1
|
Hidalgo-Sánchez M, Sánchez-Guardado L, Rodríguez-León J, Francisco-Morcillo J. The role of FGF15/FGF19 in the development of the central nervous system, eyes and inner ears in vertebrates. Tissue Cell 2024; 91:102619. [PMID: 39579736 DOI: 10.1016/j.tice.2024.102619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 11/25/2024]
Abstract
Fibroblast growth factor 19 (FGF19), and its rodent ortholog FGF15, is a member of a FGF subfamily directly involved in metabolism, acting in an endocrine way. During embryonic development, FGF15/FGF19 also functions as a paracrine or autocrine factor, regulating key events in a large number of organs. In this sense, the Fgf15/Fgf19 genes control the correct development of the brain, eye, inner ear, heart, pharyngeal pouches, tail bud and limbs, among other organs, as well as muscle growth in adulthood. These growth factors show relevant differences according to molecular structures, signalling pathway and function. Moreover, their expression patterns are highly dynamic at different stages of development, in particular in the central nervous system. The difficulty in understanding the action of these genes increases when comparing their expression patterns and regulatory mechanisms between different groups of vertebrates. The present review will address the expression patterns and functions of the Fgf15/Fgf19 genes at different stages of vertebrate embryonic development, with special attention to the regulation of the early specification, cell differentiation, and morphogenesis of the central nervous system and some sensory organs such as eye and inner ear. The most relevant anatomical aspects related to the structures analysed have also been considered in detail to provide an understandable context for the molecular and cellular studies shown.
Collapse
Affiliation(s)
- Matías Hidalgo-Sánchez
- Área de Biología Celular, Facultad de Ciencias, Universidad de Extremadura, Avda. de Elvas s/n, Badajoz 06071, Spain.
| | - Luis Sánchez-Guardado
- Área de Biología Celular, Facultad de Ciencias, Universidad de Extremadura, Avda. de Elvas s/n, Badajoz 06071, Spain
| | - Joaquín Rodríguez-León
- Área de Anatomía Humana, Facultad de Medicina y Ciencias de la Salud, Universidad de Extremadura, Avda. de Elvas s/n, Badajoz 06071, Spain
| | - Javier Francisco-Morcillo
- Área de Biología Celular, Facultad de Ciencias, Universidad de Extremadura, Avda. de Elvas s/n, Badajoz 06071, Spain
| |
Collapse
|
2
|
Fritzsch B, Glover JC. Gene networks and the evolution of olfactory organs, eyes, hair cells and motoneurons: a view encompassing lancelets, tunicates and vertebrates. Front Cell Dev Biol 2024; 12:1340157. [PMID: 38533086 PMCID: PMC10963430 DOI: 10.3389/fcell.2024.1340157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 02/26/2024] [Indexed: 03/28/2024] Open
Abstract
Key developmental pathways and gene networks underlie the formation of sensory cell types and structures involved in chemosensation, vision and mechanosensation, and of the efferents these sensory inputs can activate. We describe similarities and differences in these pathways and gene networks in selected species of the three main chordate groups, lancelets, tunicates, and vertebrates, leading to divergent development of olfactory receptors, eyes, hair cells and motoneurons. The lack of appropriately posited expression of certain transcription factors in lancelets and tunicates prevents them from developing vertebrate-like olfactory receptors and eyes, although they generate alternative structures for chemosensation and vision. Lancelets and tunicates lack mechanosensory cells associated with the sensation of acoustic stimuli, but have gravisensitive organs and ciliated epidermal sensory cells that may (and in some cases clearly do) provide mechanosensation and thus the capacity to respond to movement relative to surrounding water. Although functionally analogous to the vertebrate vestibular apparatus and lateral line, homology is questionable due to differences in the expression of the key transcription factors Neurog and Atoh1/7, on which development of vertebrate hair cells depends. The vertebrate hair cell-bearing inner ear and lateral line thus likely represent major evolutionary advances specific to vertebrates. Motoneurons develop in vertebrates under the control of the ventral signaling molecule hedgehog/sonic hedgehog (Hh,Shh), against an opposing inhibitory effect mediated by dorsal signaling molecules. Many elements of Shh-signaling and downstream genes involved in specifying and differentiating motoneurons are also exhibited by lancelets and tunicates, but the repertoire of MNs in vertebrates is broader, indicating greater diversity in motoneuron differentiation programs.
Collapse
Affiliation(s)
- Bernd Fritzsch
- Department of Biological Sciences, University of Nebraska Medical Center, Omaha, NE, United States
| | - Joel C. Glover
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
- Laboratory of Neural Development and Optical Recording (NDEVOR), Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
3
|
You D, Ni W, Huang Y, Zhou Q, Zhang Y, Jiang T, Chen Y, Li W. The proper timing of Atoh1 expression is pivotal for hair cell subtype differentiation and the establishment of inner ear function. Cell Mol Life Sci 2023; 80:349. [PMID: 37930405 PMCID: PMC10628023 DOI: 10.1007/s00018-023-04947-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/30/2023] [Accepted: 09/01/2023] [Indexed: 11/07/2023]
Abstract
Atoh1 overexpression is essential for hair cell (HC) regeneration in the sensory epithelium of mammalian auditory and vestibular organs. However, Atoh1 overexpression alone cannot induce fully mature and functional HCs in the mammalian inner ear. In the current study, we investigated the effect of Atoh1 constitutive overexpression in native HCs by manipulating Atoh1 expression at different developmental stages. We demonstrated that constitutive overexpression of Atoh1 in native vestibular HCs did not affect cell survival but did impair vestibular function by interfering with the subtype differentiation of HCs and hair bundle development. In contrast, Atoh1 overexpression in cochlear HCs impeded their maturation, eventually leading to gradual HC loss in the cochlea and hearing dysfunction. Our study suggests that time-restricted Atoh1 expression is essential for the differentiation and survival of HCs in the inner ear, and this is pivotal for both hearing and vestibular function re-establishment through Atoh1 overexpression-induced HC regeneration strategies.
Collapse
Affiliation(s)
- Dan You
- ENT Institute, Department of Otorhinolaryngology, Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, The Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200031, People's Republic of China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, 200031, People's Republic of China
| | - Wenli Ni
- ENT Institute, Department of Otorhinolaryngology, Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, The Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200031, People's Republic of China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, 200031, People's Republic of China
| | - Yikang Huang
- ENT Institute, Department of Otorhinolaryngology, Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, The Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200031, People's Republic of China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, 200031, People's Republic of China
| | - Qin Zhou
- ENT Institute, Department of Otorhinolaryngology, Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, The Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200031, People's Republic of China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, 200031, People's Republic of China
| | - Yanping Zhang
- ENT Institute, Department of Otorhinolaryngology, Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, The Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200031, People's Republic of China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, 200031, People's Republic of China
| | - Tao Jiang
- ENT Institute, Department of Otorhinolaryngology, Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, The Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200031, People's Republic of China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, 200031, People's Republic of China
| | - Yan Chen
- ENT Institute, Department of Otorhinolaryngology, Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, The Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200031, People's Republic of China.
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, 200031, People's Republic of China.
| | - Wenyan Li
- ENT Institute, Department of Otorhinolaryngology, Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, The Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200031, People's Republic of China.
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, 200031, People's Republic of China.
| |
Collapse
|
4
|
Origin of Neuroblasts in the Avian Otic Placode and Their Distributions in the Acoustic and Vestibular Ganglia. BIOLOGY 2023; 12:biology12030453. [PMID: 36979145 PMCID: PMC10045822 DOI: 10.3390/biology12030453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/09/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023]
Abstract
The inner ear is a complex three-dimensional sensorial structure with auditory and vestibular functions. This intricate sensory organ originates from the otic placode, which generates the sensory elements of the membranous labyrinth, as well as all the ganglionic neuronal precursors. How auditory and vestibular neurons establish their fate identities remains to be determined. Their topological origin in the incipient otic placode could provide positional information before they migrate, to later segregate in specific portions of the acoustic and vestibular ganglia. To address this question, transplants of small portions of the avian otic placode were performed according to our previous fate map study, using the quail/chick chimeric graft model. All grafts taking small areas of the neurogenic placodal domain contributed neuroblasts to both acoustic and vestibular ganglia. A differential distribution of otic neurons in the anterior and posterior lobes of the vestibular ganglion, as well as in the proximal, intermediate, and distal portions of the acoustic ganglion, was found. Our results clearly show that, in birds, there does not seem to be a strict segregation of acoustic and vestibular neurons in the incipient otic placode.
Collapse
|
5
|
Fritzsch B, Martin PR. Vision and retina evolution: how to develop a retina. IBRO Neurosci Rep 2022; 12:240-248. [PMID: 35449767 PMCID: PMC9018162 DOI: 10.1016/j.ibneur.2022.03.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/30/2022] [Indexed: 12/29/2022] Open
Abstract
Early in vertebrate evolution, a single homeobox (Hox) cluster in basal chordates was quadrupled to generate the Hox gene clusters present in extant vertebrates. Here we ask how this expanded gene pool may have influenced the evolution of the visual system. We suggest that a single neurosensory cell type split into ciliated sensory cells (photoreceptors, which transduce light) and retinal ganglion cells (RGC, which project to the brain). In vertebrates, development of photoreceptors is regulated by the basic helix-loop-helix (bHLH) transcription factor Neurod1 whereas RGC development depends on Atoh7 and related bHLH genes. Lancelet (a basal chordate) does not express Neurod or Atoh7 and possesses a few neurosensory cells with cilia that reach out of the opening of the neural tube. Sea-squirts (Ascidians) do not express Neurod and express a different bHLH gene, Atoh8, that is likely expressed in the anterior vesicle. Recent data indicate the neurosensory cells in lancelets may correspond to three distinct eye fields in ascidians, which in turn may be the basis of the vertebrate retina, pineal and parapineal. In this review we contrast the genetic control of visual structure development in these chordates with that of basal vertebrates such as lampreys and hagfish, and jawed vertebrates. We propose an evolutionary sequence linking whole-genome duplications, initially to a split between photoreceptor and projection neurons (RGC) and subsequently between pineal and lateral eye structures.
