk.0000000000002075] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
ABSTRACT Introduction: Despite significant advances in pediatric burn care, bloodstream infections (BSIs) remain a compelling challenge during recovery. A personalized medicine approach for accurate prediction of BSIs before they occur would contribute to prevention efforts and improve patient outcomes. Methods: We analyzed the blood transcriptome of severely burned (total burn surface area [TBSA] ≥20%) patients in the multicenter Inflammation and Host Response to Injury ("Glue Grant") cohort. Our study included 82 pediatric (aged <16 years) patients, with blood samples at least 3 days before the observed BSI episode. We applied the least absolute shrinkage and selection operator (LASSO) machine-learning algorithm to select a panel of biomarkers predictive of BSI outcome. Results: We developed a panel of 10 probe sets corresponding to six annotated genes ( ARG2 [ arginase 2 ], CPT1A [ carnitine palmitoyltransferase 1A ], FYB [ FYN binding protein ], ITCH [ itchy E3 ubiquitin protein ligase ], MACF1 [ microtubule actin crosslinking factor 1 ], and SSH2 [ slingshot protein phosphatase 2 ]), two uncharacterized ( LOC101928635 , LOC101929599 ), and two unannotated regions. Our multibiomarker panel model yielded highly accurate prediction (area under the receiver operating characteristic curve, 0.938; 95% confidence interval [CI], 0.881-0.981) compared with models with TBSA (0.708; 95% CI, 0.588-0.824) or TBSA and inhalation injury status (0.792; 95% CI, 0.676-0.892). A model combining the multibiomarker panel with TBSA and inhalation injury status further improved prediction (0.978; 95% CI, 0.941-1.000). Conclusions: The multibiomarker panel model yielded a highly accurate prediction of BSIs before their onset. Knowing patients' risk profile early will guide clinicians to take rapid preventive measures for limiting infections, promote antibiotic stewardship that may aid in alleviating the current antibiotic resistance crisis, shorten hospital length of stay and burden on health care resources, reduce health care costs, and significantly improve patients' outcomes. In addition, the biomarkers' identity and molecular functions may contribute to developing novel preventive interventions.
Collapse
Affiliation(s)
- Amy Tsurumi
- Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA (50 Blossom St., Their 340, Boston, MA 02114, USA)
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA (77 Ave. Louis Pasteur, Boston, MA 02115, USA)
- Shriners Hospitals for Children-Boston, Boston, Massachusetts, USA (51 Blossom St., Boston, MA 02114, USA)
| | - Patrick J. Flaherty
- Department of Mathematics and Statistics, University of Massachusetts at Amherst (Amherst, MA 01003, USA)
| | - Yok-Ai Que
- Department of Intensive Care Medicine, Inselspital, Bern University Hospital, University of Bern, Switzerland (3010 Bern, Switzerland)
| | - Colleen M. Ryan
- Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA (50 Blossom St., Their 340, Boston, MA 02114, USA)
- Shriners Hospitals for Children-Boston, Boston, Massachusetts, USA (51 Blossom St., Boston, MA 02114, USA)
| | - Ankita Banerjee
- Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA (50 Blossom St., Their 340, Boston, MA 02114, USA)
| | - Arijit Chakraborty
- Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA (50 Blossom St., Their 340, Boston, MA 02114, USA)
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA (77 Ave. Louis Pasteur, Boston, MA 02115, USA)
- Shriners Hospitals for Children-Boston, Boston, Massachusetts, USA (51 Blossom St., Boston, MA 02114, USA)
| | - Marianna Almpani
- Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA (50 Blossom St., Their 340, Boston, MA 02114, USA)
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA (77 Ave. Louis Pasteur, Boston, MA 02115, USA)
- Shriners Hospitals for Children-Boston, Boston, Massachusetts, USA (51 Blossom St., Boston, MA 02114, USA)
| | - Malavika Shankar
- Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA (50 Blossom St., Their 340, Boston, MA 02114, USA)
| | - Jeremy Goverman
- Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA (50 Blossom St., Their 340, Boston, MA 02114, USA)
- Shriners Hospitals for Children-Boston, Boston, Massachusetts, USA (51 Blossom St., Boston, MA 02114, USA)
| | - John T. Schulz
- Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA (50 Blossom St., Their 340, Boston, MA 02114, USA)
- Shriners Hospitals for Children-Boston, Boston, Massachusetts, USA (51 Blossom St., Boston, MA 02114, USA)
| | - Robert L. Sheridan
- Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA (50 Blossom St., Their 340, Boston, MA 02114, USA)
- Shriners Hospitals for Children-Boston, Boston, Massachusetts, USA (51 Blossom St., Boston, MA 02114, USA)
| | - Jonathan Friedstat
- Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA (50 Blossom St., Their 340, Boston, MA 02114, USA)
- Shriners Hospitals for Children-Boston, Boston, Massachusetts, USA (51 Blossom St., Boston, MA 02114, USA)
| | - Sean A. Hickey
- Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA (50 Blossom St., Their 340, Boston, MA 02114, USA)
- Shriners Hospitals for Children-Boston, Boston, Massachusetts, USA (51 Blossom St., Boston, MA 02114, USA)
| | - Ronald G. Tompkins
- Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA (50 Blossom St., Their 340, Boston, MA 02114, USA)
| | - Laurence G. Rahme
- Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA (50 Blossom St., Their 340, Boston, MA 02114, USA)
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA (77 Ave. Louis Pasteur, Boston, MA 02115, USA)
- Shriners Hospitals for Children-Boston, Boston, Massachusetts, USA (51 Blossom St., Boston, MA 02114, USA)
| |
Collapse
|
18
|
Liang K. Mitochondrial CPT1A: Insights into structure, function, and basis for drug development. Front Pharmacol 2023; 14:1160440. [PMID: 37033619 PMCID: PMC10076611 DOI: 10.3389/fphar.2023.1160440] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 03/13/2023] [Indexed: 04/11/2023] Open
Abstract
Carnitine Palmitoyl-Transferase1A (CPT1A) is the rate-limiting enzyme in the fatty acid β-oxidation, and its deficiency or abnormal regulation can result in diseases like metabolic disorders and various cancers. Therefore, CPT1A is a desirable drug target for clinical therapy. The deep comprehension of human CPT1A is crucial for developing the therapeutic inhibitors like Etomoxir. CPT1A is an appealing druggable target for cancer therapies since it is essential for the survival, proliferation, and drug resistance of cancer cells. It will help to lower the risk of cancer recurrence and metastasis, reduce mortality, and offer prospective therapy options for clinical treatment if the effects of CPT1A on the lipid metabolism of cancer cells are inhibited. Targeted inhibition of CPT1A can be developed as an effective treatment strategy for cancers from a metabolic perspective. However, the pathogenic mechanism and recent progress of CPT1A in diseases have not been systematically summarized. Here we discuss the functions of CPT1A in health and diseases, and prospective therapies targeting CPT1A. This review summarizes the current knowledge of CPT1A, hoping to prompt further understanding of it, and provide foundation for CPT1A-targeting drug development.
Collapse
|
19
|
He W, Li Q, Li X. Acetyl-CoA regulates lipid metabolism and histone acetylation modification in cancer. Biochim Biophys Acta Rev Cancer 2023; 1878:188837. [PMID: 36403921 DOI: 10.1016/j.bbcan.2022.188837] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 11/10/2022] [Accepted: 11/12/2022] [Indexed: 11/18/2022]
Abstract
Acetyl-CoA, as an important molecule, not only participates in multiple intracellular metabolic reactions, but also affects the post-translational modification of proteins, playing a key role in the metabolic activity and epigenetic inheritance of cells. Cancer cells require extensive lipid metabolism to fuel for their growth, while also require histone acetylation modifications to increase the expression of cancer-promoting genes. As a raw material for de novo lipid synthesis and histone acetylation, acetyl-CoA has a major impact on lipid metabolism and histone acetylation in cancer. More importantly, in cancer, acetyl-CoA connects lipid metabolism with histone acetylation, forming a more complex regulatory mechanism that influences cancer growth, proliferation, metastasis.
Collapse
Affiliation(s)
- Weijing He
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Qingguo Li
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| | - Xinxiang Li
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| |
Collapse
|
20
|
Shang S, Liu J, Hua F. Protein acylation: mechanisms, biological functions and therapeutic targets. Signal Transduct Target Ther 2022; 7:396. [PMID: 36577755 PMCID: PMC9797573 DOI: 10.1038/s41392-022-01245-y] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 09/27/2022] [Accepted: 11/06/2022] [Indexed: 12/30/2022] Open
Abstract
Metabolic reprogramming is involved in the pathogenesis of not only cancers but also neurodegenerative diseases, cardiovascular diseases, and infectious diseases. With the progress of metabonomics and proteomics, metabolites have been found to affect protein acylations through providing acyl groups or changing the activities of acyltransferases or deacylases. Reciprocally, protein acylation is involved in key cellular processes relevant to physiology and diseases, such as protein stability, protein subcellular localization, enzyme activity, transcriptional activity, protein-protein interactions and protein-DNA interactions. Herein, we summarize the functional diversity and mechanisms of eight kinds of nonhistone protein acylations in the physiological processes and progression of several diseases. We also highlight the recent progress in the development of inhibitors for acyltransferase, deacylase, and acylation reader proteins for their potential applications in drug discovery.
