1
|
Mohieldin AM, Spencer M, Bernal C, Fadol WB, Gupta A, Thirugnanam K, Delahunty C, Nunez F, Pan AY, Brandow AM, Palecek SP, Rarick KR, Ramchandran R, Zennadi R, Yates J, Nauli SM. Comparative Proteomic Analysis Reveals Altered Ciliary Proteins in Sickle Cell Disease. J Proteome Res 2025. [PMID: 40374167 DOI: 10.1021/acs.jproteome.5c00168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2025]
Abstract
Sickle cell disease (SCD) is an inherited hemoglobinopathy characterized by sickle-shaped red blood cells (RBCs). Primary cilia are mechanosensory organelles and are projected in the lumen of blood vessels to detect blood flow. We previously reported that interaction between microvasculature endothelial cells and sickled RBCs resulted in altered blood flow that can elevate reactive oxygen species, leading to increased deciliation in SCD patients. However, the impact of deciliation mediated by sickled RBCs in the context of the ciliary protein profiles remains unclear. Here, we investigated cell-cilia stability under different physiological shear-stress magnitudes and examined cilia protein profiles in SCD, utilizing mouse models and human participants. Our results demonstrate that subjecting endothelial cilia to sickled RBCs at 5.0 dyn/cm2 led to significant deciliation events. The proteomic and bioinformatic analyses showed different ciliary protein profiles, distinct signaling pathways, and unique post-translational modification processes in the SCD mouse model. Consistent with the SCD mouse model results, our translational studies validated the enrichment of specific proteins, including Transferrin Receptor-1 (TfR1), Glyceraldehyde-3-Phosphate-Dehydrogenase (GAPDH), and ADP Ribosylation Factor Like GTPase-13B (ARL13B) in SCD patients. These findings underscore the clinical relevance of cilia in SCD and suggest that ciliary proteins are potential biomarkers for assessing vascular damage.
Collapse
Affiliation(s)
- Ashraf M Mohieldin
- College of Graduate Studies, Master Program of Pharmaceutical Science, California Northstate University, Elk Grove, California 95757, United States
- Department of Basic Science, College of Medicine, California Northstate University, Elk Grove, California 95757, United States
| | - Madison Spencer
- College of Graduate Studies, Master Program of Pharmaceutical Science, California Northstate University, Elk Grove, California 95757, United States
| | - Carter Bernal
- College of Graduate Studies, Master Program of Pharmaceutical Science, California Northstate University, Elk Grove, California 95757, United States
| | - Wala B Fadol
- Department of Clinical Science, College of Medicine, California Northstate University, Elk Grove, California 95757, United States
| | - Ankan Gupta
- Department of Pediatrics, Developmental Vascular Biology Program, Division of Neonatology, Children's Research Institute (CRI), Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Karthikeyan Thirugnanam
- Department of Pediatrics, Developmental Vascular Biology Program, Division of Neonatology, Children's Research Institute (CRI), Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Claire Delahunty
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Francisco Nunez
- Department of Pharmaceutical Sciences, School of Pharmacy, Chapman University, Irvine, California 92618, United States
| | - Amy Y Pan
- Department of Pediatrics, Division of Bioinformatics and Quantitative Child Health, CRI, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Amanda M Brandow
- Department of Pediatrics, Division of Hematology/Oncology/Bone Marrow Transplantation, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Sean P Palecek
- Department of Chemical and Biological Engineering, College of Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Kevin R Rarick
- Department of Pediatrics, Division of Critical Care, CRI, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Ramani Ramchandran
- Department of Pediatrics, Developmental Vascular Biology Program, Division of Neonatology, Children's Research Institute (CRI), Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Rahima Zennadi
- Department of Physiology, College of Medicine, The University of Tennessee Health Science, Memphis, Tennessee 38163, United States
| | - John Yates
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Surya M Nauli
- Department of Pharmaceutical Sciences, School of Pharmacy, Chapman University, Irvine, California 92618, United States
- Department of Medicine, University of California Irvine, Irvine, California 92697, United States
| |
Collapse
|
2
|
Tian X, Wang H, Liu S, Liu W, Zhang K, Gao X, Li Q, Zhao H, Zhang L, Liu P, Liu M, Wang Y, Zhu X, Cui R, Zhou J. Melanocortin 1 receptor mediates melanin production by interacting with the BBSome in primary cilia. PLoS Biol 2024; 22:e3002940. [PMID: 39621784 PMCID: PMC11637432 DOI: 10.1371/journal.pbio.3002940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 12/12/2024] [Accepted: 11/15/2024] [Indexed: 12/14/2024] Open
Abstract
Production of melanin pigments is a protective mechanism of the skin against ultraviolet (UV)-induced damage and carcinogenesis. However, the molecular basis for melanogenesis is still poorly understood. Herein, we demonstrate a critical interplay between the primary cilium and the melanocortin 1 receptor (MC1R) signaling. Our data show that UV and α-melanocyte-stimulating hormone (α-MSH) trigger cilium formation in human melanocytes and melanoma cells. Deficiency of MC1R or the presence of its red hair color (RHC) variations significantly attenuates the UV/α-MSH-induced ciliogenesis. Further investigation reveals that MC1R enters the cilium upon UV/α-MSH stimulation, which is facilitated by the interaction of MC1R with the BBSome and the palmitoylation of MC1R. MC1R interacts with the BBSome through the second and third intercellular loops, which contain the common RHC variant alleles (R151C and R160W). These RHC variants of MC1R exhibit attenuated ciliary localization, and enforced ciliary localization of these variants elevates melanogenesis. Ciliary MC1R triggers a sustained cAMP signaling and selectively stimulates Sox9, which appears to up-regulate melanogenesis-related genes as the transcriptional cofactor for MITF. These findings reveal a previously unrecognized nexus between MC1R and cilia and suggest an important mechanism for RHC variant-related pigmentary defects.
Collapse
Affiliation(s)
- Xiaoyu Tian
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Hanyu Wang
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Song Liu
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Wei Liu
- Department of Pediatric Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Kaiyue Zhang
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Xiaohan Gao
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Qingchao Li
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Huijie Zhao
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Liangran Zhang
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Peiwei Liu
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Min Liu
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Youjun Wang
- Key Laboratory of Cell Proliferation and Regulation Biology of the Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Xueliang Zhu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Rutao Cui
- Skin Disease Research Institute, The 2nd Hospital, Zhejiang University, Hangzhou, China
| | - Jun Zhou
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, China
- Department of Genetics and Cell Biology, State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
3
|
Muhamad NA, Masutani K, Furukawa S, Yuri S, Toriyama M, Matsumoto C, Itoh S, Shinagawa Y, Isotani A, Toriyama M, Itoh H. Astrocyte-Specific Inhibition of the Primary Cilium Suppresses C3 Expression in Reactive Astrocyte. Cell Mol Neurobiol 2024; 44:48. [PMID: 38822888 PMCID: PMC11144130 DOI: 10.1007/s10571-024-01482-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 05/21/2024] [Indexed: 06/03/2024]
Abstract
C3-positive reactive astrocytes play a neurotoxic role in various neurodegenerative diseases. However, the mechanisms controlling C3-positive reactive astrocyte induction are largely unknown. We found that the length of the primary cilium, a cellular organelle that receives extracellular signals was increased in C3-positive reactive astrocytes, and the loss or shortening of primary cilium decreased the count of C3-positive reactive astrocytes. Pharmacological experiments suggested that Ca2+ signalling may synergistically promote C3 expression in reactive astrocytes. Conditional knockout (cKO) mice that specifically inhibit primary cilium formation in astrocytes upon drug stimulation exhibited a reduction in the proportions of C3-positive reactive astrocytes and apoptotic cells in the brain even after the injection of lipopolysaccharide (LPS). Additionally, the novel object recognition (NOR) score observed in the cKO mice was higher than that observed in the neuroinflammation model mice. These results suggest that the primary cilium in astrocytes positively regulates C3 expression. We propose that regulating astrocyte-specific primary cilium signalling may be a novel strategy for the suppression of neuroinflammation.
Collapse
Affiliation(s)
- Nor Atiqah Muhamad
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5, Takayama Cho, Ikoma, Nara, 630-0192, Japan
| | - Kohei Masutani
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5, Takayama Cho, Ikoma, Nara, 630-0192, Japan
| | - Shota Furukawa
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5, Takayama Cho, Ikoma, Nara, 630-0192, Japan
| | - Shunsuke Yuri
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5, Takayama Cho, Ikoma, Nara, 630-0192, Japan
| | - Michinori Toriyama
- Department of Biomedical Chemistry, School of Science and Technology, Kwansei Gakuin University, 1 Gakuenuegahara, Sanda, Hyogo, 669-1330, Japan
| | - Chuya Matsumoto
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5, Takayama Cho, Ikoma, Nara, 630-0192, Japan
| | - Seiya Itoh
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5, Takayama Cho, Ikoma, Nara, 630-0192, Japan
| | - Yuichiro Shinagawa
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5, Takayama Cho, Ikoma, Nara, 630-0192, Japan
| | - Ayako Isotani
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5, Takayama Cho, Ikoma, Nara, 630-0192, Japan
| | - Manami Toriyama
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5, Takayama Cho, Ikoma, Nara, 630-0192, Japan.
| | - Hiroshi Itoh
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5, Takayama Cho, Ikoma, Nara, 630-0192, Japan.
| |
Collapse
|
4
|
Bhat S, Dietz A, Senf K, Nietzsche S, Hirabayashi Y, Westermann M, Neuhaus EM. GPRC5C regulates the composition of cilia in the olfactory system. BMC Biol 2023; 21:292. [PMID: 38110903 PMCID: PMC10729543 DOI: 10.1186/s12915-023-01790-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 11/30/2023] [Indexed: 12/20/2023] Open
Abstract
BACKGROUND Olfactory sensory neurons detect odourants via multiple long cilia that protrude from their dendritic endings. The G protein-coupled receptor GPRC5C was identified as part of the olfactory ciliary membrane proteome, but its function and localization is unknown. RESULTS High-resolution confocal and electron microscopy revealed that GPRC5C is located at the base of sensory cilia in olfactory neurons, but not in primary cilia of immature neurons or stem cells. Additionally, GPRC5C localization in sensory cilia parallels cilia formation and follows the formation of the basal body. In closer examination, GPRC5C was found in the ciliary transition zone. GPRC5C deficiency altered the structure of sensory cilia and increased ciliary layer thickness. However, primary cilia were unaffected. Olfactory sensory neurons from Gprc5c-deficient mice exhibited altered localization of olfactory signalling cascade proteins, and of ciliary phosphatidylinositol-4,5-bisphosphat. Sensory neurons also exhibited increased neuronal activity as well as altered mitochondrial morphology, and knockout mice had an improved ability to detect food pellets based on smell. CONCLUSIONS Our study shows that GPRC5C regulates olfactory cilia composition and length, thereby controlling odour perception.
Collapse
Affiliation(s)
- Sneha Bhat
- Pharmacology and Toxicology, Jena University Hospital, Friedrich Schiller University Jena, Drackendorfer Str. 1, 07747, Jena, Germany
| | - André Dietz
- Pharmacology and Toxicology, Jena University Hospital, Friedrich Schiller University Jena, Drackendorfer Str. 1, 07747, Jena, Germany
| | - Katja Senf
- Pharmacology and Toxicology, Jena University Hospital, Friedrich Schiller University Jena, Drackendorfer Str. 1, 07747, Jena, Germany
| | - Sandor Nietzsche
- Centre for Electron Microscopy, Jena University Hospital, Friedrich Schiller University Jena, Ziegelmühlenweg 1, 07743, Jena, Germany
| | - Yoshio Hirabayashi
- Institute for Environmental and Gender-Specific Medicine, Juntendo University Graduate School of Medicine, Chiba, 279-0021, Japan
- RIKEN Cluster for Pioneering Research, RIKEN, Wako, Saitama, 351-0198, Japan
| | - Martin Westermann
- Centre for Electron Microscopy, Jena University Hospital, Friedrich Schiller University Jena, Ziegelmühlenweg 1, 07743, Jena, Germany
| | - Eva Maria Neuhaus
- Pharmacology and Toxicology, Jena University Hospital, Friedrich Schiller University Jena, Drackendorfer Str. 1, 07747, Jena, Germany.
| |
Collapse
|
5
|
Macarelli V, Leventea E, Merkle FT. Regulation of the length of neuronal primary cilia and its potential effects on signalling. Trends Cell Biol 2023; 33:979-990. [PMID: 37302961 PMCID: PMC7615206 DOI: 10.1016/j.tcb.2023.05.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 06/13/2023]
Abstract
Primary cilia protrude from most vertebrate cell bodies and act as specialized 'signalling antennae' that can substantially lengthen or retract in minutes to hours in response to specific stimuli. Here, we review the conditions and mechanisms responsible for regulating primary cilia length (PCL) in mammalian nonsensory neurons, and propose four models of how they could affect ciliary signalling and alter cell state and suggest experiments to distinguish between them. These models include (i) the passive indicator model, where changes in PCL have no consequence; (ii) the rheostat model, in which a longer cilium enhances signalling; (iii) the local concentration model, where ciliary shortening increases the local protein concentration to facilitate signalling; and (iv) the altered composition model where changes in PCL skew signalling.
Collapse
Affiliation(s)
- Viviana Macarelli
- Metabolic Research Laboratories, Wellcome Trust - Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK; Wellcome Trust - Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK
| | - Eleni Leventea
- Wolfson Diabetes and Endocrine Clinic, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, UK
| | - Florian T Merkle
- Metabolic Research Laboratories, Wellcome Trust - Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK; Wellcome Trust - Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK.
| |
Collapse
|
6
|
Garfa Traoré M, Roccio F, Miceli C, Ferri G, Parisot M, Cagnard N, Lhomme M, Dupont N, Benmerah A, Saunier S, Delous M. Fluid shear stress triggers cholesterol biosynthesis and uptake in inner medullary collecting duct cells, independently of nephrocystin-1 and nephrocystin-4. Front Mol Biosci 2023; 10:1254691. [PMID: 37916190 PMCID: PMC10616263 DOI: 10.3389/fmolb.2023.1254691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/15/2023] [Indexed: 11/03/2023] Open
Abstract
Renal epithelial cells are subjected to fluid shear stress of urine flow. Several cellular structures act as mechanosensors-the primary cilium, microvilli and cell adhesion complexes-that directly relay signals to the cytoskeleton to regulate various processes including cell differentiation and renal cell functions. Nephronophthisis (NPH) is an autosomal recessive tubulointerstitial nephropathy leading to end-stage kidney failure before adulthood. NPHP1 and NPHP4 are the major genes which code for proteins that form a complex at the transition zone of the primary cilium, a crucial region required for the maintenance of the ciliary composition integrity. These two proteins also interact with signaling components and proteins associated with the actin cytoskeleton at cell junctions. Due to their specific subcellular localization, we wondered whether NPHP1 and NPHP4 could ensure mechanosensory functions. Using a microfluidic set up, we showed that murine inner medullary collecting ductal cells invalidated for Nphp1 or Nphp4 are more responsive to immediate shear exposure with a fast calcium influx, and upon a prolonged shear condition, an inability to properly regulate cilium length and actin cytoskeleton remodeling. Following a transcriptomic study highlighting shear stress-induced gene expression changes, we showed that prolonged shear triggers both cholesterol biosynthesis pathway and uptake, processes that do not seem to involve neither NPHP1 nor NPHP4. To conclude, our study allowed us to determine a moderate role of NPHP1 and NPHP4 in flow sensation, and to highlight a new signaling pathway induced by shear stress, the cholesterol biosynthesis and uptake pathways, which would allow cells to cope with mechanical stress by strengthening their plasma membrane through the supply of cholesterol.
