1
|
Li P, Xiang Y, Wei J, Xu X, Wang J, Yu H, Li X, Lin H, Fu X. Follicle-stimulating hormone promotes EndMT in endothelial cells by upregulating ALKBH5 expression. Cell Mol Biol Lett 2025; 30:41. [PMID: 40186131 PMCID: PMC11969750 DOI: 10.1186/s11658-025-00720-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Accepted: 03/18/2025] [Indexed: 04/07/2025] Open
Abstract
BACKGROUND The incidence of atherosclerosis markedly rises following menopause. Our previous findings demonstrated that elevated follicle-stimulating hormone (FSH) levels in postmenopausal women accelerate atherosclerosis progression. Plaque instability, the fundamental pathological factor in acute coronary syndrome, primarily results from vascular embolism due to plaque rupture. Recent evidence highlights that endothelial-to-mesenchymal transition (EndMT) exacerbates plaque instability, although the link between FSH and EndMT has not been fully established. This investigation sought to explore the possible influence of FSH in modulating EndMT. METHODS In this study, apolipoprotein E-deficient (ApoE-/-) mice served as an atherosclerosis model, while human umbilical vascular endothelial cells (HUVECs) were used as cellular models. Protein levels were assessed through immunochemical techniques, gene expression was quantified via RT-qPCR, and nucleic acid-protein interactions were evaluated using immunoprecipitation. The m6A modification status was determined by MeRIP, and cellular behaviors were analyzed through standard biochemical assays. RESULTS Our results indicate that FSH induces EndMT both in vitro and in vivo. Additional investigation suggested that FSH upregulates the transcription factor Forkhead box protein M1 (FOXM1) at both protein and mRNA levels by enhancing the expression of AlkB homolog 5, RNA demethylase (ALKBH5). FSH reduces m6A modifications on FOXM1 through ALKBH5, leading to increased nascent transcript levels and mRNA stability of FOXM1. Dual-luciferase reporter assays highlighted cAMP-response element binding protein (CREB)'s essential function in facilitating the FSH-induced upregulation of ALKBH5. CONCLUSIONS These findings suggest that FSH promotes ALKBH5 expression, facilitates N6-methyladenosine (m6A) demethylation on FOXM1, and consequently, induces EndMT. This study elucidates the impact of FSH on plaque instability and provides insights into potential strategies to prevent acute coronary syndrome in postmenopausal women.
Collapse
Affiliation(s)
- Ping Li
- The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, 511518, Guangdong, People's Republic of China
- Key Laboratory of Cardiovascular Diseases, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, Guangdong, People's Republic of China
| | - Yixiao Xiang
- Key Laboratory of Cardiovascular Diseases, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, Guangdong, People's Republic of China
| | - Jinzhi Wei
- Key Laboratory of Cardiovascular Diseases, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, Guangdong, People's Republic of China
| | - Xingyan Xu
- Key Laboratory of Cardiovascular Diseases, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, Guangdong, People's Republic of China
| | - Jiale Wang
- Key Laboratory of Cardiovascular Diseases, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, Guangdong, People's Republic of China
| | - Haowei Yu
- Key Laboratory of Cardiovascular Diseases, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, Guangdong, People's Republic of China
| | - Xiaosa Li
- Key Laboratory of Cardiovascular Diseases, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, Guangdong, People's Republic of China.
- Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, Guangdong, People's Republic of China.
| | - Huiping Lin
- Key Laboratory of Cardiovascular Diseases, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, Guangdong, People's Republic of China.
- Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, Guangdong, People's Republic of China.
| | - Xiaodong Fu
- The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, 511518, Guangdong, People's Republic of China.
- Key Laboratory of Cardiovascular Diseases, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, Guangdong, People's Republic of China.
- Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, Guangdong, People's Republic of China.
| |
Collapse
|
2
|
Colalillo B, Sali S, Aldouhki AH, Aubry I, Di Marco S, Tremblay ML, Gallouzi IE. An HuR mutant, HuR-V225I, identified in adult T-cell Leukemia/Lymphoma, alters the pro-apoptotic function of HuR. Cell Death Discov 2024; 10:503. [PMID: 39695179 DOI: 10.1038/s41420-024-02268-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 11/24/2024] [Accepted: 12/09/2024] [Indexed: 12/20/2024] Open
Abstract
The RNA-binding protein HuR regulates various cellular processes, such as proliferation, differentiation, and cell fate. Moreover, recent studies have shown that HuR modulates the expression of factors important for tumor growth and progression. Despite its prominent role in tumorigenesis, until recently, there have been no reported mutations in HuR that have been associated to cancer. Here, we show that a HuR mutation, HuR-V225I, previously identified in a patient with Adult T-cell Leukemia/Lymphoma, interferes with the pro-apoptotic function of HuR. In response to apoptosis, HuR translocates to the cytoplasm and is cleaved in a caspase-dependent manner. In cervical cancer cells, neuroblastoma cells, and T-lymphocytes, we observed a decrease in cleavage of the HuR-V225I mutant under apoptotic conditions. This effect was shown to be mediated by the nuclear retention of HuR-V225I. Finally, expression of the HuR-V225I mutant decreases the cell's response to apoptotic stimuli through the increased expression of mRNAs encoding anti-apoptotic factors, such as XIAP and BCL-2. Therefore, our data establishes that the absence of HuR cytoplasmic translocation and cleavage promotes cell viability, and that acquiring this mutation during tumorigenesis may thus reduce the efficacy of cancer therapy.
Collapse
Affiliation(s)
- Bianca Colalillo
- Department of Biochemistry, McGill University, Montreal, QC, Canada
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, QC, Canada
| | - Sujitha Sali
- KAUST Smart-Health Initiative and Biological and Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Jeddah, Saudi Arabia
| | - Ali H Aldouhki
- KAUST Smart-Health Initiative and Biological and Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Jeddah, Saudi Arabia
| | - Isabelle Aubry
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, QC, Canada
| | - Sergio Di Marco
- Department of Biochemistry, McGill University, Montreal, QC, Canada
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, QC, Canada
- KAUST Smart-Health Initiative and Biological and Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Jeddah, Saudi Arabia
| | - Michel L Tremblay
- Department of Biochemistry, McGill University, Montreal, QC, Canada.
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, QC, Canada.
| | - Imed E Gallouzi
- Department of Biochemistry, McGill University, Montreal, QC, Canada.
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, QC, Canada.
- KAUST Smart-Health Initiative and Biological and Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Jeddah, Saudi Arabia.
| |
Collapse
|
3
|
Gado I, Garbagnoli M, Ambrosio FA, Listro R, Parafioriti M, Cauteruccio S, Rossi D, Linciano P, Costa G, Alcaro S, Vasile F, Collina S. Peptide Nucleic Acids in Saturation Transfer Difference Nuclear Magnetic Resonance Experiments: A Simple and Valuable Tool for Studying HuR-Small Molecule Complexes. ACS OMEGA 2024; 9:45147-45158. [PMID: 39554404 PMCID: PMC11561638 DOI: 10.1021/acsomega.4c06244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/10/2024] [Accepted: 10/16/2024] [Indexed: 11/19/2024]
Abstract
Ribonucleic acid (RNA)-binding proteins (RBPs) play a key role in regulating RNA stability, fate, function, gene expression, post-transcriptional modifications, and cellular activities. Among the various RBPs identified to date, the Hu proteins have been the most extensively studied. Specifically, HuR influences several cellular processes, including cell proliferation, differentiation, and stress response, and it is frequently overexpressed in various solid tumors. Several HuR ligands have been identified so far, highlighting the druggability of such a protein. To discover the novel HuR-RNA interfering agents, biophysical assays represent a promising approach. To overcome limitations for RNA manipulation, in this work, we explored the use of PNA (peptide nucleic acid) as an RNA analogue in interaction studies. Molecular modeling simulation revealed the ability of aegPNA to bind HuR and, therefore, the synthesis of the designed PNA was conducted. The saturation transfer difference (STD) nuclear magnetic resonance (NMR) technique was adopted to evaluate the ability of HuR ligands to interfere with the HuR-PNA complex, comparing the obtained results with RNAs. Our results evidenced that PNA may be considered a simple and valuable tool to analyze the interaction and interfering properties of HuR ligands by STD-NMR, thus improving the precision and reliability of the approach.
Collapse
Affiliation(s)
- Irene Gado
- Department
of Chemistry, University of Milan, Via Golgi 19, Milano 20133, Italy
| | - Martina Garbagnoli
- Department
of Drug Sciences, University of Pavia, Via Taramelli 12, Pavia 27100, Italy
| | - Francesca Alessandra Ambrosio
- Dipartimento
di Scienze della Salute, Università
“Magna Græcia” di Catanzaro, Campus “S. Venuta”, Catanzaro 88100, Italy
| | - Roberta Listro
- Department
of Drug Sciences, University of Pavia, Via Taramelli 12, Pavia 27100, Italy
| | - Michela Parafioriti
- Department
of Chemistry, University of Milan, Via Golgi 19, Milano 20133, Italy
- Department
of Drug Sciences, University of Pavia, Via Taramelli 12, Pavia 27100, Italy
| | - Silvia Cauteruccio
- Department
of Chemistry, University of Milan, Via Golgi 19, Milano 20133, Italy
| | - Daniela Rossi
- Department
of Drug Sciences, University of Pavia, Via Taramelli 12, Pavia 27100, Italy
| | - Pasquale Linciano
- Department
of Drug Sciences, University of Pavia, Via Taramelli 12, Pavia 27100, Italy
| | - Giosuè Costa
- Dipartimento
di Scienze della Salute, Università
“Magna Græcia” di Catanzaro, Campus “S. Venuta”, Catanzaro 88100, Italy
- Net4Science
Academic Spin-Off, Università “Magna
Græcia” di Catanzaro, Campus “S. Venuta”, Catanzaro 88100, Italy
| | - Stefano Alcaro
- Dipartimento
di Scienze della Salute, Università
“Magna Græcia” di Catanzaro, Campus “S. Venuta”, Catanzaro 88100, Italy
- Net4Science
Academic Spin-Off, Università “Magna
Græcia” di Catanzaro, Campus “S. Venuta”, Catanzaro 88100, Italy
| | - Francesca Vasile
- Department
of Chemistry, University of Milan, Via Golgi 19, Milano 20133, Italy
| | - Simona Collina
- Department
of Drug Sciences, University of Pavia, Via Taramelli 12, Pavia 27100, Italy
| |
Collapse
|
4
|
Luo C, Chen G, Li R, Peng S, Zhang P, Wang F, Yu S, Zhu Y, Zhang J. Juglone suppresses vasculogenic mimicry in glioma through inhibition of HuR-mediated VEGF-A expression. Biochem Pharmacol 2024; 227:116458. [PMID: 39102993 DOI: 10.1016/j.bcp.2024.116458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 07/05/2024] [Accepted: 08/01/2024] [Indexed: 08/07/2024]
Abstract
Vasculogenic mimicry (VM) serves as a vascular-like channel that provides important substances for tumor growth and is a primary factor in glioblastoma (GBM) drug resistance. Human Antigen R (HuR)-an mRNA-binding protein-is highly expressed in GBM, closely related to tumor progression, and deemed a potential drug target. Although some small-molecule compounds have been identified to disrupt HuR binding to target mRNA, they remain in the preclinical research stage, suggesting the need for further validation and development of HuR inhibitors. In our study, we aim to screen for potential HuR inhibitors and investigate their efficacy and molecular mechanisms in GBM. We employed the fluorescence polarization method to identify HuR inhibitors from a natural compound library, confirming the efficacy of juglone in effectively inhibiting the binding of HuR to AREVegf-a. Further validation of the binding of juglone to HuR at the protein level was conducted through electrophoretic mobility shift analysis, surface plasmon resonance, and molecular docking. Furthermore, juglone demonstrated inhibitory effects on glioma growth and VM formation in vitro and in vivo. Moreover, it was observed that juglone reversed epithelial-mesenchymal transition by inhibiting the VEGF-A/VEGFR2/AKT/SNAIL signaling pathway. Finally, we established the capability of juglone to target HuR in U251 cells through HuR knockdown, mRNA stability, and cell thermal shift assays. Therefore, this study identifies juglone as a novel HuR inhibitor, potentially offering promise as a lead compound for anti-VM therapy in GBM by targeting HuR. Abbreviations: AKT, protein kinase B; ARE, adenine-and uridine-rich elements; CETSA, cellular thermal shift assay; DMEM, Dulbecco's modified Eagle's medium; ELISA, enzyme linked immune sorbent assay; EMSA, electrophoretic mobility shift assay; EMT, epithelial mesenchymal transition; FP, fluorescence polarization; GBM, glioblastoma; HTS, high-throughput screening; HuR, human antigen R; IF, Immunofluorescence; PAS, periodic acid-Schiff; PI3K, phosphoinositide-3 kinase; qRT-PCR, quantitative real-time PCR; RRMs, RNA recognition motifs; SPR, surface plasmon resonance. TMZ, temozolomide; VM, vasculogenic mimicry; VEGF-A, Vascular endothelial growth factor-A; VEGFR2, Vascular endothelial growth factor receptor-2.
Collapse
Affiliation(s)
- Chunying Luo
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai Frontiers Science Center for Traditional Chinese Medicine Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Guzhou Chen
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai Frontiers Science Center for Traditional Chinese Medicine Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Ruixiang Li
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai Frontiers Science Center for Traditional Chinese Medicine Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Shoujiao Peng
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai Frontiers Science Center for Traditional Chinese Medicine Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Pei Zhang
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai Frontiers Science Center for Traditional Chinese Medicine Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Feiyun Wang
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai Frontiers Science Center for Traditional Chinese Medicine Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Shaopeng Yu
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai Frontiers Science Center for Traditional Chinese Medicine Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Yuying Zhu
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai Frontiers Science Center for Traditional Chinese Medicine Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China.
| | - Jiange Zhang
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai Frontiers Science Center for Traditional Chinese Medicine Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China.
| |
Collapse
|
5
|
Campagnoli LIM, Ahmad L, Marchesi N, Greco G, Boschi F, Masi F, Mallucci G, Bergamaschi R, Colombo E, Pascale A. Disclosing the Novel Protective Mechanisms of Ocrelizumab in Multiple Sclerosis: The Role of PKC Beta and Its Down-Stream Targets. Int J Mol Sci 2024; 25:8923. [PMID: 39201609 PMCID: PMC11354964 DOI: 10.3390/ijms25168923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 09/02/2024] Open
Abstract
Ocrelizumab (OCR) is a humanized anti-CD20 monoclonal antibody approved for both Relapsing and Primary Progressive forms of Multiple Sclerosis (MS) treatment. OCR is postulated to act via rapid B cell depletion; however, by analogy with other anti-CD20 agents, additional effects can be envisaged, such as on Protein Kinase C (PKC). Hence, this work aims to explore novel potential mechanisms of action of OCR in peripheral blood mononuclear cells from MS patients before and after 12 months of OCR treatment. We first assessed, up-stream, PKCβII and subsequently explored two down-stream pathways: hypoxia-inducible factor 1 alpha (HIF-1α)/vascular endothelial growth factor (VEGF), and human antigen R (HuR)/manganese-dependent superoxide dismutase (MnSOD) and heat shock proteins 70 (HSP70). At baseline, higher levels of PKCβII, HIF-1α, and VEGF were found in MS patients compared to healthy controls (HC); interestingly, the overexpression of this inflammatory cascade was counteracted by OCR treatment. Conversely, at baseline, the content of HuR, MnSOD, and HSP70 was significantly lower in MS patients compared to HC, while OCR administration induced the up-regulation of these neuroprotective pathways. These results enable us to disclose the dual positive action of OCR: anti-inflammatory and neuroprotective. Therefore, in addition to B cell depletion, the effect of OCR on these molecular cascades can contribute to counteracting disease progression.
Collapse
Affiliation(s)
| | - Lara Ahmad
- Multiple Sclerosis Center, IRCCS Mondino Foundation, 27100 Pavia, Italy; (L.A.); (G.G.); (F.M.); (R.B.); (E.C.)
| | - Nicoletta Marchesi
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, 27100 Pavia, Italy; (L.I.M.C.); (N.M.); (F.B.)
| | - Giacomo Greco
- Multiple Sclerosis Center, IRCCS Mondino Foundation, 27100 Pavia, Italy; (L.A.); (G.G.); (F.M.); (R.B.); (E.C.)
- Department of Brain and Behavioural Sciences, University of Pavia, 27100 Pavia, Italy
| | - Federica Boschi
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, 27100 Pavia, Italy; (L.I.M.C.); (N.M.); (F.B.)
| | - Francesco Masi
- Multiple Sclerosis Center, IRCCS Mondino Foundation, 27100 Pavia, Italy; (L.A.); (G.G.); (F.M.); (R.B.); (E.C.)
- Department of Brain and Behavioural Sciences, University of Pavia, 27100 Pavia, Italy
| | - Giulia Mallucci
- Multiple Sclerosis Center, IRCCS Mondino Foundation, 27100 Pavia, Italy; (L.A.); (G.G.); (F.M.); (R.B.); (E.C.)
