1
|
Ferraces-Riegas P, Galbraith AC, Doupé DP. Epithelial Stem Cells: Making, Shaping and Breaking the Niche. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1387:1-12. [DOI: 10.1007/5584_2021_686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AbstractEpithelial stem cells maintain tissues throughout adult life and are tightly regulated by their microenvironmental niche to balance cell production and loss. These stem cells have been studied extensively as signal-receiving cells, responding to cues from other cell types and mechanical stimuli that comprise the niche. However, studies from a wide range of systems have identified epithelial stem cells as major contributors to their own microenvironment either through producing niche cells, acting directly as niche cells or regulating niche cells. The importance of stem cell contributions to the niche is particularly clear in cancer, where tumour cells extensively remodel their microenvironment to promote their survival and proliferation.
Collapse
|
2
|
Saxena A, Walters MS, Shieh JH, Shen LB, Gomi K, Downey RJ, Crystal RG, Moore MAS. Extracellular vesicles from human airway basal cells respond to cigarette smoke extract and affect vascular endothelial cells. Sci Rep 2021; 11:6104. [PMID: 33731767 PMCID: PMC7969738 DOI: 10.1038/s41598-021-85534-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 03/02/2021] [Indexed: 12/14/2022] Open
Abstract
The human airway epithelium lining the bronchial tree contains basal cells that proliferate, differentiate, and communicate with other components of their microenvironment. One method that cells use for intercellular communication involves the secretion of exosomes and other extracellular vesicles (EVs). We isolated exosome-enriched EVs that were produced from an immortalized human airway basal cell line (BCi-NS1.1) and found that their secretion is increased by exposure to cigarette smoke extract, suggesting that this stress stimulates release of EVs which could affect signaling to other cells. We have previously shown that primary human airway basal cells secrete vascular endothelial growth factor A (VEGFA) which can activate MAPK signaling cascades in endothelial cells via VEGF receptor-2 (VEGFR2). Here, we show that exposure of endothelial cells to exosome-enriched airway basal cell EVs promotes the survival of these cells and that this effect also involves VEGFR2 activation and is, at least in part, mediated by VEGFA present in the EVs. These observations demonstrate that EVs are involved in the intercellular signaling between airway basal cells and the endothelium which we previously reported. The downstream signaling pathways involved may be distinct and specific to the EVs, however, as increased phosphorylation of Akt, STAT3, p44/42 MAPK, and p38 MAPK was not seen following exposure of endothelial cells to airway basal cell EVs.
Collapse
Affiliation(s)
- Ashish Saxena
- Department of Cell Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Department of Medicine, Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY, USA.
| | - Matthew S Walters
- Department of Genetic Medicine, Weill Cornell Medicine, New York, NY, USA
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Jae-Hung Shieh
- Department of Cell Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Ling-Bo Shen
- Department of Cell Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Cell Therapy and Cell Engineering Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kazunori Gomi
- Department of Genetic Medicine, Weill Cornell Medicine, New York, NY, USA
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Robert J Downey
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ronald G Crystal
- Department of Genetic Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Malcolm A S Moore
- Department of Cell Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
3
|
Chaudhury D, Sen U, Bhat NN, Sahoo BK, Shenoy P S, Bose B. Lung damage by thoron progenies versus possible damage redemption by lung stem cells: a perspective. Int J Radiat Biol 2020; 96:1362-1373. [PMID: 32910703 DOI: 10.1080/09553002.2020.1820597] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
PURPOSE Natural radiation is the major source of human exposure to ionizing radiation. About 52% of the total dose received from the high natural background radiations (HNBR) areas are due to inhalation dose from radon (222Rn)/thoron (220Rn) and their progenies. Hence, we reviewed the biological effects of 222Rn/220Rn and their progenies on lung tissue, and the possible role of lung stem cells in salvaging the damage caused by 222Rn/220Rn and their progenies. MATERIALS AND METHOD We have extensively reviewed articles among several hits obtained in PubMed, Scopus, and Elsevier databases with keywords 'Radon/Thoron' OR Thoron progeny/Radon progeny OR 'Thoron/Radon inhalation and lungs', and proceed for further analysis. Also, databases related to oxidative damage to lung stem cells by radiation and the repair mechanisms involved by the lung stem cells were also included. RESULTS Based on the existing epidemiological data on radon in residential buildings, we found that evidence exists on the association of radon induced lung carcinogenesis, but the data regarding the role of thoron induced lung damage is very limited and inconclusive. We also found that limited information has been provided based on ecological designs, leading to poor documentation of health statistics, in particular, organ-specific cancer rates. Finally, we tried to elucidate the possible mechanisms of lung injury induced by thoron inhalation and the probable role of lung stem cell toward the redemption of such oxidative damages. CONCLUSION Existing epidemiological data on thoron inhalation and associated health outcomes are limited and inconclusive. Further, in vivo experiments, with respect to radon/thoron inhalation dose rate ranges corresponding to the HNBR areas will be helpful in understanding the cellular and molecular effects.
