1
|
Wang X, Qu Y, Xu Q, Jiang Z, Wang H, Lin B, Cao Z, Pan Y, Li S, Hu Y, Yang H, He L, Chang H, Hang B, Wen H, Wu H, Mao JH. NQO1 Triggers Neutrophil Recruitment and NET Formation to Drive Lung Metastasis of Invasive Breast Cancer. Cancer Res 2024; 84:3538-3555. [PMID: 39073320 DOI: 10.1158/0008-5472.can-24-0291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/14/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024]
Abstract
Metastasis to the lungs is a leading cause of death for patients with breast cancer. Therefore, effective therapies are urgently needed to prevent and treat lung metastasis. In this study, we uncovered a mechanism by which NAD(P)H:quinone oxidoreductase 1 (NQO1) orchestrates lung metastasis. NQO1 stabilized and upregulated peptidyl-prolyl cis-trans isomerase A (PPIA), a chaperone that regulates protein conformation and activity, by preventing its oxidation at a critical cysteine residue C161. PPIA subsequently activated CD147, a membrane protein that facilitates cell invasion. Moreover, NQO1-induced secretion of PPIA modulated the immune landscape of both primary and lung metastatic sites. Secreted PPIA engaged CD147 on neutrophils and triggered the release of neutrophil extracellular traps (NET) and neutrophil elastase, which enhanced tumor progression, invasiveness, and lung colonization. Pharmacological targeting of PPIA effectively inhibited NQO1-mediated breast cancer lung metastasis. These findings reveal a previously unrecognized NQO1-PPIA-CD147-NET axis that drives breast cancer lung metastasis. Inhibiting this axis is a potential therapeutic strategy to limit lung metastasis in patients with breast cancer. Significance: NQO1 stabilizes and promotes the secretion of PPIA to activate CD147 in neutrophils and stimulate NET formation, promoting breast cancer lung metastasis and providing therapeutic targets for this fatal condition.
Collapse
Affiliation(s)
- Xinzhi Wang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California
| | - Yi Qu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Key Laboratory of Research and Development in Marine Bio-Resource Pharmaceutics, Nanjing, China
| | - Qianqian Xu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Key Laboratory of Research and Development in Marine Bio-Resource Pharmaceutics, Nanjing, China
| | - Zeyu Jiang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Key Laboratory of Research and Development in Marine Bio-Resource Pharmaceutics, Nanjing, China
| | - Hang Wang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Key Laboratory of Research and Development in Marine Bio-Resource Pharmaceutics, Nanjing, China
| | - Binyan Lin
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zehong Cao
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yuqi Pan
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Key Laboratory of Research and Development in Marine Bio-Resource Pharmaceutics, Nanjing, China
| | - Sheng Li
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yili Hu
- Experiment Center for Science and Technology, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hui Yang
- Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Li He
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Hang Chang
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California
| | - Bo Hang
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California
| | - Hongmei Wen
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hao Wu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jian-Hua Mao
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California
| |
Collapse
|
2
|
Perrone AE, Pinillo M, Rial MS, Fernández M, Milduberger N, González C, Bustos PL, Fichera LE, Laucella SA, Albareda MC, Bua J. Trypanosoma cruzi Secreted Cyclophilin TcCyP19 as an Early Marker for Trypanocidal Treatment Efficiency. Int J Mol Sci 2023; 24:11875. [PMID: 37569250 PMCID: PMC10418876 DOI: 10.3390/ijms241511875] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/06/2023] [Accepted: 07/12/2023] [Indexed: 08/13/2023] Open
Abstract
Cyclophilins (CyPs) are a family of enzymes involved in protein folding. Trypanosoma cruzi, the causative agent of Chagas disease, has a 19-kDa cyclophilin, TcCyP19, that was found to be secreted in parasite stages of the CL Brener clone and recognized by sera from T. cruzi-infected mice and patients. The levels of specific antibodies against TcCyP19 in T. cruzi-infected mice and subjects before and after drug treatment were measured by an in-house enzyme linked immunosorbent assay (ELISA). Mice in the acute and chronic phase of infection, with successful trypanocidal treatments, showed significantly lower anti-TcCyP19 antibody levels than untreated mice. In children and adults chronically infected with T. cruzi, a significant decrease in the anti-TcCyP19 titers was observed after 12 months of etiological treatment. This decrease was maintained in adult chronic patients followed-up 30-38 months post-treatment. These results encourage further studies on TcCyP19 as an early biomarker of trypanocidal treatment efficiency.
Collapse
Affiliation(s)
- Alina E. Perrone
- Instituto Nacional de Parasitología Dr. Mario Fatala Chaben—ANLIS-Malbrán, Av. Paseo Colón 568, Buenos Aires 1063, Argentina; (A.E.P.); (M.P.); (M.S.R.); (M.F.); (N.M.); (C.G.); (P.L.B.); (L.E.F.); (S.A.L.); (M.C.A.)
| | - Mariana Pinillo
- Instituto Nacional de Parasitología Dr. Mario Fatala Chaben—ANLIS-Malbrán, Av. Paseo Colón 568, Buenos Aires 1063, Argentina; (A.E.P.); (M.P.); (M.S.R.); (M.F.); (N.M.); (C.G.); (P.L.B.); (L.E.F.); (S.A.L.); (M.C.A.)
| | - Marcela S. Rial
- Instituto Nacional de Parasitología Dr. Mario Fatala Chaben—ANLIS-Malbrán, Av. Paseo Colón 568, Buenos Aires 1063, Argentina; (A.E.P.); (M.P.); (M.S.R.); (M.F.); (N.M.); (C.G.); (P.L.B.); (L.E.F.); (S.A.L.); (M.C.A.)
| | - Marisa Fernández
- Instituto Nacional de Parasitología Dr. Mario Fatala Chaben—ANLIS-Malbrán, Av. Paseo Colón 568, Buenos Aires 1063, Argentina; (A.E.P.); (M.P.); (M.S.R.); (M.F.); (N.M.); (C.G.); (P.L.B.); (L.E.F.); (S.A.L.); (M.C.A.)
| | - Natalia Milduberger
- Instituto Nacional de Parasitología Dr. Mario Fatala Chaben—ANLIS-Malbrán, Av. Paseo Colón 568, Buenos Aires 1063, Argentina; (A.E.P.); (M.P.); (M.S.R.); (M.F.); (N.M.); (C.G.); (P.L.B.); (L.E.F.); (S.A.L.); (M.C.A.)
| | - Carolina González
- Instituto Nacional de Parasitología Dr. Mario Fatala Chaben—ANLIS-Malbrán, Av. Paseo Colón 568, Buenos Aires 1063, Argentina; (A.E.P.); (M.P.); (M.S.R.); (M.F.); (N.M.); (C.G.); (P.L.B.); (L.E.F.); (S.A.L.); (M.C.A.)
| | - Patricia L. Bustos
- Instituto Nacional de Parasitología Dr. Mario Fatala Chaben—ANLIS-Malbrán, Av. Paseo Colón 568, Buenos Aires 1063, Argentina; (A.E.P.); (M.P.); (M.S.R.); (M.F.); (N.M.); (C.G.); (P.L.B.); (L.E.F.); (S.A.L.); (M.C.A.)
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires 1063, Argentina
| | - Laura E. Fichera
- Instituto Nacional de Parasitología Dr. Mario Fatala Chaben—ANLIS-Malbrán, Av. Paseo Colón 568, Buenos Aires 1063, Argentina; (A.E.P.); (M.P.); (M.S.R.); (M.F.); (N.M.); (C.G.); (P.L.B.); (L.E.F.); (S.A.L.); (M.C.A.)
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires 1063, Argentina
| | - Susana A. Laucella
- Instituto Nacional de Parasitología Dr. Mario Fatala Chaben—ANLIS-Malbrán, Av. Paseo Colón 568, Buenos Aires 1063, Argentina; (A.E.P.); (M.P.); (M.S.R.); (M.F.); (N.M.); (C.G.); (P.L.B.); (L.E.F.); (S.A.L.); (M.C.A.)
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires 1063, Argentina
| | - María Cecilia Albareda
- Instituto Nacional de Parasitología Dr. Mario Fatala Chaben—ANLIS-Malbrán, Av. Paseo Colón 568, Buenos Aires 1063, Argentina; (A.E.P.); (M.P.); (M.S.R.); (M.F.); (N.M.); (C.G.); (P.L.B.); (L.E.F.); (S.A.L.); (M.C.A.)
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires 1063, Argentina
| | - Jacqueline Bua
- Instituto Nacional de Parasitología Dr. Mario Fatala Chaben—ANLIS-Malbrán, Av. Paseo Colón 568, Buenos Aires 1063, Argentina; (A.E.P.); (M.P.); (M.S.R.); (M.F.); (N.M.); (C.G.); (P.L.B.); (L.E.F.); (S.A.L.); (M.C.A.)