- Neurocenter of Southern Switzerland, Ente Ospedaliero Cantonale (EOC), 6900 Lugano, Switzerland
| | - Roberto Bergamaschi
- Multiple Sclerosis Center, IRCCS Mondino Foundation, 27100 Pavia, Italy; (L.A.); (G.G.); (F.M.); (R.B.); (E.C.)
| | - Elena Colombo
- Multiple Sclerosis Center, IRCCS Mondino Foundation, 27100 Pavia, Italy; (L.A.); (G.G.); (F.M.); (R.B.); (E.C.)
| | - Alessia Pascale
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, 27100 Pavia, Italy; (L.I.M.C.); (N.M.); (F.B.)
| |
Collapse
|
6
|
Zhu S, Kang Z, Zhang F. Tanshinone IIA suppresses ferroptosis to attenuate renal podocyte injury in diabetic nephropathy through the embryonic lethal abnormal visual-like protein 1 and acyl-coenzyme A synthetase long-chain family member 4 signaling pathway. J Diabetes Investig 2024; 15:1003-1016. [PMID: 38650121 PMCID: PMC11292391 DOI: 10.1111/jdi.14206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/05/2024] [Accepted: 03/19/2024] [Indexed: 04/25/2024] Open
Abstract
AIMS/INTRODUCTION Tanshinone IIA (TIIA) is one of the main components of the root of the red-rooted Salvia miltiorrhiza Bunge. However, the molecular mechanisms underlying TIIA-mediated protective effects in diabetic nephropathy (DN) are still unclear. MATERIALS AND METHODS High glucose (HG)-induced mouse podocyte cell line (MPC5) cells were used as the in vitro model of DN and treated with TIIA. Cell viability, proliferation and apoptosis were detected using 3-(4, 5-dimethylthiazolyl-2)-2, 5-diphenyltetrazolium bromide, 5-ethynyl-2'-deoxyuridine and flow cytometry assays. The protein levels were assessed using western blot assay. The levels of inflammatory factors were deleted by enzyme-linked immunoassay. Fe+ level, reactive oxygen species, malondialdehyde and glutathione products were detected using special assay kits. After ENCORI prediction, the interaction between embryonic lethal abnormal visual-like protein 1 (ELAVL1) and acyl-coenzyme A synthetase long-chain family member 4 (ACSL4) was verified using co-immunoprecipitation assay and dual-luciferase reporter assays. ACSL4 messenger ribonucleic acid expression was measured using real-time quantitative polymerase chain reaction. RESULTS TIIA repressed HG-induced MPC5 cell apoptosis, inflammatory response and ferroptosis. ACSL4 upregulation relieved the repression of TIIA on HG-mediated MPC5 cell injury and ferroptosis. ELAVL1 is bound with ACSL4 to positively regulate the stability of ACSL4 messenger ribonucleic acid. TIIA hindered HG-triggered MPC5 cell injury and ferroptosis by regulating the ELAVL1-ACSL4 pathway. TIIA blocked DN progression in in vivo research. CONCLUSION TIIA treatment restrained HG-caused MPC5 cell injury and ferroptosis partly through targeting the ELAVL1-ACSL4 axis, providing a promising therapeutic target for DN treatment.
Collapse
Affiliation(s)
- Shuai Zhu
- Graduate SchoolXinxiang Medical UniversityXinxiangChina
- Department of Endocrinology and MetabolismZhengzhou Central Hospital Affiliated to Zhengzhou UniversityZhengzhouChina
| | - Zhiqiang Kang
- Department of Endocrinology and MetabolismZhengzhou Central Hospital Affiliated to Zhengzhou UniversityZhengzhouChina
| | - Fengjiao Zhang
- Department of Endocrinology and MetabolismZhengzhou Central Hospital Affiliated to Zhengzhou UniversityZhengzhouChina
| |
Collapse
|
7
|
Marchesi N, Linciano P, Campagnoli LIM, Fahmideh F, Rossi D, Costa G, Ambrosio FA, Barbieri A, Collina S, Pascale A. Short- and Long-Term Regulation of HuD: A Molecular Switch Mediated by Folic Acid? Int J Mol Sci 2023; 24:12201. [PMID: 37569576 PMCID: PMC10418318 DOI: 10.3390/ijms241512201] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/25/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
The RNA-binding protein HuD has been shown to play a crucial role in gene regulation in the nervous system and is involved in various neurological and psychiatric diseases. In this study, through the creation of an interaction network on HuD and its potential targets, we identified a strong association between HuD and several diseases of the nervous system. Specifically, we focused on the relationship between HuD and the brain-derived neurotrophic factor (BDNF), whose protein is implicated in several neuronal diseases and is involved in the regulation of neuronal development, survival, and function. To better investigate this relationship and given that we previously demonstrated that folic acid (FA) is able to directly bind HuD itself, we performed in vitro experiments in neuron-like human SH-SY5Y cells in the presence of FA, also known to be a pivotal environmental factor influencing the nervous system development. Our findings show that FA exposure results in a significant increase in both HuD and BDNF transcripts and proteins after 2 and 4 h of treatment, respectively. Similar data were obtained after 2 h of FA incubation followed by 2 h of washout. This increase was no longer detected upon 24 h of FA exposure, probably due to a signaling shutdown mechanism. Indeed, we observed that following 24 h of FA exposure HuD is methylated. These findings indicate that FA regulates BDNF expression via HuD and suggest that FA can behave as an epigenetic modulator of HuD in the nervous system acting via short- and long-term mechanisms. Finally, the present results also highlight the potential of BDNF as a therapeutic target for specific neurological and psychiatric diseases.
Collapse
Affiliation(s)
- Nicoletta Marchesi
- Department of Drug Sciences, Pharmacology Section, University of Pavia, 27100 Pavia, Italy; (L.I.M.C.); (F.F.); (A.B.)
| | - Pasquale Linciano
- Department of Drug Sciences, Medicinal Chemistry Section, University of Pavia, 27100 Pavia, Italy; (P.L.); (D.R.); (S.C.)
| | | | - Foroogh Fahmideh
- Department of Drug Sciences, Pharmacology Section, University of Pavia, 27100 Pavia, Italy; (L.I.M.C.); (F.F.); (A.B.)
| | - Daniela Rossi
- Department of Drug Sciences, Medicinal Chemistry Section, University of Pavia, 27100 Pavia, Italy; (P.L.); (D.R.); (S.C.)
| | - Giosuè Costa
- Department of Experimental and Clinical Medicine, University “Magna Græcia” of Catanzaro, Campus “S. Venuta”, 88100 Catanzaro, Italy; (G.C.); (F.A.A.)
- Net4Science Academic Spin-Off, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy
- Associazione CRISEA-Centro di Ricerca e Servizi Avanzati per l’Innovazione Rurale, 88055 Catanzaro, Italy
| | - Francesca Alessandra Ambrosio
- Department of Experimental and Clinical Medicine, University “Magna Græcia” of Catanzaro, Campus “S. Venuta”, 88100 Catanzaro, Italy; (G.C.); (F.A.A.)
| | - Annalisa Barbieri
- Department of Drug Sciences, Pharmacology Section, University of Pavia, 27100 Pavia, Italy; (L.I.M.C.); (F.F.); (A.B.)
| | - Simona Collina
- Department of Drug Sciences, Medicinal Chemistry Section, University of Pavia, 27100 Pavia, Italy; (P.L.); (D.R.); (S.C.)
| | - Alessia Pascale
- Department of Drug Sciences, Pharmacology Section, University of Pavia, 27100 Pavia, Italy; (L.I.M.C.); (F.F.); (A.B.)
| |
Collapse
|
8
|
Varesi A, Campagnoli LIM, Barbieri A, Rossi L, Ricevuti G, Esposito C, Chirumbolo S, Marchesi N, Pascale A. RNA binding proteins in senescence: A potential common linker for age-related diseases? Ageing Res Rev 2023; 88:101958. [PMID: 37211318 DOI: 10.1016/j.arr.2023.101958] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/09/2023] [Accepted: 05/18/2023] [Indexed: 05/23/2023]
Abstract
Aging represents the major risk factor for the onset and/or progression of various disorders including neurodegenerative diseases, metabolic disorders, and bone-related defects. As the average age of the population is predicted to exponentially increase in the coming years, understanding the molecular mechanisms underlying the development of aging-related diseases and the discovery of new therapeutic approaches remain pivotal. Well-reported hallmarks of aging are cellular senescence, genome instability, autophagy impairment, mitochondria dysfunction, dysbiosis, telomere attrition, metabolic dysregulation, epigenetic alterations, low-grade chronic inflammation, stem cell exhaustion, altered cell-to-cell communication and impaired proteostasis. With few exceptions, however, many of the molecular players implicated within these processes as well as their role in disease development remain largely unknown. RNA binding proteins (RBPs) are known to regulate gene expression by dictating at post-transcriptional level the fate of nascent transcripts. Their activity ranges from directing primary mRNA maturation and trafficking to modulation of transcript stability and/or translation. Accumulating evidence has shown that RBPs are emerging as key regulators of aging and aging-related diseases, with the potential to become new diagnostic and therapeutic tools to prevent or delay aging processes. In this review, we summarize the role of RBPs in promoting cellular senescence and we highlight their dysregulation in the pathogenesis and progression of the main aging-related diseases, with the aim of encouraging further investigations that will help to better disclose this novel and captivating molecular scenario.
Collapse
Affiliation(s)
- Angelica Varesi
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy.
| | | | - Annalisa Barbieri
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, Pavia, Italy
| | - Lorenzo Rossi
- Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland
| | | | - Ciro Esposito
- Department of Internal Medicine and Therapeutics, University of Pavia, Italy; Nephrology and dialysis unit, ICS S. Maugeri SPA SB Hospital, Pavia, Italy; High School in Geriatrics, University of Pavia, Italy
| | | | - Nicoletta Marchesi
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, Pavia, Italy
| | - Alessia Pascale
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, Pavia, Italy.
| |
Collapse
|
9
|
Ferrigno A, Campagnoli LIM, Barbieri A, Marchesi N, Pascale A, Croce AC, Vairetti M, Di Pasqua LG. MCD Diet Modulates HuR and Oxidative Stress-Related HuR Targets in Rats. Int J Mol Sci 2023; 24:9808. [PMID: 37372956 DOI: 10.3390/ijms24129808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 05/31/2023] [Accepted: 06/03/2023] [Indexed: 06/29/2023] Open
Abstract
The endogenous antioxidant defense plays a big part in the pathogenesis of non-alcoholic fatty liver disease (NAFLD), a common metabolic disorder that can lead to serious complications such as cirrhosis and cancer. HuR, an RNA-binding protein of the ELAV family, controls, among others, the stability of MnSOD and HO-1 mRNA. These two enzymes protect the liver cells from oxidative damage caused by excessive fat accumulation. Our aim was to investigate the expression of HuR and its targets in a methionine-choline deficient (MCD) model of NAFLD. To this aim, we fed male Wistar rats with an MCD diet for 3 and 6 weeks to induce NAFLD; then, we evaluated the expression of HuR, MnSOD, and HO-1. The MCD diet induced fat accumulation, hepatic injury, oxidative stress, and mitochondrial dysfunction. A HuR downregulation was also observed in association with a reduced expression of MnSOD and HO-1. Moreover, the changes in the expression of HuR and its targets were significantly correlated with oxidative stress and mitochondrial injury. Since HuR plays a protective role against oxidative stress, targeting this protein could be a therapeutic strategy to both prevent and counteract NAFLD.
Collapse
Affiliation(s)
- Andrea Ferrigno
- Unit of Cellular and Molecular Pharmacology and Toxicology, Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy
- Interuniversity Center for the Promotion of the 3Rs Principles in Teaching and Research (Centro 3R), 56122 Pisa, Italy
| | | | - Annalisa Barbieri
- Unit of Pharmacology, Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy
| | - Nicoletta Marchesi
- Unit of Pharmacology, Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy
| | - Alessia Pascale
- Unit of Pharmacology, Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy
| | - Anna Cleta Croce
- IGM-CNR, Unit of Histochemistry and Cytometry, University of Pavia, 27100 Pavia, Italy
| | - Mariapia Vairetti
- Unit of Cellular and Molecular Pharmacology and Toxicology, Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy
| | - Laura Giuseppina Di Pasqua
- Unit of Cellular and Molecular Pharmacology and Toxicology, Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
10
|
Pawletko K, Jędrzejowska-Szypułka H, Bogus K, Pascale A, Fahmideh F, Marchesi N, Grajoszek A, Gendosz de Carrillo D, Barski JJ. After Ischemic Stroke, Minocycline Promotes a Protective Response in Neurons via the RNA-Binding Protein HuR, with a Positive Impact on Motor Performance. Int J Mol Sci 2023; 24:ijms24119446. [PMID: 37298395 DOI: 10.3390/ijms24119446] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/23/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
Ischemic stroke is the most common cause of adult disability and one of the leading causes of death worldwide, with a serious socio-economic impact. In the present work, we used a new thromboembolic model, recently developed in our lab, to induce focal cerebral ischemic (FCI) stroke in rats without reperfusion. We analyzed selected proteins implicated in the inflammatory response (such as the RNA-binding protein HuR, TNFα, and HSP70) via immunohistochemistry and western blotting techniques. The main goal of the study was to evaluate the beneficial effects of a single administration of minocycline at a low dose (1 mg/kg intravenously administered 10 min after FCI) on the neurons localized in the penumbra area after an ischemic stroke. Furthermore, given the importance of understanding the crosstalk between molecular parameters and motor functions following FCI, motor tests were also performed, such as the Horizontal Runway Elevated test, CatWalk™ XT, and Grip Strength test. Our results indicate that a single administration of a low dose of minocycline increased the viability of neurons and reduced the neurodegeneration caused by ischemia, resulting in a significant reduction in the infarct volume. At the molecular level, minocycline resulted in a reduction in TNFα content coupled with an increase in the levels of both HSP70 and HuR proteins in the penumbra area. Considering that both HSP70 and TNF-α transcripts are targeted by HuR, the obtained results suggest that, following FCI, this RNA-binding protein promotes a protective response by shifting its binding towards HSP70 instead of TNF-α. Most importantly, motor tests showed that reduced inflammation in the brain damaged area after minocycline treatment directly translated into a better motor performance, which is a fundamental outcome when searching for new therapeutic options for clinical practice.
Collapse
Affiliation(s)
- Katarzyna Pawletko
- Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medyków 18, 40-752 Katowice, Poland
- Department for Experimental Medicine, Medical University of Silesia, Medyków 4, 40-752 Katowice, Poland
| | - Halina Jędrzejowska-Szypułka
- Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medyków 18, 40-752 Katowice, Poland
| | - Katarzyna Bogus
- Department of Histology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medyków 18, 40-752 Katowice, Poland
| | - Alessia Pascale
- Department of Drug Sciences, Pharmacology Section, University of Pavia, Viale Taramelli 14, 27100 Pavia, Italy
| | - Foroogh Fahmideh
- Department of Drug Sciences, Pharmacology Section, University of Pavia, Viale Taramelli 14, 27100 Pavia, Italy
| | - Nicoletta Marchesi
- Department of Drug Sciences, Pharmacology Section, University of Pavia, Viale Taramelli 14, 27100 Pavia, Italy
| | - Aniela Grajoszek
- Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medyków 18, 40-752 Katowice, Poland
- Department for Experimental Medicine, Medical University of Silesia, Medyków 4, 40-752 Katowice, Poland
| | - Daria Gendosz de Carrillo
- Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medyków 18, 40-752 Katowice, Poland
- Department of Histology and Cell Pathology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Poniatowskiego 15, 40-055 Katowice, Poland
| | - Jarosław Jerzy Barski
- Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medyków 18, 40-752 Katowice, Poland
- Department for Experimental Medicine, Medical University of Silesia, Medyków 4, 40-752 Katowice, Poland
| |
Collapse
|
11
|
Masi M, Biundo F, Fiou A, Racchi M, Pascale A, Buoso E. The Labyrinthine Landscape of APP Processing: State of the Art and Possible Novel Soluble APP-Related Molecular Players in Traumatic Brain Injury and Neurodegeneration. Int J Mol Sci 2023; 24:ijms24076639. [PMID: 37047617 PMCID: PMC10095589 DOI: 10.3390/ijms24076639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/21/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
Amyloid Precursor Protein (APP) and its cleavage processes have been widely investigated in the past, in particular in the context of Alzheimer’s Disease (AD). Evidence of an increased expression of APP and its amyloidogenic-related cleavage enzymes, β-secretase 1 (BACE1) and γ-secretase, at the hit axon terminals following Traumatic Brain Injury (TBI), firstly suggested a correlation between TBI and AD. Indeed, mild and severe TBI have been recognised as influential risk factors for different neurodegenerative diseases, including AD. In the present work, we describe the state of the art of APP proteolytic processing, underlining the different roles of its cleavage fragments in both physiological and pathological contexts. Considering the neuroprotective role of the soluble APP alpha (sAPPα) fragment, we hypothesised that sAPPα could modulate the expression of genes of interest for AD and TBI. Hence, we present preliminary experiments addressing sAPPα-mediated regulation of BACE1, Isthmin 2 (ISM2), Tetraspanin-3 (TSPAN3) and the Vascular Endothelial Growth Factor (VEGFA), each discussed from a biological and pharmacological point of view in AD and TBI. We finally propose a neuroprotective interaction network, in which the Receptor for Activated C Kinase 1 (RACK1) and the signalling cascade of PKCβII/nELAV/VEGF play hub roles, suggesting that vasculogenic-targeting therapies could be a feasible approach for vascular-related brain injuries typical of AD and TBI.