Collapse
Affiliation(s)
- Shuang Shang
- grid.506261.60000 0001 0706 7839CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050 Beijing, P.R. China
| | - Jing Liu
- grid.506261.60000 0001 0706 7839CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050 Beijing, P.R. China
| | - Fang Hua
- grid.506261.60000 0001 0706 7839CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050 Beijing, P.R. China
| |
Collapse
|
21
|
Augmented CPT1A Expression Is Associated with Proliferation and Colony Formation during Barrett’s Tumorigenesis. Int J Mol Sci 2022; 23:ijms231911745. [PMID: 36233047 PMCID: PMC9570428 DOI: 10.3390/ijms231911745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/23/2022] [Accepted: 09/24/2022] [Indexed: 11/16/2022] Open
Abstract
Obesity is a known risk factor for the development of gastroesophageal reflux disease (GERD), Barrett’s Esophagus (BE) and the progression to esophageal adenocarcinoma. The mechanisms by which obesity contributes to GERD, BE and its progression are currently not well understood. Recently, changes in lipid metabolism especially in the context of a high fat diet have been linked to GERD and BE leading us to explore whether fatty acid oxidation plays a role in the disease progression from GERD to esophageal adenocarcinoma. To that end, we analyzed the expression of the rate-limiting enzyme, carnitine palmytoyltransferase 1A (CPT1A), in human tissues and cell lines representing different stages in the sequence from normal squamous esophagus to cancer. We determined uptake of palmitic acid, the most abundant fatty acid in human serum, with fluorescent dye-labeled lipids as well as functional consequences of stimulation with palmitic acid relevant to Barrett’s tumorigenesis, e.g., proliferation, characteristics of stemness and IL8 mediated inflammatory signaling. We further employed different mouse models including a genetic model of Barrett’s esophagus based on IL1β overexpression in the presence and absence of a high fat diet and deoxycholic acid to physiologically mimic gastrointestinal reflux in the mice. Together, our data demonstrate that CPT1A is upregulated in Barrett’s tumorigenesis and that experimental palmitic acid is delivered to mitochondria and associated with increased cell proliferation and stem cell marker expression.
Collapse
|
22
|
Yang J, Song C, Zhan X. The role of protein acetylation in carcinogenesis and targeted drug discovery. Front Endocrinol (Lausanne) 2022; 13:972312. [PMID: 36171897 PMCID: PMC9510633 DOI: 10.3389/fendo.2022.972312] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 08/23/2022] [Indexed: 12/01/2022] Open
Abstract
Protein acetylation is a reversible post-translational modification, and is involved in many biological processes in cells, such as transcriptional regulation, DNA damage repair, and energy metabolism, which is an important molecular event and is associated with a wide range of diseases such as cancers. Protein acetylation is dynamically regulated by histone acetyltransferases (HATs) and histone deacetylases (HDACs) in homeostasis. The abnormal acetylation level might lead to the occurrence and deterioration of a cancer, and is closely related to various pathophysiological characteristics of a cancer, such as malignant phenotypes, and promotes cancer cells to adapt to tumor microenvironment. Therapeutic modalities targeting protein acetylation are a potential therapeutic strategy. This article discussed the roles of protein acetylation in tumor pathology and therapeutic drugs targeting protein acetylation, which offers the contributions of protein acetylation in clarification of carcinogenesis, and discovery of therapeutic drugs for cancers, and lays the foundation for precision medicine in oncology.
Collapse
Affiliation(s)
- Jingru Yang
- Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, China
| | - Cong Song
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, China
| | - Xianquan Zhan
- Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, China
| |
Collapse
|
23
|
Dambrova M, Makrecka-Kuka M, Kuka J, Vilskersts R, Nordberg D, Attwood MM, Smesny S, Sen ZD, Guo AC, Oler E, Tian S, Zheng J, Wishart DS, Liepinsh E, Schiöth HB. Acylcarnitines: Nomenclature, Biomarkers, Therapeutic Potential, Drug Targets, and Clinical Trials. Pharmacol Rev 2022; 74:506-551. [PMID: 35710135 DOI: 10.1124/pharmrev.121.000408] [Citation(s) in RCA: 230] [Impact Index Per Article: 76.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Acylcarnitines are fatty acid metabolites that play important roles in many cellular energy metabolism pathways. They have historically been used as important diagnostic markers for inborn errors of fatty acid oxidation and are being intensively studied as markers of energy metabolism, deficits in mitochondrial and peroxisomal β -oxidation activity, insulin resistance, and physical activity. Acylcarnitines are increasingly being identified as important indicators in metabolic studies of many diseases, including metabolic disorders, cardiovascular diseases, diabetes, depression, neurologic disorders, and certain cancers. The US Food and Drug Administration-approved drug L-carnitine, along with short-chain acylcarnitines (acetylcarnitine and propionylcarnitine), is now widely used as a dietary supplement. In light of their growing importance, we have undertaken an extensive review of acylcarnitines and provided a detailed description of their identity, nomenclature, classification, biochemistry, pathophysiology, supplementary use, potential drug targets, and clinical trials. We also summarize these updates in the Human Metabolome Database, which now includes information on the structures, chemical formulae, chemical/spectral properties, descriptions, and pathways for 1240 acylcarnitines. This work lays a solid foundation for identifying, characterizing, and understanding acylcarnitines in human biosamples. We also discuss the emerging opportunities for using acylcarnitines as biomarkers and as dietary interventions or supplements for many wide-ranging indications. The opportunity to identify new drug targets involved in controlling acylcarnitine levels is also discussed. SIGNIFICANCE STATEMENT: This review provides a comprehensive overview of acylcarnitines, including their nomenclature, structure and biochemistry, and use as disease biomarkers and pharmaceutical agents. We present updated information contained in the Human Metabolome Database website as well as substantial mapping of the known biochemical pathways associated with acylcarnitines, thereby providing a strong foundation for further clarification of their physiological roles.
Collapse
Affiliation(s)
- Maija Dambrova
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Marina Makrecka-Kuka
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Janis Kuka
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Reinis Vilskersts
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Didi Nordberg
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Misty M Attwood
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Stefan Smesny
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Zumrut Duygu Sen
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - An Chi Guo
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Eponine Oler
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Siyang Tian
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Jiamin Zheng
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - David S Wishart
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Edgars Liepinsh
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Helgi B Schiöth
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| |
Collapse
|
24
|
Lei W, Yan Y, Ma Y, Jiang M, Zhang B, Zhang H, Li Y. Notoginsenoside R1 Regulates Ischemic Myocardial Lipid Metabolism by Activating the AKT/mTOR Signaling Pathway. Front Pharmacol 2022; 13:905092. [PMID: 35814216 PMCID: PMC9257227 DOI: 10.3389/fphar.2022.905092] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 05/09/2022] [Indexed: 11/19/2022] Open
Abstract
Ischemic heart diseases are responsible for more than one-third of all deaths worldwide. Radix notoginseng is widely used to treat ischemic heart disease in China and other Asian countries, and notoginsenoside R1 (NGR1) is its characteristic and large-amount ingredient. However, the potential molecular mechanisms of NGR1 in improving ischemic heart diseases are unclear. In this study, we combined pharmacological evaluation with network pharmacology, myocardial proteomics, and conventional molecular dynamics (MD) simulation to explore the cardio-protection mechanisms of NGR1. Our results revealed that NGR1 improved the echocardiographic, tissue pathological, and serum biochemical perturbations in myocardial ischemic rats. The network pharmacology studies indicated that NGR1 mainly regulated smooth muscle cell proliferation, vasculature development, and lipid metabolism signaling, especially in the PI3K/AKT pathway. Myocardial proteomics revealed that the function of NGR1 was focused on regulating metabolic and energy supply processes. The research combined reverse-docked targets with differential proteins and demonstrated that NGR1 modulated lipid metabolism in ischemic myocardia by interacting with mTOR and AKT. Conventional MD simulation was applied to investigate the influence of NGR1 on the structural stabilization of the mTOR and AKT complex. The results suggested that NGR1 can strengthen the affinity stabilization of mTOR and AKT. Our study first revealed that NGR1 enhanced the affinity stabilization of mTOR and AKT, thus promoting the activation of the AKT/mTOR pathway and improving lipid metabolic abnormity in myocardial ischemic rats.
Collapse
Affiliation(s)
- Wei Lei
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yiqi Yan
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yaolei Ma
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Min Jiang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Boli Zhang
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Han Zhang
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuhong Li
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- *Correspondence: Yuhong Li,
| |
Collapse
|
25
|
Murray J, Ehsani A, Najjar L, Zhang G, Itakura K. Muscle-specific deletion of Arid5b causes metabolic changes in skeletal muscle that affect adipose tissue and liver. Front Endocrinol (Lausanne) 2022; 13:1083311. [PMID: 36743919 PMCID: PMC9891308 DOI: 10.3389/fendo.2022.1083311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 12/30/2022] [Indexed: 01/20/2023] Open
Abstract
Emerging evidence suggests that AT-Rich Interaction Domain 5b (Arid5b) may play a role in energy metabolism in various tissues. To study the metabolic function of Arid5b in skeletal muscle, we generated skeletal muscle-specific Arid5b knockout (Arid5b MKO) mice. We found that Arid5b MKO skeletal muscles preferentially utilized fatty acids for energy generation with a corresponding increase in FABP4 expression. Interestingly, in Arid5b MKO mice, the adipose tissue weight decreased significantly. One possible mechanism for the decrease in adipose tissue weight could be the increase in phospho-HSL and HSL expression in white adipose tissue. While glucose uptake increased in an insulin-independent manner in Arid5b MKO skeletal muscle, glucose oxidation was reduced in conjunction with downregulation of the mitochondrial pyruvate carrier (MPC). We found that glucose was diverted into the pentose phosphate pathway as well as converted into lactate through glycolysis for export to the bloodstream, fueling the Cori cycle. Our data show that muscle-specific deletion of Arid5b leads to changes in fuel utilization in skeletal muscle that influences metabolism in other tissues. These results suggest that Arid5b regulates systemic metabolism by modulating fuel selection.