Collapse
Affiliation(s)
- Debajit Chaudhury
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Utsav Sen
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Nagesh N Bhat
- Radiological Physics and Advisory Division, Bhabha Atomic Research Centre, Trombay, India
| | - Bijay Kumar Sahoo
- Radiological Physics and Advisory Division, Bhabha Atomic Research Centre, Trombay, India
| | - Sudheer Shenoy P
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Bipasha Bose
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| |
Collapse
|
4
|
Li N, Cooney AL, Zhang W, Ehrhardt A, Sinn PL. Enhanced Tropism of Species B1 Adenoviral-Based Vectors for Primary Human Airway Epithelial Cells. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2019; 14:228-236. [PMID: 31417941 PMCID: PMC6690641 DOI: 10.1016/j.omtm.2019.07.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 07/01/2019] [Indexed: 12/04/2022]
Abstract
Adenoviruses are efficient vehicles for transducing airway epithelial cells. Human adenoviruses (Ads) are classified into seven species termed A–G. Most species use the coxsackie-adenovirus receptor (CAR) as a primary cellular receptor. Ad group B is notable because it is further divided into groups B1 and B2 and its members use CD46 or desmoglein 2 (DSG2) as cellular receptors. To date, human Ad types 2 and 5 have been the predominant choices for preclinical and clinical trials using Ad-based viral vectors in the airways. In this study, we screened 14 Ad types representing species C, B1, B2, D, and E. Using well-differentiated primary cultures of human airway epithelial cells (HAEs), we examined transduction efficiency. Based on GFP or nanoluciferase expression, multiple Ad types transduced HAEs as well as or better than Ad5. Ad3, Ad21, and Ad14 belong to species B and had notable transduction properties. We further examined the transduction properties of conditionally reprogrammed airway basal cells and primary basal cells from human lung donors. Again, the transduction efficiency of species B members outperformed the other types. These data suggest that adenoviral vectors based on species B transduce fully differentiated epithelial cells and progenitor cells in the human airways better than Ad5.
