1
|
Wei A, Ding T, Li G, Pan F, Tian K, Sun Z, Liu M, Ma Y, Guo Z, Yu Y, Zhan C, Zhang Z, Zhu Y, Wei X. Activated platelet membrane vesicles for broad-spectrum bacterial pulmonary infections management. J Control Release 2025; 380:846-859. [PMID: 39947401 DOI: 10.1016/j.jconrel.2025.02.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 01/31/2025] [Accepted: 02/10/2025] [Indexed: 02/22/2025]
Abstract
The development of new antibiotics has lagged behind the rapid evolution of bacterial resistance, prompting the exploration of alternative antimicrobial strategies. Host-directed therapy (HDT) has emerged as a promising approach by harnessing innate immune system's natural defense mechanisms, which reduces reliance on antibiotics, and mitigates the development of resistance. Building on the important role of platelets in host immunity, activated platelet membrane vesicles (PLTv) are developed here as a host-directed therapy for broad-spectrum antibacterial infection management, leveraging several key mechanisms of action. PLTv neutralizes bacterial toxins, thereby reducing cytotoxicity. The presence of platelet receptors on PLTv enables them to act as decoys, binding bacteria through receptor interactions and facilitating their phagocytosis by neutrophils and macrophages. Additionally, PLTv bound to bacteria promote the formation of neutrophil extracellular traps (NETs), enhancing the immune system's ability to trap and kill bacteria. In mouse models of pulmonary infections caused by the Methicillin-resistant Staphylococcus aureus, P. aeruginosa, and A. baumannii, administration of PLTv significantly reduces bacterial counts in the lungs and protects against mortality. Taken together, the present work highlights PLTv as a promising host-directed therapy for combating broad-spectrum pulmonary drug-resistant bacterial infections, leveraging their ability to neutralize toxins, act as decoys, promote phagocytosis, and facilitate NETs formation.
Collapse
Affiliation(s)
- Anqi Wei
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, PR China
| | - Tianhao Ding
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, PR China
| | - Guanghui Li
- Department of Pharmacy, Jing'an District Central Hospital of Shanghai, Shanghai 200040, PR China
| | - Feng Pan
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, PR China
| | - Kaisong Tian
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, PR China
| | - Ziwei Sun
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, PR China
| | - Mengyuan Liu
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, PR China
| | - Yinyu Ma
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, PR China
| | - Zhiwei Guo
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, PR China
| | - Yifei Yu
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, PR China
| | - Changyou Zhan
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, PR China
| | - Zui Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, PR China.
| | - Ye Zhu
- Department of Stomatology, Huashan Hospital, Fudan University, Shanghai 200040, PR China.
| | - Xiaoli Wei
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, PR China.
| |
Collapse
|
2
|
Lamerton RE, Montague SJ, Perez-Toledo M, Watson SP, Cunningham AF. Platelet aggregation responses to Salmonella Typhimurium are determined by host anti- Salmonella antibody levels. Platelets 2024; 35:2437241. [PMID: 39681834 PMCID: PMC7617673 DOI: 10.1080/09537104.2024.2437241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/01/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024]
Abstract
Invasive non-typhoidal Salmonella infections are responsible for >75 000 deaths/year and >500 000 cases/year globally. Seventy-five percent of these cases occur in Sub-Saharan Africa, an increasing number of which are from multi-drug resistant strains. Interactions between bacteria and platelets can lead to thrombus formation, which can be beneficial for control of infection (immunothrombosis), or harmful through uncontrolled inflammation and organ damage (thromboinflammation). It is unknown whether Salmonella Typhimurium can activate human platelets. To assess this, light transmission aggregometry was used to measure platelet activation by two different Salmonella Typhimurium strains in 26 healthy donors in platelet-rich plasma and washed platelets. In platelet-rich plasma, but not in washed platelets, Salmonella Typhimurium activated platelets in a donor- and strain-dependent manner mediated through the low affinity immune receptor FcγRIIA and the feedback agonists, ADP and thromboxane A2. Plasma swap studies between strong and weak responders demonstrated a plasma component was responsible for the variation between donors. Depletion of anti-Salmonella antibodies from plasma abolished Salmonella-induced platelet aggregation responses, and addition of polyclonal anti-Salmonella antibody allowed aggregation in washed platelets. Correlating levels of anti-Salmonella total IgG or the IgG1, IgG2, IgG3 and IgG4 subclasses to platelet responses revealed total IgG levels, rather than levels of individual subclasses, positively correlated with maximum platelet aggregation results, and negatively with lag times. Overall, we show that anti-Salmonella IgG antibodies are responsible for donor variation in platelet aggregation responses to Salmonella and mediate this activity through FcγRIIA.
Collapse
Affiliation(s)
- Rachel E Lamerton
- Department of Cardiovascular Science, College of Medicine and Health, University of Birmingham, Birmingham, UK
- Department of Immunology and Immunotherapy, College of Medicine and Health, University of Birmingham, Birmingham, UK
| | - Samantha J Montague
- Department of Cardiovascular Science, College of Medicine and Health, University of Birmingham, Birmingham, UK
| | - Marisol Perez-Toledo
- Department of Immunology and Immunotherapy, College of Medicine and Health, University of Birmingham, Birmingham, UK
| | - Steve P Watson
- Department of Cardiovascular Science, College of Medicine and Health, University of Birmingham, Birmingham, UK
| | - Adam F Cunningham
- Department of Immunology and Immunotherapy, College of Medicine and Health, University of Birmingham, Birmingham, UK
| |
Collapse
|
3
|
Zhang R, Huang H, Lu S, Chen J, Pi D, Dang H, Liu C, Xu F, Fu YQ. Relationship between thrombocytopenia and prognosis in children with septic shock: a retrospective cohort study. Platelets 2024; 35:2363242. [PMID: 38860550 DOI: 10.1080/09537104.2024.2363242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 05/28/2024] [Indexed: 06/12/2024]
Abstract
Septic shock is a life-threatening disease worldwide often associated with thrombocytopenia. Platelets play a crucial role in bridging the gap between immunity, coagulation, and endothelial cell activation, potentially influencing the course of the disease. However, there are few studies specifically evaluating the impact of thrombocytopenia on the prognosis of pediatric patients. Therefore, the study investigates effects of early thrombocytopenia in the prognosis of children with septic shock. Pediatric patients with septic shock from 2015 to 2022 were included monocentrically. Thrombocytopenia was defined as a platelet count of <100 × 109/L during the first 24 hours of septic shock onset. The primary outcome was the 28-day mortality. Propensity score matching was used to pair patients with different platelet counts on admission but comparable disease severity. A total of 419 pediatric patients were included in the analysis. Patients with thrombocytopenia had higher 28-day mortality (55.5% vs. 38.7%, p = .005) compared to patients with no thrombocytopenia. Thrombocytopenia was associated with reduced 28-PICU free days (median value, 0 vs. 13 days, p = .003) and 28-ventilator-free (median value, 0 vs. 19 days, p = .001) days. Among thrombocytopenia patients, those with platelet count ≤50 × 109/L had a higher 28-day mortality rate (63.6% vs. 45%, p = .02). Multiple logistic regression showed that elevated lactate (adjusted odds ratio (OR) = 1.11; 95% confidence interval (CI): 1.04-1.17; P <0.001) and white blood cell (WBC) count (OR = 0.97; 95% CI: 0.95-0.99; p = .003) were independent risk factors for the development of thrombocytopenia. Thrombocytopenia group had increased bleeding events, blood product transfusions, and development of organ failure. In Kaplan-Meier survival estimates, survival probabilities at 28 days were greater in patients without thrombocytopenia (p value from the log-rank test, p = .004). There were no significant differences in the type of pathogenic microorganisms and the site of infection between patients with and without thrombocytopenia. In conclusion, thrombocytopenia within 24 hours of shock onset is associated with an increased risk of 28-day mortality in pediatric patients with septic shock.
Collapse
Affiliation(s)
- Ruichen Zhang
- Department of Critical Care Medicine, Children's Hospital Affiliated to Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Haixin Huang
- Department of Critical Care Medicine, Children's Hospital Affiliated to Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Siwei Lu
- Department of Critical Care Medicine, Children's Hospital Affiliated to Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Jian Chen
- Department of Critical Care Medicine, Children's Hospital Affiliated to Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Dandan Pi
- Department of Critical Care Medicine, Children's Hospital Affiliated to Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Hongxing Dang
- Department of Critical Care Medicine, Children's Hospital Affiliated to Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Chengjun Liu
- Department of Critical Care Medicine, Children's Hospital Affiliated to Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Feng Xu
- Department of Critical Care Medicine, Children's Hospital Affiliated to Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Yue-Qiang Fu
- Department of Critical Care Medicine, Children's Hospital Affiliated to Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| |
Collapse
|
4
|
Wang Z, Kaplan RC, Burk RD, Qi Q. The Oral Microbiota, Microbial Metabolites, and Immuno-Inflammatory Mechanisms in Cardiovascular Disease. Int J Mol Sci 2024; 25:12337. [PMID: 39596404 PMCID: PMC11594421 DOI: 10.3390/ijms252212337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/11/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
Cardiovascular diseases (CVDs) remain a leading cause of global morbidity and mortality. Recent advancements in high-throughput omics techniques have enhanced our understanding of the human microbiome's role in the development of CVDs. Although the relationship between the gut microbiome and CVDs has attracted considerable research attention and has been rapidly evolving in recent years, the role of the oral microbiome remains less understood, with most prior studies focusing on periodontitis-related pathogens. In this review, we summarized previously reported associations between the oral microbiome and CVD, highlighting known CVD-associated taxa such as Porphyromonas gingivalis, Fusobacterium nucleatum, and Aggregatibacter actinomycetemcomitans. We also discussed the interactions between the oral and gut microbes. The potential mechanisms by which the oral microbiota can influence CVD development include oral and systemic inflammation, immune responses, cytokine release, translocation of oral bacteria into the bloodstream, and the impact of microbial-related products such as microbial metabolites (e.g., short-chain fatty acids [SCFAs], trimethylamine oxide [TMAO], hydrogen sulfide [H2S], nitric oxide [NO]) and specific toxins (e.g., lipopolysaccharide [LPS], leukotoxin [LtxA]). The processes driven by these mechanisms may contribute to atherosclerosis, endothelial dysfunction, and other cardiovascular pathologies. Integrated multi-omics methodologies, along with large-scale longitudinal population studies and intervention studies, will facilitate a deeper understanding of the metabolic and functional roles of the oral microbiome in cardiovascular health. This fundamental knowledge will support the development of targeted interventions and effective therapies to prevent or reduce the progression from cardiovascular risk to clinical CVD events.
Collapse
Affiliation(s)
- Zheng Wang
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Robert C. Kaplan
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Robert D. Burk
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Obstetrics & Gynecology and Women’s Health, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Qibin Qi
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| |
Collapse
|
5
|
Xia Y, Sun C, Zhou K, Shen J, Li J, Huang Q, Du J, Zhang S, Sun K, Hu R, Yan R, Dai K. Platelet Glycoprotein Ibα Cytoplasmic Tail Exacerbates Thrombosis During Bacterial Sepsis. Int J Mol Sci 2024; 25:11548. [PMID: 39519103 PMCID: PMC11546206 DOI: 10.3390/ijms252111548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/24/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Septic patients, coupling severe disseminated intravascular coagulation (DIC) and thrombocytopenia, have poor prognoses and higher mortality. The platelet glycoprotein Ibα (GPIbα) is involved in thrombosis, hemostasis, and inflammation response. However, it remains unclear whether the GPIbα cytoplasmic tail regulates sepsis-mediated platelet activation and inflammation, especially in Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) infections. Using a mouse model of S. aureus-induced bacteremia, we found that both 10 amino acids of GPIbα C-terminal sequence deficiency and pharmacologic inhibition of protein kinase C (PKC) alleviated pathogenesis by diminishing platelet activation and aggregate formation. Furthermore, the GPIbα cytoplasmic tail promoted the phagocytosis of platelets by Kupffer cells in vivo. The genetically deficient GPIbα cytoplasmic tail also downregulated inflammatory cytokines and reduced liver damage, ultimately improving the survival rate of the septic mice. Our results illustrate that the platelet GPIbα cytoplasmic domain exacerbates excessive platelet activation and inflammation associated with sepsis through a PKC-dependent pathway. Thus, our findings provide insights for the development of effective therapeutic strategies using PKC inhibitor treatment against bacterial infection.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Rong Yan
- Jiangsu Institute of Hematology, Cyrus Tang Medical Institute, Suzhou Medical College of Soochow University, NHC Key Laboratory of Thrombosis and Hemostasis, National Clinical Research Center for Hematological Diseases, Suzhou 215123, China
| | - Kesheng Dai
- Jiangsu Institute of Hematology, Cyrus Tang Medical Institute, Suzhou Medical College of Soochow University, NHC Key Laboratory of Thrombosis and Hemostasis, National Clinical Research Center for Hematological Diseases, Suzhou 215123, China
| |
Collapse
|
6
|
Kim YH, Lee DH, Seo HS, Eun SH, Lee DS, Choi YK, Lee SH, Kim TY. Genome-based taxonomic identification and safety assessment of an Enterococcus strain isolated from a homemade dairy product. Int Microbiol 2024; 27:1513-1525. [PMID: 38466360 DOI: 10.1007/s10123-024-00496-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/24/2024] [Accepted: 03/05/2024] [Indexed: 03/13/2024]
Abstract
The aim of this study was to explore the taxonomic identification and evaluate the safety of a bacterium, Enterococcus lactis IDCC 2105, isolated from homemade cheese in Korea, using whole genome sequence (WGS) analysis. It sought to identify the species level of this Enterococcus spp., assess its antibiotic resistance, and evaluate its virulence potential. WGS analysis confirmed the bacterial strain IDCC 2105 as E. lactis and identified genes responsible for resistance to erythromycin and clindamycin, specifically msrC, and eatAv, which are chromosomally located, indicating a minimal risk for horizontal gene transfer. The absence of plasmids in E. lactis IDCC 2105 further diminishes the likelihood of resistance gene dissemination. Additionally, our investigation into seven virulence factors, including hemolysis, platelet aggregation, biofilm formation, hyaluronidase, gelatinase, ammonia production, and β-glucuronidase activity, revealed no detectable virulence traits. Although bioinformatic analysis suggested the presence of collagen adhesion genes acm and scm, these were not corroborated by phenotypic virulence assays. Based on these findings, E. lactis IDCC 2105 presents as a safe strain for potential applications, contributing valuable information on its taxonomy, antibiotic resistance profile, and lack of virulence factors, supporting its use in food products.
