1
|
Pal I, Bhattacharyya A, V-Ghaffari B, Williams ED, Xiao M, Rutherford MA, Rubio ME. Female mice lacking GluA3 show early onset of hearing loss, cochlear synaptopathy, and afferent terminal swellings in ambient sound levels. iScience 2025; 28:111799. [PMID: 39935454 PMCID: PMC11810710 DOI: 10.1016/j.isci.2025.111799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 11/12/2024] [Accepted: 01/09/2025] [Indexed: 02/13/2025] Open
Abstract
AMPA-type glutamate receptors (AMPARs) mediate excitatory cochlear transmission. However, unique roles of AMPAR subunits are unresolved. Lack of subunit GluA3 (Gria3 KO ) in male mice reduced cochlear output by 8 postnatal weeks. Here, we studied the role of X-linked Gria3 in cochlear function and synapse anatomy in females. Auditory brainstem responses (ABRs) were similar in 3-week-old female Gria3 WT and Gria3 KO mice raised in quiet. However, after switching to ambient sound, ABR thresholds were elevated and wave-1 amplitudes were diminished at 5-week and older in Gria3 KO . A quiet vivarium precluded this effect. Paired synapses were similar in number, but lone ribbons and ribbonless synapses were more frequent, and swollen afferent terminals were observed only in female Gria3 KO mice in ambient sound. Synaptic GluA4:GluA2 ratios increased relative to Gria3 WT , particularly in ambient sound, suggesting an activity-dependent increase in calcium-permeable AMPARs in Gria3 KO . We propose that lack of GluA3 induces a sex-dependent vulnerability to AMPAR-mediated excitotoxicity.
Collapse
Affiliation(s)
- Indra Pal
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Atri Bhattacharyya
- Department of Otolaryngology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Babak V-Ghaffari
- Department of Otolaryngology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Essence Devine Williams
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Maolei Xiao
- Department of Otolaryngology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Mark Allen Rutherford
- Department of Otolaryngology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - María Eulalia Rubio
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
- Department of Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| |
Collapse
|
2
|
Lim CR, Ogawa S, Kumari Y. Exploring β-caryophyllene: a non-psychotropic cannabinoid's potential in mitigating cognitive impairment induced by sleep deprivation. Arch Pharm Res 2025; 48:1-42. [PMID: 39653971 DOI: 10.1007/s12272-024-01523-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 11/25/2024] [Indexed: 01/04/2025]
Abstract
Sleep deprivation or sleep loss, a prevalent issue in modern society, is linked to cognitive impairment, leading to heightened risks of errors and accidents. Chronic sleep deprivation affects various cognitive functions, including memory, attention, and decision-making, and is associated with an increased risk of neurodegenerative diseases, cardiovascular issues, and metabolic disorders. This review examines the potential of β-caryophyllene, a dietary non-psychotropic cannabinoid, and FDA-approved flavoring agent, as a therapeutic solution for sleep loss-induced cognitive impairment. It highlights β-caryophyllene's ability to mitigate key contributors to sleep loss-induced cognitive impairment, such as inflammation, oxidative stress, neuronal death, and reduced neuroplasticity, by modulating various signaling pathways, including TLR4/NF-κB/NLRP3, MAPK, Nrf2/HO-1, PI3K/Akt, and cAMP/PKA/CREB. As a naturally occurring, non-psychotropic compound with low toxicity, β-caryophyllene emerges as a promising candidate for further investigation. The review underscores the therapeutic potential of β-caryophyllene for sleep loss-induced cognitive impairment and provides mechanistic insights into its action on crucial pathways, suggesting that β-caryophyllene could be a valuable addition to strategies aimed at combating cognitive impairment and other health issues due to sleep loss.
Collapse
Affiliation(s)
- Cher Ryn Lim
- Neurological Disorder and Aging Research Group (NDA), Neuroscience Research Strength (NRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500, Selangor, Malaysia
| | - Satoshi Ogawa
- Neuroscience Research Strength (NRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500, Selangor, Malaysia
| | - Yatinesh Kumari
- Neurological Disorder and Aging Research Group (NDA), Neuroscience Research Strength (NRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500, Selangor, Malaysia.
| |
Collapse
|
3
|
Babaei P, Javer S, Abedinzade M. Therapeutic Effects Of Combined and Chronic Treatment of Tat-GluA23y and D-Serine on Cognitive Dysfunction in Postmenopausal Rats. Exp Aging Res 2024; 50:633-651. [PMID: 37660354 DOI: 10.1080/0361073x.2023.2254660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/30/2023] [Indexed: 09/05/2023]
Abstract
BACKGROUND The incidence of Alzheimer's disease (AD) in female gender compared with male has been addressed as a health concern, particularly in menopausal age. We here hypothesized that co-administration of NMDARs agonist (D-serine) and AMPARs endocytosis inhibitor (Tat-GluA23y) might be a potential target for alleviating memory impairment in sporadic Alzheimer model of rats. METHODS Forty-eight female Wistar rats weighing 200-220 randomly divided into six groups. One month later, ovariectomized rats underwent stereotaxic surgery and were cannulated into the brain lateral ventricles. Streptozotocin was injected (3 mg/kg), then animals received the related treatments until the day 51, which experienced acquisition of spatial memory in Morris Water Maze test. Finally, the level of phosphorylated cAMP response element binding protein (CREB) in the hippocampus was measured by Western blotting. RESULTS Co-administration of D-serine and GluA23y significantly enhanced the acquisition and retrieval of impaired spatial memory in ovariectomized rats with AD (p < .001). Compared to Glu-A 23, D-serine caused more improvement in the mentioned parameters above, however, these values for both groups were still significantly different from the control group (P < .05). CONCLUSION Simultaneous treatment with D-serine and GluA23y synergistically improved STZ induced spatial memory impairment in OVX rat, probably partly via increase in phosphorylated CREB protein.
Collapse
Affiliation(s)
- Parvin Babaei
- Neuroscience Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
- Cellular &Molecular Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
- Department of physiology, School of Medicine, Guilan university of medical science, Rasht, Iran
| | - Shirin Javer
- Neuroscience Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
- Cellular &Molecular Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
- Department of physiology, School of Medicine, Guilan university of medical science, Rasht, Iran
| | - Mahmood Abedinzade
- Neuroscience Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
- Department of physiology, School of Medicine, Guilan university of medical science, Rasht, Iran
- medical biotechnology research center, School of Paramedicine, Guilan university of medical sciences, Rasht, Iran
| |
Collapse
|
4
|
Pal I, Bhattacharyya A, V-Ghaffari B, Williams ED, Xiao M, Rutherford MA, Rubio ME. Female GluA3-KO mice show early onset hearing loss and afferent swellings in ambient sound levels. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.21.581467. [PMID: 38659964 PMCID: PMC11042237 DOI: 10.1101/2024.02.21.581467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
AMPA-type glutamate receptors (AMPAR) mediate excitatory cochlear transmission. However, the unique roles of AMPAR subunits are unresolved. Lack of subunit GluA3 (Gria3KO) in male mice reduced cochlear output by 8-weeks of age. Since Gria3 is X-linked and considering sex differences in hearing vulnerability, we hypothesized accelerated presbycusis in Gria3KO females. Here, auditory brainstem responses (ABR) were similar in 3-week-old female Gria3WT and Gria3KO mice. However, when raised in ambient sound, ABR thresholds were elevated and wave-1 amplitudes were diminished at 5-weeks and older in Gria3KO. In contrast, these metrics were similar between genotypes when raised in quiet. Paired synapses were similar in number, but lone ribbons and ribbonless synapses were increased in female Gria3KO mice in ambient sound compared to Gria3WT or to either genotype raised in quiet. Synaptic GluA4:GluA2 ratios increased relative to Gria3WT, particularly in ambient sound, suggesting an activity-dependent increase in calcium-permeable AMPARs in Gria3KO. Swollen afferent terminals were observed by 5-weeks only in Gria3KO females reared in ambient sound. We propose that lack of GluA3 induces sex-dependent vulnerability to AMPAR-mediated excitotoxicity.
Collapse
Affiliation(s)
- Indra Pal
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Atri Bhattacharyya
- Department of Otolaryngology, Washington University School of Medicine, St. Louis, MO 63110
| | - Babak V-Ghaffari
- Department of Otolaryngology, Washington University School of Medicine, St. Louis, MO 63110
| | - Essence D. Williams
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Maolei Xiao
- Department of Otolaryngology, Washington University School of Medicine, St. Louis, MO 63110
| | - Mark A. Rutherford
- Department of Otolaryngology, Washington University School of Medicine, St. Louis, MO 63110
| | - María Eulalia Rubio
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
- Department of Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| |
Collapse
|
5
|
Filannino FM, Panaro MA, Benameur T, Pizzolorusso I, Porro C. Extracellular Vesicles in the Central Nervous System: A Novel Mechanism of Neuronal Cell Communication. Int J Mol Sci 2024; 25:1629. [PMID: 38338906 PMCID: PMC10855168 DOI: 10.3390/ijms25031629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/21/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
Cell-to-cell communication is essential for the appropriate development and maintenance of homeostatic conditions in the central nervous system. Extracellular vesicles have recently come to the forefront of neuroscience as novel vehicles for the transfer of complex signals between neuronal cells. Extracellular vesicles are membrane-bound carriers packed with proteins, metabolites, and nucleic acids (including DNA, mRNA, and microRNAs) that contain the elements present in the cell they originate from. Since their discovery, extracellular vesicles have been studied extensively and have opened up new understanding of cell-cell communication; they may cross the blood-brain barrier in a bidirectional way from the bloodstream to the brain parenchyma and vice versa, and play a key role in brain-periphery communication in physiology as well as pathology. Neurons and glial cells in the central nervous system release extracellular vesicles to the interstitial fluid of the brain and spinal cord parenchyma. Extracellular vesicles contain proteins, nucleic acids, lipids, carbohydrates, and primary and secondary metabolites. that can be taken up by and modulate the behaviour of neighbouring recipient cells. The functions of extracellular vesicles have been extensively studied in the context of neurodegenerative diseases. The purpose of this review is to analyse the role extracellular vesicles extracellular vesicles in central nervous system cell communication, with particular emphasis on the contribution of extracellular vesicles from different central nervous system cell types in maintaining or altering central nervous system homeostasis.