Collapse
Affiliation(s)
- Ni Li
- Department of Pediatrics, The University of Iowa, Iowa City, IA 52242, USA
| | - Ashley L Cooney
- Department of Pediatrics, The University of Iowa, Iowa City, IA 52242, USA
| | - Wenli Zhang
- Institute of Virology and Microbiology, Department of Human Medicine, Faculty of Health, Center for Biomedical Education and Research (ZBAF), Witten/Herdecke University, 58453 Witten, Germany
| | - Anja Ehrhardt
- Institute of Virology and Microbiology, Department of Human Medicine, Faculty of Health, Center for Biomedical Education and Research (ZBAF), Witten/Herdecke University, 58453 Witten, Germany
| | - Patrick L Sinn
- Department of Pediatrics, The University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
5
|
Understanding the evolving phenotype of vascular complications in telomere biology disorders. Angiogenesis 2018; 22:95-102. [DOI: 10.1007/s10456-018-9640-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 08/06/2018] [Indexed: 12/23/2022]
|
6
|
Gomi K, Tang Y, Arbelaez V, Crystal RG, Walters MS. Endothelial Cell Mediated Promotion of Ciliated Cell Differentiation of Human Airway Basal Cells via Insulin and Insulin-Like Growth Factor 1 Receptor Mediated Signaling. Stem Cell Rev Rep 2017; 13:309-317. [PMID: 28050756 DOI: 10.1007/s12015-016-9707-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Human airway basal cells (BC) function as stem/progenitor cells of the human airway epithelium, capable of differentiating into ciliated and secretory cells during turnover and repair. The positioning of BC along the basement membrane allows for potential paracrine signaling from non-epithelial cells in the mesenchyme to regulate BC function. Based on the knowledge that interaction between the airway epithelium and mesenchyme is critical for proper maintenance of both tissues, and that endothelial cells (EC) can regulate multiple functions of BC, the present study was designed to help understand the role of BC and EC cross-talk in regulating BC stem/progenitor function. Using an in vitro co-culture system that mimics the in vivo physical separation of these cell types, we assessed the impact of primary lung microvascular EC on differentiation of primary BC into a mucociliated epithelium. The data demonstrate that co-culture of BC and lung microvasculature EC results in increased ciliated cell differentiation of BC via activation of insulin (INS) and insulin-like growth factor 1 (IGF1) receptor (INSR and IGF1R) mediated signaling in BC. Consistent with this data, siRNA mediated knockdown of INSR and IGF1R in BC suppressed ciliated cell differentiation. Together these findings identify an important signaling pathway required for differentiation of BC into a ciliated cells and demonstrate the importance of BC-EC cross-talk in regulating normal airway epithelial structure.
Collapse
Affiliation(s)
- Kazunori Gomi
- Department of Genetic Medicine, Weill Cornell Medical College, 1300 York Avenue, Box 164, New York, NY, 10065, USA
| | - Yongjiang Tang
- Department of Genetic Medicine, Weill Cornell Medical College, 1300 York Avenue, Box 164, New York, NY, 10065, USA
| | - Vanessa Arbelaez
- Department of Genetic Medicine, Weill Cornell Medical College, 1300 York Avenue, Box 164, New York, NY, 10065, USA
| | - Ronald G Crystal
- Department of Genetic Medicine, Weill Cornell Medical College, 1300 York Avenue, Box 164, New York, NY, 10065, USA
| | - Matthew S Walters
- Department of Genetic Medicine, Weill Cornell Medical College, 1300 York Avenue, Box 164, New York, NY, 10065, USA. .,Pulmonary, Critical Care & Sleep Medicine, Department of Medicine, University of Oklahoma Health Sciences Center, 800 N. Research Parkway, Building 800, 4th Floor, Rm 410, Oklahoma City, OK, 73104, USA.
| |
Collapse
|
7
|
Abstract
Purpose of Review The lung research field has pioneered the use of organoids for the study of cell-cell interactions. Recent Findings The use of organoids for airway basal cells is routine. However, the development of organoids for the other regions of the lung is still in its infancy. Such cultures usually rely on cell-cell interactions between the stem cells and a putative niche cell for their growth and differentiation. Summary The use of co-culture organoid systems has facilitated the in vitro cultivation of previously inaccessible stem cell populations, providing a novel method for dissecting the molecular requirements of these cell-cell interactions. Future technology development will allow the growth of epithelial-only organoids in more defined media and also the introduction of specific non-epithelial cells for the study of cell interactions. These developments will require an improved understanding of the epithelial and non-epithelial cell types present in the lung and their lineage relationships.