Collapse
|
26
|
Cacciola NA, Sgadari M, Sepe F, Petillo O, Margarucci S, Martano M, Maiolino P, Restucci B. Metabolic Flexibility in Canine Mammary Tumors: Implications of the Carnitine System. Animals (Basel) 2021; 11:ani11102969. [PMID: 34679988 PMCID: PMC8532965 DOI: 10.3390/ani11102969] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/09/2021] [Accepted: 10/12/2021] [Indexed: 11/16/2022] Open
Abstract
Deregulation of fatty acid catabolism provides an alternative energy source to glycolysis for cancer cell survival and proliferation. The regulator enzymes of the carnitine system (CS), responsible for the transport of fatty acids across mitochondrial membranes for β-oxidation are deregulated in tumorigenesis. Recently, we found that Carnitine Palmitoyl Transferase 1 (CPT1), a crucial regulator of CS components, is expressed and dysregulated in canine mammary tumor (CMT) tissues and cells. In this study, we examined the protein expression of the three remaining enzymes of CS (Carnitine Acylcarnitine Translocase (CACT), Carnitine Palmitoyl Transferase 2 (CPT2), Carnitine O-acetyltransferase (CrAT), in canine mammary cells and tissues by Western blot and immunohistochemistry. Protein expression of the components of CS was found in normal mammary glands and a concomitant deregulation of expression in CMT tissues that inversely correlated with the degree of tumor differentiation. Moreover, the expression and a different deregulation of CS-related proteins was also observed in CF33, CMT-U27, CMT-U309, and P114 cell lines used as in vitro model. These results demonstrate for the first time the expression of CS components in CMT tissues and cancer cells; however, further studies are needed to elucidate their roles in dogs as well.
Collapse
Affiliation(s)
- Nunzio Antonio Cacciola
- Department of Veterinary Medicine and Animal Production, University of Naples “Federico II”, Via F. Delpino, 1, 80138 Naples, Italy; (M.S.); (F.S.); (M.M.); (P.M.); (B.R.)
- Research Institute on Terrestrial Ecosystems (IRET), National Research Council (CNR), Via P. Castellino, 111, 80131 Naples, Italy; (O.P.); (S.M.)
- Correspondence: ; Tel.: +39-08-1613-2282
| | - Mariafrancesca Sgadari
- Department of Veterinary Medicine and Animal Production, University of Naples “Federico II”, Via F. Delpino, 1, 80138 Naples, Italy; (M.S.); (F.S.); (M.M.); (P.M.); (B.R.)
| | - Fabrizia Sepe
- Department of Veterinary Medicine and Animal Production, University of Naples “Federico II”, Via F. Delpino, 1, 80138 Naples, Italy; (M.S.); (F.S.); (M.M.); (P.M.); (B.R.)
| | - Orsolina Petillo
- Research Institute on Terrestrial Ecosystems (IRET), National Research Council (CNR), Via P. Castellino, 111, 80131 Naples, Italy; (O.P.); (S.M.)
| | - Sabrina Margarucci
- Research Institute on Terrestrial Ecosystems (IRET), National Research Council (CNR), Via P. Castellino, 111, 80131 Naples, Italy; (O.P.); (S.M.)
| | - Manuela Martano
- Department of Veterinary Medicine and Animal Production, University of Naples “Federico II”, Via F. Delpino, 1, 80138 Naples, Italy; (M.S.); (F.S.); (M.M.); (P.M.); (B.R.)
| | - Paola Maiolino
- Department of Veterinary Medicine and Animal Production, University of Naples “Federico II”, Via F. Delpino, 1, 80138 Naples, Italy; (M.S.); (F.S.); (M.M.); (P.M.); (B.R.)
| | - Brunella Restucci
- Department of Veterinary Medicine and Animal Production, University of Naples “Federico II”, Via F. Delpino, 1, 80138 Naples, Italy; (M.S.); (F.S.); (M.M.); (P.M.); (B.R.)
| |
Collapse
|
27
|
Ranaweera SS, Natraj P, Rajan P, Dayarathne LA, Mihindukulasooriya SP, Dinh DTT, Jee Y, Han CH. Anti-obesity effect of sulforaphane in broccoli leaf extract on 3T3-L1 adipocytes and ob/ob mice. J Nutr Biochem 2021; 100:108885. [PMID: 34655754 DOI: 10.1016/j.jnutbio.2021.108885] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 07/24/2021] [Accepted: 09/20/2021] [Indexed: 12/29/2022]
Abstract
The present study evaluated the anti-obesity effect of sulforaphane (SFN) and glucoraphanin (GRN) in broccoli leaf extract (BLE) on 3T3-L1 adipocytes and ob/ob mice. Based on Oil Red O staining and triglyceride (TG) assay, SFN and BLE significantly reduced (P<.05) both lipid accumulation and TG content in the differentiated 3T3-L1 adipocytes. SFN and BLE increased 2-NBDG uptake by 3T3-L1 adipocytes in a dose-dependent manner. Western blot analysis confirmed that SFN and BLE increased the phosphorylation levels of both AMPK (Thr172) and ACC (Ser79), and reduced the expression of HMGCR in liver and white adipose tissues of ob/ob mice. Histological analysis revealed that SFN and BLE ameliorated hepatic steatosis, and reduced the size of adipocyte in ob/ob mice. Treatment with SFN and BLE significantly reduced (P<.05) TG content, low-density lipoprotein (LDL) cholesterol, total cholesterol (TC), and glucose in the serum of ob/ob mice. RNA sequencing analysis showed that up- or down-regulation of 32 genes related to lipid metabolism was restored to control level in both SFN and BLE-treated ob/ob mice groups. A protein-protein interaction (PPI) network was constructed via STRING analysis, and Srebf2, Pla2g2c, Elovl5, Plb1, Ctp1a, Lipin1, Fgfr1, and Plcg1 were located in the functional hubs of the PPI network of lipid metabolism. Overall results suggest that the SFN content in BLE exerts a potential anti-obesity effect by normalizing the expression of genes related to lipid metabolism, which are up- or down-regulated in ob/ob mice.
Collapse
Affiliation(s)
| | - Premkumar Natraj
- College of Veterinary Medicine, Jeju National University, Jeju, Republic of Korea
| | - Priyanka Rajan
- College of Veterinary Medicine, Jeju National University, Jeju, Republic of Korea
| | - Laksi A Dayarathne
- College of Veterinary Medicine, Jeju National University, Jeju, Republic of Korea
| | | | - Duong Thi Thuy Dinh
- Interdisciplinary Graduate Program in Advanced Convergence Technology & Science, Jeju National University, Jeju, Republic of Korea
| | - Youngheun Jee
- Interdisciplinary Graduate Program in Advanced Convergence Technology & Science, Jeju National University, Jeju, Republic of Korea
| | - Chang-Hoon Han
- College of Veterinary Medicine, Jeju National University, Jeju, Republic of Korea.
| |
Collapse
|
28
|
Xu S, Zhang X, Liu C, Liu Q, Chai H, Luo Y, Li S. Role of Mitochondria in Neurodegenerative Diseases: From an Epigenetic Perspective. Front Cell Dev Biol 2021; 9:688789. [PMID: 34513831 PMCID: PMC8429841 DOI: 10.3389/fcell.2021.688789] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 08/10/2021] [Indexed: 12/18/2022] Open
Abstract
Mitochondria, the centers of energy metabolism, have been shown to participate in epigenetic regulation of neurodegenerative diseases. Epigenetic modification of nuclear genes encoding mitochondrial proteins has an impact on mitochondria homeostasis, including mitochondrial biogenesis, and quality, which plays role in the pathogenesis of neurodegenerative diseases like Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, and amyotrophic lateral sclerosis. On the other hand, intermediate metabolites regulated by mitochondria such as acetyl-CoA and NAD+, in turn, may regulate nuclear epigenome as the substrate for acetylation and a cofactor of deacetylation, respectively. Thus, mitochondria are involved in epigenetic regulation through bidirectional communication between mitochondria and nuclear, which may provide a new strategy for neurodegenerative diseases treatment. In addition, emerging evidence has suggested that the abnormal modification of mitochondria DNA contributes to disease development through mitochondria dysfunction. In this review, we provide an overview of how mitochondria are involved in epigenetic regulation and discuss the mechanisms of mitochondria in regulation of neurodegenerative diseases from epigenetic perspective.