Collapse
Affiliation(s)
| | - Maria Antonietta Panaro
- Department of Biosciences, Biotechnologies and Environment, University of Bari, 70125 Bari, Italy;
| | - Tarek Benameur
- Department of Biomedical Sciences, College of Medicine, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
| | - Ilaria Pizzolorusso
- Child and Adolescent Neuropsychiatry Unit, Department of Mental Health, ASL Foggia, 71121 Foggia, Italy;
| | - Chiara Porro
- Department of Clinical and Experimental Medicine, University of Foggia, 71121 Foggia, Italy;
| |
Collapse
|
6
|
Palamarchuk IS, Slavich GM, Vaillancourt T, Rajji TK. Stress-related cellular pathophysiology as a crosstalk risk factor for neurocognitive and psychiatric disorders. BMC Neurosci 2023; 24:65. [PMID: 38087196 PMCID: PMC10714507 DOI: 10.1186/s12868-023-00831-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/24/2023] [Indexed: 12/18/2023] Open
Abstract
In this narrative review, we examine biological processes linking psychological stress and cognition, with a focus on how psychological stress can activate multiple neurobiological mechanisms that drive cognitive decline and behavioral change. First, we describe the general neurobiology of the stress response to define neurocognitive stress reactivity. Second, we review aspects of epigenetic regulation, synaptic transmission, sex hormones, photoperiodic plasticity, and psychoneuroimmunological processes that can contribute to cognitive decline and neuropsychiatric conditions. Third, we explain mechanistic processes linking the stress response and neuropathology. Fourth, we discuss molecular nuances such as an interplay between kinases and proteins, as well as differential role of sex hormones, that can increase vulnerability to cognitive and emotional dysregulation following stress. Finally, we explicate several testable hypotheses for stress, neurocognitive, and neuropsychiatric research. Together, this work highlights how stress processes alter neurophysiology on multiple levels to increase individuals' risk for neurocognitive and psychiatric disorders, and points toward novel therapeutic targets for mitigating these effects. The resulting models can thus advance dementia and mental health research, and translational neuroscience, with an eye toward clinical application in cognitive and behavioral neurology, and psychiatry.
Collapse
Affiliation(s)
- Iryna S Palamarchuk
- Centre for Addiction and Mental Health, 1001 Queen Street West, Toronto, ON, M6J1H4, Canada.
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
- Sunnybrook Health Sciences Centre, Division of Neurology, Toronto, ON, Canada.
- Temerty Faculty of Medicine, Toronto Dementia Research Alliance, University of Toronto, Toronto, ON, Canada.
| | - George M Slavich
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, USA
| | - Tracy Vaillancourt
- Counselling Psychology, Faculty of Education, University of Ottawa, Ottawa, ON, Canada
- School of Psychology, Faculty of Social Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Tarek K Rajji
- Centre for Addiction and Mental Health, 1001 Queen Street West, Toronto, ON, M6J1H4, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Temerty Faculty of Medicine, Toronto Dementia Research Alliance, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
7
|
Zhang R, Jiang H, Liu Y, He G. Structure, function, and pathology of Neurexin-3. Genes Dis 2023; 10:1908-1919. [PMID: 37492720 PMCID: PMC10363586 DOI: 10.1016/j.gendis.2022.04.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 04/06/2022] [Accepted: 04/08/2022] [Indexed: 11/22/2022] Open
Abstract
Neurexin-3 is primarily localized in the presynaptic membrane and forms complexes with various ligands located in the postsynaptic membrane. Neurexin-3 has important roles in synapse development and synapse functions. Neurexin-3 mediates excitatory presynaptic differentiation by interacting with leucine-rich-repeat transmembrane neuronal proteins. Meanwhile, neurexin-3 modulates the expression of presynaptic α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors and γ-aminobutyric acid A receptors by interacting with neuroligins at excitatory and inhibitory synapses. Numerous studies have documented the potential contribution of neurexin-3 to neurodegenerative and neuropsychiatric disorders, such as Alzheimer's disease, addiction behaviors, and other diseases, which raises hopes that understanding the mechanisms of neurexin-3 may hold the key to developing new strategies for related illnesses. This review comprehensively covers the literature to provide current knowledge of the structure, function, and clinical role of neurexin-3.
Collapse
Affiliation(s)
- Rui Zhang
- Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing 400016, China
| | - HanXiao Jiang
- Department of Neurology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, China
| | - YuanJie Liu
- Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing 400016, China
- Department of Anatomy, Chongqing Medical University, Chongqing 400016, China
| | - GuiQiong He
- Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing 400016, China
- Department of Anatomy, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
8
|
Elevated Hippocampal CRMP5 Mediates Chronic Stress-Induced Cognitive Deficits by Disrupting Synaptic Plasticity, Hindering AMPAR Trafficking, and Triggering Cytokine Release. Int J Mol Sci 2023; 24:ijms24054898. [PMID: 36902337 PMCID: PMC10003309 DOI: 10.3390/ijms24054898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
Chronic stress is a critical risk factor for developing depression, which can impair cognitive function. However, the underlying mechanisms involved in chronic stress-induced cognitive deficits remain unclear. Emerging evidence suggests that collapsin response mediator proteins (CRMPs) are implicated in the pathogenesis of psychiatric-related disorders. Thus, the study aims to examine whether CRMPs modulate chronic stress-induced cognitive impairment. We used the chronic unpredictable stress (CUS) paradigm to mimic stressful life situations in C57BL/6 mice. In this study, we found that CUS-treated mice exhibited cognitive decline and increased hippocampal CRMP2 and CRMP5 expression. In contrast to CRMP2, CRMP5 levels strongly correlated with the severity of cognitive impairment. Decreasing hippocampal CRMP5 levels through shRNA injection rescued CUS-induced cognitive impairment, whereas increasing CRMP5 levels in control mice exacerbated memory decline after subthreshold stress treatment. Mechanistically, hippocampal CRMP5 suppression by regulating glucocorticoid receptor phosphorylation alleviates chronic stress-induced synaptic atrophy, disruption of AMPA receptor trafficking, and cytokine storms. Our findings show that hippocampal CRMP5 accumulation through GR activation disrupts synaptic plasticity, impedes AMPAR trafficking, and triggers cytokine release, thus playing a critical role in chronic stress-induced cognitive deficits.
Collapse
|
9
|
Nieves Torres D, Lee SH. Inter-neuronal signaling mediated by small extracellular vesicles: wireless communication? Front Mol Neurosci 2023; 16:1187300. [PMID: 37181650 PMCID: PMC10172472 DOI: 10.3389/fnmol.2023.1187300] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 04/03/2023] [Indexed: 05/16/2023] Open
Abstract
Conventional inter-neuronal communication conceptualizes the wired method of chemical synapses that physically connect pre-and post-synaptic neurons. In contrast, recent studies indicate that neurons also utilize synapse-independent, hence "wireless" broadcasting-type communications via small extracellular vesicles (EVs). Small EVs including exosomes are secreted vesicles released by cells and contain a variety of signaling molecules including mRNAs, miRNAs, lipids, and proteins. Small EVs are subsequently absorbed by local recipient cells via either membrane fusion or endocytic processes. Therefore, small EVs enable cells to exchange a "packet" of active biomolecules for communication purposes. It is now well established that central neurons also secrete and uptake small EVs, especially exosomes, a type of small EVs that are derived from the intraluminal vesicles of multivesicular bodies. Specific molecules carried by neuronal small EVs are shown to affect a variety of neuronal functions including axon guidance, synapse formation, synapse elimination, neuronal firing, and potentiation. Therefore, this type of volume transmission mediated by small EVs is thought to play important roles not only in activity-dependent changes in neuronal function but also in the maintenance and homeostatic control of local circuitry. In this review, we summarize recent discoveries, catalog neuronal small EV-specific biomolecules, and discuss the potential scope of small EV-mediated inter-neuronal signaling.
Collapse
Affiliation(s)
- Damaris Nieves Torres
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Sang H Lee
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, United States
- Neuroscience Research Institute, Medical College of Wisconsin, Milwaukee, WI, United States
- *Correspondence: Sang H. Lee,
| |
Collapse
|
10
|
Wu QL, Gao Y, Li JT, Ma WY, Chen NH. The Role of AMPARs Composition and Trafficking in Synaptic Plasticity and Diseases. Cell Mol Neurobiol 2022; 42:2489-2504. [PMID: 34436728 PMCID: PMC11421597 DOI: 10.1007/s10571-021-01141-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 08/11/2021] [Indexed: 11/28/2022]
Abstract
AMPA receptors are tetrameric ionic glutamate receptors, which mediate 90% fast excitatory synaptic transmission induced by excitatory glutamate in the mammalian central nervous system through the activation or inactivation of ion channels. The alternation of synaptic AMPA receptor number and subtype is thought to be one of the primary mechanisms that involve in synaptic plasticity regulation and affect the functions in learning, memory, and cognition. The increasing of surface AMPARs enhances synaptic strength during long-term potentiation, whereas the decreasing of AMPARs weakens synaptic strength during the long-term depression. It is closely related to the AMPA receptor as well as its subunits assembly, trafficking, and degradation. The dysfunction of any step in these precise regulatory processes is likely to induce the disorder of synaptic transmission and loss of neurons, or even cause neuropsychiatric diseases ultimately. Therefore, it is useful to understand how AMPARs regulate synaptic plasticity and its role in related neuropsychiatric diseases via comprehending architecture and trafficking of the receptors. Here, we reviewed the progress in structure, expression, trafficking, and relationship with synaptic plasticity of AMPA receptor, especially in anxiety, depression, neurodegenerative disorders, and cerebral ischemia.