Collapse
Affiliation(s)
- Mirco Masi
- Computational and Chemical Biology, Italian Institute of Technology, Via Morego 30, 16163 Genova, Italy
| | - Fabrizio Biundo
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461, USA
| | - André Fiou
- Department of Drug Sciences, Pharmacology Section, University of Pavia, Via Taramelli 12/14, 27100 Pavia, Italy
| | - Marco Racchi
- Department of Drug Sciences, Pharmacology Section, University of Pavia, Via Taramelli 12/14, 27100 Pavia, Italy
| | - Alessia Pascale
- Department of Drug Sciences, Pharmacology Section, University of Pavia, Via Taramelli 12/14, 27100 Pavia, Italy
| | - Erica Buoso
- Department of Drug Sciences, Pharmacology Section, University of Pavia, Via Taramelli 12/14, 27100 Pavia, Italy
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118, USA
| |
Collapse
|
12
|
Pacwa A, Machowicz J, Akhtar S, Rodak P, Liu X, Pietrucha-Dutczak M, Lewin-Kowalik J, Amadio M, Smedowski A. Deficiency of the RNA-binding protein ELAVL1/HuR leads to the failure of endogenous and exogenous neuroprotection of retinal ganglion cells. Front Cell Neurosci 2023; 17:1131356. [PMID: 36874215 PMCID: PMC9982123 DOI: 10.3389/fncel.2023.1131356] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 02/06/2023] [Indexed: 02/19/2023] Open
Abstract
Introduction ELAVL1/HuR is a keystone regulator of gene expression at the posttranscriptional level, including stress response and homeostasis maintenance. The aim of this study was to evaluate the impact of hur silencing on the age-related degeneration of retinal ganglion cells (RGC), which potentially describes the efficiency of endogenous neuroprotection mechanisms, as well as to assess the exogenous neuroprotection capacity of hur-silenced RGC in the rat glaucoma model. Methods The study consisted of in vitro and in vivo approaches. In vitro, we used rat B-35 cells to investigate, whether AAV-shRNA-HuR delivery affects survival and oxidative stress markers under temperature and excitotoxic insults. In vivo approach consisted of two different settings. In first one, 35 eight-week-old rats received intravitreal injection of AAV-shRNA-HuR or AAV-shRNA scramble control. Animals underwent electroretinography tests and were sacrificed 2, 4 or 6 months after injection. Retinas and optic nerves were collected and processed for immunostainings, electron microscopy and stereology. For the second approach, animals received similar gene constructs. To induce chronic glaucoma, 8 weeks after AAV injection, unilateral episcleral vein cauterization was performed. Animals from each group received intravitreal injection of metallothionein II. Animals underwent electroretinography tests and were sacrificed 8 weeks later. Retinas and optic nerves were collected and processed for immunostainings, electron microscopy and stereology. Results Silencing of hur induced apoptosis and increased oxidative stress markers in B-35 cells. Additionally, shRNA treatment impaired the cellular stress response to temperature and excitotoxic insults. In vivo, RGC count was decreased by 39% in shRNA-HuR group 6 months after injection, when compared to shRNA scramble control group. In neuroprotection study, the average loss of RGCs was 35% in animals with glaucoma treated with metallothionein and shRNA-HuR and 11.4% in animals with glaucoma treated with metallothionein and the scramble control shRNA. An alteration in HuR cellular content resulted in diminished photopic negative responses in the electroretinogram. Conclusions Based on our findings, we conclude that HuR is essential for the survival and efficient neuroprotection of RGC and that the induced alteration in HuR content accelerates both the age-related and glaucoma-induced decline in RGC number and function, further confirming HuR's key role in maintaining cell homeostasis and its possible involvement in the pathogenesis of glaucoma.
Collapse
Affiliation(s)
- Anna Pacwa
- Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, Katowice, Poland
- GlaucoTech Co., Katowice, Poland
| | - Joanna Machowicz
- Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, Katowice, Poland
| | - Saeed Akhtar
- College of Applied Medical Sciences, Inaya Medical Colleges, Riyadh, Saudi Arabia
- Department of Optometry, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Piotr Rodak
- Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, Katowice, Poland
| | - Xiaonan Liu
- Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, Katowice, Poland
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Marita Pietrucha-Dutczak
- Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, Katowice, Poland
| | - Joanna Lewin-Kowalik
- Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, Katowice, Poland
- GlaucoTech Co., Katowice, Poland
| | - Marialaura Amadio
- Department of Drug Sciences, Section of Pharmacology, The University of Pavia, Pavia, Italy
| | - Adrian Smedowski
- Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, Katowice, Poland
- GlaucoTech Co., Katowice, Poland
| |
Collapse
|
13
|
Bai N, Adeshina Y, Bychkov I, Xia Y, Gowthaman R, Miller SA, Gupta AK, Johnson DK, Lan L, Golemis EA, Makhov PB, Xu L, Pillai MM, Boumber Y, Karanicolas J. Rationally designed inhibitors of the Musashi protein-RNA interaction by hotspot mimicry. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.09.523326. [PMID: 36711508 PMCID: PMC9882015 DOI: 10.1101/2023.01.09.523326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
RNA-binding proteins (RBPs) are key post-transcriptional regulators of gene expression, and thus underlie many important biological processes. Here, we developed a strategy that entails extracting a "hotspot pharmacophore" from the structure of a protein-RNA complex, to create a template for designing small-molecule inhibitors and for exploring the selectivity of the resulting inhibitors. We demonstrate this approach by designing inhibitors of Musashi proteins MSI1 and MSI2, key regulators of mRNA stability and translation that are upregulated in many cancers. We report this novel series of MSI1/MSI2 inhibitors is specific and active in biochemical, biophysical, and cellular assays. This study extends the paradigm of "hotspots" from protein-protein complexes to protein-RNA complexes, supports the "druggability" of RNA-binding protein surfaces, and represents one of the first rationally-designed inhibitors of non-enzymatic RNA-binding proteins. Owing to its simplicity and generality, we anticipate that this approach may also be used to develop inhibitors of many other RNA-binding proteins; we also consider the prospects of identifying potential off-target interactions by searching for other RBPs that recognize their cognate RNAs using similar interaction geometries. Beyond inhibitors, we also expect that compounds designed using this approach can serve as warheads for new PROTACs that selectively degrade RNA-binding proteins.
Collapse
Affiliation(s)
- Nan Bai
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia PA 19111
- Department of Molecular Biosciences, University of Kansas, Lawrence KS 66045
| | - Yusuf Adeshina
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia PA 19111
- Center for Computational Biology, University of Kansas, Lawrence KS 66045
| | - Igor Bychkov
- Division of Hematology/Oncology, Department of Medicine, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Yan Xia
- Department of Molecular Biosciences, University of Kansas, Lawrence KS 66045
| | - Ragul Gowthaman
- Center for Computational Biology, University of Kansas, Lawrence KS 66045
| | - Sven A. Miller
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia PA 19111
| | | | - David K. Johnson
- Center for Computational Biology, University of Kansas, Lawrence KS 66045
| | - Lan Lan
- Department of Molecular Biosciences, University of Kansas, Lawrence KS 66045
| | - Erica A. Golemis
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia PA 19111
- Department of Cancer and Cellular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140
| | - Petr B. Makhov
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia PA 19111
| | - Liang Xu
- Department of Molecular Biosciences, University of Kansas, Lawrence KS 66045
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas City KS 66160
| | - Manoj M. Pillai
- Section of Hematology, Yale Cancer Center, New Haven CT 06520
- Department of Pathology, Yale University School of Medicine, New Haven CT 06520
| | - Yanis Boumber
- Division of Hematology/Oncology, Department of Medicine, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - John Karanicolas
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia PA 19111
- Moulder Center for Drug Discovery Research, Temple University School of Pharmacy, Philadelphia, PA 19140
| |
Collapse
|
14
|
Evidence for novel cell defense mechanisms sustained by dimethyl fumarate in multiple sclerosis patients: the HuR/SOD2 cascade. Mult Scler Relat Disord 2022; 68:104197. [PMID: 36270254 DOI: 10.1016/j.msard.2022.104197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 09/22/2022] [Accepted: 09/27/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND Dimethyl fumarate (DMF) is an effective treatment for relapsing remitting Multiple Sclerosis (MS) and its mechanisms of action encompass immunomodulatory and cytoprotective effects. Despite DMF is known to activate the Nrf2 pathway, Nrf2-independent mechanisms have been also reported and new insights on the underlying molecular mechanisms are still emerging including transcriptional and post-transcriptional events. At this regard, we focused on a small family of RNA-binding proteins, the ELAV-like proteins, that play a pivotal role in post-transcriptional mechanisms and are involved in the pathogenesis of several psychiatric and neurologic disorders. HuR, the ubiquitously expressed member of the family, is implicated in many cellular functions, including survival, inflammation and proper functioning of the immune system. We previously documented the potential entanglement of HuR in MS pathogenesis. In the present work, we explored HuR protein levels in peripheral blood mononuclear cells (PBMCs) from MS patients before and after DMF treatment compared to healthy controls (HC). Considering that HuR may act on various targets, playing a protective role against oxidative stress, our main goals were to evaluate whether manganese-dependent superoxide dismutase transcript (SOD2) could represent a new molecular target of HuR and to study the potential influence of DMF treatment on this interaction. METHODS PBMCs from 20 patients with MS and 20 frequency-matched HC by sex and age were used to evaluate HuR, MnSOD (the protein coded by SOD2) and Nrf2 protein content by Western blot, before and after 12 months of DMF treatment. Immunoprecipitation experiments coupled with RNA extraction in PBMCs were performed to explore whether SOD2 mRNA could be physically bound by HuR and whether the expression of MnSOD protein could be affected by 12 months of DMF treatment. RESULTS In PBMCs, HuR protein binds SOD2 transcript in HC and in MS patients naïve to disease modifying treatment. The expression of MnSOD protein is positively affected by 12 months of DMF treatment. PBMCs from MS patients have a lower HuR and MnSOD protein content compared to matched HC (HuR: p<0.01, MnSOD: p<0.01). Of interest, 12 months of DMF treatment in MS patients restores the amount of both HuR protein and MnSOD enzyme to the levels observed in HC. We also confirmed that Nrf2 is an HuR target, and we report that its levels are significantly increased in MS patients naïve to disease modifying treatment and remain elevated following DMF administration. CONCLUSION SOD2 transcript is a new target of HuR protein. DMF induces an increased expression of HuR protein, which ultimately interacts more strongly with SOD2 transcript promoting the expression of this antioxidant protein. The activation of this molecular cascade can constitute an additional tool that the cells can exploit to counteract the oxidative stress associated with MS development, and can account for the multifaceted molecular mechanisms underlying DMF efficacy in MS.
Collapse
|
15
|
Fahmideh F, Marchesi N, Campagnoli LIM, Landini L, Caramella C, Barbieri A, Govoni S, Pascale A. Effect of troxerutin in counteracting hyperglycemia-induced VEGF upregulation in endothelial cells: a new option to target early stages of diabetic retinopathy? Front Pharmacol 2022; 13:951833. [PMID: 36046820 PMCID: PMC9420903 DOI: 10.3389/fphar.2022.951833] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/25/2022] [Indexed: 12/21/2022] Open
Abstract
Diabetic retinopathy (DR), one of the most common complications of diabetes mellitus, is characterized by degeneration of retinal neurons and neoangiogenesis. Until today, the pharmacological approaches for DR are limited and focused on counteracting the end-stage of this neurodegenerative disease, therefore efforts should be carried out to discover novel pharmacological targets useful to prevent DR development. Hyperglycemia is a major risk factor for endothelial dysfunction and vascular complication, which subsequently may trigger neurodegeneration. We previously demonstrated that, in the rat retina, hyperglycemia activates a new molecular cascade implicating, up-stream, protein kinase C βII (PKC βII), which in turn leads to a higher expression of vascular endothelial growth factor (VEGF), via the mRNA-binding Hu-antigen R (HuR) protein. VEGF is a pivotal mediator of neovascularization and a well-known vasopermeability factor. Blocking the increase of VEGF via modulation of this cascade can thus represent a new pharmacological option to prevent DR progression. To this aim, proper in vitro models are crucial for drug discovery, as they allow to better identify promising effective molecules. Considering that endothelial cells are key elements in DR and that hyperglycemia triggers the PKCβII/HuR/VEGF pathway, we set up two distinct in vitro models applying two different stimuli. Namely, human umbilical vein endothelial cells were exposed to phorbol 12-myristate 13-acetate, which mimics diacylglycerol whose synthesis is triggered by diabetic hyperglycemia, while human retinal endothelial cells were treated with high glucose for different times. After selecting the optimal experimental conditions able to determine an increased VEGF production, in search of molecules useful to prevent DR development, we investigated the capability of troxerutin, an antioxidant flavonoid, to counteract not only the rise of VEGF but also the activation of the PKCβII/HuR cascade in both in vitro models. The results show the capability of troxerutin to hinder the hyperglycemia-induced increase in VEGF in both models through PKCβII/HuR pathway modulation. Further, these data confirm the key engagement of this cascade as an early event triggered by hyperglycemia to promote VEGF expression. Finally, the present findings also suggest the potential use of troxerutin as a preventive treatment during the early phases of DR.
Collapse
Affiliation(s)
- F. Fahmideh
- Department of Drug Sciences, Pharmacology Section, University of Pavia, Pavia, Italy
| | - N. Marchesi
- Department of Drug Sciences, Pharmacology Section, University of Pavia, Pavia, Italy
- *Correspondence: N. Marchesi, ; A. Pascale,
| | - L. I. M. Campagnoli
- Department of Drug Sciences, Pharmacology Section, University of Pavia, Pavia, Italy
| | - L. Landini
- Bausch & Lomb—Iom S.p.A, Vimodrone (Milan), Italy
| | - C. Caramella
- Department of Drug Sciences, Pharmacology Section, University of Pavia, Pavia, Italy
| | - A. Barbieri
- Department of Drug Sciences, Pharmacology Section, University of Pavia, Pavia, Italy
| | - S. Govoni
- Department of Drug Sciences, Pharmacology Section, University of Pavia, Pavia, Italy
| | - A. Pascale
- Department of Drug Sciences, Pharmacology Section, University of Pavia, Pavia, Italy
- *Correspondence: N. Marchesi, ; A. Pascale,
| |
Collapse
|
16
|
Kanzaki H, Chiba T, Kaneko T, Ao J, Kan M, Muroyama R, Nakamoto S, Kanda T, Maruyama H, Kato J, Zen Y, Kotani A, Sekiba K, Otsuka M, Ohtsuka M, Kato N. The RNA-Binding Protein ELAVL1 Regulates Hepatitis B Virus Replication and Growth of Hepatocellular Carcinoma Cells. Int J Mol Sci 2022; 23:7878. [PMID: 35887229 PMCID: PMC9316910 DOI: 10.3390/ijms23147878] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/11/2022] [Accepted: 07/14/2022] [Indexed: 12/19/2022] Open
Abstract
Previous RNA immunoprecipitation followed by proteomic approaches successfully demonstrated that Embryonic Lethal, Abnormal Vision, Drosophila-Like 1 (ELAVL1) interacts with hepatitis B virus (HBV)-derived RNAs. Although ELAVL family proteins stabilize AU-rich element (ARE)-containing mRNAs, their role in HBV transcription remains unclear. This study conducted loss-of-function assays of ELAVL1 for inducible HBV-replicating HepAD38 cells and HBx-overexpressed HepG2 cells. In addition, clinicopathological analyses in primary hepatocellular carcinoma (HCC) surgical samples were also conducted. Lentivirus-mediated short hairpin RNA knockdown of ELAVL1 resulted in a decrease in both viral RNA transcription and production of viral proteins, including HBs and HBx, probably due to RNA stabilization by ELAVL1. Cell growth of HepAD38 cells was more significantly impaired in ELAVL1-knockdown than those in the control group, with or without HBV replication, indicating that ELAVL1 is involved in proliferation by factors other than HBV-derived RNAs. Immunohistochemical analyses of 77 paired HCC surgical specimens demonstrated that diffuse ELAVL1 expression was detected more frequently in HCC tissues (61.0%) than in non-tumor tissues (27.3%). In addition, the abundant expression of ELAVL1 tended to affect postoperative recurrence in HBV-related HCC patients. In conclusion, ELAVL1 contributes not only to HBV replication but also to HCC cell growth. It may be a potent therapeutic target for HBV-related HCC treatment.