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires 1063, Argentina
| |
Collapse
|
3
|
Schiene‐Fischer C, Fischer G, Braun M. Non-Immunosuppressive Cyclophilin Inhibitors. Angew Chem Int Ed Engl 2022; 61:e202201597. [PMID: 35290695 PMCID: PMC9804594 DOI: 10.1002/anie.202201597] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Indexed: 01/05/2023]
Abstract
Cyclophilins, enzymes with peptidyl-prolyl cis/trans isomerase activity, are relevant to a large variety of biological processes. The most abundant member of this enzyme family, cyclophilin A, is the cellular receptor of the immunosuppressive drug cyclosporine A (CsA). As a consequence of the pathophysiological role of cyclophilins, particularly in viral infections, there is a broad interest in cyclophilin inhibition devoid of immunosuppressive activity. This Review first gives an introduction into the physiological and pathophysiological roles of cyclophilins. The presentation of non-immunosuppressive cyclophilin inhibitors will commence with drugs based on chemical modifications of CsA. The naturally occurring macrocyclic sanglifehrins have become other lead structures for cyclophilin-inhibiting drugs. Finally, de novo designed compounds, whose structures are not derived from or inspired by natural products, will be presented. Relevant synthetic concepts will be discussed, but the focus will also be on biochemical studies, structure-activity relationships, and clinical studies.
Collapse
Affiliation(s)
- Cordelia Schiene‐Fischer
- Institute of Biochemistry and BiotechnologyMartin-Luther-University Halle-Wittenberg06099Halle (Saale)Germany
| | - Gunter Fischer
- Max Planck Institute for Biophysical Chemistry37077GöttingenGermany
| | - Manfred Braun
- Institute of Organic and Macromolecular ChemistryHeinrich-Heine-University Düsseldorf40225DüsseldorfGermany
| |
Collapse
|
4
|
Braun M, Schiene-Fischer C, Fischer G. Non‐Immunosuppressive Cyclophilin Inhibitors. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Manfred Braun
- Heinrich-Heine-Universität Düsseldorf: Heinrich-Heine-Universitat Dusseldorf Organic CHemistry Universitätsstr. 1 40225 Düsseldorf GERMANY
| | - Cordelia Schiene-Fischer
- Martin-Luther-Universität Halle-Wittenberg: Martin-Luther-Universitat Halle-Wittenberg Institute of Biochemistry and Biotechnology, GERMANY
| | - Gunter Fischer
- Max-Planck-Institut für Biophysikalische Chemie Abteilung Meiosis: Max-Planck-Institut fur Multidisziplinare Naturwissenschaften Abteilung Meiosis Max Planck Institute for Biophysical Chemistry GERMANY
| |
Collapse
|
5
|
Milduberger N, Bustos PL, González C, Perrone AE, Postan M, Bua J. Trypanosoma cruzi infection in Cyclophilin D deficient mice. Exp Parasitol 2021; 220:108044. [PMID: 33253715 DOI: 10.1016/j.exppara.2020.108044] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/10/2020] [Accepted: 11/12/2020] [Indexed: 12/12/2022]
Abstract
Trypanosoma cruzi is the causative agent of Chagas disease, which is endemic in Latin America and around the world through mother to child transmission. The heart is the organ most frequently affected in the chronic stage of the human infection and depends on mitochondria for the required energy for its activity. Cyclophilins are involved in protein folding and the mitochondrial isoform, Cyclophilin D (CyPD), has a crucial role in the opening of the mitochondrial permeability transition pore. In the present study, we infected CyPD deficient mice, with ablation of the Ppif gene, with T. cruzi parasites and the course of the infection was analyzed. Parasite load, quantified by PCR, was significantly lower in skeletal and cardiac tissues of Ppif-/- mice compared to wild type mice. In vitro cultured cardiomyocytes and macrophages from mice lacking CyPD exhibited lower percentage of infected cells and number of intracellular parasites than those observed for wild type mice. Although histopathological analysis of heart and mRNA of heart cytokines showed differences between T. cruzi-infected mice compared to the uninfected animals, no significant differences were found mice due to the ablation of the Ppif gene. Our results suggest that cells deficient for mitochondrial CyPD, inhibited for the mitochondrial membrane potential collapse, reduces the severity of parasite aggression and spread of cellular infection.
Collapse
MESH Headings
- Animals
- Chagas Disease/parasitology
- Peptidyl-Prolyl Isomerase F/deficiency
- Cytokines/analysis
- Cytokines/genetics
- DNA, Protozoan/isolation & purification
- Heart/parasitology
- Liver/pathology
- Macrophages, Peritoneal/cytology
- Macrophages, Peritoneal/parasitology
- Mice
- Mice, Inbred C57BL
- Muscle, Skeletal/parasitology
- Muscle, Skeletal/pathology
- Myocardium/pathology
- Myocytes, Cardiac/cytology
- Myocytes, Cardiac/parasitology
- Parasite Load
- RNA, Messenger/analysis
- RNA, Protozoan/analysis
- RNA, Protozoan/isolation & purification
- Spleen/pathology
- Trypanosoma cruzi/genetics
- Trypanosoma cruzi/physiology
Collapse
Affiliation(s)
- Natalia Milduberger
- Instituto Nacional de Parasitología "Dr. Mario Fatala Chaben" - ANLIS C. G. Malbrán, Paseo Colón 568, PC 1063, Buenos Aires, Argentina
| | - Patricia L Bustos
- Instituto Nacional de Parasitología "Dr. Mario Fatala Chaben" - ANLIS C. G. Malbrán, Paseo Colón 568, PC 1063, Buenos Aires, Argentina
| | - Carolina González
- Instituto Nacional de Parasitología "Dr. Mario Fatala Chaben" - ANLIS C. G. Malbrán, Paseo Colón 568, PC 1063, Buenos Aires, Argentina; Centro de Altos Estudios en Ciencias Humanas y de La Salud (CAECIHS), Universidad Abierta Interamericana, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Tecnológicas, Buenos Aires, Argentina
| | - Alina E Perrone
- Instituto Nacional de Parasitología "Dr. Mario Fatala Chaben" - ANLIS C. G. Malbrán, Paseo Colón 568, PC 1063, Buenos Aires, Argentina
| | - Miriam Postan
- Instituto Nacional de Parasitología "Dr. Mario Fatala Chaben" - ANLIS C. G. Malbrán, Paseo Colón 568, PC 1063, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Tecnológicas, Buenos Aires, Argentina
| | - Jacqueline Bua
- Instituto Nacional de Parasitología "Dr. Mario Fatala Chaben" - ANLIS C. G. Malbrán, Paseo Colón 568, PC 1063, Buenos Aires, Argentina; Centro de Altos Estudios en Ciencias Humanas y de La Salud (CAECIHS), Universidad Abierta Interamericana, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Tecnológicas, Buenos Aires, Argentina.
| |
Collapse
|
6
|
A Functional Analysis of the Cyclophilin Repertoire in the Protozoan Parasite Trypanosoma Cruzi. Biomolecules 2018; 8:biom8040132. [PMID: 30384485 PMCID: PMC6315776 DOI: 10.3390/biom8040132] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 10/26/2018] [Accepted: 10/29/2018] [Indexed: 11/18/2022] Open
Abstract
Trypanosoma cruzi is the etiological agent of Chagas disease. It affects eight million people worldwide and can be spread by several routes, such as vectorborne transmission in endemic areas and congenitally, and is also important in non-endemic regions such as the United States and Europe due to migration from Latin America. Cyclophilins (CyPs) are proteins with enzymatic peptidyl-prolyl isomerase activity (PPIase), essential for protein folding in vivo. Cyclosporin A (CsA) has a high binding affinity for CyPs and inhibits their PPIase activity. CsA has proved to be a parasiticidal drug on some protozoa, including T. cruzi. In this review, we describe the T. cruzi cyclophilin gene family, that comprises 15 paralogues. Among the proteins isolated by CsA-affinity chromatography, we found orthologues of mammalian CyPs. TcCyP19, as the human CyPA, is secreted to the extracellular environment by all parasite stages and could be part of a complex interplay involving the parasite and the host cell. TcCyP22, an orthologue of mitochondrial CyPD, is involved in the regulation of parasite cell death. Our findings on T. cruzi cyclophilins will allow further characterization of these processes, leading to new insights into the biology, the evolution of metabolic pathways, and novel targets for anti-T. cruzi control.
Collapse
|
7
|
Kahlert V, Prell E, Ohlenschläger O, Melesina J, Schumann M, Lücke C, Fischer G, Malešević M. Synthesis and biochemical evaluation of two novel N-hydroxyalkylated cyclosporin A analogs. Org Biomol Chem 2018; 16:4338-4349. [DOI: 10.1039/c8ob00980e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
N-Hydroxyalkylation of cyclosporine A residues Val5 and d-Ala8 significantly influenced their conformation behavior and pharmacological properties.