Collapse
Affiliation(s)
- Qing-Lin Wu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Yan Gao
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Jun-Tong Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Wen-Yu Ma
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Nai-Hong Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
11
|
Wichmann C, Kuner T. Heterogeneity of glutamatergic synapses: cellular mechanisms and network consequences. Physiol Rev 2022; 102:269-318. [PMID: 34727002 DOI: 10.1152/physrev.00039.2020] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Chemical synapses are commonly known as a structurally and functionally highly diverse class of cell-cell contacts specialized to mediate communication between neurons. They represent the smallest "computational" unit of the brain and are typically divided into excitatory and inhibitory as well as modulatory categories. These categories are subdivided into diverse types, each representing a different structure-function repertoire that in turn are thought to endow neuronal networks with distinct computational properties. The diversity of structure and function found among a given category of synapses is referred to as heterogeneity. The main building blocks for this heterogeneity are synaptic vesicles, the active zone, the synaptic cleft, the postsynaptic density, and glial processes associated with the synapse. Each of these five structural modules entails a distinct repertoire of functions, and their combination specifies the range of functional heterogeneity at mammalian excitatory synapses, which are the focus of this review. We describe synapse heterogeneity that is manifested on different levels of complexity ranging from the cellular morphology of the pre- and postsynaptic cells toward the expression of different protein isoforms at individual release sites. We attempt to define the range of structural building blocks that are used to vary the basic functional repertoire of excitatory synaptic contacts and discuss sources and general mechanisms of synapse heterogeneity. Finally, we explore the possible impact of synapse heterogeneity on neuronal network function.
Collapse
Affiliation(s)
- Carolin Wichmann
- Molecular Architecture of Synapses Group, Institute for Auditory Neuroscience, InnerEarLab and Institute for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
| | - Thomas Kuner
- Department of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg, Germany
| |
Collapse
|
12
|
Li Y, He Y, Fan H, Wang Z, Huang J, Wen G, Wang X, Xie Q, Qiu P. Brain-derived neurotrophic factor upregulates synaptic GluA1 in the amygdala to promote depression in response to psychological stress. Biochem Pharmacol 2021; 192:114740. [PMID: 34419429 DOI: 10.1016/j.bcp.2021.114740] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/13/2021] [Accepted: 08/17/2021] [Indexed: 12/28/2022]
Abstract
Psychological stress impairs neuronal structure and function and leads to emotional disorders, but the underlying mechanisms have not yet been fully elucidated. The amygdala is closely correlated with emotional regulation. In the present study, we analyzed whether the amygdala plasticity is regulated by psychological stress and explored their regulatory mechanism. We established a mouse psychological stress model using an improved communication box, wherein mice were exposed to chronic fear and avoided physical stress interference. After the 14-day psychological stress paradigm, mice exhibited significantly increased depressive behaviors (decreased sucrose consumption in the sucrose preference test and longer immobility time in the forced swimming test). HPLC, ELISA, and molecular and morphological evidences showed that psychological stress increased the content of glutamate and the expression of glutamatergic neurons, upregulated the content of the stress hormone corticosterone, and activated the CREB/BDNF pathway in the amygdala. Furthermore, psychological stress induced an increased density of dendritic spines and LTD impairment in the amygdala. Importantly, virus-mediated silencing of BDNF in the basolateral amygdala (BLA) nuclei reversed the depression-like behaviors and the increase of synaptic GluA1 and its phosphorylation at Ser831 and Ser845 sites in psychologically stressed mice. This process was likely achieved through mTOR signaling activation. Finally, we treated primary amygdala neurons with corticosterone to mimic psychological stress; corticosterone-induced upregulation of GluA1 was prevented by BDNF and mTOR antagonists. Thus, activation of the CREB/BDNF pathway in the amygdala following psychological stress upregulates synaptic GluA1 via mTOR signaling, which dysregulates synaptic plasticity of the amygdala, eventually promoting depression.
Collapse
Affiliation(s)
- Yanning Li
- School of Forensic Medicine, Southern Medical University, Guangzhou, PR China; Department of Forensic Medicine, School of Basic Medicine, Gannan Medical University, Ganzhou, PR China
| | - Yitong He
- School of Forensic Medicine, Southern Medical University, Guangzhou, PR China
| | - Haoliang Fan
- School of Forensic Medicine, Southern Medical University, Guangzhou, PR China; School of Basic Medicine and Life Science, Hainan Medical University, Haikou, PR China
| | - Zhuo Wang
- Department of Infertility and Sexual Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China
| | - Jian Huang
- School of Forensic Medicine, Southern Medical University, Guangzhou, PR China
| | - Gehua Wen
- School of Forensic Medicine, China Medical University, Shenyang, PR China
| | - Xiaohan Wang
- School of Forensic Medicine, Southern Medical University, Guangzhou, PR China
| | - Qiqian Xie
- School of Forensic Medicine, Southern Medical University, Guangzhou, PR China
| | - Pingming Qiu
- School of Forensic Medicine, Southern Medical University, Guangzhou, PR China.
| |
Collapse
|
13
|
Fang YC, Hsieh JY, Vidyanti AN, Yang CH, Jan JS, Chang KW, Hu CJ, Tu YK. HDACi protects against vascular cognitive impairment from CCH injury via induction of BDNF-related AMPA receptor activation. J Cell Mol Med 2021; 25:7418-7425. [PMID: 34216182 PMCID: PMC8335662 DOI: 10.1111/jcmm.16770] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 06/15/2021] [Accepted: 06/19/2021] [Indexed: 12/12/2022] Open
Abstract
We previously showed a hydroxamic acid‐based histone deacetylase inhibitor (HDACi), compound 13, provides neuroprotection against chronic cerebral hypoperfusion (CCH) both in vitro under oxygen‐glucose deprivation (OGD) conditions and in vivo under bilateral common carotid artery occlusion (BCCAO) conditions. Intriguingly, the protective effect of this HDACi is via H3K14 or H4K5 acetylation–mediated differential BDNF isoform activation. BDNF is involved in cell proliferation and differentiation in development, synaptic plasticity and in learning and memory related with receptors or synaptic proteins. B6 mice underwent BCCAO and were randomized into 4 groups; a sham without BCCAO (sham), BCCAO mice injected with DMSO (DMSO), mice injected with HDACi‐compound 13 (compound 13) and mice injected with suberoylanilide hydroxamic acid (SAHA). The cortex and hippocampus of mice were harvested at 3 months after BCCAO, and levels of BDNF, AMPA receptor and dopamine receptors (D1, D2 and D3) were studied using Western blotting analysis or immunohistochemistry. We found that the AMPA receptor plays a key role in the molecular mechanism of this process by modulating HDAC. This protective effect of HDACi may be through BDNF; therefore, activation of this downstream signalling molecule, for example by AMPA receptors, could be a therapeutic target or intervention applied under CCH conditions.
Collapse
Affiliation(s)
- Yao-Ching Fang
- Taipei Neuroscience Institute, Taipei Medical University, Taipei, Taiwan
| | - Jia-Yu Hsieh
- Department of Neurology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Amelia Nur Vidyanti
- Department of Neurology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Chih-Hao Yang
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Jing-Shiun Jan
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Kang-Wei Chang
- Taipei Neuroscience Institute, Taipei Medical University, Taipei, Taiwan.,Laboratory Animal Center, Taipei Medical University, Taipei, Taiwan
| | - Chaur-Jong Hu
- Taipei Neuroscience Institute, Taipei Medical University, Taipei, Taiwan.,Department of Neurology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Yong-Kwang Tu
- Taipei Neuroscience Institute, Taipei Medical University, Taipei, Taiwan.,Department of Neurology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| |
Collapse
|
14
|
Song Y, Chen S, Gao J, Lu J, Xu W, Lin X, Chen J. Case Report: Coexistence of Anti-AMPA Receptor Encephalitis and Positive Biomarkers of Alzheimer's Disease. Front Neurol 2021; 12:673347. [PMID: 34276536 PMCID: PMC8283122 DOI: 10.3389/fneur.2021.673347] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 05/11/2021] [Indexed: 12/14/2022] Open
Abstract
Anti–α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor encephalitis is a rare autoimmune disease that is characterized by acute cognitive impairment, mental symptoms, and seizures. The high comorbidity rate between anti–AMPA receptor (AMPAR) encephalitis and other somatic diseases, such as malignancy, has revealed the possibility of potential copathogenesis. However, there have not yet been reports about anti-AMPAR encephalitis with concomitant cerebrospinal fluid (CSF) biomarkers consistent with Alzheimer disease (AD). Herein, we present the case of an elderly male patient with autoimmune encephalitis (AE) presenting with anti–AMPA1-R and anti–AMPA2-R antibodies, as well as CSF biomarkers of AD. The patient was hospitalized with acute memory decline for 1 week. Anti–AMPA1-R and anti–AMPA2-R antibodies were positively detected in CSF, and the anti–AMPA2-R antibody was also present in the serum. Additionally, the biomarkers of AD were concurrently present in CSF (Aβ1−42 = 245.70 pg/mL, t-Tau = 894.48 pg/mL, p-Tau = 78.66 pg/mL). After administering a combined treatment of intravenous immunoglobulin and glucocorticoids, the patient recovered significantly, and his cognitive function achieved a sustained remission during 2 months' follow-up. This case raises the awareness of a possible interaction between AE and changes of CSF biomarkers. We speculated that the existence of AMPAR antibodies can induce changes of CSF, and other pathological alterations. This present report highlights that a potential relationship exists among AE and provides a warning when making the diagnosis of AD.