Collapse
Affiliation(s)
- Young-Hoo Kim
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, 05029, South Korea
| | | | - Han Sol Seo
- Yunovia Co., Ltd, Hwaseong, 18449, South Korea
| | | | - Do Sup Lee
- Yunovia Co., Ltd, Hwaseong, 18449, South Korea
| | | | - Sang Hyun Lee
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, 05029, South Korea
| | - Tae-Yoon Kim
- Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Seongnam, 13488, Republic of Korea.
| |
Collapse
|
7
|
Safdar A, Wang P, Muhaymin A, Nie G, Li S. From bench to bedside: Platelet biomimetic nanoparticles as a promising carriers for personalized drug delivery. J Control Release 2024; 373:128-144. [PMID: 38977134 DOI: 10.1016/j.jconrel.2024.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/24/2024] [Accepted: 07/05/2024] [Indexed: 07/10/2024]
Abstract
In recent decades, there has been a burgeoning interest in cell membrane coating strategies as innovative approach for targeted delivery systems in biomedical applications. Platelet membrane-coated nanoparticles (PNPs), in particular, are gaining interest as a new route for targeted therapy due to their advantages over conventional drug therapies. Their stepwise approach blends the capabilities of the natural platelet membrane (PM) with the adaptable nature of manufactured nanomaterials, resulting in a synergistic combination that enhances drug delivery and enables the development of innovative therapeutics. In this context, we present an overview of the latest advancements in designing PNPs with various structures tailored for precise drug delivery. Initially, we describe the types, preparation methods, delivery mechanisms, and specific advantages of PNPs. Next, we focus on three critical applications of PNPs in diseases: vascular disease therapy, cancer treatment, and management of infectious diseases. This review presents our knowledge of PNPs, summarizes their advancements in targeted therapies and discusses the promising potential for clinical translation of PNPs.
Collapse
Affiliation(s)
- Ammara Safdar
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Peina Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China; Department of Histology and Embryology, College of Basic Medical Sciences, Hebei Medical University, Shijiazhuang 050017, Hebei Province, China.
| | - Abdul Muhaymin
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China.
| | - Suping Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China.
| |
Collapse
|
8
|
Hopkins S, Gajagowni S, Qadeer Y, Wang Z, Virani SS, Meurman JH, Leischik R, Lavie CJ, Strauss M, Krittanawong C. More than just teeth: How oral health can affect the heart. AMERICAN HEART JOURNAL PLUS : CARDIOLOGY RESEARCH AND PRACTICE 2024; 43:100407. [PMID: 38873102 PMCID: PMC11169959 DOI: 10.1016/j.ahjo.2024.100407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 05/14/2024] [Indexed: 06/15/2024]
Abstract
Epidemiological evidence has revealed a potential relationship between periodontal disease and cardiovascular disease (CVD). Consensus regarding a link between these pathologies remains elusive, however, largely secondary to the considerable overlap between risk factors and comorbidities common to both disease processes. This review article aims to update the evidence for an association by summarizing the evidence for causality between periodontitis and comorbidities linked to CVD, including endocarditis, hypertension (HTN), atrial fibrillation (AF), coronary artery disease (CAD), diabetes mellitus (DM) and hyperlipidemia (HLD). This article additionally discusses the role for periodontal therapy to improved management of the comorbidities, with the larger goal of examining the value of periodontal therapy on reduction of CVD risk. In doing so, we endeavor to further the understanding of the commonality between periodontitis, and CVD.
Collapse
Affiliation(s)
- Steven Hopkins
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | | | - Yusuf Qadeer
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Zhen Wang
- Robert D. and Patricia E. Kern Center for the Science of Health Care Delivery, Mayo Clinic, Rochester, MN, USA
- Division of Health Care Policy and Research, Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Salim S. Virani
- Section of Cardiology and Cardiovascular Research, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
- Office of the Vice Provost (Research), The Aga Khan University, Karachi 74800, Pakistan
| | - Jukka H. Meurman
- Department of Oral and Maxillofacial Diseases, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Roman Leischik
- Department of Cardiology, Sector Preventive Medicine, Health Promotion, Faculty of Health, School of Medicine, University Witten/Herdecke, 58095 Hagen, Germany
| | - Carl J. Lavie
- John Ochsner Heart and Vascular Institute, Ochsner Clinical School, The University of Queensland School of Medicine, New Orleans, LA 70121, USA
| | - Markus Strauss
- Department of Cardiology, Sector Preventive Medicine, Health Promotion, Faculty of Health, School of Medicine, University Witten/Herdecke, 58095 Hagen, Germany
- Department of Cardiology I- Coronary and Periphal Vascular Disease, Heart Failure Medicine, University Hospital Muenster, Cardiol, 48149 Muenster, Germany
| | | |
Collapse
|
9
|
Cui Y, Yi C, Zhang C, Yang C, Wang X, Chen W, Peng Y, Dai J. Risk factors for bloodstream infection among patients admitted to an intensive care unit of a tertiary hospital of Shanghai, China. Sci Rep 2024; 14:12765. [PMID: 38834645 DOI: 10.1038/s41598-024-63594-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/30/2024] [Indexed: 06/06/2024] Open
Abstract
Blood flow infections (BSIs) is common occurrences in intensive care units (ICUs) and are associated with poor prognosis. The study aims to identify risk factors and assess mortality among BSI patients admitted to the ICU at Shanghai Ruijin hospital north from January 2022 to June 2023. Additionally, it seeks to present the latest microbiological isolates and their antimicrobial susceptibility. Independent risk factors for BSI and mortality were determined using the multivariable logistic regression model. The study found that the latest incidence rate of BSI was 10.11%, the mortality rate was 35.21% and the mean age of patients with BSI was 74 years old. Klebsiella pneumoniae was the predominant bacterial isolate. Logistic multiple regression revealed that tracheotomy, tigecycline, gastrointestinal bleeding, shock, length of hospital stay, age and laboratory indicators (such as procalcitonine and hemoglobin) were independent risk factors for BSI. Given the elevated risk associated with use of tracheotomy and tigecycline, it underscores the importance of the importance of cautious application of tracheostomy and empirical antibiotic management strategies. Meanwhile, the independent risk factors of mortality included cardiovascular disease, length of hospital stay, mean platelet volume (MPV), uric acid levels and ventilator. BSI patients exhibited a significant decrease in platelet count, and MPV emerged as an independent factor of mortality among them. Therefore, continuous monitoring of platelet-related parameters may aid in promptly identifying high-risk patients and assessing prognosis. Moreover, monitoring changes in uric acid levels may serve as an additional tool for prognostic evaluation in BSI patients.
Collapse
Affiliation(s)
- Yingchao Cui
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Second Ruijin ER Road, Shanghai, 200025, China
| | - Changlin Yi
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Second Ruijin ER Road, Shanghai, 200025, China
| | - Chaomin Zhang
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Second Ruijin ER Road, Shanghai, 200025, China
| | - Chihui Yang
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Second Ruijin ER Road, Shanghai, 200025, China
| | - Xinyi Wang
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Second Ruijin ER Road, Shanghai, 200025, China
| | - Wenkai Chen
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Second Ruijin ER Road, Shanghai, 200025, China
| | - Yibing Peng
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Second Ruijin ER Road, Shanghai, 200025, China.
| | - Jing Dai
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Second Ruijin ER Road, Shanghai, 200025, China.
| |
Collapse
|
10
|
Wu M, Shi Y, Zhao J, Kong M. Engineering unactivated platelets for targeted drug delivery. Biomater Sci 2024; 12:2244-2258. [PMID: 38482903 DOI: 10.1039/d4bm00029c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
As a vital component of blood, platelets play crucial roles in hemostasis and maintaining vascular integrity, and actively participate in inflammation and immune regulation. The unique biological properties of natural platelets have enabled their utilization as drug delivery vehicles. The advancement and integration of various techniques, including biological, chemical, and physicochemical methods, have enabled the preparation of engineered platelets. Platelets can serve as drug delivery platforms combined with immunotherapy and chemokine therapy to enhance their therapeutic impact. This review focuses on the recent advancements in the application of unactivated platelets for drug delivery. The construction strategies of engineered platelets are comprehensively summarized, encompassing internal loading, surface modification, and genetic engineering techniques. Engineered platelets hold vast potential for treating cardiovascular diseases, cancers, and infectious diseases. Furthermore, the challenges and potential considerations in creating engineered platelets with natural activity are discussed.
Collapse
Affiliation(s)
- Meng Wu
- College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong Province, 266003, China.
| | - Yan Shi
- College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong Province, 266003, China.
| | - Jiaxuan Zhao
- College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong Province, 266003, China.
| | - Ming Kong
- College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong Province, 266003, China.
| |
Collapse
|
11
|
Kumari P, Panigrahi AR, Yadav P, Beura SK, Singh SK. Platelets and inter-cellular communication in immune responses: Dialogue with both professional and non-professional immune cells. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 140:347-379. [PMID: 38762274 DOI: 10.1016/bs.apcsb.2023.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2024]
Abstract
Platelets, derived from bone marrow megakaryocytes, are essential for vascular integrity and play multifaceted roles in both physiological and pathological processes within the vasculature. Despite their small size and absence of a nucleus, platelets are increasingly recognized for their diverse immune functions. Recent research highlights their pivotal role in interactions with various immune cells, including professional cells like macrophages, dendritic cells, natural killer cells, T cells, and B cells, influencing host immune responses. Platelets also engage with non-professional immune cells, contributing to immune responses and structural maintenance, particularly in conditions like inflammation and atherosclerosis. This review underscores the emerging significance of platelets as potent immune cells, elucidating their interactions with the immune system. We explore the mechanisms of platelet activation, leading to diverse functions, such as aggregation, immunity, activation of other immune cells, and pathogen clearance. Platelets have become the predominant immune cells in circulation, involved in chronic inflammation, responses to infections, and autoimmune disorders. Their immunological attributes, including bioactive granule molecules and immune receptors, contribute to their role in immune responses. Unlike professional antigen-presenting cells, platelets process and present antigens through an MHC-I-dependent pathway, initiating T-cell immune responses. This review illuminates the unique features of platelets and their central role in modulating host immune responses in health and disease.
Collapse
Affiliation(s)
- Puja Kumari
- Department of Zoology, Central University of Punjab, Bathinda, Punjab, India
| | | | - Pooja Yadav
- Department of Zoology, Central University of Punjab, Bathinda, Punjab, India
| | - Samir Kumar Beura
- Department of Zoology, Central University of Punjab, Bathinda, Punjab, India
| | - Sunil Kumar Singh
- Department of Zoology, Central University of Punjab, Bathinda, Punjab, India; Department of Biochemistry, School of Basic Sciences, Central University of Punjab, Bathinda, Punjab, India.
| |
Collapse
|
12
|
Hopkins S, Gajagowni S, Qadeer Y, Wang Z, Virani SS, Meurman JH, Krittanawong C. Oral Health and Cardiovascular Disease. Am J Med 2024; 137:304-307. [PMID: 38141902 DOI: 10.1016/j.amjmed.2023.11.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/25/2023]
Abstract
Several studies have examined a potential relationship between periodontal disease and cardiovascular disease. This article aims to update the evidence for a potential association by summarizing the evidence for causality between periodontitis and comorbidities linked to cardiovascular disease, including hypertension, atrial fibrillation, coronary artery disease, diabetes mellitus, and hyperlipidemia. We additionally discuss the evidence for periodontal therapy as a means to improved management of these comorbidities, with the larger goal of examining the value of periodontal therapy on reduction of cardiovascular disease risk.
