1
|
Liu L, Che B, Zhang W, Du D, Zhang D, Li J, Chen Z, Yu X, Ye M, Wang W, Li Z, Xie F, Wang Q, Chen L, Shao J. Mechanistic insights into the role of FAT10 in modulating NCOA4-mediated ferroptosis in pancreatic acinar cells during acute pancreatitis. Cell Death Dis 2025; 16:385. [PMID: 40374601 DOI: 10.1038/s41419-025-07715-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 04/25/2025] [Accepted: 05/02/2025] [Indexed: 05/17/2025]
Abstract
Acute pancreatitis (AP) is characterised by inflammation and cell death in pancreatic tissue, with ferroptosis playing a critical role in its pathophysiology by mediating cellular damage and exacerbating inflammation. This study investigated the role of human leukocyte antigen (HLA)-F adjacent transcript 10 (FAT10) in AP, specifically its involvement in ferroptosis within pancreatic acinar cells. We observed that FAT10 expression was significantly elevated in AP tissues, which correlated with increased ferroptosis. Overexpression of FAT10 in pancreatic acinar cells enhances ferroptosis, whereas its knockdown reduced levels of ferroptosis markers. Furthermore, we confirmed that FAT10 enhanced ferroptosis in pancreatic acinar cells primarily by upregulating nuclear receptor coactivator 4 (NCOA4) expression. Mechanistic investigations revealed that FAT10 regulates NCOA4 expression to promote ferroptosis in a complex manner. FAT10 inhibits NCOA4 ubiquitination by reducing ubiquitin-NCOA4 complexes. Meanwhile, NCOA4 expression increased alongside the increase in FAT10-NCOA4 complexes, which are resistant to proteasomal degradation. Notably, we identified silibinin, a natural compound, as an effective inhibitor of the FAT10-NCOA4 axis, leading to reduced ferroptosis and alleviation of pancreatic damage in vivo. Silibinin treatment decreased the levels of ferroptosis-related proteins and inflammatory markers in both cell and animal models. Our findings highlight the FAT10-NCOA4 axis as a crucial regulator of ferroptosis in pancreatic acinar cells and suggest that targeting this pathway could offer a therapeutic strategy for mitigating AP. This study provides new insights into the regulatory mechanisms of ferroptosis in pancreatic acinar cells, identifying FAT10 as a potential therapeutic target for AP management.
Collapse
Affiliation(s)
- Lingpeng Liu
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Molecular Medicine, Second Affiliated Hospital of Nanchang University, Nanchang, China
- Liver Cancer Institute, Nanchang University, Nanchang, China
- Jiangxi Province Clinical Research Center of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ben Che
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Molecular Medicine, Second Affiliated Hospital of Nanchang University, Nanchang, China
- Liver Cancer Institute, Nanchang University, Nanchang, China
- Jiangxi Province Clinical Research Center of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Wenming Zhang
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Molecular Medicine, Second Affiliated Hospital of Nanchang University, Nanchang, China
- Liver Cancer Institute, Nanchang University, Nanchang, China
- Jiangxi Province Clinical Research Center of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Dongnian Du
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Molecular Medicine, Second Affiliated Hospital of Nanchang University, Nanchang, China
- Liver Cancer Institute, Nanchang University, Nanchang, China
- Jiangxi Province Clinical Research Center of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Dandan Zhang
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Molecular Medicine, Second Affiliated Hospital of Nanchang University, Nanchang, China
- Liver Cancer Institute, Nanchang University, Nanchang, China
- Jiangxi Province Clinical Research Center of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jiajuan Li
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Molecular Medicine, Second Affiliated Hospital of Nanchang University, Nanchang, China
- Liver Cancer Institute, Nanchang University, Nanchang, China
- Jiangxi Province Clinical Research Center of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zehao Chen
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Molecular Medicine, Second Affiliated Hospital of Nanchang University, Nanchang, China
- Liver Cancer Institute, Nanchang University, Nanchang, China
- Jiangxi Province Clinical Research Center of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xuzhe Yu
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Molecular Medicine, Second Affiliated Hospital of Nanchang University, Nanchang, China
- Liver Cancer Institute, Nanchang University, Nanchang, China
- Jiangxi Province Clinical Research Center of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Miao Ye
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Molecular Medicine, Second Affiliated Hospital of Nanchang University, Nanchang, China
- Liver Cancer Institute, Nanchang University, Nanchang, China
- Jiangxi Province Clinical Research Center of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Wei Wang
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Molecular Medicine, Second Affiliated Hospital of Nanchang University, Nanchang, China
- Liver Cancer Institute, Nanchang University, Nanchang, China
- Jiangxi Province Clinical Research Center of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zijing Li
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Molecular Medicine, Second Affiliated Hospital of Nanchang University, Nanchang, China
- Liver Cancer Institute, Nanchang University, Nanchang, China
- Jiangxi Province Clinical Research Center of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Fei Xie
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Molecular Medicine, Second Affiliated Hospital of Nanchang University, Nanchang, China
- Liver Cancer Institute, Nanchang University, Nanchang, China
- Jiangxi Province Clinical Research Center of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Qing Wang
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Molecular Medicine, Second Affiliated Hospital of Nanchang University, Nanchang, China
- Liver Cancer Institute, Nanchang University, Nanchang, China
- Jiangxi Province Clinical Research Center of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Leifeng Chen
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China.
- Jiangxi Province Clinical Research Center of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China.
- Precision Oncology Medicine Center, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China.
| | - Jianghua Shao
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China.
- Jiangxi Province Key Laboratory of Molecular Medicine, Second Affiliated Hospital of Nanchang University, Nanchang, China.
- Liver Cancer Institute, Nanchang University, Nanchang, China.
- Jiangxi Province Clinical Research Center of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China.
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, Nanchang University, Nanchang, China.
| |
Collapse
|
2
|
Xu WX, Wen X, Fu YT, Yang J, Cui H, Fan RF. Nuclear receptor coactive 4-mediated ferritinophagy: a key role of heavy metals toxicity. Arch Toxicol 2025; 99:1257-1270. [PMID: 39928088 DOI: 10.1007/s00204-025-03963-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 01/15/2025] [Indexed: 02/11/2025]
Abstract
Nuclear receptor coactive 4 (NCOA4) is a specific receptor for ferritinophagy, transporting ferritin to lysosomal degradation, releasing free iron, and excessive iron levels may lead to cellular redox imbalance, contributing to cell death, predominantly ferroptosis. NCOA4 is regulated by a variety of transcriptional, post-transcriptional, translational, and post-translational modifications. Targeted modulation of NCOA4-mediated ferritinophagy has been successfully used as a therapeutic strategy in several disease models. Recent evidences have elucidated that ferritinophagy and ferroptosis played a major role in heavy metals toxicity. In this review, we explored the regulatory mechanism of NCOA4 as the sole receptor for ferritinophagy from multiple perspectives based on previous studies. The significant role of ferritinophagy-mediated ferroptosis in heavy metals toxicity was discussed in detail, emphasizing the great potential of NCOA4 as a target for heavy metals toxicity.
Collapse
Affiliation(s)
- Wan-Xue Xu
- College of Veterinary Medicine, Shandong Agricultural University, 7 Panhe Street, Tai'an, 271017, Shandong, China
- Shandong Provincial Key Laboratory of Zoonoses, Shandong Agricultural University, 7 Panhe Street, Tai'an, 271017, Shandong, China
| | - Xue Wen
- College of Veterinary Medicine, Shandong Agricultural University, 7 Panhe Street, Tai'an, 271017, Shandong, China
- Shandong Provincial Key Laboratory of Zoonoses, Shandong Agricultural University, 7 Panhe Street, Tai'an, 271017, Shandong, China
| | - Yi-Tong Fu
- College of Veterinary Medicine, Shandong Agricultural University, 7 Panhe Street, Tai'an, 271017, Shandong, China
- Shandong Provincial Key Laboratory of Zoonoses, Shandong Agricultural University, 7 Panhe Street, Tai'an, 271017, Shandong, China
| | - Jie Yang
- College of Veterinary Medicine, Shandong Agricultural University, 7 Panhe Street, Tai'an, 271017, Shandong, China
- Shandong Provincial Key Laboratory of Zoonoses, Shandong Agricultural University, 7 Panhe Street, Tai'an, 271017, Shandong, China
| | - Han Cui
- College of Veterinary Medicine, Shandong Agricultural University, 7 Panhe Street, Tai'an, 271017, Shandong, China
- Shandong Provincial Key Laboratory of Zoonoses, Shandong Agricultural University, 7 Panhe Street, Tai'an, 271017, Shandong, China
| | - Rui-Feng Fan
- College of Veterinary Medicine, Shandong Agricultural University, 7 Panhe Street, Tai'an, 271017, Shandong, China.
- Shandong Provincial Key Laboratory of Zoonoses, Shandong Agricultural University, 7 Panhe Street, Tai'an, 271017, Shandong, China.
| |
Collapse
|
3
|
Rowland LA, Santos KB, Guilherme A, Munroe S, Lifshitz LM, Nicoloro S, Wang H, Yee MF, Czech MP. The autophagy receptor Ncoa4 controls PPARγ activity and thermogenesis in brown adipose tissue. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.02.636110. [PMID: 39974946 PMCID: PMC11838434 DOI: 10.1101/2025.02.02.636110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Adipose tissue dysfunction leads to a variety of deleterious systemic consequences including ectopic lipid deposition and impaired insulin sensitivity. PPARγ is a major regulator of adipocyte differentiation and functionality and is thus a determinant of systemic metabolic health. We recently reported that deletion of adipocyte fatty acid synthase (AdFasnKO) impairs autophagy in association with a striking upregulation of genes controlled by PPARγ, including thermogenic uncoupling protein 1 (Ucp1). In this present study, screening for PPARγ coactivators regulated by autophagy revealed a protein denoted as Nuclear receptor coactivator 4 (Ncoa4), known to mediate ferritinophagy and interact with PPARγ and other nuclear receptors. Indeed, we found Ncoa4 is upregulated in the early phase of adipocyte differentiation and is required for adipogenesis. Ncoa4 is also elevated in FasnKO adipocytes and necessary for full upregulation of Ucp1 expression in vitro , even in response to norepinephrine. Consistent with these findings, adipose-selective knockout of Ncoa4 (AdNcoa4KO mice) impairs Ucp1 expression in brown adipose tissue and cold-induced thermogenesis. Adipose-selective double KO of Fasn plus Ncoa4 (AdFasnNcoa4DKO mice) prevents the upregulation of classic PPARγ target genes normally observed in the white adipose tissue of AdFasnKO mice, but not thermogenic Ucp1 expression. These findings reveal Ncoa4 is a novel determinant of adipocyte PPARγ activity and regulator of white and brown adipocyte biology and suggest that manipulation of autophagy flux modulates PPARγ activity and key adipocyte functions via Ncoa4 actions.
Collapse
|
4
|
Lv S, Luo C. Ferroptosis in schizophrenia: Mechanisms and therapeutic potentials (Review). Mol Med Rep 2025; 31:37. [PMID: 39611491 PMCID: PMC11613623 DOI: 10.3892/mmr.2024.13402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 10/28/2024] [Indexed: 11/30/2024] Open
Abstract
Schizophrenia, a complex psychiatric disorder, presents with multifaceted symptoms and important challenges in treatment, primarily due to its pathophysiological complexity, which involves oxidative stress and aberrant iron metabolism. Recent insights into ferroptosis, a unique form of iron‑dependent cell death characterized by lipid peroxidation and antioxidant system failures, open new avenues for understanding the neurobiological foundation of schizophrenia. The present review explores the interplay between ferroptosis and schizophrenia, emphasizing the potential contributions of disrupted iron homeostasis and oxidative mechanisms to the pathology and progression of this disease. The emerging evidence linking ferroptosis with the oxidative stress observed in schizophrenia provides a compelling narrative for re‑evaluating current therapeutic strategies and exploring novel interventions targeting these molecular pathways, such as the glutathione peroxidase 4 pathway and the ferroptosis suppressor protein 1 pathway. By integrating recent advances in ferroptosis research, the current review highlights innovative therapeutic potentials, including N‑acetylcysteine, selenium, omega‑3 fatty acids and iron chelation therapy, which could address the limitations of existing treatments and improve clinical outcomes for individuals with schizophrenia.