Collapse
Affiliation(s)
- Yu Song
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Shanshan Chen
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Ju Gao
- Department of Geriatric Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Jie Lu
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Wenwen Xu
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Xingjian Lin
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Jiu Chen
- Institute of Neuropsychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China.,Institute of Brain Functional Imaging, Nanjing Medical University, Nanjing, China
| |
Collapse
|
15
|
Bara A, Ferland JMN, Rompala G, Szutorisz H, Hurd YL. Cannabis and synaptic reprogramming of the developing brain. Nat Rev Neurosci 2021; 22:423-438. [PMID: 34021274 DOI: 10.1038/s41583-021-00465-5] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2021] [Indexed: 02/08/2023]
Abstract
Recent years have been transformational in regard to the perception of the health risks and benefits of cannabis with increased acceptance of use. This has unintended neurodevelopmental implications given the increased use of cannabis and the potent levels of Δ9-tetrahydrocannabinol today being consumed by pregnant women, young mothers and teens. In this Review, we provide an overview of the neurobiological effects of cannabinoid exposure during prenatal/perinatal and adolescent periods, in which the endogenous cannabinoid system plays a fundamental role in neurodevelopmental processes. We highlight impaired synaptic plasticity as characteristic of developmental exposure and the important contribution of epigenetic reprogramming that maintains the long-term impact into adulthood and across generations. Such epigenetic influence by its very nature being highly responsive to the environment also provides the potential to diminish neural perturbations associated with developmental cannabis exposure.
Collapse
Affiliation(s)
- Anissa Bara
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, Mount Sinai, NY, USA.,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, Mount Sinai, NY, USA.,Addiction Institute of Mount Sinai, Mount Sinai, NY, USA.,Friedman Brain Institute, Mount Sinai, NY, USA
| | - Jacqueline-Marie N Ferland
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, Mount Sinai, NY, USA.,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, Mount Sinai, NY, USA.,Addiction Institute of Mount Sinai, Mount Sinai, NY, USA.,Friedman Brain Institute, Mount Sinai, NY, USA
| | - Gregory Rompala
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, Mount Sinai, NY, USA.,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, Mount Sinai, NY, USA.,Addiction Institute of Mount Sinai, Mount Sinai, NY, USA.,Friedman Brain Institute, Mount Sinai, NY, USA
| | - Henrietta Szutorisz
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, Mount Sinai, NY, USA.,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, Mount Sinai, NY, USA.,Addiction Institute of Mount Sinai, Mount Sinai, NY, USA.,Friedman Brain Institute, Mount Sinai, NY, USA
| | - Yasmin L Hurd
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, Mount Sinai, NY, USA. .,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, Mount Sinai, NY, USA. .,Addiction Institute of Mount Sinai, Mount Sinai, NY, USA. .,Friedman Brain Institute, Mount Sinai, NY, USA.
| |
Collapse
|
16
|
Koss DJ, Campesan S, Giorgini F, Outeiro TF. Dysfunction of RAB39B-Mediated Vesicular Trafficking in Lewy Body Diseases. Mov Disord 2021; 36:1744-1758. [PMID: 33939203 DOI: 10.1002/mds.28605] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/09/2021] [Accepted: 03/12/2021] [Indexed: 12/16/2022] Open
Abstract
Intracellular vesicular trafficking is essential for neuronal development, function, and homeostasis and serves to process, direct, and sort proteins, lipids, and other cargo throughout the cell. This intricate system of membrane trafficking between different compartments is tightly orchestrated by Ras analog in brain (RAB) GTPases and their effectors. Of the 66 members of the RAB family in humans, many have been implicated in neurodegenerative diseases and impairment of their functions contributes to cellular stress, protein aggregation, and death. Critically, RAB39B loss-of-function mutations are known to be associated with X-linked intellectual disability and with rare early-onset Parkinson's disease. Moreover, recent studies have highlighted altered RAB39B expression in idiopathic cases of several Lewy body diseases (LBDs). This review contextualizes the role of RAB proteins in LBDs and highlights the consequences of RAB39B impairment in terms of endosomal trafficking, neurite outgrowth, synaptic maturation, autophagy, as well as alpha-synuclein homeostasis. Additionally, the potential for therapeutic intervention is examined via a discussion of the recent progress towards the development of specific RAB modulators. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- David J Koss
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Susanna Campesan
- Department of Genetics and Genome Biology, University of Leicester, University Road, Leicester, UK
| | - Flaviano Giorgini
- Department of Genetics and Genome Biology, University of Leicester, University Road, Leicester, UK
| | - Tiago F Outeiro
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.,Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Goettingen, Goettingen, Germany.,Max Planck Institute for Experimental Medicine, Goettingen, Germany.,Scientific employee with a honorary contract at Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Göttingen, Germany
| |
Collapse
|
17
|
TSPAN5 Enriched Microdomains Provide a Platform for Dendritic Spine Maturation through Neuroligin-1 Clustering. Cell Rep 2020; 29:1130-1146.e8. [PMID: 31665629 PMCID: PMC6899445 DOI: 10.1016/j.celrep.2019.09.051] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 07/09/2019] [Accepted: 09/18/2019] [Indexed: 12/21/2022] Open
Abstract
Tetraspanins are a class of evolutionarily conserved transmembrane proteins with 33 members identified in mammals that have the ability to organize specific membrane domains, named tetraspanin-enriched microdomains (TEMs). Despite the relative abundance of different tetraspanins in the CNS, few studies have explored their role at synapses. Here, we investigate the function of TSPAN5, a member of the tetraspanin superfamily for which mRNA transcripts are found at high levels in the mouse brain. We demonstrate that TSPAN5 is localized in dendritic spines of pyramidal excitatory neurons and that TSPAN5 knockdown induces a dramatic decrease in spine number because of defects in the spine maturation process. Moreover, we show that TSPAN5 interacts with the postsynaptic adhesion molecule neuroligin-1, promoting its correct surface clustering. We propose that membrane compartmentalization by tetraspanins represents an additional mechanism for regulating excitatory synapses. TSPAN5 is expressed in pyramidal neurons and localizes mainly to dendritic spines TSPAN5 interacts with neuroligin-1 and promotes its clustering TSPAN5-neuroligin-1 complex is fundamental for dendritic spine maturation
Collapse
|
18
|
Moreno A. Molecular mechanisms of forgetting. Eur J Neurosci 2020; 54:6912-6932. [DOI: 10.1111/ejn.14839] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 04/23/2020] [Accepted: 05/18/2020] [Indexed: 11/30/2022]
Affiliation(s)
- Andrea Moreno
- Danish Institute of Translational Neuroscience (DANDRITE) Aarhus University Aarhus C Denmark
| |
Collapse
|
19
|
Zhao Y, Kiss T, DelFavero J, Li L, Li X, Zheng L, Wang J, Jiang C, Shi J, Ungvari Z, Csiszar A, Zhang XA. CD82-TRPM7-Numb signaling mediates age-related cognitive impairment. GeroScience 2020; 42:595-611. [PMID: 32088828 PMCID: PMC7205934 DOI: 10.1007/s11357-020-00166-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 10/04/2019] [Indexed: 01/21/2023] Open
Abstract
Aging is a crucial cause of cognitive decline and a major risk factor for Alzheimer's disease (AD); however, AD's underlying molecular mechanisms remain unclear. Recently, tetraspanins have emerged as important modulators of synaptic function and memory. We demonstrate that the level of tetraspanin CD82 is upregulated in the brains of AD patients and middle-aged mice. In young adult mice, injection of AAV-CD82 to the hippocampus induced AD-like cognitive deficits and impairments in neuronal spine density. CD82 overexpression increased TRPM7 α-kinase cleavage via caspase-3 activation and induced Numb phosphorylation at Thr346 and Ser348 residues. CD82 overexpression promoted beta-amyloid peptide (Aβ) secretion which could be reversed by Numb T346S348 mutants. Importantly, hippocampus-related memory functions were improved in Cd82-/- mice. Taken together, our findings provide the evidence that links the elevated CD82-TRPM7-Numb signaling to age-related cognitive impairment.
Collapse
Affiliation(s)
- Yin Zhao
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Tamas Kiss
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging, Department of Geriatrics, University of Oklahoma Health Sciences Center, Oklahoma City, 73104, USA
| | - Jordan DelFavero
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging, Department of Geriatrics, University of Oklahoma Health Sciences Center, Oklahoma City, 73104, USA
| | - Lu Li
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xing Li
- Department of Neurobiology, Key Laboratory of Neurological Diseases, Ministry of Education, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Lu Zheng
- Department of Neurobiology, Key Laboratory of Neurological Diseases, Ministry of Education, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jie Wang
- Stephenson Cancer Center and Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, 73104, USA
| | - Chao Jiang
- Stephenson Cancer Center and Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, 73104, USA
| | - Jing Shi
- Department of Neurobiology, Key Laboratory of Neurological Diseases, Ministry of Education, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zoltan Ungvari
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging, Department of Geriatrics, University of Oklahoma Health Sciences Center, Oklahoma City, 73104, USA
| | - Anna Csiszar
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging, Department of Geriatrics, University of Oklahoma Health Sciences Center, Oklahoma City, 73104, USA
| | - Xin A Zhang
- Stephenson Cancer Center and Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, 73104, USA.
| |
Collapse
|
20
|
Li Y, Ding R, Ren X, Wen G, Dong Z, Yao H, Tan Y, Yu H, Wang X, Zhan X, Yao J, Lu Y, Zhang G, Wu X. Long-term ketamine administration causes Tau protein phosphorylation and Tau protein-dependent AMPA receptor reduction in the hippocampus of mice. Toxicol Lett 2019; 315:107-115. [PMID: 31470060 DOI: 10.1016/j.toxlet.2019.08.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 07/19/2019] [Accepted: 08/25/2019] [Indexed: 12/13/2022]
Abstract
As a recreational drug of abuse and an injectable anesthetic, ketamine has been shown to cause cognitive dysfunction and induce psychotic states. Although the specific mechanism is still unclear, it may be linked to synaptic receptors, including the α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) receptor. Recent evidence suggests that Tau protein phosphorylation and targeted delivery to the postsynaptic area is involved in maintaining neuronal plasticity, indicating that the neurotoxicity induced by ketamine may be related to the transfer of Tau protein after phosphorylation. In this study, we established a model of long-term (6 months) ketamine administration in wild-type (C57BL/6) and Tau knockout mice to investigate the effects of different doses of ketamine administration on Tau protein expression and phosphorylation in the mouse hippocampus. We also investigated changes in AMPA receptor expression in the synaptic membrane of wild-type and Tau knockout mice. Our results showed that long-term ketamine administration led to excessive Tau protein phosphorylation at Ser202/Thr205 and Ser396, but not at Ser199, Ser262 and Ser404. Most importantly, long-term ketamine administration decreased AMPA receptor levels in the hippocampal cell membrane in a Tau protein-dependent manner. Our results reveal the role of Tau protein phosphorylation in the mechanism of ketamine neurotoxicity, suggesting that the changes of membrane AMPA receptor and synaptic function induced by ketamine are mediated by abnormal phosphorylation of Tau protein at specific sites.