Collapse
Affiliation(s)
- Steven Hopkins
- Department of Medicine, Baylor College of Medicine, Houston, Texas
| | | | - Yusuf Qadeer
- Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Zhen Wang
- Robert D. and Patricia E. Kern Center for the Science of Health Care Delivery; Division of Health Care Policy and Research, Department of Health Sciences Research, Mayo Clinic, Rochester, Minn
| | - Salim S Virani
- Section of Cardiology and Cardiovascular Research, Department of Medicine, Baylor College of Medicine, Houston, Texas; Office of the Vice Provost (Research), The Aga Khan University, Karachi, Pakistan
| | - Jukka H Meurman
- Department of Oral and Maxillofacial Diseases, Institute of Dentistry, Helsinki University Central Hospital, University of Helsinki, Finland
| | | |
Collapse
|
13
|
Xu X, Wang Y, Tao Y, Dang W, Yang B, Li Y. The role of platelets in sepsis: A review. BIOMOLECULES & BIOMEDICINE 2024; 24:741-752. [PMID: 38236204 PMCID: PMC11293227 DOI: 10.17305/bb.2023.10135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/08/2024] [Accepted: 01/18/2024] [Indexed: 01/19/2024]
Abstract
Sepsis, a life-threatening condition characterized by organ dysfunction, results from a complex series of pathophysiological mechanisms including immune dysfunction, an uncontrolled inflammatory response, and coagulation abnormalities. It is a major contributor to global mortality and severe disease development. Platelets, abundant in the circulatory system, are sensitive to changes in the body's internal environment and are among the first cells to respond to dysregulated pro-inflammatory and pro-coagulant reactions at the onset of sepsis. In the initial stages of sepsis, the coagulation cascade, inflammatory response, and endothelial tissue damage perpetually trigger platelet activation. These activated platelets then engage in complex inflammatory and immune reactions, potentially leading to organ dysfunction. Therefore, further research is essential to fully understand the role of platelets in sepsis pathology and to develop effective therapeutic strategies targeting the associated pathogenic pathways. This review delves into the involvement of platelets in sepsis and briefly outlines the clinical applications of associated biomarkers.
Collapse
Affiliation(s)
- Xinxin Xu
- Department of Intensive Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Department of Emergency, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yurou Wang
- Department of Intensive Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Department of Emergency, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yiming Tao
- Department of Intensive Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Department of Emergency, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wenpei Dang
- Department of Intensive Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Department of Emergency, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Bin Yang
- Department of Intensive Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Department of Emergency, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yongsheng Li
- Department of Intensive Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Department of Emergency, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
14
|
Tonelli A, Lumngwena EN, Ntusi NAB. The oral microbiome in the pathophysiology of cardiovascular disease. Nat Rev Cardiol 2023; 20:386-403. [PMID: 36624275 DOI: 10.1038/s41569-022-00825-3] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/01/2022] [Indexed: 01/11/2023]
Abstract
Despite advances in our understanding of the pathophysiology of many cardiovascular diseases (CVDs) and expansion of available therapies, the global burden of CVD-associated morbidity and mortality remains unacceptably high. Important gaps remain in our understanding of the mechanisms of CVD and determinants of disease progression. In the past decade, much research has been conducted on the human microbiome and its potential role in modulating CVD. With the advent of high-throughput technologies and multiomics analyses, the complex and dynamic relationship between the microbiota, their 'theatre of activity' and the host is gradually being elucidated. The relationship between the gut microbiome and CVD is well established. Much less is known about the role of disruption (dysbiosis) of the oral microbiome; however, interest in the field is growing, as is the body of literature from basic science and animal and human investigations. In this Review, we examine the link between the oral microbiome and CVD, specifically coronary artery disease, stroke, peripheral artery disease, heart failure, infective endocarditis and rheumatic heart disease. We discuss the various mechanisms by which oral dysbiosis contributes to CVD pathogenesis and potential strategies for prevention and treatment.
Collapse
Affiliation(s)
- Andrea Tonelli
- Division of Cardiology, Department of Medicine, University of Cape Town and Groote Schuur Hospital, Cape Town, South Africa.,Cardiovascular Research Unit, Christiaan Barnard Division of Cardiothoracic Surgery, Department of Surgery, University of Cape Town and Groote Schuur Hospital, Cape Town, South Africa.,Cape Heart Institute, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.,Extramural Research Unit on the Intersection of Noncommunicable Diseases and Infectious Disease, South African Medical Research Council, Cape Town, South Africa
| | - Evelyn N Lumngwena
- Cape Heart Institute, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.,School of Clinical Medicine, Faculty of Health Sciences, University of Witwatersrand, Johannesburg, South Africa.,Centre for the Study of Emerging and Re-emerging Infections, Institute for Medical Research and Medicinal Plant Studies, Ministry of Scientific Research and Innovation, Yaoundé, Cameroon
| | - Ntobeko A B Ntusi
- Division of Cardiology, Department of Medicine, University of Cape Town and Groote Schuur Hospital, Cape Town, South Africa. .,Cape Heart Institute, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa. .,Extramural Research Unit on the Intersection of Noncommunicable Diseases and Infectious Disease, South African Medical Research Council, Cape Town, South Africa. .,Cape Universities Body Imaging Centre, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa. .,Wellcome Centre for Infectious Disease Research, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.
| |
Collapse
|
15
|
Huang S, Gao Y, Lv Y, Wang Y, Cao Y, Zhao W, Zuo D, Mu H, Hua Y. Applications of Nano/Micromotors for Treatment and Diagnosis in Biological Lumens. MICROMACHINES 2022; 13:mi13101780. [PMID: 36296133 PMCID: PMC9610721 DOI: 10.3390/mi13101780] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/14/2022] [Accepted: 10/16/2022] [Indexed: 06/01/2023]
Abstract
Natural biological lumens in the human body, such as blood vessels and the gastrointestinal tract, are important to the delivery of materials. Depending on the anatomic features of these biological lumens, the invention of nano/micromotors could automatically locomote targeted sites for disease treatment and diagnosis. These nano/micromotors are designed to utilize chemical, physical, or even hybrid power in self-propulsion or propulsion by external forces. In this review, the research progress of nano/micromotors is summarized with regard to treatment and diagnosis in different biological lumens. Challenges to the development of nano/micromotors more suitable for specific biological lumens are discussed, and the overlooked biological lumens are indicated for further studies.
Collapse
Affiliation(s)
- Shandeng Huang
- Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, China
- Shanghai Bone Tumor Institution, Shanghai 201620, China
| | - Yinghua Gao
- Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, China
- Shanghai Bone Tumor Institution, Shanghai 201620, China
| | - Yu Lv
- Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, China
- Shanghai Bone Tumor Institution, Shanghai 201620, China
| | - Yun Wang
- Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, China
- Shanghai Bone Tumor Institution, Shanghai 201620, China
| | - Yinghao Cao
- Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, China
- Shanghai Bone Tumor Institution, Shanghai 201620, China
| | - Weisong Zhao
- Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, China
- Shanghai Bone Tumor Institution, Shanghai 201620, China
| | - Dongqing Zuo
- Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, China
- Shanghai Bone Tumor Institution, Shanghai 201620, China
| | - Haoran Mu
- Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, China
- Shanghai Bone Tumor Institution, Shanghai 201620, China
| | - Yingqi Hua
- Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, China
- Shanghai Bone Tumor Institution, Shanghai 201620, China
| |
Collapse
|
16
|
Ezzeroug Ezzraimi A, Hannachi N, Mariotti A, Rolain JM, Camoin-Jau L. Platelets and Escherichia coli: A Complex Interaction. Biomedicines 2022; 10:biomedicines10071636. [PMID: 35884941 PMCID: PMC9313189 DOI: 10.3390/biomedicines10071636] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/02/2022] [Accepted: 07/06/2022] [Indexed: 12/26/2022] Open
Abstract
Apart from their involvement in hemostasis, platelets have been recognized for their contribution to inflammation and defense against microbial agents. The interaction between platelets and bacteria has been well studied in the model of Staphylococcus and Streptococcus but little described in Gram-negative bacteria, especially Escherichia coli. Being involved in the hemolytic uremic syndrome as well as sepsis, it is important to study the mechanisms of interaction between platelets and E. coli. Results of the published studies are heterogeneous. It appears that some strains interact with platelets through the toll-like receptor-4 (TLR-4) and others through the Fc gamma glycoprotein. E. coli mainly uses lipopolysaccharide (LPS) to activate platelets and cause the release of antibacterial molecules, but this is not the case for all strains. In this review, we describe the different mechanisms developed in previous studies, focusing on this heterogeneity of responses that may depend on several factors; mainly, the strain studied, the structure of the LPS and the platelet form used in the studies. We can hypothesize that the structure of O-antigen and an eventual resistance to antibiotics might explain this difference.
Collapse
Affiliation(s)
- Amina Ezzeroug Ezzraimi
- IRD, APHM, MEPHI, IHU Méditerranée Infection, Aix Marseille Université, 19-21 Boulevard Jean Moulin, 13005 Marseille, France; (A.E.E.); (N.H.); (A.M.); (J.-M.R.)
- IHU Méditerranée Infection, Boulevard Jean Moulin, 13385 Marseille, France
| | - Nadji Hannachi
- IRD, APHM, MEPHI, IHU Méditerranée Infection, Aix Marseille Université, 19-21 Boulevard Jean Moulin, 13005 Marseille, France; (A.E.E.); (N.H.); (A.M.); (J.-M.R.)
- Département de Pharmacie, Faculté de Médecine, Université Ferhat Abbas Sétif I, Sétif 19000, Algeria
| | - Antoine Mariotti
- IRD, APHM, MEPHI, IHU Méditerranée Infection, Aix Marseille Université, 19-21 Boulevard Jean Moulin, 13005 Marseille, France; (A.E.E.); (N.H.); (A.M.); (J.-M.R.)
- IHU Méditerranée Infection, Boulevard Jean Moulin, 13385 Marseille, France
- Hematology Department, Timone Hospital, APHM, Boulevard Jean Moulin, 13005 Marseille, France
| | - Jean-Marc Rolain
- IRD, APHM, MEPHI, IHU Méditerranée Infection, Aix Marseille Université, 19-21 Boulevard Jean Moulin, 13005 Marseille, France; (A.E.E.); (N.H.); (A.M.); (J.-M.R.)
- IHU Méditerranée Infection, Boulevard Jean Moulin, 13385 Marseille, France
| | - Laurence Camoin-Jau
- IRD, APHM, MEPHI, IHU Méditerranée Infection, Aix Marseille Université, 19-21 Boulevard Jean Moulin, 13005 Marseille, France; (A.E.E.); (N.H.); (A.M.); (J.-M.R.)
- IHU Méditerranée Infection, Boulevard Jean Moulin, 13385 Marseille, France
- Hematology Department, Timone Hospital, APHM, Boulevard Jean Moulin, 13005 Marseille, France
- Correspondence: ; Tel.: +33-4-9138-6049; Fax: +33-4-9138-9155
| |
Collapse
|
17
|
Jahn K, Kohler TP, Swiatek LS, Wiebe S, Hammerschmidt S. Platelets, Bacterial Adhesins and the Pneumococcus. Cells 2022; 11:cells11071121. [PMID: 35406684 PMCID: PMC8997422 DOI: 10.3390/cells11071121] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/22/2022] [Accepted: 03/22/2022] [Indexed: 01/25/2023] Open
Abstract
Systemic infections with pathogenic or facultative pathogenic bacteria are associated with activation and aggregation of platelets leading to thrombocytopenia and activation of the clotting system. Bacterial proteins leading to platelet activation and aggregation have been identified, and while platelet receptors are recognized, induced signal transduction cascades are still often unknown. In addition to proteinaceous adhesins, pathogenic bacteria such as Staphylococcus aureus and Streptococcus pneumoniae also produce toxins such as pneumolysin and alpha-hemolysin. They bind to cellular receptors or form pores, which can result in disturbance of physiological functions of platelets. Here, we discuss the bacteria-platelet interplay in the context of adhesin–receptor interactions and platelet-activating bacterial proteins, with a main emphasis on S. aureus and S. pneumoniae. More importantly, we summarize recent findings of how S. aureus toxins and the pore-forming toxin pneumolysin of S. pneumoniae interfere with platelet function. Finally, the relevance of platelet dysfunction due to killing by toxins and potential treatment interventions protecting platelets against cell death are summarized.