Collapse
Affiliation(s)
- Shuang Lv
- Department of Psychiatry, Guangzhou Kangning Hospital (The Psychiatric Hospital of Guangzhou Civil Administration Bureau), Guangzhou, Guangdong 510430, P.R. China
| | - Chunxia Luo
- Department of Psychiatry, Guangzhou Kangning Hospital (The Psychiatric Hospital of Guangzhou Civil Administration Bureau), Guangzhou, Guangdong 510430, P.R. China
| |
Collapse
|
5
|
Yang Z, Chen Y, Miao Y, Yan H, Chen K, Xu Y, Su L, Zhang L, Yan Y, Chi H, Fu J, Wang L. Elucidating stearoyl metabolism and NCOA4-mediated ferroptosis in gastric cancer liver metastasis through multi-omics single-cell integrative mendelian analysis: advancing personalized immunotherapy strategies. Discov Oncol 2025; 16:46. [PMID: 39812999 PMCID: PMC11735723 DOI: 10.1007/s12672-025-01769-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 01/02/2025] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND The metabolism of stearoyl-GPE plays a key role in the liver metastasis of gastric cancer. This investigation delves into the mechanisms underlying the intricate tumor microenvironment (TME) heterogeneity triggered by stearoyl metabolism in gastric cancer with liver metastasis (LMGC), offering novel perspectives for LMGC. OBJECTIVE Utilizing Mendelian randomization, we determined that stearoyl metabolism significantly contributes to the progression of gastric cancer (GC). Following this, bulk transcriptome analyses and single-cell multiomics techniques to investigate the roles of stearoyl-GPE metabolism-related genes, particularly NCOA4, in regulating LMGC TME. RESULTS Our analysis highlights the crucial role of stearoyl metabolism in modulating the complex microenvironment of LMGC, particularly impacting monocyte cells. Through single-cell sequencing and spatial transcriptomics, we have identified key metabolic genes specific to stearoyl metabolism within the monocyte cell population, including NCOA4. Regarding the relationship between ferroptosis, stearoyl metabolism, and LMGC findings, it is plausible that stearoyl metabolism and LMGC pathways intersect with mechanisms involved in ferroptosis. Ferroptosis, characterized by iron-dependent lipid peroxidation, represents a regulated form of cell death. The activity of Stearoyl-CoA desaturase (SCD), a critical enzyme in stearoyl metabolism, has been associated with the modulation of lipid composition and susceptibility to ferroptosis. Furthermore, the LMGC is integral to cellular processes related to oxidative stress and lipid metabolism, both of which are significant factors in the context of ferroptosis. CONCLUSION This study enhances the understanding of the relationship between stearoyl metabolism and ferroptosis in promoting liver metastasis of gastric cancer and its role in the regulation of tumor heterogeneity. In addition, this study contributes to a deeper understanding of the dynamics of gastric cancer tumor microenvironment (TME) and provides a basis for the development of better interventions to combat cancer metastasis.
Collapse
Affiliation(s)
- Zhongqiu Yang
- Department of General Surgery, Dazhou Central Hospital, Dazhou, 635000, China
| | - Yuquan Chen
- School of Public Health and Preventive Medicine, Faculty of Medicine, Nursing & Health Sciences, Monash University, Victoria, 3004, Australia
| | - Yaping Miao
- General Hospital of Ningxia Medical University, Yinchuan, 750000, Ningxia, China
- Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Haisheng Yan
- General Hospital of Ningxia Medical University, Yinchuan, 750000, Ningxia, China
- Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Kexin Chen
- General Hospital of Ningxia Medical University, Yinchuan, 750000, Ningxia, China
- Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Yaoqin Xu
- General Hospital of Ningxia Medical University, Yinchuan, 750000, Ningxia, China
- Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Lanqian Su
- School of Clinical Medicine, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Lanyue Zhang
- School of Clinical Medicine, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Yalan Yan
- School of Clinical Medicine, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Hao Chi
- School of Clinical Medicine, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China.
- Western Institute of Digital-Intelligent Medicine, 401329, Chongqing, China.
| | - Jin Fu
- Department of Laboratory Medicine, Chonggang General Hospital, Chongqing, 400080, China.
| | - Lexin Wang
- Western Institute of Digital-Intelligent Medicine, 401329, Chongqing, China.
| |
Collapse
|
6
|
Liu J, Wang Y, Zeng L, Yu C, Kang R, Klionsky DJ, Jiang J, Tang D. Extracellular NCOA4 is a mediator of septic death by activating the AGER-NFKB pathway. Autophagy 2024; 20:2616-2631. [PMID: 38916095 PMCID: PMC11587848 DOI: 10.1080/15548627.2024.2372215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/19/2024] [Accepted: 06/21/2024] [Indexed: 06/26/2024] Open
Abstract
Sepsis, a life-threatening condition resulting from a dysregulated response to pathogen infection, poses a significant challenge in clinical management. Here, we report a novel role for the autophagy receptor NCOA4 in the pathogenesis of sepsis. Activated macrophages and monocytes secrete NCOA4, which acts as a mediator of septic death in mice. Mechanistically, lipopolysaccharide, a major component of the outer membrane of Gram-negative bacteria, induces NCOA4 secretion through autophagy-dependent lysosomal exocytosis mediated by ATG5 and MCOLN1. Moreover, bacterial infection with E. coli or S. enterica leads to passive release of NCOA4 during GSDMD-mediated pyroptosis. Upon release, extracellular NCOA4 triggers the activation of the proinflammatory transcription factor NFKB/NF-κB by promoting the degradation of NFKBIA/IκB molecules. This process is dependent on the pattern recognition receptor AGER, rather than TLR4. In vivo studies employing endotoxemia and polymicrobial sepsis mouse models reveal that a monoclonal neutralizing antibody targeting NCOA4 or AGER delays animal death, protects against organ damage, and attenuates systemic inflammation. Furthermore, elevated plasma NCOA4 levels in septic patients, particularly in non-survivors, correlate positively with the sequential organ failure assessment score and concentrations of lactate and proinflammatory mediators, such as TNF, IL1B, IL6, and HMGB1. These findings demonstrate a previously unrecognized role of extracellular NCOA4 in inflammation, suggesting it as a potential therapeutic target for severe infectious diseases. Abbreviation: BMDMs: bone marrow-derived macrophages; BUN: blood urea nitrogen; CLP: cecal ligation and puncture; ELISA: enzyme-linked immunosorbent assay; LPS: lipopolysaccharide; NO: nitric oxide; SOFA: sequential organ failure assessment.
Collapse
Affiliation(s)
- Jiao Liu
- DAMP Laboratory, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yichun Wang
- DAMP Laboratory, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
- Department of Critical Care Medicine, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Ling Zeng
- State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Chongqing, China
| | - Chunhua Yu
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| | - Daniel J. Klionsky
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Jianxin Jiang
- State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Chongqing, China
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
7
|
Neary B, Qiu P. Characterization of Expression-Based Gene Clusters Gives Insights into Variation in Patient Response to Cancer Therapies. Cancer Inform 2024; 23:11769351241271560. [PMID: 39238656 PMCID: PMC11375686 DOI: 10.1177/11769351241271560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 07/01/2024] [Indexed: 09/07/2024] Open
Abstract
Background Transcriptomics can reveal much about cellular activity, and cancer transcriptomics have been useful in investigating tumor cell behaviors. Patterns in transcriptome-wide gene expression can be used to investigate biological mechanisms and pathways that can explain the variability in patient response to cancer therapies. Methods We identified gene expression patterns related to patient drug response by clustering tumor gene expression data and selecting from the resulting gene clusters those where expression of cluster genes was related to patient survival on specific drugs. We then investigated these gene clusters for biological meaning using several approaches, including identifying common genomic locations and transcription factors whose targets were enriched in these clusters and performing survival analyses to support these candidate transcription factor-drug relationships. Results We identified gene clusters related to drug-specific survival, and through these, we were able to associate observed variations in patient drug response to specific known biological phenomena. Specifically, our analysis implicated 2 stem cell-related transcription factors, HOXB4 and SALL4, in poor response to temozolomide in brain cancers. In addition, expression of SNRNP70 and its targets were implicated in cetuximab response by 3 different analyses, although the mechanism remains unclear. We also found evidence that 2 cancer-related chromosomal structural changes may impact drug efficacy. Conclusion In this study, we present the gene clusters identified and the results of our systematic analysis linking drug efficacy to specific transcription factors, which are rich sources of potential mechanistic relationships impacting patient outcomes. We also highlight the most promising of these results, which were supported by multiple analyses and by previous research. We report these findings as promising avenues for independent validation and further research into cancer treatments and patient response.
Collapse
Affiliation(s)
- Bridget Neary
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Peng Qiu
- Department of Biomedical Engineering, Georgia Institute of Technology, Emory University, Atlanta, GA, USA
| |
Collapse
|
8
|
Jiang Y, Wu W, Huang J, Liu N, Wang J, Wan X, Qin Z, Wang Y. KA-mediated excitotoxicity induces neuronal ferroptosis through activation of ferritinophagy. CNS Neurosci Ther 2024; 30:e70054. [PMID: 39306799 PMCID: PMC11416743 DOI: 10.1111/cns.70054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 08/13/2024] [Accepted: 09/06/2024] [Indexed: 09/25/2024] Open
Abstract
OBJECTIVES This study aims to elucidate the role of Fe2+ overload in kainic acid (KA)-induced excitotoxicity, investigate the involvement of ferritinophagy selective cargo receptor NCOA4 in the pathogenesis of excitotoxicity. METHODS Western blotting was used to detect the expression of FTH1, NCOA4, Lamp2, TfR, FPN, and DMT1 after KA stereotaxic injection into the unilateral striatum of mice. Colocalization of Fe2+ with lysosomes in KA-treated primary cortical neurons was observed by using confocal microscopy. Desferrioxamine (DFO) was added to chelate free iron, a CCK8 kit was used to measure cell viability, and the Fe2+ levels were detected by FerroOrange. BODIPY C11 was used to determine intracellular lipid reactive oxygen species (ROS) levels, and the mRNA levels of PTGS2, a biomarker of ferroptosis, were measured by fluorescent quantitative PCR. 3-Methyladenine (3-MA) was employed to inhibit KA-induced activation of autophagy, and changes in ferritinophagy-related protein expression and the indicated biomarkers of ferroptosis were detected. Endogenous NCOA4 was knocked down by lentivirus transfection, and cell viability and intracellular Fe2+ levels were observed after KA treatment. RESULTS Western blot results showed that the expression of NCOA4, DMT1, and Lamp2 was significantly upregulated, while FTH1 was downregulated, but there were no significant changes in TfR and FPN. The fluorescence results indicated that KA enhanced the colocalization of free Fe2+ with lysosomes in neurons. DFO intervention could effectively rescue cell damage, reduce intracellular lipid peroxidation, and decrease the increased transcript levels of PTGS2 caused by KA. Pretreatment with 3-MA effectively reversed KA-induced ferritinophagy and ferroptosis. Endogenous interference with NCOA4 significantly improved cell viability and reduced intracellular free Fe2+ levels in KA-treated cells. CONCLUSION KA-induced excitotoxicity activates ferritinophagy, and targeting ferritinophagy effectively inhibits downstream ferroptosis. Interference with NCOA4 effectively attenuates KA-induced neuronal damage. This study provides a potential therapeutic target for excitotoxicity related disease conditions.