Collapse
|
8
|
Benam KH, Villenave R, Lucchesi C, Varone A, Hubeau C, Lee HH, Alves SE, Salmon M, Ferrante TC, Weaver JC, Bahinski A, Hamilton GA, Ingber DE. Small airway-on-a-chip enables analysis of human lung inflammation and drug responses in vitro. Nat Methods 2015; 13:151-7. [DOI: 10.1038/nmeth.3697] [Citation(s) in RCA: 466] [Impact Index Per Article: 46.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 11/21/2015] [Indexed: 01/20/2023]
|
9
|
Donne ML, Lechner AJ, Rock JR. Evidence for lung epithelial stem cell niches. BMC DEVELOPMENTAL BIOLOGY 2015; 15:32. [PMID: 26376663 PMCID: PMC4574358 DOI: 10.1186/s12861-015-0082-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 08/28/2015] [Indexed: 12/26/2022]
Abstract
Recent studies have identified epithelial stem and progenitor cell populations of the lung. We are just beginning to understand the mechanisms that regulate their homeostatic, regenerative and maladaptive behaviors. Here, we discuss evidence of regulatory niches for epithelial stem cells of the lung.
Collapse
Affiliation(s)
- Matt L Donne
- Department of Anatomy, University of California, San Francisco, USA
| | - Andrew J Lechner
- Department of Anatomy, University of California, San Francisco, USA
| | - Jason R Rock
- Department of Anatomy, University of California, San Francisco, USA.
| |
Collapse
|
10
|
Woik N, Kroll J. Regulation of lung development and regeneration by the vascular system. Cell Mol Life Sci 2015; 72:2709-18. [PMID: 25894695 PMCID: PMC11113134 DOI: 10.1007/s00018-015-1907-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 04/09/2015] [Accepted: 04/10/2015] [Indexed: 02/08/2023]
Abstract
Blood vessels have been described a long time ago as passive circuits providing sufficient blood supply to ensure proper distribution of oxygen and nutrition. Blood vessels are mainly formed during embryonic development and in the early postnatal period. In the adult, blood vessels are quiescent, but can be activated and subsequently induced under pathophysiological conditions, such as ischemia and tumor growth. Surprisingly, recent data have suggested an active function for blood vessels, named angiocrine signaling, releasing trophogens which regulate organ development and organ regeneration including in the pancreas, lung, tumor cells, liver and bone. Lung development is driven by hypoxia as well as an intense endothelial-epithelial interaction, and important mechanisms contributing to these processes have recently been identified. This review aims to summarize recent developments and concepts about embryonic pulmonary vascular development and lung regeneration. We discuss hypoxia-inducible factor HIF-2α and vascular endothelial growth factor VEGF as important mediators in lung development and focus on endothelial-epithelial interactions and angiocrine signaling mechanisms.
Collapse
Affiliation(s)
- Nicole Woik
- Department of Vascular Biology and Tumor Angiogenesis, Center for Biomedicine and Medical Technology Mannheim (CBTM), Medical Faculty Mannheim, Heidelberg University, Ludolf-Krehl-Str. 13-17, 68167 Mannheim, Germany
- Division of Vascular Oncology and Metastasis, German Cancer Research Center (DKFZ-ZMBH Alliance), Heidelberg, Germany
| | - Jens Kroll
- Department of Vascular Biology and Tumor Angiogenesis, Center for Biomedicine and Medical Technology Mannheim (CBTM), Medical Faculty Mannheim, Heidelberg University, Ludolf-Krehl-Str. 13-17, 68167 Mannheim, Germany
- Division of Vascular Oncology and Metastasis, German Cancer Research Center (DKFZ-ZMBH Alliance), Heidelberg, Germany
| |
Collapse
|
11
|