Collapse
|
18
|
The Underestimated Role of Platelets in Severe Infection a Narrative Review. Cells 2022; 11:cells11030424. [PMID: 35159235 PMCID: PMC8834344 DOI: 10.3390/cells11030424] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/16/2022] [Accepted: 01/23/2022] [Indexed: 12/13/2022] Open
Abstract
Beyond their role in hemostasis, platelets have emerged as key contributors in the immune response; accordingly, the occurrence of thrombocytopenia during sepsis/septic shock is a well-known risk factor of mortality and a marker of disease severity. Recently, some studies elucidated that the response of platelets to infections goes beyond a simple fall in platelets count; indeed, sepsis-induced thrombocytopenia can be associated with—or even anticipated by—several changes, including an altered morphological pattern, receptor expression and aggregation. Of note, alterations in platelet function and morphology can occur even with a normal platelet count and can modify, depending on the nature of the pathogen, the pattern of host response and the severity of the infection. The purpose of this review is to give an overview on the pathophysiological interaction between platelets and pathogens, as well as the clinical consequences of platelet dysregulation. Furthermore, we try to clarify how understanding the nature of platelet dysregulation may help to optimize the therapeutic approach.
Collapse
|
19
|
Sokolovskaya I, Zaporizhzhya State Medical University and Khorticky National Academy, Prybora N, Valentyna Nechyporenko VN, Pozdniakova O, Hordiienko N, Nechyporenko K, Siliavina Y, Mavrin V, Kotuza A, Kliusov O, Kryachok I, Tytorenko I, Zub V, Yanitka L, Hordienko N, Kudinova M, Mamedli Z, Hordiienko L, Kmetyuk Y, Sprynchuk N, National Pedagogical Dragomanov University, Khortytsia National Academy, Khortytsia National Academy, Khortytsia National Academy, Khortytsia National Academy, Khortytsia National Academy, Khortytsia National Academy, Clinical Hospital "Feofania" the State Management of Affairs, City Oncology Center, National institute of cancer, National institute of cancer, Dispensario oncologico regionale di Chernigiv, Bogomolets National Medical University, Pedagogical University of Drogobych, Khortytsia National Academy, University of Cologne, Germany, Clinical Hospital "Feofania" the State Management of Affairs, Clinical Hospital "Feofania" the State Management of Affairs, Institute of Endocrinology. Assessment of the State of Platelet Haemostasis and Adhesive - Aggregation Properties of Platelets as a Factor of Increasing the Tendency to Thrombosis in Chronic Inflammation. FRENCH-UKRAINIAN JOURNAL OF CHEMISTRY 2022. [DOI: 10.17721/fujcv10i2p22-36] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023] Open
Abstract
In recent decades, considerable progress has been made in understanding the functional mechanisms of platelets and the correction of platelet haemostasis. Platelets are considered the most important participants in both the normal and pathological thrombotic processes characteristic of a variety of diseases and conditions. Alterations in various limbs of haemostasis are found in many somatic diseases (atherosclerosis, coronary heart disease, stroke), surgical procedures, oncological and immunological diseases. Inflammation underlies most diseases and remains an urgent problem in medicine. In the leukocyte infiltration of the inflammatory focus, the mechanism of its self-preservation is of great importance. The activation of haematopoiesis during inflammation is triggered by factors released by stimulated leukocytes of the focus and peripheral blood. Therefore, the problem of the state of the haemostasis system should be the focus of constant attention of clinicians, and with the help of laboratory monitoring of the state of the haemostasis system, it is possible to carry out drug correction of the haemocoagulation potential.
Collapse
|
20
|
Mehrizi TZ, Kafiabad SA, Eshghi P. Effects and treatment applications of polymeric nanoparticles on improving platelets' storage time: a review of the literature from 2010 to 2020. Blood Res 2021; 56:215-228. [PMID: 34880140 PMCID: PMC8721452 DOI: 10.5045/br.2021.2021094] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 07/26/2021] [Accepted: 08/25/2021] [Indexed: 12/13/2022] Open
Abstract
Maintaining the quality of platelet products and increasing their storage time are priorities for treatment applications. The formation of platelet storage lesions that limit the storage period and preservation temperature, which can prepare a decent environment for bacterial growth, are the most important challenges that researchers are dealing with in platelet preservation. Nanotechnology is an emerging field of science that has introduced novel solutions to resolve these problems. Here, we reviewed the reported effects of polymeric nanoparticles-including chitosan, dendrimers, polyethylene glycol (PEG), and liposome-on platelets in articles from 2010 to 2020. As a result, we concluded that the presence of dendrimer nanoparticles with a smaller size, negative charge, low molecular weight, and low concentration along with PEGylation can increase the stability and survival of platelets during storage. In addition, PEGylation of platelets can also be a promising approach to improve the quality of platelet bags during storage.
Collapse
Affiliation(s)
- Tahereh Zadeh Mehrizi
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Sedigheh Amini Kafiabad
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Peyman Eshghi
- Pediatric Congenital Hematologic Disorders Research Center, Shahid Beheshti University of Medical Sciences and Iran Blood Transfusion Organization, Tehran, Iran
| |
Collapse
|
21
|
Wilson-Nieuwenhuis J, El-Mohtadi M, Edwards K, Whitehead K, Dempsey-Hibbert N. Factors Involved in the onset of infection following bacterially contaminated platelet transfusions. Platelets 2021; 32:909-918. [PMID: 32762589 DOI: 10.1080/09537104.2020.1803253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Transfusion of platelet concentrates (PCs) is associated with several adverse patient reactions, the most common of which are febrile non-hemolytic transfusion reactions (FNHTRs) and transfusion-associated bacterial-infection/transfusion-associated sepsis (T-ABI/TA-S). Diagnosis of T-ABI/T-AS requires a positive blood culture (BC) result from the transfusion recipient and also a positive identification of bacterial contamination within a test aliquot of the transfused PC. In a significant number of cases, clinical symptoms post-transfusion are reported by the clinician, yet the BCs from the patient and/or PC are negative. The topic of 'missed bacterial detection' has therefore been the focus of several primary research studies and review articles, suggesting that biofilm formation in the blood bag and the presence of viable but non-culturable (VBNC) pathogens are the major causes of this missed detection. However, platelets are emerging as key players in early host responses to infection and as such, the aforementioned biofilm formation could elicit 'platelet priming', which could lead to significant immunological reactions in the host, in the absence of planktonic bacteria in the host bloodstream. This review reflects on what is known about missed detection and relates this to the emerging understanding of the effect of bacterial contamination on the platelets themselves and the significant role played by platelets in exacerbation of an immune response to infection within the transfusion setting.
Collapse
Affiliation(s)
| | - Mohamed El-Mohtadi
- Centre for Bioscience, Manchester Metropolitan University, Manchester, UK
| | - Kurtis Edwards
- Centre for Bioscience, Manchester Metropolitan University, Manchester, UK
| | - Kathryn Whitehead
- Centre for Bioscience, Manchester Metropolitan University, Manchester, UK
| | | |
Collapse
|
22
|
Nader D, Curley GF, Kerrigan SW. A new perspective in sepsis treatment: could RGD-dependent integrins be novel targets? Drug Discov Today 2020; 25:2317-2325. [PMID: 33035665 PMCID: PMC7537604 DOI: 10.1016/j.drudis.2020.09.038] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/31/2020] [Accepted: 09/30/2020] [Indexed: 12/20/2022]
Abstract
Sepsis is a life-threatening condition caused by the response of the body to an infection, and has recently been regarded as a global health priority because of the lack of effective treatments available. Vascular endothelial cells have a crucial role in sepsis and are believed to be a major target of pathogens during the early stages of infection. Accumulating evidence suggests that common sepsis pathogens, including bacteria, fungi, and viruses, all contain a critical integrin recognition motif, Arg-Gly-Asp (RGD), in their major cell wall-exposed proteins that might act as ligands to crosslink to vascular endothelial cells, triggering systemic dysregulation resulting in sepsis. In this review, we discuss the potential of anti-integrin therapy in the treatment of sepsis and septic shock.
Collapse
Affiliation(s)
- Danielle Nader
- Cardiovascular Infection Research Group, School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin 2, Ireland; Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin 2, Ireland
| | - Gerard F Curley
- Department of Anaesthesia and Critical Care Medicine, RCSI University of Medicine and Health Sciences, Beaumont Hospital, Dublin, Ireland
| | - Steven W Kerrigan
- Cardiovascular Infection Research Group, School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin 2, Ireland; Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin 2, Ireland.
| |
Collapse
|
23
|
Chen WA, Fletcher HM, Gheorghe JD, Oyoyo U, Boskovic DS. Platelet plug formation in whole blood is enhanced in the presence of Porphyromonas gingivalis. Mol Oral Microbiol 2020; 35:251-259. [PMID: 32949112 PMCID: PMC11139348 DOI: 10.1111/omi.12314] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/09/2020] [Accepted: 09/10/2020] [Indexed: 12/30/2022]
Abstract
Porphyromonas gingivalis is a gram-negative anaerobic bacterium and an etiologic agent of adult periodontitis. By inducing a dysbiotic state within the host microbiota it contributes to a chronic inflammatory environment in the oral cavity. Under some circumstances, the oral bacteria may gain access to systemic circulation. While the most widely recognized function of platelets is to reduce hemorrhage in case of vascular damage, it is known that platelets are also involved in the hematologic responses to bacterial infections. Some pathogenic bacteria can interact with platelets, triggering their activation and aggregation. The aim of this study was to assess platelet responses to the presence of P. gingivalis in whole blood. Human whole blood was pretreated with P. gingivalis and then platelet plug formation was measured under high shear conditions using the PFA-100. In the presence of P. gingivalis, time for a platelet plug to occlude the aperture in the collagen/ADP cartridge was shortened in a manner dependent on bacterial concentration and the duration of bacterial preincubation of blood. P. gingivalis enhances thrombus forming potential of platelets in whole blood.
Collapse
Affiliation(s)
- William A Chen
- Division of Biochemistry, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Hansel M Fletcher
- Division of Microbiology, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Joseph D Gheorghe
- Department of Pathology, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Udochukwu Oyoyo
- Department of Dental Education Services, School of Dentistry, Loma Linda University, Loma Linda, CA, USA
| | - Danilo S Boskovic
- Division of Biochemistry, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| |
Collapse
|
24
|
Park OJ, Kwon Y, Park C, So YJ, Park TH, Jeong S, Im J, Yun CH, Han SH. Streptococcus gordonii: Pathogenesis and Host Response to Its Cell Wall Components. Microorganisms 2020; 8:microorganisms8121852. [PMID: 33255499 PMCID: PMC7761167 DOI: 10.3390/microorganisms8121852] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 11/23/2020] [Accepted: 11/23/2020] [Indexed: 02/08/2023] Open
Abstract
Streptococcus gordonii, a Gram-positive bacterium, is a commensal bacterium that is commonly found in the skin, oral cavity, and intestine. It is also known as an opportunistic pathogen that can cause local or systemic diseases, such as apical periodontitis and infective endocarditis. S. gordonii, an early colonizer, easily attaches to host tissues, including tooth surfaces and heart valves, forming biofilms. S. gordonii penetrates into root canals and blood streams, subsequently interacting with various host immune and non-immune cells. The cell wall components of S. gordonii, which include lipoteichoic acids, lipoproteins, serine-rich repeat adhesins, peptidoglycans, and cell wall proteins, are recognizable by individual host receptors. They are involved in virulence and immunoregulatory processes causing host inflammatory responses. Therefore, S.gordonii cell wall components act as virulence factors that often progressively develop diseases through overwhelming host responses. This review provides an overview of S. gordonii, and how its cell wall components could contribute to the pathogenesis and development of therapeutic strategies.
Collapse
Affiliation(s)
- Ok-Jin Park
- Department of Oral Microbiology and Immunology, School of Dentistry, Dental Research Institute, Seoul National University, Seoul 08826, Korea; (O.-J.P.); (Y.K.); (C.P.); (Y.J.S.); (T.H.P.); (S.J.); (J.I.)
| | - Yeongkag Kwon
- Department of Oral Microbiology and Immunology, School of Dentistry, Dental Research Institute, Seoul National University, Seoul 08826, Korea; (O.-J.P.); (Y.K.); (C.P.); (Y.J.S.); (T.H.P.); (S.J.); (J.I.)
| | - Chaeyeon Park
- Department of Oral Microbiology and Immunology, School of Dentistry, Dental Research Institute, Seoul National University, Seoul 08826, Korea; (O.-J.P.); (Y.K.); (C.P.); (Y.J.S.); (T.H.P.); (S.J.); (J.I.)
| | - Yoon Ju So
- Department of Oral Microbiology and Immunology, School of Dentistry, Dental Research Institute, Seoul National University, Seoul 08826, Korea; (O.-J.P.); (Y.K.); (C.P.); (Y.J.S.); (T.H.P.); (S.J.); (J.I.)
| | - Tae Hwan Park
- Department of Oral Microbiology and Immunology, School of Dentistry, Dental Research Institute, Seoul National University, Seoul 08826, Korea; (O.-J.P.); (Y.K.); (C.P.); (Y.J.S.); (T.H.P.); (S.J.); (J.I.)
| | - Sungho Jeong
- Department of Oral Microbiology and Immunology, School of Dentistry, Dental Research Institute, Seoul National University, Seoul 08826, Korea; (O.-J.P.); (Y.K.); (C.P.); (Y.J.S.); (T.H.P.); (S.J.); (J.I.)
| | - Jintaek Im
- Department of Oral Microbiology and Immunology, School of Dentistry, Dental Research Institute, Seoul National University, Seoul 08826, Korea; (O.-J.P.); (Y.K.); (C.P.); (Y.J.S.); (T.H.P.); (S.J.); (J.I.)
| | - Cheol-Heui Yun
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea;
- Institute of Green Bio Science Technology, Seoul National University, Pyeongchang 25354, Korea
| | - Seung Hyun Han
- Department of Oral Microbiology and Immunology, School of Dentistry, Dental Research Institute, Seoul National University, Seoul 08826, Korea; (O.-J.P.); (Y.K.); (C.P.); (Y.J.S.); (T.H.P.); (S.J.); (J.I.)