Collapse
Affiliation(s)
- Meriem Garfa Traoré
- Laboratory of Hereditary Kidney Disease, INSERM UMR 1163, Imagine Institute, Université Paris Cité, Paris, France
- Cell Imaging Platform, Structure Fédérative de Recherche Necker, INSERM US24/CNRS UMS3633, Université Paris Cité, Paris, France
| | - Federica Roccio
- Institut Necker Enfants-Malades (INEM), INSERM U1151/CNRS UMR 8253, Université Paris Cité, Paris, France
| | - Caterina Miceli
- Institut Necker Enfants-Malades (INEM), INSERM U1151/CNRS UMR 8253, Université Paris Cité, Paris, France
| | - Giulia Ferri
- Laboratory of Hereditary Kidney Disease, INSERM UMR 1163, Imagine Institute, Université Paris Cité, Paris, France
| | - Mélanie Parisot
- Genomics Core Facility, Institut Imagine-Structure Fédérative de Recherche Necker, INSERM U1163 et INSERM US24/CNRS UMS3633, Université Paris Cité, Paris, France
| | - Nicolas Cagnard
- Bioinformatic Platform, Institut Imagine-Structure Fédérative de Recherche Necker, INSERM U1163 et INSERM US24/CNRS UMS3633, Université Paris Cité, Paris, France
| | - Marie Lhomme
- ICAN Omics, IHU ICAN Foundation for Innovation in Cardiometabolism and Nutrition, Pitié-Salpêtrière Hospital, Paris, France
| | - Nicolas Dupont
- Institut Necker Enfants-Malades (INEM), INSERM U1151/CNRS UMR 8253, Université Paris Cité, Paris, France
| | - Alexandre Benmerah
- Laboratory of Hereditary Kidney Disease, INSERM UMR 1163, Imagine Institute, Université Paris Cité, Paris, France
| | - Sophie Saunier
- Laboratory of Hereditary Kidney Disease, INSERM UMR 1163, Imagine Institute, Université Paris Cité, Paris, France
| | - Marion Delous
- Laboratory of Hereditary Kidney Disease, INSERM UMR 1163, Imagine Institute, Université Paris Cité, Paris, France
| |
Collapse
|
7
|
Stam LB, Clark AL. Chondrocyte primary cilia lengthening and shortening in response to mediators of osteoarthritis; a role for integrin α1β1 and focal adhesions. OSTEOARTHRITIS AND CARTILAGE OPEN 2023; 5:100357. [PMID: 37008821 PMCID: PMC10063384 DOI: 10.1016/j.ocarto.2023.100357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 03/14/2023] [Indexed: 03/29/2023] Open
Abstract
Objective Integrin α1β1 protects against osteoarthritis when it is upregulated in the early stages of disease, however, the mechanism behind this is currently unknown. Hypo-osmotic stress, interleukin-1 (IL-1) and transforming growth factor β (TGFβ) influence chondrocyte signaling and are important mediators of osteoarthritis. Evidence for primary cilia as a signaling hub for these factors and the involvement of the F-actin cytoskeleton in this response is growing. The purpose of this study was to investigate the role of integrin α1β1 in the response of primary cilia and the F-actin cytoskeleton to these osteoarthritic mediators. Design Primary cilia length and the number of F-actin peaks were measured in ex vivo wild type and itga1-null chondrocytes in response to hypo-osmotic stress, IL-1, and TGFβ alone or in combination, and with or without focal adhesion kinase inhibitor. Results We show that integrin α1β1 and focal adhesions are necessary for cilial lengthening and increases in F-actin peaks with hypo-osmotic stress and IL-1, but are not required for cilial shortening with TGFβ. Furthermore, we established that the chondrocyte primary cilium has a resting length of 2.4 μm, a minimum length of 2.1 μm corresponding to the thickness of the pericellular matrix, and a maximum length of 3.0 μm. Conclusions While integrin α1β1 is not necessary for the formation of chondrocyte primary cilia and cilial shortening in response to TGFβ, it is necessary for the mediation of cilial lengthening and the formation of F-actin peaks in response to hypo-osmotic stress and IL-1.
Collapse
|
8
|
Paolocci E, Zaccolo M. Compartmentalised cAMP signalling in the primary cilium. Front Physiol 2023; 14:1187134. [PMID: 37256063 PMCID: PMC10226274 DOI: 10.3389/fphys.2023.1187134] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 04/25/2023] [Indexed: 06/01/2023] Open
Abstract
cAMP is a universal second messenger that relies on precise spatio-temporal regulation to control varied, and often opposing, cellular functions. This is achieved via selective activation of effectors embedded in multiprotein complexes, or signalosomes, that reside at distinct subcellular locations. cAMP is also one of many pathways known to operate within the primary cilium. Dysfunction of ciliary signaling leads to a class of diseases known as ciliopathies. In Autosomal Dominant Polycystic Kidney Disease (ADPKD), a ciliopathy characterized by the formation of fluid-filled kidney cysts, upregulation of cAMP signaling is known to drive cystogenesis. For decades it has been debated whether the primary cilium is an independent cAMP sub-compartment, or whether it shares a diffusible pool of cAMP with the cell body. Recent studies now suggest it is a specific pool of cAMP generated in the cilium that propels cyst formation in ADPKD, supporting the notion that this antenna-like organelle is a compartment within which cAMP signaling occurs independently from cAMP signaling in the bulk cytosol. Here we present examples of cAMP function in the cilium which suggest this mysterious organelle is home to more than one cAMP signalosome. We review evidence that ciliary membrane localization of G-Protein Coupled Receptors (GPCRs) determines their downstream function and discuss how optogenetic tools have contributed to establish that cAMP generated in the primary cilium can drive cystogenesis.
Collapse
|
9
|
Li XW, Ran JH, Zhou H, He JZ, Qiu ZW, Wang SY, Wu MN, Zhu S, An YP, Ma A, Li M, Quan YZ, Li NN, Ren CQ, Yang BX. 1-Indanone retards cyst development in ADPKD mouse model by stabilizing tubulin and down-regulating anterograde transport of cilia. Acta Pharmacol Sin 2023; 44:406-420. [PMID: 35906293 PMCID: PMC9889777 DOI: 10.1038/s41401-022-00937-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 06/03/2022] [Indexed: 02/04/2023]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is the most common inherited kidney disease. Cyst development in ADPKD involves abnormal epithelial cell proliferation, which is affected by the primary cilia-mediated signal transduction in the epithelial cells. Thus, primary cilium has been considered as a therapeutic target for ADPKD. Since ADPKD exhibits many pathological features similar to solid tumors, we investigated whether targeting primary cilia using anti-tumor agents could alleviate the development of ADPKD. Twenty-four natural compounds with anti-tumor activity were screened in MDCK cyst model, and 1-Indanone displayed notable inhibition on renal cyst growth without cytotoxicity. This compound also inhibited cyst development in embryonic kidney cyst model. In neonatal kidney-specific Pkd1 knockout mice, 1-Indanone remarkably slowed down kidney enlargement and cyst expansion. Furthermore, we demonstrated that 1-Indanone inhibited the abnormal elongation of cystic epithelial cilia by promoting tubulin polymerization and significantly down-regulating expression of anterograde transport motor protein KIF3A and IFT88. Moreover, we found that 1-Indanone significantly down-regulated ciliary coordinated Wnt/β-catenin, Hedgehog signaling pathways. These results demonstrate that 1-Indanone inhibits cystic cell proliferation by reducing abnormally prolonged cilia length in cystic epithelial cells, suggesting that 1-Indanone may hold therapeutic potential to retard cyst development in ADPKD.
Collapse
Affiliation(s)
- Xiao-Wei Li
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Jian-Hua Ran
- Department of Anatomy, College of Basic Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Hong Zhou
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Jin-Zhao He
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Zhi-Wei Qiu
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Shu-Yuan Wang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Meng-Na Wu
- Department of Anatomy, College of Basic Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Shuai Zhu
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Yong-Pan An
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Ang Ma
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Min Li
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Ya-Zhu Quan
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Nan-Nan Li
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Chao-Qun Ren
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Bao-Xue Yang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China.
- Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, 100191, China.
| |
Collapse
|
10
|
Delfino G, Bénardais K, Graff J, Samama B, Antal MC, Ghandour MS, Boehm N. Oligodendroglial primary cilium heterogeneity during development and demyelination/remyelination. Front Cell Neurosci 2022; 16:1049468. [PMID: 36505511 PMCID: PMC9729284 DOI: 10.3389/fncel.2022.1049468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/03/2022] [Indexed: 11/25/2022] Open
Abstract
The primary cilium (PC) has emerged as an indispensable cellular antenna essential for signal transduction of important cell signaling pathways. The rapid acquisition of knowledge about PC biology has raised attention to PC as a therapeutic target in some neurological and psychiatric diseases. However, the role of PC in oligodendrocytes and its participation in myelination/remyelination remain poorly understood. Oligodendrocyte precursor cells (OPCs) give rise to oligodendrocytes during central nervous system (CNS) development. In adult, a small percentage of OPCs remains as undifferentiated cells located sparsely in the different regions of the CNS. These cells can regenerate oligodendrocytes and participate to certain extent in remyelination. This study aims characterize PC in oligodendrocyte lineage cells during post-natal development and in a mouse model of demyelination/remyelination. We show heterogeneity in the frequency of cilium presence on OPCs, depending on culture conditions in vitro and cerebral regions in vivo during development and demyelination/remyelination. In vitro, Lithium chloride (LiCl), Forskolin and Chloral Hydrate differentially affect cilium, depending on culture environment and PC length correlates with the cell differentiation state. Beside the role of PC as a keeper of cell proliferation, our results suggest its involvement in myelination/remyelination.
Collapse
Affiliation(s)
- Giada Delfino
- ICube Laboratory UMR 7357, Team IMIS, Strasbourg, France,Institut d’Histologie, Service Central de Microscopie Electronique, Faculté de Médecine, Université de Strasbourg, Strasbourg, France,Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France,*Correspondence: Giada Delfino,
| | - Karelle Bénardais
- ICube Laboratory UMR 7357, Team IMIS, Strasbourg, France,Institut d’Histologie, Service Central de Microscopie Electronique, Faculté de Médecine, Université de Strasbourg, Strasbourg, France,Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France,Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Julien Graff
- Institut d’Histologie, Service Central de Microscopie Electronique, Faculté de Médecine, Université de Strasbourg, Strasbourg, France,Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Brigitte Samama
- ICube Laboratory UMR 7357, Team IMIS, Strasbourg, France,Institut d’Histologie, Service Central de Microscopie Electronique, Faculté de Médecine, Université de Strasbourg, Strasbourg, France,Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France,Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Maria Cristina Antal
- ICube Laboratory UMR 7357, Team IMIS, Strasbourg, France,Institut d’Histologie, Service Central de Microscopie Electronique, Faculté de Médecine, Université de Strasbourg, Strasbourg, France,Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France,Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - M. Said Ghandour
- ICube Laboratory UMR 7357, Team IMIS, Strasbourg, France,Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Nelly Boehm
- ICube Laboratory UMR 7357, Team IMIS, Strasbourg, France,Institut d’Histologie, Service Central de Microscopie Electronique, Faculté de Médecine, Université de Strasbourg, Strasbourg, France,Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France,Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| |
Collapse
|
11
|
Wang C, Qu K, Wang J, Qin R, Li B, Qiu J, Wang G. Biomechanical regulation of planar cell polarity in endothelial cells. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166495. [PMID: 35850177 DOI: 10.1016/j.bbadis.2022.166495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 07/09/2022] [Accepted: 07/11/2022] [Indexed: 01/03/2023]
Abstract
Cell polarity refers to the uneven distribution of certain cytoplasmic components in a cell with a spatial order. The planar cell polarity (PCP), the cell aligns perpendicular to the polar plane, in endothelial cells (ECs) has become a research hot spot. The planar polarity of ECs has a positive significance on the regulation of cardiovascular dysfunction, pathological angiogenesis, and ischemic stroke. The endothelial polarity is stimulated and regulated by biomechanical force. Mechanical stimuli promote endothelial polarization and make ECs produce PCP to maintain the normal physiological and biochemical functions. Here, we overview recent advances in understanding the interplay and mechanism between PCP and ECs function involved in mechanical forces, with a focus on PCP signaling pathways and organelles in regulating the polarity of ECs. And then showed the related diseases caused by ECs polarity dysfunction. This study provides new ideas and therapeutic targets for the treatment of endothelial PCP-related diseases.
Collapse
Affiliation(s)
- Caihong Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China
| | - Kai Qu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China
| | - Jing Wang
- Institute of Food and Nutrition Development, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Rui Qin
- College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Bingyi Li
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China
| | - Juhui Qiu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China.
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China.
| |
Collapse
|
12
|
Ul Islam T, Wang Y, Aggarwal I, Cui Z, Eslami Amirabadi H, Garg H, Kooi R, Venkataramanachar BB, Wang T, Zhang S, Onck PR, den Toonder JMJ. Microscopic artificial cilia - a review. LAB ON A CHIP 2022; 22:1650-1679. [PMID: 35403636 PMCID: PMC9063641 DOI: 10.1039/d1lc01168e] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 04/04/2022] [Indexed: 05/14/2023]
Abstract
Cilia are microscopic hair-like external cell organelles that are ubiquitously present in nature, also within the human body. They fulfill crucial biological functions: motile cilia provide transportation of fluids and cells, and immotile cilia sense shear stress and concentrations of chemical species. Inspired by nature, scientists have developed artificial cilia mimicking the functions of biological cilia, aiming at application in microfluidic devices like lab-on-chip or organ-on-chip. By actuating the artificial cilia, for example by a magnetic field, an electric field, or pneumatics, microfluidic flow can be generated and particles can be transported. Other functions that have been explored are anti-biofouling and flow sensing. We provide a critical review of the progress in artificial cilia research and development as well as an evaluation of its future potential. We cover all aspects from fabrication approaches, actuation principles, artificial cilia functions - flow generation, particle transport and flow sensing - to applications. In addition to in-depth analyses of the current state of knowledge, we provide classifications of the different approaches and quantitative comparisons of the results obtained. We conclude that artificial cilia research is very much alive, with some concepts close to industrial implementation, and other developments just starting to open novel scientific opportunities.