Collapse
Affiliation(s)
- Viktoria Kahlert
- Max Planck Research Unit for Enzymology of Protein Folding
- 06120 Halle/Saale
- Germany
| | - Erik Prell
- Max Planck Research Unit for Enzymology of Protein Folding
- 06120 Halle/Saale
- Germany
- Max-Planck Institute for Biophysical Chemistry
- Göttingen
| | | | - Jelena Melesina
- Martin-Luther-University Halle-Wittenberg
- Institute of Pharmacy
- Medicinal Chemistry department
- 06120 Halle
- Germany
| | - Michael Schumann
- Max Planck Research Unit for Enzymology of Protein Folding
- 06120 Halle/Saale
- Germany
- Martin-Luther-University Halle-Wittenberg
- Institute of Biochemistry and Biotechnology
| | - Christian Lücke
- Max Planck Research Unit for Enzymology of Protein Folding
- 06120 Halle/Saale
- Germany
| | - Gunter Fischer
- Max Planck Research Unit for Enzymology of Protein Folding
- 06120 Halle/Saale
- Germany
- Max-Planck Institute for Biophysical Chemistry
- Göttingen
| | - Miroslav Malešević
- Max Planck Research Unit for Enzymology of Protein Folding
- 06120 Halle/Saale
- Germany
- Martin-Luther-University Halle-Wittenberg
- Institute of Biochemistry and Biotechnology
| |
Collapse
|
8
|
The spliceosomal proteins PPIH and PRPF4 exhibit bi-partite binding. Biochem J 2017; 474:3689-3704. [PMID: 28935721 DOI: 10.1042/bcj20170366] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 09/05/2017] [Accepted: 09/15/2017] [Indexed: 01/04/2023]
Abstract
Pre-mRNA splicing is a dynamic, multistep process that is catalyzed by the RNA (ribonucleic acid)-protein complex called the spliceosome. The spliceosome contains a core set of RNAs and proteins that are conserved in all organisms that perform splicing. In higher organisms, peptidyl-prolyl isomerase H (PPIH) directly interacts with the core protein pre-mRNA processing factor 4 (PRPF4) and both integrate into the pre-catalytic spliceosome as part of the tri-snRNP (small nuclear RNA-protein complex) subcomplex. As a first step to understand the protein interactions that dictate PPIH and PRPF4 function, we expressed and purified soluble forms of each protein and formed a complex between them. We found two sites of interaction between PPIH and the N-terminus of PRPF4, an unexpected result. The N-terminus of PRPF4 is an intrinsically disordered region and does not adopt secondary structure in the presence of PPIH. In the absence of an atomic resolution structure, we used mutational analysis to identify point mutations that uncouple these two binding sites and find that mutations in both sites are necessary to break up the complex. A discussion of how this bipartite interaction between PPIH and PRPF4 may modulate spliceosomal function is included.
Collapse
|
9
|
Galat A. Peptidylprolyl Isomerases as In Vivo Carriers for Drugs That Target Various Intracellular Entities. Biomolecules 2017; 7:biom7040072. [PMID: 28961224 PMCID: PMC5745455 DOI: 10.3390/biom7040072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 09/20/2017] [Accepted: 09/26/2017] [Indexed: 01/15/2023] Open
Abstract
Analyses of sequences and structures of the cyclosporine A (CsA)-binding proteins (cyclophilins) and the immunosuppressive macrolide FK506-binding proteins (FKBPs) have revealed that they exhibit peculiar spatial distributions of charges, their overall hydrophobicity indexes vary within a considerable level whereas their points isoelectric (pIs) are contained from 4 to 11. These two families of peptidylprolyl cis/trans isomerases (PPIases) have several distinct functional attributes such as: (1) high affinity binding to some pharmacologically-useful hydrophobic macrocyclic drugs; (2) diversified binding epitopes to proteins that may induce transient manifolds with altered flexibility and functional fitness; and (3) electrostatic interactions between positively charged segments of PPIases and negatively charged intracellular entities that support their spatial integration. These three attributes enhance binding of PPIase/pharmacophore complexes to diverse intracellular entities, some of which perturb signalization pathways causing immunosuppression and other system-altering phenomena in humans.
Collapse
Affiliation(s)
- Andrzej Galat
- Service d'Ingénierie Moléculaire des Protéines (SIMOPRO), CEA, Université Paris-Saclay, F-91191 Gif/Yvette, France.
| |
Collapse
|
10
|
The antimalarial action of FK506 and rapamycin: evidence for a direct effect on FK506-binding protein PfFKBP35. Parasitology 2017; 144:869-876. [PMID: 28274284 DOI: 10.1017/s0031182017000245] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
FK506 and rapamycin (Rap) are immunosuppressive drugs that act principally on T-lymphocytes. The receptors for both drugs are FK506-binding proteins (FKBPs), but the molecular mechanisms of immunosuppression differ. An FK506-FKBP complex inhibits the protein phosphatase calcineurin, blocking a key step in T-cell activation, while the Rap -FKBP complex binds to the protein kinase target of rapamycin (TOR), which is involved in a subsequent signalling pathway. Both drugs, and certain non-immunosuppressive compounds related to FK506, have potent antimalarial activity. There is however conflicting evidence on the involvement of Plasmodium calcineurin in the action of FK506, and the parasite lacks an apparent TOR homologue. We therefore set out to establish whether inhibition of the Plasmodium falciparum FKBP PfFKBP35 itself might be responsible for the antimalarial effects of FK506 and Rap. Similarities in the antiparasitic actions of FK506 and Rap would constitute indirect evidence for this hypothesis. FK506 and Rap acted indistinguishably on: (i) specificity for different intra-erythrocytic stages in culture, (ii) kinetics of killing or irreversible growth arrest of parasites and (iii) interactions with other antimalarial agents. Furthermore, PfFKBP35's inhibitory effect on calcineurin was independent of FK506 under a range of conditions, suggesting that calcineurin is unlikely to be involved in the antimalarial action of FK506.
Collapse
|
11
|
Bustos PL, Volta BJ, Perrone AE, Milduberger N, Bua J. A homolog of cyclophilin D is expressed in Trypanosoma cruzi and is involved in the oxidative stress-damage response. Cell Death Discov 2017; 3:16092. [PMID: 28179991 PMCID: PMC5292771 DOI: 10.1038/cddiscovery.2016.92] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 10/11/2016] [Accepted: 10/24/2016] [Indexed: 12/23/2022] Open
Abstract
Mitochondria have an important role in energy production, homeostasis and cell death. The opening of the mitochondrial permeability transition pore (mPTP) is considered one of the key events in apoptosis and necrosis, modulated by cyclophilin D (CyPD), a crucial component of this protein complex. In Trypanosoma cruzi, the protozoan parasite that causes Chagas disease, we have previously described that mitochondrial permeability transition occurs after oxidative stress induction in a cyclosporin A-dependent manner, a well-known cyclophilin inhibitor. In the present work, a mitochondrial parasite cyclophilin, named TcCyP22, which is homolog to the mammalian CyPD was identified. TcCyP22-overexpressing parasites showed an enhanced loss of mitochondrial membrane potential and loss of cell viability when exposed to a hydrogen peroxide stimulus compared with control parasites. Our results describe for the first time in a protozoan parasite that a mitochondrial cyclophilin is a component of the permeability transition pore and is involved in regulated cell death induced by oxidative stress.
Collapse
Affiliation(s)
- Patricia L Bustos
- Instituto Nacional de Parasitología 'Dr. Mario Fatala Chabén'- A.N.L.I.S. Malbrán, Av. Paseo Colón 568, C1063AC S, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina
| | - Bibiana J Volta
- Instituto Nacional de Parasitología 'Dr. Mario Fatala Chabén'- A.N.L.I.S. Malbrán , Av. Paseo Colón 568, C1063AC S, Buenos Aires, Argentina
| | - Alina E Perrone
- Instituto Nacional de Parasitología 'Dr. Mario Fatala Chabén'- A.N.L.I.S. Malbrán , Av. Paseo Colón 568, C1063AC S, Buenos Aires, Argentina
| | - Natalia Milduberger
- Instituto Nacional de Parasitología 'Dr. Mario Fatala Chabén'- A.N.L.I.S. Malbrán, Av. Paseo Colón 568, C1063AC S, Buenos Aires, Argentina; CAECIHS, Universidad Abierta Interamericana, Av. Montes de Oca 745, 2º piso, C1270AAH, Buenos Aires, Argentina
| | - Jacqueline Bua
- Instituto Nacional de Parasitología 'Dr. Mario Fatala Chabén'- A.N.L.I.S. Malbrán, Av. Paseo Colón 568, C1063AC S, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina; CAECIHS, Universidad Abierta Interamericana, Av. Montes de Oca 745, 2º piso, C1270AAH, Buenos Aires, Argentina
| |
Collapse
|
12
|
Esser-Nobis K, Schmidt J, Nitschke K, Neumann-Haefelin C, Thimme R, Lohmann V. The cyclophilin-inhibitor alisporivir stimulates antigen presentation thereby promoting antigen-specific CD8(+) T cell activation. J Hepatol 2016; 64:1305-14. [PMID: 26921685 PMCID: PMC7172366 DOI: 10.1016/j.jhep.2016.02.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 02/11/2016] [Accepted: 02/11/2016] [Indexed: 02/08/2023]
Abstract
BACKGROUND & AIMS Cyclophilin-inhibitors have potent antiviral activity against Hepatitis C virus (HCV) and are promising candidates for broad-spectrum antiviral therapy. Cyclosporine A (CsA) acts immunosuppressive by blocking T cell activation and antigen presentation. Alisporivir, a non-immunosuppressive CsA analog in clinical development, does not inhibit T cell activation. In this study we explored the impact of alisporivir on antigen presentation. METHODS Hepatoma cells endogenously expressing the epitope-restricting major histocompatibility complex-class I (MHC-I) allele HLA-A2 and constitutively expressing a viral antigen were established to study the impact of cyclophilin-inhibitors on antigen presentation. Antigen-specific CD8(+) T cell activation and MHC-I surface expression were measured to quantify antigen presentation. RESULTS Our work establishes a novel cell culture model to study antigen presentation in liver-derived cells. Authentic regulation of antigen presentation was ensured by the action of pro- and anti-inflammatory cytokines. Alisporivir pretreatment stimulated antigen presentation by hepatoma target cells, leading to enhancement of antigen-specific CD8(+) T cell activation by 40%. Alisporivir, as well as a panel of other cyclophilin-inhibitors, induced an increase of MHC-I and beta-2 microglobulin on the surface of several cell lines. The drug neither enhanced MHC-I transcript or protein levels nor affected surface expression of other proteins or protein trafficking in general. Proteasome-inhibitors completely blocked the alisporivir-directed enhancement of surface MHC-I, suggesting an influence of the drug on peptide-availability. CONCLUSIONS Alisporivir stimulates antigen presentation by inducing enhanced MHC-I surface expression, thereby promoting antigen-specific CD8(+) T cell activation. This immunostimulatory function might further contribute to the antiviral activity of non-immunosuppressive cyclophilin-inhibitors.