Collapse
Affiliation(s)
- Hiroaki Kanzaki
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan; (H.K.); (T.K.); (J.A.); (M.K.); (S.N.); (J.K.); (N.K.)
| | - Tetsuhiro Chiba
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan; (H.K.); (T.K.); (J.A.); (M.K.); (S.N.); (J.K.); (N.K.)
| | - Tatsuya Kaneko
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan; (H.K.); (T.K.); (J.A.); (M.K.); (S.N.); (J.K.); (N.K.)
| | - Junjie Ao
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan; (H.K.); (T.K.); (J.A.); (M.K.); (S.N.); (J.K.); (N.K.)
| | - Motoyasu Kan
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan; (H.K.); (T.K.); (J.A.); (M.K.); (S.N.); (J.K.); (N.K.)
| | - Ryosuke Muroyama
- Department of Molecular Virology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan;
| | - Shingo Nakamoto
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan; (H.K.); (T.K.); (J.A.); (M.K.); (S.N.); (J.K.); (N.K.)
| | - Tatsuo Kanda
- Department of Gastroenterology and Hepatology, Nihon University School of Medicine, 30-1 Oyaguchi-Kamicho, Itabashi-ku, Tokyo 173-8610, Japan;
| | - Hitoshi Maruyama
- Department of Gastroenterology, Graduate School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan;
| | - Jun Kato
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan; (H.K.); (T.K.); (J.A.); (M.K.); (S.N.); (J.K.); (N.K.)
| | - Yoh Zen
- Institute of Liver Studies, King’s College Hospital, London SE5 9RS, UK;
| | - Ai Kotani
- Division of Hematological Malignancy, Institute of Medical Sciences, Tokai University, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan;
| | - Kazuma Sekiba
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan; (K.S.); (M.O.)
| | - Motoyuki Otsuka
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan; (K.S.); (M.O.)
| | - Masayuki Ohtsuka
- Department of General Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan;
| | - Naoya Kato
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan; (H.K.); (T.K.); (J.A.); (M.K.); (S.N.); (J.K.); (N.K.)
| |
Collapse
|
17
|
Agarwal A, Alagar S, Kant S, Bahadur RP. Molecular insights into binding dynamics of tandem RNA recognition motifs (tRRMs) of human antigen R (HuR) with mRNA and the effect of point mutations in impaired HuR-mRNA recognition. J Biomol Struct Dyn 2022:1-17. [PMID: 35538713 DOI: 10.1080/07391102.2022.2073270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Human antigen R (HuR) is a key regulatory protein with prominent roles in RNA metabolism and post-transcriptional gene regulation. Many studies have shown the involvement of HuR in plethora of human diseases, which are often manifestations of impaired HuR-RNA interactions. However, the inherent complexities of highly flexible protein-RNA interactions have limited our understanding of the structural basis of HuR-RNA recognition. In this study, we dissect the underlying molecular mechanism of interaction between N-terminal tandem RNA-recognition motifs (tRRMs) of HuR and mRNA using molecular dynamics simulation. We have also explored the effect of point mutations (T90A, R97A and R136A) of three reported critical residues in HuR-mRNA binding specificity. Our findings show that N-terminal tRRMs exhibit conformational stability upon RNA binding. We further show that R136A and R97A mutants significantly lose their binding affinity owing to the loss of critical interactions with mRNA. This may be attributed to the larger domain rearrangements in the mutant complexes, especially the β2β3 loops in both the tRRMs, leading to unfavourable conformations and loss of binding affinity. We have identified critical binding residues in tRRMs of HuR, contributing favourable binding energy in mRNA recognition. This study contributes significantly to understand the molecular mechanism of RNA recognition by tandem RRMs and provides a platform to modulate binding affinities through mutations. This may further guide in future structure-based drug-therapies targeting impaired HuR-RNA interactions.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ankita Agarwal
- School of Bio Science, Indian Institute of Technology Kharagpur, Kharagpur, India.,Computational Structural Biology Laboratory, Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Suresh Alagar
- Computational Structural Biology Laboratory, Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Shri Kant
- Computational Structural Biology Laboratory, Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Ranjit Prasad Bahadur
- Computational Structural Biology Laboratory, Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, India
| |
Collapse
|
18
|
Bucolo C, Barbieri A, Viganò I, Marchesi N, Bandello F, Drago F, Govoni S, Zerbini G, Pascale A. Short-and Long-Term Expression of Vegf: A Temporal Regulation of a Key Factor in Diabetic Retinopathy. Front Pharmacol 2021; 12:707909. [PMID: 34489701 PMCID: PMC8418071 DOI: 10.3389/fphar.2021.707909] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 08/06/2021] [Indexed: 11/13/2022] Open
Abstract
To investigate the role of vascular endothelial growth factor (VEGF) at different phases of diabetic retinopathy (DR), we assessed the retinal protein expression of VEGF-A164 (corresponding to the VEGF165 isoform present in humans, which is the predominant member implicated in vascular hyperpermeability and proliferation), HIF-1α and PKCβ/HuR pathway in Ins2Akita (diabetic) mice at different ages. We used C57BL6J mice (WT) at different ages as control. Retina status, in terms of tissue morphology and neovascularization, was monitored in vivo at different time points by optical coherence tomography (OCT) and fluorescein angiography (FA), respectively. The results showed that VEGF-A164 protein expression increased along time to become significantly elevated (p < 0.05) at 9 and 46 weeks of age compared to WT mice. The HIF-1α protein level was significantly (p < 0.05) increased at 9 weeks of age, while PKCβII and HuR protein levels were increased at 46 weeks of age compared to WT mice. The thickness of retinal nerve fiber layer as measured by OCT was decreased in Ins2Akita mice at 9 and 46 weeks of age, while no difference in the retinal vasculature were observed by FA. The present findings show that the retina of the diabetic Ins2Akita mice, as expected for mice, does not develop proliferative retinopathy even after 46 weeks. However, diabetic Ins2Akita mice recapitulate the same evolution of patients with DR in terms of both retinal neurodegeneration and pro-angiogenic shift, this latter indicated by the progressive protein expression of the pro-angiogenic isoform VEGF-A164, which can be sustained by the PKCβII/HuR pathway acting at post-transcriptional level. In agreement with this last concept, this rise in VEGF-A164 protein is not paralleled by an increment of the corresponding transcript. Nevertheless, the observed increase in HIF-1α at 9 weeks indicates that this transcription factor may favor, in the early phase of the disease, the transcription of other isoforms, possibly neuroprotective, in the attempt to counteract the neurodegenerative effects of VEGF-A164. The time-dependent VEGF-A164 expression in the retina of diabetic Ins2Akita mice suggests that pharmacological intervention in DR might be chosen, among other reasons, on the basis of the specific stages of the pathology in order to pursue the best clinical outcome.
Collapse
Affiliation(s)
- Claudio Bucolo
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy.,Center for Research in Ocular Pharmacology-CERFO, University of Catania, Catania, Italy
| | - Annalisa Barbieri
- Department of Drug Sciences, Pharmacology Section, University of Pavia, Pavia, Italy
| | - Ilaria Viganò
- Complications of Diabetes Unit, Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Nicoletta Marchesi
- Department of Drug Sciences, Pharmacology Section, University of Pavia, Pavia, Italy
| | - Francesco Bandello
- Department of Ophthalmology, IRCCS Ospedale San Raffaele, Vita-Salute University, Milan, Italy
| | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy.,Center for Research in Ocular Pharmacology-CERFO, University of Catania, Catania, Italy
| | - Stefano Govoni
- Department of Drug Sciences, Pharmacology Section, University of Pavia, Pavia, Italy
| | - Gianpaolo Zerbini
- Complications of Diabetes Unit, Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Alessia Pascale
- Department of Drug Sciences, Pharmacology Section, University of Pavia, Pavia, Italy
| |
Collapse
|
19
|
Della Volpe S, Linciano P, Listro R, Tumminelli E, Amadio M, Bonomo I, Elgaher WAM, Adam S, Hirsch AKH, Boeckler FM, Vasile F, Rossi D, Collina S. Identification of N,N-arylalkyl-picolinamide derivatives targeting the RNA-binding protein HuR, by combining biophysical fragment-screening and molecular hybridization. Bioorg Chem 2021; 116:105305. [PMID: 34482166 DOI: 10.1016/j.bioorg.2021.105305] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/26/2021] [Accepted: 08/23/2021] [Indexed: 12/31/2022]
Abstract
Hu proteins are members of the RNA-binding protein (RBP) family and play a pivotal role in the regulation of post-transcriptional processes. Through interaction with selected mRNAs, RBPs regulate their function and stability; as a consequence, RBP dysregulation can cause abnormal translation of key proteins involved in several pathologies. In the past few years, this observation has sparked interest to develop new treatments against these pathologies by using small molecules able to modulate RBP activity. Among the four Hu proteins, we have directed our efforts towards the isoform HuR, which is mainly involved in cancer, inflammation and retinopathy. Aimed at developing compounds able to modulate the stability of HuR-mRNA complexes, in the present work, we applied a biophysical fragment screening by assessing a library of halogen-enriched heterocyclic fragments (HEFLibs) via Surface Plasmon Resonance (SPR) and Saturation Transfer Difference (STD) NMR to select promising fragments able to interact with HuR. One selected fragment and a few commercially available congeners were exploited to design and synthesize focused analogues of compound N-(3-chlorobenzyl)-N-(3,5-dihydroxyphenethyl)-4-hydroxybenzamide (1), our previously reported hit. STDNMR spectroscopy, molecular modeling, and SPR offered further insight into the HuR-small molecule interaction and showed that fragment-based approaches represent a promising and yet underexplored strategy to tackle such unusual targets. Lastly, fluorescence polarization (FP) studies revealed the capability of the new compounds to interfere with the formation of the HuR-mRNA complex. This is, to our knowledge, the first fragment-based campaign performed on the Hu protein class, and one of the few examples in the larger RBP field and constitutes an important step in the quest for the rational modulation of RBPs and related RNA functions by small molecules.
Collapse
Affiliation(s)
- S Della Volpe
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100, Pavia, Italy; Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Campus building E8.1, 66123 Saarbrücken, Germany; Department of Pharmacy, Saarland University, Campus Building E8.1, 66123 Saarbrücken, Germany.
| | - P Linciano
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100, Pavia, Italy.
| | - R Listro
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100, Pavia, Italy.
| | - E Tumminelli
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100, Pavia, Italy; Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Campus building E8.1, 66123 Saarbrücken, Germany.
| | - M Amadio
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100, Pavia, Italy.
| | - I Bonomo
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy.
| | - W A M Elgaher
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Campus building E8.1, 66123 Saarbrücken, Germany.
| | - S Adam
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Campus building E8.1, 66123 Saarbrücken, Germany.
| | - A K H Hirsch
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Campus building E8.1, 66123 Saarbrücken, Germany; Department of Pharmacy, Saarland University, Campus Building E8.1, 66123 Saarbrücken, Germany.
| | - F M Boeckler
- Department of Pharmacy and Biochemistry, Institute of Pharmaceutical Sciences, Eberhard Karls Universität Tübingen, Tübingen, Germany; Center for Bioinformatics Tübingen (ZBIT), Eberhard Karls Universität Tübingen, Tübingen, Germany.
| | - F Vasile
- Department of Chemistry, University of Milan, Via Golgi 19, 20133 Milano, Italy.
| | - D Rossi
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100, Pavia, Italy.
| | - S Collina
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100, Pavia, Italy.
| |
Collapse
|
20
|
HuD regulates SOD1 expression during oxidative stress in differentiated neuroblastoma cells and sporadic ALS motor cortex. Neurobiol Dis 2020; 148:105211. [PMID: 33271327 DOI: 10.1016/j.nbd.2020.105211] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 10/09/2020] [Accepted: 11/25/2020] [Indexed: 02/07/2023] Open
Abstract
The neuronal RNA-binding protein (RBP) HuD plays an important role in brain development, synaptic plasticity and neurodegenerative diseases such as Parkinson's (PD) and Alzheimer's (AD). Bioinformatics analysis of the human SOD1 mRNA 3' untranslated region (3'UTR) demonstrated the presence of HuD binding adenine-uridine (AU)-rich instability-conferring elements (AREs). Using differentiated SH-SY5Y cells along with brain tissues from sporadic amyotrophic lateral sclerosis (sALS) patients, we assessed HuD-dependent regulation of SOD1 mRNA. In vitro binding and mRNA decay assays demonstrate that HuD specifically binds to SOD1 ARE motifs promoting mRNA stabilization. In SH-SY5Y cells, overexpression of full-length HuD increased SOD1 mRNA and protein levels while a dominant negative form of the RBP downregulated its expression. HuD regulation of SOD1 mRNA was also found to be oxidative stress (OS)-dependent, as shown by the increased HuD binding and upregulation of this mRNA after H2O2 exposure. This treatment also induced a shift in alternative polyadenylation (APA) site usage in SOD1 3'UTR, increasing the levels of a long variant bearing HuD binding sites. The requirement of HuD for SOD1 upregulation during oxidative damage was validated using a specific siRNA that downregulated HuD protein levels to 36% and prevented upregulation of SOD1 and 91 additional genes. In the motor cortex from sALS patients, we found increases in SOD1 and HuD mRNAs and proteins, accompanied by greater HuD binding to this mRNA as confirmed by RNA-immunoprecipitation (RIP) assays. Altogether, our results suggest a role of HuD in the post-transcriptional regulation of SOD1 expression during ALS pathogenesis.
Collapse
|
21
|
Marchesi N, Barbieri A, Fahmideh F, Govoni S, Ghidoni A, Parati G, Vanoli E, Pascale A, Calvillo L. Use of dual-flow bioreactor to develop a simplified model of nervous-cardiovascular systems crosstalk: A preliminary assessment. PLoS One 2020; 15:e0242627. [PMID: 33253266 PMCID: PMC7703955 DOI: 10.1371/journal.pone.0242627] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 11/05/2020] [Indexed: 02/07/2023] Open
Abstract
Chronic conditions requiring long-term rehabilitation therapies, such as hypertension, stroke, or cancer, involve complex interactions between various systems/organs of the body and mutual influences, thus implicating a multiorgan approach. The dual-flow IVTech LiveBox2 bioreactor is a recently developed inter-connected dynamic cell culture model able to mimic organ crosstalk, since cells belonging to different organs can be connected and grown under flow conditions in a more physiological environment. This study aims to setup for the first time a 2-way connected culture of human neuroblastoma cells, SH-SY5Y, and Human Coronary Artery Smooth Muscle Cells, HCASMC through a dual-flow IVTech LiveBox2 bioreactor, in order to represent a simplified model of nervous-cardiovascular systems crosstalk, possibly relevant for the above-mentioned diseases. The system was tested by treating the cells with 10nM angiotensin II (AngII) inducing PKCβII/HuR/VEGF pathway activation, since AngII and PKCβII/HuR/VEGF pathway are relevant in cardiovascular and neuroscience research. Three different conditions were applied: 1- HCASMC and SH-SY5Y separately seeded in petri dishes (static condition); 2- the two cell lines separately seeded under flow (dynamic condition); 3- the two lines, seeded in dynamic conditions, connected, each maintaining its own medium, with a membrane as interface for biohumoral changes between the two mediums, and then treated. We detected that only in condition 3 there was a synergic AngII-dependent VEGF production in SH-SY5Y cells coupled to an AngII-dependent PKCβII/HuR/VEGF pathway activation in HCASMC, consistent with the observed physiological response in vivo. HCASMC response to AngII seems therefore to be generated by/derived from the reciprocal cell crosstalk under the dynamic inter-connection ensured by the dual flow LiveBox 2 bioreactor. This system can represent a useful tool for studying the crosstalk between organs, helpful for instance in rehabilitation research or when investigating chronic diseases; further, it offers the advantageous opportunity of cultivating each cell line in its own medium, thus mimicking, at least in part, distinct tissue milieu.
Collapse
Affiliation(s)
- Nicoletta Marchesi
- Department of Drug Sciences, Pharmacology Section, University of Pavia, Pavia, Italy
| | - Annalisa Barbieri
- Department of Drug Sciences, Pharmacology Section, University of Pavia, Pavia, Italy
| | - Foroogh Fahmideh
- Department of Drug Sciences, Pharmacology Section, University of Pavia, Pavia, Italy
| | - Stefano Govoni
- Department of Drug Sciences, Pharmacology Section, University of Pavia, Pavia, Italy
| | - Alice Ghidoni
- Center for Cardiac Arrhythmias of Genetic Origin, Istituto Auxologico Italiano, IRCCS, Milan, Italy
| | - Gianfranco Parati
- Department of Cardiovascular, Neural and Metabolic Sciences, IRCCS Istituto Auxologico Italiano, Milan, Italy
- Department of Medicine and Surgery, University of Milano-Bicocca, Milano, Italy
| | - Emilio Vanoli
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Cardiovascular Department, IRCCS Multimedica, Sesto San Giovanni, Italy
| | - Alessia Pascale
- Department of Drug Sciences, Pharmacology Section, University of Pavia, Pavia, Italy
| | - Laura Calvillo
- Department of Cardiovascular, Neural and Metabolic Sciences, IRCCS Istituto Auxologico Italiano, Milan, Italy
| |
Collapse
|
22
|
Liu Q, Zhu L, Liu X, Zheng J, Liu Y, Ruan X, Cao S, Cai H, Li Z, Xue Y. TRA2A-induced upregulation of LINC00662 regulates blood-brain barrier permeability by affecting ELK4 mRNA stability in Alzheimer's microenvironment. RNA Biol 2020; 17:1293-1308. [PMID: 32372707 DOI: 10.1080/15476286.2020.1756055] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The blood-brain barrier (BBB) plays a pivotal role in the maintenance and regulation of the neural microenvironment. The BBB breakdown is a pathological change in early Alzheimer's disease (AD). RNA-binding proteins (RBPs) and long non-coding RNAs (lncRNAs) are involved in the regulation of BBB permeability. Our study demonstrates the role of TRA2A/LINC00662/ELK4 axis in regulating BBB permeability in AD microenvironment. In Aβ1-42-incubated microvascular endothelial cells (ECs) of the BBB model in vitro, TRA2A and LINC00662 were enriched. TRA2A increased the stability of LINC00662 by binding with it. The knockdown of either TRA2A or LINC00662 decreased BBB permeability due to increased expression of tight junction-related proteins. ELK4 was less expressed in the BBB model in AD microenvironment in vitro. LINC00662 mediated the degradation of ELK4 mRNA by SMD pathway. Downregulation of ELK4 increased BBB permeability by increasing the tight junction-related protein expression.TRA2A/LINC00662/ELK4 axis plays a crucial role in the regulation of BBB permeability in AD microenvironment, which may provide a novel target for the therapy of AD.