Collapse
Affiliation(s)
- Yi‐Yue Jiang
- Department of Pharmacology College of Pharmaceutical Sciences, Suzhou Key Laboratory of Aging and Nervous Diseases, and Jiangsu Key Laboratory of Neuropsychiatric DiseasesSoochow UniversitySuzhouChina
| | - Wei‐Long Wu
- Department of Pharmacology College of Pharmaceutical Sciences, Suzhou Key Laboratory of Aging and Nervous Diseases, and Jiangsu Key Laboratory of Neuropsychiatric DiseasesSoochow UniversitySuzhouChina
| | - Jia‐Ni Huang
- Department of Pharmacology College of Pharmaceutical Sciences, Suzhou Key Laboratory of Aging and Nervous Diseases, and Jiangsu Key Laboratory of Neuropsychiatric DiseasesSoochow UniversitySuzhouChina
| | - Na Liu
- Department of Pharmacology College of Pharmaceutical Sciences, Suzhou Key Laboratory of Aging and Nervous Diseases, and Jiangsu Key Laboratory of Neuropsychiatric DiseasesSoochow UniversitySuzhouChina
| | - Jing Wang
- Department of Pharmacology College of Pharmaceutical Sciences, Suzhou Key Laboratory of Aging and Nervous Diseases, and Jiangsu Key Laboratory of Neuropsychiatric DiseasesSoochow UniversitySuzhouChina
| | - Xiao‐Rui Wan
- Department of Pharmacology College of Pharmaceutical Sciences, Suzhou Key Laboratory of Aging and Nervous Diseases, and Jiangsu Key Laboratory of Neuropsychiatric DiseasesSoochow UniversitySuzhouChina
| | - Zheng‐Hong Qin
- Department of Pharmacology College of Pharmaceutical Sciences, Suzhou Key Laboratory of Aging and Nervous Diseases, and Jiangsu Key Laboratory of Neuropsychiatric DiseasesSoochow UniversitySuzhouChina
| | - Yan Wang
- Department of Pharmacology College of Pharmaceutical Sciences, Suzhou Key Laboratory of Aging and Nervous Diseases, and Jiangsu Key Laboratory of Neuropsychiatric DiseasesSoochow UniversitySuzhouChina
| |
Collapse
|
9
|
Proffitt MR, Smith GT. Species variation in steroid hormone-related gene expression contributes to species diversity in sexually dimorphic communication in electric fishes. Horm Behav 2024; 164:105576. [PMID: 38852479 PMCID: PMC11330740 DOI: 10.1016/j.yhbeh.2024.105576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/08/2024] [Accepted: 05/31/2024] [Indexed: 06/11/2024]
Abstract
Sexually dimorphic behaviors are often regulated by gonadal steroid hormones. Species diversity in behavioral sex differences may arise as expression of genes mediating steroid action in brain regions controlling these behaviors evolves. The electric communication signals of apteronotid knifefishes are an excellent model for comparatively studying neuroendocrine regulation of sexually dimorphic behavior. These fish produce and detect weak electric organ discharges (EODs) for electrolocation and communication. EOD frequency (EODf), controlled by the medullary pacemaker nucleus (Pn), is sexually dimorphic and regulated by androgens and estrogens in some species, but is sexually monomorphic and unaffected by hormones in other species. We quantified expression of genes for steroid receptors, metabolizing enzymes, and cofactors in the Pn of two species with sexually dimorphic EODf (Apteronotus albifrons and Apteronotus leptorhynchus) and two species with sexually monomorphic EODf ("Apteronotus" bonapartii and Parapteronotus hasemani). The "A." bonapartii Pn expressed lower levels of androgen receptor (AR) genes than the Pn of species with sexually dimorphic EODf. In contrast, the P. hasemani Pn robustly expressed AR genes, but expressed lower levels of genes for 5α-reductases, which convert androgens to more potent metabolites, and higher levels of genes for 17β-hydroxysteroid dehydrogenases that oxidize androgens and estrogens to less potent forms. These findings suggest that sexual monomorphism of EODf arose convergently via two different mechanisms. In "A." bonapartii, reduced Pn expression of ARs likely results in insensitivity of EODf to androgens, whereas in P. hasemani, gonadal steroids may be metabolically inactivated in the Pn, reducing their potential to influence EODf.
Collapse
Affiliation(s)
- Melissa R Proffitt
- Department of Biology, Indiana University, 1001 E. 3(rd) St., Bloomington, IN 47405, USA; Center for the Integrative Study of Animal Behavior, Indiana University, 409 N. Park Ave., Bloomington, IN 47505, USA
| | - G Troy Smith
- Department of Biology, Indiana University, 1001 E. 3(rd) St., Bloomington, IN 47405, USA; Center for the Integrative Study of Animal Behavior, Indiana University, 409 N. Park Ave., Bloomington, IN 47505, USA.
| |
Collapse
|
10
|
Chen DM, Dong R, Kachuri L, Hoffmann TJ, Jiang Y, Berndt SI, Shelley JP, Schaffer KR, Machiela MJ, Freedman ND, Huang WY, Li SA, Lilja H, Justice AC, Madduri RK, Rodriguez AA, Van Den Eeden SK, Chanock SJ, Haiman CA, Conti DV, Klein RJ, Mosley JD, Witte JS, Graff RE. Transcriptome-wide association analysis identifies candidate susceptibility genes for prostate-specific antigen levels in men without prostate cancer. HGG ADVANCES 2024; 5:100315. [PMID: 38845201 PMCID: PMC11262184 DOI: 10.1016/j.xhgg.2024.100315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/18/2024] Open
Abstract
Deciphering the genetic basis of prostate-specific antigen (PSA) levels may improve their utility for prostate cancer (PCa) screening. Using genome-wide association study (GWAS) summary statistics from 95,768 PCa-free men, we conducted a transcriptome-wide association study (TWAS) to examine impacts of genetically predicted gene expression on PSA. Analyses identified 41 statistically significant (p < 0.05/12,192 = 4.10 × 10-6) associations in whole blood and 39 statistically significant (p < 0.05/13,844 = 3.61 × 10-6) associations in prostate tissue, with 18 genes associated in both tissues. Cross-tissue analyses identified 155 statistically significantly (p < 0.05/22,249 = 2.25 × 10-6) genes. Out of 173 unique PSA-associated genes across analyses, we replicated 151 (87.3%) in a TWAS of 209,318 PCa-free individuals from the Million Veteran Program. Based on conditional analyses, we found 20 genes (11 single tissue, nine cross-tissue) that were associated with PSA levels in the discovery TWAS that were not attributable to a lead variant from a GWAS. Ten of these 20 genes replicated, and two of the replicated genes had colocalization probability of >0.5: CCNA2 and HIST1H2BN. Six of the 20 identified genes are not known to impact PCa risk. Fine-mapping based on whole blood and prostate tissue revealed five protein-coding genes with evidence of causal relationships with PSA levels. Of these five genes, four exhibited evidence of colocalization and one was conditionally independent of previous GWAS findings. These results yield hypotheses that should be further explored to improve understanding of genetic factors underlying PSA levels.
Collapse
Affiliation(s)
- Dorothy M Chen
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Ruocheng Dong
- Department of Epidemiology and Population Health, Stanford University, Stanford, CA 94305, USA
| | - Linda Kachuri
- Department of Epidemiology and Population Health, Stanford University, Stanford, CA 94305, USA; Stanford Cancer Institute, Stanford University, Stanford, CA 94305, USA
| | - Thomas J Hoffmann
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA 94158, USA; Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Yu Jiang
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Sonja I Berndt
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD 20814, USA
| | - John P Shelley
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Kerry R Schaffer
- Department of Internal Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Mitchell J Machiela
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD 20814, USA
| | - Neal D Freedman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD 20814, USA
| | - Wen-Yi Huang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD 20814, USA
| | - Shengchao A Li
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD 20814, USA
| | - Hans Lilja
- Departments of Pathology and Laboratory Medicine, Surgery, Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Translational Medicine, Lund University, 21428 Malmö, Sweden
| | | | | | | | | | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD 20814, USA
| | - Christopher A Haiman
- Center for Genetic Epidemiology, Department of Population and Preventive Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90032, USA; Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - David V Conti
- Center for Genetic Epidemiology, Department of Population and Preventive Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90032, USA; Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Robert J Klein
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jonathan D Mosley
- Departments of Internal Medicine and Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - John S Witte
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Epidemiology and Population Health, Stanford University, Stanford, CA 94305, USA; Departments of Biomedical Data Science and Genetics (by courtesy), Stanford University, Stanford, CA 94305, USA.
| | - Rebecca E Graff
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
11
|
Le Y, Liu Q, Yang Y, Wu J. The emerging role of nuclear receptor coactivator 4 in health and disease: a novel bridge between iron metabolism and immunity. Cell Death Discov 2024; 10:312. [PMID: 38961066 PMCID: PMC11222541 DOI: 10.1038/s41420-024-02075-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/13/2024] [Accepted: 06/18/2024] [Indexed: 07/05/2024] Open
Abstract
Nuclear receptor coactivator 4 (NCOA4) has recently been recognized as a selective cargo receptor of ferritinophagy participating in ferroptosis. However, NCOA4 is also a coactivator that modulates the transcriptional activity of many vital nuclear receptors. Recent novel studies have documented the role of NCOA4 in healthy and pathogenic conditions via its modulation of iron- and non-iron-dependent metabolic pathways. NCOA4 exhibits non-ferritinophagic and iron-independent features such as promoting tumorigenesis and erythropoiesis, immunomodulation, regulating autophagy, and participating in DNA replication and mitosis. Full-length human-NCOA4 is composed of 614 amino acids, of which the N-terminal (1-237) contains nuclear-receptor-binding domains, while the C-terminal (238-614) principally contains a ferritin-binding domain. The exploration of the protein structure of NCOA4 suggests that NCOA4 possesses additional significant and complex functions based on its structural domains. Intriguingly, another three isoforms of NCOA4 that are produced by alternative splicing have been identified, which may also display disparate activities in physiological and pathological processes. Thus, NCOA4 has become an important bridge that encompasses interactions between immunity and metabolism. In this review, we outline the latest advances in the important regulating mechanisms underlying NCOA4 actions in health and disease conditions, providing insights into potential therapeutic interventions.
Collapse
Affiliation(s)
- Yue Le
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Qinjie Liu
- Department of General Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Yi Yang
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China.
| | - Jie Wu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China.
- Research Center of Surgery, BenQ Medical Center, the Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, 210021, China.
| |
Collapse
|
12
|
Li J, Feng Y, Li Y, He P, Zhou Q, Tian Y, Yao R, Yao Y. Ferritinophagy: A novel insight into the double-edged sword in ferritinophagy-ferroptosis axis and human diseases. Cell Prolif 2024; 57:e13621. [PMID: 38389491 PMCID: PMC11216947 DOI: 10.1111/cpr.13621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/19/2024] [Accepted: 02/10/2024] [Indexed: 02/24/2024] Open
Abstract
Nuclear receptor coactive 4 (NCOA4), which functions as a selective cargo receptor, is a critical regulator of the particularly autophagic degradation of ferritin, a process known as ferritinophagy. Mechanistically, NCOA4-mediated ferritinophagy performs an increasingly vital role in the maintenance of intracellular iron homeostasis by promoting ferritin transport and iron release as needed. Ferritinophagy is not only involved in iron-dependent responses but also in the pathogenesis and progression of various human diseases, including metabolism-related, neurodegenerative, cardiovascular and infectious diseases. Therefore, ferritinophagy is of great importance in maintaining cell viability and function and represents a potential therapeutic target. Recent studies indicated that ferritinophagy regulates the signalling pathway associated with ferroptosis, a newly discovered type of cell death characterised by iron-dependent lipid peroxidation. Although accumulating evidence clearly demonstrates the importance of the interplay between dysfunction in iron metabolism and ferroptosis, a deeper understanding of the double-edged sword effect of ferritinophagy in ferroptosis has remained elusive. Details of the mechanisms underlying the ferritinophagy-ferroptosis axis in regulating relevant human diseases remain to be elucidated. In this review, we discuss the latest research findings regarding the mechanisms that regulate the biological function of NCOA4-mediated ferritinophagy and its contribution to the pathophysiology of ferroptosis. The important role of the ferritinophagy-ferroptosis axis in human diseases will be discussed in detail, highlighting the great potential of targeting ferritinophagy in the treatment of diseases.
Collapse
Affiliation(s)
- Jing‐Yan Li
- Department of EmergencyThe Second Hospital of Hebei Medical UniversityShijiazhuangChina
| | - Yan‐Hua Feng
- Department of OrthopedicsHebei Provincial Chidren's HospitalShijiazhuangChina
| | - Yu‐Xuan Li
- Translational Medicine Research CenterMedical Innovation Research Division and Fourth Medical Center of the Chinese PLA General HospitalBeijingChina
| | - Peng‐Yi He
- Translational Medicine Research CenterMedical Innovation Research Division and Fourth Medical Center of the Chinese PLA General HospitalBeijingChina
| | - Qi‐Yuan Zhou
- Department of EmergencyThe Second Hospital of Hebei Medical UniversityShijiazhuangChina
| | - Ying‐Ping Tian
- Department of EmergencyThe Second Hospital of Hebei Medical UniversityShijiazhuangChina
| | - Ren‐Qi Yao
- Translational Medicine Research CenterMedical Innovation Research Division and Fourth Medical Center of the Chinese PLA General HospitalBeijingChina
| | - Yong‐Ming Yao
- Department of EmergencyThe Second Hospital of Hebei Medical UniversityShijiazhuangChina
- Translational Medicine Research CenterMedical Innovation Research Division and Fourth Medical Center of the Chinese PLA General HospitalBeijingChina
| |
Collapse
|
13
|
Feng Z, Luan M, Zhu W, Xing Y, Ma X, Wang Y, Jia Y. Targeted ferritinophagy in gastrointestinal cancer: from molecular mechanisms to implications. Arch Toxicol 2024; 98:2007-2018. [PMID: 38602537 DOI: 10.1007/s00204-024-03745-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 03/20/2024] [Indexed: 04/12/2024]
Abstract
Gastrointestinal cancer is a significant global health burden, necessitating the development of novel therapeutic strategies. Emerging evidence has highlighted the potential of targeting ferritinophagy as a promising approach for the treatment of gastrointestinal cancer. Ferritinophagy is a form of selective autophagy that is mediated by the nuclear receptor coactivator 4 (NCOA4). This process plays a crucial role in regulating cellular iron homeostasis and has been implicated in various pathological conditions, including cancer. This review discusses the molecular mechanisms underlying ferritinophagy and its relevance to gastrointestinal cancer. Furthermore, we highlight the potential therapeutic implications of targeting ferritinophagy in gastrointestinal cancer. Several approaches have been proposed to modulate ferritinophagy, including small molecule inhibitors and immunotherapeutic strategies. We discuss the advantages and challenges associated with these therapeutic interventions and provide insights into their potential clinical applications.