Ding BS, Gomi K, Rafii S, Crystal RG, Walters MS. Endothelial MMP14 is required for endothelial-dependent growth support of human airway basal cells. J Cell Sci 2015; 128:2983-8. [PMID: 26116571 DOI: 10.1242/jcs.168179] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 06/23/2015] [Indexed: 12/28/2022] Open
Abstract
Human airway basal cells are the stem (or progenitor) population of the airway epithelium, and play a central role in anchoring the epithelium to the basement membrane. The anatomic position of basal cells allows for potential paracrine signaling between them and the underlying non-epithelial stromal cells. In support of this, we have previously demonstrated that endothelial cells support growth of basal cells during co-culture through vascular endothelial growth factor A (VEGFA)-mediated signaling. Building on these findings, we found, by RNA sequencing analysis, that basal cells expressed multiple fibroblast growth factor (FGF) ligands (FGF2, FGF5, FGF11 and FGF13) and that only FGF2 and FGF5 were capable of functioning in a paracrine manner to activate classical FGF receptor (FGFR) signaling. Antibody-mediated blocking of FGFR1 during basal-cell-endothelial-cell co-culture significantly reduced the endothelial-cell-dependent basal cell growth. Stimulation of endothelial cells with basal-cell-derived growth factors induced endothelial cell expression of matrix metallopeptidase 14 (MMP14), and short hairpin RNA (shRNA)-mediated knockdown of endothelial cell MMP14 significantly reduced the endothelial-cell-dependent growth of basal cells. Overall, these data characterize a new growth-factor-mediated reciprocal 'crosstalk' between human airway basal cells and endothelial cells that regulates proliferation of basal cells.
Collapse
Affiliation(s)
- Bi-Sen Ding
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Kazunori Gomi
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Shahin Rafii
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Ronald G Crystal
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Matthew S Walters
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| |
Collapse
|
12
|
Crystal RG. Airway basal cells. The "smoking gun" of chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2015; 190:1355-62. [PMID: 25354273 DOI: 10.1164/rccm.201408-1492pp] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The earliest abnormality in the lung associated with smoking is hyperplasia of airway basal cells, the stem/progenitor cells of the ciliated and secretory cells that are central to pulmonary host defense. Using cell biology and 'omics technologies to assess basal cells isolated from bronchoscopic brushings of nonsmokers, smokers, and smokers with chronic obstructive pulmonary disease (COPD), compelling evidence has been provided in support of the concept that airway basal cells are central to the pathogenesis of smoking-associated lung diseases. When confronted by the chronic stress of smoking, airway basal cells become disorderly, regress to a more primitive state, behave as dictated by their inheritance, are susceptible to acquired changes in their genome, lose the capacity to regenerate the epithelium, are responsible for the major changes in the airway that characterize COPD, and, with persistent stress, can undergo malignant transformation. Together, these observations led to the conclusion that accelerated loss of lung function in susceptible individuals begins with disordered airway basal cell biology (i.e., that airway basal cells are the "smoking gun" of COPD, a potential target for the development of therapies to prevent smoking-related lung disorders).