Collapse
Affiliation(s)
- Katharina Esser-Nobis
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg, Heidelberg, Germany
| | - Julia Schmidt
- Department of Medicine II, Clinic for Gastroenterology, Hepatology, Endocrinology, Infectious Diseases, University Hospital Freiburg, Freiburg, Germany
| | - Katja Nitschke
- Department of Medicine II, Clinic for Gastroenterology, Hepatology, Endocrinology, Infectious Diseases, University Hospital Freiburg, Freiburg, Germany
| | - Christoph Neumann-Haefelin
- Department of Medicine II, Clinic for Gastroenterology, Hepatology, Endocrinology, Infectious Diseases, University Hospital Freiburg, Freiburg, Germany
| | - Robert Thimme
- Department of Medicine II, Clinic for Gastroenterology, Hepatology, Endocrinology, Infectious Diseases, University Hospital Freiburg, Freiburg, Germany
| | - Volker Lohmann
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg, Heidelberg, Germany.
| |
Collapse
|
13
|
Cho KI, Orry A, Park SE, Ferreira PA. Targeting the cyclophilin domain of Ran-binding protein 2 (Ranbp2) with novel small molecules to control the proteostasis of STAT3, hnRNPA2B1 and M-opsin. ACS Chem Neurosci 2015; 6:1476-85. [PMID: 26030368 DOI: 10.1021/acschemneuro.5b00134] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cyclophilins are peptidyl cis-trans prolyl isomerases (PPIases), whose activity is typically inhibited by cyclosporine A (CsA), a potent immunosuppressor. Cyclophilins are also chaperones. Emerging evidence supports that cyclophilins present nonoverlapping PPIase and chaperone activities. The proteostasis of the disease-relevant substrates, signal transducer and activator of transcription 3 and 5 (STAT3/STAT5), heterogeneous nuclear ribonucleoprotein A2B1 (hnRNPA2B1), and M-opsin, is regulated by nonoverlapping chaperone and PPIase activities of the cyclophilin domain (CY) of Ranbp2, a multifunctional and modular scaffold that controls nucleocytoplasmic shuttling and proteostasis of selective substrates. Although highly homologous, CY and the archetypal cyclophilin A (CyPA) present distinct catalytic and CsA-binding activities owing to unique structural features between these cylophilins. We explored structural idiosyncrasies between CY and CyPA to screen in silico nearly 9 million small molecules (SM) against the CY PPIase pocket and identify SMs with selective bioactivity toward STAT3, hnRNPA2B1, or M-opsin proteostasis. We found three classes of SMs that enhance the cytokine-stimulated transcriptional activity of STAT3 without changing latent and activated STAT3 levels, down-regulate hnRNPA2B1 or M-opsin proteostasis, or a combination of these. Further, a SM that suppresses hnRNPA2B1 proteostasis also inhibits strongly and selectively the PPIase activity of CY. This study unravels chemical probes for multimodal regulation of CY of Ranbp2 and its substrates, and this regulation likely results in the allosterism stemming from the interconversion of conformational substates of cyclophilins. The results also demonstrate the feasibility of CY in drug discovery against disease-relevant substrates controlled by Ranbp2, and they open new opportunities for therapeutic interventions.
Collapse
Affiliation(s)
- Kyoung-in Cho
- Department of Ophthalmology, Duke University Medical Center, Durham, North Carolina 27710, United States
| | - Andrew Orry
- MolSoft LLC, San Diego, California 92121, United States
| | - Se Eun Park
- Department of Ophthalmology, Duke University Medical Center, Durham, North Carolina 27710, United States
| | - Paulo A. Ferreira
- Department of Ophthalmology, Duke University Medical Center, Durham, North Carolina 27710, United States
- Department of Pathology, Duke University Medical Center, Durham, North Carolina 27710, United States
| |
Collapse
|
14
|
Abstract
Immunophilins comprise two protein families, cyclophilins (CYPs) and FK506-binding proteins (FKBPs), and are the major receptors for the immunosuppressive drugs cyclosporin A (CsA) and FK506 (tacrolimus), respectively. Most eukaryotic species have at least one immunophilin and some of them have been associated with pathogenesis of infectious or parasitic diseases or the action of antiparasitic drugs. The human malarial parasite Plasmodium falciparum has 13 immunophilin or immunophilin-like genes but the functions of their products are unknown. We set out to identify the parasite proteins that interact with the major CYPs, PfCYP19A and PfCYP19B, and the FKBP, PfFKBP35, using a combination of co-immunoprecipitation and yeast two-hybrid screening. We identified a cohort of putative interacting partners and further investigation of some of these revealed potentially novel roles in parasite biology. We demonstrated that (i) P. falciparum CYPs interacted with the heat shock protein 70, (ii) treatment of parasites with CYP ligands disrupted transport of the rhoptry-associated protein 1, and (iii) PfFKBP35 interacted with parasite histones in a way that might modulate gene expression. These findings begin to elucidate the functions of immunophilins in malaria. Furthermore, the known antimalarial effects of CsA, FK506 and non-immunosuppressive derivatives of these immunophilin ligands could be mediated through these partner proteins.
Collapse
|
15
|
Proteome-wide characterization of signalling interactions in the hippocampal CA4/DG subfield of patients with Alzheimer's disease. Sci Rep 2015; 5:11138. [PMID: 26059363 PMCID: PMC4462342 DOI: 10.1038/srep11138] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 04/27/2015] [Indexed: 12/02/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common form of dementia; however, mechanisms and biomarkers remain unclear. Here, we examined hippocampal CA4 and dentate gyrus subfields, which are less studied in the context of AD pathology, in post-mortem AD and control tissue to identify possible biomarkers. We performed mass spectrometry-based proteomic analysis combined with label-free quantification for identification of differentially expressed proteins. We identified 4,328 proteins, of which 113 showed more than 2-fold higher or lower expression in AD hippocampi than in control tissues. Five proteins were identified as putative AD biomarkers (MDH2, PCLO, TRRAP, YWHAZ, and MUC19 isoform 5) and were cross-validated by immunoblotting, selected reaction monitoring, and MALDI imaging. We also used a bioinformatics approach to examine upstream signalling interactions of the 113 regulated proteins. Five upstream signalling (IGF1, BDNF, ZAP70, MYC, and cyclosporin A) factors showed novel interactions in AD hippocampi. Taken together, these results demonstrate a novel platform that may provide new strategies for the early detection of AD and thus its diagnosis.
Collapse
|
16
|
Schmidpeter PAM, Schmid FX. Prolyl isomerization and its catalysis in protein folding and protein function. J Mol Biol 2015; 427:1609-31. [PMID: 25676311 DOI: 10.1016/j.jmb.2015.01.023] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 01/30/2015] [Indexed: 12/20/2022]
Abstract
Prolyl isomerizations are intrinsically slow processes. They determine the rates of many protein folding reactions and control regulatory events in folded proteins. Prolyl isomerases are able to catalyze these isomerizations, and thus, they have the potential to assist protein folding and to modulate protein function. Here, we provide examples for how prolyl isomerizations limit protein folding and are accelerated by prolyl isomerases and how native-state prolyl isomerizations regulate protein functions. The roles of prolines in protein folding and protein function are closely interrelated because both of them depend on the coupling between cis/trans isomerization and conformational changes that can involve extended regions of a protein.