Collapse
|
6
|
Almasoudi SH, Schlosser G. Otic Neurogenesis in Xenopus laevis: Proliferation, Differentiation, and the Role of Eya1. Front Neuroanat 2021; 15:722374. [PMID: 34616280 PMCID: PMC8488300 DOI: 10.3389/fnana.2021.722374] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/27/2021] [Indexed: 11/15/2022] Open
Abstract
Using immunostaining and confocal microscopy, we here provide the first detailed description of otic neurogenesis in Xenopus laevis. We show that the otic vesicle comprises a pseudostratified epithelium with apicobasal polarity (apical enrichment of Par3, aPKC, phosphorylated Myosin light chain, N-cadherin) and interkinetic nuclear migration (apical localization of mitotic, pH3-positive cells). A Sox3-immunopositive neurosensory area in the ventromedial otic vesicle gives rise to neuroblasts, which delaminate through breaches in the basal lamina between stages 26/27 and 39. Delaminated cells congregate to form the vestibulocochlear ganglion, whose peripheral cells continue to proliferate (as judged by EdU incorporation), while central cells differentiate into Islet1/2-immunopositive neurons from stage 29 on and send out neurites at stage 31. The central part of the neurosensory area retains Sox3 but stops proliferating from stage 33, forming the first sensory areas (utricular/saccular maculae). The phosphatase and transcriptional coactivator Eya1 has previously been shown to play a central role for otic neurogenesis but the underlying mechanism is poorly understood. Using an antibody specifically raised against Xenopus Eya1, we characterize the subcellular localization of Eya1 proteins, their levels of expression as well as their distribution in relation to progenitor and neuronal differentiation markers during otic neurogenesis. We show that Eya1 protein localizes to both nuclei and cytoplasm in the otic epithelium, with levels of nuclear Eya1 declining in differentiating (Islet1/2+) vestibulocochlear ganglion neurons and in the developing sensory areas. Morpholino-based knockdown of Eya1 leads to reduction of proliferating, Sox3- and Islet1/2-immunopositive cells, redistribution of cell polarity proteins and loss of N-cadherin suggesting that Eya1 is required for maintenance of epithelial cells with apicobasal polarity, progenitor proliferation and neuronal differentiation during otic neurogenesis.
Collapse
Affiliation(s)
| | - Gerhard Schlosser
- School of Natural Sciences, National University of Galway, Galway, Ireland
| |
Collapse
|
7
|
Elliott KL, Pavlínková G, Chizhikov VV, Yamoah EN, Fritzsch B. Development in the Mammalian Auditory System Depends on Transcription Factors. Int J Mol Sci 2021; 22:ijms22084189. [PMID: 33919542 PMCID: PMC8074135 DOI: 10.3390/ijms22084189] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 12/16/2022] Open
Abstract
We review the molecular basis of several transcription factors (Eya1, Sox2), including the three related genes coding basic helix–loop–helix (bHLH; see abbreviations) proteins (Neurog1, Neurod1, Atoh1) during the development of spiral ganglia, cochlear nuclei, and cochlear hair cells. Neuronal development requires Neurog1, followed by its downstream target Neurod1, to cross-regulate Atoh1 expression. In contrast, hair cells and cochlear nuclei critically depend on Atoh1 and require Neurod1 expression for interactions with Atoh1. Upregulation of Atoh1 following Neurod1 loss changes some vestibular neurons’ fate into “hair cells”, highlighting the significant interplay between the bHLH genes. Further work showed that replacing Atoh1 by Neurog1 rescues some hair cells from complete absence observed in Atoh1 null mutants, suggesting that bHLH genes can partially replace one another. The inhibition of Atoh1 by Neurod1 is essential for proper neuronal cell fate, and in the absence of Neurod1, Atoh1 is upregulated, resulting in the formation of “intraganglionic” HCs. Additional genes, such as Eya1/Six1, Sox2, Pax2, Gata3, Fgfr2b, Foxg1, and Lmx1a/b, play a role in the auditory system. Finally, both Lmx1a and Lmx1b genes are essential for the cochlear organ of Corti, spiral ganglion neuron, and cochlear nuclei formation. We integrate the mammalian auditory system development to provide comprehensive insights beyond the limited perception driven by singular investigations of cochlear neurons, cochlear hair cells, and cochlear nuclei. A detailed analysis of gene expression is needed to understand better how upstream regulators facilitate gene interactions and mammalian auditory system development.
Collapse
Affiliation(s)
- Karen L. Elliott
- Department of Biology, University of Iowa, Iowa City, IA 52242, USA;
| | - Gabriela Pavlínková
- Institute of Biotechnology of the Czech Academy of Sciences, 25250 Vestec, Czechia;
| | - Victor V. Chizhikov
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN 38163, USA;
| | - Ebenezer N. Yamoah
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno, NV 89557, USA;
| | - Bernd Fritzsch
- Department of Biology, University of Iowa, Iowa City, IA 52242, USA;
- Correspondence:
| |
Collapse
|
8
|
Stojkovic M, Han D, Jeong M, Stojkovic P, Stankovic KM. Human induced pluripotent stem cells and CRISPR/Cas-mediated targeted genome editing: Platforms to tackle sensorineural hearing loss. STEM CELLS (DAYTON, OHIO) 2021; 39:673-696. [PMID: 33586253 DOI: 10.1002/stem.3353] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 12/13/2020] [Indexed: 11/09/2022]
Abstract
Hearing loss (HL) is a major global health problem of pandemic proportions. The most common type of HL is sensorineural hearing loss (SNHL) which typically occurs when cells within the inner ear are damaged. Human induced pluripotent stem cells (hiPSCs) can be generated from any individual including those who suffer from different types of HL. The development of new differentiation protocols to obtain cells of the inner ear including hair cells (HCs) and spiral ganglion neurons (SGNs) promises to expedite cell-based therapy and screening of potential pharmacologic and genetic therapies using human models. Considering age-related, acoustic, ototoxic, and genetic insults which are the most frequent causes of irreversible damage of HCs and SGNs, new methods of genome editing (GE), especially the CRISPR/Cas9 technology, could bring additional opportunities to understand the pathogenesis of human SNHL and identify novel therapies. However, important challenges associated with both hiPSCs and GE need to be overcome before scientific discoveries are correctly translated to effective and patient-safe applications. The purpose of the present review is (a) to summarize the findings from published reports utilizing hiPSCs for studies of SNHL, hence complementing recent reviews focused on animal studies, and (b) to outline promising future directions for deciphering SNHL using disruptive molecular and genomic technologies.
Collapse
Affiliation(s)
- Miodrag Stojkovic
- Eaton Peabody Laboratories, Department of Otolaryngology Head and Neck Surgery, Massachusetts Eye and Ear, Boston, Massachusetts, USA.,Department of Otolaryngology Head and Neck Surgery, Harvard Medical School, Boston, Massachusetts, USA
| | - Dongjun Han
- Eaton Peabody Laboratories, Department of Otolaryngology Head and Neck Surgery, Massachusetts Eye and Ear, Boston, Massachusetts, USA.,Department of Otolaryngology Head and Neck Surgery, Harvard Medical School, Boston, Massachusetts, USA
| | - Minjin Jeong
- Eaton Peabody Laboratories, Department of Otolaryngology Head and Neck Surgery, Massachusetts Eye and Ear, Boston, Massachusetts, USA.,Department of Otolaryngology Head and Neck Surgery, Harvard Medical School, Boston, Massachusetts, USA
| | - Petra Stojkovic
- Eaton Peabody Laboratories, Department of Otolaryngology Head and Neck Surgery, Massachusetts Eye and Ear, Boston, Massachusetts, USA.,Department of Otolaryngology Head and Neck Surgery, Harvard Medical School, Boston, Massachusetts, USA
| | - Konstantina M Stankovic
- Eaton Peabody Laboratories, Department of Otolaryngology Head and Neck Surgery, Massachusetts Eye and Ear, Boston, Massachusetts, USA.,Department of Otolaryngology Head and Neck Surgery, Harvard Medical School, Boston, Massachusetts, USA.,Program in Speech and Hearing Bioscience and Technology, Harvard University, Cambridge, Massachusetts, USA.,Harvard Program in Therapeutic Science, Harvard Medical School, Boston, Massachusetts, USA.,Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
| |
Collapse
|
9
|
Chen F, Zheng G, Qu M, Wang Y, Lyu MJA, Zhu XG. Knocking out NEGATIVE REGULATOR OF PHOTOSYNTHESIS 1 increases rice leaf photosynthesis and biomass production in the field. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:1836-1849. [PMID: 33258954 DOI: 10.1093/jxb/eraa566] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 11/30/2020] [Indexed: 06/12/2023]
Abstract
Improving photosynthesis is a major approach to increasing crop yield potential. Here we identify a transcription factor as a negative regulator of photosynthesis, which can be manipulated to increase rice photosynthesis and plant biomass in the field. This transcription factor, named negative regulator of photosynthesis 1 (NRP1; Os07g0471900), was identified through a co-expression analysis using rice leaf RNA sequencing data. NRP1 expression showed significantly negative correlation with the expression of many genes involved in photosynthesis. Knocking out NRP1 led to greater photosynthesis and increased biomass in the field, while overexpression of NRP1 decreased photosynthesis and biomass. Transcriptomic data analysis shows that NRP1 can negatively regulate the expression of photosynthetic genes. Protein transactivation experiments show that NRP1 is a transcription activator, implying that NRP1 may indirectly regulate photosynthetic gene expression through an unknown regulator. This study shows that combination of bioinformatics analysis with transgenic testing can be used to identify new regulators to improve photosynthetic efficiency in crops.
Collapse
Affiliation(s)
- Faming Chen
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Guangyong Zheng
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Mingnan Qu
- National Key Laboratory for Plant Molecular Genetics, CAS Center of Excellence for Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Yanjie Wang
- University of Chinese Academy of Sciences, Beijing, China
- National Key Laboratory for Plant Molecular Genetics, CAS Center of Excellence for Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Ming-Ju Amy Lyu
- National Key Laboratory for Plant Molecular Genetics, CAS Center of Excellence for Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Xin-Guang Zhu
- National Key Laboratory for Plant Molecular Genetics, CAS Center of Excellence for Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
10
|
Holman HA, Wan Y, Rabbitt RD. Developmental GAD2 Expression Reveals Progenitor-like Cells with Calcium Waves in Mammalian Crista Ampullaris. iScience 2020; 23:101407. [PMID: 32771977 PMCID: PMC7415930 DOI: 10.1016/j.isci.2020.101407] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/29/2020] [Accepted: 07/21/2020] [Indexed: 01/26/2023] Open
Abstract
Sense of motion, spatial orientation, and balance in vertebrates relies on sensory hair cells in the inner ear vestibular system. Vestibular supporting cells can regenerate hair cells that are lost from aging, ototoxicity, and trauma, although not all factors or specific cell types are known. Here we report a population of GAD2-positive cells in the mouse crista ampullaris and trace GAD2 progenitor-like cells that express pluripotent transcription factors SOX2, PROX1, and CTBP2. GAD2 progenitor-like cells organize into rosettes around a central branched structure in the eminentia cruciatum (EC) herein named the EC plexus. GCaMP5G calcium indicator shows spontaneous and acetylcholine-evoked whole-cell calcium waves in neonatal and adult mice. We present a hypothetical model that outlines the lineage and potential regenerative capacity of GAD2 cells in the mammalian vestibular neuroepithelium.