Collapse
Affiliation(s)
- Tanveer Ul Islam
- Microsystems, Department of Mechanical Engineering, Eindhoven University of Technology, 5612 AE, Eindhoven, The Netherlands.
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, 5612 AJ, Eindhoven, The Netherlands
| | - Ye Wang
- Microsystems, Department of Mechanical Engineering, Eindhoven University of Technology, 5612 AE, Eindhoven, The Netherlands.
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, 5612 AJ, Eindhoven, The Netherlands
| | - Ishu Aggarwal
- Zernike Institute for Advanced Materials, University of Groningen, 9747 AG, Groningen, The Netherlands
| | - Zhiwei Cui
- Microsystems, Department of Mechanical Engineering, Eindhoven University of Technology, 5612 AE, Eindhoven, The Netherlands.
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, 5612 AJ, Eindhoven, The Netherlands
| | - Hossein Eslami Amirabadi
- Microsystems, Department of Mechanical Engineering, Eindhoven University of Technology, 5612 AE, Eindhoven, The Netherlands.
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, 5612 AJ, Eindhoven, The Netherlands
| | - Hemanshul Garg
- Microsystems, Department of Mechanical Engineering, Eindhoven University of Technology, 5612 AE, Eindhoven, The Netherlands.
- Zernike Institute for Advanced Materials, University of Groningen, 9747 AG, Groningen, The Netherlands
| | - Roel Kooi
- Microsystems, Department of Mechanical Engineering, Eindhoven University of Technology, 5612 AE, Eindhoven, The Netherlands.
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, 5612 AJ, Eindhoven, The Netherlands
| | - Bhavana B Venkataramanachar
- Microsystems, Department of Mechanical Engineering, Eindhoven University of Technology, 5612 AE, Eindhoven, The Netherlands.
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, 5612 AJ, Eindhoven, The Netherlands
| | - Tongsheng Wang
- Microsystems, Department of Mechanical Engineering, Eindhoven University of Technology, 5612 AE, Eindhoven, The Netherlands.
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, 5612 AJ, Eindhoven, The Netherlands
| | - Shuaizhong Zhang
- Microsystems, Department of Mechanical Engineering, Eindhoven University of Technology, 5612 AE, Eindhoven, The Netherlands.
- Max Planck Institute for Intelligent Systems, Heisenbergstr. 3, 70569, Stuttgart, Germany
| | - Patrick R Onck
- Zernike Institute for Advanced Materials, University of Groningen, 9747 AG, Groningen, The Netherlands
| | - Jaap M J den Toonder
- Microsystems, Department of Mechanical Engineering, Eindhoven University of Technology, 5612 AE, Eindhoven, The Netherlands.
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, 5612 AJ, Eindhoven, The Netherlands
| |
Collapse
|
13
|
Gupta A, Thirugnanam K, Thamilarasan M, Mohieldin AM, Zedan HT, Prabhudesai S, Griffin MR, Spearman AD, Pan A, Palecek SP, Yalcin HC, Nauli SM, Rarick KR, Zennadi R, Ramchandran R. Cilia proteins are biomarkers of altered flow in the vasculature. JCI Insight 2022; 7:151813. [PMID: 35143420 PMCID: PMC8986075 DOI: 10.1172/jci.insight.151813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 02/09/2022] [Indexed: 11/17/2022] Open
Abstract
Cilia, microtubule-based organelles that project from the apical luminal surface of endothelial cells (ECs), are widely regarded as low-flow sensors. Previous reports suggest that upon high shear stress, cilia on the EC surface are lost, and more recent evidence suggests that deciliation—the physical removal of cilia from the cell surface—is a predominant mechanism for cilia loss in mammalian cells. Thus, we hypothesized that EC deciliation facilitated by changes in shear stress would manifest in increased abundance of cilia-related proteins in circulation. To test this hypothesis, we performed shear stress experiments that mimicked flow conditions from low to high shear stress in human primary cells and a zebrafish model system. In the primary cells, we showed that upon shear stress induction, indeed, ciliary fragments were observed in the effluent in vitro, and effluents contained ciliary proteins normally expressed in both endothelial and epithelial cells. In zebrafish, upon shear stress induction, fewer cilia-expressing ECs were observed. To test the translational relevance of these findings, we investigated our hypothesis using patient blood samples from sickle cell disease and found that plasma levels of ciliary proteins were elevated compared with healthy controls. Further, sickled red blood cells demonstrated high levels of ciliary protein (ARL13b) on their surface after adhesion to brain ECs. Brain ECs postinteraction with sickle RBCs showed high reactive oxygen species (ROS) levels. Attenuating ROS levels in brain ECs decreased cilia protein levels on RBCs and rescued ciliary protein levels in brain ECs. Collectively, these data suggest that cilia and ciliary proteins in circulation are detectable under various altered-flow conditions, which could serve as a surrogate biomarker of the damaged endothelium.
Collapse
Affiliation(s)
- Ankan Gupta
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, United States of America
| | | | | | - Ashraf M Mohieldin
- Department of Pharmaceutical Sciences, Chapman University, Irvine, United States of America
| | - Hadeel T Zedan
- Biomedical Research Center, Qatar Biomedical Research Institute, Doha, Qatar
| | - Shubhangi Prabhudesai
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, United States of America
| | - Meghan R Griffin
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, United States of America
| | - Andrew D Spearman
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, United States of America
| | - Amy Pan
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, United States of America
| | - Sean P Palecek
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, United States of America
| | - Huseyin C Yalcin
- Biomedical Research Center, Qatar Biomedical Research Institute, Doha, Qatar
| | - Surya M Nauli
- Department of Pharmaceutical Sciences, Chapman University, Irvine, United States of America
| | - Kevin R Rarick
- Division of Critical Care, Medical College of Wisconsin, Milwaukee, United States of America
| | - Rahima Zennadi
- Department of Medicine, Duke University, Durham, United States of America
| | - Ramani Ramchandran
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, United States of America
| |
Collapse
|
14
|
Hilgendorf KI. Primary Cilia Are Critical Regulators of White Adipose Tissue Expansion. Front Physiol 2021; 12:769367. [PMID: 34759842 PMCID: PMC8573240 DOI: 10.3389/fphys.2021.769367] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/04/2021] [Indexed: 12/14/2022] Open
Abstract
The primary cilium is a microtubule-based cellular protrusion found on most mammalian cell types in diverse tissues. It functions as a cellular antenna to sense and transduce a broad range of signals, including odorants, light, mechanical stimuli, and chemical ligands. This diversity in signals requires cilia to display a context and cell type-specific repertoire of receptors. Recently, primary cilia have emerged as critical regulators of metabolism. The importance of primary cilia in metabolic disease is highlighted by the clinical features of human genetic disorders with dysfunctional ciliary signaling, which include obesity and diabetes. This review summarizes the current literature on the role of primary cilia in metabolic disease, focusing on the importance of primary cilia in directing white adipose tissue expansion during obesity.
Collapse
Affiliation(s)
- Keren I Hilgendorf
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, United States
| |
Collapse
|
15
|
Sheng X, Gao S, Sheng Y, Xie X, Wang J, He Y. Vangl2 participates in the primary ciliary assembly under low fluid shear stress in hUVECs. Cell Tissue Res 2021; 387:95-109. [PMID: 34738156 DOI: 10.1007/s00441-021-03546-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 10/13/2021] [Indexed: 11/30/2022]
Abstract
The pattern of blood fluid shear stress (FSS) is considered the main factor that affects ciliogenesis in human umbilical vein endothelial cells (hUVECs), the underlying mechanism is unclear. Microfluidic chamber experiments were carried out to load hUVECs with low fluid shear stress (LSS, 0.1 dynes/cm2) or high fluid shear stress (HSS, 15 dynes/cm2). Van Gogh2 (Vangl2), a core protein in the planar cell polarity (PCP) pathway, was silenced and overexpressed in hUVECs. Immunofluorescence analysis showed that primary cilia assemble under LSS while disassembling under HSS. Vangl2 expression was consistent with cilia assembly, and its localization showed a polar distribution under LSS. Furthermore, the average number of ciliated cells and primary cilia length were increased in the Vangl2 overexpressing cell lines (the OE group) but decreased in the Vangl2 silenced cell lines (the SH group). When these cells were loaded with different FSS, more ciliated cells with longest primary cilia were observed in the LSS loaded OE group compared with those in the other groups. Immunoprecipitation showed that the interaction between Bardet-Biedl syndrome 8 (BBS8) and Vangl2 was enhanced following LSS loading compared to that under HSS. However, the interactions between phosphorylated dishevelled segment polarity protein 2 (pDvl2), kinesin family member 2a (Kif2a), and polo-like kinase 1 (Plk1) and Vangl2 were restrained following LSS loading. Overall, the results indicated that Vangl2 played a significant role during LSS-induced primary cilia assembly by recruiting BBS to promote the apical docking of basal bodies and by restraining Dvl2 phosphorylation from reducing primary cilia disassembly.
Collapse
Affiliation(s)
- Xin Sheng
- Department of Biochemistry, Zunyi Medical University, Zunyi, 563000, People's Republic of China.
| | - Shuanglin Gao
- Department of Biochemistry, Zunyi Medical University, Zunyi, 563000, People's Republic of China
| | - Yan Sheng
- Laboratory of Basic Medical Morphology, Zunyi Medical University, Zunyi, 563000, People's Republic of China
| | - Xiadan Xie
- Department of Biochemistry, Zunyi Medical University, Zunyi, 563000, People's Republic of China
| | - Junhua Wang
- Department of Biochemistry, Zunyi Medical University, Zunyi, 563000, People's Republic of China
| | - Yan He
- Department of Biochemistry, Zunyi Medical University, Zunyi, 563000, People's Republic of China
| |
Collapse
|
16
|
Chikamori M, Kimura H, Inagi R, Zhou J, Nangaku M, Fujii T. Intracellular calcium response of primary cilia of tubular cells to modulated shear stress under oxidative stress. BIOMICROFLUIDICS 2020; 14:044102. [PMID: 32665806 PMCID: PMC7334031 DOI: 10.1063/5.0010737] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 06/15/2020] [Indexed: 06/11/2023]
Abstract
Primary cilia of tubular cells are sensory organelles. Bending of the primary cilia with shear stress from urinary flow results in the elevation of intracellular calcium levels and activation of signaling pathways that maintain kidney function. Elongation of primary cilia is reported to occur due to oxidative stress, which is a major cause of ischemia-reperfusion injury and is accompanied by decreased kidney function. However, in the context of diminished kidney function, this elongation is yet to be investigated. In this study, we developed a new microfluidic device to monitor changes in the intracellular calcium levels while modulating shear stress on the cilia under different degrees of oxidative stress. The microfluidic device was designed to expose even shear stress in the observed area while supplying drugs in four different stepwise concentrations. The results showed that primary cilia were elongated by hydrogen peroxide, which induces oxidative stress. It was also observed that the elongated primary cilia were more sensitive to shear stress than those with normal morphology. This microfluidic device could, thus, be useful in the analysis of the morphology of the primary cilia, under low perfusion conditions.
Collapse
Affiliation(s)
- Masatomo Chikamori
- Institute of Industrial Science, The University of Tokyo, Tokyo 153-8505, Japan
| | | | - Reiko Inagi
- Department of Nephrology and Endocrinology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Jing Zhou
- Center for Polycystic Kidney Disease Research and Renal Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Masaomi Nangaku
- Department of Nephrology and Endocrinology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Teruo Fujii
- Institute of Industrial Science, The University of Tokyo, Tokyo 153-8505, Japan
| |
Collapse
|
17
|
Collateral Vessels Have Unique Endothelial and Smooth Muscle Cell Phenotypes. Int J Mol Sci 2019; 20:ijms20153608. [PMID: 31344780 PMCID: PMC6695737 DOI: 10.3390/ijms20153608] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/11/2019] [Accepted: 07/19/2019] [Indexed: 12/15/2022] Open
Abstract
Collaterals are unique blood vessels present in the microcirculation of most tissues that, by cross-connecting a small fraction of the outer branches of adjacent arterial trees, provide alternate routes of perfusion. However, collaterals are especially susceptible to rarefaction caused by aging, other vascular risk factors, and mouse models of Alzheimer’s disease—a vulnerability attributed to the disturbed hemodynamic environment in the watershed regions where they reside. We examined the hypothesis that endothelial and smooth muscle cells (ECs and SMCs, respectively) of collaterals have specializations, distinct from those of similarly-sized nearby distal-most arterioles (DMAs) that maintain collateral integrity despite their continuous exposure to low and oscillatory/disturbed shear stress, high wall stress, and low blood oxygen. Examination of mouse brain revealed the following: Unlike the pro-inflammatory cobble-stoned morphology of ECs exposed to low/oscillatory shear stress elsewhere in the vasculature, collateral ECs are aligned with the vessel axis. Primary cilia, which sense shear stress, are present, unexpectedly, on ECs of collaterals and DMAs but are less abundant on collaterals. Unlike DMAs, collaterals are continuously invested with SMCs, have increased expression of Pycard, Ki67, Pdgfb, Angpt2, Dll4, Ephrinb2, and eNOS, and maintain expression of Klf2/4. Collaterals lack tortuosity when first formed during development, but tortuosity becomes evident within days after birth, progresses through middle age, and then declines—results consistent with the concept that collateral wall cells have a higher turnover rate than DMAs that favors proliferative senescence and collateral rarefaction. In conclusion, endothelial and SMCs of collaterals have morphologic and functional differences from those of nearby similarly sized arterioles. Future studies are required to determine if they represent specializations that counterbalance the disturbed hemodynamic, pro-inflammatory, and pro-proliferative environment in which collaterals reside and thus mitigate their risk factor-induced rarefaction.