Collapse
Affiliation(s)
- Ronald G Crystal
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York
| |
Collapse
|
13
|
Staudt MR, Buro-Auriemma LJ, Walters MS, Salit J, Vincent T, Shaykhiev R, Mezey JG, Tilley AE, Kaner RJ, Ho MWY, Crystal RG. Airway Basal stem/progenitor cells have diminished capacity to regenerate airway epithelium in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2014; 190:955-8. [PMID: 25317467 DOI: 10.1164/rccm.201406-1167le] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
14
|
Shaykhiev R, Crystal RG. Early events in the pathogenesis of chronic obstructive pulmonary disease. Smoking-induced reprogramming of airway epithelial basal progenitor cells. Ann Am Thorac Soc 2014; 11 Suppl 5:S252-8. [PMID: 25525728 PMCID: PMC4298974 DOI: 10.1513/annalsats.201402-049aw] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 03/17/2014] [Indexed: 12/17/2022] Open
Abstract
The airway epithelium is the primary site of the earliest pathologic changes induced by smoking, contributing to the development of chronic obstructive pulmonary disease (COPD). The normal human airway epithelium is composed of several major cell types, including differentiated ciliated and secretory cells, intermediate undifferentiated cells, and basal cells (BC). BC contain the stem/progenitor cell population responsible for maintenance of the normally differentiated airway epithelium. Although inflammatory and immune processes play a significant role in the pathogenesis of COPD, the earliest lesions include hyperplasia of the BC population, suggesting that the disease may start with this cell type. Apart from BC hyperplasia, smoking induces a number of COPD-relevant airway epithelial remodeling phenotypes that are likely initiated in the BC population, including mucous cell hyperplasia, squamous cell metaplasia, epithelial-mesenchymal transition, altered ciliated and nonmucous secretory cell differentiation, and suppression of junctional barrier integrity. Significant progress has been recently made in understanding the biology of human airway BC, including gene expression features, stem/progenitor, and other functions, including interaction with other airway cell types. Accumulating evidence suggests that human airway BC function as both sensors and cellular sources of various cytokines and growth factors relevant to smoking-associated airway injury, as well as the origin of various molecular and histological phenotypes relevant to the pathogenesis of COPD. In the context of these considerations, we suggest that early BC-specific smoking-induced molecular changes are critical to the pathogenesis of COPD, and these represent a candidate target for novel therapeutic approaches to prevent COPD progression in susceptible individuals.
Collapse
Affiliation(s)
- Renat Shaykhiev
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York
| | | |
Collapse
|
15
|
Manthei DM, Schwantes EA, Mathur SK, Guadarrama AG, Kelly EA, Gern JE, Jarjour NN, Denlinger LC. Nasal lavage VEGF and TNF-α levels during a natural cold predict asthma exacerbations. Clin Exp Allergy 2014; 44:1484-93. [PMID: 25109477 PMCID: PMC4247169 DOI: 10.1111/cea.12387] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 06/09/2014] [Accepted: 06/20/2014] [Indexed: 01/09/2023]
Abstract
BACKGROUND Asthma exacerbations contribute to significant morbidity, mortality and healthcare utilization. Furthermore, viral infections are associated with asthma exacerbations by mechanisms that are not fully understood. OBJECTIVE The aim of this analysis was to determine whether cytokine patterns in patients with colds could identify risks for subsequent asthma exacerbations. METHODS We analysed cytokine levels in nasal lavage fluid (NLF) in 59 subjects (46 with asthma) with acute upper respiratory symptoms and after symptomatic resolution. Analyte choice was based on potential relevance to asthma exacerbations: antiviral (IFN-α, IFN-β, IFN-γ, IFN-λ1, IP-10, TRAIL), cell recruiting (G-CSF, IL-1β, IL-8, MCP-1, MCP-3, TNF-α), polarizing (CXCL13, IL-10, IL-13, IL-17, TSLP), and injury remodelling (fibronectin, IL-33, MMP-9, VEGF). RESULTS The overall cytokine response induced during viral infections was not different between asthmatic and non-asthmatic individuals for a wide array of cytokines. However, mean levels of VEGF, TNF-α and IL-1β were 1.7-, 5.1- and 4.7-fold higher in samples from asthma subjects who exacerbated in the first 3 weeks of the cold compared with those who did not exacerbate (P = 0.006, 0.01, 0.048, respectively). Using receiver operating characteristic curve-defined thresholds, high VEGF and TNF-α levels predicted a shorter time-to-exacerbation after NLF sampling (25% exacerbation rate: 3 vs. 45 days, and 3 vs. 26 days; P = 0.03, 0.04, respectively). CONCLUSION AND CLINICAL RELEVANCE Although they produce similar cytokine responses to viral infection as non-asthmatics, asthmatics with higher levels of VEGF and TNF-α in NLF obtained during acute cold phases predicted subsequent asthma exacerbations in this cohort of patients with mild-to-moderate disease. In the future, stratifying the risk of an asthma exacerbation by cytokine profile may aid the targeting of personalized treatment and intervention strategies.