Collapse
Affiliation(s)
- Holly A Holman
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA.
| | - Yong Wan
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Richard D Rabbitt
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA; Graduate Program in Neuroscience, University of Utah, Salt Lake City, UT 84112, USA; Department of Otolaryngology-Head & Neck Surgery, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
11
|
Sánchez-Guardado LÓ, Puelles L, Hidalgo-Sánchez M. Origin of acoustic-vestibular ganglionic neuroblasts in chick embryos and their sensory connections. Brain Struct Funct 2019; 224:2757-2774. [PMID: 31396696 DOI: 10.1007/s00429-019-01934-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 07/31/2019] [Indexed: 01/03/2023]
Abstract
The inner ear is a complex three-dimensional sensory structure with auditory and vestibular functions. It originates from the otic placode, which generates the sensory elements of the membranous labyrinth and all the ganglionic neuronal precursors. Neuroblast specification is the first cell differentiation event. In the chick, it takes place over a long embryonic period from the early otic cup stage to at least stage HH25. The differentiating ganglionic neurons attain a precise innervation pattern with sensory patches, a process presumably governed by a network of dendritic guidance cues which vary with the local micro-environment. To study the otic neurogenesis and topographically-ordered innervation pattern in birds, a quail-chick chimaeric graft technique was used in accordance with a previously determined fate-map of the otic placode. Each type of graft containing the presumptive domain of topologically-arranged placodal sensory areas was shown to generate neuroblasts. The differentiated grafted neuroblasts established dendritic contacts with a variety of sensory patches. These results strongly suggest that, rather than reverse-pathfinding, the relevant role in otic dendritic process guidance is played by long-range diffusing molecules.
Collapse
Affiliation(s)
| | - Luis Puelles
- Department of Human Anatomy and Psychobiology, School of Medicine, University of Murcia, E30100, Murcia, Spain.,Instituto Murciano de Investigaciones Biosanitarias (IMIB-Arrixaca), E30100, Murcia, Spain
| | - Matías Hidalgo-Sánchez
- Department of Cell Biology, School of Science, University of Extremadura, E06071, Badajoz, Spain.
| |
Collapse
|
12
|
Fritzsch B, Elliott KL, Pavlinkova G. Primary sensory map formations reflect unique needs and molecular cues specific to each sensory system. F1000Res 2019; 8:F1000 Faculty Rev-345. [PMID: 30984379 PMCID: PMC6439788 DOI: 10.12688/f1000research.17717.1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/21/2019] [Indexed: 12/21/2022] Open
Abstract
Interaction with the world around us requires extracting meaningful signals to guide behavior. Each of the six mammalian senses (olfaction, vision, somatosensation, hearing, balance, and taste) has a unique primary map that extracts sense-specific information. Sensory systems in the periphery and their target neurons in the central nervous system develop independently and must develop specific connections for proper sensory processing. In addition, the regulation of sensory map formation is independent of and prior to central target neuronal development in several maps. This review provides an overview of the current level of understanding of primary map formation of the six mammalian senses. Cell cycle exit, combined with incompletely understood molecules and their regulation, provides chemoaffinity-mediated primary maps that are further refined by activity. The interplay between cell cycle exit, molecular guidance, and activity-mediated refinement is the basis of dominance stripes after redundant organ transplantations in the visual and balance system. A more advanced level of understanding of primary map formation could benefit ongoing restoration attempts of impaired senses by guiding proper functional connection formations of restored sensory organs with their central nervous system targets.
Collapse
Affiliation(s)
- Bernd Fritzsch
- Department of Biology, University of Iowa, Iowa City, USA
| | | | - Gabriela Pavlinkova
- Institute of Biotechnology of the Czech Academy of Sciences, Vestec, Czech Republic
| |
Collapse
|
13
|
Booth KT, Azaiez H, Jahan I, Smith RJH, Fritzsch B. Intracellular Regulome Variability Along the Organ of Corti: Evidence, Approaches, Challenges, and Perspective. Front Genet 2018; 9:156. [PMID: 29868110 PMCID: PMC5951964 DOI: 10.3389/fgene.2018.00156] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 04/13/2018] [Indexed: 12/13/2022] Open
Abstract
The mammalian hearing organ is a regular array of two types of hair cells (HCs) surrounded by six types of supporting cells. Along the tonotopic axis, this conserved radial array of cell types shows longitudinal variations to enhance the tuning properties of basilar membrane. We present the current evidence supporting the hypothesis that quantitative local variations in gene expression profiles are responsible for local cell responses to global gene manipulations. With the advent of next generation sequencing and the unprecedented array of technologies offering high throughput analyses at the single cell level, transcriptomics will become a common tool to enhance our understanding of the inner ear. We provide an overview of the approaches and landmark studies undertaken to date to analyze single cell variations in the organ of Corti and discuss the current limitations. We next provide an overview of the complexity of known regulatory mechanisms in the inner ear. These mechanisms are tightly regulated temporally and spatially at the transcription, RNA-splicing, mRNA-regulation, and translation levels. Understanding the intricacies of regulatory mechanisms at play in the inner ear will require the use of complementary approaches, and most probably, a combinatorial strategy coupling transcriptomics, proteomics, and epigenomics technologies. We highlight how these data, in conjunction with recent insights into molecular cell transformation, can advance attempts to restore lost hair cells.
Collapse
Affiliation(s)
- Kevin T Booth
- Molecular Otolaryngology and Renal Research Laboratories, Department of Otolaryngology, University of Iowa, Iowa City, IA, United States.,Interdisciplinary Graduate Program in Molecular Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Hela Azaiez
- Molecular Otolaryngology and Renal Research Laboratories, Department of Otolaryngology, University of Iowa, Iowa City, IA, United States
| | - Israt Jahan
- Department of Biology, University of Iowa, Iowa City, IA, United States
| | - Richard J H Smith
- Molecular Otolaryngology and Renal Research Laboratories, Department of Otolaryngology, University of Iowa, Iowa City, IA, United States
| | - Bernd Fritzsch
- Molecular Otolaryngology and Renal Research Laboratories, Department of Otolaryngology, University of Iowa, Iowa City, IA, United States.,Department of Biology, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
14
|
Albert JT, Kozlov AS. Comparative Aspects of Hearing in Vertebrates and Insects with Antennal Ears. Curr Biol 2017; 26:R1050-R1061. [PMID: 27780047 DOI: 10.1016/j.cub.2016.09.017] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The evolution of hearing in terrestrial animals has resulted in remarkable adaptations enabling exquisitely sensitive sound detection by the ear and sophisticated sound analysis by the brain. In this review, we examine several such characteristics, using examples from insects and vertebrates. We focus on two strong and interdependent forces that have been shaping the auditory systems across taxa: the physical environment of auditory transducers on the small, subcellular scale, and the sensory-ecological environment within which hearing happens, on a larger, evolutionary scale. We briefly discuss acoustical feature selectivity and invariance in the central auditory system, highlighting a major difference between insects and vertebrates as well as a major similarity. Through such comparisons within a sensory ecological framework, we aim to emphasize general principles underlying acute sensitivity to airborne sounds.
Collapse
Affiliation(s)
- Joerg T Albert
- UCL Ear Institute, 332 Gray's Inn Road, London WC1X 8EE, UK.
| | - Andrei S Kozlov
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK.
| |
Collapse
|
15
|
NEUROG1 Regulates CDK2 to Promote Proliferation in Otic Progenitors. Stem Cell Reports 2017; 9:1516-1529. [PMID: 29033307 PMCID: PMC5829327 DOI: 10.1016/j.stemcr.2017.09.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 09/13/2017] [Accepted: 09/14/2017] [Indexed: 12/23/2022] Open
Abstract
Loss of spiral ganglion neurons (SGNs) significantly contributes to hearing loss. Otic progenitor cell transplantation is a potential strategy to replace lost SGNs. Understanding how key transcription factors promote SGN differentiation in otic progenitors accelerates efforts for replacement therapies. A pro-neural transcription factor, Neurogenin1 (Neurog1), is essential for SGN development. Using an immortalized multipotent otic progenitor (iMOP) cell line that can self-renew and differentiate into otic neurons, NEUROG1 was enriched at the promoter of cyclin-dependent kinase 2 (Cdk2) and neurogenic differentiation 1 (NeuroD1) genes. Changes in H3K9ac and H3K9me3 deposition at the Cdk2 and NeuroD1 promoters suggested epigenetic regulation during iMOP proliferation and differentiation. In self-renewing iMOP cells, overexpression of NEUROG1 increased CDK2 to drive proliferation, while knockdown of NEUROG1 decreased CDK2 and reduced proliferation. In iMOP-derived neurons, overexpression of NEUROG1 accelerated acquisition of neuronal morphology, while knockdown of NEUROG1 prevented differentiation. Our findings suggest that NEUROG1 can promote proliferation or neuronal differentiation.
Collapse
|
16
|
Chagnaud BP, Engelmann J, Fritzsch B, Glover JC, Straka H. Sensing External and Self-Motion with Hair Cells: A Comparison of the Lateral Line and Vestibular Systems from a Developmental and Evolutionary Perspective. BRAIN, BEHAVIOR AND EVOLUTION 2017; 90:98-116. [PMID: 28988233 DOI: 10.1159/000456646] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Detection of motion is a feature essential to any living animal. In vertebrates, mechanosensory hair cells organized into the lateral line and vestibular systems are used to detect external water or head/body motion, respectively. While the neuronal components to detect these physical attributes are similar between the two sensory systems, the organizational pattern of the receptors in the periphery and the distribution of hindbrain afferent and efferent projections are adapted to the specific functions of the respective system. Here we provide a concise review comparing the functional organization of the vestibular and lateral line systems from the development of the organs to the wiring from the periphery and the first processing stages. The goal of this review is to highlight the similarities and differences to demonstrate how evolution caused a common neuronal substrate to adapt to different functions, one for the detection of external water stimuli and the generation of sensory maps and the other for the detection of self-motion and the generation of motor commands for immediate behavioral reactions.
Collapse
Affiliation(s)
- Boris P Chagnaud
- Ludwig-Maximilians-Universität München, Department Biology II, Division of Neurobiology, Martinsried-Planegg, Germany
| | | | | | | | | |
Collapse
|
17
|
Schwarzer S, Spieß S, Brand M, Hans S. Dlx3b/4b is required for early-born but not later-forming sensory hair cells during zebrafish inner ear development. Biol Open 2017; 6:1270-1278. [PMID: 28751305 PMCID: PMC5612237 DOI: 10.1242/bio.026211] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Morpholino-mediated knockdown has shown that the homeodomain transcription factors Dlx3b and Dlx4b are essential for proper induction of the otic-epibranchial progenitor domain (OEPD), as well as subsequent formation of sensory hair cells in the developing zebrafish inner ear. However, increasing use of reverse genetic approaches has revealed poor correlation between morpholino-induced and mutant phenotypes. Using CRISPR/Cas9-mediated mutagenesis, we generated a defined deletion eliminating the entire open reading frames of dlx3b and dlx4b (dlx3b/4b) and investigated a potential phenotypic difference between mutants and morpholino-mediated knockdown. Consistent with previous findings obtained by morpholino-mediated knockdown of Dlx3b and Dlx4b, dlx3b/4b mutants display compromised otic induction, the development of smaller otic vesicles and an elimination of all indications of otic specification when combined with loss of foxi1, a second known OEPD competence factor in zebrafish. Furthermore, sensorigenesis is also affected in dlx3b/4b mutants. However, we find that only early-born sensory hair cells (tether cells), that seed and anchor the formation of otoliths, are affected. Later-forming sensory hair cells are present, indicating that two genetically distinct pathways control the development of early-born and later-forming sensory hair cells. Finally, impairment of early-born sensory hair cell formation in dlx3b/4b mutant embryos reverses the common temporal sequence of neuronal and sensory hair cell specification in zebrafish, resembling the order of cell specification in amniotes; Neurog1 expression before Atoh1 expression. We conclude that the Dlx3b/4b-dependent pathway has been either acquired newly in the fish lineage or lost in other vertebrate species during evolution, and that the events during early inner ear development are remarkably similar in fish and amniotes in the absence of this pathway. Summary: The transcription factors Dlx3b and Dlx4b control the formation of early-born sensory hair cells or tether cells in the developing zebrafish inner ear.