Collapse
|
18
|
Jiang YY, Maier W, Baumeister R, Minevich G, Joachimiak E, Wloga D, Ruan Z, Kannan N, Bocarro S, Bahraini A, Vasudevan KK, Lechtreck K, Orias E, Gaertig J. LF4/MOK and a CDK-related kinase regulate the number and length of cilia in Tetrahymena. PLoS Genet 2019; 15:e1008099. [PMID: 31339880 PMCID: PMC6682161 DOI: 10.1371/journal.pgen.1008099] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 08/05/2019] [Accepted: 06/13/2019] [Indexed: 11/18/2022] Open
Abstract
The length of cilia is controlled by a poorly understood mechanism that involves members of the conserved RCK kinase group, and among them, the LF4/MOK kinases. The multiciliated protist model, Tetrahymena, carries two types of cilia (oral and locomotory) and the length of the locomotory cilia is dependent on their position with the cell. In Tetrahymena, loss of an LF4/MOK ortholog, LF4A, lengthened the locomotory cilia, but also reduced their number. Without LF4A, cilia assembled faster and showed signs of increased intraflagellar transport (IFT). Consistently, overproduced LF4A shortened cilia and downregulated IFT. GFP-tagged LF4A, expressed in the native locus and imaged by total internal reflection microscopy, was enriched at the basal bodies and distributed along the shafts of cilia. Within cilia, most LF4A-GFP particles were immobile and a few either diffused or moved by IFT. We suggest that the distribution of LF4/MOK along the cilium delivers a uniform dose of inhibition to IFT trains that travel from the base to the tip. In a longer cilium, the IFT machinery may experience a higher cumulative dose of inhibition by LF4/MOK. Thus, LF4/MOK activity could be a readout of cilium length that helps to balance the rate of IFT-driven assembly with the rate of disassembly at steady state. We used a forward genetic screen to identify a CDK-related kinase, CDKR1, whose loss-of-function suppressed the shortening of cilia caused by overexpression of LF4A, by reducing its kinase activity. Loss of CDKR1 alone lengthened both the locomotory and oral cilia. CDKR1 resembles other known ciliary CDK-related kinases: LF2 of Chlamydomonas, mammalian CCRK and DYF-18 of C. elegans, in lacking the cyclin-binding motif and acting upstream of RCKs. The new genetic tools we developed here for Tetrahymena have potential for further dissection of the principles of cilia length regulation in multiciliated cells.
Collapse
Affiliation(s)
- Yu-Yang Jiang
- Department of Cellular Biology, University of Georgia, Athens, Georgia, United States of America
| | - Wolfgang Maier
- Bio 3/Bioinformatics and Molecular Genetics, Faculty of Biology and ZBMZ, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Ralf Baumeister
- Bio 3/Bioinformatics and Molecular Genetics, Faculty of Biology and ZBMZ, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Gregory Minevich
- Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center, New York, New York, United States of America
| | - Ewa Joachimiak
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Dorota Wloga
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Zheng Ruan
- Institute of Bioinformatics, University of Georgia, Athens, Georgia, United States of America
| | - Natarajan Kannan
- Institute of Bioinformatics, University of Georgia, Athens, Georgia, United States of America
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, United States of America
| | - Stephen Bocarro
- Department of Cellular Biology, University of Georgia, Athens, Georgia, United States of America
| | - Anoosh Bahraini
- Department of Cellular Biology, University of Georgia, Athens, Georgia, United States of America
| | - Krishna Kumar Vasudevan
- Department of Cellular Biology, University of Georgia, Athens, Georgia, United States of America
| | - Karl Lechtreck
- Department of Cellular Biology, University of Georgia, Athens, Georgia, United States of America
| | - Eduardo Orias
- Department of Molecular, Cellular and Developmental Biology, University of California Santa Barbara, Santa Barbara, California, United States of America
| | - Jacek Gaertig
- Department of Cellular Biology, University of Georgia, Athens, Georgia, United States of America
| |
Collapse
|
19
|
Huang X, Lin Z, Meng L, Wang K, Liu X, Zhou W, Zheng H, Niu L. Non-invasive Low-Intensity Pulsed Ultrasound Modulates Primary Cilia of Rat Hippocampal Neurons. ULTRASOUND IN MEDICINE & BIOLOGY 2019; 45:1274-1283. [PMID: 30795858 DOI: 10.1016/j.ultrasmedbio.2018.12.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 12/18/2018] [Accepted: 12/29/2018] [Indexed: 05/17/2023]
Abstract
Transcranial modulation of primary cilia may provide new opportunities in the treatment of neurodegenerative diseases. This study investigates the effect of non-invasive low-intensity pulsed ultrasound (LIPUS) stimulation on primary cilia of rat hippocampal neurons. Three hours of LIPUS stimulation significantly reduced the incidence rate and length of cilia on cultured neurons (p < 0.01). Similarly, increasing the duration and intensity of LIPUS stimulation decreased the incidence and length of cilia. LIPUS stimulation improved c-fos expression when it was delivered to CA1 of the intact hippocampus of rats. And prolonged LIPUS stimulation (frequency: 0.5 MHz, pulse repetition frequency: 500 Hz, duty cycle: 5%, Ispta: 255 mW/cm2, 10 min/d, 10 d) caused a statistically significant reduction in the incidence rate (p < 0.05) and length of primary cilia (p < 0.01) of neurons in rat CA1 hippocampus. These results indicate the promising potential of LIPUS stimulation in the treatment of primary cilium-related brain diseases.
Collapse
Affiliation(s)
- Xiaowei Huang
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen, China
| | - Zhengrong Lin
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Long Meng
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Kaiyue Wang
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Xiufang Liu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Wei Zhou
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Hairong Zheng
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Lili Niu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| |
Collapse
|
20
|
Sensory primary cilium is a responsive cAMP microdomain in renal epithelia. Sci Rep 2019; 9:6523. [PMID: 31024067 PMCID: PMC6484033 DOI: 10.1038/s41598-019-43002-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 04/12/2019] [Indexed: 02/07/2023] Open
Abstract
Primary cilia are hair-like cellular extensions that sense microenvironmental signals surrounding cells. The role of adenylyl cyclases in ciliary function has been of interest because the product of adenylyl cyclase activity, cAMP, is relevant to cilia-related diseases. In the present study, we show that vasopressin receptor type-2 (V2R) is localized to cilia in kidney epithelial cells. Pharmacologic inhibition of V2R with tolvaptan increases ciliary length and mechanosensory function. Genetic knockdown of V2R, however, does not have any effect on ciliary length, although the effect of tolvaptan on ciliary length is dampened. Our study reveals that tolvaptan may have a cilia-specific effect independent of V2R or verapamil-sensitive calcium channels. Live-imaging of single cilia shows that V2R activation increases cilioplasmic and cytoplasmic cAMP levels, whereas tolvaptan mediates cAMP changes only in a cilia-specific manner. Furthermore, fluid-shear stress decreases cilioplasmic, but not cytoplasmic cAMP levels. Our data indicate that cilioplasmic and cytoplasmic cAMP levels are differentially modulated. We propose that the cilium is a critical sensor acting as a responsive cAMP microcompartment during physiologically relevant stimuli.
Collapse
|
21
|
Pala R, Mohieldin AM, Sherpa RT, Kathem SH, Shamloo K, Luan Z, Zhou J, Zheng JG, Ahsan A, Nauli SM. Ciliotherapy: Remote Control of Primary Cilia Movement and Function by Magnetic Nanoparticles. ACS NANO 2019; 13:3555-3572. [PMID: 30860808 PMCID: PMC7899146 DOI: 10.1021/acsnano.9b00033] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Patients with polycystic kidney disease (PKD) are characterized with uncontrolled hypertension. Hypertension in PKD is a ciliopathy, an abnormal function and/or structure of primary cilia. Primary cilia are cellular organelles with chemo and mechanosensory roles. In the present studies, we designed a cilia-targeted (CT) delivery system to deliver fenoldopam specifically to the primary cilia. We devised the iron oxide nanoparticle (NP)-based technology for ciliotherapy. Live imaging confirmed that the CT-Fe2O3-NPs specifically targeted primary cilia in cultured cells in vitro and vascular endothelia in vivo. Importantly, the CT-Fe2O3-NPs enabled the remote control of the movement and function of a cilium with an external magnetic field, making the nonmotile cilium exhibit passive movement. The ciliopathic hearts displayed hypertrophy with compromised functions in left ventricle pressure, stroke volume, ejection fraction, and overall cardiac output because of prolonged hypertension. The CT-Fe2O3-NPs significantly improved cardiac function in the ciliopathic hypertensive models, in which the hearts also exhibited arrhythmia, which was corrected with the CT-Fe2O3-NPs. Intraciliary and cytosolic Ca2+ were increased when cilia were induced with fluid flow or magnetic field, and this served as a cilia-dependent mechanism of the CT-Fe2O3-NPs. Fenoldopam-alone caused an immediate decrease in blood pressure, followed by reflex tachycardia. Pharmacological delivery profiles confirmed that the CT-Fe2O3-NPs were a superior delivery system for targeting cilia more specifically, efficiently, and effectively than fenoldopam-alone. The CT-Fe2O3-NPs altered the mechanical properties of nonmotile cilia, and these nano-biomaterials had enormous clinical potential for ciliotherapy. Our studies further indicated that ciliotherapy provides a possibility toward personalized medicine in ciliopathy patients.
Collapse
Affiliation(s)
- Rajasekharreddy Pala
- Department of Biomedical & Pharmaceutical Sciences, Chapman University School of Pharmacy (CUSP), Harry and Diane Rinker Health Science Campus, Chapman University, Irvine, California 92618, United States
- Department of Medicine, University of California Irvine, Irvine, California 92868, United States
| | - Ashraf M. Mohieldin
- Department of Biomedical & Pharmaceutical Sciences, Chapman University School of Pharmacy (CUSP), Harry and Diane Rinker Health Science Campus, Chapman University, Irvine, California 92618, United States
- Department of Medicine, University of California Irvine, Irvine, California 92868, United States
| | - Rinzhin T. Sherpa
- Department of Biomedical & Pharmaceutical Sciences, Chapman University School of Pharmacy (CUSP), Harry and Diane Rinker Health Science Campus, Chapman University, Irvine, California 92618, United States
- Department of Medicine, University of California Irvine, Irvine, California 92868, United States
| | - Sarmed H. Kathem
- Department of Biomedical & Pharmaceutical Sciences, Chapman University School of Pharmacy (CUSP), Harry and Diane Rinker Health Science Campus, Chapman University, Irvine, California 92618, United States
- Department of Medicine, University of California Irvine, Irvine, California 92868, United States
| | - Kiumars Shamloo
- Department of Biomedical & Pharmaceutical Sciences, Chapman University School of Pharmacy (CUSP), Harry and Diane Rinker Health Science Campus, Chapman University, Irvine, California 92618, United States
- Department of Medicine, University of California Irvine, Irvine, California 92868, United States
| | - Zhongyue Luan
- Chemical Engineering & Material Sciences, University of California Irvine, Irvine, California 92697, United States
| | - Jing Zhou
- Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Jian-Guo Zheng
- Irvine Materials Research Institute, University of California Irvine, Irvine, California 92697, United States
| | - Amir Ahsan
- Department of Physics, Computer Science & Engineering, Chapman University, Orange, California 92866, United States
| | - Surya M. Nauli
- Department of Biomedical & Pharmaceutical Sciences, Chapman University School of Pharmacy (CUSP), Harry and Diane Rinker Health Science Campus, Chapman University, Irvine, California 92618, United States
- Department of Medicine, University of California Irvine, Irvine, California 92868, United States
- Corresponding Author: ; . (S.M.N.)
| |
Collapse
|
22
|
Kong MJ, Bak SH, Han KH, Kim JI, Park JW, Park KM. Fragmentation of kidney epithelial cell primary cilia occurs by cisplatin and these cilia fragments are excreted into the urine. Redox Biol 2018; 20:38-45. [PMID: 30292083 PMCID: PMC6172485 DOI: 10.1016/j.redox.2018.09.017] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 09/18/2018] [Accepted: 09/24/2018] [Indexed: 02/07/2023] Open
Abstract
The primary cilium, which protrudes from the cell surface, is associated with the pathogenesis of various diseases, including acute kidney injury (AKI). Primary cilium length dynamically changes during the progression of diseases. However, its relevance in disease and the underlying mechanism are largely unknown. In this study, we investigated the role of primary cilia in AKI induced by cisplatin, an effective anticancer drug, and the underlying mechanisms. In addition, we evaluated the usefulness of length alteration and deciliation of primary cilia into the urine for the diagnosis of AKI. Cisplatin induced shortening, elongation, and normalization of the primary cilia in kidney epithelial cells over time. During shortening, primary cilia fragments and ciliary proteins were excreted into the urine. During deciliation, cell proliferation and the expression of cyclin-dependent kinase inhibitor and proliferating cell nuclear antigen were not significantly changed. Shortening and deciliation of primary cilia were observed before significant increases in plasma creatinine and blood urea nitrogen concentration occurred. Pretreatment with Mito-Tempo, a mitochondria-targeted antioxidant, prevented cisplatin-induced primary cilium shortening and inhibited the increases in superoxide formation, lipid peroxidation, blood urea nitrogen, and tissue damage. In contrast, isocitrate dehydrogenase 2 (Idh2) gene deletion, which results in defect of the NADPH-associated mitochondrial antioxidant system, exacerbated cisplatin-induced changes in mice. Taken together, our findings demonstrate that cisplatin induces deciliation into the urine and antioxidant treatment prevents this deciliation, renal dysfunction, and tissue damage after cisplatin injection. These results suggest that cisplatin-induced AKI is associated with primary cilia and urine primary cilia proteins might be a non-invasive biomarker of kidney injury.
Collapse
Affiliation(s)
- Min Jung Kong
- Department of Anatomy, Cardiovascular Research Institute and BK21 Plus, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Junggu, Daegu 41944, Republic of Korea
| | - Sang Hong Bak
- Department of Anatomy, Cardiovascular Research Institute and BK21 Plus, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Junggu, Daegu 41944, Republic of Korea
| | - Ki-Hwan Han
- Department of Anatomy, Ewha Womans University School of Medicine, 911-1 Mok-6-dong, Yangcheon-ku, Seoul 03760, Republic of Korea
| | - Jee In Kim
- Department of Molecular Medicine and MRC, College of Medicine, Keimyung University, 1095 Dalgubeol-daero 250-gil, Dalseogu, Daegu 42601, Republic of Korea
| | - Jeen-Woo Park
- Department of Biochemistry, School of Life Sciences and Biotechnology, College of Natural Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Kwon Moo Park
- Department of Anatomy, Cardiovascular Research Institute and BK21 Plus, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Junggu, Daegu 41944, Republic of Korea.
| |
Collapse
|
23
|
Saternos HC, AbouAlaiwi WA. Signaling interplay between primary cilia and nitric oxide: A mini review. Nitric Oxide 2018; 80:108-112. [PMID: 30099097 DOI: 10.1016/j.niox.2018.08.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 06/01/2018] [Accepted: 08/06/2018] [Indexed: 01/12/2023]
Abstract
New discoveries into the functional role of primary cilia are on the rise. In little more than 20 years, research has shown the once vestigial organelle is a signaling powerhouse involved in a vast number of essential cellular processes. In the same decade that interest in primary cilia was burgeoning, nitric oxide won molecule of the year and a Nobel prize for its role as a near ubiquitous signaling molecule. Although primary cilia and nitric oxide are both involved in signaling, a direct relationship has not been investigated; however, after a quick review of the literature, parallels between their functions can be drawn. This review aims to suggest a possible interplay between primary cilia and nitric oxide signaling especially in the areas of vascular tissue homeostasis and cellular proliferation.