Collapse
Affiliation(s)
- Qianshuo Liu
- Department of Neurobiology, School of Life Sciences, China Medical University , Shenyang, People's Republic of China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University , Shenyang, People's Republic of China.,Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University , Shenyang, People's Republic of China
| | - Lu Zhu
- Department of Neurobiology, School of Life Sciences, China Medical University , Shenyang, People's Republic of China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University , Shenyang, People's Republic of China.,Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University , Shenyang, People's Republic of China
| | - Xiaobai Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University , Shenyang, People's Republic of China.,Liaoning Clinical Medical Research Center in Nervous System Disease , Shenyang, People's Republic of China.,Key Laboratory of Neuro-oncology in Liaoning Province , Shenyang, People's Republic of China
| | - Jian Zheng
- Department of Neurosurgery, Shengjing Hospital of China Medical University , Shenyang, People's Republic of China.,Liaoning Clinical Medical Research Center in Nervous System Disease , Shenyang, People's Republic of China.,Key Laboratory of Neuro-oncology in Liaoning Province , Shenyang, People's Republic of China
| | - Yunhui Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University , Shenyang, People's Republic of China.,Liaoning Clinical Medical Research Center in Nervous System Disease , Shenyang, People's Republic of China.,Key Laboratory of Neuro-oncology in Liaoning Province , Shenyang, People's Republic of China
| | - Xuelei Ruan
- Department of Neurobiology, School of Life Sciences, China Medical University , Shenyang, People's Republic of China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University , Shenyang, People's Republic of China.,Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University , Shenyang, People's Republic of China
| | - Shuo Cao
- Department of Neurobiology, School of Life Sciences, China Medical University , Shenyang, People's Republic of China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University , Shenyang, People's Republic of China.,Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University , Shenyang, People's Republic of China
| | - Heng Cai
- Department of Neurosurgery, Shengjing Hospital of China Medical University , Shenyang, People's Republic of China.,Liaoning Clinical Medical Research Center in Nervous System Disease , Shenyang, People's Republic of China.,Key Laboratory of Neuro-oncology in Liaoning Province , Shenyang, People's Republic of China
| | - Zhen Li
- Department of Neurosurgery, Shengjing Hospital of China Medical University , Shenyang, People's Republic of China.,Liaoning Clinical Medical Research Center in Nervous System Disease , Shenyang, People's Republic of China.,Key Laboratory of Neuro-oncology in Liaoning Province , Shenyang, People's Republic of China
| | - Yixue Xue
- Department of Neurobiology, School of Life Sciences, China Medical University , Shenyang, People's Republic of China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University , Shenyang, People's Republic of China.,Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University , Shenyang, People's Republic of China
| |
Collapse
|
23
|
Platania CBM, Pittalà V, Pascale A, Marchesi N, Anfuso CD, Lupo G, Cristaldi M, Olivieri M, Lazzara F, Di Paola L, Drago F, Bucolo C. Novel indole derivatives targeting HuR-mRNA complex to counteract high glucose damage in retinal endothelial cells. Biochem Pharmacol 2020; 175:113908. [PMID: 32171729 DOI: 10.1016/j.bcp.2020.113908] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 03/09/2020] [Indexed: 12/31/2022]
Abstract
The ELAVL1 (or human antigen R - HuR) RNA binding protein stabilizes the mRNA, with an AU-rich element, of several genes such as growth factors (i.e. VEGF) and inflammatory cytokines (i.e. TNFα). We hereby carried out a virtual screening campaign in order to identify and test novel HuR-mRNA disruptors. Best-scored compounds were tested in an in-vitro model of diabetic retinopathy, namely human retinal endothelial cells (HRECs) challenged with high-glucose levels (25 mM). HuR, VEGF and TNFα protein contents were evaluated by western-blot analysis in total cell lysates. VEGF and TNFα released from HRECs were measured in cell medium by ELISA. We found that two derivatives bearing indole moiety, VP12/14 and VP12/110, modulated HuR expression and decreased VEGF and TNF-α release by HREC exposed to high glucose (HG) levels. VP12/14 and VP12/110 inhibited VEGF and TNF-α release in HRECs challenged with high glucose levels, similarly to dihydrotanshinone (DHTS), a small molecule known to interfere with HuR- TNFα mRNA binding. The present findings demonstrated that VP12/14 and VP12/110 are innovative molecules with anti-inflammatory and anti-angiogenic properties, suggesting their potential use as novel candidates for treatment of diabetic retinopathy.
Collapse
Affiliation(s)
- Chiara Bianca Maria Platania
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - Valeria Pittalà
- Departement of Drug Sciences, University of Catania, Catania, Italy
| | - Alessia Pascale
- Department of Drug Sciences, Pharmacology Section, University of Pavia, Pavia, Italy
| | - Nicoletta Marchesi
- Department of Drug Sciences, Pharmacology Section, University of Pavia, Pavia, Italy
| | - Carmelina Daniela Anfuso
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy; Center for Research in Ocular Pharmacology-CERFO, University of Catania, Catania, Italy
| | - Gabriella Lupo
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy; Center for Research in Ocular Pharmacology-CERFO, University of Catania, Catania, Italy
| | - Martina Cristaldi
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - Melania Olivieri
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - Francesca Lazzara
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - Luisa Di Paola
- Unit of Chemical-Physics Fundamentals in Chemical Engineering, Department of Engineering, Campus Bio-Medico University, Roma, Italy
| | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy; Center for Research in Ocular Pharmacology-CERFO, University of Catania, Catania, Italy
| | - Claudio Bucolo
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy; Center for Research in Ocular Pharmacology-CERFO, University of Catania, Catania, Italy.
| |
Collapse
|
24
|
Pistono C, Monti MC, Marchesi N, Boiocchi C, Campagnoli LIM, Morlotti D, Cuccia M, Govoni S, Montomoli C, Mallucci G, Bergamaschi R, Pascale A. Unraveling a new player in multiple sclerosis pathogenesis: The RNA-binding protein HuR. Mult Scler Relat Disord 2020; 41:102048. [PMID: 32200342 DOI: 10.1016/j.msard.2020.102048] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 03/06/2020] [Accepted: 03/07/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND ELAV-like proteins are a small family of RNA-binding proteins that are fundamental players in post-transcriptional mechanisms and are involved in the pathogenesis of neurologic and psychiatric disorders. HuR, the ubiquitously expressed member of the family, is also implicated in sustaining inflammation and inflammatory diseases, supporting the production of pro-inflammatory cytokines. Inflammation plays a central role in Multiple Sclerosis (MS), which represents the most common cause of permanent physical disability in young adults. MS is a chronic autoimmune disease affecting the Central Nervous System, with a complex aetiology involving genetic, environmental and epigenetic factors. No data are available on the potential entanglement of HuR in MS pathogenesis in patients. In the present work, we aimed at exploring HuR protein levels in peripheral blood mononuclear cells (PBMCs) from MS patients, compared to healthy controls. To further elucidate the possible involvement of HuR in MS, we also investigated the relationship between this specific RNA-binding protein and HSP70-2 protein, also considering the HSP70-2 rs1061581 polymorphism, given that HSP70-2 mRNA has been reported as a HuR target and this specific polymorphism to be associated with MS risk. METHODS Alleles and genotypes for HSP70-2 rs1061581 polymorphism were assessed, by using a Polymerase Chain Reaction-Restriction Fragment Length Polymorphism, followed by digestion with restriction enzyme, in MS patients and healthy controls. PBMCs from a subgroup of patients and controls were used to evaluate HuR and HSP70-2 protein content by Western blot. RESULTS PBMCs from 52 MS patients had a lower HuR and higher HSP70-2 protein content compared to 43 healthy controls. An increase of 100 units of HuR significantly decreased the risk of developing MS by 9.8% (OR: 0.902, 95% CI: 0.83-0.98), controlling for HSP70-2 protein expression, HSP70-2 rs1061581 genotype, age and sex. Moreover, holding HuR levels, an increase of 100 units of HSP70-2 protein significantly increased the MS risk by 18.1% (OR: 1.181, 95% CI: 1.03-1.36) and the genetic susceptibility of developing MS for HSP70-2 rs1061581 GG carriers is confirmed. Of interest, MS patients with a moderate to severe form of MS (MSSS ≥ 3) showed a trend towards a reduction of HuR protein levels compared to patients with mild disease severity (MSSS < 3). CONCLUSIONS HuR protein levels are reduced in MS patients compared to healthy subjects, and the protein amount may continue to decline with disease progression, suggesting a putative role of this RNA-binding protein. Moreover, our results suggest that MS pathology may have disrupted the link between HuR and its target transcript HSP70-2. It will be important to further explore the exact role of HuR in MS, considering the complex interplay with other RNA-binding factors and target mRNAs.
Collapse
Affiliation(s)
- Cristiana Pistono
- Laboratory of Immunogenetics, Department of Biology & Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy.
| | - Maria Cristina Monti
- Department of Public Health Experimental and Forensic Medicine, Unit of Biostatistics and Clinical Epidemiology, University of Pavia, Pavia, Italy
| | - Nicoletta Marchesi
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, Pavia, Italy
| | - Chiara Boiocchi
- Inter-Department Multiple Sclerosis Research Centre, IRCCS Mondino Foundation, Pavia, Italy
| | | | - Danila Morlotti
- Department of Public Health Experimental and Forensic Medicine, Unit of Biostatistics and Clinical Epidemiology, University of Pavia, Pavia, Italy
| | - Mariaclara Cuccia
- Laboratory of Immunogenetics, Department of Biology & Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | - Stefano Govoni
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, Pavia, Italy
| | - Cristina Montomoli
- Department of Public Health Experimental and Forensic Medicine, Unit of Biostatistics and Clinical Epidemiology, University of Pavia, Pavia, Italy
| | - Giulia Mallucci
- Inter-Department Multiple Sclerosis Research Centre, IRCCS Mondino Foundation, Pavia, Italy
| | - Roberto Bergamaschi
- Inter-Department Multiple Sclerosis Research Centre, IRCCS Mondino Foundation, Pavia, Italy
| | - Alessia Pascale
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, Pavia, Italy
| |
Collapse
|
25
|
Pabis M, Popowicz GM, Stehle R, Fernández-Ramos D, Asami S, Warner L, García-Mauriño SM, Schlundt A, Martínez-Chantar ML, Díaz-Moreno I, Sattler M. HuR biological function involves RRM3-mediated dimerization and RNA binding by all three RRMs. Nucleic Acids Res 2019; 47:1011-1029. [PMID: 30418581 PMCID: PMC6344896 DOI: 10.1093/nar/gky1138] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 10/28/2018] [Indexed: 12/22/2022] Open
Abstract
HuR/ELAVL1 is an RNA-binding protein involved in differentiation and stress response that acts primarily by stabilizing messenger RNA (mRNA) targets. HuR comprises three RNA recognition motifs (RRMs) where the structure and RNA binding of RRM3 and of full-length HuR remain poorly understood. Here, we report crystal structures of RRM3 free and bound to cognate RNAs. Our structural, NMR and biochemical data show that RRM3 mediates canonical RNA interactions and reveal molecular details of a dimerization interface localized on the α-helical face of RRM3. NMR and SAXS analyses indicate that the three RRMs in full-length HuR are flexibly connected in the absence of RNA, while they adopt a more compact arrangement when bound to RNA. Based on these data and crystal structures of tandem RRM1,2-RNA and our RRM3-RNA complexes, we present a structural model of RNA recognition involving all three RRM domains of full-length HuR. Mutational analysis demonstrates that RRM3 dimerization and RNA binding is required for functional activity of full-length HuR in vitro and to regulate target mRNAs levels in human cells, thus providing a fine-tuning for HuR activity in vivo.
Collapse
Affiliation(s)
- Marta Pabis
- Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany.,Center for Integrated Protein Science Munich at Chair Biomolecular NMR Spectroscopy, Department Chemie, Technische Universität München, Lichtenbergstr. 4, 85747 Garching, Germany.,Max Planck Research Group hosted by the Malopolska Centre of Biotechnology of the Jagiellonian University, Krakow, Poland
| | - Grzegorz M Popowicz
- Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany.,Center for Integrated Protein Science Munich at Chair Biomolecular NMR Spectroscopy, Department Chemie, Technische Universität München, Lichtenbergstr. 4, 85747 Garching, Germany
| | - Ralf Stehle
- Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany.,Center for Integrated Protein Science Munich at Chair Biomolecular NMR Spectroscopy, Department Chemie, Technische Universität München, Lichtenbergstr. 4, 85747 Garching, Germany
| | - David Fernández-Ramos
- CIC bioGUNE, Centro de Investigación Cooperativa en Biociencias. Technology Park of Bizkaia, 48160 Derio, Bizkaia, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Sam Asami
- Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany.,Center for Integrated Protein Science Munich at Chair Biomolecular NMR Spectroscopy, Department Chemie, Technische Universität München, Lichtenbergstr. 4, 85747 Garching, Germany
| | - Lisa Warner
- Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany.,Center for Integrated Protein Science Munich at Chair Biomolecular NMR Spectroscopy, Department Chemie, Technische Universität München, Lichtenbergstr. 4, 85747 Garching, Germany
| | - Sofía M García-Mauriño
- Instituto de Investigaciones Químicas (IIQ)-Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja), Universidad de Sevilla - Consejo Superior de Investigaciones Científicas (CSIC), Avda. Americo Vespucio 49, 41092 Sevilla, Spain
| | - Andreas Schlundt
- Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany.,Center for Integrated Protein Science Munich at Chair Biomolecular NMR Spectroscopy, Department Chemie, Technische Universität München, Lichtenbergstr. 4, 85747 Garching, Germany
| | - María L Martínez-Chantar
- CIC bioGUNE, Centro de Investigación Cooperativa en Biociencias. Technology Park of Bizkaia, 48160 Derio, Bizkaia, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Irene Díaz-Moreno
- Instituto de Investigaciones Químicas (IIQ)-Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja), Universidad de Sevilla - Consejo Superior de Investigaciones Científicas (CSIC), Avda. Americo Vespucio 49, 41092 Sevilla, Spain
| | - Michael Sattler
- Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany.,Center for Integrated Protein Science Munich at Chair Biomolecular NMR Spectroscopy, Department Chemie, Technische Universität München, Lichtenbergstr. 4, 85747 Garching, Germany
| |
Collapse
|
26
|
Della Volpe S, Nasti R, Queirolo M, Unver MY, Jumde VK, Dömling A, Vasile F, Potenza D, Ambrosio FA, Costa G, Alcaro S, Zucal C, Provenzani A, Di Giacomo M, Rossi D, Hirsch AKH, Collina S. Novel Compounds Targeting the RNA-Binding Protein HuR. Structure-Based Design, Synthesis, and Interaction Studies. ACS Med Chem Lett 2019; 10:615-620. [PMID: 30996806 DOI: 10.1021/acsmedchemlett.8b00600] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 01/21/2019] [Indexed: 12/14/2022] Open
Abstract
The key role of RNA-binding proteins (RBPs) in regulating post-transcriptional processes and their involvement in several pathologies (i.e., cancer and neurodegeneration) have highlighted their potential as therapeutic targets. In this scenario, Embryonic Lethal Abnormal Vision (ELAV) or Hu proteins and their complexes with target mRNAs have been gaining growing attention. Compounds able to modulate the complex stability could constitute an innovative pharmacological strategy for the treatment of numerous diseases. Nevertheless, medicinal-chemistry efforts aimed at developing such compounds are still at an early stage. As part of our ongoing research in this field, we hereby present the rational design and synthesis of structurally novel HuR ligands, potentially acting as HuR-RNA interferers. The following assessment of the structural features of their interaction with HuR, combining saturation-transfer difference NMR and in silico studies, provides a guide for further research on the development of new effective interfering compounds of the HuR-RNA complex.
Collapse
Affiliation(s)
- Serena Della Volpe
- Department of Drug Sciences, Medicinal Chemistry and Technology Section, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Rita Nasti
- Department of Drug Sciences, Medicinal Chemistry and Technology Section, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Michele Queirolo
- Department of Drug Sciences, Medicinal Chemistry and Technology Section, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - M. Yagiz Unver
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Department of Drug Design and Optimization and Department of Pharmacy, Saarland University, Campus Building E8.1, 66123 Saarbrücken, Germany
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, NL-9747 AG, Groningen, The Netherlands
| | - Varsha K. Jumde
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Department of Drug Design and Optimization and Department of Pharmacy, Saarland University, Campus Building E8.1, 66123 Saarbrücken, Germany
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, NL-9747 AG, Groningen, The Netherlands
| | - Alexander Dömling
- Department of Drug Design, University of Groningen, A. Deusinglaan 1, Groningen, 9713 AV, The Netherlands
| | - Francesca Vasile
- Department of Chemistry, University of Milan, Via Golgi 19, 20133 Milano, Italy
| | - Donatella Potenza
- Department of Chemistry, University of Milan, Via Golgi 19, 20133 Milano, Italy
| | | | - Giosué Costa
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Viale Europa, 88100, Catanzaro, Italy
| | - Stefano Alcaro
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Viale Europa, 88100, Catanzaro, Italy
| | - Chiara Zucal
- Department of CIBIO, University of Trento, Via Sommarive 9, 38123 Povo, TN, Italy
| | | | - Marcello Di Giacomo
- Department of Drug Sciences, Medicinal Chemistry and Technology Section, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Daniela Rossi
- Department of Drug Sciences, Medicinal Chemistry and Technology Section, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Anna K. H. Hirsch
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Department of Drug Design and Optimization and Department of Pharmacy, Saarland University, Campus Building E8.1, 66123 Saarbrücken, Germany
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, NL-9747 AG, Groningen, The Netherlands
| | - Simona Collina
- Department of Drug Sciences, Medicinal Chemistry and Technology Section, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| |
Collapse
|
27
|
Pietrucha-Dutczak M, Amadio M, Govoni S, Lewin-Kowalik J, Smedowski A. The Role of Endogenous Neuroprotective Mechanisms in the Prevention of Retinal Ganglion Cells Degeneration. Front Neurosci 2018; 12:834. [PMID: 30524222 PMCID: PMC6262299 DOI: 10.3389/fnins.2018.00834] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 10/25/2018] [Indexed: 12/14/2022] Open
Abstract
Retinal neurons are not able to undergo spontaneous regeneration in response to damage. A variety of stressors, i.e., UV radiation, high temperature, ischemia, allergens, and others, induce reactive oxygen species production, resulting in consecutive alteration of stress-response gene expression and finally can lead to cell apoptosis. Neurons have developed their own endogenous cellular protective systems. Some of them are preventing cell death and others are allowing functional recovery after injury. The high efficiency of these mechanisms is crucial for cell survival. In this review we focus on the contribution of the most recently studied endogenous neuroprotective factors involved in retinal ganglion cell (RGC) survival, among which, neurotrophic factors and their signaling pathways, processes regulating the redox status, and different pathways regulating cell death are the most important. Additionally, we summarize currently ongoing clinical trials for therapies for RGC degeneration and optic neuropathies, including glaucoma. Knowledge of the endogenous cellular protective mechanisms may help in the development of effective therapies and potential novel therapeutic targets in order to achieve progress in the treatment of retinal and optic nerve diseases.