Collapse
Affiliation(s)
- Sutong Xu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopedic Department of Tongji Hospital, Tongji University School of Medicine, Shanghai, China.,Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xi Zhang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopedic Department of Tongji Hospital, Tongji University School of Medicine, Shanghai, China.,Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Chenming Liu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopedic Department of Tongji Hospital, Tongji University School of Medicine, Shanghai, China.,Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qiulu Liu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopedic Department of Tongji Hospital, Tongji University School of Medicine, Shanghai, China.,Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Huazhen Chai
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopedic Department of Tongji Hospital, Tongji University School of Medicine, Shanghai, China.,Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yuping Luo
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopedic Department of Tongji Hospital, Tongji University School of Medicine, Shanghai, China.,Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Siguang Li
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopedic Department of Tongji Hospital, Tongji University School of Medicine, Shanghai, China.,Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
29
|
Laubach K, Zhang J, Chen X. The p53 Family: A Role in Lipid and Iron Metabolism. Front Cell Dev Biol 2021; 9:715974. [PMID: 34395447 PMCID: PMC8358664 DOI: 10.3389/fcell.2021.715974] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 07/08/2021] [Indexed: 12/11/2022] Open
Abstract
The p53 family of tumor suppressors, which includes p53, p63, and p73, has a critical role in many biological processes, such as cell cycle arrest, apoptosis, and differentiation. In addition to tumor suppression, the p53 family proteins also participate in development, multiciliogenesis, and fertility, indicating these proteins have diverse roles. In this review, we strive to cover the relevant studies that demonstrate the roles of p53, p63, and p73 in lipid and iron metabolism.
Collapse
Affiliation(s)
| | | | - Xinbin Chen
- Comparative Oncology Laboratory, Schools of Veterinary Medicine and Medicine, University of California, Davis, Davis, CA, United States
| |
Collapse
|
30
|
Sun L, Zhang H, Gao P. Metabolic reprogramming and epigenetic modifications on the path to cancer. Protein Cell 2021; 13:877-919. [PMID: 34050894 PMCID: PMC9243210 DOI: 10.1007/s13238-021-00846-7] [Citation(s) in RCA: 333] [Impact Index Per Article: 83.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 04/02/2021] [Indexed: 02/07/2023] Open
Abstract
Metabolic rewiring and epigenetic remodeling, which are closely linked and reciprocally regulate each other, are among the well-known cancer hallmarks. Recent evidence suggests that many metabolites serve as substrates or cofactors of chromatin-modifying enzymes as a consequence of the translocation or spatial regionalization of enzymes or metabolites. Various metabolic alterations and epigenetic modifications also reportedly drive immune escape or impede immunosurveillance within certain contexts, playing important roles in tumor progression. In this review, we focus on how metabolic reprogramming of tumor cells and immune cells reshapes epigenetic alterations, in particular the acetylation and methylation of histone proteins and DNA. We also discuss other eminent metabolic modifications such as, succinylation, hydroxybutyrylation, and lactylation, and update the current advances in metabolism- and epigenetic modification-based therapeutic prospects in cancer.
Collapse
Affiliation(s)
- Linchong Sun
- Guangzhou First People's Hospital, School of Medicine, Institutes for Life Sciences, South China University of Technology, Guangzhou, 510006, China.
| | - Huafeng Zhang
- The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230027, China. .,CAS Centre for Excellence in Cell and Molecular Biology, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China.
| | - Ping Gao
- Guangzhou First People's Hospital, School of Medicine, Institutes for Life Sciences, South China University of Technology, Guangzhou, 510006, China. .,School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 510006, China. .,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510005, China.
| |
Collapse
|
31
|
Meinhardt B, Motlagh Scholle L, Seifert F, Anwand M, Pietzsch M, Zierz S. Cardiolipin Stabilizes and Increases Catalytic Efficiency of Carnitine Palmitoyltransferase II and Its Variants S113L, P50H, and Y479F. Int J Mol Sci 2021; 22:4831. [PMID: 34063237 PMCID: PMC8125234 DOI: 10.3390/ijms22094831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/28/2021] [Accepted: 04/29/2021] [Indexed: 11/29/2022] Open
Abstract
Muscle carnitine palmitoyltransferase II (CPT II) deficiency is associated with various mutations in CPT2 gene. In the present study, the impact of the two CPT II variants P50H and Y479F were characterized in terms of stability and activity in vitro in comparison to wildtype (WT) and the well investigated variant S113L. While the initial enzyme activity of all variants showed wild-type-like behavior, the activity half-lives of the variants at different temperatures were severely reduced. This finding was validated by the investigation of thermostability of the enzymes using nano differential scanning fluorimetry (nanoDSF). Further, it was studied whether the protein stabilizing diphosphatidylglycerol cardiolipin (CL) has an effect on the variants. CL indeed had a positive effect on the stability. This effect was strongest for WT and least pronounced for variant P50H. Additionally, CL improved the catalytic efficiency for CPT II WT and the investigated variants by twofold when carnitine was the varied substrate due to a decrease in KM. However, there was no influence detected for the variation of substrate palmitoyl-CoA. The functional consequences of the stabilization by CL in vivo remain open.
Collapse
Affiliation(s)
- Beate Meinhardt
- Department of Neurology, Martin-Luther-University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120 Halle (Saale), Germany; (L.M.S.); (S.Z.)
| | - Leila Motlagh Scholle
- Department of Neurology, Martin-Luther-University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120 Halle (Saale), Germany; (L.M.S.); (S.Z.)
| | - Franziska Seifert
- Department of Pharmaceutical Technology and Biopharmacy, Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, Weinbergweg 22, 06120 Halle (Saale), Germany; (F.S.); (M.A.); (M.P.)
| | - Martina Anwand
- Department of Pharmaceutical Technology and Biopharmacy, Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, Weinbergweg 22, 06120 Halle (Saale), Germany; (F.S.); (M.A.); (M.P.)
| | - Markus Pietzsch
- Department of Pharmaceutical Technology and Biopharmacy, Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, Weinbergweg 22, 06120 Halle (Saale), Germany; (F.S.); (M.A.); (M.P.)
| | - Stephan Zierz
- Department of Neurology, Martin-Luther-University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120 Halle (Saale), Germany; (L.M.S.); (S.Z.)
| |
Collapse
|
32
|
L-Carnitine in Drosophila: A Review. Antioxidants (Basel) 2020; 9:antiox9121310. [PMID: 33371457 PMCID: PMC7767417 DOI: 10.3390/antiox9121310] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 12/12/2022] Open
Abstract
L-Carnitine is an amino acid derivative that plays a key role in the metabolism of fatty acids, including the shuttling of long-chain fatty acyl CoA to fuel mitochondrial β-oxidation. In addition, L-carnitine reduces oxidative damage and plays an essential role in the maintenance of cellular energy homeostasis. L-carnitine also plays an essential role in the control of cerebral functions, and the aberrant regulation of genes involved in carnitine biosynthesis and mitochondrial carnitine transport in Drosophila models has been linked to neurodegeneration. Drosophila models of neurodegenerative diseases provide a powerful platform to both unravel the molecular pathways that contribute to neurodegeneration and identify potential therapeutic targets. Drosophila can biosynthesize L-carnitine, and its carnitine transport system is similar to the human transport system; moreover, evidence from a defective Drosophila mutant for one of the carnitine shuttle genes supports the hypothesis of the occurrence of β-oxidation in glial cells. Hence, Drosophila models could advance the understanding of the links between L-carnitine and the development of neurodegenerative disorders. This review summarizes the current knowledge on L-carnitine in Drosophila and discusses the role of the L-carnitine pathway in fly models of neurodegeneration.
Collapse
|
33
|
Zaganas I, Mastorodemos V, Spilioti M, Mathioudakis L, Latsoudis H, Michaelidou K, Kotzamani D, Notas K, Dimitrakopoulos K, Skoula I, Ioannidis S, Klothaki E, Erimaki S, Stavropoulos G, Vassilikos V, Amoiridis G, Efthimiadis G, Evangeliou A, Mitsias P. Genetic cause of heterogeneous inherited myopathies in a cohort of Greek patients. Mol Genet Metab Rep 2020; 25:100682. [PMID: 33304817 PMCID: PMC7711282 DOI: 10.1016/j.ymgmr.2020.100682] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 11/13/2020] [Accepted: 11/13/2020] [Indexed: 02/07/2023] Open
Abstract
Inherited muscle disorders are caused by pathogenic changes in numerous genes. Herein, we aimed to investigate the etiology of muscle disease in 24 consecutive Greek patients with myopathy suspected to be genetic in origin, based on clinical presentation and laboratory and electrophysiological findings and absence of known acquired causes of myopathy. Of these, 16 patients (8 females, median 24 years-old, range 7 to 67 years-old) were diagnosed by Whole Exome Sequencing as suffering from a specific type of inherited muscle disorder. Specifically, we have identified causative variants in 6 limb-girdle muscular dystrophy genes (6 patients; ANO5, CAPN3, DYSF, ISPD, LAMA2, SGCA), 3 metabolic myopathy genes (4 patients; CPT2, ETFDH, GAA), 1 congenital myotonia gene (1 patient; CLCN1), 1 mitochondrial myopathy gene (1 patient; MT-TE) and 3 other myopathy-associated genes (4 patients; CAV3, LMNA, MYOT). In 6 additional family members affected by myopathy, we reached genetic diagnosis following identification of a causative variant in an index patient. In our patients, genetic diagnosis ended a lengthy diagnostic process and, in the case of Multiple acyl-CoA dehydrogenase deficiency and Pompe's disease, it enabled specific treatment to be initiated. These results further expand the genotypic and phenotypic spectrum of inherited myopathies.