Collapse
Affiliation(s)
- Zhaotian Feng
- Department of Medical Laboratory, Shandong Second Medical University, Weifang, 261053, People's Republic of China
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, Jinan, 250013, People's Republic of China
- Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, People's Republic of China
| | - Muhua Luan
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, Jinan, 250013, People's Republic of China
- Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, People's Republic of China
| | - Wenshuai Zhu
- Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, People's Republic of China
| | - Yuanxin Xing
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, Jinan, 250013, People's Republic of China
- Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, People's Republic of China
| | - Xiaoli Ma
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, Jinan, 250013, People's Republic of China
- Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, People's Republic of China
| | - Yunshan Wang
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, Jinan, 250013, People's Republic of China
- Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, People's Republic of China
| | - Yanfei Jia
- Department of Medical Laboratory, Shandong Second Medical University, Weifang, 261053, People's Republic of China.
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, Jinan, 250013, People's Republic of China.
- Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, People's Republic of China.
| |
Collapse
|
14
|
Li K, Wang A, Diao Y, Fan S. Oxidative medicine and cellular longevity the role and mechanism of NCOA4 in ferroptosis induced by intestinal ischemia reperfusion. Int Immunopharmacol 2024; 133:112155. [PMID: 38688134 DOI: 10.1016/j.intimp.2024.112155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/22/2024] [Accepted: 04/22/2024] [Indexed: 05/02/2024]
Abstract
BACKGROUND Ferroptosis is an iron-dependent and cystathione-non-dependent non-apoptotic cell death characterized by elevated intracellular free iron levels and reduced antioxidant capacity, leading to the accumulation of lipid peroxides. Nuclear receptor coactivator 4 (NCOA4) mediates ferritinophagy, increasing labile iron levels, which can result in oxidative damage. However, the specific mechanism of NCOA4-mediated ferritinophagy in intestinal ischemia-reperfusion and the underlying mechanisms have not been reported in detail. OBJECT 1. To investigate the role of NCOA4 in ferroptosis of intestinal epithelial cells induced by II/R injury in mouse. 2. To investigate the mechanism of action of NCOA4-induced ferroptosis. METHODS 1. Construct a mouse II/R injury model and detect ferroptosis related markers such as HE staining, immunohistochemistry, ELISA, and WB methods. 2. Detect expression of NCOA4 in the intestine of mouse with II/R injury model and analyze its correlation with intestinal ferroptosis in mouse with II/R injury model. 3. Construct an ischemia-reperfusion model at the cellular level through hypoxia and reoxygenation, and overexpress/knockdown NCOA4 to detect markers related to ferroptosis. Based on animal experimental results, analyze the correlation and mechanism of action between NCOA4 and intestinal epithelial ferroptosis induced by II/R injury in mouse. RESULTS 1. Ferroptosis occurred in the intestinal epithelial cells of II/R-injured mouse, and the expression of critical factors of ferroptosis, ACSL4, MDA and 15-LOX, was significantly increased, while the levels of GPX4 and GSH were significantly decreased. 2. The expression of NCOA4 in the intestinal epithelium of mouse with II/R injure was significantly increased, the expression of ferritin was significantly decreased, and the level of free ferrous ions was significantly increased; the expression of autophagy-related proteins LC3 and Beclin-1 protein was increased, and the expression of P62 was decreased, and these changes were reversed by autophagy inhibitors. 3. Knockdown of NCOA4 at the cellular level resulted in increased ferritin expression and decreased ferroptosis, and CO-IP experiments suggested that NCOA4 can bind to ferritin, which suggests that NCOA4 most likely mediates ferritinophagy to induce ferroptosis. CONCLUSION This thesis explored the role of NCOA4 in II/R injury in mice and the mechanism of action. The research results suggest that NCOA4 can mediate ferritinophagy to induce ferroptosis during II/R injury. This experiment reveals the pathological mechanism of II/R injury and provides some scientific basis for the development of drugs for the treatment of II/R injury based on the purpose of alleviating ferroptosis.
Collapse
Affiliation(s)
- Kun Li
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, 116029, China.
| | - Annan Wang
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, 116029, China
| | - Yunpeng Diao
- College of Pharmacy, Dalian Medical University, Dalian, 116044, China
| | - Shuyuan Fan
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, 116029, China.
| |
Collapse
|
15
|
Zhou L, Deng Z, Wang Y, Zhang H, Yan S, Kanwar YS, Wang Y, Dai Y, Deng F. PRMT4 interacts with NCOA4 to inhibit ferritinophagy in cisplatin-induced acute kidney injury. FASEB J 2024; 38:e23584. [PMID: 38568836 DOI: 10.1096/fj.202302596r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/04/2024] [Accepted: 03/18/2024] [Indexed: 04/05/2024]
Abstract
Cisplatin-induced acute kidney injury (AKI) is commonly seen in the clinical practice, and ferroptosis, a type of non-apoptotic cell death, plays a pivotal role in it. Previous studies suggested that protein arginine methyltransferase 4 (PRMT4) was incorporated in various bioprocesses, but its role in renal injuries has not been investigated. Our present study showed that PRMT4 was highly expressed in renal proximal tubular cells, and it was downregulated in cisplatin-induced AKI. Besides, genetic disruption of PRMT4 exacerbated, while its overexpression attenuated, cisplatin-induced redox injuries in renal proximal epithelia. Mechanistically, our work showed that PRMT4 interacted with NCOA4 to inhibit ferritinophagy, a type of selective autophagy favoring lipid peroxidation to accelerate ferroptosis. Taken together, our study demonstrated that PRMT4 interacted with NCOA4 to attenuate ferroptosis in cisplatin-induced AKI, suggesting that PRMT4 might present as a new therapeutic target for cisplatin-related nephropathy.
Collapse
Affiliation(s)
- Lizhi Zhou
- Department of Urology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, China
| | - Zebin Deng
- Department of Urology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, China
| | - Yilong Wang
- Department of Cardiology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Hao Zhang
- Department of Urology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, China
| | - Shu Yan
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yashpal S Kanwar
- Departments of Pathology & Medicine, Northwestern University, Chicago, Illinois, USA
| | - Yinhuai Wang
- Department of Urology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yingbo Dai
- Department of Urology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, Guangdong, China
| | - Fei Deng
- Department of Urology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, China
- Department of Nephrology, The Second Xiangya Hospital at Central South University, Changsha, Hunan, China
| |
Collapse
|
16
|
Sun DY, Wu WB, Wu JJ, Shi Y, Xu JJ, Ouyang SX, Chi C, Shi Y, Ji QX, Miao JH, Fu JT, Tong J, Zhang PP, Zhang JB, Li ZY, Qu LF, Shen FM, Li DJ, Wang P. Pro-ferroptotic signaling promotes arterial aging via vascular smooth muscle cell senescence. Nat Commun 2024; 15:1429. [PMID: 38365899 PMCID: PMC10873425 DOI: 10.1038/s41467-024-45823-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 02/05/2024] [Indexed: 02/18/2024] Open
Abstract
Senescence of vascular smooth muscle cells (VSMCs) contributes to aging-related cardiovascular diseases by promoting arterial remodelling and stiffness. Ferroptosis is a novel type of regulated cell death associated with lipid oxidation. Here, we show that pro-ferroptosis signaling drives VSMCs senescence to accelerate vascular NAD+ loss, remodelling and aging. Pro-ferroptotic signaling is triggered in senescent VSMCs and arteries of aged mice. Furthermore, the activation of pro-ferroptotic signaling in VSMCs not only induces NAD+ loss and senescence but also promotes the release of a pro-senescent secretome. Pharmacological or genetic inhibition of pro-ferroptosis signaling, ameliorates VSMCs senescence, reduces vascular stiffness and retards the progression of abdominal aortic aneurysm in mice. Mechanistically, we revealed that inhibition of pro-ferroptotic signaling facilitates the nuclear-cytoplasmic shuttling of proliferator-activated receptor-γ and, thereby impeding nuclear receptor coactivator 4-ferrtin complex-centric ferritinophagy. Finally, the activated pro-ferroptotic signaling correlates with arterial stiffness in a human proof-of-concept study. These findings have significant implications for future therapeutic strategies aiming to eliminate vascular ferroptosis in senescence- or aging-associated cardiovascular diseases.
Collapse
Affiliation(s)
- Di-Yang Sun
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Second Military Medical University/Naval Medical University, Shanghai, China
- Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Wen-Bin Wu
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Second Military Medical University/Naval Medical University, Shanghai, China
| | - Jian-Jin Wu
- Department of Vascular and Endovascular Surgery, Changzheng Hospital, Naval Medical University/Second Military Medical University, Shanghai, China
| | - Yu Shi
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jia-Jun Xu
- Department of Diving and Hyperbaric Medicine, Naval Special Medical Center, Naval Medical University/Second Military Medical University, Shanghai, China
| | - Shen-Xi Ouyang
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Chen Chi
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Cardiology, School of Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yi Shi
- Shanghai Key Laboratory of Organ Transplantation, Fudan University, Shanghai, China
- Institute of Clinical Science, Zhongshan Hospital Fudan University, Shanghai, China
| | - Qing-Xin Ji
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jin-Hao Miao
- Department of Orthopedic Surgery/Spine Center, Changzheng Hospital Affiliated Hospital of Naval Medical University/Second Military Medical University, Shanghai, China
| | - Jiang-Tao Fu
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Second Military Medical University/Naval Medical University, Shanghai, China
| | - Jie Tong
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ping-Ping Zhang
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Second Military Medical University/Naval Medical University, Shanghai, China
| | - Jia-Bao Zhang
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Second Military Medical University/Naval Medical University, Shanghai, China
- The National Demonstration Center for Experimental Pharmaceutical Education, Naval Medical University/Second Military Medical University, Shanghai, China
| | - Zhi-Yong Li
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Second Military Medical University/Naval Medical University, Shanghai, China
- The National Demonstration Center for Experimental Pharmaceutical Education, Naval Medical University/Second Military Medical University, Shanghai, China
| | - Le-Feng Qu
- Department of Vascular and Endovascular Surgery, Changzheng Hospital, Naval Medical University/Second Military Medical University, Shanghai, China.
| | - Fu-Ming Shen
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Dong-Jie Li
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Pei Wang
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Second Military Medical University/Naval Medical University, Shanghai, China.
- The National Demonstration Center for Experimental Pharmaceutical Education, Naval Medical University/Second Military Medical University, Shanghai, China.
| |
Collapse
|
17
|
Luan Y, Yang Y, Luan Y, Liu H, Xing H, Pei J, Liu H, Qin B, Ren K. Targeting ferroptosis and ferritinophagy: new targets for cardiovascular diseases. J Zhejiang Univ Sci B 2024; 25:1-22. [PMID: 38163663 PMCID: PMC10758208 DOI: 10.1631/jzus.b2300097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 05/21/2023] [Indexed: 01/03/2024]
Abstract
Cardiovascular diseases (CVDs) are a leading factor driving mortality worldwide. Iron, an essential trace mineral, is important in numerous biological processes, and its role in CVDs has raised broad discussion for decades. Iron-mediated cell death, namely ferroptosis, has attracted much attention due to its critical role in cardiomyocyte damage and CVDs. Furthermore, ferritinophagy is the upstream mechanism that induces ferroptosis, and is closely related to CVDs. This review aims to delineate the processes and mechanisms of ferroptosis and ferritinophagy, and the regulatory pathways and molecular targets involved in ferritinophagy, and to determine their roles in CVDs. Furthermore, we discuss the possibility of targeting ferritinophagy-induced ferroptosis modulators for treating CVDs. Collectively, this review offers some new insights into the pathology of CVDs and identifies possible therapeutic targets.