Collapse
Affiliation(s)
- Yanning Li
- School of Forensic Medicine, China Medical University, Shenyang 110122, PR China; Department of Forensic Medicine, School of Basic Medicine, Gannan Medical University, Ganzhou 341000, PR China
| | - Runtao Ding
- School of Forensic Medicine, China Medical University, Shenyang 110122, PR China
| | - Xinghua Ren
- School of Forensic Medicine, China Medical University, Shenyang 110122, PR China
| | - Gehua Wen
- School of Forensic Medicine, China Medical University, Shenyang 110122, PR China
| | - Zhibin Dong
- School of Forensic Medicine, China Medical University, Shenyang 110122, PR China
| | - Hui Yao
- School of Forensic Medicine, China Medical University, Shenyang 110122, PR China
| | - Yaqing Tan
- School of Forensic Medicine, China Medical University, Shenyang 110122, PR China
| | - Hao Yu
- School of Forensic Medicine, China Medical University, Shenyang 110122, PR China
| | - Xiaolong Wang
- School of Forensic Medicine, China Medical University, Shenyang 110122, PR China
| | - Xiaoni Zhan
- School of Forensic Medicine, China Medical University, Shenyang 110122, PR China
| | - Jun Yao
- School of Forensic Medicine, China Medical University, Shenyang 110122, PR China
| | - Yan Lu
- Key Laboratory of Health Ministry in Congenital Malformation, the Affiliated Shengjing Hospital of China Medical University, Shenyang 110004, PR China
| | - Guohua Zhang
- School of Forensic Medicine, China Medical University, Shenyang 110122, PR China.
| | - Xu Wu
- School of Forensic Medicine, China Medical University, Shenyang 110122, PR China.
| |
Collapse
|
21
|
Montrose K, Kobayashi S, Manabe T, Yamamoto T. Lmtk3-KO Mice Display a Range of Behavioral Abnormalities and Have an Impairment in GluA1 Trafficking. Neuroscience 2019; 414:154-167. [PMID: 31310731 DOI: 10.1016/j.neuroscience.2019.06.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 06/24/2019] [Accepted: 06/25/2019] [Indexed: 12/12/2022]
Abstract
Accumulating evidence suggests that glutamatergic signaling and synaptic plasticity underlie one of a number of ways psychiatric disorders appear. The present study reveals a possible mechanism by which this occurs, through highlighting the importance of LMTK3, in the brain. Behavioral analysis of Lmtk3-KO mice revealed a number of abnormalities that have been linked to psychiatric disease such as hyper-sociability, PPI deficits and cognitive dysfunction. Treatment with clozapine suppressed these behavioral changes in Lmtk3-KO mice. As synaptic dysfunction is implicated in human psychiatric disease, we analyzed the LTP of Lmtk3-KO mice and found that induction is severely impaired. Further investigation revealed abnormalities in GluA1 trafficking after AMPA stimulation in Lmtk3-KO neurons, along with a reduction in GluA1 expression in the post-synaptic density. Therefore, we hypothesize that LMTK3 is an important factor involved in the trafficking of GluA1 during LTP, and that disruption of this pathway contributes to the appearance of behavior associated with human psychiatric disease in mice.
Collapse
MESH Headings
- Animals
- Behavior, Animal/drug effects
- Behavior, Animal/physiology
- Cerebral Cortex/drug effects
- Cerebral Cortex/metabolism
- Clozapine/pharmacology
- Conditioning, Classical/drug effects
- Conditioning, Classical/physiology
- Hippocampus/drug effects
- Hippocampus/metabolism
- Long-Term Potentiation/drug effects
- Long-Term Potentiation/physiology
- Male
- Maze Learning/drug effects
- Maze Learning/physiology
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Mice
- Mice, Knockout
- Neurons/metabolism
- Prepulse Inhibition/drug effects
- Prepulse Inhibition/genetics
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/metabolism
- Protein Transport/genetics
- Receptors, AMPA/metabolism
- Recognition, Psychology/drug effects
- Recognition, Psychology/physiology
- Reflex, Startle/drug effects
- Reflex, Startle/genetics
- Social Behavior
- alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid/pharmacology
Collapse
Affiliation(s)
- Kristopher Montrose
- Cell Signal Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan.
| | - Shizuka Kobayashi
- Division of Neuronal Network, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - Toshiya Manabe
- Division of Neuronal Network, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - Tadashi Yamamoto
- Cell Signal Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan.
| |
Collapse
|
22
|
McCallum-Loudeac J, Anderson G, Wilson MJ. Age and Sex-Related Changes to Gene Expression in the Mouse Spinal Cord. J Mol Neurosci 2019; 69:419-432. [PMID: 31267314 DOI: 10.1007/s12031-019-01371-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 06/25/2019] [Indexed: 02/07/2023]
Abstract
The spinal cord is essential for neuronal communication between the brain and rest of the body. To gain further insight into the molecular changes underpinning maturation of the mouse spinal cord, we analysed gene expression differences between 4 weeks of age (prior to puberty onset) and adulthood (8 weeks). We found 800 genes were significantly differentially expressed between juvenile and adult spinal cords. Gene ontology analysis revealed an overrepresentation of genes with roles in myelination and signal transduction among others. The expression of a further 19 genes was sexually dimorphic; these included both autosomal and sex-linked genes. Given the presence of steroid hormone receptors in the spinal cord, we also looked at the impact of two major steroid hormones, oestradiol and dihydrotestosterone (DHT) on spinal cord gene expression for selected genes. In gonadectomised male animals, implants with oestradiol and DHT produced significant changes to spinal cord gene expression. This study provides an overview of the global gene expression changes that occur as the spinal cord matures, over a key period of maturation. This confirms that both age and sex are important considerations in studies involving the spinal cord.
Collapse
Affiliation(s)
- Jeremy McCallum-Loudeac
- Department of Anatomy, School of Biomedical Sciences, University of Otago, P.O. Box 56, Dunedin, 9054, New Zealand
| | - Greg Anderson
- Department of Anatomy, School of Biomedical Sciences, University of Otago, P.O. Box 56, Dunedin, 9054, New Zealand
| | - Megan J Wilson
- Department of Anatomy, School of Biomedical Sciences, University of Otago, P.O. Box 56, Dunedin, 9054, New Zealand.
| |
Collapse
|
23
|
Tramarin M, Rusconi L, Pizzamiglio L, Barbiero I, Peroni D, Scaramuzza L, Guilliams T, Cavalla D, Antonucci F, Kilstrup-Nielsen C. The antidepressant tianeptine reverts synaptic AMPA receptor defects caused by deficiency of CDKL5. Hum Mol Genet 2019; 27:2052-2063. [PMID: 29618004 DOI: 10.1093/hmg/ddy108] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 03/20/2018] [Indexed: 12/12/2022] Open
Abstract
Mutations in the X-linked cyclin-dependent kinase-like 5 (CDKL5) gene cause a complex neurological disorder, characterized by infantile seizures, impairment of cognitive and motor skills and autistic features. Loss of Cdkl5 in mice affects dendritic spine maturation and dynamics but the underlying molecular mechanisms are still far from fully understood. Here we show that Cdkl5 deficiency in primary hippocampal neurons leads to deranged expression of the alpha-amino-3-hydroxy-5-methyl-4-iso-xazole propionic acid receptors (AMPA-R). In particular, a dramatic reduction of expression of the GluA2 subunit occurs concomitantly with its hyper-phosphorylation on Serine 880 and increased ubiquitination. Consequently, Cdkl5 silencing skews the composition of membrane-inserted AMPA-Rs towards the GluA2-lacking calcium-permeable form. Such derangement is likely to contribute, at least in part, to the altered synaptic functions and cognitive impairment linked to loss of Cdkl5. Importantly, we find that tianeptine, a cognitive enhancer and antidepressant drug, known to recruit and stabilise AMPA-Rs at the synaptic sites, can normalise the expression of membrane inserted AMPA-Rs as well as the number of PSD-95 clusters, suggesting its therapeutic potential for patients with mutations in CDKL5.