- Correspondence: ; Tel.: +82-2-880-2310
| |
Collapse
|
25
|
Wang S, Duan Y, Zhang Q, Komarla A, Gong H, Gao W, Zhang L. Drug Targeting via Platelet Membrane-Coated Nanoparticles. SMALL STRUCTURES 2020; 1:2000018. [PMID: 33817693 PMCID: PMC8011559 DOI: 10.1002/sstr.202000018] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Platelets possess distinct surface moieties responsible for modulating their adhesion to various disease-relevant substrates involving vascular damage, immune evasion, and pathogen interactions. Such broad biointerfacing capabilities of platelets have inspired the development of platelet-mimicking drug carriers that preferentially target drug payloads to disease sites for enhanced therapeutic efficacy. Among these carriers, platelet membrane-coated nanoparticles (denoted 'PNPs') made by cloaking synthetic substrates with the plasma membrane of platelets have emerged recently. Their 'top-down' design combines the functionalities of natural platelet membrane and the engineering flexibility of synthetic nanomaterials, which together create synergy for effective drug delivery and novel therapeutics. Herein, we review the recent progress of engineering PNPs with different structures for targeted drug delivery, focusing on three areas, including targeting injured blood vessels to treat vascular diseases, targeting cancer cells for cancer treatment and detection, and targeting drug-resistant bacteria to treat infectious diseases. Overall, current studies have established PNPs as versatile nanotherapeutics for drug targeting with strong potentials to improve the treatment of various diseases.
Collapse
Affiliation(s)
- Shuyan Wang
- Departments of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Yaou Duan
- Departments of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Qiangzhe Zhang
- Departments of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Anvita Komarla
- Departments of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Hua Gong
- Departments of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Weiwei Gao
- Departments of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Liangfang Zhang
- Departments of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
26
|
Chen Y, Zhong H, Zhao Y, Luo X, Gao W. Role of platelet biomarkers in inflammatory response. Biomark Res 2020; 8:28. [PMID: 32774856 PMCID: PMC7397646 DOI: 10.1186/s40364-020-00207-2] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 07/23/2020] [Indexed: 12/20/2022] Open
Abstract
Beyond hemostasis, thrombosis and wound healing, it is becoming increasingly clear that platelets play an integral role in inflammatory response and immune regulation. Platelets recognize pathogenic microorganisms and secrete various immunoregulatory cytokines and chemokines, thus facilitating a variety of immune effects and regulatory functions. In this review, we discuss recent advances in signaling of platelet activation-related biomarkers in inflammatory settings and application prospects to apply for disease diagnosis and treatment.
Collapse
Affiliation(s)
- Yufei Chen
- Department of Cardiology, Huashan Hospital, Fudan University, No.12 Middle Wulumuqi Road, Jing'an District, Shanghai, 200040 China
| | - Haoxuan Zhong
- Department of Cardiology, Huashan Hospital, Fudan University, No.12 Middle Wulumuqi Road, Jing'an District, Shanghai, 200040 China
| | - Yikai Zhao
- Department of Cardiology, Huashan Hospital, Fudan University, No.12 Middle Wulumuqi Road, Jing'an District, Shanghai, 200040 China
| | - Xinping Luo
- Department of Cardiology, Huashan Hospital, Fudan University, No.12 Middle Wulumuqi Road, Jing'an District, Shanghai, 200040 China
| | - Wen Gao
- Department of Cardiology, Huashan Hospital, Fudan University, No.12 Middle Wulumuqi Road, Jing'an District, Shanghai, 200040 China
| |
Collapse
|
27
|
Lichota A, Gwozdzinski K, Szewczyk EM. Microbial Modulation of Coagulation Disorders in Venous Thromboembolism. J Inflamm Res 2020; 13:387-400. [PMID: 32801832 PMCID: PMC7406375 DOI: 10.2147/jir.s258839] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 06/19/2020] [Indexed: 12/24/2022] Open
Abstract
Venous thromboembolism (VTE), including deep vein thrombosis (DVT) and pulmonary embolism (PE), is the third leading cause of cardiovascular death in the world. Important risk factors of thrombosis include bed restraint, surgery, major trauma, long journeys, inflammation, pregnancy, and oral contraceptives, previous venous thromboembolism, cancer, and bacterial infections. Sepsis increases the risk of blood clot formation 2–20 times. In this review, we discussed various mechanisms related to the role of bacteria in venous thrombosis also taking into consideration the role of the human microbiome. Many known bacteria, such as Helicobacter pylori, Chlamydia pneumoniae, Mycoplasma pneumoniae, Haemophilus influenzae, Streptococcus pneumoniae, Staphylococcus aureus, and Escherichia coli, causing infections may increase the risk of thrombotic complications through platelet activation or may lead to an inflammatory reaction involving the fibrinolytic system. Additionally, the bacteria participate in the production of factors causing or increasing the risk of cardiovascular diseases. An example can be trimethylamine N-oxide (TMAO) but also uremic toxins (indoxyl sulfate), short-chain fatty acids (SCFA) phytoestrogens, and bile acids. Finally, we presented the involvement of many bacteria in the development of venous thromboembolism and other cardiovascular diseases.
Collapse
Affiliation(s)
- Anna Lichota
- Department of Pharmaceutical Microbiology and Microbiological Diagnostics, Faculty of Pharmacy, Medical University of Lodz, Lodz, Poland
| | - Krzysztof Gwozdzinski
- Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Eligia M Szewczyk
- Department of Pharmaceutical Microbiology and Microbiological Diagnostics, Faculty of Pharmacy, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
28
|
Banerjee M, Huang Y, Joshi S, Popa GJ, Mendenhall MD, Wang QJ, Garvy BA, Myint T, Whiteheart SW. Platelets Endocytose Viral Particles and Are Activated via TLR (Toll-Like Receptor) Signaling. Arterioscler Thromb Vasc Biol 2020; 40:1635-1650. [PMID: 32434410 PMCID: PMC7316618 DOI: 10.1161/atvbaha.120.314180] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
OBJECTIVE Thrombocytopenia is associated with many viral infections suggesting virions interact with and affect platelets. Consistently, viral particles are seen inside platelets, and platelet activation markers are detected in viremic patients. In this article, we sought mechanistic insights into these virion/platelet interactions by examining how platelets endocytose, traffic, and are activated by a model virion. Approach and Results: Using fluorescently tagged HIV-1 pseudovirions, 3-dimensional structured illumination microscopy, and transgenic mouse models, we probed the interactions between platelets and virions. Mouse platelets used known endocytic machinery, that is, dynamin, VAMP (vesicle-associated membrane protein)-3, and Arf6 (ADP-ribosylation factor 6), to take up and traffic HIV-1 pseudovirions. Endocytosed HIV-1 pseudovirions trafficked through early (Rab4+) and late endosomes (Rab7+), and then to an LC3+ (microtubule-associated protein 1A/1B-light chain 3) compartment. Incubation with virions induced IRAK4 (interleukin 1 receptor-associated kinase 4), Akt (protein kinase B), and IKK (IκB kinase) activation, granule secretion, and platelet-leukocyte aggregate formation. This activation required TLRs (Toll-like receptors) and MyD88 (myeloid differentiation primary response protein 88) but was less extensive and slower than activation with thrombin. In vivo, HIV-1 pseudovirions injection led to virion uptake and platelet activation, as measured by IKK activation, platelet-leukocyte aggregate formation, and mild thrombocytopenia. All were decreased in VAMP-3-/- and, megakaryocyte/platelet-specific, Arf6-/- mice. Similar platelet activation profiles (increased platelet-leukocyte aggregates, plasma platelet factor 4, and phospho-IκBα) were detected in newly diagnosed and antiretroviral therapy-controlled HIV-1+ patients. CONCLUSIONS Collectively, our data provide mechanistic insights into the cell biology of how platelets endocytose and process virions. We propose a mechanism by which platelets sample the circulation and respond to potential pathogens that they take up.
Collapse
Affiliation(s)
- Meenakshi Banerjee
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY
| | - Yunjie Huang
- Division of Pulmonary Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Smita Joshi
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY
- Lexington VA Health Care System, Lexington, KY
| | - Gabriel J. Popa
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY
| | - Michael D. Mendenhall
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY
| | - Qing Jun Wang
- Department of Ophthalmology and Visual Sciences, University of Kentucky, Lexington, KY
| | - Beth A. Garvy
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, KY
| | - Thein Myint
- Department of Infectious Diseases, Bluegrass Care Clinic, Kentucky Clinic, University of Kentucky, Lexington, KY
| | - Sidney W. Whiteheart
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY
- Lexington VA Health Care System, Lexington, KY
| |
Collapse
|
29
|
Tang S, Zhang F, Gong H, Wei F, Zhuang J, Karshalev E, Esteban-Fernández de Ávila B, Huang C, Zhou Z, Li Z, Yin L, Dong H, Fang RH, Zhang X, Zhang L, Wang J. Enzyme-powered Janus platelet cell robots for active and targeted drug delivery. Sci Robot 2020; 5:5/43/eaba6137. [DOI: 10.1126/scirobotics.aba6137] [Citation(s) in RCA: 144] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 04/30/2020] [Indexed: 12/14/2022]
Abstract
Transforming natural cells into functional biocompatible robots capable of active movement is expected to enhance the functions of the cells and revolutionize the development of synthetic micromotors. However, present cell-based micromotor systems commonly require the propulsion capabilities of rigid motors, external fields, or harsh conditions, which may compromise biocompatibility and require complex actuation equipment. Here, we report on an endogenous enzyme-powered Janus platelet micromotor (JPL-motor) system prepared by immobilizing urease asymmetrically onto the surface of natural platelet cells. This Janus distribution of urease on platelet cells enables uneven decomposition of urea in biofluids to generate enhanced chemophoretic motion. The cell surface engineering with urease has negligible impact on the functional surface proteins of platelets, and hence, the resulting JPL-motors preserve the intrinsic biofunctionalities of platelets, including effective targeting of cancer cells and bacteria. The efficient propulsion of JPL-motors in the presence of the urea fuel greatly enhances their binding efficiency with these biological targets and improves their therapeutic efficacy when loaded with model anticancer or antibiotic drugs. Overall, asymmetric enzyme immobilization on the platelet surface leads to a biogenic microrobotic system capable of autonomous movement using biological fuel. The ability to impart self-propulsion onto biological cells, such as platelets, and to load these cellular robots with a variety of functional components holds considerable promise for developing multifunctional cell-based micromotors for a variety of biomedical applications.