Collapse
Affiliation(s)
- Yi Luan
- Clinical Systems Biology Research Laboratories, Translational Medicine Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yang Yang
- Clinical Systems Biology Research Laboratories, Translational Medicine Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Ying Luan
- State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
| | - Hui Liu
- School of Laboratory Medicine, Xinxiang Medical University, Xinxiang 453003, China
| | - Han Xing
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou 450052, China
- Henan Engineering Research Center for Application & Translation of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou 450052, China
| | - Jinyan Pei
- Quality Management Department, Henan No. 3 Provincial People's Hospital, Zhengzhou 450052, China
| | - Hengdao Liu
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China. ,
| | - Bo Qin
- Center for Translational Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China. ,
| | - Kaidi Ren
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou 450052, China.
- Henan Engineering Research Center for Application & Translation of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou 450052, China.
| |
Collapse
|
18
|
Zhou ZQ, Lv X, Liu SB, Qu HC, Xie QP, Sun LF, Li G. The induction of ferroptosis by KLF11/NCOA4 axis: the inhibitory role in clear cell renal cell carcinoma. Hum Cell 2023; 36:2162-2178. [PMID: 37642832 DOI: 10.1007/s13577-023-00973-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 08/16/2023] [Indexed: 08/31/2023]
Abstract
Ferroptosis is a form of cell death and has great potential application in the treatment of many cancers, including clear cell renal cell carcinoma (ccRCC). Herein, we identified the essential roles of Krüppel-like factor 11 (KLF11) in suppressing the progression of ccRCC. By analyzing mRNA expression data from the Gene Expression Omnibus (GEO) database, we found that KLF11 was a significantly downregulated gene in ccRCC tissues. The results of subsequent functional assays verified that KLF11 played an antiproliferative role in ccRCC cells and xenograft tumors. Furthermore, gene set enrichment analysis indicated that ferroptosis was involved in ccRCC development, and correlation analysis revealed that KLF11 was positively related to ferroptosis drivers. We also found that KLF11 promoted ferroptosis in ccRCC by downregulating the protein expression of ferritin, system xc (-) cystine/glutamate antiporter (xCT), and glutathione peroxidase 4 (GPX4), acting as the inhibitory factors of ferroptosis and increasing the intracellular levels of lipid reactive oxygen species (ROS). As a transcriptional regulator, KLF11 significantly increased the promoter activity of nuclear receptor coactivator 4 (NCOA4), a gene significantly downregulated in ccRCC and whose low expression is associated with poor survival. The characteristics of ccRCC cells caused by KLF11 overexpression were reversed after NCOA4 silencing. In summary, the present study suggests that KLF11 suppresses the progression of ccRCC by increasing NCOA4 transcription. Therefore, the KLF11/NCOA4 axis may serve as a novel therapeutic target for human ccRCC.
Collapse
Affiliation(s)
- Zi-Qi Zhou
- Department of Urology,, Cancer Hospital of China Medical University (Liaoning Cancer Hospital and Institute), No. 44, Xiaoheyan Road, Dadong District, Shenyang, Liaoning Province, China
| | - Xi Lv
- Department of Urology,, Cancer Hospital of China Medical University (Liaoning Cancer Hospital and Institute), No. 44, Xiaoheyan Road, Dadong District, Shenyang, Liaoning Province, China
| | - Shi-Bo Liu
- Department of Urology,, Cancer Hospital of China Medical University (Liaoning Cancer Hospital and Institute), No. 44, Xiaoheyan Road, Dadong District, Shenyang, Liaoning Province, China
| | - Hong-Chen Qu
- Department of Urology,, Cancer Hospital of China Medical University (Liaoning Cancer Hospital and Institute), No. 44, Xiaoheyan Road, Dadong District, Shenyang, Liaoning Province, China
| | - Qing-Peng Xie
- Department of Urology,, Cancer Hospital of China Medical University (Liaoning Cancer Hospital and Institute), No. 44, Xiaoheyan Road, Dadong District, Shenyang, Liaoning Province, China
| | - Long-Feng Sun
- Department of Geriatric Cardiology, The First Hospital of China Medical University, No. 155, Nanjing North Street, Shenyang, Liaoning Province, China.
| | - Gang Li
- Department of Urology,, Cancer Hospital of China Medical University (Liaoning Cancer Hospital and Institute), No. 44, Xiaoheyan Road, Dadong District, Shenyang, Liaoning Province, China.
| |
Collapse
|
19
|
Jin X, Jiang C, Zou Z, Huang H, Li X, Xu S, Tan R. Ferritinophagy in the etiopathogenic mechanism of related diseases. J Nutr Biochem 2023; 117:109339. [PMID: 37061010 DOI: 10.1016/j.jnutbio.2023.109339] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 03/18/2023] [Accepted: 03/23/2023] [Indexed: 04/17/2023]
Abstract
Iron is an essential trace element that is involved in a variety of physiological processes. Ferritinophagy is selective autophagy mediated by nuclear receptor coactivator 4 (NCOA4), which regulates iron homeostasis in the body. Upon iron depletion or starvation, ferritinophagy is activated, releasing large amounts of Fe2+ and increasing reactive oxygen species (ROS), leading to ferroptosis. This plays a significant role in the etiopathogenesis of many diseases, such as metabolic diseases, neurodegenerative diseases, infectious diseases, tumors, cardiomyopathy, and ischemia-reperfusion ischemia-reperfusion injury. Here, we first review the regulation and functions of ferritinophagy and then describe its involvement in different diseases, with hopes of providing new understanding and insights into iron metabolism and iron disorder-related diseases and the therapeutic opportunity for targeting ferritinophagy.
Collapse
Affiliation(s)
- Xuemei Jin
- Department of Preventive Medicine, School of Medicine, Yanbian University, Yanji, China; Department of Clinical Nutrition, Guangzhou Institute of Disease-Oriented Nutritional Research, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, China
| | - Chunjie Jiang
- Department of Clinical Nutrition, Guangzhou Institute of Disease-Oriented Nutritional Research, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, China
| | - Zhizhou Zou
- Department of Preventive Medicine, School of Medicine, Yanbian University, Yanji, China; Department of Clinical Nutrition, Guangzhou Institute of Disease-Oriented Nutritional Research, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, China
| | - He Huang
- Department of Preventive Medicine, School of Medicine, Yanbian University, Yanji, China; Department of Clinical Nutrition, Guangzhou Institute of Disease-Oriented Nutritional Research, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, China
| | - Xiaojian Li
- Department of Burn, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, China
| | - Songji Xu
- Department of Preventive Medicine, School of Medicine, Yanbian University, Yanji, China
| | - Rongshao Tan
- Department of Clinical Nutrition, Guangzhou Institute of Disease-Oriented Nutritional Research, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, China.
| |
Collapse
|
20
|
Wu J, Liu Q, Zhang X, Tan M, Li X, Liu P, Wu L, Jiao F, Lin Z, Wu X, Wang X, Zhao Y, Ren J. The interaction between STING and NCOA4 exacerbates lethal sepsis by orchestrating ferroptosis and inflammatory responses in macrophages. Cell Death Dis 2022; 13:653. [PMID: 35902564 PMCID: PMC9334269 DOI: 10.1038/s41419-022-05115-x] [Citation(s) in RCA: 92] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/14/2022] [Accepted: 07/18/2022] [Indexed: 01/21/2023]
Abstract
The discovery of STING-related innate immunity has recently provided a deep mechanistic understanding of immunopathy. While the detrimental effects of STING during sepsis had been well documented, the exact mechanism by which STING causes lethal sepsis remains obscure. Through single-cell RNA sequence, genetic approaches, and mass spectrometry, we demonstrate that STING promotes sepsis-induced multiple organ injury by inducing macrophage ferroptosis in a cGAS- and interferon-independent manner. Mechanistically, Q237, E316, and S322 in the CBD domain of STING are critical binding sites for the interaction with the coiled-coil domain of NCOA4. Their interaction not only triggers ferritinophagy-mediated ferroptosis, but also maintains the stability of STING dimers leading to enhanced inflammatory response, and reduces the nuclear localization of NCOA4, which impairs the transcription factor coregulator function of NCOA4. Meanwhile, we identified HET0016 by high throughput screening, a selective 20-HETE synthase inhibitor, decreased STING-induced ferroptosis in peripheral blood mononuclear cells from patients with sepsis and mortality in septic mice model. Our findings uncover a novel mechanism by which the interaction between STING and NCOA4 regulates innate immune response and ferroptosis, which can be reversed by HET0016, providing mechanistic and promising targets insights into sepsis.
Collapse
Affiliation(s)
- Jie Wu
- Department of General Surgery, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Qinjie Liu
- Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Xufei Zhang
- Research Institute of General Surgery, Jinling Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Miaomiao Tan
- Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Sciences, Kowloon Tong, City University of Hong Kong, Hong Kong, SAR, China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen, China
| | - Xuanheng Li
- Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Peizhao Liu
- Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Lei Wu
- Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Fan Jiao
- Department of General Surgery, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Zhaoyu Lin
- MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Xiuwen Wu
- Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China.
- Research Institute of General Surgery, Jinling Hospital, School of Medicine, Southeast University, Nanjing, China.
- Research Institute of General Surgery, Jinling Hospital, Nanjing Medical University, Nanjing, China.
| | - Xin Wang
- Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China.
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Sciences, Kowloon Tong, City University of Hong Kong, Hong Kong, SAR, China.
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen, China.
| | - Yun Zhao
- Department of General Surgery, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China.
| | - Jianan Ren
- Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China.
- Research Institute of General Surgery, Jinling Hospital, School of Medicine, Southeast University, Nanjing, China.
- Research Institute of General Surgery, Jinling Hospital, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
21
|
Dinh DT, Russell DL. Nuclear Receptors in Ovarian Function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1390:41-58. [DOI: 10.1007/978-3-031-11836-4_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
22
|
Li C, Sun G, Chen B, Xu L, Ye Y, He J, Bao Z, Zhao P, Miao Z, Zhao L, Hu J, You Y, Liu N, Chao H, Ji J. Nuclear receptor coactivator 4-mediated ferritinophagy contributes to cerebral ischemia-induced ferroptosis in ischemic stroke. Pharmacol Res 2021; 174:105933. [PMID: 34634471 DOI: 10.1016/j.phrs.2021.105933] [Citation(s) in RCA: 150] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 08/28/2021] [Accepted: 10/06/2021] [Indexed: 01/18/2023]
Abstract
Ischemic stroke poses a significant health risk due to its high rate of disability and mortality. To address this problem, several therapeutic approaches have been proposed, including interruption targeting programmed cell death (PCD). Ferroptosis is a newly defined PCD characterized by iron-dependent accumulation of lipid peroxidation, and is becoming a promising target for treating numerous diseases. To explore the underlying mechanisms of the initiation and execution of ferroptosis in ischemic stroke, we established stroke models in vivo and in vitro simulating ischemia/reperfusion (I/R) neuronal injury. Different from previous reports on stroke, we tested ferroptosis by measuring the levels of core proteins, such as ACSL4, 15-LOX2, Ferritin and GPX4. In addition, I/R injury induces excessive degradation of ferritin via the autophagy pathway and subsequent increase of free iron in neurons. This phenomenon has recently been termed ferritinophagy and reported to be regulated by nuclear receptor coactivator 4 (NCOA4) in some cell lines. Increased NCOA4 in cytoplasm was detected in our study and then silenced by shRNA to investigate its function. Both in vivo and in vitro, NCOA4 deletion notably abrogated ferritinophagy caused by I/R injury and thus inhibited ferroptosis. Furthermore, we found that NCOA4 was upregulated by ubiquitin specific peptidase 14 (USP14) via a deubiquitination process in damaged neurons, and we found evidence of pharmacological inhibition of USP14 effectively reducing NCOA4 levels to protect neurons from ferritinophagy-mediated ferroptosis. These findings suggest a novel and effective target for treating ischemic stroke.