Collapse
Affiliation(s)
- Hannah C Saternos
- University of Toledo, College of Pharmacy and Pharmaceutical Sciences, Department of Pharmacology and Experimental Therapeutics, USA
| | - Wissam A AbouAlaiwi
- University of Toledo, College of Pharmacy and Pharmaceutical Sciences, Department of Pharmacology and Experimental Therapeutics, USA.
| |
Collapse
|
24
|
Park KM. Can Tissue Cilia Lengths and Urine Cilia Proteins Be Markers of Kidney Diseases? Chonnam Med J 2018; 54:83-89. [PMID: 29854673 PMCID: PMC5972129 DOI: 10.4068/cmj.2018.54.2.83] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 02/02/2018] [Accepted: 02/06/2018] [Indexed: 01/22/2023] Open
Abstract
The primary cilium is an organelle which consists of a microtubule in the core and a surrounding cilia membrane, and has long been recognized as a “vestigial organelle”. However, new evidence demonstrates that the primary cilium has a notable effect on signal transduction in the cell and is associated with some genetic and non-genetic diseases. In the kidney, the primary cilium protrudes into the Bowman's space and the tubular lumen from the apical side of epithelial cells. The length of primary cilia is dynamically altered during the normal cell cycle, being shortened by retraction into the cell body at the entry of cell division and elongated at differentiation. Furthermore, the length of primary cilia is also dynamically changed in the cells, as a result and/or cause, during the progression of various kidney diseases including acute kidney injury and chronic kidney disease. Notably, recent data has demonstrated that the shortening of the primary cilium in the cell is associated with fragmentation, apart from retraction into the cell body, in the progression of diseases and that the fragmented primary cilia are released into the urine. This data reveals that the alteration of primary cilia length could be related to the progression of diseases. This review will consider if primary cilia length alteration is associated with the progression of kidney diseases and if the length of tissue primary cilia and the presence or increase of cilia proteins in the urine is indicative of kidney diseases.
Collapse
Affiliation(s)
- Kwon Moo Park
- Department of Anatomy and BK21 Plus, School of Medicine, Kyungpook National University, Daegu, Korea
| |
Collapse
|
25
|
Shimada H, Lu Q, Insinna-Kettenhofen C, Nagashima K, English MA, Semler EM, Mahgerefteh J, Cideciyan AV, Li T, Brooks BP, Gunay-Aygun M, Jacobson SG, Cogliati T, Westlake CJ, Swaroop A. In Vitro Modeling Using Ciliopathy-Patient-Derived Cells Reveals Distinct Cilia Dysfunctions Caused by CEP290 Mutations. Cell Rep 2018; 20:384-396. [PMID: 28700940 DOI: 10.1016/j.celrep.2017.06.045] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 05/03/2017] [Accepted: 06/19/2017] [Indexed: 02/06/2023] Open
Abstract
Mutations in CEP290, a transition zone protein in primary cilia, cause diverse ciliopathies, including Leber congenital amaurosis (LCA) and Joubert-syndrome and related disorders (JSRD). We examined cilia biogenesis and function in cells derived from CEP290-LCA and CEP290-JSRD patients. CEP290 protein was reduced in LCA fibroblasts with no detectable impact on cilia; however, optic cups derived from induced pluripotent stem cells (iPSCs) of CEP290-LCA patients displayed less developed photoreceptor cilia. Lack of CEP290 in JSRD fibroblasts resulted in abnormal cilia and decreased ciliogenesis. We observed selectively reduced localization of ADCY3 and ARL13B. Notably, Hedgehog signaling was augmented in CEP290-JSRD because of enhanced ciliary transport of Smoothened and GPR161. These results demonstrate a direct correlation between the extent of ciliogenesis defects in fibroblasts and photoreceptors with phenotypic severity in JSRD and LCA, respectively, and strengthen the role of CEP290 as a selective ciliary gatekeeper for transport of signaling molecules in and out of the cilium.
Collapse
Affiliation(s)
- Hiroko Shimada
- Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Quanlong Lu
- Laboratory of Cell and Developmental Signaling, National Cancer Institute - Frederick, Frederick, MD 21702, USA
| | | | - Kunio Nagashima
- Electron Microscope Laboratory, Leidos Biomedical Research, Inc., National Cancer Institute - Frederick, Frederick, MD 21702, USA
| | - Milton A English
- Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Elizabeth M Semler
- Laboratory of Cell and Developmental Signaling, National Cancer Institute - Frederick, Frederick, MD 21702, USA
| | - Jacklyn Mahgerefteh
- Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Artur V Cideciyan
- Department of Ophthalmology, Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Tiansen Li
- Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Brian P Brooks
- Pediatric, Developmental, and Genetic Eye Disease Branch, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Meral Gunay-Aygun
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA; Department of Pediatrics, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Samuel G Jacobson
- Department of Ophthalmology, Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Tiziana Cogliati
- Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Christopher J Westlake
- Laboratory of Cell and Developmental Signaling, National Cancer Institute - Frederick, Frederick, MD 21702, USA.
| | - Anand Swaroop
- Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
26
|
Porpora M, Sauchella S, Rinaldi L, Delle Donne R, Sepe M, Torres-Quesada O, Intartaglia D, Garbi C, Insabato L, Santoriello M, Bachmann VA, Synofzik M, Lindner HH, Conte I, Stefan E, Feliciello A. Counterregulation of cAMP-directed kinase activities controls ciliogenesis. Nat Commun 2018; 9:1224. [PMID: 29581457 PMCID: PMC5964327 DOI: 10.1038/s41467-018-03643-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 02/28/2018] [Indexed: 01/13/2023] Open
Abstract
The primary cilium emanates from the cell surface of growth-arrested cells and plays a central role in vertebrate development and tissue homeostasis. The mechanisms that control ciliogenesis have been extensively explored. However, the intersection between GPCR signaling and the ubiquitin pathway in the control of cilium stability are unknown. Here we observe that cAMP elevation promotes cilia resorption. At centriolar satellites, we identify a multimeric complex nucleated by PCM1 that includes two kinases, NEK10 and PKA, and the E3 ubiquitin ligase CHIP. We show that NEK10 is essential for ciliogenesis in mammals and for the development of medaka fish. PKA phosphorylation primes NEK10 for CHIP-mediated ubiquitination and proteolysis resulting in cilia resorption. Disarrangement of this control mechanism occurs in proliferative and genetic disorders. These findings unveil a pericentriolar kinase signalosome that efficiently links the cAMP cascade with the ubiquitin-proteasome system, thereby controlling essential aspects of ciliogenesis.
Collapse
Affiliation(s)
- Monia Porpora
- Department of Molecular Medicine and Medical Biotechnologies, University 'Federico II', Naples, 80131, Italy
| | - Simona Sauchella
- Department of Molecular Medicine and Medical Biotechnologies, University 'Federico II', Naples, 80131, Italy
| | - Laura Rinaldi
- Department of Molecular Medicine and Medical Biotechnologies, University 'Federico II', Naples, 80131, Italy
| | - Rossella Delle Donne
- Department of Molecular Medicine and Medical Biotechnologies, University 'Federico II', Naples, 80131, Italy
| | - Maria Sepe
- Department of Molecular Medicine and Medical Biotechnologies, University 'Federico II', Naples, 80131, Italy
| | - Omar Torres-Quesada
- Institute of Biochemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, A-6020 Innsbruck, Austria
| | - Daniela Intartaglia
- Telethon Institute of Genetics and Medicine, Pozzuoli (Naples), 80078, Italy
| | - Corrado Garbi
- Department of Molecular Medicine and Medical Biotechnologies, University 'Federico II', Naples, 80131, Italy
| | - Luigi Insabato
- Department of Advanced Biomedical Sciences, University Federico II, Naples, 80131, Italy
| | - Margherita Santoriello
- Department of Molecular Medicine and Medical Biotechnologies, University 'Federico II', Naples, 80131, Italy
| | - Verena A Bachmann
- Institute of Biochemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, A-6020 Innsbruck, Austria
| | - Matthis Synofzik
- Department of Neurodegeneration, Hertie Institute for Clinical Brain Research (HIH), University of Tübingen and German Center for Neurodegenerative Diseases (DZNE), 72076, Tübingen, Germany
| | - Herbert H Lindner
- Division of Clinical Biochemistry, Biocenter Medical University of Innsbruck, Innrain 80-82, A-6020, Innsbruck, Austria
| | - Ivan Conte
- Telethon Institute of Genetics and Medicine, Pozzuoli (Naples), 80078, Italy
| | - Eduard Stefan
- Institute of Biochemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, A-6020 Innsbruck, Austria
| | - Antonio Feliciello
- Department of Molecular Medicine and Medical Biotechnologies, University 'Federico II', Naples, 80131, Italy.
| |
Collapse
|
27
|
Abstract
PURPOSE OF REVIEW Primary cilia have become important organelles implicated in embryonic development, organogenesis, health, and diseases. Although many studies in cell biology have focused on changes in ciliary length or ciliogenesis, the most common readout for evaluating ciliary function is intracellular calcium. RECENT FINDINGS Recent tools have allowed us to examine intracellular calcium in more precise locations, that is, the cilioplasm and cytoplasm. Advances in calcium imaging have also allowed us to identify which cilia respond to particular stimuli. Furthermore, direct electrophysiological measurement of ionic currents within a cilium has provided a wealth of information for understanding the sensory roles of primary cilia. SUMMARY Calcium imaging and direct measurement of calcium currents demonstrate that primary cilia are sensory organelles that house several types of functional calcium channels. Although intracellular calcium now allows a functional readout for primary cilia, discussions on the relative contributions of the several channel types have just begun. Perhaps, all of these calcium channels are required and necessary to differentiate stimuli in different microenvironments.
Collapse
|
28
|
Calcium-axonemal microtubuli interactions underlie mechanism(s) of primary cilia morphological changes. J Biol Phys 2017; 44:53-80. [PMID: 29090363 DOI: 10.1007/s10867-017-9475-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 10/04/2017] [Indexed: 12/16/2022] Open
Abstract
We have used cell culture of astrocytes aligned within microchannels to investigate calcium effects on primary cilia morphology. In the absence of calcium and in the presence of flow of media (10 μL.s-1) the majority (90%) of primary cilia showed reversible bending with an average curvature of 2.1 ± 0.9 × 10-4 nm-1. When 1.0 mM calcium was present, 90% of cilia underwent bending. Forty percent of these cilia demonstrated strong irreversible bending, resulting in a final average curvature of 3.9 ± 1 × 10-4 nm-1, while 50% of cilia underwent bending similar to that observed during calcium-free flow. The average length of cilia was shifted toward shorter values (3.67 ± 0.34 μm) when exposed to excess calcium (1.0 mM), compared to media devoid of calcium (3.96 ± 0.26 μm). The number of primary cilia that became curved after calcium application was reduced when the cell culture was pre-incubated with 15 μM of the microtubule stabilizer, taxol, for 60 min prior to calcium application. Calcium caused single microtubules to curve at a concentration ≈1.0 mM in vitro, but at higher concentration (≈1.5 mM) multiple microtubule curving occurred. Additionally, calcium causes microtubule-associated protein-2 conformational changes and its dislocation from the microtubule wall at the location of microtubule curvature. A very small amount of calcium, that is 1.45 × 1011 times lower than the maximal capacity of TRPPs calcium channels, may cause gross morphological changes (curving) of primary cilia, while global cytosol calcium levels are expected to remain unchanged. These findings reflect the non-linear manner in which primary cilia may respond to calcium signaling, which in turn may influence the course of development of ciliopathies and cancer.
Collapse
|
29
|
Primary Cilium Formation and Ciliary Protein Trafficking Is Regulated by the Atypical MAP Kinase MAPK15 in Caenorhabditis elegans and Human Cells. Genetics 2017; 207:1423-1440. [PMID: 29021280 DOI: 10.1534/genetics.117.300383] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 10/05/2017] [Indexed: 11/18/2022] Open
Abstract
Motile and immotile (or primary) cilia are microtubule-based structures that mediate multiple cellular functions, including the transduction of environmental cues, developmental signaling, cellular motility, and modulation of fluid flow. Although their core architectures are similar, motile and primary cilia exhibit marked structural differences that underlie distinct functional properties. However, the extent to which ciliogenesis mechanisms are shared between these different cilia types is not fully described. Here, we report that the atypical MAP kinase MAPK15 (ERK7/8), implicated in the formation of vertebrate motile cilia, also regulates the formation of primary cilia in Caenorhabditis elegans sensory neurons and human cells. We find that MAPK15 localizes to a basal body subdomain with the ciliopathy protein BBS7 and to cell-cell junctions. MAPK15 also regulates the localization of ciliary proteins involved in cilium structure, transport, and signaling. Our results describe a primary cilia-related role for this poorly studied member of the MAPK family in vivo, and indicate a broad requirement for MAPK15 in the formation of multiple ciliary classes across species.
Collapse
|
30
|
Shamloo K, Chen J, Sardar J, Sherpa RT, Pala R, Atkinson KF, Pearce WJ, Zhang L, Nauli SM. Chronic Hypobaric Hypoxia Modulates Primary Cilia Differently in Adult and Fetal Ovine Kidneys. Front Physiol 2017; 8:677. [PMID: 28979210 PMCID: PMC5611369 DOI: 10.3389/fphys.2017.00677] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 08/24/2017] [Indexed: 11/13/2022] Open
Abstract
Hypoxic environments at high altitude have significant effects on kidney injury. Following injury, renal primary cilia display length alterations. Primary cilia are mechanosensory organelles that regulate tubular architecture. The effect of hypoxia on cilia length is still controversial in cultured cells, and no corresponding in vivo study exists. Using fetal and adult sheep, we here study the effect of chronic hypobaric hypoxia on the renal injury, intracellular calcium signaling and the relationship between cilia length and cilia function. Our results show that although long-term hypoxia induces renal fibrosis in both fetal and adult kidneys, fetal kidneys are more susceptible to hypoxia-induced renal injury. Unlike hypoxic adult kidneys, hypoxic fetal kidneys are characterized by interstitial edema, tubular disparition and atrophy. We also noted that there is an increase in the cilia length as well as an increase in the cilia function in the hypoxic fetal proximal and distal collecting epithelia. Hypoxia, however, has no significant effect on primary cilia in the adult kidneys. Increased cilia length is also associated with greater flow-induced intracellular calcium signaling in renal epithelial cells from hypoxic fetuses. Our studies suggest that while hypoxia causes renal fibrosis in both adult and fetal kidneys, hypoxia-induced alteration in cilia length and function are specific to more severe renal injuries in fetal hypoxic kidneys.