Collapse
Affiliation(s)
- Simone Schwarzer
- Technische Universität Dresden, Biotechnology Center and DFG-Center for Regenerative Therapies Dresden Cluster of Excellence, Tatzberg 47-49, 01307 Dresden, Germany
| | - Sandra Spieß
- Technische Universität Dresden, Biotechnology Center and DFG-Center for Regenerative Therapies Dresden Cluster of Excellence, Tatzberg 47-49, 01307 Dresden, Germany
| | - Michael Brand
- Technische Universität Dresden, Biotechnology Center and DFG-Center for Regenerative Therapies Dresden Cluster of Excellence, Tatzberg 47-49, 01307 Dresden, Germany
| | - Stefan Hans
- Technische Universität Dresden, Biotechnology Center and DFG-Center for Regenerative Therapies Dresden Cluster of Excellence, Tatzberg 47-49, 01307 Dresden, Germany
| |
Collapse
|
18
|
Fritzsch B, Elliott KL. Gene, cell, and organ multiplication drives inner ear evolution. Dev Biol 2017; 431:3-15. [PMID: 28866362 DOI: 10.1016/j.ydbio.2017.08.034] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 04/27/2017] [Accepted: 08/25/2017] [Indexed: 12/14/2022]
Abstract
We review the development and evolution of the ear neurosensory cells, the aggregation of neurosensory cells into an otic placode, the evolution of novel neurosensory structures dedicated to hearing and the evolution of novel nuclei in the brain and their input dedicated to processing those novel auditory stimuli. The evolution of the apparently novel auditory system lies in duplication and diversification of cell fate transcription regulation that allows variation at the cellular level [transforming a single neurosensory cell into a sensory cell connected to its targets by a sensory neuron as well as diversifying hair cells], organ level [duplication of organ development followed by diversification and novel stimulus acquisition] and brain nuclear level [multiplication of transcription factors to regulate various neuron and neuron aggregate fate to transform the spinal cord into the unique hindbrain organization]. Tying cell fate changes driven by bHLH and other transcription factors into cell and organ changes is at the moment tentative as not all relevant factors are known and their gene regulatory network is only rudimentary understood. Future research can use the blueprint proposed here to provide both the deeper molecular evolutionary understanding as well as a more detailed appreciation of developmental networks. This understanding can reveal how an auditory system evolved through transformation of existing cell fate determining networks and thus how neurosensory evolution occurred through molecular changes affecting cell fate decision processes. Appreciating the evolutionary cascade of developmental program changes could allow identifying essential steps needed to restore cells and organs in the future.
Collapse
Affiliation(s)
- Bernd Fritzsch
- University of Iowa, Department of Biology, Iowa City, IA 52242, United States.
| | - Karen L Elliott
- University of Iowa, Department of Biology, Iowa City, IA 52242, United States
| |
Collapse
|
19
|
Abstract
Insect hearing has independently evolved multiple times in the context of intraspecific communication and predator detection by transforming proprioceptive organs into ears. Research over the past decade, ranging from the biophysics of sound reception to molecular aspects of auditory transduction to the neuronal mechanisms of auditory signal processing, has greatly advanced our understanding of how insects hear. Apart from evolutionary innovations that seem unique to insect hearing, parallels between insect and vertebrate auditory systems have been uncovered, and the auditory sensory cells of insects and vertebrates turned out to be evolutionarily related. This review summarizes our current understanding of insect hearing. It also discusses recent advances in insect auditory research, which have put forward insect auditory systems for studying biological aspects that extend beyond hearing, such as cilium function, neuronal signal computation, and sensory system evolution.
Collapse
Affiliation(s)
- Martin C Göpfert
- Department of Cellular Neurobiology, University of Göttingen, D-37077 Göttingen, Germany;
| | - R Matthias Hennig
- Department of Biology, Behavioral Physiology, Humboldt-Universität zu Berlin, D-10115 Berlin, Germany;
| |
Collapse
|
20
|
Vendrell V, López-Hernández I, Durán Alonso MB, Feijoo-Redondo A, Abello G, Gálvez H, Giráldez F, Lamonerie T, Schimmang T. Otx2 is a target of N-myc and acts as a suppressor of sensory development in the mammalian cochlea. Development 2015; 142:2792-2800. [PMID: 26160903 DOI: 10.1242/dev.122465] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 06/29/2015] [Indexed: 12/30/2022]
Abstract
Transcriptional regulatory networks are essential during the formation and differentiation of organs. The transcription factor N-myc is required for proper morphogenesis of the cochlea and to control correct patterning of the organ of Corti. We show here that the Otx2 gene, a mammalian ortholog of the Drosophila orthodenticle homeobox gene, is a crucial target of N-myc during inner ear development. Otx2 expression is lost in N-myc mouse mutants, and N-myc misexpression in the chick inner ear leads to ectopic expression of Otx2. Furthermore, Otx2 enhancer activity is increased by N-myc misexpression, indicating that N-myc may directly regulate Otx2. Inactivation of Otx2 in the mouse inner ear leads to ectopic expression of prosensory markers in non-sensory regions of the cochlear duct. Upon further differentiation, these domains give rise to an ectopic organ of Corti, together with the re-specification of non-sensory areas into sensory epithelia, and the loss of Reissner's membrane. Therefore, the Otx2-positive domain of the cochlear duct shows a striking competence to develop into a mirror-image copy of the organ of Corti. Taken together, these data show that Otx2 acts downstream of N-myc and is essential for patterning and spatial restriction of the sensory domain of the mammalian cochlea.
Collapse
Affiliation(s)
- Victor Vendrell
- Instituto de Biología y Genética Molecular, Universidad de Valladolid y Consejo Superior de Investigaciones Científicas, C/Sanz y Forés 3, Valladolid E-47003, Spain
| | - Iris López-Hernández
- Instituto de Biología y Genética Molecular, Universidad de Valladolid y Consejo Superior de Investigaciones Científicas, C/Sanz y Forés 3, Valladolid E-47003, Spain
| | - María Beatriz Durán Alonso
- Instituto de Biología y Genética Molecular, Universidad de Valladolid y Consejo Superior de Investigaciones Científicas, C/Sanz y Forés 3, Valladolid E-47003, Spain
| | - Ana Feijoo-Redondo
- Instituto de Biología y Genética Molecular, Universidad de Valladolid y Consejo Superior de Investigaciones Científicas, C/Sanz y Forés 3, Valladolid E-47003, Spain
| | - Gina Abello
- CEXS, Universitat Pompeu Fabra, Parc de Recerca Biomédica de Barcelona, Barcelona E-08003, Spain
| | - Héctor Gálvez
- CEXS, Universitat Pompeu Fabra, Parc de Recerca Biomédica de Barcelona, Barcelona E-08003, Spain
| | - Fernando Giráldez
- CEXS, Universitat Pompeu Fabra, Parc de Recerca Biomédica de Barcelona, Barcelona E-08003, Spain
| | - Thomas Lamonerie
- Institut de Biologie Valrose, University of Nice Sophia Antipolis, UMR UNS/CNRS 7277/INSERM 1091, Nice F-06108, France
| | - Thomas Schimmang
- Instituto de Biología y Genética Molecular, Universidad de Valladolid y Consejo Superior de Investigaciones Científicas, C/Sanz y Forés 3, Valladolid E-47003, Spain
| |
Collapse
|
21
|
Jahan I, Pan N, Kersigo J, Fritzsch B. Neurog1 can partially substitute for Atoh1 function in hair cell differentiation and maintenance during organ of Corti development. Development 2015. [PMID: 26209643 DOI: 10.1242/dev.123091] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Atoh1, a basic helix-loop-helix (bHLH) transcription factor (TF), is essential for the differentiation of hair cells (HCs), mechanotransducers that convert sound into auditory signals in the mammalian organ of Corti (OC). Previous work demonstrated that replacing mouse Atoh1 with the fly ortholog atonal rescues HC differentiation, indicating functional replacement by other bHLH genes. However, replacing Atoh1 with Neurog1 resulted in reduced HC differentiation compared with transient Atoh1 expression in a 'self-terminating' Atoh1 conditional null mouse (Atoh1-Cre; Atoh1(f/f)). We now show that combining Neurog1 in one allele with removal of floxed Atoh1 in a self-terminating conditional mutant (Atoh1-Cre; Atoh1(f/kiNeurog1)) mouse results in significantly more differentiated inner HCs and outer HCs that have a prolonged longevity of 9 months compared with Atoh1 self-terminating littermates. Stereocilia bundles are partially disorganized, disoriented and not HC type specific. Replacement of Atoh1 with Neurog1 maintains limited expression of Pou4f3 and Barhl1 and rescues HCs quantitatively, but not qualitatively. OC patterning and supporting cell differentiation are also partially disrupted. Diffusible factors involved in patterning are reduced (Fgf8) and factors involved in cell-cell interactions are affected (Jag1, Hes5). Despite the presence of many HCs with stereocilia these mice are deaf, possibly owing to HC and OC patterning defects. This study provides a novel approach to disrupt OC development through modulating the HC-specific intracellular TF network. The resulting disorganized OC indicates that normally differentiated HCs act as 'self-organizers' for OC development and that Atoh1 plays a crucial role to initiate HC stereocilia differentiation independently of HC viability.
Collapse
Affiliation(s)
- Israt Jahan
- Department of Biology, College of Liberal Arts & Sciences, University of Iowa, Iowa City, IA 52242, USA
| | - Ning Pan
- Department of Biology, College of Liberal Arts & Sciences, University of Iowa, Iowa City, IA 52242, USA
| | - Jennifer Kersigo
- Department of Biology, College of Liberal Arts & Sciences, University of Iowa, Iowa City, IA 52242, USA
| | - Bernd Fritzsch
- Department of Biology, College of Liberal Arts & Sciences, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
22
|
Jahan I, Pan N, Elliott KL, Fritzsch B. The quest for restoring hearing: Understanding ear development more completely. Bioessays 2015. [PMID: 26208302 DOI: 10.1002/bies.201500044] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Neurosensory hearing loss is a growing problem of super-aged societies. Cochlear implants can restore some hearing, but rebuilding a lost hearing organ would be superior. Research has discovered many cellular and molecular steps to develop a hearing organ but translating those insights into hearing organ restoration remains unclear. For example, we cannot make various hair cell types and arrange them into their specific patterns surrounded by the right type of supporting cells in the right numbers. Our overview of the topologically highly organized and functionally diversified cellular mosaic of the mammalian hearing organ highlights what is known and unknown about its development. Following this analysis, we suggest critical steps to guide future attempts toward restoration of a functional organ of Corti. We argue that generating mutant mouse lines that mimic human pathology to fine-tune attempts toward long-term functional restoration are needed to go beyond the hope generated by restoring single hair cells in postnatal sensory epithelia.