Collapse
Affiliation(s)
- Chong Li
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Guangchi Sun
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Binglin Chen
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Lei Xu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yangfan Ye
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jinyan He
- School of Medical Imaging, Nanjing Medical University, Nanjing, China
| | - Zhongyuan Bao
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Pengzhan Zhao
- Department of Neurosurgery, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Zong Miao
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Lin Zhao
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jingming Hu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yongping You
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ning Liu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Honglu Chao
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Jing Ji
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
23
|
Schmeisser J, Verlhac-Trichet V, Madaro A, Lall SP, Torrissen O, Olsen RE. Molecular Mechanism Involved in Carotenoid Metabolism in Post-Smolt Atlantic Salmon: Astaxanthin Metabolism During Flesh Pigmentation and Its Antioxidant Properties. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2021; 23:653-670. [PMID: 34417678 DOI: 10.1007/s10126-021-10055-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 08/04/2021] [Indexed: 06/13/2023]
Abstract
A better understanding of carotenoid dynamics (transport, absorption, metabolism, and deposition) is essential to develop a better strategy to improve astaxanthin (Ax) retention in muscle of Atlantic salmon. To achieve that, a comparison of post-smolt salmon with (+ Ax) or without (- Ax) dietary Ax supplementation was established based on a transcriptomic approach targeting pyloric, hepatic, and muscular tissues. Results in post-smolts showed that the pyloric caeca transcriptome is more sensitive to dietary Ax supplementation compared to the other tissues. Key genes sensitive to Ax supplementation could be identified, such as cd36 in pylorus, agr2 in liver, or fbp1 in muscle. The most modulated genes in pylorus were related to absorption but also metabolism of Ax. Additionally, genes linked to upstream regulation of the ferroptosis pathway were significantly modulated in liver, evoking the involvement of Ax as an antioxidant in this process. Finally, the muscle seemed to be less impacted by dietary Ax supplementation, except for genes related to actin remodelling and glucose homeostasis. In conclusion, the transcriptome data generated from this study showed that Ax dynamics in Atlantic salmon is characterized by a high metabolism during absorption at pyloric caeca level. In liver, a link with a potential of ferroptosis process appears likely via cellular lipid peroxidation. Our data provide insights into a better understanding of molecular mechanisms involved in dietary Ax supplementation, as well as its beneficial effects in preventing oxidative stress and related inflammation in muscle.
Collapse
Affiliation(s)
- Jerome Schmeisser
- DSM Nutritional Products - Research Centre of Animal Nutrition and Health, 68305, Saint-Louis Cedex, France.
| | - Viviane Verlhac-Trichet
- DSM Nutritional Products - Research Centre of Animal Nutrition and Health, 68305, Saint-Louis Cedex, France
| | - Angelico Madaro
- Institute of Marine Research, Animal Welfare Science Group, 5984, Matredal, Norway
| | - Santosh P Lall
- Retired From National Research Council of Canada, 1411 Oxford Street, Halifax, Canada
| | - Ole Torrissen
- Institute of Marine Research, Animal Welfare Science Group, 5984, Matredal, Norway
| | - Rolf Erik Olsen
- Institute of Marine Research, Animal Welfare Science Group, 5984, Matredal, Norway
- Department of Biology, Norwegian University of Science and Technology, 7491, Trondheim, Norway
| |
Collapse
|
24
|
Maio N, Zhang DL, Ghosh MC, Jain A, SantaMaria AM, Rouault TA. Mechanisms of cellular iron sensing, regulation of erythropoiesis and mitochondrial iron utilization. Semin Hematol 2021; 58:161-174. [PMID: 34389108 DOI: 10.1053/j.seminhematol.2021.06.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 06/08/2021] [Accepted: 06/10/2021] [Indexed: 12/11/2022]
Abstract
To maintain an adequate iron supply for hemoglobin synthesis and essential metabolic functions while counteracting iron toxicity, humans and other vertebrates have evolved effective mechanisms to conserve and finely regulate iron concentration, storage, and distribution to tissues. At the systemic level, the iron-regulatory hormone hepcidin is secreted by the liver in response to serum iron levels and inflammation. Hepcidin regulates the expression of the sole known mammalian iron exporter, ferroportin, to control dietary absorption, storage and tissue distribution of iron. At the cellular level, iron regulatory proteins 1 and 2 (IRP1 and IRP2) register cytosolic iron concentrations and post-transcriptionally regulate the expression of iron metabolism genes to optimize iron availability for essential cellular processes, including heme biosynthesis and iron-sulfur cluster biogenesis. Genetic malfunctions affecting the iron sensing mechanisms or the main pathways that utilize iron in the cell cause a broad range of human diseases, some of which are characterized by mitochondrial iron accumulation. This review will discuss the mechanisms of systemic and cellular iron sensing with a focus on the main iron utilization pathways in the cell, and on human conditions that arise from compromised function of the regulatory axes that control iron homeostasis.
Collapse
Affiliation(s)
- Nunziata Maio
- Molecular Medicine Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| | - De-Liang Zhang
- Molecular Medicine Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| | - Manik C Ghosh
- Molecular Medicine Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| | - Anshika Jain
- Molecular Medicine Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| | - Anna M SantaMaria
- Molecular Medicine Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| | - Tracey A Rouault
- Molecular Medicine Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD.
| |
Collapse
|
25
|
Guo J, Duan L, He X, Li S, Wu Y, Xiang G, Bao F, Yang L, Shi H, Gao M, Zheng L, Hu H, Liu X. A Combined Model of Human iPSC-Derived Liver Organoids and Hepatocytes Reveals Ferroptosis in DGUOK Mutant mtDNA Depletion Syndrome. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2004680. [PMID: 34026460 PMCID: PMC8132052 DOI: 10.1002/advs.202004680] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/11/2021] [Indexed: 05/31/2023]
Abstract
Mitochondrial DNA depletion syndrome (MDS) is a group of severe inherited disorders caused by mutations in genes, such as deoxyribonucleoside kinase (DGUOK). A great majority of DGUOK mutant MDS patients develop iron overload progressing to severe liver failure. However, the pathological mechanisms connecting iron overload and hepatic damage remains uncovered. Here, two patients' skin fibroblasts are reprogrammed to induced pluripotent stem cells (iPSCs) and then corrected by CRISPR/Cas9. Patient-specific iPSCs and corrected iPSCs-derived high purity hepatocyte organoids (iHep-Orgs) and hepatocyte-like cells (iHep) are generated as cellular models for studying hepatic pathology. DGUOK mutant iHep and iHep-Orgs, but not control and corrected one, are more sensitive to iron overload-induced ferroptosis, which can be rescued by N-Acetylcysteine (NAC). Mechanically, this ferroptosis is a process mediated by nuclear receptor co-activator 4 (NCOA4)-dependent degradation of ferritin in lysosome and cellular labile iron release. This study reveals the underlying pathological mechanisms and the viable therapeutic strategies of this syndrome, and is the first pure iHep-Orgs model in hereditary liver diseases.
Collapse
Affiliation(s)
- Jingyi Guo
- University of Science and Technology of ChinaBioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory)Joint School of Life SciencesGuangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhou Medical UniversityHefei230026China
- CAS Key Laboratory of Regenerative BiologyGuangdong Provincial Key Laboratory of Stem Cell and Regenerative MedicineInstitute for Stem Cell and RegenerationGuangzhou Institutes of Biomedicine and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesGuangzhou510530China
| | - Lifan Duan
- CAS Key Laboratory of Regenerative BiologyGuangdong Provincial Key Laboratory of Stem Cell and Regenerative MedicineInstitute for Stem Cell and RegenerationGuangzhou Institutes of Biomedicine and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesGuangzhou510530China
| | - Xueying He
- CAS Key Laboratory of Regenerative BiologyGuangdong Provincial Key Laboratory of Stem Cell and Regenerative MedicineInstitute for Stem Cell and RegenerationGuangzhou Institutes of Biomedicine and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesGuangzhou510530China
| | - Shengbiao Li
- CAS Key Laboratory of Regenerative BiologyGuangdong Provincial Key Laboratory of Stem Cell and Regenerative MedicineInstitute for Stem Cell and RegenerationGuangzhou Institutes of Biomedicine and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesGuangzhou510530China
| | - Yi Wu
- CAS Key Laboratory of Regenerative BiologyGuangdong Provincial Key Laboratory of Stem Cell and Regenerative MedicineInstitute for Stem Cell and RegenerationGuangzhou Institutes of Biomedicine and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesGuangzhou510530China
| | - Ge Xiang
- CAS Key Laboratory of Regenerative BiologyGuangdong Provincial Key Laboratory of Stem Cell and Regenerative MedicineInstitute for Stem Cell and RegenerationGuangzhou Institutes of Biomedicine and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesGuangzhou510530China
| | - Feixiang Bao
- CAS Key Laboratory of Regenerative BiologyGuangdong Provincial Key Laboratory of Stem Cell and Regenerative MedicineInstitute for Stem Cell and RegenerationGuangzhou Institutes of Biomedicine and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesGuangzhou510530China
| | - Liang Yang
- CAS Key Laboratory of Regenerative BiologyGuangdong Provincial Key Laboratory of Stem Cell and Regenerative MedicineInstitute for Stem Cell and RegenerationGuangzhou Institutes of Biomedicine and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesGuangzhou510530China
| | - Hongyan Shi
- CAS Key Laboratory of Regenerative BiologyGuangdong Provincial Key Laboratory of Stem Cell and Regenerative MedicineInstitute for Stem Cell and RegenerationGuangzhou Institutes of Biomedicine and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesGuangzhou510530China
| | - Mi Gao
- CAS Key Laboratory of Regenerative BiologyGuangdong Provincial Key Laboratory of Stem Cell and Regenerative MedicineInstitute for Stem Cell and RegenerationGuangzhou Institutes of Biomedicine and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesGuangzhou510530China
| | - Lingjun Zheng
- CAS Key Laboratory of Regenerative BiologyGuangdong Provincial Key Laboratory of Stem Cell and Regenerative MedicineInstitute for Stem Cell and RegenerationGuangzhou Institutes of Biomedicine and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesGuangzhou510530China
| | - Huili Hu
- The Key Laboratory of Experimental TeratologyMinistry of Education and Department of GeneticsSchool of Basic Medical SciencesShandong UniversityJinan250012China
| | - Xingguo Liu
- University of Science and Technology of ChinaBioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory)Joint School of Life SciencesGuangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhou Medical UniversityHefei230026China
- CAS Key Laboratory of Regenerative BiologyGuangdong Provincial Key Laboratory of Stem Cell and Regenerative MedicineInstitute for Stem Cell and RegenerationGuangzhou Institutes of Biomedicine and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesGuangzhou510530China
| |
Collapse
|
26
|
NCOA4-mediated ferritinophagy promotes ferroptosis induced by erastin, but not by RSL3 in HeLa cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1868:118913. [PMID: 33245979 DOI: 10.1016/j.bbamcr.2020.118913] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/29/2020] [Accepted: 11/20/2020] [Indexed: 02/07/2023]
Abstract
Ferroptosis is a regulated cell death characterized by a lethal accumulation of lipid peroxides due to an increase of intracellular iron and a decrease of antioxidant capacity. The reduction of antioxidant activity is obtained by using chemical agents, such as erastin and RSL3, the first one inhibiting the transmembrane cystine-glutamate antiporter causing a cysteine and glutathione depletion and the second one inactivating directly the glutathione peroxidase 4 (GPX4) respectively. The role of iron and its related proteins in supporting the formation of lipid peroxides, is not completely understood hence to try to shed light on it we generated HeLa clones with altered ferritinophagy, the ferritin degradation process, by knocking-out or overexpressing Nuclear Receptor Coactivator 4 (NCOA4), the ferritin autophagic cargo-receptor. NCOA4 deficiency abolished ferritinophagy increasing ferritin level and making the cells more resistant to erastin, but unexpectedly more sensitive to RSL3. Interestingly, we found that erastin promoted ferritinophagy in HeLa cells expressing NCOA4, increasing the free iron, lipid peroxidation and the sensitivity to ferroptosis. In contrast, RSL3 did not modulate ferritinophagy, while NCOA4 overexpression delayed RSL3-induced cell death suggesting that RSL3 mechanism of action is independent of ferritin degradation process. Therefore, the ferritin-iron release in the execution of ferroptosis seems to depend on the inducing compound, its target and downstream pathway of cell death activation.