Collapse
Affiliation(s)
- Marco Tramarin
- Department of Biotechnology and Life Sciences and Center of Neuroscience, University of Insubria, 21052 Busto Arsizio, Italy
| | - Laura Rusconi
- Department of Biotechnology and Life Sciences and Center of Neuroscience, University of Insubria, 21052 Busto Arsizio, Italy
| | - Lara Pizzamiglio
- Department of Biotechnology and Translational Medicine, University of Milan, 20129 Milan, Italy
| | - Isabella Barbiero
- Department of Biotechnology and Life Sciences and Center of Neuroscience, University of Insubria, 21052 Busto Arsizio, Italy
| | - Diana Peroni
- Department of Biotechnology and Life Sciences and Center of Neuroscience, University of Insubria, 21052 Busto Arsizio, Italy
| | - Linda Scaramuzza
- San Raffaele Rett Research Unit, Division of Neuroscience, San Raffaele Hospital, 20132 Milan, Italy
| | - Tim Guilliams
- Healx Ltd, Park House, Castle Park, Cambridge CB3 0DU, UK
| | - David Cavalla
- Healx Ltd, Park House, Castle Park, Cambridge CB3 0DU, UK.,Numedicus Ltd, Cambridge CB1 2DX, UK
| | - Flavia Antonucci
- Department of Biotechnology and Translational Medicine, University of Milan, 20129 Milan, Italy
| | - Charlotte Kilstrup-Nielsen
- Department of Biotechnology and Life Sciences and Center of Neuroscience, University of Insubria, 21052 Busto Arsizio, Italy
| |
Collapse
|
24
|
Zhao LX, Ge YH, Li JB, Xiong CH, Law PY, Xu JR, Qiu Y, Chen HZ. M1 muscarinic receptors regulate the phosphorylation of AMPA receptor subunit GluA1 via a signaling pathway linking cAMP-PKA and PI3K-Akt. FASEB J 2019; 33:6622-6631. [PMID: 30794430 DOI: 10.1096/fj.201802351r] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
M1 muscarinic acetylcholine receptors are highly expressed in key areas that control cognition, such as the cortex and hippocampus, representing one potential therapeutic target for cognitive dysfunctions of Alzheimer's disease and schizophrenia. We have reported that M1 receptors facilitate cognition by promoting membrane insertion of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor AMPA receptor subunit 1 (GluA1) through phosphorylation at Ser845. However, the signaling pathway is still unclear. Here we showed that adenylyl cyclase inhibitor 2',5'-dideoxyadenosine and PKA inhibitor KT5720 inhibited enhancement of phosphorylation of Ser845 and membrane insertion of GluA1 induced by M1 receptor activation. Furthermore, PI3K inhibitor LY294002 and protein kinase B (Akt) inhibitor IV blocked the effects of M1 receptors as well. Remarkably, the increase of the activity of PI3K-Akt signaling induced by M1 receptor activation could be abolished by cAMP-PKA inhibitors. Moreover, inhibiting the mammalian target of rapamycin (mTOR) complex 1, an important downstream effector of PI3K-Akt, by short-term application of rapamycin attenuated the effects of M1 receptors on GluA1. Furthermore, such effect was unrelated to possible protein synthesis promoted by mTOR. Taken together, these data demonstrate that M1 receptor activation induces membrane insertion of GluA1 via a signaling linking cAMP-PKA and PI3K-Akt-mTOR pathways but is irrelevant to protein synthesis.-Zhao, L.-X., Ge, Y.-H., Li, J.-B., Xiong, C.-H., Law, P.-Y., Xu, J.-R., Qiu, Y., Chen, H.-Z. M1 muscarinic receptors regulate the phosphorylation of AMPA receptor subunit GluA1 via a signaling pathway linking cAMP-PKA and PI3K-Akt.
Collapse
Affiliation(s)
- Lan-Xue Zhao
- Department of Pharmacology and Chemical Biology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan-Hui Ge
- Department of Pharmacology and Chemical Biology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jia-Bing Li
- Department of Pharmacology and Chemical Biology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cai-Hong Xiong
- Department of Pharmacology and Chemical Biology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ping-Yee Law
- Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota, USA; and
| | - Jian-Rong Xu
- Department of Pharmacology and Chemical Biology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Qiu
- Department of Pharmacology and Chemical Biology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hong-Zhuan Chen
- Institute of Interdisciplinary Integrative Biomedical Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
25
|
Ha HTT, Leal-Ortiz S, Lalwani K, Kiyonaka S, Hamachi I, Mysore SP, Montgomery JM, Garner CC, Huguenard JR, Kim SA. Shank and Zinc Mediate an AMPA Receptor Subunit Switch in Developing Neurons. Front Mol Neurosci 2018; 11:405. [PMID: 30524232 PMCID: PMC6256285 DOI: 10.3389/fnmol.2018.00405] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 10/15/2018] [Indexed: 11/18/2022] Open
Abstract
During development, pyramidal neurons undergo dynamic regulation of AMPA receptor (AMPAR) subunit composition and density to help drive synaptic plasticity and maturation. These normal developmental changes in AMPARs are particularly vulnerable to risk factors for Autism Spectrum Disorders (ASDs), which include loss or mutations of synaptic proteins and environmental insults, such as dietary zinc deficiency. Here, we show how Shank2 and Shank3 mediate a zinc-dependent regulation of AMPAR function and subunit switch from GluA2-lacking to GluA2-containing AMPARs. Over development, we found a concomitant increase in Shank2 and Shank3 with GluA2 at synapses, implicating these molecules as potential players in AMPAR maturation. Since Shank activation and function require zinc, we next studied whether neuronal activity regulated postsynaptic zinc at glutamatergic synapses. Zinc was found to increase transiently and reversibly with neuronal depolarization at synapses, which could affect Shank and AMPAR localization and activity. Elevated zinc induced multiple functional changes in AMPAR, indicative of a subunit switch. Specifically, zinc lengthened the decay time of AMPAR-mediated synaptic currents and reduced their inward rectification in young hippocampal neurons. Mechanistically, both Shank2 and Shank3 were necessary for the zinc-sensitive enhancement of AMPAR-mediated synaptic transmission and act in concert to promote removal of GluA1 while enhancing recruitment of GluA2 at pre-existing Shank puncta. These findings highlight a cooperative local dynamic regulation of AMPAR subunit switch controlled by zinc signaling through Shank2 and Shank3 to shape the biophysical properties of developing glutamatergic synapses. Given the zinc sensitivity of young neurons and its dependence on Shank2 and Shank3, genetic mutations and/or environmental insults during early development could impair synaptic maturation and circuit formation that underlie ASD etiology.
Collapse
Affiliation(s)
- Huong T T Ha
- Department of Neurology & Neurological Sciences, School of Medicine, Stanford University, Stanford, CA, United States.,Neurosciences Graduate Program, School of Medicine, Stanford University, Stanford, CA, United States
| | - Sergio Leal-Ortiz
- Department of Material Science & Engineering, School of Engineering, Stanford University, Stanford, CA, United States
| | - Kriti Lalwani
- Department of Neurology & Neurological Sciences, School of Medicine, Stanford University, Stanford, CA, United States
| | - Shigeki Kiyonaka
- Department of Synthetic Chemistry & Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Itaru Hamachi
- Department of Synthetic Chemistry & Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Shreesh P Mysore
- Department of Psychological & Brain Sciences, Johns Hopkins University, Baltimore, MD, United States
| | - Johanna M Montgomery
- Department of Physiology and Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Craig C Garner
- German Center for Neurodegenerative Diseases (DZNE), Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - John R Huguenard
- Department of Neurology & Neurological Sciences, School of Medicine, Stanford University, Stanford, CA, United States
| | - Sally A Kim
- Department of Neurology & Neurological Sciences, School of Medicine, Stanford University, Stanford, CA, United States
| |
Collapse
|
26
|
Moretto E, Passafaro M. Recent Findings on AMPA Receptor Recycling. Front Cell Neurosci 2018; 12:286. [PMID: 30233324 PMCID: PMC6129582 DOI: 10.3389/fncel.2018.00286] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 08/10/2018] [Indexed: 02/04/2023] Open
Abstract
α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPA-Rs) are tetrameric protein complexes that mediate most of the fast-excitatory transmission in response to the neurotransmitter glutamate in neurons. The abundance of AMPA-Rs at the surface of excitatory synapses establishes the strength of the response to glutamate. It is thus evident that neurons need to tightly regulate this feature, particularly in the context of all synaptic plasticity events, which are considered the biological correlates of higher cognitive functions such as learning and memory. AMPA-R levels at the synapse are regulated by insertion of newly synthesized receptors, lateral diffusion on the plasma membrane and endosomal cycling. The latter is likely the most important especially for synaptic plasticity. This process starts with the endocytosis of the receptor from the cell surface and is followed by either degradation, if the receptor is directed to the lysosomal compartment, or reinsertion at the cell surface through a specialized endosomal compartment called recycling endosomes. Although the basic steps of this process have been discovered, the details and participation of additional regulatory proteins are still being discovered. In this review article, we describe the most recent findings shedding light on this crucial mechanism of synaptic regulation.
Collapse
Affiliation(s)
- Edoardo Moretto
- Institute of Neuroscience, Consiglio Nazionale delle Ricerche (CNR), Milan, Italy
| | - Maria Passafaro
- Institute of Neuroscience, Consiglio Nazionale delle Ricerche (CNR), Milan, Italy
| |
Collapse
|
27
|
Haselmann H, Mannara F, Werner C, Planagumà J, Miguez-Cabello F, Schmidl L, Grünewald B, Petit-Pedrol M, Kirmse K, Classen J, Demir F, Klöcker N, Soto D, Doose S, Dalmau J, Hallermann S, Geis C. Human Autoantibodies against the AMPA Receptor Subunit GluA2 Induce Receptor Reorganization and Memory Dysfunction. Neuron 2018; 100:91-105.e9. [PMID: 30146304 DOI: 10.1016/j.neuron.2018.07.048] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 03/14/2018] [Accepted: 07/27/2018] [Indexed: 11/29/2022]
Abstract
AMPA receptors are essential for fast excitatory transmission in the CNS. Autoantibodies to AMPA receptors have been identified in humans with autoimmune encephalitis and severe defects of hippocampal function. Here, combining electrophysiology and high-resolution imaging with neuronal culture preparations and passive-transfer models in wild-type and GluA1-knockout mice, we analyze how specific human autoantibodies against the AMPA receptor subunit GluA2 affect receptor function and composition, synaptic transmission, and plasticity. Anti-GluA2 antibodies induce receptor internalization and a reduction of synaptic GluA2-containing AMPARs followed by compensatory ryanodine receptor-dependent incorporation of synaptic non-GluA2 AMPARs. Furthermore, application of human pathogenic anti-GluA2 antibodies to mice impairs long-term synaptic plasticity in vitro and affects learning and memory in vivo. Our results identify a specific immune-neuronal rearrangement of AMPA receptor subunits, providing a framework to explain disease symptoms.