Collapse
Affiliation(s)
- Philipp A M Schmidpeter
- Laboratorium für Biochemie und Bayreuther Zentrum für Molekulare Biologie, Universität Bayreuth, 95440 Bayreuth, Germany
| | - Franz X Schmid
- Laboratorium für Biochemie und Bayreuther Zentrum für Molekulare Biologie, Universität Bayreuth, 95440 Bayreuth, Germany.
| |
Collapse
|
17
|
Schmeits PCJ, Schaap MM, Luijten M, van Someren E, Boorsma A, van Loveren H, Peijnenburg AACM, Hendriksen PJM. Detection of the mechanism of immunotoxicity of cyclosporine A in murine in vitro and in vivo models. Arch Toxicol 2014; 89:2325-37. [PMID: 25224403 DOI: 10.1007/s00204-014-1365-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 09/04/2014] [Indexed: 01/25/2023]
Abstract
Transcriptomics in combination with in vitro cell systems is a powerful approach to unravel modes of action of toxicants. An important question is to which extent the modes of action as revealed by transcriptomics depend on cell type, species and study type (in vitro or in vivo). To acquire more insight into this, we assessed the transcriptomic effects of the immunosuppressive drug cyclosporine A (CsA) upon 6 h of exposure of the mouse cytotoxic T cell line CTLL-2, the thymoma EL-4 and primary splenocytes and compared these to the effects in spleens of mice orally treated with CsA for 7 days. EL-4 and CTLL-2 cells showed the highest similarities in response. CsA affected many genes in primary splenocytes that were not affected in EL-4 or CTLL-2. Pathway analysis demonstrated that CsA upregulated the unfolded protein response, endoplasmic reticulum stress and NRF2 activation in EL-4 cells, CTLL-2 cells and primary mouse splenocytes but not in mouse spleen in vivo. As expected, CsA downregulated cell cycle and immune response in splenocytes in vitro, spleens in vivo as well as CTLL-2 in vitro. Genes up- and downregulated in human Jurkat, HepG2 and renal proximal tubular cells were similarly affected in CTLL-2, EL-4 and primary splenocytes in vitro. In conclusion, of the models tested in this study, the known mechanism of immunotoxicity of CsA is best represented in the mouse cytotoxic T cell line CTLL-2. This is likely due to the fact that this cell line is cultured in the presence of a T cell activation stimulant (IL-2) making it more suitable to detect inhibitory effects on T cell activation.
Collapse
Affiliation(s)
- P C J Schmeits
- RIKILT Institute of Food Safety, Wageningen University and Research Centre, P.O. Box 230, 6700 AE, Wageningen, The Netherlands.
- Department of Toxicogenomics, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands.
| | - M M Schaap
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA, Bilthoven, The Netherlands
- Department of Toxicogenetics, Leiden University Medical Centre, Leiden, The Netherlands
| | - M Luijten
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA, Bilthoven, The Netherlands
- Department of Toxicogenetics, Leiden University Medical Centre, Leiden, The Netherlands
| | - E van Someren
- Department of Toxicogenomics, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
- Research Group Microbiology and Systems Biology, TNO, P.O. Box 360, 3700 AJ, Zeist, The Netherlands
| | - A Boorsma
- Research Group Microbiology and Systems Biology, TNO, P.O. Box 360, 3700 AJ, Zeist, The Netherlands
| | - H van Loveren
- Department of Toxicogenomics, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA, Bilthoven, The Netherlands
| | - A A C M Peijnenburg
- RIKILT Institute of Food Safety, Wageningen University and Research Centre, P.O. Box 230, 6700 AE, Wageningen, The Netherlands
- Department of Toxicogenomics, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| | - P J M Hendriksen
- RIKILT Institute of Food Safety, Wageningen University and Research Centre, P.O. Box 230, 6700 AE, Wageningen, The Netherlands.
| |
Collapse
|
18
|
Galat A, Thai R. Rapamycin-binding FKBP25 associates with diverse proteins that form large intracellular entities. Biochem Biophys Res Commun 2014; 450:1255-60. [DOI: 10.1016/j.bbrc.2014.06.105] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 06/22/2014] [Indexed: 11/25/2022]
|
19
|
Galat A, Thai R, Stura EA. Diversified targets of FKBP25 and its complex with rapamycin. Int J Biol Macromol 2014; 69:344-52. [DOI: 10.1016/j.ijbiomac.2014.05.060] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 05/21/2014] [Accepted: 05/21/2014] [Indexed: 01/19/2023]
|
20
|
Sweeney ZK, Fu J, Wiedmann B. From chemical tools to clinical medicines: nonimmunosuppressive cyclophilin inhibitors derived from the cyclosporin and sanglifehrin scaffolds. J Med Chem 2014; 57:7145-59. [PMID: 24831536 DOI: 10.1021/jm500223x] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The cyclophilins are widely expressed enzymes that catalyze the interconversion of the cis and trans peptide bonds of prolines. The immunosuppressive natural products cyclosporine A and sanglifehrin A inhibit the enzymatic activity of the cyclophilins. Chemical modification of both the cyclosporine and sanglifehrin scaffolds has produced many analogues that inhibit cyclophilins in vitro but have reduced immunosuppressive properties. Three nonimmunosuppressive cyclophilin inhibitors (alisporivir, SCY-635, and NIM811) have demonstrated clinical efficacy for the treatment of hepatitis C infection. Additional candidates are in various stages of preclinical development for the treatment of hepatitis C or myocardial reperfusion injury. Recent publications suggest that cyclophilin inhibitors may have utility for the treatment of diverse viral infections, inflammatory indications, and cancer. In this review, we document the structure-activity relationships of the nonimmunosuppressive cyclosporins and sanglifehrins in clinical and preclinical development. Aspects of the pharmacokinetic behavior and chemical biology of these drug candidates are also described.
Collapse
Affiliation(s)
- Zachary K Sweeney
- Novartis Institutes for BioMedical Research , 4560 Horton Street, Emeryville, California 94608, United States
| | | | | |
Collapse
|
21
|
Wieduwild R, Lin W, Boden A, Kretschmer K, Zhang Y. A repertoire of peptide tags for controlled drug release from injectable noncovalent hydrogel. Biomacromolecules 2014; 15:2058-66. [PMID: 24825401 DOI: 10.1021/bm500186a] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A repertoire of conjugable tags for controlling the release of drugs from biomaterials is highly interesting for the development of combinatorial drug administration techniques. This paper describes such a system of 11 peptide tags derived from our previous work on a physical hydrogel system cross-linked through peptide-heparin interactions. The release kinetics of the tags correlate well with their affinity to heparin and obey Fick's second law of diffusion, with the exception of the ATIII peptide, which displays a stable release profile close to a zero-order reaction. A system for release experiments over seven months was built, using the hydrogel matrix as a barrier between the reservoirs of tagged compounds and supernatant. The gel matrix can be injected without affecting the releasing properties. A tagged cyclosporin A derivative was also tested, and its release was monitored by measuring its biological activity. This work represents a design of biomaterials with an integral system of drug delivery, where both the assembly process of the matrix and affinity capture/release of tagged compounds are based on the noncovalent interaction of heparin with one class of peptides.
Collapse
Affiliation(s)
- Robert Wieduwild
- B CUBE Center for Molecular Bioengineering, Technische Universität Dresden , Arnoldstraße 18, 01307 Dresden, Germany
| | | | | | | | | |
Collapse
|
22
|
Cho KI, Patil H, Senda E, Wang J, Yi H, Qiu S, Yoon D, Yu M, Orry A, Peachey NS, Ferreira PA. Differential loss of prolyl isomerase or chaperone activity of Ran-binding protein 2 (Ranbp2) unveils distinct physiological roles of its cyclophilin domain in proteostasis. J Biol Chem 2014; 289:4600-25. [PMID: 24403063 DOI: 10.1074/jbc.m113.538215] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The immunophilins, cyclophilins, catalyze peptidyl cis-trans prolyl-isomerization (PPIase), a rate-limiting step in protein folding and a conformational switch in protein function. Cyclophilins are also chaperones. Noncatalytic mutations affecting the only cyclophilins with known but distinct physiological substrates, the Drosophila NinaA and its mammalian homolog, cyclophilin-B, impair opsin biogenesis and cause osteogenesis imperfecta, respectively. However, the physiological roles and substrates of most cyclophilins remain unknown. It is also unclear if PPIase and chaperone activities reflect distinct cyclophilin properties. To elucidate the physiological idiosyncrasy stemming from potential cyclophilin functions, we generated mice lacking endogenous Ran-binding protein-2 (Ranbp2) and expressing bacterial artificial chromosomes of Ranbp2 with impaired C-terminal chaperone and with (Tg-Ranbp2(WT-HA)) or without PPIase activities (Tg-Ranbp2(R2944A-HA)). The transgenic lines exhibit unique effects in proteostasis. Either line presents selective deficits in M-opsin biogenesis with its accumulation and aggregation in cone photoreceptors but without proteostatic impairment of two novel Ranbp2 cyclophilin partners, the cytokine-responsive effectors, STAT3/STAT5. Stress-induced STAT3 activation is also unaffected in Tg-Ranbp2(R2944A-HA)::Ranbp2(-/-). Conversely, proteomic analyses found that the multisystem proteinopathy/amyotrophic lateral sclerosis proteins, heterogeneous nuclear ribonucleoproteins A2/B1, are down-regulated post-transcriptionally only in Tg-Ranbp2(R2944A-HA)::Ranbp2(-/-). This is accompanied by the age- and tissue-dependent reductions of diubiquitin and ubiquitylated proteins, increased deubiquitylation activity, and accumulation of the 26 S proteasome subunits S1 and S5b. These manifestations are absent in another line, Tg-Ranbp2(CLDm-HA)::Ranbp2(-/-), harboring SUMO-1 and S1-binding mutations in the Ranbp2 cyclophilin-like domain. These results unveil distinct mechanistic and biological links between PPIase and chaperone activities of Ranbp2 cyclophilin toward proteostasis of selective substrates and with novel therapeutic potential.