Collapse
Affiliation(s)
- Marita Pietrucha-Dutczak
- Chair and Department of Physiology, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Marialaura Amadio
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, Pavia, Italy
| | - Stefano Govoni
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, Pavia, Italy
| | - Joanna Lewin-Kowalik
- Chair and Department of Physiology, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Adrian Smedowski
- Chair and Department of Physiology, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| |
Collapse
|
28
|
Exploration of ligand binding modes towards the identification of compounds targeting HuR: a combined STD-NMR and Molecular Modelling approach. Sci Rep 2018; 8:13780. [PMID: 30214075 PMCID: PMC6137155 DOI: 10.1038/s41598-018-32084-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 08/29/2018] [Indexed: 12/18/2022] Open
Abstract
Post-transcriptional processes have been recognised as pivotal in the control of gene expression, and impairments in RNA processing are reported in several pathologies (i.e., cancer and neurodegeneration). Focusing on RNA-binding proteins (RBPs), the involvement of Embryonic Lethal Abnormal Vision (ELAV) or Hu proteins and their complexes with target mRNAs in the aetiology of various dysfunctions, has suggested the great potential of compounds able to interfere with the complex stability as an innovative pharmacological strategy for the treatment of numerous diseases. Here, we present a rational follow-up investigation of the interaction between ELAV isoform HuR and structurally-related compounds (i.e., flavonoids and coumarins), naturally decorated with different functional groups, by means of STD-NMR and Molecular Modelling. Our results represent the foundation for the development of potent and selective ligands able to interfere with ELAV–RNA complexes.
Collapse
|
29
|
Kivinen N. The role of autophagy in age-related macular degeneration. Acta Ophthalmol 2018; 96 Suppl A110:1-50. [PMID: 29633521 DOI: 10.1111/aos.13753] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Niko Kivinen
- Department of Ophthalmology; University of Eastern Finland; Kuopio Finland
| |
Collapse
|
30
|
Autophagy Stimulus Promotes Early HuR Protein Activation and p62/SQSTM1 Protein Synthesis in ARPE-19 Cells by Triggering Erk1/2, p38 MAPK, and JNK Kinase Pathways. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:4956080. [PMID: 29576851 PMCID: PMC5822911 DOI: 10.1155/2018/4956080] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 11/03/2017] [Accepted: 12/05/2017] [Indexed: 12/14/2022]
Abstract
RNA-binding protein dysregulation and altered expression of proteins involved in the autophagy/proteasome pathway play a role in many neurodegenerative disease onset/progression, including age-related macular degeneration (AMD). HuR/ELAVL1 is a master regulator of gene expression in human physiopathology. In ARPE-19 cells exposed to the proteasomal inhibitor MG132, HuR positively affects at posttranscriptional level p62 expression, a stress response gene involved in protein aggregate clearance with a role in AMD. Here, we studied the early effects of the proautophagy AICAR + MG132 cotreatment on the HuR-p62 pathway. We treated ARPE-19 cells with Erk1/2, AMPK, p38MAPK, PKC, and JNK kinase inhibitors in the presence of AICAR + MG132 and evaluated HuR localization/phosphorylation and p62 expression. Two-hour AICAR + MG132 induces both HuR cytoplasmic translocation and threonine phosphorylation via the Erk1/2 pathway. In these conditions, p62 mRNA is loaded on polysomes and its translation in de novo protein is favored. Additionally, for the first time, we report that JNK can phosphorylate HuR, however, without modulating its localization. Our study supports HuR's role as an upstream regulator of p62 expression in ARPE-19 cells, helps to understand better the early events in response to a proautophagy stimulus, and suggests that modulation of the autophagy-regulating kinases as potential therapeutic targets for AMD may be relevant.
Collapse
|
31
|
Increased intraocular pressure alters the cellular distribution of HuR protein in retinal ganglion cells - A possible sign of endogenous neuroprotection failure. Biochim Biophys Acta Mol Basis Dis 2017; 1864:296-306. [PMID: 29107807 DOI: 10.1016/j.bbadis.2017.10.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Revised: 10/09/2017] [Accepted: 10/26/2017] [Indexed: 12/14/2022]
Abstract
The RNA-binding protein, HuR, modulates mRNA processing and gene expression of several stress response proteins i.e. Hsp70 and p53 that have been postulated to be involved in the pathogenesis of glaucoma, a chronic optic neuropathy leading to irreversible blindness. We evaluated HuR protein expression in retinas and optic nerves of glaucomatous rats and human primary open angle glaucoma patients and its possible impact on stress response mechanisms. We found that the cytoplasmic content of HuR was reduced more extensively in glaucomatous retinas than in optic nerves and this was linked with a declined cytoplasmic Hsp70 level and p53 nuclear translocation. In the optic nerve, the p53 content was decreased as a feature of reactive gliosis. Based on our findings, we conclude that the alteration in the HuR content, observed both in rat glaucoma model and human glaucoma samples, affects post-transcriptionally the expression of genes crucial for maintaining cell homeostasis; therefore, we postulate that HuR may be involved in the pathogenesis of glaucoma.
Collapse
|
32
|
Nasti R, Rossi D, Amadio M, Pascale A, Unver MY, Hirsch AKH, Collina S. Compounds Interfering with Embryonic Lethal Abnormal Vision (ELAV) Protein–RNA Complexes: An Avenue for Discovering New Drugs. J Med Chem 2017; 60:8257-8267. [DOI: 10.1021/acs.jmedchem.6b01871] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Rita Nasti
- Department of Drug
Sciences, Medicinal Chemistry and Technology Section, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Daniela Rossi
- Department of Drug
Sciences, Medicinal Chemistry and Technology Section, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Marialaura Amadio
- Department of Drug
Sciences, Pharmacology Section, University of Pavia, Via Taramelli
14, 27100 Pavia, Italy
| | - Alessia Pascale
- Department of Drug
Sciences, Pharmacology Section, University of Pavia, Via Taramelli
14, 27100 Pavia, Italy
| | - M. Yagiz Unver
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, NL-9747
AG Groningen, The Netherlands
| | - Anna K. H. Hirsch
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, NL-9747
AG Groningen, The Netherlands
| | - Simona Collina
- Department of Drug
Sciences, Medicinal Chemistry and Technology Section, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| |
Collapse
|
33
|
Lang M, Berry D, Passecker K, Mesteri I, Bhuju S, Ebner F, Sedlyarov V, Evstatiev R, Dammann K, Loy A, Kuzyk O, Kovarik P, Khare V, Beibel M, Roma G, Meisner-Kober N, Gasche C. HuR Small-Molecule Inhibitor Elicits Differential Effects in Adenomatosis Polyposis and Colorectal Carcinogenesis. Cancer Res 2017; 77:2424-2438. [PMID: 28428272 PMCID: PMC5826591 DOI: 10.1158/0008-5472.can-15-1726] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 07/30/2015] [Accepted: 02/02/2017] [Indexed: 12/19/2022]
Abstract
HuR is an RNA-binding protein implicated in immune homeostasis and various cancers, including colorectal cancer. HuR binding to AU-rich elements within the 3' untranslated region of mRNAs encoding oncogenes, growth factors, and various cytokines leads message stability and translation. In this study, we evaluated HuR as a small-molecule target for preventing colorectal cancer in high-risk groups such as those with familial adenomatosis polyposis (FAP) or inflammatory bowel disease (IBD). In human specimens, levels of cytoplasmic HuR were increased in colonic epithelial cells from patients with IBD, IBD-cancer, FAP-adenoma, and colorectal cancer, but not in patients with IBD-dysplasia. Intraperitoneal injection of the HuR small-molecule inhibitor MS-444 in AOM/DSS mice, a model of IBD and inflammatory colon cancer, augmented DSS-induced weight loss and increased tumor multiplicity, size, and invasiveness. MS-444 treatment also abrogated tumor cell apoptosis and depleted tumor-associated eosinophils, accompanied by a decrease in IL18 and eotaxin-1. In contrast, HuR inhibition in APCMin mice, a model of FAP and colon cancer, diminished the number of small intestinal tumors generated. In this setting, fecal microbiota, evaluated by 16S rRNA gene amplicon sequencing, shifted to a state of reduced bacterial diversity, with an increased representation of Prevotella, Akkermansia, and Lachnospiraceae Taken together, our results indicate that HuR activation is an early event in FAP-adenoma but is not present in IBD-dysplasia. Furthermore, our results offer a preclinical proof of concept for HuR inhibition as an effective means of FAP chemoprevention, with caution advised in the setting of IBD. Cancer Res; 77(9); 2424-38. ©2017 AACR.
Collapse
Affiliation(s)
- Michaela Lang
- Christian Doppler Laboratory for Molecular Cancer Chemoprevention, Division of Gastroenterology and Hepatology, Department of Medicine 3, Medical University of Vienna, Vienna, Austria
| | - David Berry
- Department of Microbial Ecology, Vienna Ecology Center, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Katharina Passecker
- Christian Doppler Laboratory for Molecular Cancer Chemoprevention, Division of Gastroenterology and Hepatology, Department of Medicine 3, Medical University of Vienna, Vienna, Austria
| | - Ildiko Mesteri
- Clinical Institute of Pathology, Medical University of Vienna, Vienna, Austria
| | - Sabin Bhuju
- Genome Analytics, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Florian Ebner
- Max F. Perutz Laboratories, Center for Molecular Biology, University of Vienna, Vienna, Austria
| | - Vitaly Sedlyarov
- Max F. Perutz Laboratories, Center for Molecular Biology, University of Vienna, Vienna, Austria
| | - Rayko Evstatiev
- Christian Doppler Laboratory for Molecular Cancer Chemoprevention, Division of Gastroenterology and Hepatology, Department of Medicine 3, Medical University of Vienna, Vienna, Austria
| | - Kyle Dammann
- Christian Doppler Laboratory for Molecular Cancer Chemoprevention, Division of Gastroenterology and Hepatology, Department of Medicine 3, Medical University of Vienna, Vienna, Austria
| | - Alexander Loy
- Department of Microbial Ecology, Vienna Ecology Center, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Orest Kuzyk
- Department of Microbial Ecology, Vienna Ecology Center, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Pavel Kovarik
- Max F. Perutz Laboratories, Center for Molecular Biology, University of Vienna, Vienna, Austria
| | - Vineeta Khare
- Christian Doppler Laboratory for Molecular Cancer Chemoprevention, Division of Gastroenterology and Hepatology, Department of Medicine 3, Medical University of Vienna, Vienna, Austria
| | - Martin Beibel
- Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Guglielmo Roma
- Novartis Institutes for Biomedical Research, Basel, Switzerland
- Department of Biology, University of Naples Federico II, Complesso Universitario MSA, Naples, Italy
| | | | - Christoph Gasche
- Christian Doppler Laboratory for Molecular Cancer Chemoprevention, Division of Gastroenterology and Hepatology, Department of Medicine 3, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
34
|
Wang H, Tri Anggraini F, Chen X, DeGracia DJ. Embryonic lethal abnormal vision proteins and adenine and uridine-rich element mRNAs after global cerebral ischemia and reperfusion in the rat. J Cereb Blood Flow Metab 2017; 37:1494-1507. [PMID: 27381823 PMCID: PMC5453468 DOI: 10.1177/0271678x16657572] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Prolonged translation arrest correlates with delayed neuronal death of hippocampal CA1 neurons following global cerebral ischemia and reperfusion. Many previous studies investigated ribosome molecular biology, but mRNA regulatory mechanisms after brain ischemia have been less studied. Here we investigated the embryonic lethal abnormal vision/Hu isoforms HuR, HuB, HuC, and HuD, as well as expression of mRNAs containing adenine and rich uridine elements following global ischemia in rat brain. Proteomics of embryonic lethal abnormal vision immunoprecipitations or polysomes isolated from rat hippocampal CA1 and CA3 from controls or following 10 min ischemia plus 8 h of reperfusion showed distinct sets of mRNA-binding proteins, suggesting differential mRNA regulation in each condition. Notably, HuB, HuC, and HuD were undetectable in NIC CA1. At 8 h reperfusion, polysome-associated mRNAs contained 46.1% of ischemia-upregulated mRNAs containing adenine and rich uridine elements in CA3, but only 18.7% in CA1. Since mRNAs containing adenine and rich uridine elements regulation are important to several cellular stress responses, our results suggest CA1 is disadvantaged compared to CA3 in coping with ischemic stress, and this is expected to be an important contributing factor to CA1 selective vulnerability. (Data are available via ProteomeXchange identifier PXD004078 and GEO Series accession number GSE82146).
Collapse
Affiliation(s)
- Haihui Wang
- 1 Department of Physiology, Wayne State University, Detroit, USA
| | | | - Xuequn Chen
- 1 Department of Physiology, Wayne State University, Detroit, USA
| | - Donald J DeGracia
- 1 Department of Physiology, Wayne State University, Detroit, USA.,2 Center for Molecular Medicine and Genetics, Wayne State University, Detroit, USA
| |
Collapse
|
35
|
DeGracia DJ. Regulation of mRNA following brain ischemia and reperfusion. WILEY INTERDISCIPLINARY REVIEWS-RNA 2017; 8. [PMID: 28097803 DOI: 10.1002/wrna.1415] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 12/11/2016] [Accepted: 12/20/2016] [Indexed: 12/31/2022]
Abstract
There is growing appreciation that mRNA regulation plays important roles in disease and injury. mRNA regulation and ribonomics occur in brain ischemia and reperfusion (I/R) following stroke and cardiac arrest and resuscitation. It was recognized over 40 years ago that translation arrest (TA) accompanies brain I/R and is now recognized as part of the intrinsic stress responses triggered in neurons. However, neuron death correlates to a prolonged TA in cells fated to undergo delayed neuronal death (DND). Dysfunction of mRNA regulatory processes in cells fated to DND prevents them from translating stress-induced mRNAs such as heat shock proteins. The morphological and biochemical studies of mRNA regulation in postischemic neurons are discussed in the context of the large variety of molecular damage induced by ischemic injury. Open issues and areas of future investigation are highlighted. A sober look at the molecular complexity of ischemia-induced neuronal injury suggests that a network framework will assist in making sense of this complexity. The ribonomic network sits between the gene network and the various protein and metabolic networks. Thus, targeting the ribonomic network may prove more effective at neuroprotection than targeting specific molecular pathways, for which all efforts have failed to the present time to stop DND in stroke and after cardiac arrest. WIREs RNA 2017, 8:e1415. doi: 10.1002/wrna.1415 For further resources related to this article, please visit the WIREs website.
Collapse
|
36
|
Hu W, Li S, Park JY, Boppana S, Ni T, Li M, Zhu J, Tian B, Xie Z, Xiang M. Dynamic landscape of alternative polyadenylation during retinal development. Cell Mol Life Sci 2016; 74:1721-1739. [PMID: 27990575 DOI: 10.1007/s00018-016-2429-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 11/24/2016] [Accepted: 12/01/2016] [Indexed: 10/20/2022]
Abstract
The development of the central nervous system (CNS) is a complex process that must be exquisitely controlled at multiple levels to ensure the production of appropriate types and quantity of neurons. RNA alternative polyadenylation (APA) contributes to transcriptome diversity and gene regulation, and has recently been shown to be widespread in the CNS. However, the previous studies have been primarily focused on the tissue specificity of APA and developmental APA change of whole model organisms; a systematic survey of APA usage is lacking during CNS development. Here, we conducted global analysis of APA during mouse retinal development, and identified stage-specific polyadenylation (pA) sites that are enriched for genes critical for retinal development and visual perception. Moreover, we demonstrated 3'UTR (untranslated region) lengthening and increased usage of intronic pA sites over development that would result in gaining many different RBP (RNA-binding protein) and miRNA target sites. Furthermore, we showed that a considerable number of polyadenylated lncRNAs are co-expressed with protein-coding genes involved in retinal development and functions. Together, our data indicate that APA is highly and dynamically regulated during retinal development and maturation, suggesting that APA may serve as a crucial mechanism of gene regulation underlying the delicate process of CNS development.