Collapse
Affiliation(s)
- Kiumars Shamloo
- Department of Biomedical and Pharmaceutical Sciences, Chapman UniversityIrvine, CA, United States
| | - Juan Chen
- Department of Biomedical and Pharmaceutical Sciences, Chapman UniversityIrvine, CA, United States
| | - Jasmine Sardar
- Department of Biomedical and Pharmaceutical Sciences, Chapman UniversityIrvine, CA, United States
| | - Rinzhin T Sherpa
- Department of Biomedical and Pharmaceutical Sciences, Chapman UniversityIrvine, CA, United States
| | - Rajasekharreddy Pala
- Department of Biomedical and Pharmaceutical Sciences, Chapman UniversityIrvine, CA, United States
| | - Kimberly F Atkinson
- Department of Biomedical and Pharmaceutical Sciences, Chapman UniversityIrvine, CA, United States
| | - William J Pearce
- Departments of Basic Sciences, Physiology and Pharmacology, Lawrence D. Longo MD Center for Perinatal Biology, Loma Linda University School of MedicineLoma Linda, CA, United States
| | - Lubo Zhang
- Departments of Basic Sciences, Physiology and Pharmacology, Lawrence D. Longo MD Center for Perinatal Biology, Loma Linda University School of MedicineLoma Linda, CA, United States
| | - Surya M Nauli
- Department of Biomedical and Pharmaceutical Sciences, Chapman UniversityIrvine, CA, United States.,Division of Nephrology and Hypertension, Department of Medicine, University of California, IrvineIrvine, CA, United States
| |
Collapse
|
31
|
Abstract
Primary cilia are small, antenna-like structures that detect mechanical and chemical cues and transduce extracellular signals. While mammalian primary cilia were first reported in the late 1800s, scientific interest in these sensory organelles has burgeoned since the beginning of the twenty-first century with recognition that primary cilia are essential to human health. Among the most common clinical manifestations of ciliary dysfunction are renal cysts. The molecular mechanisms underlying renal cystogenesis are complex, involving multiple aberrant cellular processes and signaling pathways, while initiating molecular events remain undefined. Autosomal Dominant Polycystic Kidney Disease is the most common renal cystic disease, caused by disruption of polycystin-1 and polycystin-2 transmembrane proteins, which evidence suggests must localize to primary cilia for proper function. To understand how the absence of these proteins in primary cilia may be remediated, we review intracellular trafficking of polycystins to the primary cilium. We also examine the controversial mechanisms by which primary cilia transduce flow-mediated mechanical stress into intracellular calcium. Further, to better understand ciliary function in the kidney, we highlight the LKB1/AMPK, Wnt, and Hedgehog developmental signaling pathways mediated by primary cilia and misregulated in renal cystic disease.
Collapse
|
32
|
Abstract
Although solitary or sensory cilia are present in most cells of the body and their existence has been known since the sixties, very little is known about their functions. One suspected function is fluid flow sensing- physical bending of cilia produces an influx of Ca++, which can then result in a variety of activated signaling pathways. Defective cilia and ciliary-associated proteins have been shown to result in cystic diseases. Autosomal Dominant Polycystic Kidney Disease (ADPKD) is a progressive disease, typically appearing in the 5th decade of life and is one of the most common monogenetic inherited human diseases, affecting approximately 600,000 people in the United States. Because the mechanical properties of cilia impact their response to applied flow, we asked how the stiffness of cilia can be controlled pharmacologically. We performed an experiment subjecting cilia to Taxol (a microtubule stabilizer) and CoCl2 (a HIF stabilizer to model hypoxia). Madin-Darby Canine Kidney (MDCK) cells were selected as our model system. After incubation with a selected pharmacological agent, cilia were optically trapped and the bending modulus measured. We found that HIF stabilization significantly weakens cilia. These results illustrate a method to alter the mechanical properties of primary cilia and potentially alter the flow sensing properties of cilia.
Collapse
Affiliation(s)
- Andrew Resnick
- Department of Physics, Cleveland State University, Cleveland, Ohio, United States of America.,Center for Gene Regulation in Health and Disease, Cleveland State University, Cleveland, Ohio, United States of America
| |
Collapse
|
33
|
Orhon I, Dupont N, Zaidan M, Boitez V, Burtin M, Schmitt A, Capiod T, Viau A, Beau I, Kuehn EW, Friedlander G, Terzi F, Codogno P. Primary-cilium-dependent autophagy controls epithelial cell volume in response to fluid flow. Nat Cell Biol 2016; 18:657-67. [PMID: 27214279 DOI: 10.1038/ncb3360] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 04/18/2016] [Indexed: 12/31/2022]
Abstract
Autophagy is an adaptation mechanism that is vital for cellular homeostasis in response to various stress conditions. Previous reports indicate that there is a functional interaction between the primary cilium (PC) and autophagy. The PC, a microtubule-based structure present at the surface of numerous cell types, is a mechanical sensor. Here we show that autophagy induced by fluid flow regulates kidney epithelial cell volume in vitro and in vivo. PC ablation blocked autophagy induction and cell-volume regulation. In addition, inhibition of autophagy in ciliated cells impaired the flow-dependent regulation of cell volume. PC-dependent autophagy can be triggered either by mTOR inhibition or a mechanism dependent on the polycystin 2 channel. Only the LKB1-AMPK-mTOR signalling pathway was required for the flow-dependent regulation of cell volume by autophagy. These findings suggest that therapies regulating autophagy should be considered in developing treatments for PC-related diseases.
Collapse
Affiliation(s)
- Idil Orhon
- Institut Necker Enfants-Malades (INEM), INSERM U1151-CNRS UMR 8253, Université Paris Descartes-Sorbonne Paris Cité, Paris F-75993, France
| | - Nicolas Dupont
- Institut Necker Enfants-Malades (INEM), INSERM U1151-CNRS UMR 8253, Université Paris Descartes-Sorbonne Paris Cité, Paris F-75993, France
| | - Mohamad Zaidan
- Institut Necker Enfants-Malades (INEM), INSERM U1151-CNRS UMR 8253, Université Paris Descartes-Sorbonne Paris Cité, Paris F-75993, France
| | - Valérie Boitez
- Institut Necker Enfants-Malades (INEM), INSERM U1151-CNRS UMR 8253, Université Paris Descartes-Sorbonne Paris Cité, Paris F-75993, France
| | - Martine Burtin
- Institut Necker Enfants-Malades (INEM), INSERM U1151-CNRS UMR 8253, Université Paris Descartes-Sorbonne Paris Cité, Paris F-75993, France
| | - Alain Schmitt
- Institut Cochin, INSERM U1016-CNRS UMR 8104, Université Paris Descartes-Sorbonne Paris Cité, Paris F-75014, France
| | - Thierry Capiod
- Institut Necker Enfants-Malades (INEM), INSERM U1151-CNRS UMR 8253, Université Paris Descartes-Sorbonne Paris Cité, Paris F-75993, France
| | - Amandine Viau
- Department of Nephrology, University Medical Center, Albert-Ludwig-University of Freiburg, D-79106 Freiburg, Germany
| | - Isabelle Beau
- INSERM UMR 1185, Université Paris-Sud 11, Kremlin-Bicêtre F-94276, France
| | - E Wolfgang Kuehn
- Department of Nephrology, University Medical Center, Albert-Ludwig-University of Freiburg, D-79106 Freiburg, Germany.,Center for Biological Signaling Studies (bioss), Albert-Ludwig-University, D-79104 Freiburg, Germany
| | - Gérard Friedlander
- Institut Necker Enfants-Malades (INEM), INSERM U1151-CNRS UMR 8253, Université Paris Descartes-Sorbonne Paris Cité, Paris F-75993, France
| | - Fabiola Terzi
- Institut Necker Enfants-Malades (INEM), INSERM U1151-CNRS UMR 8253, Université Paris Descartes-Sorbonne Paris Cité, Paris F-75993, France
| | - Patrice Codogno
- Institut Necker Enfants-Malades (INEM), INSERM U1151-CNRS UMR 8253, Université Paris Descartes-Sorbonne Paris Cité, Paris F-75993, France
| |
Collapse
|
34
|
Liang Y, Meng D, Zhu B, Pan J. Mechanism of ciliary disassembly. Cell Mol Life Sci 2016; 73:1787-802. [PMID: 26869233 PMCID: PMC11108551 DOI: 10.1007/s00018-016-2148-7] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 01/22/2016] [Accepted: 01/25/2016] [Indexed: 12/19/2022]
Abstract
As motile organelles and sensors, cilia play pivotal roles in cell physiology, development and organ homeostasis. Ciliary defects are associated with a class of cilia-related diseases or developmental disorders, termed ciliopathies. Even though the presence of cilia is required for diverse functions, cilia can be removed through ciliary shortening or resorption that necessitates disassembly of the cilium, which occurs normally during cell cycle progression, cell differentiation and in response to cellular stress. The functional significance of ciliary resorption is highlighted in controlling the G1-S transition during cell cycle progression. Internal or external cues that trigger ciliary resorption initiate signaling cascades that regulate several downstream events including depolymerization of axonemal microtubules, dynamic changes in actin and the ciliary membrane, regulation of intraflagellar transport and posttranslational modifications of ciliary proteins. To ensure ciliary resorption, both the active disassembly of the cilium and the simultaneous inhibition of ciliary assembly must be coordinately regulated.
Collapse
Affiliation(s)
- Yinwen Liang
- MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Dan Meng
- MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Bing Zhu
- MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Junmin Pan
- MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, China.
| |
Collapse
|
35
|
Genetic Ablation of Type III Adenylyl Cyclase Exerts Region-Specific Effects on Cilia Architecture in the Mouse Nose. PLoS One 2016; 11:e0150638. [PMID: 26942602 PMCID: PMC4778765 DOI: 10.1371/journal.pone.0150638] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 02/17/2016] [Indexed: 12/18/2022] Open
Abstract
We recently reported that olfactory sensory neurons in the dorsal zone of the mouse olfactory epithelium exhibit drastic location-dependent differences in cilia length. Furthermore, genetic ablation of type III adenylyl cyclase (ACIII), a key olfactory signaling protein and ubiquitous marker for primary cilia, disrupts the cilia length pattern and results in considerably shorter cilia, independent of odor-induced activity. Given the significant impact of ACIII on cilia length in the dorsal zone, we sought to further investigate the relationship between cilia length and ACIII level in various regions throughout the mouse olfactory epithelium. We employed whole-mount immunohistochemical staining to examine olfactory cilia morphology in phosphodiesterase (PDE) 1C-/-;PDE4A-/- (simplified as PDEs-/- hereafter) and ACIII-/- mice in which ACIII levels are reduced and ablated, respectively. As expected, PDEs-/- animals exhibit dramatically shorter cilia in the dorsal zone (i.e., where the cilia pattern is found), similar to our previous observation in ACIII-/- mice. Remarkably, in a region not included in our previous study, ACIII-/- animals (but not PDEs-/- mice) have dramatically elongated, comet-shaped cilia, as opposed to characteristic star-shaped olfactory cilia. Here, we reveal that genetic ablation of ACIII has drastic, location-dependent effects on cilia architecture in the mouse nose. These results add a new dimension to our current understanding of olfactory cilia structure and regional organization of the olfactory epithelium. Together, these findings have significant implications for both cilia and sensory biology.
Collapse
|
36
|
Dummer A, Poelma C, DeRuiter MC, Goumans MJTH, Hierck BP. Measuring the primary cilium length: improved method for unbiased high-throughput analysis. Cilia 2016; 5:7. [PMID: 26870322 PMCID: PMC4750300 DOI: 10.1186/s13630-016-0028-2] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 01/27/2016] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Primary cilia are cellular protrusions involved in mechanic and chemical sensing on almost all cells of our body. Important signaling pathways, including Hedgehog, TGFβ, and Ca(2+), are linked to cilia and/or cilia function. Cilia can vary in length, which has functional implications. To measure these lengths correctly, a standardized method with high reliability and throughput is required. To date, methods for length measurements in cultured cells after fluorescent staining for ciliary components are error prone with a possible human selection bias, primarily caused by the orientation of cilia with respect of the imaging plane. In tissue sections, accurate measurements become an even larger challenge due to additional random sectioning plane. Cilia can be reconstructed in 3D and measured one by one, but this is a labor-intensive procedure. Therefore, we developed a new, high-throughput method with less selection bias. RESULTS To identify the optimal type of measurement of straight and relatively short cilia, three methods were compared. The first method is based on maximum intensity projection (MIP), the second method is based on the Pythagorean theorem (PyT), and the third is based on 3D alternative angled slicing (DAAS). We investigated whether cilia visible in the plane of focus ('flat cilia'), and the ones that are angled with respect to the plane of focus are represented differently among the various methods. To test the agreement between the methods, intraclass correlations are calculated. To measure flat cilia, MIP and DAAS provided representative results, with the MIP method allowing for higher throughput. However, when measuring the angled cilia with MIP, the actual cilium length is overtly underestimated. DAAS and PyT are exchangeable methods for length measurements of the angled cilia, while PyT exhibits higher throughput and is therefore the preferred method for measuring the length of an angled cilium. CONCLUSION PyT is a universal measuring method to measure straight cilia, without selection bias. MIP provides similar results for flat cilia, but underestimates the length of angled cilia. In addition, PyT facilitates high-throughput length measurements. Manual tracking or reconstruction will be the method of choice to measure irregularly shaped cilia.