Collapse
Affiliation(s)
- Kyoung-in Cho
- From the Departments of Ophthalmology and Pathology, Duke University Medical Center, Durham, North Carolina 27710
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Kovalev N, Nagy PD. Cyclophilin A binds to the viral RNA and replication proteins, resulting in inhibition of tombusviral replicase assembly. J Virol 2013; 87:13330-42. [PMID: 24089553 PMCID: PMC3838255 DOI: 10.1128/jvi.02101-13] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 09/24/2013] [Indexed: 01/04/2023] Open
Abstract
Replication of plus-stranded RNA viruses is greatly affected by numerous host-encoded proteins that act as restriction factors. Cyclophilins, which are a large family of cellular prolyl isomerases, have been found to inhibit Tomato bushy stunt tombusvirus (TBSV) replication in a Saccharomyces cerevisiae model based on genome-wide screens and global proteomics approaches. In this report, we further characterize single-domain cyclophilins, including the mammalian cyclophilin A and plant Roc1 and Roc2, which are orthologs of the yeast Cpr1p cyclophilin, a known inhibitor of TBSV replication in yeast. We found that recombinant CypA, Roc1, and Roc2 strongly inhibited TBSV replication in a cell-free replication assay. Additional in vitro studies revealed that CypA, Roc1, and Roc2 cyclophilins bound to the viral replication proteins, and CypA and Roc1 also bound to the viral RNA. These interactions led to inhibition of viral RNA recruitment, the assembly of the viral replicase complex, and viral RNA synthesis. A catalytically inactive mutant of CypA was also able to inhibit TBSV replication in vitro due to binding to the replication proteins and the viral RNA. Overexpression of CypA and its mutant in yeast or plant leaves led to inhibition of tombusvirus replication, confirming that CypA is a restriction factor for TBSV. Overall, the current work has revealed a regulatory role for the cytosolic single-domain Cpr1-like cyclophilins in RNA virus replication.
Collapse
Affiliation(s)
- Nikolay Kovalev
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, USA
| | | |
Collapse
|
24
|
Galat A. Functional diversity and pharmacological profiles of the FKBPs and their complexes with small natural ligands. Cell Mol Life Sci 2013; 70:3243-75. [PMID: 23224428 PMCID: PMC11113493 DOI: 10.1007/s00018-012-1206-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 10/24/2012] [Accepted: 10/25/2012] [Indexed: 12/25/2022]
Abstract
From 5 to 12 FK506-binding proteins (FKBPs) are encoded in the genomes of disparate marine organisms, which appeared at the dawn of evolutionary events giving rise to primordial multicellular organisms with elaborated internal body plan. Fifteen FKBPs, several FKBP-like proteins and some splicing variants of them are expressed in humans. Human FKBP12 and some of its paralogues bind to different macrocyclic antibiotics such as FK506 or rapamycin and their derivatives. FKBP12/(macrocyclic antibiotic) complexes induce diverse pharmacological activities such as immunosuppression in humans, anticancerous actions and as sustainers of quiescence in certain organisms. Since the FKBPs bind to various assemblies of proteins and other intracellular components, their complexes with the immunosuppressive drugs may differentially perturb miscellaneous cellular functions. Sequence-structure relationships and pharmacological profiles of diverse FKBPs and their involvement in crucial intracellular signalization pathways and modulation of cryptic intercellular communication networks were discussed.
Collapse
Affiliation(s)
- Andrzej Galat
- Commissariat à l'Energie Atomique, Direction des Sciences du Vivant, Institut de Biologie et de Technologies de Saclay, Service d'Ingénierie Moléculaire des Protéines, Bat. 152, 91191, Gif-sur-Yvette Cedex, France.
| |
Collapse
|
25
|
Mamede JI, Sitbon M, Battini JL, Courgnaud V. Heterogeneous susceptibility of circulating SIV isolate capsids to HIV-interacting factors. Retrovirology 2013; 10:77. [PMID: 23883001 PMCID: PMC3751554 DOI: 10.1186/1742-4690-10-77] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 07/05/2013] [Indexed: 11/13/2022] Open
Abstract
Background Many species of non-human primates in Africa are naturally infected by simian immunodeficiency viruses (SIV) and humans stand at the forefront of exposure to these viruses in Sub-Saharan Africa. Cross-species transmission and adaptation of SIV to humans have given rise to human immunodeficiency viruses (HIV-1 and HIV-2) on twelve accountable, independent occasions. However, the determinants contributing to a simian-to-human lasting transmission are not fully understood. Following entry, viral cores are released into the cytoplasm and become the principal target of host cellular factors. Here, we evaluated cellular factors likely to be involved in potential new SIV cross-species transmissions. We investigated the interactions of capsids from naturally circulating SIV isolates with both HIV-1 restricting (i.e. TRIM5 proteins) and facilitating (i.e. cyclophilin A and nucleopore-associated Nup358/RanBP2 and Nup153) factors in single-round infectivity assays that reproduce early stages of the viral life-cycle. Results We show that human TRIM5α is unlikely to prevent cross-species transmission of any SIV we tested and observed that the SIV CA-CypA interaction is a widespread but not a universal feature. Moreover, entry in the nucleus of different SIV appeared to follow pathways that do not necessarily recruit Nup358/RanBP2 or Nup153, and this regardless of their interaction with CypA. Nevertheless, we found that, like HIV-1, human-adapted HIV-2 infection was dependent on Nup358/RanBP2 and Nup153 interactions for optimal infection. Furthermore, we found that, unlike HIV CA, SIV CA did not require a direct interaction with the Cyp-like domain of Nup358/RanBP2 to carry out successful infection. Conclusions Circulating SIV present a variety of phenotypes with regard to CA-interacting restricting or facilitating factors. Altogether, we unveiled unidentified pathways for SIV CA, which could also be exploited by HIV in different cellular contexts, to drive entry into the nucleus. Our findings warrant a closer evaluation of other potential defenses against circulating SIV.
Collapse
Affiliation(s)
- João I Mamede
- Institut de Génétique Moléculaire de Montpellier UMR 5535 CNRS, 1919 Route de Mende, 34293 Montpellier Cedex 5, France
| | | | | | | |
Collapse
|
26
|
Peel M, Scribner A. Optimization of Cyclophilin Inhibitors for Use in Antiviral Therapy. SUCCESSFUL STRATEGIES FOR THE DISCOVERY OF ANTIVIRAL DRUGS 2013. [DOI: 10.1039/9781849737814-00384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Cyclophilins are members of the Propyl Peptidase Isomerase (PPIase) family of proteins and have recently been found to be required for efficient replication and/or infectivity of several viruses. Cyclosporine A (CsA), the prototypical inhibitor of cyclophilins has shown good activity against several key viruses, including HIV‐1 and HCV, however the immunosuppressive activity of CsA precludes its use as an effective anti‐viral agent. Structural information derived from the ternary complex formed by CsA, cyclophilin A and calcineurin has allowed the design of non‐immunosuppressive derivatives of CsA that retain, and in some cases improve, antiviral activity toward hepatitis C. Chemical modification of CsA has led to compounds with improved pharmacokinetic properties and with reduced drug‐drug interaction potential. Non‐CsA derived inhibitors of cyclophilin A have recently been identified and hold promise as synthetically more tractable leads for cyclophilin‐based discovery projects.
Collapse
Affiliation(s)
- Michael Peel
- SCYNEXIS Inc., Research Triangle Park, NC 27709 USA
| | | |
Collapse
|
27
|
Baugh J, Gallay P. Cyclophilin involvement in the replication of hepatitis C virus and other viruses. Biol Chem 2013; 393:579-87. [PMID: 22944661 DOI: 10.1515/hsz-2012-0151] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Accepted: 04/10/2012] [Indexed: 02/07/2023]
Abstract
In recent months, there has been a wealth of promising clinical data suggesting that a more effective treatment regimen, and potentially a cure, for hepatitis C virus (HCV) infection is close at hand. Leading this push are direct-acting antivirals (DAAs), currently comprising inhibitors that target the HCV protease NS3, the viral polymerase NS5B, and the non-structural protein NS5A. In combination with one another, along with the traditional standard-of-care ribavirin and PEGylated-IFNα, these compounds have proven to afford tremendous efficacy to treatment-naíve patients, as well as to prior non-responders. Nevertheless, by targeting viral components, the possibility of selecting for breakthrough and treatment-resistant virus strains remains a concern. Host-targeting antivirals are a distinct class of anti-HCV compounds that is emerging as a complementary set of tools to combat the disease. Cyclophilin (Cyp) inhibitors are one such group in this category. In contrast to DAAs, Cyp inhibitors target a host protein, CypA, and have also demonstrated remarkable antiviral efficiency in clinical trials, without the generation of viral escape mutants. This review serves to summarize the current literature on Cyps and their relation to the HCV viral life cycle, as well as other viruses.