Collapse
Affiliation(s)
- Songsong Tang
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, CA 92093, USA
- Research Center for Bioengineering and Sensing Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Fangyu Zhang
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, CA 92093, USA
| | - Hua Gong
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, CA 92093, USA
| | - Fanan Wei
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, CA 92093, USA
| | - Jia Zhuang
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, CA 92093, USA
| | - Emil Karshalev
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, CA 92093, USA
| | | | - Chuying Huang
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, CA 92093, USA
| | - Zhidong Zhou
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, CA 92093, USA
| | - Zhengxing Li
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, CA 92093, USA
| | - Lu Yin
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, CA 92093, USA
| | - Haifeng Dong
- Research Center for Bioengineering and Sensing Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Ronnie H. Fang
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, CA 92093, USA
| | - Xueji Zhang
- Research Center for Bioengineering and Sensing Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Liangfang Zhang
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, CA 92093, USA
| | - Joseph Wang
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
30
|
Wolff M, Handtke S, Palankar R, Wesche J, Kohler TP, Kohler C, Gruel Y, Hammerschmidt S, Greinacher A. Activated platelets kill Staphylococcus aureus, but not Streptococcus pneumoniae-The role of FcγRIIa and platelet factor 4/heparinantibodies. J Thromb Haemost 2020; 18:1459-1468. [PMID: 32237268 DOI: 10.1111/jth.14814] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 03/16/2020] [Accepted: 03/23/2020] [Indexed: 02/01/2023]
Abstract
BACKGROUND Heparin induced thrombocytopenia (HIT) is likely a misdirected bacterial host defense mechanism. Platelet factor 4 (PF4) binds to polyanions on bacterial surfaces exposing neo-epitopes to which HIT antibodies bind. Platelets are activated by the resulting immune complexes via FcγRIIA, release bactericidal substances, and kill Gram-negative Escherichia coli. OBJECTIVES To assess the role of PF4, anti-PF4/H antibodies and FcγRIIa in killing of Gram-positive bacteria by platelets. METHODS Binding of PF4 to protein-A deficient Staphylococcus aureus (SA113Δspa) and non-encapsulated Streptococcus pneumoniae (D39Δcps) and its conformational change were assessed by flow cytometry using monoclonal (KKO,5B9) and patient derived anti-PF4/H antibodies. Killing of bacteria was quantified by counting colony forming units (cfu) after incubation with platelets or platelet releasate. Using flow cytometry, platelet activation (CD62P-expression, PAC-1 binding) and phosphatidylserine (PS)-exposure were analyzed. RESULTS Monoclonal and patient-derived anti-PF4/H antibodies bound in the presence of PF4 to both S. aureus and S. pneumoniae (1.6-fold increased fluorescence signal for human anti-PF4/H antibodies to 24.0-fold increase for KKO). Staphylococcus aureus (5.5 × 104 cfu/mL) was efficiently killed by platelets (2.7 × 104 cfu/mL) or their releasate (2.9 × 104 cfu/mL). Killing was not further enhanced by PF4 or anti-PF4/H antibodies. Blocking FcγRIIa had no impact on killing of S. aureus by platelets. In contrast, S. pneumoniae was not killed by platelets or releasate. Instead, after incubation with pneumococci platelets were unresponsive to TRAP-6 stimulation and exposed high levels of PS. CONCLUSIONS Anti-PF4/H antibodies seem to have only a minor role for direct killing of Gram-positive bacteria by platelets. Staphylococcus aureus is killed by platelets or platelet releasate. In contrast, S. pneumoniae affects platelet viability.
Collapse
Affiliation(s)
- Martina Wolff
- Institut für Immunologie und Transfusion Medizin, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Stefan Handtke
- Institut für Immunologie und Transfusion Medizin, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Raghavendra Palankar
- Institut für Immunologie und Transfusion Medizin, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Jan Wesche
- Institut für Immunologie und Transfusion Medizin, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Thomas P Kohler
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, Center for Functional Genomics of Microbes, University of Greifswald, Greifswald, Germany
| | - Christian Kohler
- Institute of Medical Microbiology, University Medicine Greifswald, Greifswald, Germany
| | - Yves Gruel
- Département d'Hématologie-Hémostase, Hôpital Universitaire de Tours, Tours, France
| | - Sven Hammerschmidt
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, Center for Functional Genomics of Microbes, University of Greifswald, Greifswald, Germany
| | - Andreas Greinacher
- Institut für Immunologie und Transfusion Medizin, Universitätsmedizin Greifswald, Greifswald, Germany
| |
Collapse
|
31
|
Guo C, Cui W, Wang X, Lu X, Zhang L, Li X, Li W, Zhang W, Chen J. Poly-l-lysine/Sodium Alginate Coating Loading Nanosilver for Improving the Antibacterial Effect and Inducing Mineralization of Dental Implants. ACS OMEGA 2020; 5:10562-10571. [PMID: 32426614 PMCID: PMC7227044 DOI: 10.1021/acsomega.0c00986] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 04/23/2020] [Indexed: 05/04/2023]
Abstract
In recent years, antibacterial surface modification of titanium (Ti) implants has been widely studied in preventing implant-associated infection for dental and orthopedic applications. The purpose of this study was to prepare a composite coating on a porous titanium surface for infection prevention and inducing mineralization, which was initialized by deposition of a poly-l-lysine (PLL)/sodium alginate(SA)/PLL self-assembled coating, followed by dopamine deposition, and finally in situ reduction of silver nanoparticles (AgNPs) by dopamine. The surface zeta potential, SEM, XPS, UV-vis, and water contact angle analyses demonstrate that each coating was successfully prepared after the respective steps and that the average sizes of AgNPs were 20-30 nm. The composite coating maintained Ag+ release for more than 27 days in PBS and induced mineralization when incubated in SBF. The antibacterial results showed that the composite coating inhibited/killed bacteria on the material surface and killed bacteria around them. In addition, although this coating inhibited the initial adhesion of osteoblasts, the mineralized surface greatly enhanced the cytocompatibility. Thus, we concluded that the composite coating could prevent bacterial infections and facilitate mineralization in vivo in the early postoperative period, and then, the mineralized surface could enhance the cytocompatibility.
Collapse
|
32
|
Yadav VK, Singh PK, Agarwal V, Singh SK. Crosstalk between Platelet and Bacteria: A Therapeutic Prospect. Curr Pharm Des 2019; 25:4041-4052. [PMID: 31553286 DOI: 10.2174/1381612825666190925163347] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 09/13/2019] [Indexed: 12/16/2022]
Abstract
Platelets are typically recognized for their roles in the maintenance of hemostasis and vascular wall repair to reduce blood loss. Beyond hemostasis, platelets also play a critical role in pathophysiological conditions like atherosclerosis, stroke, thrombosis, and infections. During infection, platelets interact directly and indirectly with bacteria through a wide range of cellular and molecular mechanisms. Platelet surface receptors such as GPIbα, FcγRIIA, GPIIbIIIa, and TLRs, etc. facilitate direct interaction with bacterial cells. Besides, the indirect interaction between platelet and bacteria involves host plasma proteins such as von Willebrand Factor (vWF), fibronectin, IgG, and fibrinogen. Bacterial cells induce platelet activation, aggregation, and thrombus formation in the microvasculature. The activated platelets induce the Neutrophil Extracellular Traps (NETs) formation, which further contribute to thrombosis. Thus, platelets are extensively anticipated as vital immune modulator cells during infection, which may further lead to cardiovascular complications. In this review, we cover the interaction mechanisms between platelets and bacteria that may lead to the development of thrombotic disorders. Platelet receptors and other host molecules involved in such interactions can be used to develop new therapeutic strategies to combat against infection-induced cardiovascular complications. In addition, we highlight other receptor and enzyme targets that may further reduce infection-induced platelet activation and various pathological conditions.
Collapse
Affiliation(s)
- Vivek K Yadav
- Department of Biotechnology Motilal Nehru National Institute of Technology Allahabad, Prayagraj, India
| | - Pradeep K Singh
- Department of Biotechnology Motilal Nehru National Institute of Technology Allahabad, Prayagraj, India
| | - Vishnu Agarwal
- Department of Biotechnology Motilal Nehru National Institute of Technology Allahabad, Prayagraj, India
| | - Sunil K Singh
- Department of Animal Sciences, Central University of Punjab, Bathinda, Punjab, India
| |
Collapse
|
33
|
Understanding Platelets in Infectious and Allergic Lung Diseases. Int J Mol Sci 2019; 20:ijms20071730. [PMID: 30965568 PMCID: PMC6480134 DOI: 10.3390/ijms20071730] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/02/2019] [Accepted: 04/05/2019] [Indexed: 12/29/2022] Open
Abstract
Emerging evidence suggests that platelets, cytoplasmic fragments derived from megakaryocytes, can no longer be considered just as mediators in hemostasis and coagulation processes, but as key modulators of immunity. Platelets have received increasing attention as the emergence of new methodologies has allowed the characterization of their components and functions in the immune continuum. Platelet activation in infectious and allergic lung diseases has been well documented and associated with bacterial infections reproduced in several animal models of pulmonary bacterial infections. Direct interactions between platelets and bacteria have been associated with increased pulmonary platelet accumulation, whereas bacterial-derived toxins have also been reported to modulate platelet function. Recently, platelets have been found extravascular in the lungs of patients with asthma, and in animal models of allergic lung inflammation. Their ability to interact with immune and endothelial cells and secrete immune mediators makes them one attractive target for biomarker identification that will help characterize their contribution to lung diseases. Here, we present an original review of the last advances in the platelet field with a focus on the contribution of platelets to respiratory infections and allergic-mediated diseases.
Collapse
|
34
|
Xu Z, Coriand L, Loeffler R, Geis-Gerstorfer J, Zhou Y, Scheideler L, Fleischer M, Gehring FK, Rupp F. Saliva-coated titanium biosensor detects specific bacterial adhesion and bactericide caused mass loading upon cell death. Biosens Bioelectron 2019; 129:198-207. [PMID: 30721795 DOI: 10.1016/j.bios.2019.01.035] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 01/07/2019] [Accepted: 01/13/2019] [Indexed: 12/11/2022]
Abstract
Bacteria adhering to implanted medical devices can cause invasive microbial infections, of e.g. skin, lung or blood. In dentistry, Streptococcus gordonii is an early oral colonizer initiating dental biofilm formation and also being involved in life-threatening infective endocarditis. To treat oral biofilms, antibacterial mouth rinses are commonly used. Such initial biomaterial-bacteria interactions and the influence of antibacterial treatments are poorly understood and investigated here in situ by quartz crystal microbalance with dissipation monitoring (QCM-D). A saliva-coated titanium (Ti) biosensor is applied to analyze possible specific signal patterns indicating microbial binding mechanisms and bactericide-caused changes in bacterial film rigidity or cell leakage caused by a clinically relevant antibacterial agent (ABA), i.e., a mouth rinse comprising chlorhexidine (CHX) and cetylpyridinium chloride (CPC). Apparent missing mass effects during the formation of microscopically proven dense and vital bacterial films indicate punctual, specific binding of S. gordonii to the saliva-coated biosensor, compared to unspecific adhesion to pure Ti. Coincidentally to ABA-induced killing of surface-adhered bacteria, an increase of adsorbed dissipative mass can be sensed, contrary to the prior mass-loss. This suggests the acoustic sensing of the leakage of cellular content caused by bacterial cell wall rupturing and membrane damage upon the bactericidal attack. The results have significant implications for testing bacterial adhesion mechanisms and cellular integrity during interaction with antibacterial agents.
Collapse
Affiliation(s)
- Zeqian Xu
- University Hospital Tübingen, Section Medical Materials Science & Technology, Osianderstr. 2-8, D-72076 Tübingen, Germany; The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan 430079, PR China
| | - Luisa Coriand
- Fraunhofer Institute for Applied Optics and Precision Engineering, Albert-Einstein-Strasse 7, D-07745 Jena, Germany
| | - Ronny Loeffler
- Core Facility LISA(+), Eberhard Karls University Tübingen, Auf der Morgenstelle 15, D-72076 Tübingen, Germany
| | - Juergen Geis-Gerstorfer
- University Hospital Tübingen, Section Medical Materials Science & Technology, Osianderstr. 2-8, D-72076 Tübingen, Germany
| | - Yi Zhou
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan 430079, PR China
| | - Lutz Scheideler
- University Hospital Tübingen, Section Medical Materials Science & Technology, Osianderstr. 2-8, D-72076 Tübingen, Germany
| | - Monika Fleischer
- Core Facility LISA(+), Eberhard Karls University Tübingen, Auf der Morgenstelle 15, D-72076 Tübingen, Germany
| | | | - Frank Rupp
- University Hospital Tübingen, Section Medical Materials Science & Technology, Osianderstr. 2-8, D-72076 Tübingen, Germany.
| |
Collapse
|
35
|
Impact of Escherichia coli K12 and O18:K1 on human platelets: Differential effects on platelet activation, RNAs and proteins. Sci Rep 2018; 8:16145. [PMID: 30385858 PMCID: PMC6212526 DOI: 10.1038/s41598-018-34473-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 10/08/2018] [Indexed: 12/12/2022] Open
Abstract
Blood platelets can interact with bacteria, possibly leading to platelet activation, cytokine and microparticle release and immune signalling. Besides, bacteria can also affect the platelet RNA content. We investigated the impact of non-pathogenic K12 and pathogenic O18:K1 Escherichia (E.) coli strains on platelet activation, RNA expression patterns, and selected proteins. Depending on bacteria concentration, contact of platelets with E. coli K12 lead to an increase of P-selectin (24–51.3%), CD63 (15.9–24.3%), PAC-1 (3.8–14.9%) and bound fibrinogen (22.4–39%) on the surface. E. coli O18:K1 did not affect these markers. Sequencing analysis of total RNA showed that E. coli K12 caused a significant concentration change of 103 spliced mRNAs, of which 74 decreased. For the RNAs of HMBS (logFC = +5.73), ATP2C1 (logFC = −3.13) and LRCH4 (logFC = −4.07) changes were detectable by thromboSeq and Tuxedo pipelines. By Western blot we observed the conversion of HMBS protein from a 47 kDA to 40 kDa product by E. coli K12, O18:K1 and by purified lipopolysaccharide. While ATP2C1 protein was released from platelets, E. coli either reduced the secretion or broke down the released protein making it undetectable by antibodies. Our results demonstrate that different E. coli strains influence activation, RNA and protein levels differently which may affect platelet-bacteria crosstalk.