Collapse
Affiliation(s)
- Anneloes Dummer
- Department Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands
| | - Christian Poelma
- Laboratory for Aero & Hydrodynamics, Delft University of Technology, Delft, The Netherlands
| | - Marco C DeRuiter
- Department Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands
| | - Marie-José T H Goumans
- Department Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Beerend P Hierck
- Department Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
37
|
An Olfactory Cilia Pattern in the Mammalian Nose Ensures High Sensitivity to Odors. Curr Biol 2015; 25:2503-12. [PMID: 26365258 DOI: 10.1016/j.cub.2015.07.065] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 06/29/2015] [Accepted: 07/28/2015] [Indexed: 11/22/2022]
Abstract
In many sensory organs, specialized receptors are strategically arranged to enhance detection sensitivity and acuity. It is unclear whether the olfactory system utilizes a similar organizational scheme to facilitate odor detection. Curiously, olfactory sensory neurons (OSNs) in the mouse nose are differentially stimulated depending on the cell location. We therefore asked whether OSNs in different locations evolve unique structural and/or functional features to optimize odor detection and discrimination. Using immunohistochemistry, computational fluid dynamics modeling, and patch clamp recording, we discovered that OSNs situated in highly stimulated regions have much longer cilia and are more sensitive to odorants than those in weakly stimulated regions. Surprisingly, reduction in neuronal excitability or ablation of the olfactory G protein in OSNs does not alter the cilia length pattern, indicating that neither spontaneous nor odor-evoked activity is required for its establishment. Furthermore, the pattern is evident at birth, maintained into adulthood, and restored following pharmacologically induced degeneration of the olfactory epithelium, suggesting that it is intrinsically programmed. Intriguingly, type III adenylyl cyclase (ACIII), a key protein in olfactory signal transduction and ubiquitous marker for primary cilia, exhibits location-dependent gene expression levels, and genetic ablation of ACIII dramatically alters the cilia pattern. These findings reveal an intrinsically programmed configuration in the nose to ensure high sensitivity to odors.
Collapse
|
38
|
Atkinson KF, Kathem SH, Jin X, Muntean BS, Abou-Alaiwi WA, Nauli AM, Nauli SM. Dopaminergic signaling within the primary cilia in the renovascular system. Front Physiol 2015; 6:103. [PMID: 25932013 PMCID: PMC4399208 DOI: 10.3389/fphys.2015.00103] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 03/13/2015] [Indexed: 12/15/2022] Open
Abstract
Activation of dopamine receptor type-5 (DR5) has been known to reduce systemic blood pressure, most likely by increasing renal vasodilation and enhancing natriuresis in the kidney. However, the mechanism of DR5 in natriuresis and vasodilation was not clearly known. We have previously shown that DR5 is localized to primary cilia of proximal renal epithelial and vascular endothelial cells. We here show that selective activation of DR5 specifically induces calcium influx only in the primary cilia, whereas non-selective activation of dopamine receptor induces calcium fluxes in both cilioplasm and cytoplasm. Cilia-independent signaling induced by thrombin only shows calcium signaling within cytoplasm. Furthermore, calcium activation in the cilioplasm by DR5 increases length and mechanosensory function of primary cilia, leading to a greater response to fluid-shear stress. We therefore propose a new mechanism by which DR5 induces vasodilation via chemical and mechanical properties that are specific to primary cilia.
Collapse
Affiliation(s)
- Kimberly F Atkinson
- Department of Biomedical and Pharmaceutical Sciences, Chapman University Irvine, CA, USA
| | - Sarmed H Kathem
- Department of Biomedical and Pharmaceutical Sciences, Chapman University Irvine, CA, USA
| | - Xingjian Jin
- Department of Pharmacology and Experimental Therapeutics, University of Toledo Toledo, OH, USA
| | - Brian S Muntean
- Department of Pharmacology and Experimental Therapeutics, University of Toledo Toledo, OH, USA
| | - Wissam A Abou-Alaiwi
- Department of Pharmacology and Experimental Therapeutics, University of Toledo Toledo, OH, USA
| | - Andromeda M Nauli
- Department of Pharmaceutical and Biomedical Sciences, California Northstate University Elk Grove, CA, USA
| | - Surya M Nauli
- Department of Biomedical and Pharmaceutical Sciences, Chapman University Irvine, CA, USA
| |
Collapse
|
39
|
The primary cilium undergoes dynamic size modifications during adipocyte differentiation of human adipose stem cells. Biochem Biophys Res Commun 2015; 458:117-22. [PMID: 25637533 DOI: 10.1016/j.bbrc.2015.01.078] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 01/17/2015] [Indexed: 12/21/2022]
Abstract
The primary cilium is an organelle present in most of the cells of the organism. Ciliopathies are genetic disorders of the primary cilium and can be associated with obesity. We have studied the primary cilium during adipocyte differentiation of human adipose stem cells (hASC). We show here that the size of the primary cilium follows several modifications during adipocyte differentiation. It is absent in growing cells and appears in confluent cells. Interestingly, during the first days of differentiation, the cilium undergoes a dramatic elongation that can be mimicked by dexamethasone alone. Thereafter, its size decreases. It can still be detected in cells that begin to accumulate lipids but is absent in cells that are filled with lipids. The cilium elongation does not seem to affect the localization of proteins associated with the cilium such as Kif3-A or Smoothened. However, Hedgehog signaling, an anti-adipogenic pathway dependent on the primary cilium, is inhibited after three days of differentiation, concomitantly with the cilium size increase. Together, these results shed new light on the primary cilium and could provide us with new information on adipocyte differentiation under normal and pathological conditions.
Collapse
|
40
|
Verleyen D, Luyten FP, Tylzanowski P. Orphan G-protein coupled receptor 22 (Gpr22) regulates cilia length and structure in the zebrafish Kupffer's vesicle. PLoS One 2014; 9:e110484. [PMID: 25335082 PMCID: PMC4204907 DOI: 10.1371/journal.pone.0110484] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 09/16/2014] [Indexed: 02/06/2023] Open
Abstract
GPR22 is an orphan G protein-coupled receptor (GPCR). Since the ligand of the receptor is currently unknown, its biological function has not been investigated in depth. Many GPCRs and their intracellular effectors are targeted to cilia. Cilia are highly conserved eukaryotic microtubule-based organelles that protrude from the membrane of most mammalian cells. They are involved in a large variety of physiological processes and diseases. However, the details of the downstream pathways and mechanisms that maintain cilia length and structure are poorly understood. We show that morpholino knock down or overexpression of gpr22 led to defective left-right (LR) axis formation in the zebrafish embryo. Specifically, defective LR patterning included randomization of the left-specific lateral plate mesodermal genes (LPM) (lefty1, lefty2, southpaw and pitx2a), resulting in randomized cardiac looping. Furthermore, gpr22 inactivation in the Kupffer’s vesicle (KV) alone was still able to generate the phenotype, indicating that Gpr22 mainly regulates LR asymmetry through the KV. Analysis of the KV cilia by immunofluorescence and transmission electron microscopy (TEM), revealed that gpr22 knock down or overexpression resulted in changes of cilia length and structure. Further, we found that Gpr22 does not act upstream of the two cilia master regulators, Foxj1a and Rfx2. To conclude, our study characterized a novel player in the field of ciliogenesis.
Collapse
Affiliation(s)
- Daphne Verleyen
- Department of Development and Regeneration, Laboratory for Developmental and Stem Cell Biology, Skeletal Biology and Engineering Research Centre, University of Leuven, Leuven, Belgium
| | - Frank P. Luyten
- Department of Development and Regeneration, Laboratory for Developmental and Stem Cell Biology, Skeletal Biology and Engineering Research Centre, University of Leuven, Leuven, Belgium
| | - Przemko Tylzanowski
- Department of Development and Regeneration, Laboratory for Developmental and Stem Cell Biology, Skeletal Biology and Engineering Research Centre, University of Leuven, Leuven, Belgium
- Department of Biochemistry and Molecular Biology, Medical University, Lublin, Poland
- * E-mail:
| |
Collapse
|
41
|
Jin X, Muntean BS, Aal-Aaboda MS, Duan Q, Zhou J, Nauli SM. L-type calcium channel modulates cystic kidney phenotype. Biochim Biophys Acta Mol Basis Dis 2014; 1842:1518-26. [PMID: 24925129 DOI: 10.1016/j.bbadis.2014.06.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 05/19/2014] [Accepted: 06/02/2014] [Indexed: 12/13/2022]
Abstract
In polycystic kidney disease (PKD), abnormal proliferation and genomic instability of renal epithelia have been associated with cyst formation and kidney enlargement. We recently showed that L-type calcium channel (CaV1.2) is localized to primary cilia of epithelial cells. Previous studies have also shown that low intracellular calcium level was associated with the hyperproliferation phenotype in the epithelial cells. However, the relationship between calcium channel and cystic kidney phenotype is largely unknown. In this study, we generated cells with somatic deficient Pkd1 or Pkd2 to examine ciliary CaV1.2 function via lentiviral knockdown or pharmacological verapamil inhibition. Although inhibition of CaV1.2 expression or function did not change division and growth patterns in wild-type epithelium, it led to hyperproliferation and polyploidy in mutant cells. Lack of CaV1.2 in Pkd mutant cells also decreased the intracellular calcium level. This contributed to a decrease in CaM kinase activity, which played a significant role in regulating Akt and Erk signaling pathways. Consistent with our in vitro results, CaV1.2 knockdown in zebrafish and Pkd1 heterozygous mice facilitated the formation of kidney cysts. Larger cysts were developed faster in Pkd1 heterozygous mice with CaV1.2 knockdown. Overall, our findings emphasized the importance of CaV1.2 expression in kidneys with somatic Pkd mutation. We further suggest that CaV1.2 could serve as a modifier gene to cystic kidney phenotype.
Collapse
Affiliation(s)
- Xingjian Jin
- Department of Physiology and Pharmacology, The University of Toledo, Toledo, OH, USA
| | - Brian S Muntean
- Department of Medicinal and Biological Chemistry, The University of Toledo, Toledo, OH, USA
| | - Munaf S Aal-Aaboda
- Department of Physiology and Pharmacology, The University of Toledo, Toledo, OH, USA
| | - Qiming Duan
- Department of Biochemistry and Cancer Biology, USA
| | - Jing Zhou
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, MA, USA
| | - Surya M Nauli
- Department of Physiology and Pharmacology, The University of Toledo, Toledo, OH, USA; Department of Medicinal and Biological Chemistry, The University of Toledo, Toledo, OH, USA.
| |
Collapse
|
42
|
Jin X, Mohieldin AM, Muntean BS, Green JA, Shah JV, Mykytyn K, Nauli SM. Cilioplasm is a cellular compartment for calcium signaling in response to mechanical and chemical stimuli. Cell Mol Life Sci 2014; 71:2165-78. [PMID: 24104765 PMCID: PMC3981964 DOI: 10.1007/s00018-013-1483-1] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Revised: 09/16/2013] [Accepted: 09/17/2013] [Indexed: 12/23/2022]
Abstract
Primary cilia with a diameter of ~200 nm have been implicated in development and disease. Calcium signaling within a primary cilium has never been directly visualized and has therefore remained a speculation. Fluid-shear stress and dopamine receptor type-5 (DR5) agonist are among the few stimuli that require cilia for intracellular calcium signal transduction. However, it is not known if these stimuli initiate calcium signaling within the cilium or if the calcium signal originates in the cytoplasm. Using an integrated single-cell imaging technique, we demonstrate for the first time that calcium signaling triggered by fluid-shear stress initiates in the primary cilium and can be distinguished from the subsequent cytosolic calcium response through the ryanodine receptor. Importantly, this flow-induced calcium signaling depends on the ciliary polycystin-2 calcium channel. While DR5-specific agonist induces calcium signaling mainly in the cilioplasm via ciliary CaV1.2, thrombin specifically induces cytosolic calcium signaling through the IP3 receptor. Furthermore, a non-specific calcium ionophore triggers both ciliary and cytosolic calcium responses. We suggest that cilia not only act as sensory organelles but also function as calcium signaling compartments. Cilium-dependent signaling can spread to the cytoplasm or be contained within the cilioplasm. Our study thus provides the first model to understand signaling within the cilioplasm of a living cell.
Collapse
MESH Headings
- Animals
- Calcium Channels, L-Type/genetics
- Calcium Channels, L-Type/metabolism
- Calcium Ionophores/pharmacology
- Calcium Signaling
- Cilia/drug effects
- Cilia/metabolism
- Cytoplasm/drug effects
- Cytoplasm/metabolism
- Epithelial Cells/cytology
- Epithelial Cells/drug effects
- Epithelial Cells/metabolism
- Gene Expression Regulation
- Inositol 1,4,5-Trisphosphate Receptors/genetics
- Inositol 1,4,5-Trisphosphate Receptors/metabolism
- Kidney/cytology
- Kidney/drug effects
- Kidney/metabolism
- Mechanotransduction, Cellular
- Molecular Imaging
- Primary Cell Culture
- Receptors, TNF-Related Apoptosis-Inducing Ligand/genetics
- Receptors, TNF-Related Apoptosis-Inducing Ligand/metabolism
- Rheology
- Ryanodine Receptor Calcium Release Channel/genetics
- Ryanodine Receptor Calcium Release Channel/metabolism
- Single-Cell Analysis
- Stress, Mechanical
- Swine
- TRPP Cation Channels/genetics
- TRPP Cation Channels/metabolism
- Thrombin/pharmacology
Collapse
Affiliation(s)
- Xingjian Jin
- Department of Medicine, College of Medicine, The University of Toledo, Toledo, OH 43606 USA
| | - Ashraf M. Mohieldin
- Department of Pharmacology, College of Pharmacy and Pharmaceutical Sciences, The University of Toledo, Toledo, OH 43606 USA
| | - Brian S. Muntean
- Department of Pharmacology, College of Pharmacy and Pharmaceutical Sciences, The University of Toledo, Toledo, OH 43606 USA
| | - Jill A. Green
- Department of Pharmacology, College of Medicine, The Ohio State University, Columbus, OH 43210 USA
| | - Jagesh V. Shah
- Department of Systems Biology, Harvard Medical School and Renal Division, Brigham and Women’s Hospital, Boston, MA 02115 USA
| | - Kirk Mykytyn
- Department of Pharmacology, College of Medicine, The Ohio State University, Columbus, OH 43210 USA
| | - Surya M. Nauli
- Department of Medicine, College of Medicine, The University of Toledo, Toledo, OH 43606 USA
- Department of Pharmacology, College of Pharmacy and Pharmaceutical Sciences, The University of Toledo, Toledo, OH 43606 USA
- Department of Pharmacology, MS 1015, Health Education Building, Room 282D, The University of Toledo, 3000 Arlington Ave, Toledo, OH 43614 USA
| |
Collapse
|
43
|
Kathem SH, Mohieldin AM, Abdul-Majeed S, Ismail SH, Altaei QH, Alshimmari IK, Alsaidi MM, Khammas H, Nauli AM, Joe B, Nauli SM. Ciliotherapy: a novel intervention in polycystic kidney disease. JOURNAL OF GERIATRIC CARDIOLOGY : JGC 2014; 11:63-73. [PMID: 24748884 PMCID: PMC3981986 DOI: 10.3969/j.issn.1671-5411.2014.01.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 02/12/2014] [Accepted: 02/18/2014] [Indexed: 01/09/2023]
Abstract
Background Ciliopathies are a group of diseases associated with abnormal structure or function of primary cilia. Ciliopathies include polycystic kidney disease (PKD), a pathology associated with vascular hypertension. We previously showed that cilia length regulates cilia function, and cilia function is required for nitric oxide (NO) biosynthesis in endothelial cells. Because patients with PKD show abnormal sensory cilia function, the aim of our current study was to search for a targeted therapy focused on primary cilia, which we refer to as ‘ciliotherapy’. Methods and Results In the present studies, our in vitro analyses refined fenoldopam as an equipotent and more specific dopaminergic agonist to regulate cilia length and function. Our in vivo studies indicated that fenoldopam increased cilia length and serum NO thereby reducing blood pressure in a PKD mouse model. Our crossover, multicenter, double-blind and placebo-controlled clinical study further indicated that cilia-targeting therapy showed an overall reduction in mean arterial pressure in PKD patients. Conclusions Overall, our studies provide the first evidence of ciliotherapy as an innovative intervention in patients with abnormal primary cilia.