Collapse
|
27
|
Nai A, Pettinato M, Federico G, Olivari V, Carlomagno F, Silvestri L. Tamoxifen erythroid toxicity revealed by studying the role of nuclear receptor co-activator 4 in erythropoiesis. Haematologica 2020; 104:e383-e384. [PMID: 31366467 DOI: 10.3324/haematol.2019.224857] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Antonella Nai
- Division of Genetics and Cell Biology, Ospedale San Raffaele, Milan.,Vita-Salute San Raffaele University, Milan
| | - Mariateresa Pettinato
- Division of Genetics and Cell Biology, Ospedale San Raffaele, Milan.,Vita-Salute San Raffaele University, Milan
| | - Giorgia Federico
- Department of Molecular Medicine and Medicine Biotechnology (DMMBM), University of Naples Federico II, Institute of Endocrinology and Experimental Oncology (IEOS), CNR, Naples, Italy
| | - Violante Olivari
- Division of Genetics and Cell Biology, Ospedale San Raffaele, Milan
| | - Francesca Carlomagno
- Department of Molecular Medicine and Medicine Biotechnology (DMMBM), University of Naples Federico II, Institute of Endocrinology and Experimental Oncology (IEOS), CNR, Naples, Italy
| | - Laura Silvestri
- Division of Genetics and Cell Biology, Ospedale San Raffaele, Milan .,Vita-Salute San Raffaele University, Milan
| |
Collapse
|
28
|
You L, Lin Q, Zhao J, Shi F, Young KH, Qian W. Whole-exome sequencing identifies novel somatic alterations associated with outcomes in idiopathic multicentric Castleman disease. Br J Haematol 2020; 188:e64-e67. [PMID: 31863597 DOI: 10.1111/bjh.16330] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Liangshun You
- Department of Hematology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, China
- Malignant Lymphoma Diagnosis and Therapy Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Qingqing Lin
- Department of Hematology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Malignant Lymphoma Diagnosis and Therapy Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jing Zhao
- Department of Pathology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Fangjing Shi
- Department of Hematology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ken H Young
- Department of Pathology and Hematopathology Division, Duke University School of Medicine, Duke Medical Center and Cancer Institute, Durham, NC, USA
| | - Wenbin Qian
- Department of Hematology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, China
- Malignant Lymphoma Diagnosis and Therapy Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
29
|
Zhang P, Tillmans LS, Thibodeau SN, Wang L. Single-Nucleotide Polymorphisms Sequencing Identifies Candidate Functional Variants at Prostate Cancer Risk Loci. Genes (Basel) 2019; 10:genes10070547. [PMID: 31323811 PMCID: PMC6678189 DOI: 10.3390/genes10070547] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/10/2019] [Accepted: 07/16/2019] [Indexed: 01/22/2023] Open
Abstract
Genome-wide association studies have identified over 150 risk loci that increase prostate cancer risk. However, few causal variants and their regulatory mechanisms have been characterized. In this study, we utilized our previously developed single-nucleotide polymorphisms sequencing (SNPs-seq) technology to test allele-dependent protein binding at 903 SNP sites covering 28 genomic regions. All selected SNPs have shown significant cis-association with at least one nearby gene. After preparing nuclear extract using LNCaP cell line, we first mixed the extract with dsDNA oligo pool for protein–DNA binding incubation. We then performed sequencing analysis on protein-bound oligos. SNPs-seq analysis showed protein-binding differences (>1.5-fold) between reference and variant alleles in 380 (42%) of 903 SNPs with androgen treatment and 403 (45%) of 903 SNPs without treatment. From these significant SNPs, we performed a database search and further narrowed down to 74 promising SNPs. To validate this initial finding, we performed electrophoretic mobility shift assay in two SNPs (rs12246440 and rs7077275) at CTBP2 locus and one SNP (rs113082846) at NCOA4 locus. This analysis showed that all three SNPs demonstrated allele-dependent protein-binding differences that were consistent with the SNPs-seq. Finally, clinical association analysis of the two candidate genes showed that CTBP2 was upregulated, while NCOA4 was downregulated in prostate cancer (p < 0.02). Lower expression of CTBP2 was associated with poor recurrence-free survival in prostate cancer. Utilizing our experimental data along with bioinformatic tools provides a strategy for identifying candidate functional elements at prostate cancer susceptibility loci to help guide subsequent laboratory studies.
Collapse
Affiliation(s)
- Peng Zhang
- Department of Pathology, MCW Cancer Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Lori S Tillmans
- Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA
| | - Stephen N Thibodeau
- Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA
| | - Liang Wang
- Department of Pathology, MCW Cancer Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA.
| |
Collapse
|
30
|
Park H, Yamada M, Imoto S, Miyano S. Robust Sample-Specific Stability Selection with Effective Error Control. J Comput Biol 2019; 26:202-217. [PMID: 30638394 DOI: 10.1089/cmb.2018.0180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Identifying individual characteristics is a crucial issue in personalized genome research. To effectively identify sample-specific characteristics, we propose a novel strategy called robust sample-specific stability selection. Although stability selection shows effective feature selection results and has attractive theoretical property (i.e., per-family error rate control), the method's results are sensitive to the value of the regularization parameter because the method performs feature selection based only on the particular parameter value that maximizes the selection probability. To resolve this issue, we propose robust stability selection and show that our method provides an effective theoretical property (i.e., effective per-family error rate control). We also propose a sample-specific random lasso based on the kernel-based L1-type regularization and weighted random sampling. The proposed robust sample-specific stability selection estimates the selection probabilities of variables using the sample-specific random lasso and then selects variables based on robust stability selection. Our method controls the effect of samples on sample-specific analysis by the two-stage strategy (i.e., the weighted random sampling and the kernel-based L1-type approach in the random lasso), and thus we can effectively perform sample-specific analysis without disturbances of samples having characteristics different from those of the target sample. We observe from the numerical studies that our strategies can effectively perform sample-specific analysis and provide biologically reliable results in gene selection.
Collapse
Affiliation(s)
- Heewon Park
- 1 Faculty of Global and Science Studies, Yamaguchi University, Yamaguchi-shi, Japan
| | - Makoto Yamada
- 2 Kyoto University, Graduate School of Informatics, Sakyo-ku, Kyoto, Japan. RIKEN, Center for Advanced Intelligence Project, Chuo-gu, Tokyo, Japan. PRESTO, Japan Science and Technological Agency, Kawaguchi-shi, Saitama, Japan
| | - Seiya Imoto
- 3 Health Intelligence Center, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Satoru Miyano
- 4 Human Genome Center, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| |
Collapse
|
31
|
Santana-Codina N, Mancias JD. The Role of NCOA4-Mediated Ferritinophagy in Health and Disease. Pharmaceuticals (Basel) 2018; 11:E114. [PMID: 30360520 PMCID: PMC6316710 DOI: 10.3390/ph11040114] [Citation(s) in RCA: 214] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 10/17/2018] [Accepted: 10/19/2018] [Indexed: 12/26/2022] Open
Abstract
Nuclear receptor coactivator 4 (NCOA4) is a selective cargo receptor that mediates the autophagic degradation of ferritin ("ferritinophagy"), the cytosolic iron storage complex. NCOA4-mediated ferritinophagy maintains intracellular iron homeostasis by facilitating ferritin iron storage or release according to demand. Ferritinophagy is involved in iron-dependent physiological processes such as erythropoiesis, where NCOA4 mediates ferritin iron release for mitochondrial heme synthesis. Recently, ferritinophagy has been shown to regulate ferroptosis, a newly described form of iron-dependent cell death mediated by excess lipid peroxidation. Dysregulation of iron metabolism and ferroptosis have been described in neurodegeneration, cancer, and infection, but little is known about the role of ferritinophagy in the pathogenesis of these diseases. Here, we will review the biochemical regulation of NCOA4, its contribution to physiological processes and its role in disease. Finally, we will discuss the potential of activating or inhibiting ferritinophagy and ferroptosis for therapeutic purposes.
Collapse
Affiliation(s)
- Naiara Santana-Codina
- Division of Genomic Stability and DNA Repair, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Institute of Medicine, Room 221, 4 Blackfan Circle, Boston, MA 02215, USA.
| | - Joseph D Mancias
- Division of Genomic Stability and DNA Repair, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Institute of Medicine, Room 221, 4 Blackfan Circle, Boston, MA 02215, USA.
| |
Collapse
|
32
|
|
33
|
Zheng Y, Murphy LC. Regulation of steroid hormone receptors and coregulators during the cell cycle highlights potential novel function in addition to roles as transcription factors. NUCLEAR RECEPTOR SIGNALING 2016; 14:e001. [PMID: 26778927 PMCID: PMC4714463 DOI: 10.1621/nrs.14001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 10/01/2015] [Indexed: 01/15/2023]
Abstract
Cell cycle progression is tightly controlled by several kinase families including Cyclin-Dependent Kinases, Polo-Like Kinases, and Aurora Kinases. A large amount of data show that steroid hormone receptors and various components of the cell cycle, including cell cycle regulated kinases, interact, and this often results in altered transcriptional activity of the receptor. Furthermore, steroid hormones, through their receptors, can also regulate the transcriptional expression of genes that are required for cell cycle regulation. However, emerging data suggest that steroid hormone receptors may have roles in cell cycle progression independent of their transcriptional activity. The following is a review of how steroid receptors and their coregulators can regulate or be regulated by the cell cycle machinery, with a particular focus on roles independent of transcription in G2/M.
Collapse
Affiliation(s)
- Yingfeng Zheng
- Department of Biochemistry and Medical Genetics (YZ, LCM), University of Manitoba; Manitoba Institute of Cell Biology (YZ, LCM), CancerCare Manitoba, Winnipeg, Manitoba, Canada
| | - Leigh C Murphy
- Department of Biochemistry and Medical Genetics (YZ, LCM), University of Manitoba; Manitoba Institute of Cell Biology (YZ, LCM), CancerCare Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
34
|
Barthold JS, Pugarelli J, MacDonald ML, Ren J, Adetunji MO, Polson SW, Mateson A, Wang Y, Sol-Church K, McCahan SM, Akins RE, Devoto M, Robbins AK. Polygenic inheritance of cryptorchidism susceptibility in the LE/orl rat. Mol Hum Reprod 2016; 22:18-34. [PMID: 26502805 PMCID: PMC4694052 DOI: 10.1093/molehr/gav060] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Revised: 09/21/2015] [Accepted: 10/22/2015] [Indexed: 01/07/2023] Open
Abstract
STUDY HYPOTHESIS Susceptibility to inherited cryptorchidism in the LE/orl rat may be associated with genetic loci that influence developmental patterning of the gubernaculum by the fetal testis. STUDY FINDING Cryptorchidism in the LE/orl rat is associated with a unique combination of homozygous minor alleles at multiple loci, and the encoded proteins are co-localized with androgen receptor (AR) and Leydig cells in fetal gubernaculum and testis, respectively. WHAT IS KNOWN ALREADY Prior studies have shown aberrant perinatal gubernacular migration, muscle patterning defects and reduced fetal testicular testosterone in the LE/orl strain. In addition, altered expression of androgen-responsive, cytoskeletal and muscle-related transcripts in the LE/orl fetal gubernaculum suggest a role for defective AR signaling in cryptorchidism susceptibility. STUDY DESIGN, SAMPLES/MATERIALS, METHODS The long-term LE/orl colony and short-term colonies of outbred Crl:LE and Crl:SD, and inbred WKY/Ncrl rats were maintained for studies. Animals were intercrossed (LE/orl X WKY/Ncrl), and obligate heterozygotes were reciprocally backcrossed to LE/orl rats to generate 54 F2 males used for genotyping and/or linkage analysis. At least five fetuses per gestational time point from two or more litters were used for quantitative real-time RT-PCR (qRT-PCR) and freshly harvested embryonic (E) day 17 gubernaculum was used to generate conditionally immortalized cell lines. We completed genotyping and gene expression analyses using genome-wide microsatellite markers and single nucleotide polymorphism (SNP) arrays, PCR amplification, direct sequencing, restriction enzyme digest with fragment analysis, whole genome sequencing (WGS), and qRT-PCR. Linkage analysis was performed in Haploview with multiple testing correction, and qRT-PCR data were analyzed using ANOVA after log transformation. Imaging was performed using custom and commercial antibodies directed at candidate proteins in gubernaculum and testis tissues, and gubernaculum cell lines. MAIN RESULTS AND THE ROLE OF CHANCE LE/orl rats showed reduced fertility and fecundity, and higher risk of perinatal death as compared with Crl:LE rats, but there were no differences in breeding outcomes between normal and unilaterally cryptorchid males. Linkage analysis identified multiple peaks, and with selective breeding of outbred Crl:LE and Crl:SD strains for alleles within two of the most significant (P < 0.003) peaks on chromosomes 6 and 16, we were able to generate a non-LE/orl cryptorchid rat. Associated loci contain potentially functional minor alleles (0.25-0.36 in tested rat strains) including an exonic deletion in Syne2, a large intronic insertion in Ncoa4 (an AR coactivator) and potentially deleterious variants in Solh/Capn15, Ankrd28, and Hsd17b2. Existing WGS data indicate that homozygosity for these combined alleles does not occur in any other sequenced rat strain. We observed a modifying effect of the Syne2(del) allele on expression of other candidate genes, particularly Ncoa4, and for muscle and hormone-responsive transcripts. The selected candidate genes/proteins are highly expressed, androgen-responsive and/or co-localized with developing muscle and AR in fetal gubernaculum, and co-localized with Leydig cells in fetal testis. LIMITATIONS, REASONS FOR CAUTION The present study identified multiple cryptorchidism-associated linkage peaks in the LE/orl rat, containing potentially causal alleles. These are strong candidate susceptibility loci, but further studies are needed to demonstrate functional relevance to the phenotype. WIDER IMPLICATIONS OF THE FINDINGS Association data from both human and rat models of spontaneous, nonsyndromic cryptorchidism support a polygenic etiology of the disease. Both the present study and a human genome-wide association study suggest that common variants with weak effects contribute to susceptibility, and may exist in genes encoding proteins that participate in AR signaling in the developing gubernaculum. These findings have potential implications for the gene-environment interaction in the etiology of cryptorchidism. LARGE SCALE DATA Sequences were deposited in the Rat Genome Database (RGD, http://rgd.mcw.edu/). STUDY FUNDING AND COMPETING INTERESTS This work was supported by: R01HD060769 from the Eunice Kennedy Shriver National Institute for Child Health and Human Development (NICHD), 2P20GM103446 and P20GM103464 from the National Institute of General Medical Sciences (NIGMS), and Nemours Biomedical Research. The authors have no competing interests to declare.