Collapse
Affiliation(s)
- Ioannis Zaganas
- Neurogenetics Laboratory, Medical School, University of Crete, Heraklion, Crete, Greece
- Neurology Department, University Hospital of Crete, Heraklion, Crete, Greece
| | | | - Martha Spilioti
- AHEPA General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Lambros Mathioudakis
- Neurogenetics Laboratory, Medical School, University of Crete, Heraklion, Crete, Greece
| | - Helen Latsoudis
- Neurogenetics Laboratory, Medical School, University of Crete, Heraklion, Crete, Greece
| | - Kleita Michaelidou
- Neurogenetics Laboratory, Medical School, University of Crete, Heraklion, Crete, Greece
| | - Dimitra Kotzamani
- Neurogenetics Laboratory, Medical School, University of Crete, Heraklion, Crete, Greece
| | - Konstantinos Notas
- AHEPA General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Irene Skoula
- Neurogenetics Laboratory, Medical School, University of Crete, Heraklion, Crete, Greece
| | - Stefanos Ioannidis
- Neurology Department, University Hospital of Crete, Heraklion, Crete, Greece
| | - Eirini Klothaki
- Neurology Department, University Hospital of Crete, Heraklion, Crete, Greece
| | - Sophia Erimaki
- Neurophysiology Unit, University Hospital of Crete, Heraklion, Crete, Greece
| | - Georgios Stavropoulos
- Hippokratio General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Vassilios Vassilikos
- Hippokratio General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Georgios Amoiridis
- Neurophysiology Unit, University Hospital of Crete, Heraklion, Crete, Greece
| | - Georgios Efthimiadis
- AHEPA General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Athanasios Evangeliou
- Papageorgiou General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Panayiotis Mitsias
- Neurology Department, University Hospital of Crete, Heraklion, Crete, Greece
- Neurophysiology Unit, University Hospital of Crete, Heraklion, Crete, Greece
- Department of Neurology, Henry Ford Hospital/Wayne State University, Detroit, Michigan, USA
| |
Collapse
|
34
|
Farhadi P, Yarani R, Dokaneheifard S, Mansouri K. The emerging role of targeting cancer metabolism for cancer therapy. Tumour Biol 2020; 42:1010428320965284. [PMID: 33028168 DOI: 10.1177/1010428320965284] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Glucose, as the main consuming nutrient of the body, faces different destinies in cancer cells. Glycolysis, oxidative phosphorylation, and pentose phosphate pathways produce different glucose-derived metabolites and thus affect cells' bioenergetics differently. Tumor cells' dependency to aerobic glycolysis and other cancer-specific metabolism changes are known as the cancer hallmarks, distinct cancer cells from normal cells. Therefore, these tumor-specific characteristics receive the limelight as targets for cancer therapy. Glutamine, serine, and fatty acid oxidation together with 5-lipoxygenase are main pathways that have attracted lots of attention for cancer therapy. In this review, we not only discuss different tumor metabolism aspects but also discuss the metabolism roles in the promotion of cancer cells at different stages and their difference with normal cells. Besides, we dissect the inhibitors potential in blocking the main metabolic pathways to introduce the effective and non-effective inhibitors in the field.
Collapse
Affiliation(s)
- Pegah Farhadi
- Medical Biology Research Center, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Reza Yarani
- Translational Type 1 Diabetes Research, Department of Clinical Research, Steno Diabetes Center Copenhagen, Gentofte, Denmark
| | - Sadat Dokaneheifard
- Sylvester Comprehensive Cancer Center, Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Kamran Mansouri
- Medical Biology Research Center, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Department of Molecular Medicine, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
35
|
Schlaepfer IR, Joshi M. CPT1A-mediated Fat Oxidation, Mechanisms, and Therapeutic Potential. Endocrinology 2020; 161:5695911. [PMID: 31900483 DOI: 10.1210/endocr/bqz046] [Citation(s) in RCA: 396] [Impact Index Per Article: 79.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 12/31/2019] [Indexed: 12/15/2022]
Abstract
Energy homeostasis during fasting or prolonged exercise depends on mitochondrial fatty acid oxidation (FAO). This pathway is crucial in many tissues with high energy demand and its disruption results in inborn FAO deficiencies. More than 15 FAO genetic defects have been currently described, and pathological variants described in circumpolar populations provide insights into its critical role in metabolism. The use of fatty acids as energy requires more than 2 dozen enzymes and transport proteins, which are involved in the activation and transport of fatty acids into the mitochondria. As the key rate-limiting enzyme of FAO, carnitine palmitoyltransferase I (CPT1) regulates FAO and facilitates adaptation to the environment, both in health and in disease, including cancer. The CPT1 family of proteins contains 3 isoforms: CPT1A, CPT1B, and CPT1C. This review focuses on CPT1A, the liver isoform that catalyzes the rate-limiting step of converting acyl-coenzyme As into acyl-carnitines, which can then cross membranes to get into the mitochondria. The regulation of CPT1A is complex and has several layers that involve genetic, epigenetic, physiological, and nutritional modulators. It is ubiquitously expressed in the body and associated with dire consequences linked with genetic mutations, metabolic disorders, and cancers. This makes CPT1A an attractive target for therapeutic interventions. This review discusses our current understanding of CPT1A expression, its role in heath and disease, and the potential for therapeutic opportunities targeting this enzyme.
Collapse
Affiliation(s)
- Isabel R Schlaepfer
- University of Colorado School of Medicine, Division of Medical Oncology, Aurora
| | - Molishree Joshi
- University of Colorado School of Medicine, Department of Pharmacology, Aurora, Colorado
| |
Collapse
|
36
|
Gnoni A, Longo S, Gnoni GV, Giudetti AM. Carnitine in Human Muscle Bioenergetics: Can Carnitine Supplementation Improve Physical Exercise? Molecules 2020; 25:E182. [PMID: 31906370 PMCID: PMC6982879 DOI: 10.3390/molecules25010182] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 12/27/2019] [Accepted: 12/31/2019] [Indexed: 12/18/2022] Open
Abstract
l-Carnitine is an amino acid derivative widely known for its involvement in the transport of long-chain fatty acids into the mitochondrial matrix, where fatty acid oxidation occurs. Moreover, l-Carnitine protects the cell from acyl-CoA accretion through the generation of acylcarnitines. Circulating carnitine is mainly supplied by animal-based food products and to a lesser extent by endogenous biosynthesis in the liver and kidney. Human muscle contains high amounts of carnitine but it depends on the uptake of this compound from the bloodstream, due to muscle inability to synthesize carnitine. Mitochondrial fatty acid oxidation represents an important energy source for muscle metabolism particularly during physical exercise. However, especially during high-intensity exercise, this process seems to be limited by the mitochondrial availability of free l-carnitine. Hence, fatty acid oxidation rapidly declines, increasing exercise intensity from moderate to high. Considering the important role of fatty acids in muscle bioenergetics, and the limiting effect of free carnitine in fatty acid oxidation during endurance exercise, l-carnitine supplementation has been hypothesized to improve exercise performance. So far, the question of the role of l-carnitine supplementation on muscle performance has not definitively been clarified. Differences in exercise intensity, training or conditioning of the subjects, amount of l-carnitine administered, route and timing of administration relative to the exercise led to different experimental results. In this review, we will describe the role of l-carnitine in muscle energetics and the main causes that led to conflicting data on the use of l-carnitine as a supplement.
Collapse
Affiliation(s)
- Antonio Gnoni
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari “Aldo Moro”, 70124 Bari, Italy;
| | - Serena Longo
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy; (S.L.); (G.V.G.)
| | - Gabriele V. Gnoni
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy; (S.L.); (G.V.G.)
| | - Anna M. Giudetti
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy; (S.L.); (G.V.G.)
| |
Collapse
|
37
|
Xing J, Zhao X, Li X, Wang Y, Li J, Hou R, Niu X, Yin G, Li X, Zhang K. Variation at ACOT12 and CT62 locus represents susceptibility to psoriasis in Han population. Mol Genet Genomic Med 2019; 8:e1098. [PMID: 31858748 PMCID: PMC7005626 DOI: 10.1002/mgg3.1098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 11/25/2019] [Accepted: 12/02/2019] [Indexed: 02/06/2023] Open
Abstract
Background Psoriasis is a chronic inflammatory disorder of the skin, and genetic factors are reported to be involved in the disease pathogenesis. Many studies have named psoriasis candidate genes. Objective In this study, we determined the mutation frequency of 7 variable genes in 1,027 psoriatic patients and investigated its possible mechanism associated with psoriasis. Method A total of 7 variable genes from 1,027 psoriatic patients were amplified and sequenced using the Sanger method. The mutation frequency was compared to that of non‐psoriatic individuals in Asia using information from databases. Results Among the 7 investigated genes, the mutation frequency of ACOT12 (c.80A>G, 9.98% vs. 5.85%, p < .05) and CT62 (c.476C>T,15.8% vs. 9.93%, p < .05) was found to be significantly higher than among non‐psoriatic Asian individuals. The mutation frequencies of CASZ1(c.599T>G), SPRED1(c.155A>G), and ACOT12 (c.80A>G) differed significantly between the groups organized by medical history, PASI, and family history. SPRED1 gene variants (17.25% vs. 7.78%, p < .01) showed a stronger association with the family history group at the onset of psoriasis than with the no family history group. Conclusions Our results provide a comprehensive correlation analysis of susceptibility genes in psoriasis patients. Clinical characteristics of patients play important roles in the development of psoriatic skin.