Collapse
Affiliation(s)
- D M Manthei
- University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Harnessing the potential of lung stem cells for regenerative medicine. Int J Biochem Cell Biol 2014; 56:82-91. [PMID: 25450456 DOI: 10.1016/j.biocel.2014.10.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 10/03/2014] [Accepted: 10/07/2014] [Indexed: 01/24/2023]
Abstract
In response to recurrent exposure to environmental insults such as allergens, pollution, irritants, smoke and viral/bacterial infection, the epithelium of the lung is continually damaged. Homeostasis of the lung requires a balance between immune regulation and promotion of tissue regeneration, which requires the co-ordinated proliferation and differentiation of stem and progenitor cells. In this review we reflect on the current understanding of lung epithelial stem and progenitor cells and advocate a model hierarchy in which self-renewing multipotent lung epithelial stem cells give rise to lineage restricted progenitor cells that repopulate airway and alveolar epithelial cell lineages during homeostasis and repair. We also discuss the role of mesenchymal progenitor cells in maintaining the structural integrity of the lung and propose a model in which mesenchymal cells act as the quintessential architects of lung regeneration by providing molecular signals, such as FGF-10, to regulate the fate and specificity of epithelial stem and progenitor cells. Moreover, we discuss the current status and future prospects for translating lung stem cell therapies to the clinic to replace, repair, or regenerate diseased lung tissue. This article is part of a directed issue entitled: Regenerative Medicine: the challenge of translation.
Collapse
|
17
|
Walters MS, Gomi K, Ashbridge B, Moore MAS, Arbelaez V, Heldrich J, Ding BS, Rafii S, Staudt MR, Crystal RG. Generation of a human airway epithelium derived basal cell line with multipotent differentiation capacity. Respir Res 2013; 14:135. [PMID: 24298994 PMCID: PMC3907041 DOI: 10.1186/1465-9921-14-135] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 10/22/2013] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND As the multipotent progenitor population of the airway epithelium, human airway basal cells (BC) replenish the specialized differentiated cell populations of the mucociliated airway epithelium during physiological turnover and repair. Cultured primary BC divide a limited number of times before entering a state of replicative senescence, preventing the establishment of long-term replicating cultures of airway BC that maintain their original phenotype. METHODS To generate an immortalized human airway BC cell line, primary human airway BC obtained by brushing the airway epithelium of healthy nonsmokers were infected with a retrovirus expressing human telomerase (hTERT). The resulting immortalized cell line was then characterized under non-differentiating and differentiating air-liquid interface (ALI) culture conditions using ELISA, TaqMan quantitative PCR, Western analysis, and immunofluorescent and immunohistochemical staining analysis for cell type specific markers. In addition, the ability of the cell line to respond to environmental stimuli under differentiating ALI culture was assessed. RESULTS We successfully generated an immortalized human airway BC cell line termed BCi-NS1 via expression of hTERT. A single cell derived clone from the parental BCi-NS1 cells, BCi-NS1.1, retains characteristics of the original primary cells for over 40 passages and demonstrates a multipotent differentiation capacity into secretory (MUC5AC, MUC5B), goblet (TFF3), Clara (CC10) and ciliated (DNAI1, FOXJ1) cells on ALI culture. The cells can respond to external stimuli such as IL-13, resulting in alteration of the normal differentiation process. CONCLUSION Development of immortalized human airway BC that retain multipotent differentiation capacity over long-term culture should be useful in understanding the biology of BC, the response of BC to environmental stress, and as a target for assessment of pharmacologic agents.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Ronald G Crystal
- Department of Genetic Medicine, Weill Cornell Medical College, New York NY, USA.