Collapse
Affiliation(s)
- James Baugh
- Department of Immunology and Microbial Science, IMM-9, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | |
Collapse
|
28
|
Di Nunzio F, Danckaert A, Fricke T, Perez P, Fernandez J, Perret E, Roux P, Shorte S, Charneau P, Diaz-Griffero F, Arhel NJ. Human nucleoporins promote HIV-1 docking at the nuclear pore, nuclear import and integration. PLoS One 2012; 7:e46037. [PMID: 23049930 PMCID: PMC3457934 DOI: 10.1371/journal.pone.0046037] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 08/27/2012] [Indexed: 11/19/2022] Open
Abstract
The nuclear pore complex (NPC) mediates nucleo-cytoplasmic transport of macromolecules and is an obligatory point of passage and functional bottleneck in the replication of some viruses. The Human Immunodeficiency Virus (HIV) has evolved the required mechanisms for active nuclear import of its genome through the NPC. However the mechanisms by which the NPC allows or even assists HIV translocation are still unknown. We investigated the involvement of four key nucleoporins in HIV-1 docking, translocation, and integration: Nup358/RanBP2, Nup214/CAN, Nup98 and Nup153. Although all induce defects in infectivity when depleted, only Nup153 actually showed any evidence of participating in HIV-1 translocation through the nuclear pore. We show that Nup358/RanBP2 mediates docking of HIV-1 cores on NPC cytoplasmic filaments by interacting with the cores and that the C-terminus of Nup358/RanBP2 comprising a cyclophilin-homology domain contributes to binding. We also show that Nup214/CAN and Nup98 play no role in HIV-1 nuclear import per se: Nup214/CAN plays an indirect role in infectivity read-outs through its effect on mRNA export, while the reduction of expression of Nup98 shows a slight reduction in proviral integration. Our work shows the involvement of nucleoporins in diverse and functionally separable steps of HIV infection and nuclear import.
Collapse
Affiliation(s)
- Francesca Di Nunzio
- Molecular Virology and Vaccinology Unit, CNRS URA 3015, Department of Virology, Institut Pasteur, Paris, France
| | | | - Thomas Fricke
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Patricio Perez
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Juliette Fernandez
- Molecular Virology and Vaccinology Unit, CNRS URA 3015, Department of Virology, Institut Pasteur, Paris, France
| | | | | | | | - Pierre Charneau
- Molecular Virology and Vaccinology Unit, CNRS URA 3015, Department of Virology, Institut Pasteur, Paris, France
| | - Felipe Diaz-Griffero
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Nathalie J. Arhel
- Molecular Virology and Vaccinology Unit, CNRS URA 3015, Department of Virology, Institut Pasteur, Paris, France
- * E-mail:
| |
Collapse
|
29
|
Abstract
Nonsteroidal medications, previously unfamiliar in the management of autoimmune hepatitis, can supplement or replace conventional corticosteroid regimens, especially in problematic patients. Mycophenolate mofetil is a next-generation purine antagonist that has been useful in treating patients with azathioprine intolerance. It has been less effective in salvaging patients with steroid-refractory disease. Azathioprine is the choice as a corticosteroid-sparing agent in treatment-naive patients and in individuals with corticosteroid intolerance, incomplete response and relapse after drug withdrawal. Tacrolimus is preferred over cyclosporine for recalcitrant disease because of its established preference in organ transplantation, but replacement with cyclosporine should be considered if the disease worsens on treatment. Rapamycin has antiproliferative and proapoptotic actions that warrant further study in autoimmune hepatitis. The nonstandard, nonsteroidal medications are mainly salvage therapies with off-label indications that must be used in highly individualized and well-monitored clinical situations.
Collapse
Affiliation(s)
- Albert J Czaja
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, Rochester, MN 55905 USA.
| |
Collapse
|
30
|
Advances in the current treatment of autoimmune hepatitis. Dig Dis Sci 2012; 57:1996-2010. [PMID: 22476586 DOI: 10.1007/s10620-012-2151-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Accepted: 03/16/2012] [Indexed: 12/17/2022]
Abstract
Current treatment strategies for autoimmune hepatitis are complicated by frequent relapse after drug withdrawal, medication intolerance, and refractory disease. The objective of this review is to describe advances that have improved treatment outcomes by defining the optimum objectives of initial therapy, managing relapse more effectively, identifying problematic patients early, and incorporating the new pharmacological interventions that have emerged as frontline and salvage therapies. Initial corticosteroid treatment should be continued until serum aminotransferase, γ-globulin, and immunoglobulin G levels are normal, and maintenance of this improvement for 3-8 months before liver tissue assessment. Improvement to normal liver tissue is the ideal histological result that justifies drug withdrawal, but it is achievable in only 22 % of patients. Minimum portal hepatitis, inactive cirrhosis, or minimally active cirrhosis is the most common treatment end point. Relapse after drug withdrawal warrants institution of a long-term maintenance regimen, preferably with azathioprine. Mathematical models can identify problematic adult patients early, as also can clinical phenotype (age ≤ 30 years and HLA DRB1 03), rapidity of treatment response (≤ 24 months), presence of antibodies to soluble liver antigen, and non-white ethnicity. The calcineurin inhibitors (cyclosporine and tacrolimus) can be effective in steroid-refractory disease; mycophenolate mofetil can be corticosteroid-sparing and effective for azathioprine intolerance; budesonide combined with azathioprine can be effective for treatment-naïve, non-cirrhotic patients. Standard treatment regimens for autoimmune hepatitis can be upgraded without adjustments that require major new expertise.
Collapse
|
31
|
A family of cyclophilin-like molecular chaperones in Plasmodium falciparum. Mol Biochem Parasitol 2012; 184:44-7. [PMID: 22546550 DOI: 10.1016/j.molbiopara.2012.04.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Revised: 04/12/2012] [Accepted: 04/16/2012] [Indexed: 12/23/2022]
Abstract
The cyclophilins are a large family of proteins implicated in folding, transport and regulation of other proteins and are potential drug targets in cancer and in some viral and parasitic infections. The functionality of cyclophilins appears to depend on peptidyl-prolyl cis-trans isomerase (foldase) and/or molecular chaperone activities. In this study we assessed the peptidyl-prolyl isomerase and chaperone activities of 8 members of the Plasmodium falciparum cyclophilin family, all produced recombinantly using a common host/vector system. While only two of these proteins had isomerase activity, all of them displayed chaperone function as judged by the ability to prevent the thermal aggregation of model substrates. We suggest that the cyclophilins constitute a family of molecular chaperones in malarial parasites that complement the functions of other chaperones such as the heat-shock proteins.
Collapse
|
32
|
Ferreira PA, Orry A. From Drosophila to humans: reflections on the roles of the prolyl isomerases and chaperones, cyclophilins, in cell function and disease. J Neurogenet 2012; 26:132-43. [PMID: 22332926 DOI: 10.3109/01677063.2011.647143] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Despite remarkable advances in human genetics and other genetic model systems, the fruit fly, Drosophila melanogaster, remains a powerful experimental tool to probe with ease the inner workings of a myriad of biological and pathological processes, even when evolutionary forces impart apparent divergences to some of such processes. The understanding of such evolutionary differences provides mechanistic insights into genotype-phenotype correlations underpinning biological processes across metazoans. The pioneering work developed by the William Pak laboratory for the past four decades, and the work of others, epitomize the notion of how the Drosophila system breaks new fertile ground or complements research fields of high scientific and medical relevance. Among the three major genetic complementation groups produced by the Pak's laboratory and impairing distinct facets of photoreceptor neuronal function, the nina group (ninaA, …., ninaJ) selectively affects the biogenesis of G protein-coupled receptors (GPCRs), mediating the photoconversion and transduction of light stimuli. Among the nina genes identified, ninaA arguably assumes heightened significance for several reasons. First, it presents unique physiological selectivity toward the biogenesis of a subset of GPCRs, a standalone biological manifestation yet to be discerned for most mammalian homologues of NinaA. Second, NinaA belongs to a family of proteins, immunophilins, which are the primary targets for immunosuppressive drugs at the therapeutic forefront of a multitude of medical conditions. Third, NinaA closest homologue, cyclophilin B (CyPB/PPIB), is an immunophilin whose loss-of-function was found recently to cause osteogenesis imperfecta in the human. This report highlights advances made by studies on some members of immunophilins, the cyclophilins. Finally, it reexamines critically data and dogmas derived from past and recent genetic, structural, biological, and pathological studies on NinaA and few other cyclophilins that support some of such paradigms to be less than definite and advance our understanding of the roles of cyclophilins in cell function, disease, and therapeutic interventions.
Collapse
Affiliation(s)
- Paulo A Ferreira
- Department of Ophthalmology, Duke University Medical Center, Durham, NC 27710, USA.
| | | |
Collapse
|
33
|
Lin JY, Mendu V, Pogany J, Qin J, Nagy PD. The TPR domain in the host Cyp40-like cyclophilin binds to the viral replication protein and inhibits the assembly of the tombusviral replicase. PLoS Pathog 2012; 8:e1002491. [PMID: 22346747 PMCID: PMC3276564 DOI: 10.1371/journal.ppat.1002491] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Accepted: 12/04/2011] [Indexed: 12/24/2022] Open
Abstract
Replication of plus-stranded RNA viruses is greatly affected by numerous host-coded proteins acting either as susceptibility or resistance factors. Previous genome-wide screens and global proteomics approaches with Tomato bushy stunt tombusvirus (TBSV) in a yeast model host revealed the involvement of cyclophilins, which are a large family of host prolyl isomerases, in TBSV replication. In this paper, we identified those members of the large cyclophilin family that interacted with the viral replication proteins and inhibited TBSV replication. Further characterization of the most effective cyclophilin, the Cyp40-like Cpr7p, revealed that it strongly inhibits many steps during TBSV replication in a cell-free replication assay. These steps include viral RNA recruitment inhibited via binding of Cpr7p to the RNA-binding region of the viral replication protein; the assembly of the viral replicase complex and viral RNA synthesis. Since the TPR (tetratricopeptide repeats) domain, but not the catalytic domain of Cpr7p is needed for the inhibitory effect on TBSV replication, it seems that the chaperone activity of Cpr7p provides the negative regulatory function. We also show that three Cyp40-like proteins from plants can inhibit TBSV replication in vitro and Cpr7p is also effective against Nodamura virus, an insect pathogen. Overall, the current work revealed a role for Cyp40-like proteins and their TPR domains as regulators of RNA virus replication.