Collapse
Affiliation(s)
- Israt Jahan
- Department of Biology, CLAS, University of Iowa, Iowa City, IA, USA
| | - Ning Pan
- Department of Biology, CLAS, University of Iowa, Iowa City, IA, USA
| | - Karen L Elliott
- Department of Biology, CLAS, University of Iowa, Iowa City, IA, USA
| | - Bernd Fritzsch
- Department of Biology, CLAS, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
23
|
Fritzsch B, Pan N, Jahan I, Elliott KL. Inner ear development: building a spiral ganglion and an organ of Corti out of unspecified ectoderm. Cell Tissue Res 2015; 361:7-24. [PMID: 25381571 PMCID: PMC4426086 DOI: 10.1007/s00441-014-2031-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 10/09/2014] [Indexed: 01/21/2023]
Abstract
The mammalian inner ear develops from a placodal thickening into a complex labyrinth of ducts with five sensory organs specialized to detect position and movement in space. The mammalian ear also develops a spiraled cochlear duct containing the auditory organ, the organ of Corti (OC), specialized to translate sound into hearing. Development of the OC from a uniform sheet of ectoderm requires unparalleled precision in the topological developmental engineering of four different general cell types, namely sensory neurons, hair cells, supporting cells, and general otic epithelium, into a mosaic of ten distinctly recognizable cell types in and around the OC, each with a unique distribution. Moreover, the OC receives unique innervation by ear-derived spiral ganglion afferents and brainstem-derived motor neurons as efferents and requires neural-crest-derived Schwann cells to form myelin and neural-crest-derived cells to induce the stria vascularis. This transformation of a sheet of cells into a complicated interdigitating set of cells necessitates the orchestrated expression of multiple transcription factors that enable the cellular transformation from ectoderm into neurosensory cells forming the spiral ganglion neurons (SGNs), while simultaneously transforming the flat epithelium into a tube, the cochlear duct, housing the OC. In addition to the cellular and conformational changes forming the cochlear duct with the OC, changes in the surrounding periotic mesenchyme form passageways for sound to stimulate the OC. We review molecular developmental data, generated predominantly in mice, in order to integrate the well-described expression changes of transcription factors and their actions, as revealed in mutants, in the formation of SGNs and OC in the correct position and orientation with suitable innervation. Understanding the molecular basis of these developmental changes leading to the formation of the mammalian OC and highlighting the gaps in our knowledge might guide in vivo attempts to regenerate this most complicated cellular mosaic of the mammalian body for the reconstitution of hearing in a rapidly growing population of aging people suffering from hearing loss.
Collapse
Affiliation(s)
- Bernd Fritzsch
- College of Liberal Arts and Sciences, Department of Biology, University of Iowa, 143 BB, 123 Jefferson Avenue, Iowa City, IA 52242, USA,
| | | | | | | |
Collapse
|
24
|
Brekhman V, Malik A, Haas B, Sher N, Lotan T. Transcriptome profiling of the dynamic life cycle of the scypohozoan jellyfish Aurelia aurita. BMC Genomics 2015; 16:74. [PMID: 25757467 PMCID: PMC4334923 DOI: 10.1186/s12864-015-1320-z] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 02/04/2015] [Indexed: 11/11/2022] Open
Abstract
Background The moon jellyfish Aurelia aurita is a widespread scyphozoan species that forms large seasonal blooms. Here we provide the first comprehensive view of the entire complex life of the Aurelia Red Sea strain by employing transcriptomic profiling of each stage from planula to mature medusa. Results A de novo transcriptome was assembled from Illumina RNA-Seq data generated from six stages throughout the Aurelia life cycle. Transcript expression profiling yielded clusters of annotated transcripts with functions related to each specific life-cycle stage. Free-swimming planulae were found highly enriched for functions related to cilia and microtubules, and the drastic morphogenetic process undergone by the planula while establishing the future body of the polyp may be mediated by specifically expressed Wnt ligands. Specific transcripts related to sensory functions were found in the strobila and the ephyra, whereas extracellular matrix functions were enriched in the medusa due to high expression of transcripts such as collagen, fibrillin and laminin, presumably involved in mesoglea development. The CL390-like gene, suggested to act as a strobilation hormone, was also highly expressed in the advanced strobila of the Red Sea species, and in the medusa stage we identified betaine-homocysteine methyltransferase, an enzyme that may play an important part in maintaining equilibrium of the medusa’s bell. Finally, we identified the transcription factors participating in the Aurelia life-cycle and found that 70% of these 487 identified transcription factors were expressed in a developmental-stage-specific manner. Conclusions This study provides the first scyphozoan transcriptome covering the entire developmental trajectory of the life cycle of Aurelia. It highlights the importance of numerous stage-specific transcription factors in driving morphological and functional changes throughout this complex metamorphosis, and is expected to be a valuable resource to the community. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1320-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Vera Brekhman
- Marine Biology Department, The Leon H. Charney School of Marine Sciences, University of Haifa, 31905, Haifa, Israel.
| | - Assaf Malik
- Bioinformatics Service Unit, University of Haifa, 31905, Haifa, Israel.
| | - Brian Haas
- Broad Institute of Massachusetts, Institute of Technology and Harvard, Cambridge, Massachusetts, USA.
| | - Noa Sher
- Marine Biology Department, The Leon H. Charney School of Marine Sciences, University of Haifa, 31905, Haifa, Israel. .,Bioinformatics Service Unit, University of Haifa, 31905, Haifa, Israel.
| | - Tamar Lotan
- Marine Biology Department, The Leon H. Charney School of Marine Sciences, University of Haifa, 31905, Haifa, Israel.
| |
Collapse
|
25
|
Schlosser G. Vertebrate cranial placodes as evolutionary innovations--the ancestor's tale. Curr Top Dev Biol 2015; 111:235-300. [PMID: 25662263 DOI: 10.1016/bs.ctdb.2014.11.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Evolutionary innovations often arise by tinkering with preexisting components building new regulatory networks by the rewiring of old parts. The cranial placodes of vertebrates, ectodermal thickenings that give rise to many of the cranial sense organs (ear, nose, lateral line) and ganglia, originated as such novel structures, when vertebrate ancestors elaborated their head in support of a more active and exploratory life style. This review addresses the question of how cranial placodes evolved by tinkering with ectodermal patterning mechanisms and sensory and neurosecretory cell types that have their own evolutionary history. With phylogenetic relationships among the major branches of metazoans now relatively well established, a comparative approach is used to infer, which structures evolved in which lineages and allows us to trace the origin of placodes and their components back from ancestor to ancestor. Some of the core networks of ectodermal patterning and sensory and neurosecretory differentiation were already established in the common ancestor of cnidarians and bilaterians and were greatly elaborated in the bilaterian ancestor (with BMP- and Wnt-dependent patterning of dorsoventral and anteroposterior ectoderm and multiple neurosecretory and sensory cell types). Rostral and caudal protoplacodal domains, giving rise to some neurosecretory and sensory cells, were then established in the ectoderm of the chordate and tunicate-vertebrate ancestor, respectively. However, proper cranial placodes as clusters of proliferating progenitors producing high-density arrays of neurosecretory and sensory cells only evolved and diversified in the ancestors of vertebrates.
Collapse
Affiliation(s)
- Gerhard Schlosser
- School of Natural Sciences & Regenerative Medicine Institute (REMEDI), National University of Ireland, Galway, Ireland.
| |
Collapse
|
26
|
Fritzsch B, Jahan I, Pan N, Elliott KL. Evolving gene regulatory networks into cellular networks guiding adaptive behavior: an outline how single cells could have evolved into a centralized neurosensory system. Cell Tissue Res 2014; 359:295-313. [PMID: 25416504 DOI: 10.1007/s00441-014-2043-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 10/20/2014] [Indexed: 12/18/2022]
Abstract
Understanding the evolution of the neurosensory system of man, able to reflect on its own origin, is one of the major goals of comparative neurobiology. Details of the origin of neurosensory cells, their aggregation into central nervous systems and associated sensory organs and their localized patterning leading to remarkably different cell types aggregated into variably sized parts of the central nervous system have begun to emerge. Insights at the cellular and molecular level have begun to shed some light on the evolution of neurosensory cells, partially covered in this review. Molecular evidence suggests that high mobility group (HMG) proteins of pre-metazoans evolved into the definitive Sox [SRY (sex determining region Y)-box] genes used for neurosensory precursor specification in metazoans. Likewise, pre-metazoan basic helix-loop-helix (bHLH) genes evolved in metazoans into the group A bHLH genes dedicated to neurosensory differentiation in bilaterians. Available evidence suggests that the Sox and bHLH genes evolved a cross-regulatory network able to synchronize expansion of precursor populations and their subsequent differentiation into novel parts of the brain or sensory organs. Molecular evidence suggests metazoans evolved patterning gene networks early, which were not dedicated to neuronal development. Only later in evolution were these patterning gene networks tied into the increasing complexity of diffusible factors, many of which were already present in pre-metazoans, to drive local patterning events. It appears that the evolving molecular basis of neurosensory cell development may have led, in interaction with differentially expressed patterning genes, to local network modifications guiding unique specializations of neurosensory cells into sensory organs and various areas of the central nervous system.
Collapse
Affiliation(s)
- Bernd Fritzsch
- Department of Biology, University of Iowa, CLAS, 143 BB, Iowa City, IA, 52242, USA,
| | | | | | | |
Collapse
|
27
|
Cai T, Groves AK. The Role of Atonal Factors in Mechanosensory Cell Specification and Function. Mol Neurobiol 2014; 52:1315-1329. [PMID: 25339580 DOI: 10.1007/s12035-014-8925-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 10/07/2014] [Indexed: 10/24/2022]
Abstract
Atonal genes are basic helix-loop-helix transcription factors that were first identified as regulating the formation of mechanoreceptors and photoreceptors in Drosophila. Isolation of vertebrate homologs of atonal genes has shown these transcription factors to play diverse roles in the development of neurons and their progenitors, gut epithelial cells, and mechanosensory cells in the inner ear and skin. In this article, we review the molecular function and regulation of atonal genes and their targets, with particular emphasis on the function of Atoh1 in the development, survival, and function of hair cells of the inner ear. We discuss cell-extrinsic signals that induce Atoh1 expression and the transcriptional networks that regulate its expression during development. Finally, we discuss recent work showing how identification of Atoh1 target genes in the cerebellum, spinal cord, and gut can be used to propose candidate Atoh1 targets in tissues such as the inner ear where cell numbers and biochemical material are limiting.