Collapse
Affiliation(s)
- Jianxiao Xing
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xincheng Zhao
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiaofang Li
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Ying Wang
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Junqin Li
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Ruixia Hou
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xuping Niu
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Guohua Yin
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xinhua Li
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Kaiming Zhang
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
38
|
Punekar S, Cho DC. Novel Therapeutics Affecting Metabolic Pathways. Am Soc Clin Oncol Educ Book 2019; 39:e79-e87. [PMID: 31099667 DOI: 10.1200/edbk_238499] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cancer cells are known to have distinct metabolic characteristics compared with normal cells, given the catabolic and anabolic demands of increased cell growth and proliferation. This altered metabolism in cancer cells imbues differential dependencies, and substantial effort has been invested in developing therapeutic strategies to exploit these potential vulnerabilities. Parallel to these efforts has been a growing appreciation for the presence of notable intratumoral metabolic heterogeneity. Although many novel agents are showing some promising results in targeting specific metabolic processes, the challenge moving forward will be to develop combination strategies to address the aforementioned metabolic heterogeneity and its interplay with both epigenetic and immune factors in the tumor microenvironment. In this review, we discuss recent developments in targeting tumor catabolism, lipid biosynthesis, glycolysis, and the citric acid cycle as well as efforts to combine these approaches with immunotherapy.
Collapse
Affiliation(s)
| | - Daniel C Cho
- 1 Perlmutter Cancer Center at NYU Langone, New York, NY
| |
Collapse
|
39
|
Lu M, Zhu WW, Wang X, Tang JJ, Zhang KL, Yu GY, Shao WQ, Lin ZF, Wang SH, Lu L, Zhou J, Wang LX, Jia HL, Dong QZ, Chen JH, Lu JQ, Qin LX. ACOT12-Dependent Alteration of Acetyl-CoA Drives Hepatocellular Carcinoma Metastasis by Epigenetic Induction of Epithelial-Mesenchymal Transition. Cell Metab 2019; 29:886-900.e5. [PMID: 30661930 DOI: 10.1016/j.cmet.2018.12.019] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 09/17/2018] [Accepted: 12/21/2018] [Indexed: 12/31/2022]
Abstract
Metabolic reprogramming plays an important role in supporting tumor growth. However, little is known about the metabolic alterations that promote cancer metastasis. In this study, we identify acyl-CoA thioesterase 12 (ACOT12) as a key player in hepatocellular carcinoma (HCC) metastasis. The expression of ACOT12 is significantly down-regulated in HCC tissues and is closely associated with HCC metastasis and poor survival of HCC patients. Gain- and loss-of-function studies demonstrate that ACOT12 suppresses HCC metastasis both in vitro and in vivo. Further mechanistic studies reveal that ACOT12 regulates the cellular acetyl-CoA levels and histone acetylation in HCC cells and that down-regulation of ACOT12 promotes HCC metastasis by epigenetically inducing TWIST2 expression and the promotion of epithelial-mesenchymal transition. Taken together, our findings link the alteration of acetyl-CoA with HCC metastasis and imply that ACOT12 could be a prognostic marker and a potential therapeutic target for combating HCC metastasis.
Collapse
Affiliation(s)
- Ming Lu
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, 12 Urumqi Road (M), Shanghai 200040, China.
| | - Wen-Wei Zhu
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, 12 Urumqi Road (M), Shanghai 200040, China
| | - Xuan Wang
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, 12 Urumqi Road (M), Shanghai 200040, China
| | - Jing-Jie Tang
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Kai-Li Zhang
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, 12 Urumqi Road (M), Shanghai 200040, China; Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Guang-Yang Yu
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, 12 Urumqi Road (M), Shanghai 200040, China; Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Wei-Qing Shao
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, 12 Urumqi Road (M), Shanghai 200040, China
| | - Zhi-Fei Lin
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, 12 Urumqi Road (M), Shanghai 200040, China
| | - Sheng-Hao Wang
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, 12 Urumqi Road (M), Shanghai 200040, China
| | - Lu Lu
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, 12 Urumqi Road (M), Shanghai 200040, China
| | - Jian Zhou
- Qidong People's Hospital, Jiangsu 226299, China
| | | | - Hu-Liang Jia
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, 12 Urumqi Road (M), Shanghai 200040, China
| | - Qiong-Zhu Dong
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, 12 Urumqi Road (M), Shanghai 200040, China; Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Jin-Hong Chen
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, 12 Urumqi Road (M), Shanghai 200040, China
| | | | - Lun-Xiu Qin
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, 12 Urumqi Road (M), Shanghai 200040, China; Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China.
| |
Collapse
|
40
|
Diteepeng T, Khongwichit S, Paemanee A, Roytrakul S, Smith DR. Proteomic analysis of monkey kidney LLC-MK2 cells infected with a Thai strain Zika virus. Arch Virol 2019; 164:725-737. [PMID: 30612200 DOI: 10.1007/s00705-018-04137-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 11/26/2018] [Indexed: 12/12/2022]
Abstract
Zika virus (ZIKV) has been endemic in Southeast Asian countries for several years, but the presence of the virus has not been associated with significant outbreaks of infection unlike other countries around the world where the Asian lineage ZIKV was introduced recently. However, few studies have been undertaken using the endemic virus. The Thai isolate was shown to have a similar tissue tropism to an African isolate of ZIKV, albeit that the Thai isolate infected cells at a lower level as compared to the African isolate. To further understand the pathogenesis of the Thai isolate, a 2D-gel proteomic analysis was undertaken of ZIKV infected LLC-MK2 cells. Seven proteins (superoxide dismutase [Mn], peroxiredoxin 2, ATP synthase subunit alpha, annexin A5 and annexin A1, carnitine o-palmitoyltransferase 2 and cytoskeleton-associated protein 2) were identified as differentially regulated. Of four proteins selected for validation, three (superoxide dismutase [Mn], peroxiredoxin 2, ATP synthase subunit alpha, and annexin A1) were shown to be differentially regulated at both the transcriptional and translational levels. The proteins identified were primarily involved in energy production both directly, and indirectly through mediation of autophagy, as well as in the response to oxidative stress, possibly occurring as a consequence of increased energy production. This study provides further new information on the pathogenesis of ZIKV.
Collapse
Affiliation(s)
- Thamonwan Diteepeng
- Molecular Pathology Laboratory, Institute of Molecular Biosciences, Mahidol University, Salaya Campus, 25/25 Phuttamonton Sai 4, Salaya, Nakorn Pathom, 73170, Thailand
| | - Sarawut Khongwichit
- Molecular Pathology Laboratory, Institute of Molecular Biosciences, Mahidol University, Salaya Campus, 25/25 Phuttamonton Sai 4, Salaya, Nakorn Pathom, 73170, Thailand
| | - Atchara Paemanee
- Molecular Pathology Laboratory, Institute of Molecular Biosciences, Mahidol University, Salaya Campus, 25/25 Phuttamonton Sai 4, Salaya, Nakorn Pathom, 73170, Thailand
| | - Sittiruk Roytrakul
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - Duncan R Smith
- Molecular Pathology Laboratory, Institute of Molecular Biosciences, Mahidol University, Salaya Campus, 25/25 Phuttamonton Sai 4, Salaya, Nakorn Pathom, 73170, Thailand.