Collapse
Affiliation(s)
- Jing-Yi Lin
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Venugopal Mendu
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Judit Pogany
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Jun Qin
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Peter D. Nagy
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, United States of America
| |
Collapse
|
34
|
Hutchison JM, Gibson AS, Williams DT, McIntosh MC. Synthesis of the C21-C34 fragment of antascomicin B. Tetrahedron Lett 2011; 52:6349-6351. [PMID: 22199407 PMCID: PMC3244276 DOI: 10.1016/j.tetlet.2011.09.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The C21-C34 fragment of the potent FKBP12-binding macrolide antascomicin B was prepared using Ireland-Claisen and allylic diazene rearrangements to establish the C26/C27 and the C23 stereocenters, respectively. Directed hydrogenation installed the C29 β-configuration. The fragment possesses 7 of the 11 fixed stereocenters contained in the natural product.
Collapse
Affiliation(s)
| | - Andrew S. Gibson
- University of Arkansas, 119 Chemistry Building, Fayetteville, AR 72701, USA
| | - David T. Williams
- University of Arkansas, 119 Chemistry Building, Fayetteville, AR 72701, USA
| | | |
Collapse
|
35
|
Pfefferle S, Schöpf J, Kögl M, Friedel CC, Müller MA, Carbajo-Lozoya J, Stellberger T, von Dall’Armi E, Herzog P, Kallies S, Niemeyer D, Ditt V, Kuri T, Züst R, Pumpor K, Hilgenfeld R, Schwarz F, Zimmer R, Steffen I, Weber F, Thiel V, Herrler G, Thiel HJ, Schwegmann-Weßels C, Pöhlmann S, Haas J, Drosten C, von Brunn A. The SARS-coronavirus-host interactome: identification of cyclophilins as target for pan-coronavirus inhibitors. PLoS Pathog 2011; 7:e1002331. [PMID: 22046132 PMCID: PMC3203193 DOI: 10.1371/journal.ppat.1002331] [Citation(s) in RCA: 339] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Accepted: 09/08/2011] [Indexed: 02/06/2023] Open
Abstract
Coronaviruses (CoVs) are important human and animal pathogens that induce fatal respiratory, gastrointestinal and neurological disease. The outbreak of the severe acute respiratory syndrome (SARS) in 2002/2003 has demonstrated human vulnerability to (Coronavirus) CoV epidemics. Neither vaccines nor therapeutics are available against human and animal CoVs. Knowledge of host cell proteins that take part in pivotal virus-host interactions could define broad-spectrum antiviral targets. In this study, we used a systems biology approach employing a genome-wide yeast-two hybrid interaction screen to identify immunopilins (PPIA, PPIB, PPIH, PPIG, FKBP1A, FKBP1B) as interaction partners of the CoV non-structural protein 1 (Nsp1). These molecules modulate the Calcineurin/NFAT pathway that plays an important role in immune cell activation. Overexpression of NSP1 and infection with live SARS-CoV strongly increased signalling through the Calcineurin/NFAT pathway and enhanced the induction of interleukin 2, compatible with late-stage immunopathogenicity and long-term cytokine dysregulation as observed in severe SARS cases. Conversely, inhibition of cyclophilins by cyclosporine A (CspA) blocked the replication of CoVs of all genera, including SARS-CoV, human CoV-229E and -NL-63, feline CoV, as well as avian infectious bronchitis virus. Non-immunosuppressive derivatives of CspA might serve as broad-range CoV inhibitors applicable against emerging CoVs as well as ubiquitous pathogens of humans and livestock.
Collapse
Affiliation(s)
- Susanne Pfefferle
- Bernhard-Nocht-Institute, Hamburg, Germany
- Institute of Virology, University of Bonn, Bonn, Germany
| | - Julia Schöpf
- Max-von-Pettenkofer Institute, Ludwig-Maximilians-University (LMU) Munich, München, Germany
| | | | - Caroline C. Friedel
- Institute for Informatics, LMU Munich, München, Germany
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany
| | | | - Javier Carbajo-Lozoya
- Max-von-Pettenkofer Institute, Ludwig-Maximilians-University (LMU) Munich, München, Germany
| | - Thorsten Stellberger
- Max-von-Pettenkofer Institute, Ludwig-Maximilians-University (LMU) Munich, München, Germany
| | | | - Petra Herzog
- Institute of Virology, University of Bonn, Bonn, Germany
| | - Stefan Kallies
- Institute of Virology, University of Bonn, Bonn, Germany
| | | | - Vanessa Ditt
- Institute of Virology, University of Bonn, Bonn, Germany
| | - Thomas Kuri
- IMMH, Albert-Ludwigs-University-Freiburg, Freiburg, Germany
| | - Roland Züst
- Institute of Immunobiology, Kantonsspital St. Gallen, Switzerland
| | - Ksenia Pumpor
- Institute of Biochemistry, University of Luebeck, Luebeck, Germany
| | - Rolf Hilgenfeld
- Institute of Biochemistry, University of Luebeck, Luebeck, Germany
| | | | - Ralf Zimmer
- Institute for Informatics, LMU Munich, München, Germany
| | - Imke Steffen
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Friedemann Weber
- IMMH, Albert-Ludwigs-University-Freiburg, Freiburg, Germany
- Institute of Virology, Philipps-Universität Marburg, Marburg, Germany
| | - Volker Thiel
- Institute of Immunobiology, Kantonsspital St. Gallen, Switzerland
| | - Georg Herrler
- Institute of Virology, Tierärztliche Hochschule Hannover, Hannover, Germany
| | - Heinz-Jürgen Thiel
- Institute for Virology, Fachbereich Veterinärmedizin, Justus-Liebig Universität Gießen, Giessen, Germany
| | | | - Stefan Pöhlmann
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Jürgen Haas
- Max-von-Pettenkofer Institute, Ludwig-Maximilians-University (LMU) Munich, München, Germany
- Division of Pathway Medicine, University of Edinburgh, Edinburgh, United Kingdom
- * E-mail: (AvB); (CD); (JH)
| | - Christian Drosten
- Institute of Virology, University of Bonn, Bonn, Germany
- * E-mail: (AvB); (CD); (JH)
| | - Albrecht von Brunn
- Max-von-Pettenkofer Institute, Ludwig-Maximilians-University (LMU) Munich, München, Germany
- * E-mail: (AvB); (CD); (JH)
| |
Collapse
|
36
|
Gerard M, Deleersnijder A, Demeulemeester J, Debyser Z, Baekelandt V. Unraveling the role of peptidyl-prolyl isomerases in neurodegeneration. Mol Neurobiol 2011; 44:13-27. [PMID: 21553017 DOI: 10.1007/s12035-011-8184-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2010] [Accepted: 04/14/2011] [Indexed: 02/07/2023]
Abstract
Immunophilins are a family of highly conserved proteins with a peptidyl-prolyl isomerase activity that binds immunosuppressive drugs such as FK506, cyclosporin A, and rapamycin. Immunophilins can be divided into two subfamilies, the cyclophilins, and the FK506 binding proteins (FKBPs). Next to the immunophilins, a third group of peptidyl-prolyl isomerases exist, the parvulins, which do not influence the immune system. The beneficial role of immunophilin ligands in neurodegenerative disease models has been known for more than a decade but remains largely unexplained in terms of molecular mechanisms. In this review, we summarize reported effects of parvulins, immunophilins, and their ligands in the context of neurodegeneration. We focus on the role of FKBP12 in Parkinson's disease and propose it as a novel drug target for therapy of Parkinson's disease.
Collapse
Affiliation(s)
- Melanie Gerard
- Laboratory of Biochemistry, IRC, K.U. Leuven-Kortrijk, Etienne Sabbelaan 53, 8500 Kortrijk, Flanders, Belgium
| | | | | | | | | |
Collapse
|
37
|
Emerging picture of host chaperone and cyclophilin roles in RNA virus replication. Virology 2011; 411:374-82. [PMID: 21295323 DOI: 10.1016/j.virol.2010.12.061] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Accepted: 12/31/2010] [Indexed: 11/23/2022]
Abstract
Many plus-strand (+)RNA viruses co-opt protein chaperones from the host cell to assist the synthesis, localization and folding of abundant viral proteins, to regulate viral replication via activation of replication proteins and to interfere with host antiviral responses. The most frequently subverted host chaperones are heat shock protein 70 (Hsp70), Hsp90 and the J-domain co-chaperones. The various roles of these host chaperones in RNA virus replication are presented to illustrate the astonishing repertoire of host chaperone functions that are subverted by RNA viruses. This review also discusses the emerging roles of cyclophilins, which are peptidyl-prolyl isomerases with chaperone functions, in replication of selected (+)RNA viruses.
Collapse
|