Collapse
Affiliation(s)
- Tiantian Cai
- Program in Developmental Biology, Baylor College of Medicine, Houston, USA
| | - Andrew K Groves
- Program in Developmental Biology, Baylor College of Medicine, Houston, USA. .,Department of Neuroscience, Baylor College of Medicine, Houston, USA. .,Department of Molecular and Human Genetics, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA.
| |
Collapse
|
28
|
Raft S, Groves AK. Segregating neural and mechanosensory fates in the developing ear: patterning, signaling, and transcriptional control. Cell Tissue Res 2014; 359:315-32. [PMID: 24902666 DOI: 10.1007/s00441-014-1917-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Accepted: 05/08/2014] [Indexed: 12/21/2022]
Abstract
The vertebrate inner ear is composed of multiple sensory receptor epithelia, each of which is specialized for detection of sound, gravity, or angular acceleration. Each receptor epithelium contains mechanosensitive hair cells, which are connected to the brainstem by bipolar sensory neurons. Hair cells and their associated neurons are derived from the embryonic rudiment of the inner ear epithelium, but the precise spatial and temporal patterns of their generation, as well as the signals that coordinate these events, have only recently begun to be understood. Gene expression, lineage tracing, and mutant analyses suggest that both neurons and hair cells are generated from a common domain of neural and sensory competence in the embryonic inner ear rudiment. Members of the Shh, Wnt, and FGF families, together with retinoic acid signals, regulate transcription factor genes within the inner ear rudiment to establish the axial identity of the ear and regionalize neurogenic activity. Close-range signaling, such as that of the Notch pathway, specifies the fate of sensory regions and individual cell types. We also describe positive and negative interactions between basic helix-loop-helix and SoxB family transcription factors that specify either neuronal or sensory fates in a context-dependent manner. Finally, we review recent work on inner ear development in zebrafish, which demonstrates that the relative timing of neurogenesis and sensory epithelial formation is not phylogenetically constrained.
Collapse
Affiliation(s)
- Steven Raft
- Section on Sensory Cell Regeneration and Development, National Institute on Deafness and Other Communication Disorders National Institutes of Health, 35 Convent Drive, Bethesda, MD, 20892, USA,
| | | |
Collapse
|
29
|
Chen JS, Gumbayan AM, Zeller RW, Mahaffy JM. An expanded Notch-Delta model exhibiting long-range patterning and incorporating MicroRNA regulation. PLoS Comput Biol 2014; 10:e1003655. [PMID: 24945987 PMCID: PMC4063677 DOI: 10.1371/journal.pcbi.1003655] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 04/23/2014] [Indexed: 12/26/2022] Open
Abstract
Notch-Delta signaling is a fundamental cell-cell communication mechanism that governs the differentiation of many cell types. Most existing mathematical models of Notch-Delta signaling are based on a feedback loop between Notch and Delta leading to lateral inhibition of neighboring cells. These models result in a checkerboard spatial pattern whereby adjacent cells express opposing levels of Notch and Delta, leading to alternate cell fates. However, a growing body of biological evidence suggests that Notch-Delta signaling produces other patterns that are not checkerboard, and therefore a new model is needed. Here, we present an expanded Notch-Delta model that builds upon previous models, adding a local Notch activity gradient, which affects long-range patterning, and the activity of a regulatory microRNA. This model is motivated by our experiments in the ascidian Ciona intestinalis showing that the peripheral sensory neurons, whose specification is in part regulated by the coordinate activity of Notch-Delta signaling and the microRNA miR-124, exhibit a sparse spatial pattern whereby consecutive neurons may be spaced over a dozen cells apart. We perform rigorous stability and bifurcation analyses, and demonstrate that our model is able to accurately explain and reproduce the neuronal pattern in Ciona. Using Monte Carlo simulations of our model along with miR-124 transgene over-expression assays, we demonstrate that the activity of miR-124 can be incorporated into the Notch decay rate parameter of our model. Finally, we motivate the general applicability of our model to Notch-Delta signaling in other animals by providing evidence that microRNAs regulate Notch-Delta signaling in analogous cell types in other organisms, and by discussing evidence in other organisms of sparse spatial patterns in tissues where Notch-Delta signaling is active.
Collapse
Affiliation(s)
- Jerry S. Chen
- Computational Science Research Center, San Diego State University, San Diego, California, United States of America
- Department of Biology, San Diego State University, San Diego, California, United States of America
| | - Abygail M. Gumbayan
- Department of Biology, San Diego State University, San Diego, California, United States of America
| | - Robert W. Zeller
- Computational Science Research Center, San Diego State University, San Diego, California, United States of America
- Department of Biology, San Diego State University, San Diego, California, United States of America
| | - Joseph M. Mahaffy
- Computational Science Research Center, San Diego State University, San Diego, California, United States of America
- Department of Mathematics and Statistics, San Diego State University, San Diego, California, United States of America
| |
Collapse
|
30
|
Sienknecht UJ, Köppl C, Fritzsch B. Evolution and Development of Hair Cell Polarity and Efferent Function in the Inner Ear. BRAIN, BEHAVIOR AND EVOLUTION 2014; 83:150-61. [DOI: 10.1159/000357752] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 12/03/2013] [Indexed: 11/19/2022]
|
31
|
Sensational placodes: neurogenesis in the otic and olfactory systems. Dev Biol 2014; 389:50-67. [PMID: 24508480 PMCID: PMC3988839 DOI: 10.1016/j.ydbio.2014.01.023] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 01/27/2014] [Accepted: 01/28/2014] [Indexed: 11/22/2022]
Abstract
For both the intricate morphogenetic layout of the sensory cells in the ear and the elegantly radial arrangement of the sensory neurons in the nose, numerous signaling molecules and genetic determinants are required in concert to generate these specialized neuronal populations that help connect us to our environment. In this review, we outline many of the proteins and pathways that play essential roles in the differentiation of otic and olfactory neurons and their integration into their non-neuronal support structures. In both cases, well-known signaling pathways together with region-specific factors transform thickened ectodermal placodes into complex sense organs containing numerous, diverse neuronal subtypes. Olfactory and otic placodes, in combination with migratory neural crest stem cells, generate highly specialized subtypes of neuronal cells that sense sound, position and movement in space, odors and pheromones throughout our lives.
Collapse
|
32
|
Patthey C, Schlosser G, Shimeld SM. The evolutionary history of vertebrate cranial placodes--I: cell type evolution. Dev Biol 2014; 389:82-97. [PMID: 24495912 DOI: 10.1016/j.ydbio.2014.01.017] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 01/21/2014] [Accepted: 01/24/2014] [Indexed: 10/25/2022]
Abstract
Vertebrate cranial placodes are crucial contributors to the vertebrate cranial sensory apparatus. Their evolutionary origin has attracted much attention from evolutionary and developmental biologists, yielding speculation and hypotheses concerning their putative homologues in other lineages and the developmental and genetic innovations that might have underlain their origin and diversification. In this article we first briefly review our current understanding of placode development and the cell types and structures they form. We next summarise previous hypotheses of placode evolution, discussing their strengths and caveats, before considering the evolutionary history of the various cell types that develop from placodes. In an accompanying review, we also further consider the evolution of ectodermal patterning. Drawing on data from vertebrates, tunicates, amphioxus, other bilaterians and cnidarians, we build these strands into a scenario of placode evolutionary history and of the genes, cells and developmental processes that underlie placode evolution and development.
Collapse
Affiliation(s)
- Cedric Patthey
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK.
| | - Gerhard Schlosser
- Zoology, School of Natural Sciences & Regenerative Medicine Institute (REMEDI), National University of Ireland, Galway, University Road, Galway, Ireland
| | - Sebastian M Shimeld
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| |
Collapse
|
33
|
Toward Translating Molecular Ear Development to Generate Hair Cells from Stem Cells. ADULT STEM CELLS 2014. [DOI: 10.1007/978-1-4614-9569-7_6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
34
|
Evolution of vertebrate mechanosensory hair cells and inner ears: toward identifying stimuli that select mutation driven altered morphologies. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2013; 200:5-18. [PMID: 24281353 DOI: 10.1007/s00359-013-0865-z] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 10/16/2013] [Accepted: 10/18/2013] [Indexed: 12/31/2022]
Abstract
Among the major distance senses of vertebrates, the ear is unique in its complex morphological changes during evolution. Conceivably, these changes enable the ear to adapt toward sensing various physically well-characterized stimuli. This review develops a scenario that integrates sensory cell with organ evolution. We propose that molecular and cellular evolution of the vertebrate hair cells occurred prior to the formation of the vertebrate ear. We previously proposed that the genes driving hair cell differentiation were aggregated in the otic region through developmental re-patterning that generated a unique vertebrate embryonic structure, the otic placode. In agreement with the presence of graviceptive receptors in many vertebrate outgroups, it is likely that the vertebrate ear originally functioned as a simple gravity-sensing organ. Based on the rare occurrence of angular acceleration receptors in vertebrate outgroups, we further propose that the canal system evolved with a more sophisticated ear morphogenesis. This evolving morphogenesis obviously turned the initial otocyst into a complex set of canals and recesses, harboring multiple sensory epithelia each adapted to the acquisition of a specific aspect of a given physical stimulus. As support for this evolutionary progression, we provide several details of the molecular basis of ear development.
Collapse
|
35
|
The roles of HLH transcription factors in epithelial mesenchymal transition and multiple molecular mechanisms. Clin Exp Metastasis 2013; 31:367-77. [PMID: 24158354 DOI: 10.1007/s10585-013-9621-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 10/10/2013] [Indexed: 02/06/2023]
Abstract
Epithelial-to-mesenchymal transition (EMT) is presently recognized as an important event and the initiating stage for tumor invasion and metastasis. Several EMT inducers have been identified, among which the big family of helix-loop-helix (HLH) transcription factors are rising as a novel and promising family of proteins in EMT mediation, such as Twist1, Twist2, E47, and HIFs, etc. Due to the variety and complexities of HLH members, the pathways and mechanisms they employ to promote EMT are also complex and characteristic. In this review, we will discuss the roles of various HLH proteins in the regulation and sustenance of the EMT and multiple cellular mechanisms, attempting to provide a novel and broadened view towards the link between HLH proteins and EMT.
Collapse
|
36
|
Sánchez-Guardado LÓ, Puelles L, Hidalgo-Sánchez M. Fgf10 expression patterns in the developing chick inner ear. J Comp Neurol 2013; 521:1136-64. [PMID: 22987750 DOI: 10.1002/cne.23224] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 06/22/2012] [Accepted: 09/05/2012] [Indexed: 12/21/2022]
Abstract
The inner ear is a complex three-dimensional sensorial structure with auditory and vestibular functions. It originates from the otic placode, which invaginates, forming the otic vesicle; the latter gives rise to neurosensory and nonsensory elements of the adult membranous labyrinth. A hypothesis based on descriptive and experimental evidence suggests that the acquisition of discrete sensory patches during evolution of this primordium may be related to subdivision of an early pansensory domain. In order to gain insight into this developmental mechanism, we carried out a detailed analysis of the spatial and temporal expression pattern of the gene Fgf10, by comparing different markers of otic patterning and hair cell differentiation. Fgf10 expression labels a sensory-competent domain included in a Serrate-positive territory from which most of the sensory epithelia arise. Our data show that Fgf10 transcripts are present initially in a narrow ventromedial band of the rudimentary otocyst, extending between its rostral and caudal poles. During development, this Fgf10-expressing area splits repetitively into several separate subareas, creating six of the eight sensory organs present in birds. Only the lateral crista and the macula neglecta were initially Fgf10 negative, although they activated Fgf10 expression after their specification as sensory elements. These results allowed us to determine a timetable of sensory specification in the developing chick inner ear. The comparison of the expression pattern of Fgf10 with those of other markers of sensory differentiation contributes to our understanding of the mechanism by which vertebrate inner ear prosensory domains have arisen during evolution.