| |
Collapse
|
41
|
Mehanna ET, El-sayed NM, Ibrahim AK, Ahmed SA, Abo-Elmatty DM. Isolated compounds from Cuscuta pedicellata ameliorate oxidative stress and upregulate expression of some energy regulatory genes in high fat diet induced obesity in rats. Biomed Pharmacother 2018; 108:1253-1258. [DOI: 10.1016/j.biopha.2018.09.126] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 09/23/2018] [Accepted: 09/24/2018] [Indexed: 11/29/2022] Open
|
42
|
CPT1A-mediated fatty acid oxidation promotes colorectal cancer cell metastasis by inhibiting anoikis. Oncogene 2018; 37:6025-6040. [DOI: 10.1038/s41388-018-0384-z] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 05/31/2018] [Accepted: 06/02/2018] [Indexed: 12/15/2022]
|
43
|
Tan Z, Xiao L, Tang M, Bai F, Li J, Li L, Shi F, Li N, Li Y, Du Q, Lu J, Weng X, Yi W, Zhang H, Fan J, Zhou J, Gao Q, Onuchic JN, Bode AM, Luo X, Cao Y. Targeting CPT1A-mediated fatty acid oxidation sensitizes nasopharyngeal carcinoma to radiation therapy. Am J Cancer Res 2018; 8:2329-2347. [PMID: 29721083 PMCID: PMC5928893 DOI: 10.7150/thno.21451] [Citation(s) in RCA: 178] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 02/28/2018] [Indexed: 12/17/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) has a particularly high prevalence in southern China, southeastern Asia and northern Africa. Radiation resistance remains a serious obstacle to successful treatment in NPC. This study aimed to explore the metabolic feature of radiation-resistant NPC cells and identify new molecular-targeted agents to improve the therapeutic effects of radiotherapy in NPC. Methods: Radiation-responsive and radiation-resistant NPC cells were used as the model system in vitro and in vivo. Metabolomics approach was used to illustrate the global metabolic changes. 13C isotopomer tracing experiment and Seahorse XF analysis were undertaken to determine the activity of fatty acid oxidation (FAO). qRT-PCR was performed to evaluate the expression of essential FAO genes including CPT1A. NPC tumor tissue microarray was used to investigate the prognostic role of CPT1A. Either RNA interference or pharmacological blockade by Etomoxir were used to inhibit CPT1A. Radiation resistance was evaluated by colony formation assay. Mitochondrial membrane potential, apoptosis and neutral lipid content were measured by flow cytometry analysis using JC-1, Annexin V and LipidTOX Red probe respectively. Molecular markers of mitochondrial apoptosis were detected by western blot. Xenografts were treated with Etomoxir, radiation, or a combination of Etomoxir and radiation. Mitochondrial apoptosis and lipid droplets content of tumor tissues were detected by cleaved caspase 9 and Oil Red O staining respectively. Liquid chromatography coupled with tandem mass spectrometry approach was used to identify CPT1A-binding proteins. The interaction of CPT1A and Rab14 were detected by immunoprecipitation, immunofluorescence and in situ proximity ligation analysis. Fragment docking and direct coupling combined computational protein-protein interaction prediction method were used to predict the binding interface. Fatty acid trafficking was measured by pulse-chase assay using BODIPY C16 and MitoTracker Red probe. Results: FAO was active in radiation-resistant NPC cells, and the rate-limiting enzyme of FAO, carnitine palmitoyl transferase 1 A (CPT1A), was consistently up-regulated in these cells. The protein level of CPT1A was significantly associated with poor overall survival of NPC patients following radiotherapy. Inhibition of CPT1A re-sensitized NPC cells to radiation therapy by activating mitochondrial apoptosis both in vitro and in vivo. In addition, we identified Rab14 as a novel CPT1A binding protein. The CPT1A-Rab14 interaction facilitated fatty acid trafficking from lipid droplets to mitochondria, which decreased radiation-induced lipid accumulation and maximized ATP production. Knockdown of Rab14 attenuated CPT1A-mediated fatty acid trafficking and radiation resistance. Conclusion: An active FAO is a vital signature of NPC radiation resistance. Targeting CPT1A could be a beneficial regimen to improve the therapeutic effects of radiotherapy in NPC patients. Importantly, the CPT1A-Rab14 interaction plays roles in CPT1A-mediated radiation resistance by facilitating fatty acid trafficking. This interaction could be an attractive interface for the discovery of novel CPT1A inhibitors.
Collapse
|
44
|
Kudinoside-D, a triterpenoid saponin derived from Ilex kudingcha suppresses adipogenesis through modulation of the AMPK pathway in 3T3-L1 adipocytes. Fitoterapia 2017; 125:208-216. [PMID: 29170122 DOI: 10.1016/j.fitote.2017.11.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 11/17/2017] [Accepted: 11/18/2017] [Indexed: 01/09/2023]
Abstract
The leaves of Ilex Kudingcha, locally named "Kudingcha" in China, has been traditionally applied for treating obesity. Studies have demonstrated that the ethanol extract of Ilex kudingcha have anti-adipogenic effects. However, the constituent which was responsible for its anti-obesity and its underlying molecular mechanism has not yet been elucidated. This research explored the anti-obesity effect of kudinoside-D which was a main natural component of triterpenoid saponin from the ethanol extract of Ilex kudingcha, on lipid accumulation and the potential mechanism of action of adipogenesis in 3T3-L1 adipocytes. The adipocytes were treated with various concentrations of kudinoside D (0 to 40μM) during differentiation. The image-based Oil Red O staining analyses revealed that KD-D, dose dependently reduced cytoplasmic lipid droplet in 3T3-L1 adipocytes with the IC50 is 59.49μM. Meanwhile, major adipogenic transcription factor peroxisome proliferator-activated receptor γ (PPARγ), CCAAT/enhancer binding protein-α (C/EBPα) and sterol regulatory element-binding protein 1c (SREBP-1c) were significantly repressed as well as their target genes. The phosphorylation of AMP-activated protein kinase (AMPK) and its downstream target phosphorylated-acetyl CoA carboxylase (ACC) expression were also increased. In addition, the inhibitory effects of KD-D on the expressions of PPARγ and C/EBPα were weakened when cells were cotreated with AMPK inhibitor Compound C. These results indicated KD-D exerts anti-adipogenic effects through modulation of adipogenic transcription factors via AMPK signaling pathway. And the current findings demonstrated that KD-D was a potential therapeutic candidate for alleviating obesity and hyperlipidemia.
Collapse
|
45
|
Yu C, Xi L, Chen J, Jiang Q, Yi H, Wang Y, Wang X. PAM, OLA, and LNA are Differentially Taken Up and Trafficked Via Different Metabolic Pathways in Porcine Adipocytes. Lipids 2017; 52:929-938. [PMID: 29058170 DOI: 10.1007/s11745-017-4302-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Accepted: 09/19/2017] [Indexed: 12/13/2022]
Abstract
Dietary fatty acids have different effects on fat deposition in pigs. To clarify the underlying mechanisms of this difference, we compared the metabolism of palmitic (PAM, saturated), oleic (OLA, monounsaturated) and linoleic acid (LNA, polyunsaturated) in porcine adipocytes treated with 100 μM PAM, OLA or LNA. We observed that the adipocytes incubated with LNA accumulated more lipids compared with those treated with PAM and OLA. We then probed the metabolism of these fatty acids in porcine adipocytes by using isotope-labelled fatty acids. The results showed that 42% of the [1-14C] LNA, 34% of the [1-14C] PAM and 28% of the [1-14C] OLA were recovered in the cellular lipids. The gene expression analyses showed that LNA significantly increased the expression of adipogenesis- and oxidation-related genes including PPARγ, C/EBPα, ap2 and NRF1. In addition, the cells incubated with LNA showed a decreased Ser112 phosphorylation in PPARγ compared to those incubated with PAM and OLA. Furthermore, when PPARγ Ser112 phosphorylation was inhibited, no significant difference in the triacylglycerol contents in the adipocytes was observed. These results showed the dietary fatty acids had different metabolism pathways in porcine adipocytes, and LNA significantly promoted lipid accumulation, probably by regulating PPARγ phosphorylation in adipocytes.
Collapse
Affiliation(s)
- Caihua Yu
- Key Laboratory of Animal Nutrition and Feed Sciences, Ministry of Agriculture, Zhejiang Provincial Laboratory of Feed and Animal Nutrition, College of Animal Sciences, Zhejiang University, No. 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang, People's Republic of China
| | - Lingling Xi
- Key Laboratory of Animal Nutrition and Feed Sciences, Ministry of Agriculture, Zhejiang Provincial Laboratory of Feed and Animal Nutrition, College of Animal Sciences, Zhejiang University, No. 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang, People's Republic of China
| | - Jin Chen
- Key Laboratory of Animal Nutrition and Feed Sciences, Ministry of Agriculture, Zhejiang Provincial Laboratory of Feed and Animal Nutrition, College of Animal Sciences, Zhejiang University, No. 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang, People's Republic of China
| | - Qin Jiang
- Key Laboratory of Animal Nutrition and Feed Sciences, Ministry of Agriculture, Zhejiang Provincial Laboratory of Feed and Animal Nutrition, College of Animal Sciences, Zhejiang University, No. 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang, People's Republic of China
| | - Hongbo Yi
- Key Laboratory of Animal Nutrition and Feed Sciences, Ministry of Agriculture, Zhejiang Provincial Laboratory of Feed and Animal Nutrition, College of Animal Sciences, Zhejiang University, No. 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang, People's Republic of China
| | - Yizhen Wang
- Key Laboratory of Animal Nutrition and Feed Sciences, Ministry of Agriculture, Zhejiang Provincial Laboratory of Feed and Animal Nutrition, College of Animal Sciences, Zhejiang University, No. 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang, People's Republic of China
| | - Xinxia Wang
- Key Laboratory of Animal Nutrition and Feed Sciences, Ministry of Agriculture, Zhejiang Provincial Laboratory of Feed and Animal Nutrition, College of Animal Sciences, Zhejiang University, No. 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang, People's Republic of China.