Collapse
Affiliation(s)
- Holger Haselmann
- Hans-Berger Department of Neurology, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany; Center for Sepsis Control and Care (CSCC), Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany
| | - Francesco Mannara
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, Universitat de Barcelona, 08036 Barcelona, Spain
| | - Christian Werner
- Hans-Berger Department of Neurology, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany; Department of Biotechnology and Biophysics, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Jesús Planagumà
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, Universitat de Barcelona, 08036 Barcelona, Spain
| | - Federico Miguez-Cabello
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, Universitat de Barcelona, 08036 Barcelona, Spain; Laboratori de Neurofisiologia, Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, 08036 Barcelona, Spain
| | - Lars Schmidl
- Hans-Berger Department of Neurology, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany
| | - Benedikt Grünewald
- Hans-Berger Department of Neurology, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany; Center for Sepsis Control and Care (CSCC), Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany
| | - Mar Petit-Pedrol
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, Universitat de Barcelona, 08036 Barcelona, Spain
| | - Knut Kirmse
- Hans-Berger Department of Neurology, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany
| | - Joseph Classen
- Department of Neurology, University of Leipzig, Liebigstrasse 20, 04103 Leipzig, Germany
| | - Fatih Demir
- Institute of Neural and Sensory Physiology, Medical Faculty, University of Düsseldorf, Düsseldorf, Germany; Forschungszentrum Jülich, Central Institute for Engineering, Electronics and Analytics (ZEA-3), Wilhelm-Johnen-Strasse, 52425 Jülich, Germany
| | - Nikolaj Klöcker
- Institute of Neural and Sensory Physiology, Medical Faculty, University of Düsseldorf, Düsseldorf, Germany
| | - David Soto
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, Universitat de Barcelona, 08036 Barcelona, Spain; Laboratori de Neurofisiologia, Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, 08036 Barcelona, Spain
| | - Sören Doose
- Department of Biotechnology and Biophysics, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Josep Dalmau
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, Universitat de Barcelona, 08036 Barcelona, Spain; Department of Neurology, University of Pennsylvania, Philadelphia, PA 19104, USA; Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig de Lluís Companys, 23, 08010 Barcelona, Spain; Centro de Investigación Biomédica en Red Enfermedades Raras (CIBERER), (Instituto Carlos III, Madrid), Av. Monforte de Lemos, 3-5 Pabellón 11, 28029 Madrid, Spain
| | - Stefan Hallermann
- Carl-Ludwig-Institute for Physiology, Medical Faculty, University of Leipzig, Liebigstrasse 27, 04103 Leipzig, Germany
| | - Christian Geis
- Hans-Berger Department of Neurology, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany; Center for Sepsis Control and Care (CSCC), Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany.
| |
Collapse
|
28
|
AhR Deletion Promotes Aberrant Morphogenesis and Synaptic Activity of Adult-Generated Granule Neurons and Impairs Hippocampus-Dependent Memory. eNeuro 2018; 5:eN-NWR-0370-17. [PMID: 30225360 PMCID: PMC6140122 DOI: 10.1523/eneuro.0370-17.2018] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 07/05/2018] [Accepted: 07/09/2018] [Indexed: 12/18/2022] Open
Abstract
Newborn granule cells are continuously produced in the subgranular zone of dentate gyrus throughout life. Once these cells mature, they integrate into pre-existing circuits modulating hippocampus-dependent memory. Subsequently, mechanisms controlling generation and maturation of newborn cells are essential for proper hippocampal function. Therefore, we have studied the role of aryl hydrocarbon receptor (AhR), a ligand-activated bHLH-PAS transcription factor, in hippocampus-dependent memory and granule neuronal morphology and function using genetic loss-of-function approaches based on constitutive and inducible-nestin AhR–/– mice. The results presented here show that the impaired hippocampus-dependent memory in AhR absence is not due to its effects on neurogenesis but to aberrant dendritic arborization and an increased spine density, albeit with a lower number of mature mushrooms spines in newborn granule cells, a finding that is associated with an immature electrophysiological phenotype. Together, our data strongly suggest that AhR plays a pivotal role in the regulation of hippocampal function, by controlling hippocampal granule neuron morphology and synaptic maturation.
Collapse
|
29
|
Fourneau J, Canu MH, Cieniewski-Bernard C, Bastide B, Dupont E. Synaptic protein changes after a chronic period of sensorimotor perturbation in adult rats: a potential role of phosphorylation/O-GlcNAcylation interplay. J Neurochem 2018; 147:240-255. [DOI: 10.1111/jnc.14474] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 04/23/2018] [Accepted: 05/14/2018] [Indexed: 11/28/2022]
Affiliation(s)
- Julie Fourneau
- EA 7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société; Univ. Lille; Lille France
| | - Marie-Hélène Canu
- EA 7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société; Univ. Lille; Lille France
| | | | - Bruno Bastide
- EA 7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société; Univ. Lille; Lille France
| | - Erwan Dupont
- EA 7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société; Univ. Lille; Lille France
| |
Collapse
|
30
|
McLeod F, Bossio A, Marzo A, Ciani L, Sibilla S, Hannan S, Wilson GA, Palomer E, Smart TG, Gibb A, Salinas PC. Wnt Signaling Mediates LTP-Dependent Spine Plasticity and AMPAR Localization through Frizzled-7 Receptors. Cell Rep 2018; 23:1060-1071. [PMID: 29694885 PMCID: PMC5946458 DOI: 10.1016/j.celrep.2018.03.119] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 02/16/2018] [Accepted: 03/26/2018] [Indexed: 01/31/2023] Open
Abstract
The structural and functional plasticity of synapses is critical for learning and memory. Long-term potentiation (LTP) induction promotes spine growth and AMPAR accumulation at excitatory synapses, leading to increased synaptic strength. Glutamate initiates these processes, but the contribution from extracellular modulators is not fully established. Wnts are required for spine formation; however, their impact on activity-mediated spine plasticity and AMPAR localization is unknown. We found that LTP induction rapidly increased synaptic Wnt7a/b protein levels. Acute blockade of endogenous Wnts or loss of postsynaptic Frizzled-7 (Fz7) receptors impaired LTP-mediated synaptic strength, spine growth, and AMPAR localization at synapses. Live imaging of SEP-GluA1 and single-particle tracking revealed that Wnt7a rapidly promoted synaptic AMPAR recruitment and trapping. Wnt7a, through Fz7, induced CaMKII-dependent loss of SynGAP from spines and increased extrasynaptic AMPARs by PKA phosphorylation. We identify a critical role for Wnt-Fz7 signaling in LTP-mediated synaptic accumulation of AMPARs and spine plasticity.
Collapse
Affiliation(s)
- Faye McLeod
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | - Alessandro Bossio
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | - Aude Marzo
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | - Lorenza Ciani
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | - Sara Sibilla
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | - Saad Hannan
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
| | - Gemma A Wilson
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | - Ernest Palomer
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | - Trevor G Smart
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
| | - Alasdair Gibb
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
| | - Patricia C Salinas
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK.
| |
Collapse
|
31
|
Maltese M, Stanic J, Tassone A, Sciamanna G, Ponterio G, Vanni V, Martella G, Imbriani P, Bonsi P, Mercuri NB, Gardoni F, Pisani A. Early structural and functional plasticity alterations in a susceptibility period of DYT1 dystonia mouse striatum. eLife 2018; 7:33331. [PMID: 29504938 PMCID: PMC5849413 DOI: 10.7554/elife.33331] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 03/02/2018] [Indexed: 12/30/2022] Open
Abstract
The onset of abnormal movements in DYT1 dystonia is between childhood and adolescence, although it is unclear why clinical manifestations appear during this developmental period. Plasticity at corticostriatal synapses is critically involved in motor memory. In the Tor1a+/Δgag DYT1 dystonia mouse model, long-term potentiation (LTP) appeared prematurely in a critical developmental window in striatal spiny neurons (SPNs), while long-term depression (LTD) was never recorded. Analysis of dendritic spines showed an increase of both spine width and mature mushroom spines in Tor1a+/Δgag neurons, paralleled by an enhanced AMPA receptor (AMPAR) accumulation. BDNF regulates AMPAR expression during development. Accordingly, both proBDNF and BDNF levels were significantly higher in Tor1a+/Δgag mice. Consistently, antagonism of BDNF rescued synaptic plasticity deficits and AMPA currents. Our findings demonstrate that early loss of functional and structural synaptic homeostasis represents a unique endophenotypic trait during striatal maturation, promoting the appearance of clinical manifestations in mutation carriers.