Collapse
|
36
|
Yadav VK, Singh PK, Kalia M, Sharma D, Singh SK, Agarwal V. Pseudomonas aeruginosa quorum sensing molecule N-3-oxo-dodecanoyl-l-homoserine lactone activates human platelets through intracellular calcium-mediated ROS generation. Int J Med Microbiol 2018; 308:858-864. [DOI: 10.1016/j.ijmm.2018.07.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 07/15/2018] [Accepted: 07/29/2018] [Indexed: 01/20/2023] Open
|
37
|
Amison RT, O'Shaughnessy BG, Arnold S, Cleary SJ, Nandi M, Pitchford SC, Bragonzi A, Page CP. Platelet Depletion Impairs Host Defense to Pulmonary Infection with Pseudomonas aeruginosa in Mice. Am J Respir Cell Mol Biol 2018; 58:331-340. [PMID: 28957635 DOI: 10.1165/rcmb.2017-0083oc] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Platelets have been implicated in pulmonary inflammatory cell recruitment after exposure to allergic and nonallergic stimuli, but little is known about the role of platelets in response to pulmonary infection with Pseudomonas aeruginosa. In this study, we have investigated the impact of the experimental depletion of circulating platelets on a range of inflammatory and bacterial parameters, and their subsequent impact on mortality in a murine model of pulmonary infection with P. aeruginosa. P. aeruginosa infection in mice induced a mild, but significant, state of peripheral thrombocytopenia in addition to pulmonary platelet accumulation. Increased platelet activation was detected in infected mice through increased levels of the platelet-derived mediators, platelet factor-4 and β-thromboglobulin, in BAL fluid and blood plasma. In mice depleted of circulating platelets, pulmonary neutrophil recruitment was significantly reduced 24 hours after infection, whereas the incidence of systemic dissemination of bacteria was significantly increased compared with non-platelet-depleted control mice. Furthermore, mortality rates were increased in bacterial-infected mice depleted of circulating platelets. This work demonstrates a role for platelets in the host response toward a gram-negative bacterial respiratory infection.
Collapse
Affiliation(s)
- Richard T Amison
- 1 Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science and
| | - Blaze G O'Shaughnessy
- 1 Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science and
| | - Stephanie Arnold
- 1 Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science and
| | - Simon J Cleary
- 1 Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science and
| | - Manasi Nandi
- 2 British Heart Foundation Centre for Cardiovascular Research, King's College London, London, United Kingdom; and
| | - Simon C Pitchford
- 1 Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science and
| | - Alessandra Bragonzi
- 3 Infections and Cystic Fibrosis Unit, Division of Immunology, Transplantation, and Infectious Diseases, Scientific Institute for Research, Hospitalisation and Health Care San Raffaele Scientific Institute, Milan, Italy
| | - Clive P Page
- 1 Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science and
| |
Collapse
|
38
|
Palankar R, Kohler TP, Krauel K, Wesche J, Hammerschmidt S, Greinacher A. Platelets kill bacteria by bridging innate and adaptive immunity via platelet factor 4 and FcγRIIA. J Thromb Haemost 2018; 16:1187-1197. [PMID: 29350833 DOI: 10.1111/jth.13955] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Indexed: 12/15/2022]
Abstract
Essentials Human platelets specifically interact with IgG opsonized bacteria through FcγRIIA. Platelet factor 4 (PF4) binds to polyanions (P) and undergoes a conformational change. Anti-PF4/P IgG opsonizes PF4-coated Gram-positive and Gram-negative bacteria. Platelets specifically kill E.coli opsonized with PF4 and human anti-PF4/P IgG. SUMMARY Background Activated platelets release the chemokine platelet factor 4 (PF4) stored in their granules. PF4 binds to polyanions (P) on bacteria, undergoes a conformational change and exposes neoepitopes. These neoepitopes induce production of anti-PF4/P antibodies. As PF4 binds to a variety of bacteria, anti-PF4/P IgG can bind and opsonize several bacterial species. Objective Here we investigated whether platelets are able to kill bacteria directly after recognizing anti-PF4/P IgG opsonized bacteria in the presence of PF4 via their FcγRIIA. Methods Using platelet-bacteria suspension co-culture experiments and micropatterns with immobilized viable bacteria, in combination with pharmacological inhibitors and human anti- PF4/P IgG we analyzed the role of platelet-mediated killing of bacteria. Results In the presence of PF4, human anti-PF4/P IgG and platelets, E. coli killing (> 50%) with colony forming units (CFU mL-1 ) 0.71 × 104 ± 0.19 was observed compared with controls incubated only with anti-PF4/P IgG (CFU mL-1 3.4 × 104 ± 0.38). Blocking of platelet FcγRIIA using mAb IV.3 (CFU mL-1 2.5 × 104 ± 0.45), or integrin αIIbβ3 (CFU mL-1 2.26 × 104 ± 0.31), or disruption of cytoskeletal functions (CFU mL-1 2.7 × 104 ± 0.4) markedly reduced E. coli killing by this mechanism. Our observation of E. coli killing by platelets on micropatterned arrays is compatible with the model that platelets kill bacteria by covering them, actively concentrating them into the area under their granulomere and then releasing antimicrobial substances of platelet α-granules site directed towards bacteria. Conclusion These findings collectively indicate that by bridging of innate and adaptive immune mechanisms, platelets and anti-PF4/polyanion antibodies cooperate in an antibacterial host response.
Collapse
Affiliation(s)
- R Palankar
- Institute for Immunology and Transfusion Medicine, University Medicine Greifswald, Greifswald, Germany
| | - T P Kohler
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
| | - K Krauel
- Institute for Immunology and Transfusion Medicine, University Medicine Greifswald, Greifswald, Germany
| | - J Wesche
- Institute for Immunology and Transfusion Medicine, University Medicine Greifswald, Greifswald, Germany
| | - S Hammerschmidt
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
| | - A Greinacher
- Institute for Immunology and Transfusion Medicine, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
39
|
Hoylaerts MF, Vanassche T, Verhamme P. Bacterial killing by platelets: making sense of (H)IT. J Thromb Haemost 2018; 16:1182-1186. [PMID: 29582551 DOI: 10.1111/jth.14012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Indexed: 12/13/2022]
Affiliation(s)
- M F Hoylaerts
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, University of Leuven, Leuven, Belgium
| | - T Vanassche
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, University of Leuven, Leuven, Belgium
| | - P Verhamme
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, University of Leuven, Leuven, Belgium
| |
Collapse
|
40
|
Sut C, Tariket S, Aubron C, Aloui C, Hamzeh-Cognasse H, Berthelot P, Laradi S, Greinacher A, Garraud O, Cognasse F. The Non-Hemostatic Aspects of Transfused Platelets. Front Med (Lausanne) 2018. [PMID: 29536007 PMCID: PMC5835084 DOI: 10.3389/fmed.2018.00042] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Platelets transfusion is a safe process, but during or after the process, the recipient may experience an adverse reaction and occasionally a serious adverse reaction (SAR). In this review, we focus on the inflammatory potential of platelet components (PCs) and their involvement in SARs. Recent evidence has highlighted a central role for platelets in the host inflammatory and immune responses. Blood platelets are involved in inflammation and various other aspects of innate immunity through the release of a plethora of immunomodulatory cytokines, chemokines, and associated molecules, collectively termed biological response modifiers that behave like ligands for endothelial and leukocyte receptors and for platelets themselves. The involvement of PCs in SARs—particularly on a critically ill patient’s context—could be related, at least in part, to the inflammatory functions of platelets, acquired during storage lesions. Moreover, we focus on causal link between platelet activation and immune-mediated disorders (transfusion-associated immunomodulation, platelets, polyanions, and bacterial defense and alloimmunization). This is linked to the platelets’ propensity to be activated even in the absence of deliberate stimuli and to the occurrence of time-dependent storage lesions.
Collapse
Affiliation(s)
- Caroline Sut
- GIMAP-EA3064, Université de Lyon, Saint-Étienne, France.,Etablissement Français du Sang, Auvergne-Rhône-Alpes, Saint-Etienne, France
| | - Sofiane Tariket
- GIMAP-EA3064, Université de Lyon, Saint-Étienne, France.,Etablissement Français du Sang, Auvergne-Rhône-Alpes, Saint-Etienne, France
| | - Cécile Aubron
- Médecine Intensive Réanimation, Centre Hospitalier Régionale et Universitaire de Brest, Université de Bretagne Occidentale, Brest, France
| | - Chaker Aloui
- GIMAP-EA3064, Université de Lyon, Saint-Étienne, France
| | | | | | - Sandrine Laradi
- GIMAP-EA3064, Université de Lyon, Saint-Étienne, France.,Etablissement Français du Sang, Auvergne-Rhône-Alpes, Saint-Etienne, France
| | - Andreas Greinacher
- Institute for Immunology and Transfusion Medicine, University of Greifswald, Greifswald, Germany
| | - Olivier Garraud
- GIMAP-EA3064, Université de Lyon, Saint-Étienne, France.,Institut National de Transfusion Sanguine (INTS), Paris, France
| | - Fabrice Cognasse
- GIMAP-EA3064, Université de Lyon, Saint-Étienne, France.,Etablissement Français du Sang, Auvergne-Rhône-Alpes, Saint-Etienne, France
| |
Collapse
|
41
|
Petersson F, Kilsgård O, Shannon O, Lood R. Platelet activation and aggregation by the opportunistic pathogen Cutibacterium (Propionibacterium) acnes. PLoS One 2018; 13:e0192051. [PMID: 29385206 PMCID: PMC5792000 DOI: 10.1371/journal.pone.0192051] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 01/16/2018] [Indexed: 11/19/2022] Open
Abstract
Cutibacterium (Propionibacterium) acnes, considered a part of the skin microbiota, is one of the most commonly isolated anaerobic bacteria from medical implants in contact with plasma. However, the precise interaction of C. acnes with blood cells and plasma proteins has not been fully elucidated. Herein, we have investigated the molecular interaction of C. acnes with platelets and plasma proteins. We report that the ability of C. acnes to aggregate platelets is dependent on phylotype, with a significantly lower ability amongst type IB isolates, and the interaction of specific donor-dependent plasma proteins (or concentrations thereof) with C. acnes. Pretreatment of C. acnes with plasma reduces the lag time before aggregation demonstrating that pre-deposition of plasma proteins on C. acnes is an important step in platelet aggregation. Using mass spectrometry we identified several plasma proteins deposited on C. acnes, including IgG, fibrinogen and complement factors. Inhibition of IgG, fibrinogen or complement decreased C. acnes-mediated platelet aggregation, demonstrating the importance of these plasma proteins for aggregation. The interaction of C. acnes and platelets was visualized using fluorescence microscopy, verifying the presence of IgG and fibrinogen as components of the aggregates, and co-localization of C. acnes and platelets in the aggregates. Here, we have demonstrated the ability of C. acnes to activate and aggregate platelets in a bacterium and donor-specific fashion, as well as added mechanistic insights into this interaction.
Collapse
Affiliation(s)
- Frida Petersson
- Division of Infection Medicine, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Ola Kilsgård
- Division of Infection Medicine, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
- Department of Immunotechnology, Faculty of Engineering Lund, Lund University, Lund, Sweden
| | - Oonagh Shannon
- Division of Infection Medicine, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Rolf Lood
- Division of Infection Medicine, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
- * E-mail:
| |
Collapse
|
42
|
Giraud A, Guiraut C, Chevin M, Chabrier S, Sébire G. Role of Perinatal Inflammation in Neonatal Arterial Ischemic Stroke. Front Neurol 2017; 8:612. [PMID: 29201015 PMCID: PMC5696351 DOI: 10.3389/fneur.2017.00612] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 11/02/2017] [Indexed: 12/19/2022] Open
Abstract
Based on the review of the literature, perinatal inflammation often induced by infection is the only consistent independent risk factor of neonatal arterial ischemic stroke (NAIS). Preclinical studies show that acute inflammatory processes take place in placenta, cerebral arterial wall of NAIS-susceptible arteries and neonatal brain. A top research priority in NAIS is to further characterize the nature and spatiotemporal features of the inflammatory processes involved in multiple levels of the pathophysiology of NAIS, to adequately design randomized control trials using targeted anti-inflammatory vasculo- and neuroprotective agents.