Collapse
Affiliation(s)
- Julia Spencer Barthold
- Pediatric Urology Research Laboratory, Nemours Biomedical Research/Alfred I. duPont Hospital for Children, Wilmington, DE, USA
| | - Joan Pugarelli
- Pediatric Urology Research Laboratory, Nemours Biomedical Research/Alfred I. duPont Hospital for Children, Wilmington, DE, USA
| | - Madolyn L MacDonald
- Center for Bioinformatics and Computational Biology, Delaware Biotechnology Institute, University of Delaware, Newark, DE, USA
| | - Jia Ren
- Center for Bioinformatics and Computational Biology, Delaware Biotechnology Institute, University of Delaware, Newark, DE, USA
| | - Modupeore O Adetunji
- Center for Bioinformatics and Computational Biology, Delaware Biotechnology Institute, University of Delaware, Newark, DE, USA
| | - Shawn W Polson
- Center for Bioinformatics and Computational Biology, Delaware Biotechnology Institute, University of Delaware, Newark, DE, USA
| | - Abigail Mateson
- Pediatric Urology Research Laboratory, Nemours Biomedical Research/Alfred I. duPont Hospital for Children, Wilmington, DE, USA
| | - Yanping Wang
- Pediatric Urology Research Laboratory, Nemours Biomedical Research/Alfred I. duPont Hospital for Children, Wilmington, DE, USA
| | - Katia Sol-Church
- Biomolecular Core Laboratory, Nemours Biomedical Research/Alfred I. duPont Hospital for Children, Wilmington, DE, USA
| | - Suzanne M McCahan
- Bioinformatics Core, Nemours Biomedical Research/Alfred I. duPont Hospital for Children, Wilmington, DE, USA
| | - Robert E Akins
- Tissue Engineering and Regenerative Medicine Research Laboratory, Nemours Biomedical Research/Alfred I. duPont Hospital for Children, Wilmington, DE, USA
| | - Marcella Devoto
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA Department of Biostatistics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA Department of Epidemiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA Department of Molecular Medicine, Sapienza University, Rome, Italy
| | - Alan K Robbins
- Pediatric Urology Research Laboratory, Nemours Biomedical Research/Alfred I. duPont Hospital for Children, Wilmington, DE, USA
| |
Collapse
|
35
|
Bogdan AR, Miyazawa M, Hashimoto K, Tsuji Y. Regulators of Iron Homeostasis: New Players in Metabolism, Cell Death, and Disease. Trends Biochem Sci 2015; 41:274-286. [PMID: 26725301 DOI: 10.1016/j.tibs.2015.11.012] [Citation(s) in RCA: 649] [Impact Index Per Article: 64.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 10/16/2015] [Accepted: 11/24/2015] [Indexed: 02/07/2023]
Abstract
Iron is necessary for life, but can also cause cell death. Accordingly, cells evolved a robust, tightly regulated suite of genes for maintaining iron homeostasis. Previous mechanistic studies on iron homeostasis have granted insight into the role of iron in human health and disease. We highlight new regulators of iron metabolism, including iron-trafficking proteins [solute carrier family 39, SLC39, also known as ZRT/IRT-like protein, ZIP; and poly-(rC)-binding protein, PCBP] and a cargo receptor (NCOA4) that is crucial for release of ferritin-bound iron. We also discuss emerging roles of iron in apoptosis and a novel iron-dependent cell death pathway termed 'ferroptosis', the dysregulation of iron metabolism in human pathologies, and the use of iron chelators in cancer therapy.
Collapse
Affiliation(s)
- Alexander R Bogdan
- Department of Biological Sciences, North Carolina State University, Campus Box 7633, Raleigh, NC 27695-7633, USA
| | - Masaki Miyazawa
- Department of Biological Sciences, North Carolina State University, Campus Box 7633, Raleigh, NC 27695-7633, USA
| | - Kazunori Hashimoto
- Department of Biological Sciences, North Carolina State University, Campus Box 7633, Raleigh, NC 27695-7633, USA
| | - Yoshiaki Tsuji
- Department of Biological Sciences, North Carolina State University, Campus Box 7633, Raleigh, NC 27695-7633, USA.
| |
Collapse
|
36
|
Biasiotto G, Di Lorenzo D, Archetti S, Zanella I. Iron and Neurodegeneration: Is Ferritinophagy the Link? Mol Neurobiol 2015; 53:5542-74. [PMID: 26468157 DOI: 10.1007/s12035-015-9473-y] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 10/01/2015] [Indexed: 12/12/2022]
Abstract
Mounting evidence indicates that the lysosome-autophagy pathway plays a critical role in iron release from ferritin, the main iron storage cellular protein, hence in the distribution of iron to the cells. The recent identification of nuclear receptor co-activator 4 as the receptor for ferritin delivery to selective autophagy sheds further light on the understanding of the mechanisms underlying this pathway. The emerging view is that iron release from ferritin through the lysosomes is a general mechanism in normal and tumour cells of different tissue origins, but it has not yet been investigated in brain cells. Defects in the lysosome-autophagy pathway are often involved in the pathogenesis of neurodegenerative disorders, and brain iron homeostasis disruption is a hallmark of many of these diseases. However, in most cases, it has not been established whether iron dysregulation is directly involved in the pathogenesis of the diseases or if it is a secondary effect derived from other pathogenic mechanisms. The recent evidence of the crucial involvement of autophagy in cellular iron handling offers new perspectives about the role of iron in neurodegeneration, suggesting that autophagy dysregulation could cause iron dyshomeostasis. In this review, we recapitulate our current knowledge on the routes through which iron is released from ferritin, focusing on the most recent advances. We summarise the current evidence concerning lysosome-autophagy pathway dysfunctions and those of iron metabolism and discuss their potential interconnections in several neurodegenerative disorders, such as Alzheimer's, Parkinson's and Huntington's diseases; amyotrophic lateral sclerosis; and frontotemporal lobar dementia.
Collapse
Affiliation(s)
- Giorgio Biasiotto
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy
- Biotechnology Laboratory, Department of Diagnostics, Civic Hospital of Brescia, Piazzale Spedali Civili 1, 25123, Brescia, Italy
| | - Diego Di Lorenzo
- Biotechnology Laboratory, Department of Diagnostics, Civic Hospital of Brescia, Piazzale Spedali Civili 1, 25123, Brescia, Italy
| | - Silvana Archetti
- Biotechnology Laboratory, Department of Diagnostics, Civic Hospital of Brescia, Piazzale Spedali Civili 1, 25123, Brescia, Italy
| | - Isabella Zanella
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy.
- Biotechnology Laboratory, Department of Diagnostics, Civic Hospital of Brescia, Piazzale Spedali Civili 1, 25123, Brescia, Italy.
| |
Collapse
|
37
|
Rawal RM, Joshi MN, Bhargava P, Shaikh I, Pandit AS, Patel RP, Patel S, Kothari K, Shah M, Saxena A, Bagatharia SB. Tobacco habituated and non-habituated subjects exhibit different mutational spectrums in head and neck squamous cell carcinoma. 3 Biotech 2015; 5:685-696. [PMID: 28324520 PMCID: PMC4569615 DOI: 10.1007/s13205-014-0267-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 11/15/2014] [Indexed: 12/28/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the sixth most common non-skin cancer in the world. Tobacco chewing is implicated with most of the cases of HNSCC but this type of cancer is increasing in non-tobacco chewers as well. This study was instigated to provide comprehensive variant and gene-level data in HNSCC subjects of the Indian population and fill the gap in the literature on comparative assessment of gene mutations in cancer subjects with a habit of tobacco and those without any habit using targeted amplicon sequencing. We performed targeted Amplicon sequencing of 409 tumor suppressor genes and oncogenes, frequently mutated across many cancer types, including head and neck. DNA from primary tumor tissues and matched blood was analyzed for HNSCC patients with a habit of tobacco and those without any habit. PDE4DIP, SYNE1, and NOTCH1 emerged as the highly mutated genes in HNSCC. A total of 39 candidate causal variants in 22 unique cancer driver genes were identified in non-habitual (WoH) and habitual (WH) subjects. Comparison of genes from both the subjects, showed seven unique cancer driver genes (KIT, ATM, RNF213, GATA2, DST, RET, CYP2C19) in WoH, while WH showed five (IL7R, PKHD1, MLL3, PTPRD, MAPK8) and 10 genes (SETD2, ATR, CDKN2A, NCOA4, TP53, SYNE1, KAT6B, THBS1, PTPRT, and FGFR3) were common to both subjects. In addition to this NOTCH1, NOTCH2, and NOTCH4 gene were found to be mutated only in habitual subjects. These findings strongly support a causal role for tobacco, acting via PI3K and MAPK pathway inhibition and stimulation of various genes leading to oncogenic transformations in case of tobacco chewers. In case of non-tobacco chewers it appears that mutations in the pathway affecting the squamous epithelial lineage and DNA repair genes lead to HNSCC. Somatic mutation in CYP2C19 gene in the non-habitual subjects suggests that this gene may have a tobacco independent role in development and progression of HNSCC. In addition to sharing high mutation rate, NOTCH gene family was found to be mutated only in habitual sample. Further, presence of mutated genes not earlier reported to be involved in HNSCC, suggest that the Indian sub-continent may have different sets of genes, as compared to other parts of the world, involved in the development and progression of HNSCC.
Collapse
Affiliation(s)
- Rakesh M Rawal
- Gujarat Cancer and Research Institute, Gujarat Cancer Society, Civil Hospital Campus, Asarwa, Ahmedabad, 380 016, Gujarat, India
| | - Madhvi N Joshi
- Gujarat State Biotechnology Mission, Department of Science and Technology, Government of Gujarat, 11th Block, 9th Floor, Udyog Bhavan, Gandhinagar, 382 011, Gujarat, India
| | - Poonam Bhargava
- Gujarat State Biotechnology Mission, Department of Science and Technology, Government of Gujarat, 11th Block, 9th Floor, Udyog Bhavan, Gandhinagar, 382 011, Gujarat, India
| | - Inayat Shaikh
- Gujarat State Biotechnology Mission, Department of Science and Technology, Government of Gujarat, 11th Block, 9th Floor, Udyog Bhavan, Gandhinagar, 382 011, Gujarat, India
| | - Aanal S Pandit
- Gujarat State Biotechnology Mission, Department of Science and Technology, Government of Gujarat, 11th Block, 9th Floor, Udyog Bhavan, Gandhinagar, 382 011, Gujarat, India
| | - Riddhi P Patel
- Gujarat State Biotechnology Mission, Department of Science and Technology, Government of Gujarat, 11th Block, 9th Floor, Udyog Bhavan, Gandhinagar, 382 011, Gujarat, India
| | - Shanaya Patel
- Gujarat Cancer and Research Institute, Gujarat Cancer Society, Civil Hospital Campus, Asarwa, Ahmedabad, 380 016, Gujarat, India
| | - Kiran Kothari
- Gujarat Cancer and Research Institute, Gujarat Cancer Society, Civil Hospital Campus, Asarwa, Ahmedabad, 380 016, Gujarat, India
| | - Manoj Shah
- Gujarat Cancer and Research Institute, Gujarat Cancer Society, Civil Hospital Campus, Asarwa, Ahmedabad, 380 016, Gujarat, India
| | - Akshay Saxena
- Gujarat State Biotechnology Mission, Department of Science and Technology, Government of Gujarat, 11th Block, 9th Floor, Udyog Bhavan, Gandhinagar, 382 011, Gujarat, India
| | - Snehal B Bagatharia
- Gujarat State Biotechnology Mission, Department of Science and Technology, Government of Gujarat, 11th Block, 9th Floor, Udyog Bhavan, Gandhinagar, 382 011, Gujarat, India.
| |
Collapse
|