Collapse
Affiliation(s)
- Wenyan Hu
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 500040, China
| | - Shengguo Li
- Center for Advanced Biotechnology and Medicine and Department of Pediatrics, Rutgers University-Robert Wood Johnson Medical School, 679 Hoes Lane West, Piscataway, NJ, 08854, USA
| | - Ji Yeon Park
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, 07101, USA
| | - Sridhar Boppana
- Center for Advanced Biotechnology and Medicine and Department of Pediatrics, Rutgers University-Robert Wood Johnson Medical School, 679 Hoes Lane West, Piscataway, NJ, 08854, USA
| | - Ting Ni
- State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Miaoxin Li
- Department of Medical Genetics, Center for Genome Research, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jun Zhu
- Systems Biology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Bin Tian
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, 07101, USA
| | - Zhi Xie
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 500040, China.
| | - Mengqing Xiang
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 500040, China. .,Center for Advanced Biotechnology and Medicine and Department of Pediatrics, Rutgers University-Robert Wood Johnson Medical School, 679 Hoes Lane West, Piscataway, NJ, 08854, USA.
| |
Collapse
|
37
|
Marchesi N, Amadio M, Colombrita C, Govoni S, Ratti A, Pascale A. PKC Activation Counteracts ADAM10 Deficit in HuD-Silenced Neuroblastoma Cells. J Alzheimers Dis 2016; 54:535-47. [DOI: 10.3233/jad-160299] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Nicoletta Marchesi
- Department of Drug Sciences, Pharmacology Section, University of Pavia, Pavia, Italy
| | - Marialaura Amadio
- Department of Drug Sciences, Pharmacology Section, University of Pavia, Pavia, Italy
| | - Claudia Colombrita
- Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
- Department of Pathophysiology and Transplantation, ‘Dino Ferrari’ Center, University of Milan, Milan, Italy
| | - Stefano Govoni
- Department of Drug Sciences, Pharmacology Section, University of Pavia, Pavia, Italy
| | - Antonia Ratti
- Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
- Department of Pathophysiology and Transplantation, ‘Dino Ferrari’ Center, University of Milan, Milan, Italy
| | - Alessia Pascale
- Department of Drug Sciences, Pharmacology Section, University of Pavia, Pavia, Italy
| |
Collapse
|
38
|
Eberhardt W, Badawi A, Biyanee A, Pfeilschifter J. Cytoskeleton-Dependent Transport as a Potential Target for Interfering with Post-transcriptional HuR mRNA Regulons. Front Pharmacol 2016; 7:251. [PMID: 27582706 PMCID: PMC4987335 DOI: 10.3389/fphar.2016.00251] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 08/02/2016] [Indexed: 01/04/2023] Open
Abstract
The ubiquitous mRNA binding protein human antigen R (HuR), a member of the embryonal lethal abnormal vision protein family has a critical impact on the post-transcriptional control of AU-rich element bearing mRNA regulons implied in inflammation, senescence, and carcinogenesis. HuR in addition to mRNA stability can affect many other aspects of mRNA processing including splicing, polyadenylation, translation, modulation of miRNA repression, and intracellular mRNA trafficking. Since many of the identified HuR mRNA targets ("HuR mRNA regulons") encode tumor-related proteins, HuR is not only discussed as an useful biomarker but also as promising therapeutic target for treatment of various human cancers. HuR which is most abundantly localized in the nucleus is translocated to the cytoplasm which is fundamental for most of the described HuR functions on target mRNAs. Accordingly, an elevation in cytoplasmic HuR was found in many tumors and correlated with a high grade of malignancy and a poor prognosis of patients. Therefore, direct interference with the intracellular trafficking of HuR offers an attractive approach to intervene with pathologically deregulated HuR functions. Data from several laboratories implicate that the integrity of the cytoskeleton is critical for HuR-mediated intracellular mRNA localization and translation. This review will particularly focus on drugs which have proven a direct inhibitory effect on HuR translocation. Based on the results from those studies, we will also discuss on the principle value of targeting cytoskeleton-dependent transport of HuR by natural or synthetic inhibitors as a potential therapeutic avenue for interfering with dysregulated post-transcriptional HuR mRNA regulons and related tumor cell functions. In spite of that, interfering with cytoplasmic HuR transport could highlight a so far underestimated action of microtubule inhibitors clinically used for cancer chemotherapy.
Collapse
Affiliation(s)
- Wolfgang Eberhardt
- Pharmazentrum Frankfurt/ZAFES, Klinikum der Johann Wolfgang Goethe-Universität Frankfurt am Main, Germany
| | - Amel Badawi
- Pharmazentrum Frankfurt/ZAFES, Klinikum der Johann Wolfgang Goethe-Universität Frankfurt am Main, Germany
| | - Abhiruchi Biyanee
- Pharmazentrum Frankfurt/ZAFES, Klinikum der Johann Wolfgang Goethe-Universität Frankfurt am Main, Germany
| | - Josef Pfeilschifter
- Pharmazentrum Frankfurt/ZAFES, Klinikum der Johann Wolfgang Goethe-Universität Frankfurt am Main, Germany
| |
Collapse
|
39
|
Talman V, Pascale A, Jäntti M, Amadio M, Tuominen RK. Protein Kinase C Activation as a Potential Therapeutic Strategy in Alzheimer's Disease: Is there a Role for Embryonic Lethal Abnormal Vision-like Proteins? Basic Clin Pharmacol Toxicol 2016; 119:149-60. [PMID: 27001133 DOI: 10.1111/bcpt.12581] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 03/04/2016] [Indexed: 12/28/2022]
Abstract
Alzheimer's disease (AD), the most common cause of dementia, is an irreversible and progressive neurodegenerative disorder. It affects predominantly brain areas that are critical for memory and learning and is characterized by two main pathological hallmarks: extracellular amyloid plaques and intracellular neurofibrillary tangles. Protein kinase C (PKC) has been classified as one of the cognitive kinases controlling memory and learning. By regulating several signalling pathways involved in amyloid and tau pathologies, it also plays an inhibitory role in AD pathophysiology. Among downstream targets of PKC are the embryonic lethal abnormal vision (ELAV)-like RNA-binding proteins that modulate the stability and the translation of specific target mRNAs involved in synaptic remodelling linked to cognitive processes. This MiniReview summarizes the current evidence on the role of PKC and ELAV-like proteins in learning and memory, highlighting how their derangement can contribute to AD pathophysiology. This last aspect emphasizes the potential of pharmacological activation of PKC as a promising therapeutic strategy for the treatment of AD.
Collapse
Affiliation(s)
- Virpi Talman
- Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Alessia Pascale
- Section of Pharmacology, Department of Drug Sciences, University of Pavia, Pavia, Italy
| | - Maria Jäntti
- Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Marialaura Amadio
- Section of Pharmacology, Department of Drug Sciences, University of Pavia, Pavia, Italy
| | - Raimo K Tuominen
- Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| |
Collapse
|
40
|
Pascale A, Osera C, Moro F, Di Clemente A, Giannotti G, Caffino L, Govoni S, Fumagalli F, Cervo L. Abstinence from cocaine-self-administration activates the nELAV/GAP -43 pathway in the hippocampus: A stress-related effect? Hippocampus 2016; 26:700-4. [PMID: 26850084 DOI: 10.1002/hipo.22572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2016] [Indexed: 11/06/2022]
Abstract
We previously demonstrated that nELAV/GAP-43 pathway is pivotal for learning and its hippocampal expression is up-regulated by acute stress following repeated cocaine administration. We therefore hypothesized that abstinence-induced stress may sustain nELAV/GAP-43 pathway during early abstinence following 2 weeks of cocaine self-administration. We found that contingent, but not non-contingent, cocaine exposure selectively increases hippocampal nELAV, but not GAP-43, expression immediately after the last self-administration session, an effect that wanes after 24 h and that comes back 7 days later when nELAV activation becomes associated with increased expression of GAP-43, an effect again observed only in animals self-administering the psychostimulant. Such effect is specific for nELAV since the ubiquitous ELAV/HuR is unchanged. This nELAV profile suggests that its initial transient alteration is perhaps related to the daily administration of cocaine, while the increase in the nELAV/GAP-43 pathway following a week of abstinence may reflect the activation of this cascade as a target of stressful conditions associated with drug-related memories. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Alessia Pascale
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, Pavia, Italy
| | - Cecilia Osera
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, Pavia, Italy
| | - Federico Moro
- Experimental Psychopharmacology, Department of Neuroscience, IRCCS-Istituto Di Ricerche Farmacologiche "Mario Negri,", Milan, Italy
| | - Angelo Di Clemente
- Experimental Psychopharmacology, Department of Neuroscience, IRCCS-Istituto Di Ricerche Farmacologiche "Mario Negri,", Milan, Italy
| | - Giuseppe Giannotti
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università Degli Studi di Milano, Milano, Italy
| | - Lucia Caffino
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università Degli Studi di Milano, Milano, Italy
| | - Stefano Govoni
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, Pavia, Italy
| | - Fabio Fumagalli
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università Degli Studi di Milano, Milano, Italy
| | - Luigi Cervo
- Experimental Psychopharmacology, Department of Neuroscience, IRCCS-Istituto Di Ricerche Farmacologiche "Mario Negri,", Milan, Italy
| |
Collapse
|
41
|
Licatalosi DD. Roles of RNA-binding Proteins and Post-transcriptional Regulation in Driving Male Germ Cell Development in the Mouse. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 907:123-51. [PMID: 27256385 DOI: 10.1007/978-3-319-29073-7_6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Tissue development and homeostasis are dependent on highly regulated gene expression programs in which cell-specific combinations of regulatory factors determine which genes are expressed and the post-transcriptional fate of the resulting RNA transcripts. Post-transcriptional regulation of gene expression by RNA-binding proteins has critical roles in tissue development-allowing individual genes to generate multiple RNA and protein products, and the timing, location, and abundance of protein synthesis to be finely controlled. Extensive post-transcriptional regulation occurs during mammalian gametogenesis, including high levels of alternative mRNA expression, stage-specific expression of mRNA variants, broad translational repression, and stage-specific activation of mRNA translation. In this chapter, an overview of the roles of RNA-binding proteins and the importance of post-transcriptional regulation in male germ cell development in the mouse is presented.
Collapse
Affiliation(s)
- Donny D Licatalosi
- Center for RNA Molecular Biology, Case Western Reserve University, Cleveland, OH, 44106, USA.
| |
Collapse
|
42
|
Cascajo MV, Abdelmohsen K, Noh JH, Fernández-Ayala DJM, Willers IM, Brea G, López-Lluch G, Valenzuela-Villatoro M, Cuezva JM, Gorospe M, Siendones E, Navas P. RNA-binding proteins regulate cell respiration and coenzyme Q biosynthesis by post-transcriptional regulation of COQ7. RNA Biol 2015; 13:622-34. [PMID: 26690054 PMCID: PMC7609068 DOI: 10.1080/15476286.2015.1119366] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Coenzyme Q (CoQ) is a key component of the mitochondrial respiratory chain carrying electrons from complexes I and II to complex III and it is an intrinsic component of the respirasome. CoQ concentration is highly regulated in cells in order to adapt the metabolism of the cell to challenges of nutrient availability and stress stimuli. At least 10 proteins have been shown to be required for CoQ biosynthesis in a multi-peptide complex and COQ7 is a central regulatory factor of this pathway. We found that the first 765 bp of the 3′-untranslated region (UTR) of COQ7 mRNA contains cis-acting elements of interaction with RNA-binding proteins (RBPs) HuR and hnRNP C1/C2. Binding of hnRNP C1/C2 to COQ7 mRNA was found to require the presence of HuR, and hnRNP C1/C2 silencing appeared to stabilize COQ7 mRNA modestly. By contrast, lowering HuR levels by silencing or depriving cells of serum destabilized and reduced the half-life of COQ7 mRNA, thereby reducing COQ7 protein and CoQ biosynthesis rate. Accordingly, HuR knockdown decreased oxygen consumption rate and mitochondrial production of ATP, and increased lactate levels. Taken together, our results indicate that a reduction in COQ7 mRNA levels by HuR depletion causes mitochondrial dysfunction and a switch toward an enhanced aerobic glycolysis, the characteristic phenotype exhibited by primary deficiency of CoQ10. Thus HuR contributes to efficient oxidative phosphorylation by regulating of CoQ10 biosynthesis.
Collapse
Affiliation(s)
- María V Cascajo
- a Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA, and Center for Biomedical Research on Rare Diseases (CIBERER), ISCIII , Sevilla , Spain
| | - Kotb Abdelmohsen
- b Laboratory of Genetics, National Institute on Aging-Intramural Research Program, NIH , Baltimore , Maryland , USA
| | - Ji Heon Noh
- b Laboratory of Genetics, National Institute on Aging-Intramural Research Program, NIH , Baltimore , Maryland , USA
| | - Daniel J M Fernández-Ayala
- a Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA, and Center for Biomedical Research on Rare Diseases (CIBERER), ISCIII , Sevilla , Spain
| | - Imke M Willers
- c Departamento de Biología Molecular , Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM) and Center for Biomedical Research on Rare Diseases (CIBERER), ISCIII , Madrid , Spain
| | - Gloria Brea
- a Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA, and Center for Biomedical Research on Rare Diseases (CIBERER), ISCIII , Sevilla , Spain
| | - Guillermo López-Lluch
- a Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA, and Center for Biomedical Research on Rare Diseases (CIBERER), ISCIII , Sevilla , Spain
| | - Marina Valenzuela-Villatoro
- a Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA, and Center for Biomedical Research on Rare Diseases (CIBERER), ISCIII , Sevilla , Spain
| | - José M Cuezva
- c Departamento de Biología Molecular , Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM) and Center for Biomedical Research on Rare Diseases (CIBERER), ISCIII , Madrid , Spain
| | - Myriam Gorospe
- b Laboratory of Genetics, National Institute on Aging-Intramural Research Program, NIH , Baltimore , Maryland , USA
| | - Emilio Siendones
- a Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA, and Center for Biomedical Research on Rare Diseases (CIBERER), ISCIII , Sevilla , Spain
| | - Plácido Navas
- a Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA, and Center for Biomedical Research on Rare Diseases (CIBERER), ISCIII , Sevilla , Spain
| |
Collapse
|
43
|
Cytoplasmic mRNA turnover and ageing. Mech Ageing Dev 2015; 152:32-42. [PMID: 26432921 PMCID: PMC4710634 DOI: 10.1016/j.mad.2015.09.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Revised: 09/17/2015] [Accepted: 09/27/2015] [Indexed: 12/12/2022]
Abstract
We address the cytoplasmic mRNA decay processes that determine the mRNAs half-life. We briefly describe the major, evolutionary conserved, ageing pathways and mechanisms. We summarize critical findings that link mRNA turnover and ageing modulators.
Messenger RNA (mRNA) turnover that determines the lifetime of cytoplasmic mRNAs is a means to control gene expression under both normal and stress conditions, whereas its impact on ageing and age-related disorders has just become evident. Gene expression control is achieved at the level of the mRNA clearance as well as mRNA stability and accessibility to other molecules. All these processes are regulated by cis-acting motifs and trans-acting factors that determine the rates of translation and degradation of transcripts. Specific messenger RNA granules that harbor the mRNA decay machinery or various factors, involved in translational repression and transient storage of mRNAs, are also part of the mRNA fate regulation. Their assembly and function can be modulated to promote stress resistance to adverse conditions and over time affect the ageing process and the lifespan of the organism. Here, we provide insights into the complex relationships of ageing modulators and mRNA turnover mechanisms.
Collapse
|
44
|
Osera C, Martindale JL, Amadio M, Kim J, Yang X, Moad CA, Indig FE, Govoni S, Abdelmohsen K, Gorospe M, Pascale A. Induction of VEGFA mRNA translation by CoCl2 mediated by HuR. RNA Biol 2015; 12:1121-30. [PMID: 26325091 DOI: 10.1080/15476286.2015.1085276] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Vascular endothelial growth factor (VEGF) A is a master regulator of neovascularization and angiogenesis. VEGFA is potently induced by hypoxia and by pathological conditions including diabetic retinopathy and tumorigenesis. Fine-tuning of VEGFA expression by different stimuli is important for maintaining tissue vascularization and organ homeostasis. Here, we tested the effect of the hypoxia mimetic cobalt chloride (CoCl2) on VEGFA expression in human cervical carcinoma HeLa cells. We found that CoCl2 increased the levels of VEGFA mRNA and VEGFA protein without affecting VEGFA mRNA stability. Biotin pulldown analysis to capture the RNA-binding proteins (RBPs) bound to VEGFA mRNA followed by mass spectrometry analysis revealed that the RBP HuR [human antigen R, a member of the embryonic lethal abnormal vision (ELAV) family of proteins], interacts with VEGFA mRNA. VEGFA mRNA-tagging experiments showed that exposure to CoCl2 increases the interaction of HuR with VEGFA mRNA and promoted the colocalization of HuR and the distal part of the VEGFA 3'-untranslated region (UTR) in the cytoplasm. We propose that under hypoxia-like conditions, HuR enhances VEGFA mRNA translation.