Collapse
|
37
|
Kopecky BJ, Jahan I, Fritzsch B. Correct timing of proliferation and differentiation is necessary for normal inner ear development and auditory hair cell viability. Dev Dyn 2013. [PMID: 23193000 DOI: 10.1002/dvdy.23910] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Hearing restoration through hair cell regeneration will require revealing the dynamic interactions between proliferation and differentiation during development to avoid the limited viability of regenerated hair cells. Pax2-Cre N-Myc conditional knockout (CKO) mice highlighted the need of N-Myc for proper neurosensory development and possible redundancy with L-Myc. The late-onset hair cell death in the absence of early N-Myc expression could be due to mis-regulation of genes necessary for neurosensory formation and maintenance, such as Neurod1, Atoh1, Pou4f3, and Barhl1. RESULTS Pax2-Cre N-Myc L-Myc double CKO mice show that proliferation and differentiation are linked together through Myc and in the absence of both Mycs, altered proliferation and differentiation result in morphologically abnormal ears. In particular, the organ of Corti apex is re-patterned into a vestibular-like organization and the base is truncated and fused with the saccule. CONCLUSIONS These data indicate that therapeutic approaches to restore hair cells must take into account a dynamic interaction of proliferation and differentiation regulation of basic Helix-Loop-Helix transcription factors in attempts to stably replace lost cochlear hair cells. In addition, our data indicate that Myc is an integral component of the evolutionary transformation process that resulted in the organ of Corti development.
Collapse
|
38
|
Fritzsch B, Pan N, Jahan I, Duncan JS, Kopecky BJ, Elliott KL, Kersigo J, Yang T. Evolution and development of the tetrapod auditory system: an organ of Corti-centric perspective. Evol Dev 2013; 15:63-79. [PMID: 23331918 DOI: 10.1111/ede.12015] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The tetrapod auditory system transmits sound through the outer and middle ear to the organ of Corti or other sound pressure receivers of the inner ear where specialized hair cells translate vibrations of the basilar membrane into electrical potential changes that are conducted by the spiral ganglion neurons to the auditory nuclei. In other systems, notably the vertebrate limb, a detailed connection between the evolutionary variations in adaptive morphology and the underlying alterations in the genetic basis of development has been partially elucidated. In this review, we attempt to correlate evolutionary and partially characterized molecular data into a cohesive perspective of the evolution of the mammalian organ of Corti out of the tetrapod basilar papilla. We propose a stepwise, molecularly partially characterized transformation of the ancestral, vestibular developmental program of the vertebrate ear. This review provides a framework to decipher both discrete steps in development and the evolution of unique functional adaptations of the auditory system. The combined analysis of evolution and development establishes a powerful cross-correlation where conclusions derived from either approach become more meaningful in a larger context which is not possible through exclusively evolution or development centered perspectives. Selection may explain the survival of the fittest auditory system, but only developmental genetics can explain the arrival of the fittest auditory system. [Modified after (Wagner 2011)].
Collapse
Affiliation(s)
- Bernd Fritzsch
- Department of Biology, University of Iowa, CLAS, 143 BB, Iowa City, IA, 52242, USA. bernd‐
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Hans S, Irmscher A, Brand M. Zebrafish Foxi1 provides a neuronal ground state during inner ear induction preceding the Dlx3b/4b-regulated sensory lineage. Development 2013; 140:1936-45. [PMID: 23571216 DOI: 10.1242/dev.087718] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Vertebrate inner ear development is a complex process that involves the induction of a common territory for otic and epibranchial precursors and their subsequent segregation into otic and epibranchial cell fates. In zebrafish, the otic-epibranchial progenitor domain (OEPD) is induced by Fgf signaling in a Foxi1- and Dlx3b/4b-dependent manner, but the functional differences of Foxi1 and Dlx3b/4b in subsequent cell fate specifications within the developing inner ear are poorly understood. Based on pioneer tracking (PioTrack), a novel Cre-dependent genetic lineage tracing method, and genetic data, we show that the competence to embark on a neuronal or sensory fate is provided sequentially and very early during otic placode induction. Loss of Foxi1 prevents neuronal precursor formation without affecting hair cell specification, whereas loss of Dlx3b/4b inhibits hair cell but not neuronal precursor formation. Consistently, in Dlx3b/4b- and Sox9a-deficient b380 mutants almost all otic epithelial fates are absent, including sensory hair cells, and the remaining otic cells adopt a neuronal fate. Furthermore, the progenitors of the anterior lateral line ganglia also arise from the OEPD in a Foxi1-dependent manner but are unaffected in the absence of Dlx3b/4b or in b380 mutants. Thus, in addition to otic fate Foxi1 provides neuronal competence during OEPD induction prior to and independently of the Dlx3b/4b-mediated sensory fate of the developing inner ear.
Collapse
Affiliation(s)
- Stefan Hans
- Technische Universität Dresden, Biotechnology Center and DFG-Center for Regenerative Therapies Dresden Cluster of Excellence, Tatzberg 47-49, Dresden, Germany.
| | | | | |
Collapse
|
40
|
Jarman AP, Groves AK. The role of Atonal transcription factors in the development of mechanosensitive cells. Semin Cell Dev Biol 2013; 24:438-47. [PMID: 23548731 DOI: 10.1016/j.semcdb.2013.03.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Revised: 01/04/2013] [Accepted: 03/21/2013] [Indexed: 11/29/2022]
Abstract
Mechanosensation is an evolutionarily ancient sensory modality seen in all main animal groups. Mechanosensation can be mediated by sensory neurons or by dedicated receptor cells that form synapses with sensory neurons. Evidence over the last 15-20 years suggests that both classes of mechanosensory cells can be specified by the atonal class of basic helix-loop-helix transcription factors. In this review we discuss recent work addressing how atonal factors specify mechanosensitive cells in vertebrates and invertebrates, and how the redeployment of these factors underlies the regeneration of mechanosensitive cells in some vertebrate groups.
Collapse
Affiliation(s)
- Andrew P Jarman
- Centre for Integrative Physiology, School of Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom.
| | | |
Collapse
|
41
|
Joyce Tang W, Chen JS, Zeller RW. Transcriptional regulation of the peripheral nervous system in Ciona intestinalis. Dev Biol 2013; 378:183-93. [PMID: 23545329 DOI: 10.1016/j.ydbio.2013.03.016] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 03/16/2013] [Accepted: 03/18/2013] [Indexed: 12/11/2022]
Abstract
The formation of the sensory organs and cells that make up the peripheral nervous system (PNS) relies on the activity of transcription factors encoded by proneural genes (PNGs). Although PNGs have been identified in the nervous systems of both vertebrates and invertebrates, the complexity of their interactions has complicated efforts to understand their function in the context of their underlying regulatory networks. To gain insight into the regulatory network of PNG activity in chordates, we investigated the roles played by PNG homologs in regulating PNS development of the invertebrate chordate Ciona intestinalis. We discovered that in Ciona, MyT1, Pou4, Atonal, and NeuroD-like are expressed in a sequential regulatory cascade in the developing epidermal sensory neurons (ESNs) of the PNS and act downstream of Notch signaling, which negatively regulates these genes and the number of ESNs along the tail midlines. Transgenic embryos mis-expressing any of these proneural genes in the epidermis produced ectopic midline ESNs. In transgenic embryos mis-expressing Pou4, and MyT1 to a lesser extent, numerous ESNs were produced outside of the embryonic midlines. In addition we found that the microRNA miR-124, which inhibits Notch signaling in ESNs, is activated downstream of all the proneural factors we tested, suggesting that these genes operate collectively in a regulatory network. Interestingly, these factors are encoded by the same genes that have recently been demonstrated to convert fibroblasts into neurons. Our findings suggest the ascidian PNS can serve as an in vivo model to study the underlying regulatory mechanisms that enable the conversion of cells into sensory neurons.
Collapse
Affiliation(s)
- W Joyce Tang
- Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA
| | | | | |
Collapse
|
42
|
Allen-Sharpley MR, Tjia M, Cramer KS. Selective tracing of auditory fibers in the avian embryonic vestibulocochlear nerve. J Vis Exp 2013:e50305. [PMID: 23542875 DOI: 10.3791/50305] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The embryonic chick is a widely used model for the study of peripheral and central ganglion cell projections. In the auditory system, selective labeling of auditory axons within the VIIIth cranial nerve would enhance the study of central auditory circuit development. This approach is challenging because multiple sensory organs of the inner ear contribute to the VIIIth nerve (1). Moreover, markers that reliably distinguish auditory versus vestibular groups of axons within the avian VIIIth nerve have yet to be identified. Auditory and vestibular pathways cannot be distinguished functionally in early embryos, as sensory-evoked responses are not present before the circuits are formed. Centrally projecting VIIIth nerve axons have been traced in some studies, but auditory axon labeling was accompanied by labeling from other VIIIth nerve components (2,3). Here, we describe a method for anterograde tracing from the acoustic ganglion to selectively label auditory axons within the developing VIIIth nerve. First, after partial dissection of the anterior cephalic region of an 8-day chick embryo immersed in oxygenated artificial cerebrospinal fluid, the cochlear duct is identified by anatomical landmarks. Next, a fine pulled glass micropipette is positioned to inject a small amount of rhodamine dextran amine into the duct and adjacent deep region where the acoustic ganglion cells are located. Within thirty minutes following the injection, auditory axons are traced centrally into the hindbrain and can later be visualized following histologic preparation. This method provides a useful tool for developmental studies of peripheral to central auditory circuit formation.
Collapse
|
43
|
Needham K, Minter RL, Shepherd RK, Nayagam BA. Challenges for stem cells to functionally repair the damaged auditory nerve. Expert Opin Biol Ther 2013; 13:85-101. [PMID: 23094991 PMCID: PMC3543850 DOI: 10.1517/14712598.2013.728583] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
INTRODUCTION In the auditory system, a specialized subset of sensory neurons are responsible for correctly relaying precise pitch and temporal cues to the brain. In individuals with severe-to-profound sensorineural hearing impairment these sensory auditory neurons can be directly stimulated by a cochlear implant, which restores sound input to the brainstem after the loss of hair cells. This neural prosthesis therefore depends on a residual population of functional neurons in order to function effectively. AREAS COVERED In severe cases of sensorineural hearing loss where the numbers of auditory neurons are significantly depleted, the benefits derived from a cochlear implant may be minimal. One way in which to restore function to the auditory nerve is to replace these lost neurons using differentiated stem cells, thus re-establishing the neural circuit required for cochlear implant function. Such a therapy relies on producing an appropriate population of electrophysiologically functional neurons from stem cells, and on these cells integrating and reconnecting in an appropriate manner in the deaf cochlea. EXPERT OPINION Here we review progress in the field to date, including some of the key functional features that stem cell-derived neurons would need to possess and how these might be enhanced using electrical stimulation from a cochlear implant.