| |
Collapse
|
18
|
Didon L, Zwick RK, Chao IW, Walters MS, Wang R, Hackett NR, Crystal RG. RFX3 modulation of FOXJ1 regulation of cilia genes in the human airway epithelium. Respir Res 2013; 14:70. [PMID: 23822649 PMCID: PMC3710277 DOI: 10.1186/1465-9921-14-70] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 06/10/2013] [Indexed: 11/30/2022] Open
Abstract
Background Ciliated cells play a central role in cleansing the airways of inhaled contaminants. They are derived from basal cells that include the airway stem/progenitor cells. In animal models, the transcription factor FOXJ1 has been shown to induce differentiation to the ciliated cell lineage, and the RFX transcription factor-family has been shown to be necessary for, but not sufficient to induce, correct cilia development. Methods To test the hypothesis that FOXJ1 and RFX3 cooperatively induce expression of ciliated genes in the differentiation process of basal progenitor cells toward a ciliated cell linage in the human airway epithelium, primary human airway basal cells were assessed under conditions of in vitro differentiation induced by plasmid-mediated gene transfer of FOXJ1 and/or RFX3. TaqMan PCR was used to quantify mRNA levels of basal, secretory, and cilia-associated genes. Results Basal cells, when cultured in air-liquid interface, differentiated into a ciliated epithelium, expressing FOXJ1 and RFX3. Transfection of FOXJ1 into resting basal cells activated promoters and induced expression of ciliated cell genes as well as both FOXJ1 and RFX3, but not basal cell genes. Transfection of RFX3 induced expression of RFX3 but not FOXJ1, nor the expression of cilia-related genes. The combination of FOXJ1 + RFX3 enhanced ciliated gene promoter activity and mRNA expression beyond that due to FOXJ1 alone. Corroborating immunoprecipitation studies demonstrated an interaction between FOXJ1 and RFX3. Conclusion FOXJ1 is an important regulator of cilia gene expression during ciliated cell differentiation, with RFX3 as a transcriptional co-activator to FOXJ1, helping to induce the expression of cilia genes in the process of ciliated cell differentiation of basal/progenitor cells.
Collapse
Affiliation(s)
- Lukas Didon
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Smadja DM, Mulliken JB, Bischoff J. E-selectin mediates stem cell adhesion and formation of blood vessels in a murine model of infantile hemangioma. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 181:2239-47. [PMID: 23041613 DOI: 10.1016/j.ajpath.2012.08.030] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 08/17/2012] [Accepted: 08/30/2012] [Indexed: 02/08/2023]
Abstract
Hemangioma stem cells (HemSCs) are multipotent cells isolated from infantile hemangioma (IH), which form hemangioma-like lesions when injected subcutaneously into immune-deficient mice. In this murine model, HemSCs are the primary target of corticosteroid, a mainstay therapy for problematic IH. The relationship between HemSCs and endothelial cells that reside in IH is not clearly understood. Adhesive interactions might be critical for the preferential accumulation of HemSCs and/or endothelial cells in the tumor. Therefore, we studied the interactions between HemSCs and endothelial cells (HemECs) isolated from IH surgical specimens. We found that HemECs isolated from proliferating phase IH, but not involuting phase, constitutively express E-selectin, a cell adhesion molecule not present in quiescent endothelial cells. E-selectin was further increased when HemECs were exposed to vascular endothelial growth factor-A or tumor necrosis factor-α. In vitro, HemSC migration and adhesion was enhanced by recombinant E-selectin but not P-selectin; both processes were neutralized by E-selectin-blocking antibodies. E-selectin-positive HemECs also stimulated migration and adhesion of HemSCs. In vivo, neutralizing antibodies to E-selectin strongly inhibited formation of blood vessels when HemSCs and HemECs were co-implanted in Matrigel. These data suggest that endothelial E-selectin could be a major ligand for HemSCs and thereby promote cellular interactions and vasculogenesis in IH. We propose that constitutively expressed E-selectin on endothelial cells in the proliferating phase is one mediator of the stem cell tropism in IH.
Collapse
Affiliation(s)
- David M Smadja
- Vascular Biology Program and Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | | | | |
Collapse
|