Collapse
Affiliation(s)
- Antoine Giraud
- EA 4607 SNA EPIS, Jean Monnet University, Saint-Etienne, France.,Child Neurology Division, Department of Pediatrics, McGill University, Montréal, QC, Canada
| | - Clémence Guiraut
- Child Neurology Division, Department of Pediatrics, McGill University, Montréal, QC, Canada
| | - Mathilde Chevin
- Child Neurology Division, Department of Pediatrics, McGill University, Montréal, QC, Canada
| | - Stéphane Chabrier
- French Center for Pediatric Stroke and Pediatric Rehabilitation Unit, Department of Pediatrics, Saint-Etienne University Hospital, Saint-Etienne, France
| | - Guillaume Sébire
- Child Neurology Division, Department of Pediatrics, McGill University, Montréal, QC, Canada
| |
Collapse
|
43
|
Toll-Like Receptor 4 Signalling and Its Impact on Platelet Function, Thrombosis, and Haemostasis. Mediators Inflamm 2017; 2017:9605894. [PMID: 29170605 PMCID: PMC5664350 DOI: 10.1155/2017/9605894] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 08/17/2017] [Accepted: 09/12/2017] [Indexed: 11/18/2022] Open
Abstract
Platelets are anucleated blood cells that participate in a wide range of physiological and pathological functions. Their major role is mediating haemostasis and thrombosis. In addition to these classic functions, platelets have emerged as important players in the innate immune system. In particular, they interact with leukocytes, secrete pro- and anti-inflammatory factors, and express a wide range of inflammatory receptors including Toll-like receptors (TLRs), for example, Toll-like receptor 4 (TLR4). TLR4, which is the most extensively studied TLR in nucleated cells, recognises lipopolysaccharides (LPS) that are compounds of the outer surface of Gram-negative bacteria. Unlike other TLRs, TLR4 is able to signal through both the MyD88-dependent and MyD88-independent signalling pathways. Notably, despite both pathways culminating in the activation of transcription factors, TLR4 has a prominent functional impact on platelet activity, haemostasis, and thrombosis. In this review, we summarise the current knowledge on TLR4 signalling in platelets, critically discuss its impact on platelet function, and highlight the open questions in this area.
Collapse
|
44
|
Affiliation(s)
- R. Kapur
- Division of Hematology and Transfusion Medicine; Lund University; Lund Sweden
| | - J. W. Semple
- Division of Hematology and Transfusion Medicine; Lund University; Lund Sweden
- Keenan Research Centre for Biomedical Science; St. Michael's Hospital; Toronto ON Canada
- Departments of Pharmacology, Medicine and Laboratory Medicine and Pathobiology; University of Toronto; Toronto ON Canada
| |
Collapse
|
45
|
Matus V, Valenzuela JG, Hidalgo P, Pozo LM, Panes O, Wozniak A, Mezzano D, Pereira J, Sáez CG. Human platelet interaction with E. coli O111 promotes tissue-factor-dependent procoagulant activity, involving Toll like receptor 4. PLoS One 2017; 12:e0185431. [PMID: 28957360 PMCID: PMC5619753 DOI: 10.1371/journal.pone.0185431] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 09/12/2017] [Indexed: 12/26/2022] Open
Abstract
Platelets have a major role in clotting activation and contribute to the innate immune response during systemic infections. Human platelets contain tissue factor (TF) and express functional Toll-like receptor 4 (TLR4). However, the role of TLR4 in triggering the procoagulant properties of platelets, upon challenge with bacteria, is yet unknown. Our hypothesis is that E. coli O111-TLR4 interaction activates platelets and elicits their procoagulant activity. We demonstrated that the strain, but not ultrapure LPS, increased surface P-selectin expression, platelet dependent TF procoagulant activity (TF-PCA) and prompted a faster thrombin generation (TG). Blockade of TLR4 resulted in decreased platelet activation, TF-PCA and TG, revealing the participation of this immune receptor on the procoagulant response of platelets. Our results provide a novel mechanism by which individuals with bacterial infections would have an increased incidence of blood clots. Furthermore, the identification of platelet TF and TLR4 as regulators of the effect of E. coli O111 might represent a novel therapeutic target to reduce the devastating consequences of the hemostatic disorder during sepsis.
Collapse
Affiliation(s)
- Valeria Matus
- Department of Hematology-Oncology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - J. Guillermo Valenzuela
- Department of Hematology-Oncology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Patricia Hidalgo
- Department of Hematology-Oncology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - L. María Pozo
- Department of Hematology-Oncology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Olga Panes
- Department of Hematology-Oncology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Aniela Wozniak
- Department of Clinical Laboratory, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Diego Mezzano
- Department of Hematology-Oncology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Jaime Pereira
- Department of Hematology-Oncology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudia G. Sáez
- Department of Hematology-Oncology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- * E-mail:
| |
Collapse
|
46
|
Haworth JA, Jenkinson HF, Petersen HJ, Back CR, Brittan JL, Kerrigan SW, Nobbs AH. Concerted functions of Streptococcus gordonii surface proteins PadA and Hsa mediate activation of human platelets and interactions with extracellular matrix. Cell Microbiol 2017; 19:e12667. [PMID: 27616700 PMCID: PMC5574023 DOI: 10.1111/cmi.12667] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 08/23/2016] [Accepted: 09/07/2016] [Indexed: 12/17/2022]
Abstract
A range of Streptococcus bacteria are able to interact with blood platelets to form a thrombus (clot). Streptococcus gordonii is ubiquitous within the human oral cavity and amongst the common pathogens isolated from subjects with infective endocarditis. Two cell surface proteins, Hsa and Platelet adherence protein A (PadA), in S. gordonii mediate adherence and activation of platelets. In this study, we demonstrate that PadA binds activated platelets and that an NGR (Asparagine-Glycine-Arginine) motif within a 657 amino acid residue N-terminal fragment of PadA is responsible for this, together with two other integrin-like recognition motifs RGT and AGD. PadA also acts in concert with Hsa to mediate binding of S. gordonii to cellular fibronectin and vitronectin, and to promote formation of biofilms. Evidence is presented that PadA and Hsa are each reliant on the other's active presentation on the bacterial cell surface, suggesting cooperativity in functions impacting both colonization and pathogenesis.
Collapse
Affiliation(s)
| | | | | | | | - Jane L. Brittan
- School of Oral and Dental SciencesUniversity of BristolBristolUK
| | - Steve W. Kerrigan
- Cardiovascular Infection GroupRoyal College of Surgeons in IrelandDublin 2Ireland
| | - Angela H. Nobbs
- School of Oral and Dental SciencesUniversity of BristolBristolUK
| |
Collapse
|
47
|
Abstract
Publisher's Note: This article has a companion Point by Brass et al. Publisher's Note: Join in the discussion of these articles at Blood Advances Community Conversations.
Collapse
|
48
|
Antibodies Targeting Hsa and PadA Prevent Platelet Aggregation and Protect Rats against Experimental Endocarditis Induced by Streptococcus gordonii. Infect Immun 2016; 84:3557-3563. [PMID: 27736784 DOI: 10.1128/iai.00810-16] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 09/22/2016] [Indexed: 01/24/2023] Open
Abstract
Streptococcus gordonii and related species of oral viridans group streptococci (VGS) are common etiological agents of infective endocarditis (IE). We explored vaccination as a strategy to prevent VGS-IE, using a novel antigen-presenting system based on non-genetically modified Lactococcus lactis displaying vaccinogens on its surface. Hsa and PadA are surface-located S. gordonii proteins implicated in platelet adhesion and aggregation, which are key steps in the pathogenesis of IE. This function makes them ideal targets for vaccination against VGS-IE. In the present study, we report the use of nonliving L. lactis displaying at its surface the N-terminal region of Hsa or PadA by means of the cell wall binding domain of Lactobacillus casei A2 phage lysine LysA2 (Hsa-LysA2 and PadA-LysA2, respectively) and investigation of their ability to elicit antibodies in rats and to protect them from S. gordonii experimental IE. Immunized and control animals with catheter-induced sterile aortic valve vegetations were inoculated with 106 CFU of S. gordonii The presence of IE was evaluated 24 h later. Immunization of rats with L. lactis Hsa-LysA2, L. lactis PadA-LysA2, or both protected 6/11 (55%), 6/11 (55%), and 11/12 (91%) animals, respectively, from S. gordonii IE (P < 0.05 versus controls). Protection correlated with the induction of high levels of functional antibodies against both Hsa and PadA that delayed or totally inhibited platelet aggregation by S. gordonii These results support the value of L. lactis as a system for antigen delivery and of Hsa and PadA as promising candidates for a vaccine against VGS-IE.
Collapse
|
49
|
Arbesu I, Bucsaiova M, Fischer MB, Mannhalter C. Platelet-borne complement proteins and their role in platelet-bacteria interactions. J Thromb Haemost 2016; 14:2241-2252. [PMID: 27590476 PMCID: PMC5299534 DOI: 10.1111/jth.13495] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 08/15/2016] [Indexed: 12/28/2022]
Abstract
Essentials Platelets play an important role in pathogen recognition. Platelets contain several complement factors and can interact with E. coli. Platelet's complement protein C3 differs from plasmatic C3 in its electrophoretic mobility. Upon contact with bacteria, platelets are activated and can enhance complement activation. SUMMARY Background The role of platelets in immune defense is increasingly being recognized. Platelets bind complement proteins from plasma, initiate complement activation, and interact with bacteria. However, the contribution of platelets to complement-mediated defense against bacterial infections is not known in detail. Objectives To assess platelet interactions with Escherichia coli strains, and evaluate the contributions of platelet complement proteins to host defense. Methods We studied the cell-cell interactions of a pathogenic and a non-pathogenic E. coli strain with platelet concentrates, washed platelets and manually isolated platelets by flow cytometry and ELISA. The presence of complement proteins and complement RNA in megakaryocytes and platelets was analyzed by PCR, RT-PCR, confocal microscopy, and western blotting. Results Incubation with E. coli leads to platelet activation, as indicated by the expression of CD62P and CD63 on the platelet surface. RNA and protein analyses show that megakaryocytes and platelets contain complement C3, and that platelet C3 migrates differently on polyacrylamide gels than plasmatic C3. Activation of platelets by bacteria leads to translocation of C3 to the cell surface. This translocation is not induced by thrombin receptor activating peptide or lipopolysaccharide. Interaction of platelets with E. coli occurs even in the absence of plasma proteins, and is independent of platelet toll-like receptor 4 and α2b β3 (glycoprotein IIbIIIa). Conclusion Platelets contain a specific form of C3. Importantly, they can modulate immune defense against bacteria by enhancing plasmatic complement activation.
Collapse
Affiliation(s)
- I. Arbesu
- Department of Laboratory MedicineMedical UniversityViennaAustria
| | - M. Bucsaiova
- Department of Laboratory MedicineMedical UniversityViennaAustria
| | - M. B. Fischer
- Center for Biomedical TechnologyDonau‐Universität KremsKremsAustria
- Department of Blood Serology and Transfusion MedicineMedical University of ViennaViennaAustria
| | - C. Mannhalter
- Department of Laboratory MedicineMedical UniversityViennaAustria
| |
Collapse
|
50
|
Qiao J, Al-Tamimi M, Baker RI, Andrews RK, Gardiner EE. The platelet Fc receptor, FcγRIIa. Immunol Rev 2016; 268:241-52. [PMID: 26497525 DOI: 10.1111/imr.12370] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Human platelets express FcγRIIa, the low-affinity receptor for the constant fragment (Fc) of immunoglobulin (Ig) G that is also found on neutrophils, monocytes, and macrophages. Engagement of this receptor on platelets by immune complexes triggers intracellular signaling events that lead to platelet activation and aggregation. Importantly these events occur in vivo, particularly in response to pathological immune complexes, and engagement of this receptor on platelets has been causally linked to disease pathology. In this review, we will highlight some of the key features of this receptor in the context of the platelet surface, and examine the functions of platelet FcγRIIa in normal hemostasis and in response to injury and infection. This review will also highlight pathological consequences of engagement of this receptor in platelet-based autoimmune disorders. Finally, we present some new data investigating whether levels of the extracellular ligand-binding region of platelet glycoprotein VI which is rapidly shed upon engagement of platelet FcγRIIa by autoantibodies, can report on the presence of pathological anti-heparin/platelet factor 4 immune complexes and thus identify patients with pathological autoantibodies who are at the greatest risk of developing life-threatening thrombosis in the setting of heparin-induced thrombocytopenia.
Collapse
Affiliation(s)
- Jianlin Qiao
- The Australian Centre for Blood Diseases, Monash University, Melbourne, VIC, Australia
| | - Mohammad Al-Tamimi
- Department of Basic Medical Sciences, Hashemite University, Zarqa, Jordan
| | - Ross I Baker
- Western Australian Centre for Thrombosis and Haemostasis, Murdoch University, Perth, WA, Australia
| | - Robert K Andrews
- The Australian Centre for Blood Diseases, Monash University, Melbourne, VIC, Australia
| | - Elizabeth E Gardiner
- The Australian Centre for Blood Diseases, Monash University, Melbourne, VIC, Australia
| |
Collapse
|