| |
Collapse
|
46
|
Nolan SJ, Romano JD, Coppens I. Host lipid droplets: An important source of lipids salvaged by the intracellular parasite Toxoplasma gondii. PLoS Pathog 2017; 13:e1006362. [PMID: 28570716 PMCID: PMC5469497 DOI: 10.1371/journal.ppat.1006362] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 06/13/2017] [Accepted: 04/18/2017] [Indexed: 12/13/2022] Open
Abstract
Toxoplasma is an obligate intracellular parasite that replicates in mammalian cells within a parasitophorous vacuole (PV) that does not fuse with any host organelles. One mechanism developed by the parasite for nutrient acquisition is the attraction of host organelles to the PV. Here, we examined the exploitation of host lipid droplets (LD), ubiquitous fat storage organelles, by Toxoplasma. We show that Toxoplasma replication is reduced in host cells that are depleted of LD, or impaired in TAG lipolysis or fatty acid catabolism. In infected cells, the number of host LD and the expression of host LD-associated genes (ADRP, DGAT2), progressively increase until the onset of parasite replication. Throughout infection, the PV are surrounded by host LD. Toxoplasma is capable of accessing lipids stored in host LD and incorporates these lipids into its own membranes and LD. Exogenous addition of oleic acid stimulates LD biogenesis in the host cell and results in the overaccumulation of neutral lipids in very large LD inside the parasite. To access LD-derived lipids, Toxoplasma intercepts and internalizes within the PV host LD, some of which remaining associated with Rab7, which become wrapped by an intravacuolar network of membranes (IVN). Mutant parasites impaired in IVN formation display diminished capacity of lipid uptake from host LD. Moreover, parasites lacking an IVN-localized phospholipase A2 are less proficient in salvaging lipids from host LD in the PV, suggesting a major contribution of the IVN for host LD processing in the PV and, thus lipid content release. Interestingly, gavage of parasites with lipids unveils, for the first time, the presence in Toxoplasma of endocytic-like structures containing lipidic material originating from the PV lumen. This study highlights the reliance of Toxoplasma on host LD for its intracellular development and the parasite’s capability in scavenging neutral lipids from host LD. Toxoplasma is an obligate intracellular pathogen that multiplies in mammalian cells within a specialized compartment, named the parasitophorous vacuole (PV). While the vacuole does not fuse with host organelles, the parasite scavenges nutrients, including lipids, from these compartments. Present in all mammalian cells, lipid droplets (LD) are dynamic structures that store neutral lipids. Whether Toxoplasma targets host LD for their nutritional content remains to be investigated. We demonstrate that the parasite relies on host LD lipids and their lipolytic enzymatic activities to grow. Toxoplasma salvages lipids from host LD, which surround the PV and, at least partially, accesses these lipids by intercepting and engulfing within the PV host Rab7-associated LD. In the PV lumen, a parasite lipase releases lipids from host LD, thus making them available to the parasite. Exogenous addition of fatty acids stimulates host LD biogenesis and results in the accumulation of enlarged LD containing neutral lipids in Toxoplasma. This study highlights the ability of Toxoplasma to scavenge and store lipids from host LD. Interestingly, exposure of Toxoplasma to excess lipids reveals, for the first time, coated invaginations of the parasite’s plasma membrane and cytoplasmic vesicles containing lipids originating from the PV lumen, potentially involved in endocytosis.
Collapse
Affiliation(s)
- Sabrina J. Nolan
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Julia D. Romano
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Isabelle Coppens
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
47
|
Piemontese L, Cerchia C, Laghezza A, Ziccardi P, Sblano S, Tortorella P, Iacobazzi V, Infantino V, Convertini P, Dal Piaz F, Lupo A, Colantuoni V, Lavecchia A, Loiodice F. New diphenylmethane derivatives as peroxisome proliferator-activated receptor alpha/gamma dual agonists endowed with anti-proliferative effects and mitochondrial activity. Eur J Med Chem 2017; 127:379-397. [DOI: 10.1016/j.ejmech.2016.12.047] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 12/21/2016] [Accepted: 12/23/2016] [Indexed: 12/18/2022]
|
48
|
Fatty acid oxidation and carnitine palmitoyltransferase I: emerging therapeutic targets in cancer. Cell Death Dis 2016; 7:e2226. [PMID: 27195673 PMCID: PMC4917665 DOI: 10.1038/cddis.2016.132] [Citation(s) in RCA: 361] [Impact Index Per Article: 40.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Revised: 04/07/2016] [Accepted: 04/12/2016] [Indexed: 12/23/2022]
Abstract
Tumor cells exhibit unique metabolic adaptations that are increasingly viewed as potential targets for novel and specific cancer therapies. Among these targets, the carnitine palmitoyltransferase system is responsible for delivering the long-chain fatty acid (FA) from cytoplasm into mitochondria for oxidation, where carnitine palmitoyltransferase I (CPTI) catalyzes the rate-limiting step of fatty acid oxidation (FAO). With increasing understanding of the crucial role had by fatty acid oxidation in cancer, CPTI has received renewed attention as a pivotal mediator in cancer metabolic mechanism. CPTI activates FAO and fuels cancer growth via ATP and NADPH production, constituting an essential part of cancer metabolism adaptation. Moreover, CPTI also functionally intertwines with other key pathways and factors to regulate gene expression and apoptosis of cancer cell. Here, we summarize recent findings and update the current understanding of FAO and CPTI in cancer and provide theoretical basis for this enzyme as an emerging potential molecular target in cancer therapeutic intervention.
Collapse
|
49
|
Li H, Kang JH, Han JM, Cho MH, Chung YJ, Park KH, Shin DH, Park HY, Choi MS, Jeong TS. Anti-Obesity Effects of Soy Leaf via Regulation of Adipogenic Transcription Factors and Fat Oxidation in Diet-Induced Obese Mice and 3T3-L1 Adipocytes. J Med Food 2015; 18:899-908. [PMID: 25826408 DOI: 10.1089/jmf.2014.3388] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The anti-obesity effects of extracts from soy leaves (SLE) cultivated for 8 weeks (8W) or 16 weeks (16W) were investigated in diet-induced obese mice. The effects of kaempferol, an aglycone of the kaempferol glycosides that are the major component of 8W-SLE, and coumestrol, the major component of 16W-SLE, were also investigated in 3T3-L1 adipocytes. Eight-week-old male C57BL/6J mice were randomly divided into normal diet, high-fat diet (HFD), 8W-SLE (HFD+8W-SLE 50 mg kg(-1) day(-1)), 16W-SLE (HFD+16W-SLE 50 mg kg(-1) day(-1)), and Garcinia cambogia extracts (GE) (HFD+GE 50 mg kg(-1) day(-1)) groups. Body weight gain and fat accumulation of white adipose tissue (WAT) were highly suppressed by daily oral administration of 8W-SLE and 16W-SLE for 10 weeks. Supplementing a HFD with 8W-SLE and 16W-SLE regulated the mRNA expression of peroxisome proliferator-activated receptor gamma (PPARγ), CCAAT/enhancer-binding protein alpha (c/EBPα), sterol regulatory element-binding protein-1 (SREBP-1), adipocyte protein 2, and fatty acid synthase (FAS), which are related to adipogenesis, in addition to hormone-sensitive lipase (HSL), carnitine palmitoyl transferase 1 (CPT-1), and uncoupling protein 2 (UCP2), which are related to fat oxidation in WAT. In 3T3-L1 adipocytes, kaempferol and coumestrol exhibited anti-adipogenic effects via downregulation of PPARγ, c/EBPα, SREBP-1, and FAS. Kaempferol and coumestrol increased the expression of HSL, CPT-1, and UCP2.
Collapse
Affiliation(s)
- Hua Li
- 1 National Research Laboratory of Lipid Metabolism and Atherosclerosis, Korea Research Institute of Bioscience and Biotechnology (KRIBB) , Daejeon, Korea
- 2 Department of Biomolecular Science, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Korea University of Science and Technology , Daejeon, Korea
| | - Ji-Hyun Kang
- 1 National Research Laboratory of Lipid Metabolism and Atherosclerosis, Korea Research Institute of Bioscience and Biotechnology (KRIBB) , Daejeon, Korea
- 3 Department of Food and Nutrition, Chungnam National University , Daejeon, Korea
| | - Jong-Min Han
- 1 National Research Laboratory of Lipid Metabolism and Atherosclerosis, Korea Research Institute of Bioscience and Biotechnology (KRIBB) , Daejeon, Korea
| | - Moon-Hee Cho
- 1 National Research Laboratory of Lipid Metabolism and Atherosclerosis, Korea Research Institute of Bioscience and Biotechnology (KRIBB) , Daejeon, Korea
| | - Young-Jin Chung
- 3 Department of Food and Nutrition, Chungnam National University , Daejeon, Korea
| | - Ki Hun Park
- 4 Division of Applied Life Science, Gyeongsang National University , Jinju, Korea
| | | | - Ho-Yong Park
- 6 Industrial Bio-Materials Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB) , Daejeon, Korea
| | - Myung-Sook Choi
- 7 Center for Food and Nutritional Genomics Research, Kyungpook National University , Daegu, Korea
| | - Tae-Sook Jeong
- 1 National Research Laboratory of Lipid Metabolism and Atherosclerosis, Korea Research Institute of Bioscience and Biotechnology (KRIBB) , Daejeon, Korea
- 2 Department of Biomolecular Science, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Korea University of Science and Technology , Daejeon, Korea
- 6 Industrial Bio-Materials Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB) , Daejeon, Korea
| |
Collapse
|
50
|
Cooper DE, Young PA, Klett EL, Coleman RA. Physiological Consequences of Compartmentalized Acyl-CoA Metabolism. J Biol Chem 2015; 290:20023-31. [PMID: 26124277 DOI: 10.1074/jbc.r115.663260] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Meeting the complex physiological demands of mammalian life requires strict control of the metabolism of long-chain fatty acyl-CoAs because of the multiplicity of their cellular functions. Acyl-CoAs are substrates for energy production; stored within lipid droplets as triacylglycerol, cholesterol esters, and retinol esters; esterified to form membrane phospholipids; or used to activate transcriptional and signaling pathways. Indirect evidence suggests that acyl-CoAs do not wander freely within cells, but instead, are channeled into specific pathways. In this review, we will discuss the evidence for acyl-CoA compartmentalization, highlight the key modes of acyl-CoA regulation, and diagram potential mechanisms for controlling acyl-CoA partitioning.
Collapse
Affiliation(s)
| | | | - Eric L Klett
- From the Departments of Nutrition and Medicine, University of North Carolina, Chapel Hill, North Carolina 27599
| | | |
Collapse
|