Collapse
Affiliation(s)
- Cecilia Osera
- a Laboratory of Genetics, National Institute on Aging-Intramural Research Program, NIH ; Baltimore , MD USA.,b Laboratory of Cellular and Molecular Neuropharmacology, Department of Drug Sciences, Section of Pharmacology, University of Pavia ; Pavia , Italy
| | - Jennifer L Martindale
- a Laboratory of Genetics, National Institute on Aging-Intramural Research Program, NIH ; Baltimore , MD USA
| | - Marialaura Amadio
- b Laboratory of Cellular and Molecular Neuropharmacology, Department of Drug Sciences, Section of Pharmacology, University of Pavia ; Pavia , Italy
| | - Jiyoung Kim
- a Laboratory of Genetics, National Institute on Aging-Intramural Research Program, NIH ; Baltimore , MD USA
| | - Xiaoling Yang
- a Laboratory of Genetics, National Institute on Aging-Intramural Research Program, NIH ; Baltimore , MD USA
| | - Christopher A Moad
- a Laboratory of Genetics, National Institute on Aging-Intramural Research Program, NIH ; Baltimore , MD USA
| | - Fred E Indig
- a Laboratory of Genetics, National Institute on Aging-Intramural Research Program, NIH ; Baltimore , MD USA
| | - Stefano Govoni
- b Laboratory of Cellular and Molecular Neuropharmacology, Department of Drug Sciences, Section of Pharmacology, University of Pavia ; Pavia , Italy
| | - Kotb Abdelmohsen
- a Laboratory of Genetics, National Institute on Aging-Intramural Research Program, NIH ; Baltimore , MD USA
| | - Myriam Gorospe
- a Laboratory of Genetics, National Institute on Aging-Intramural Research Program, NIH ; Baltimore , MD USA
| | - Alessia Pascale
- b Laboratory of Cellular and Molecular Neuropharmacology, Department of Drug Sciences, Section of Pharmacology, University of Pavia ; Pavia , Italy
| |
Collapse
|
45
|
Kumar M, Matta A, Masui O, Srivastava G, Kaur J, Thakar A, Shukla NK, RoyChoudhury A, Sharma M, Walfish PG, Michael Siu KW, Chauhan SS, Ralhan R. Nuclear heterogeneous nuclear ribonucleoprotein D is associated with poor prognosis and interactome analysis reveals its novel binding partners in oral cancer. J Transl Med 2015; 13:285. [PMID: 26318153 PMCID: PMC4553214 DOI: 10.1186/s12967-015-0637-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 08/13/2015] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Post-transcriptional regulation by heterogeneous ribonucleoproteins (hnRNPs) is an important regulatory paradigm in cancer development. Our proteomic analysis revealed hnRNPD overexpression in oral dysplasia as compared with normal mucosa; its role in oral carcinogenesis remains unknown. Here in we determined the hnRNPD associated protein networks and its clinical significance in oral squamous cell carcinoma (OSCC). METHODS Immunoprecipitation (IP) followed by tandem mass spectrometry was used to identify the binding partners of hnRNPD in oral cancer cell lines. Ingenuity pathway analysis (IPA) was carried out to unravel the protein interaction networks associated with hnRNPD and key interactions were confirmed by co-IP-western blotting. hnRNPD expression was analyzed in 183 OSCCs, 44 oral dysplasia and 106 normal tissues using immunohistochemistry (IHC) and correlated with clinico-pathological parameters and follow up data over a period of 91 months. Kaplan-Meier survival and Cox-multivariate-regression analyses were used to evaluate the prognostic significance of hnRNPD in OSCC. RESULTS We identified 345 binding partners of hnRNPD in oral cancer cells. IPA unraveled novel protein-protein interaction networks associated with hnRNPD and suggested its involvement in multiple cellular processes: DNA repair, replication, chromatin remodeling, cellular proliferation, RNA splicing and stability, thereby directing the fate of oral cancer cells. Protein-protein interactions of hnRNPD with 14-3-3ζ, hnRNPK and S100A9 were confirmed using co-IP-western blotting. IHC analysis showed significant overexpression of nuclear hnRNPD in oral dysplasia [p = 0.001, Odds ratio (OR) = 5.1, 95% CI = 2.1-11.1) and OSCCs (p = 0.001, OR = 8.1, 95% CI = 4.5-14.4) in comparison with normal mucosa. OSCC patients showing nuclear hnRNPD overexpression had significantly reduced recurrence free survival [p = 0.026, Hazard ratio = 1.95, 95% CI = 1.0-3.5] by Kaplan-Meier survival and Cox-multivariate-regression analyses and has potential to define a high-risk subgroup among OSCC patients with nodal negative disease. CONCLUSIONS Our findings suggest novel functions of hnRNPD in cellular proliferation and survival, besides RNA splicing and stability in oral cancer. Association of nuclear hnRNPD with poor prognosis in OSCC patients taken together with its associated protein networks in oral cancer warrant future studies designed to explore its potential as a plausible novel target for molecular therapeutics.
Collapse
Affiliation(s)
- Manish Kumar
- Department of Biochemistry, All India Institute of Medical Sciences, Room No. 3009, New Delhi, 110029, India.
| | - Ajay Matta
- Alex and Simona Shnaider Laboratory of Molecular Oncology, Mount Sinai Hospital, 6-500, Toronto, ON, M5G 1X5, Canada.
| | - Olena Masui
- Department of Chemistry, Centre for Research in Mass Spectrometry, York University, Toronto, ON, Canada.
| | - Gunjan Srivastava
- Alex and Simona Shnaider Laboratory of Molecular Oncology, Mount Sinai Hospital, 6-500, Toronto, ON, M5G 1X5, Canada.
| | - Jatinder Kaur
- Department of Biochemistry, All India Institute of Medical Sciences, Room No. 3009, New Delhi, 110029, India.
| | - Alok Thakar
- Department of Otorhinolaryngology, All India Institute of Medical Sciences, New Delhi, India.
| | - Nootan Kumar Shukla
- Department of Surgery, Dr. B. R. A. Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India.
| | - Ajoy RoyChoudhury
- Department of Dental Surgery, All India Institute of Medical Sciences, New Delhi, India.
| | - Meherchand Sharma
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India.
| | - Paul G Walfish
- Alex and Simona Shnaider Laboratory of Molecular Oncology, Mount Sinai Hospital, 6-500, Toronto, ON, M5G 1X5, Canada. .,Department of Otolaryngology-Head and Neck Surgery, Joseph and Mildred Sonshine Family Centre for Head and Neck Diseases, Mount Sinai Hospital, Toronto, ON, Canada. .,Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Joseph & Wolf Lebovic Health Complex, Toronto, ON, M5G 1X5, Canada. .,Department of Otolaryngology-Head and Neck Surgery, University of Toronto, Toronto, ON, Canada. .,Department of Medicine, Endocrine Division, Mount Sinai Hospital and University of Toronto, Toronto, ON, Canada.
| | - K W Michael Siu
- Department of Chemistry, Centre for Research in Mass Spectrometry, York University, Toronto, ON, Canada. .,Department of Chemistry, University of Windsor, Windsor, ON, Canada.
| | - Shyam Singh Chauhan
- Department of Biochemistry, All India Institute of Medical Sciences, Room No. 3009, New Delhi, 110029, India.
| | - Ranju Ralhan
- Alex and Simona Shnaider Laboratory of Molecular Oncology, Mount Sinai Hospital, 6-500, Toronto, ON, M5G 1X5, Canada. .,Department of Otolaryngology-Head and Neck Surgery, Joseph and Mildred Sonshine Family Centre for Head and Neck Diseases, Mount Sinai Hospital, Toronto, ON, Canada. .,Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Joseph & Wolf Lebovic Health Complex, Toronto, ON, M5G 1X5, Canada. .,Department of Otolaryngology-Head and Neck Surgery, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
46
|
Lee YS, Lee JA, Kaang BK. Regulation of mRNA stability by ARE-binding proteins in synaptic plasticity and memory. Neurobiol Learn Mem 2015; 124:28-33. [PMID: 26291750 DOI: 10.1016/j.nlm.2015.08.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 08/01/2015] [Accepted: 08/03/2015] [Indexed: 11/27/2022]
Abstract
Formation of long-term memories requires coordinated gene expression, which can be regulated at transcriptional, post-transcriptional, and translational levels. Post-transcriptional stabilization and destabilization of mRNAs provides precise temporal and spatial regulation of gene expression, which is critical for consolidation of synaptic plasticity and memory. mRNA stability is regulated by interactions between the cis-acting elements of mRNAs, such as adenine-uridine-rich elements (AREs), and the trans-acting elements, ARE-binding proteins (AUBPs). There are several AUBPs in the nervous system. Among AUBPs, Hu/ELAV-like proteins and AUF1 are the most studied mRNA stabilizing and destabilizing factors, respectively. Here, we summarize compelling evidence for critical roles of these AUBPs in synaptic plasticity, as well as learning and memory, in both vertebrates and invertebrates. Furthermore, we also briefly review the deregulations of AUBPs in neurological disorders.
Collapse
Affiliation(s)
- Yong-Seok Lee
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul, South Korea.
| | - Jin-A Lee
- Department of Biotechnology and Biological Sciences, Hannam University, Daejeon, South Korea
| | - Bong-Kiun Kaang
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, South Korea.
| |
Collapse
|
47
|
Lico DTP, Lopes GS, Brusco J, Rosa JC, Gould RM, De Giorgis JA, Larson RE. A novel SDS-stable dimer of a heterogeneous nuclear ribonucleoprotein at presynaptic terminals of squid neurons. Neuroscience 2015; 300:381-92. [PMID: 26012490 DOI: 10.1016/j.neuroscience.2015.05.040] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 05/05/2015] [Accepted: 05/16/2015] [Indexed: 01/27/2023]
Abstract
The presence of mRNAs in synaptic terminals and their regulated translation are important factors in neuronal communication and plasticity. Heterogeneous nuclear ribonucleoprotein (hnRNP) complexes are involved in the translocation, stability, and subcellular localization of mRNA and the regulation of its translation. Defects in these processes and mutations in components of the hnRNP complexes have been related to the formation of cytoplasmic inclusion bodies and neurodegenerative diseases. Despite much data on mRNA localization and evidence for protein synthesis, as well as the presence of translation machinery, in axons and presynaptic terminals, the identity of RNA-binding proteins involved in RNA transport and function in presynaptic regions is lacking. We previously characterized a strongly basic RNA-binding protein (p65), member of the hnRNPA/B subfamily, in squid presynaptic terminals. Intriguingly, in sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), p65 migrated as a 65-kDa protein, whereas members of the hnRNPA/B family typically have molecular masses ranging from 35 to 42kDa. In this report we present further biochemical and molecular characterization that shows endogenous p65 to be an SDS-stable dimer composed of ∼37-kDa hnRNPA/B-like subunits. We cloned and expressed a recombinant protein corresponding to squid hnRNPA/B-like protein and showed its propensity to aggregate and form SDS-stable dimers in vitro. Our data suggest that this unique hnRNPA/B-like protein co-localizes with synaptic vesicle protein 2 and RNA-binding protein ELAV and thus may serve as a link between local mRNA processing and presynaptic function and regulation.
Collapse
Affiliation(s)
- D T P Lico
- Department of Cellular & Molecular Biology, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo 14049-900, Brazil; Marine Biological Laboratory, Woods Hole, MA 02543, United States.
| | - G S Lopes
- Department of Cellular & Molecular Biology, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo 14049-900, Brazil; Marine Biological Laboratory, Woods Hole, MA 02543, United States.
| | - J Brusco
- Department of Cellular & Molecular Biology, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo 14049-900, Brazil; Marine Biological Laboratory, Woods Hole, MA 02543, United States.
| | - J C Rosa
- Department of Cellular & Molecular Biology, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo 14049-900, Brazil.
| | - R M Gould
- Program in Sensory Physiology and Behavior, Marine Biological Laboratory, Woods Hole, MA 02543, United States.
| | - J A De Giorgis
- Biology Department, Providence College, Providence, RI 02918, United States; National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD 20892, United States; Marine Biological Laboratory, Woods Hole, MA 02543, United States.
| | - R E Larson
- Department of Cellular & Molecular Biology, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo 14049-900, Brazil; Marine Biological Laboratory, Woods Hole, MA 02543, United States.
| |
Collapse
|
48
|
Decoding mechanisms by which silent codon changes influence protein biogenesis and function. Int J Biochem Cell Biol 2015; 64:58-74. [PMID: 25817479 DOI: 10.1016/j.biocel.2015.03.011] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 03/02/2015] [Accepted: 03/14/2015] [Indexed: 02/07/2023]
Abstract
SCOPE Synonymous codon usage has been a focus of investigation since the discovery of the genetic code and its redundancy. The occurrences of synonymous codons vary between species and within genes of the same genome, known as codon usage bias. Today, bioinformatics and experimental data allow us to compose a global view of the mechanisms by which the redundancy of the genetic code contributes to the complexity of biological systems from affecting survival in prokaryotes, to fine tuning the structure and function of proteins in higher eukaryotes. Studies analyzing the consequences of synonymous codon changes in different organisms have revealed that they impact nucleic acid stability, protein levels, structure and function without altering amino acid sequence. As such, synonymous mutations inevitably contribute to the pathogenesis of complex human diseases. Yet, fundamental questions remain unresolved regarding the impact of silent mutations in human disorders. In the present review we describe developments in this area concentrating on mechanisms by which synonymous mutations may affect protein function and human health. PURPOSE This synopsis illustrates the significance of synonymous mutations in disease pathogenesis. We review the different steps of gene expression affected by silent mutations, and assess the benefits and possible harmful effects of codon optimization applied in the development of therapeutic biologics. PHYSIOLOGICAL AND MEDICAL RELEVANCE Understanding mechanisms by which synonymous mutations contribute to complex diseases such as cancer, neurodegeneration and genetic disorders, including the limitations of codon-optimized biologics, provides insight concerning interpretation of silent variants and future molecular therapies.
Collapse
|
49
|
Sidarovich V, Adami V, Quattrone A. High-throughput screening for chemical modulators of post-transcriptionally regulated genes. J Vis Exp 2015:52568. [PMID: 25867708 PMCID: PMC4401173 DOI: 10.3791/52568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Both transcriptional and post-transcriptional regulation have a profound impact on genes expression. However, commonly adopted cell-based screening assays focus on transcriptional regulation, being essentially aimed at the identification of promoter-targeting molecules. As a result, post-transcriptional mechanisms are largely uncovered by gene expression targeted drug development. Here we describe a cell-based assay aimed at investigating the role of the 3' untranslated region (3' UTR) in the modulation of the fate of its mRNA, and at identifying compounds able to modify it. The assay is based on the use of a luciferase reporter construct containing the 3' UTR of a gene of interest stably integrated into a disease-relevant cell line. The protocol is divided into two parts, with the initial focus on the primary screening aimed at the identification of molecules affecting luciferase activity after 24 hr of treatment. The second part of the protocol describes the counter-screening necessary to discriminate compounds modulating luciferase activity specifically through the 3' UTR. In addition to the detailed protocol and representative results, we provide important considerations about the assay development and the validation of the hit(s) on the endogenous target. The described cell-based reporter gene assay will allow scientists to identify molecules modulating protein levels via post-transcriptional mechanisms dependent on a 3' UTR.
Collapse
Affiliation(s)
- Viktoryia Sidarovich
- Laboratory of Translational Genomics, Centre for Integrative Biology, University of Trento;
| | - Valentina Adami
- High Throughput Screening Core Facility, Centre for Integrative Biology, University of Trento
| | - Alessandro Quattrone
- Laboratory of Translational Genomics, Centre for Integrative Biology, University of Trento
| |
Collapse
|
50
|
Amadio M, Scapagnini G, Davinelli S, Calabrese V, Govoni S, Pascale A. Involvement of ELAV RNA-binding proteins in the post-transcriptional regulation of HO-1. Front Cell Neurosci 2015; 8:459. [PMID: 25642166 PMCID: PMC4295526 DOI: 10.3389/fncel.2014.00459] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2014] [Accepted: 12/17/2014] [Indexed: 12/14/2022] Open
Abstract
Heme oxygenase-1 (HO-1) is an inducible rate-controlling enzyme of heme catabolism. The cytoprotective function of HO-1 activity has been verified in multiple studies, and together with its by-products is considered a key component of the cellular stress response. The transcriptional induction of HO-1 has been largely studied in response to multiple forms of stressful stimuli but our understanding of HO-1 post-transcriptional control mechanisms in neuronal cells is currently lacking. In the present report we show the involvement of the RNA-binding proteins (RBPs) embryonic lethal abnormal vision (ELAV) in the regulation of HO-1 gene expression. Our study demonstrates a specific binding between HO-1 messenger RNA (mRNA) and ELAV proteins, accompanied by an increased expression of HO-1 at protein level, in a human neuroblastoma cell line treated with hemin. Clarifying the induction of HO-1 expression at post-transcriptional level may open therapeutic perspectives for treatments associated with the modulation of HO-1 expression.
Collapse
Affiliation(s)
- Marialaura Amadio
- Department of Drug Sciences, Section of Pharmacology, University of Pavia Pavia, Italy
| | - Giovanni Scapagnini
- Department of Medicine and Health Sciences, University of Molise Campobasso, Italy ; Inter-University Consortium "SannioTech" Benevento, Italy
| | - Sergio Davinelli
- Department of Medicine and Health Sciences, University of Molise Campobasso, Italy
| | - Vittorio Calabrese
- Inter-University Consortium "SannioTech" Benevento, Italy ; Department of Biomedical Sciences, University of Catania Catania, Italy
| | - Stefano Govoni
- Department of Drug Sciences, Section of Pharmacology, University of Pavia Pavia, Italy
| | - Alessia Pascale
- Department of Drug Sciences, Section of Pharmacology, University of Pavia Pavia, Italy
| |
Collapse
|