Collapse
Affiliation(s)
- Karina Needham
- University of Melbourne, Department of Otolaryngology, East Melbourne, Australia.
| | | | | | | |
Collapse
|
44
|
Neves J, Abelló G, Petrovic J, Giraldez F. Patterning and cell fate in the inner ear: a case for Notch in the chicken embryo. Dev Growth Differ 2012; 55:96-112. [PMID: 23252974 DOI: 10.1111/dgd.12016] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Revised: 10/09/2012] [Accepted: 10/09/2012] [Indexed: 01/08/2023]
Abstract
The development of the inner ear provides a beautiful example of one basic problem in development, that is, to understand how different cell types are generated at specific times and domains throughout embryonic life. The functional unit of the inner ear consists of hair cells, supporting cells and neurons, all deriving from progenitor cells located in the neurosensory competent domain of the otic placode. Throughout development, the otic placode resolves into the complex inner ear labyrinth, which holds the auditory and vestibular sensory organs that are innervated in a highly specific manner. How does the early competent domain of the otic placode give rise to the diverse specialized cell types of the different sensory organs of the inner ear? We review here our current understanding on the role of Notch signaling in coupling patterning and cell fate determination during inner ear development, with a particular emphasis on contributions from the chicken embryo as a model organism. We discuss further the question of how these two processes rely on two modes of operation of the Notch signaling pathway named lateral induction and lateral inhibition.
Collapse
Affiliation(s)
- Joana Neves
- CEXS, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, Barcelona, Spain
| | | | | | | |
Collapse
|
45
|
Nayagam BA, Edge AS, Needham K, Hyakumura T, Leung J, Nayagam DAX, Dottori M. An in vitro model of developmental synaptogenesis using cocultures of human neural progenitors and cochlear explants. Stem Cells Dev 2012; 22:901-12. [PMID: 23078657 DOI: 10.1089/scd.2012.0082] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
In mammals, the sensory hair cells and auditory neurons do not spontaneously regenerate and their loss results in permanent hearing impairment. Stem cell therapy is one emerging strategy that is being investigated to overcome the loss of sensory cells after hearing loss. To successfully replace auditory neurons, stem cell-derived neurons must be electrically active, capable of organized outgrowth of processes, and of making functional connections with appropriate tissues. We have developed an in vitro assay to test these parameters using cocultures of developing cochlear explants together with neural progenitors derived from human embryonic stem cells (hESCs). We found that these neural progenitors are electrically active and extend their neurites toward the sensory hair cells in cochlear explants. Importantly, this neurite extension was found to be significantly greater when neural progenitors were predifferentiated toward a neural crest-like lineage. When grown in coculture with hair cells only (denervated cochlear explants), stem cell-derived processes were capable of locating and growing along the hair cell rows in an en passant-like manner. Many presynaptic terminals (synapsin 1-positive) were observed between hair cells and stem cell-derived processes in vitro. These results suggest that differentiated hESC-derived neural progenitors may be useful for developing therapies directed at auditory nerve replacement, including complementing emerging hair cell regeneration therapies.
Collapse
Affiliation(s)
- Bryony A Nayagam
- Department of Otolaryngology, The University of Melbourne, Melbourne, Parkville, Australia.
| | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
Basic helix-loop-helix (bHLH) transcription factors (TFs) are crucial for inner ear neurosensory development. The proneural TF Atoh1 regulates the differentiation of hair cells (HCs) whereas Neurog1 and Neurod1 regulate specification and differentiation of neurons, respectively, but also affect HC development. Expression of Delta and Jagged ligands in nascent HCs and Notch receptors in supporting cells induce supporting cell differentiation through the regulation of neurogenic bHLH TFs (such as Hes1, Hes5) and suppression of limited Atoh1 expression. In sensorineural hearing loss, HCs are lost followed by supporting cells and progressive degeneration of neurons, at least in rodents. Regaining complete hearing may require reconstituting the organ of Corti from scratch, including the two types of HCs, inner and outer hair cells with the precise sorting of two types of afferent (type I and II) and efferent (lateral and medial olivo-cochlear) innervation. We review effects of bHLH TF dosage and their cross-regulation to differentiate HC types in the organ of Corti. We categorize findings of specific gene expressions in HCs: 1. as markers without meaning for the regeneration task, 2. as stabilizers who are needed to maintain or complete differentiation, and 3. as decision-making genes, expressed and acting early enough to be useful in this process. Only one TF has been characterized that fits the last aspect: Atoh1. We propose that temporal and intensity variations of Atoh1 are naturally modulated to differentiate specific types of HCs. Importantly, the molecular means to modify the Atoh1 expression are at least partially understood and can be readily implemented in the attempts to regenerate specific types of HCs.
Collapse
|
47
|
Duncan JS, Fritzsch B. Evolution of Sound and Balance Perception: Innovations that Aggregate Single Hair Cells into the Ear and Transform a Gravistatic Sensor into the Organ of Corti. Anat Rec (Hoboken) 2012; 295:1760-74. [DOI: 10.1002/ar.22573] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 07/24/2012] [Indexed: 01/20/2023]
|
48
|
Magariños M, Contreras J, Aburto MR, Varela-Nieto I. Early development of the vertebrate inner ear. Anat Rec (Hoboken) 2012; 295:1775-90. [PMID: 23044927 DOI: 10.1002/ar.22575] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 07/24/2012] [Indexed: 12/12/2022]
Abstract
This is a review of the biological processes and the main signaling pathways required to generate the different otic cell types, with particular emphasis on the actions of insulin-like growth factor I. The sensory organs responsible of hearing and balance have a common embryonic origin in the otic placode. Lineages of neural, sensory, and support cells are generated from common otic neuroepithelial progenitors. The sequential generation of the cell types that will form the adult inner ear requires the coordination of cell proliferation with cell differentiation programs, the strict regulation of cell survival, and the metabolic homeostasis of otic precursors. A network of intracellular signals operates to coordinate the transcriptional response to the extracellular input. Understanding the molecular clues that direct otic development is fundamental for the design of novel treatments for the protection and repair of hearing loss and balance disorders.
Collapse
Affiliation(s)
- Marta Magariños
- Instituto de Investigaciones Biomédicas, Alberto Sols, CSIC-UAM, Madrid, Spain
| | | | | | | |
Collapse
|
49
|
TFE2 and GATA3 enhance induction of POU4F3 and myosin VIIa positive cells in nonsensory cochlear epithelium by ATOH1. Dev Biol 2012; 372:68-80. [PMID: 22985730 DOI: 10.1016/j.ydbio.2012.09.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Revised: 08/01/2012] [Accepted: 09/08/2012] [Indexed: 11/21/2022]
Abstract
Transcription factors (TFs) can regulate different sets of genes to determine specific cell types by means of combinatorial codes. We previously identified closely-spaced TF binding motifs located 8.2-8.5 kb 5' to the ATG of the murine Pou4f3 gene, a gene required for late hair cell (HC) differentiation and survival. These motifs, 100% conserved among four mammalian species, include a cluster of E-boxes preferred by TCF3/ATOH1 heterodimers as well as motifs for GATA factors and SP1. We hypothesized that these factors might interact to regulate the Pou4f3 gene and possibly induce a HC phenotype in non-sensory cells of the cochlea. Cochlear sensory epithelium explants were prepared from postnatal day 1.5 transgenic mice in which expression of GFP is driven by 8.5 kb of Pou4f3 5' genomic DNA (Pou4f3/GFP). Electroporation was used to transfect cells of the greater epithelial ridge with multiple plasmids encoding human ATOH1 (hATOH1), hTCF3 (also known as E2A or TEF2), hGATA3, and hSP1. hATOH1 or hTCF3 alone induced Pou4f3/GFP cells but hGATA3 and hSP1 did not. hATOH1 but not hTCF3 induced conversion of greater epithelial ridge cells into Pou4f3/GFP and myosin VIIa double-positive cells. Transfection of hATOH1 in combination with hTCF3 or hGATA3 induced 2-3X more Pou4f3/GFP cells, and similarly enhanced Pou4f3/GFP and myosin VIIa double-positive cells, when compared to hATOH1 alone. Triple or quadruple TF combinations were generally not more effective than double TF combinations except in the middle turn, where co-transfection of hATOH1, hE2A, and hGATA3 was more effective than hATOH1 plus either hTCF3 or hGATA3. The results demonstrate that TFs can cooperate in regulation of the Pou4f3 gene and in the induction of at least one other element of a HC phenotype. Our data further indicate that combinations of TFs can be more effective than individual TFs in the inner ear.
Collapse
|
50
|
Pan N, Kopecky B, Jahan I, Fritzsch B. Understanding the evolution and development of neurosensory transcription factors of the ear to enhance therapeutic translation. Cell Tissue Res 2012; 349:415-32. [PMID: 22688958 DOI: 10.1007/s00441-012-1454-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 05/18/2012] [Indexed: 01/08/2023]
Abstract
Reconstructing a functional organ of Corti is the ultimate target towards curing hearing loss. Despite the impressive technical gains made over the last few years, many complications remain ahead for the two main restoration avenues: in vitro transformation of pluripotent cells into hair cell-like cells and adenovirus-mediated gene therapy. Most notably, both approaches require a more complete understanding of the molecular networks that ensure specific cell types form in the correct places to allow proper function of the restored organ of Corti. Important to this understanding are the basic helix-loop-helix (bHLH) transcription factors (TFs) that are highly diverse and serve to increase functional complexity but their evolutionary implementation in the inner ear neurosensory development is less conspicuous. To this end, we review the evolutionary and developmentally dynamic interactions of the three bHLH TFs that have been identified as the main players in neurosensory evolution and development, Neurog1, Neurod1 and Atoh1. These three TFs belong to the neurogenin/atonal family and evolved from a molecular precursor that likely regulated single sensory cell development in the ectoderm of metazoan ancestors but are now also expressed in other parts of the body, including the brain. They interact extensively via intracellular and intercellular cross-regulation to establish the two main neurosensory cell types of the ear, the hair cells and sensory neurons. Furthermore, the level and duration of their expression affect the specification of hair cell subtypes (inner hair cells vs. outer hair cells). We propose that appropriate manipulation of these TFs through their characterized binding sites may offer a solution by itself, or in conjunction with the two other approaches currently pursued by others, to restore the organ of Corti.
Collapse
Affiliation(s)
- Ning Pan
- Department of Biology, University of Iowa, College of Liberal Arts and Sciences, Iowa City, IA 52242, USA
| | | | | | | |
Collapse
|