Collapse
Affiliation(s)
- Sarmed H Kathem
- Center for Hypertension and Personalized Medicine, University of Toledo, Health Science Building, Room 312, 3000 Arlington Ave., Toledo, OH 43614, USA ; Department of Pharmacology, University of Toledo, Health Education Building, Room 274, 3000 Arlington Ave., Toledo, OH 43614, USA ; College of Pharmacy, University of Baghdad, Bab-Almoadhum 14026, Baghdad, Iraq
| | - Ashraf M Mohieldin
- Center for Hypertension and Personalized Medicine, University of Toledo, Health Science Building, Room 312, 3000 Arlington Ave., Toledo, OH 43614, USA ; Department of Pharmacology, University of Toledo, Health Education Building, Room 274, 3000 Arlington Ave., Toledo, OH 43614, USA
| | - Shakila Abdul-Majeed
- Center for Hypertension and Personalized Medicine, University of Toledo, Health Science Building, Room 312, 3000 Arlington Ave., Toledo, OH 43614, USA ; Department of Pharmacology, University of Toledo, Health Education Building, Room 274, 3000 Arlington Ave., Toledo, OH 43614, USA
| | - Sajida H Ismail
- College of Pharmacy, University of Baghdad, Bab-Almoadhum 14026, Baghdad, Iraq
| | - Qaiss H Altaei
- Kidney Disease and Transplant Center, Medical City Complex, Bab-Almoadhum 14026, Baghdad, Iraq
| | | | | | - Hussein Khammas
- Alkadhumia Academic Hospital, Bab-Almoadhum 14026, Baghdad, Iraq
| | - Andromeda M Nauli
- Pharmaceutical & Biomedical Sciences, California Northstate University, 10811 International Drive, Rancho Cordova, CA 95670, USA
| | - Bina Joe
- Center for Hypertension and Personalized Medicine, University of Toledo, Health Science Building, Room 312, 3000 Arlington Ave., Toledo, OH 43614, USA
| | - Surya M Nauli
- Center for Hypertension and Personalized Medicine, University of Toledo, Health Science Building, Room 312, 3000 Arlington Ave., Toledo, OH 43614, USA ; Department of Pharmacology, University of Toledo, Health Education Building, Room 274, 3000 Arlington Ave., Toledo, OH 43614, USA
| |
Collapse
|
44
|
Upadhyay VS, Muntean BS, Kathem SH, Hwang JJ, Aboualaiwi WA, Nauli SM. Roles of dopamine receptor on chemosensory and mechanosensory primary cilia in renal epithelial cells. Front Physiol 2014; 5:72. [PMID: 24616705 PMCID: PMC3935400 DOI: 10.3389/fphys.2014.00072] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 02/06/2014] [Indexed: 01/11/2023] Open
Abstract
Dopamine plays a number of important physiological roles. However, activation of dopamine receptor type-5 (DR5) and its effect in renal epithelial cells have not been studied. Here, we show for the first time that DR5 is localized to primary cilia of LLCPK kidney cells. Renal epithelial cilia are mechanosensory organelles that sense and respond to tubular fluid-flow in the kidney. To determine the roles of DR5 and sensory cilia, we used dopamine to non-selectively and fenoldopam to selectively activate ciliary DR5. Compared to mock treatment, dopamine treated cells significantly increases the length of cilia. Fenoldopam further increases the length of cilia compared to dopamine treated cells. The increase in cilia length also increases the sensitivity of the cells in response to fluid-shear stress. The graded responses to dopamine- and fenoldopam-induced increase in cilia length further show that sensitivity to fluid-shear stress correlates to the length of cilia. Together, our studies suggest for the first time that dopamine or fenoldopam is an exciting agent that enhances structure and function of primary cilia. We further propose that dopaminergic agents can be used in “cilio-therapy” to treat diseases associated with abnormal cilia structure and/or function.
Collapse
Affiliation(s)
| | - Brian S Muntean
- Department of Medicinal and Biological Chemistry, The University of Toledo Toledo, OH, USA
| | - Sarmed H Kathem
- Department of Pharmacology, The University of Toledo Toledo, OH, USA ; Department of Pharmacology and Toxicology, College of Pharmacy, University of Baghdad Baghdad, Iraq
| | - Jangyoun J Hwang
- Department of Pharmacology, The University of Toledo Toledo, OH, USA
| | | | - Surya M Nauli
- Department of Pharmacology, The University of Toledo Toledo, OH, USA ; Department of Medicinal and Biological Chemistry, The University of Toledo Toledo, OH, USA
| |
Collapse
|
45
|
Surface topography regulates wnt signaling through control of primary cilia structure in mesenchymal stem cells. Sci Rep 2013; 3:3545. [PMID: 24346024 PMCID: PMC3866595 DOI: 10.1038/srep03545] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 12/03/2013] [Indexed: 12/22/2022] Open
Abstract
The primary cilium regulates cellular signalling including influencing wnt sensitivity by sequestering β-catenin within the ciliary compartment. Topographic regulation of intracellular actin-myosin tension can control stem cell fate of which wnt is an important mediator. We hypothesized that topography influences mesenchymal stem cell (MSC) wnt signaling through the regulation of primary cilia structure and function. MSCs cultured on grooves expressed elongated primary cilia, through reduced actin organization. siRNA inhibition of anterograde intraflagellar transport (IFT88) reduced cilia length and increased active nuclear β-catenin. Conversely, increased primary cilia assembly in MSCs cultured on the grooves was associated with decreased levels of nuclear active β-catenin, axin-2 induction and proliferation, in response to wnt3a. This negative regulation, on grooved topography, was reversed by siRNA to IFT88. This indicates that subtle regulation of IFT and associated cilia structure, tunes the wnt response controlling stem cell differentiation.
Collapse
|
46
|
Wann AKT, Thompson CL, Chapple JP, Knight MM. Interleukin-1β sequesters hypoxia inducible factor 2α to the primary cilium. Cilia 2013; 2:17. [PMID: 24330727 PMCID: PMC3886195 DOI: 10.1186/2046-2530-2-17] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 11/19/2013] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The primary cilium coordinates signalling in development, health and disease. Previously we have shown that the cilium is essential for the anabolic response to loading and the inflammatory response to interleukin-1β (IL-1β). We have also shown the primary cilium elongates in response to IL-1β exposure. Both anabolic phenotype and inflammatory pathology are proposed to be dependent on hypoxia-inducible factor 2 alpha (HIF-2α). The present study tests the hypothesis that an association exists between the primary cilium and HIFs in inflammatory signalling. RESULTS Here we show, in articular chondrocytes, that IL-1β-induces primary cilia elongation with alterations to cilia trafficking of arl13b. This elongation is associated with a transient increase in HIF-2α expression and accumulation in the primary cilium. Prolyl hydroxylase inhibition results in primary cilia elongation also associated with accumulation of HIF-2α in the ciliary base and axoneme. This recruitment and the associated cilia elongation is not inhibited by blockade of HIFα transcription activity or rescue of basal HIF-2α expression. Hypomorphic mutation to intraflagellar transport protein IFT88 results in limited ciliogenesis. This is associated with increased HIF-2α expression and inhibited response to prolyl hydroxylase inhibition. CONCLUSIONS These findings suggest that ciliary sequestration of HIF-2α provides negative regulation of HIF-2α expression and potentially activity. This study indicates, for the first time, that the primary cilium regulates HIF signalling during inflammation.
Collapse
Affiliation(s)
- Angus KT Wann
- Institute of Bioengineering and School of Engineering and Materials Science, Queen Mary University of London, Mile End, London, E1 4NS, UK
| | - Clare L Thompson
- Institute of Bioengineering and School of Engineering and Materials Science, Queen Mary University of London, Mile End, London, E1 4NS, UK
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - J Paul Chapple
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Martin M Knight
- Institute of Bioengineering and School of Engineering and Materials Science, Queen Mary University of London, Mile End, London, E1 4NS, UK
| |
Collapse
|
47
|
Abstract
The basic scheme of odor perception and signaling from olfactory cilia to the brain is well understood. However, factors that affect olfactory acuity of an animal, the threshold sensitivity to odorants, are less well studied. Using signal sequence trap screening of a mouse olfactory epithelium cDNA library, we identified a novel molecule, Goofy, that is essential for olfactory acuity in mice. Goofy encodes an integral membrane protein with specific expression in the olfactory and vomeronasal sensory neurons and predominant localization to the Golgi compartment. Goofy-deficient mice display aberrant olfactory phenotypes, including the impaired trafficking of adenylyl cyclase III, stunted olfactory cilia, and a higher threshold for physiological and behavioral responses to odorants. In addition, the expression of dominant-negative form of cAMP-dependent protein kinase results in shortening of olfactory cilia, implying a possible mechanistic link between cAMP and ciliogenesis in the olfactory sensory neurons. These results demonstrate that Goofy plays an important role in establishing the acuity of olfactory sensory signaling.
Collapse
|
48
|
Delaine-Smith RM, Sittichokechaiwut A, Reilly GC. Primary cilia respond to fluid shear stress and mediate flow-induced calcium deposition in osteoblasts. FASEB J 2013; 28:430-9. [PMID: 24097311 PMCID: PMC4012163 DOI: 10.1096/fj.13-231894] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Bone turnover in vivo is regulated by mechanical forces such as shear stress originating from interstitial oscillatory fluid flow (OFF), and bone cells in vitro respond to mechanical loading. However, the mechanisms by which bone cells sense mechanical forces, resulting in increased mineral deposition, are not well understood. The aim of this study was to investigate the role of the primary cilium in mechanosensing by osteoblasts. MLO-A5 murine osteoblasts were cultured in monolayer and subjected to two different OFF regimens: 5 short (2 h daily) bouts of OFF followed by morphological analysis of primary cilia; or exposure to chloral hydrate to damage or remove primary cilia and 2 short bouts (2 h on consecutive days) of OFF. Primary cilia were shorter and there were fewer cilia per cell after exposure to periods of OFF compared with static controls. Damage or removal of primary cilia inhibited OFF-induced PGE2 release into the medium and mineral deposition, assayed by Alizarin red staining. We conclude that primary cilia are important mediators of OFF-induced mineral deposition, which has relevance for the design of bone tissue engineering strategies and may inform clinical treatments of bone disorders causes by load-deficiency.—Delaine-Smith, R. M., Sittichokechaiwut, A., Reilly, G. C. Primary cilia respond to fluid shear stress and mediate flow-induced calcium deposition in osteoblasts.
Collapse
Affiliation(s)
- Robin M Delaine-Smith
- 1School of Engineering and Materials Science, Queen Mary University of London, Mile End Rd., London, E1 4NS, UK.
| | | | | |
Collapse
|
49
|
Wang S, Dong Z. Primary cilia and kidney injury: current research status and future perspectives. Am J Physiol Renal Physiol 2013; 305:F1085-98. [PMID: 23904226 DOI: 10.1152/ajprenal.00399.2013] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cilia, membrane-enclosed organelles protruding from the apical side of cells, can be divided into two classes: motile and primary cilia. During the past decades, motile cilia have been intensively studied. However, it was not until the 1990s that people began to realize the importance of primary cilia as cellular-specific sensors, particularly in kidney tubular epithelial cells. Furthermore, accumulating evidence indicates that primary cilia may be involved in the regulation of cell proliferation, differentiation, apoptosis, and planar cell polarity. Many signaling pathways, such as Wnt, Notch, Hedgehog, and mammalian target of rapamycin, have been located to the primary cilia. Thus primary cilia have been regarded as a hub that integrates signals from the extracellular environment. More importantly, dysfunction of this organelle may contribute to the pathogenesis of a large spectrum of human genetic diseases, named ciliopathies. The significance of primary cilia in acquired human diseases such as hypertension and diabetes has gradually drawn attention. Interestingly, recent reports disclosed that cilia length varies during kidney injury, and shortening of cilia enhances the sensitivity of epithelial cells to injury cues. This review briefly summarizes the current status of cilia research and explores the potential mechanisms of cilia-length changes during kidney injury as well as provides some thoughts to allure more insightful ideas and promotes the further study of primary cilia in the context of kidney injury.
Collapse
Affiliation(s)
- Shixuan Wang
- Dept. of Cellular Biology and Anatomy, Medical College of Georgia, Augusta, GA 30912.
| | | |
Collapse
|
50
|
Cardenas-Rodriguez M, Irigoín F, Osborn DPS, Gascue C, Katsanis N, Beales PL, Badano JL. The Bardet-Biedl syndrome-related protein CCDC28B modulates mTORC2 function and interacts with SIN1 to control cilia length independently of the mTOR complex. Hum Mol Genet 2013; 22:4031-42. [PMID: 23727834 DOI: 10.1093/hmg/ddt253] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
CCDC28B encodes a coiled coil domain-containing protein involved in ciliogenesis that was originally identified as a second site modifier of the ciliopathy Bardet-Biedl syndrome. We have previously shown that the depletion of CCDC28B leads to shortened cilia; however, the mechanism underlying how this protein controls ciliary length is unknown. Here, we show that CCDC28B interacts with SIN1, a component of the mTOR complex 2 (mTORC2), and that this interaction is important both in the context of mTOR signaling and in a hitherto unknown, mTORC-independent role of SIN1 in cilia biology. We show that CCDC28B is a positive regulator of mTORC2, participating in its assembly/stability and modulating its activity, while not affecting mTORC1 function. Further, we show that Ccdc28b regulates cilia length in vivo, at least in part, through its interaction with Sin1. Importantly, depletion of Rictor, another core component of mTORC2, does not result in shortened cilia. Taken together, our findings implicate CCDC28B in the regulation of mTORC2, and uncover a novel function of SIN1 regulating cilia length that is likely independent of mTOR signaling.
Collapse
|