Collapse
Affiliation(s)
- Marta Maltese
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.,IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Jennifer Stanic
- Department of Pharmacology, University of Milan, Milan, Italy
| | - Annalisa Tassone
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.,IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Giuseppe Sciamanna
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.,IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Giulia Ponterio
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.,IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Valentina Vanni
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.,IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Giuseppina Martella
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.,IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Paola Imbriani
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.,IRCCS Fondazione Santa Lucia, Rome, Italy
| | | | - Nicola Biagio Mercuri
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.,IRCCS Fondazione Santa Lucia, Rome, Italy
| | | | - Antonio Pisani
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.,IRCCS Fondazione Santa Lucia, Rome, Italy
| |
Collapse
|
32
|
Herold C, Bidmon HJ, Pannek HW, Hans V, Gorji A, Speckmann EJ, Zilles K. ATPase N-ethylmaleimide-sensitive Fusion Protein: A Novel Key Player for Causing Spontaneous Network Excitation in Human Temporal Lobe Epilepsy. Neuroscience 2018; 371:371-383. [DOI: 10.1016/j.neuroscience.2017.12.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 11/27/2017] [Accepted: 12/11/2017] [Indexed: 11/26/2022]
|
33
|
Nakayama K, Ohashi R, Shinoda Y, Yamazaki M, Abe M, Fujikawa A, Shigenobu S, Futatsugi A, Noda M, Mikoshiba K, Furuichi T, Sakimura K, Shiina N. RNG105/caprin1, an RNA granule protein for dendritic mRNA localization, is essential for long-term memory formation. eLife 2017; 6. [PMID: 29157358 PMCID: PMC5697933 DOI: 10.7554/elife.29677] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 10/22/2017] [Indexed: 12/18/2022] Open
Abstract
Local regulation of synaptic efficacy is thought to be important for proper networking of neurons and memory formation. Dysregulation of global translation influences long-term memory in mice, but the relevance of the regulation specific for local translation by RNA granules remains elusive. Here, we demonstrate roles of RNG105/caprin1 in long-term memory formation. RNG105 deletion in mice impaired synaptic strength and structural plasticity in hippocampal neurons. Furthermore, RNG105-deficient mice displayed unprecedentedly severe defects in long-term memory formation in spatial and contextual learning tasks. Genome-wide profiling of mRNA distribution in the hippocampus revealed an underlying mechanism: RNG105 deficiency impaired the asymmetric somato-dendritic localization of mRNAs. Particularly, RNG105 deficiency reduced the dendritic localization of mRNAs encoding regulators of AMPAR surface expression, which was consistent with attenuated homeostatic AMPAR scaling in dendrites and reduced synaptic strength. Thus, RNG105 has an essential role, as a key regulator of dendritic mRNA localization, in long-term memory formation. Messages pass from one nerve cell to the next across gaps called synapses. The first neuron releases chemical signals from the end of its long, thin nerve fiber. The second receives the message at receptors on branching structures known as dendrites. Each connection has a corresponding bump called a dendritic spine. As animals learn, these can grow larger, strengthening the connection. This is the basis of how memories form. To strengthen a synapse, the cell must transport the materials to the dendritic spine. The cell makes copies of the genetic instructions to strengthen the synapse in the form of messenger RNA (often shortened to mRNA). But, this happens in the body of the cell, a long way from the dendrites themselves. The mRNA travels from the cell body to the dendrites in collections of molecules referred to as ‘RNA granules’. One of the key components of the RNA granule system is a protein called RNG105/caprin1. Now, Nakayama, Ohashi et al. have engineered mice to delete the gene for RNG105/caprin1, revealing its effect on memory. Mice lacking RNG105/caprin1 struggled to make long-term memories. Unlike their normal counterparts, these mutant mice did not become accustomed to new environments or objects. They also found it more challenging to learn the position of a hidden platform in a water-based maze. Lastly, over time, the mutant mice forgot to be fearful of a dark chamber where they had received a small electric shock. Memories form in a part of the brain called the hippocampus and the dendritic spines in this region were smaller in mice lacking RNG105/caprin1. Furthermore, when the nerve cells from this part of the brain were grown in Petri dishes, they did not respond normally to stimulation. The dendritic spines of normal cells increased in size, but those on the cells lacking RNG105/caprin1 got smaller compared to normal cells. A closer look revealed that the distribution of mRNA in brain cells from mice lacking RNG105/caprin1 differed from that of normal mice. Some pieces of genetic information failed to make it from the cell body to the dendrites. This included mRNA involved in making regulators of a component of dendritic spines called the AMPA receptor. The AMPA receptor detects the chemical messenger, glutamate, and is crucial for memory formation. These findings further our understanding of long-term memory and open the way for future research into human disease. Mutations in RNA granule components, including RNG105/caprin1, have links to conditions such as amyotrophic lateral sclerosis (ALS) and autism spectrum disorder (ASD). Further investigation could reveal new targets for drug treatment.
Collapse
Affiliation(s)
- Kei Nakayama
- Laboratory of Neuronal Cell Biology, National Institute for Basic Biology, Okazaki, Japan.,Department of Basic Biology, SOKENDAI, Okazaki, Japan.,Okazaki Institute for Integrative Bioscience, Okazaki, Japan
| | - Rie Ohashi
- Laboratory of Neuronal Cell Biology, National Institute for Basic Biology, Okazaki, Japan.,Department of Basic Biology, SOKENDAI, Okazaki, Japan
| | - Yo Shinoda
- Department of Applied Biological Science, Tokyo University of Science, Noda, Japan.,School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Japan
| | - Maya Yamazaki
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Manabu Abe
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Akihiro Fujikawa
- Division of Molecular Neurobiology, National Institute for Basic Biology, Okazaki, Japan
| | - Shuji Shigenobu
- Department of Basic Biology, SOKENDAI, Okazaki, Japan.,Functional Genomics Facility, National Institute for Basic Biology, Okazaki, Japan
| | - Akira Futatsugi
- Department of Basic Medical Science, Kobe City College of Nursing, Hyogo, Japan
| | - Masaharu Noda
- Department of Basic Biology, SOKENDAI, Okazaki, Japan.,Division of Molecular Neurobiology, National Institute for Basic Biology, Okazaki, Japan
| | - Katsuhiko Mikoshiba
- Laboratory for Developmental Neurobiology, Brain Science Institute, Wako, Japan
| | - Teiichi Furuichi
- Department of Applied Biological Science, Tokyo University of Science, Noda, Japan
| | - Kenji Sakimura
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Nobuyuki Shiina
- Laboratory of Neuronal Cell Biology, National Institute for Basic Biology, Okazaki, Japan.,Department of Basic Biology, SOKENDAI, Okazaki, Japan.,Okazaki Institute for Integrative Bioscience, Okazaki, Japan
| |
Collapse
|
34
|
Farhy-Tselnicker I, van Casteren ACM, Lee A, Chang VT, Aricescu AR, Allen NJ. Astrocyte-Secreted Glypican 4 Regulates Release of Neuronal Pentraxin 1 from Axons to Induce Functional Synapse Formation. Neuron 2017; 96:428-445.e13. [PMID: 29024665 PMCID: PMC5663462 DOI: 10.1016/j.neuron.2017.09.053] [Citation(s) in RCA: 136] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 08/31/2017] [Accepted: 09/27/2017] [Indexed: 12/15/2022]
Abstract
The generation of precise synaptic connections between developing neurons is critical to the formation of functional neural circuits. Astrocyte-secreted glypican 4 induces formation of active excitatory synapses by recruiting AMPA glutamate receptors to the postsynaptic cell surface. We now identify the molecular mechanism of how glypican 4 exerts its effect. Glypican 4 induces release of the AMPA receptor clustering factor neuronal pentraxin 1 from presynaptic terminals by signaling through presynaptic protein tyrosine phosphatase receptor δ. Pentraxin then accumulates AMPA receptors on the postsynaptic terminal forming functional synapses. Our findings reveal a signaling pathway that regulates synaptic activity during central nervous system development and demonstrates a role for astrocytes as organizers of active synaptic connections by coordinating both pre and post synaptic neurons. As mutations in glypicans are associated with neurological disorders, such as autism and schizophrenia, this signaling cascade offers new avenues to modulate synaptic function in disease. Astrocyte-secreted Gpc4 induces release of NP1 from neurons Release of NP1 is mediated through Gpc4 interaction with presynaptic RPTPδ Gpc4 or RPTPδ KO causes presynaptic NP1 retention and decreased synapse number Astrocytic release of Gpc4 provides spatial and temporal cues for synaptogenesis
Collapse
Affiliation(s)
- Isabella Farhy-Tselnicker
- Salk Institute for Biological Studies, Molecular Neurobiology Laboratory, 10010 North Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Adriana C M van Casteren
- Salk Institute for Biological Studies, Molecular Neurobiology Laboratory, 10010 North Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Aletheia Lee
- University of Oxford, Wellcome Trust Centre for Human Genetics, Division of Structural Biology, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Veronica T Chang
- MRC Laboratory of Molecular Biology, Neurobiology Division, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - A Radu Aricescu
- University of Oxford, Wellcome Trust Centre for Human Genetics, Division of Structural Biology, Roosevelt Drive, Oxford OX3 7BN, UK; MRC Laboratory of Molecular Biology, Neurobiology Division, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - Nicola J Allen
- Salk Institute for Biological Studies, Molecular Neurobiology Laboratory, 10010 North Torrey Pines Rd, La Jolla, CA 92037, USA.
| |
Collapse
|
35
|
Kugathasan P, Waller J, Westrich L, Abdourahman A, Tamm JA, Pehrson AL, Dale E, Gulinello M, Sanchez C, Li Y. In vivo and in vitro effects of vortioxetine on molecules associated with neuroplasticity. J Psychopharmacol 2017; 31:365-376. [PMID: 27678087 DOI: 10.1177/0269881116667710] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Neuroplasticity is fundamental for brain functions, abnormal changes of which are associated with mood disorders and cognitive impairment. Neuroplasticity can be affected by neuroactive medications and by aging. Vortioxetine, a multimodal antidepressant, has shown positive effects on cognitive functions in both pre-clinical and clinical studies. In rodent studies, vortioxetine increases glutamate neurotransmission, promotes dendritic branching and spine maturation, and elevates hippocampal expression of the activity-regulated cytoskeleton-associated protein (Arc/Arg3.1) at the transcript level. The present study aims to assess the effects of vortioxetine on several neuroplasticity-related molecules in different experimental systems. Chronic (1 month) vortioxetine increased Arc/Arg3.1 protein levels in the cortical synaptosomes of young and middle-aged mice. In young mice, this was accompanied by an increase in actin-depolymerizing factor (ADF)/cofilin serine 3 phosphorylation without altering the total ADF/cofilin protein level, and an increase in the GluA1 subunit of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor phosphorylation at serine 845 (S845) without altering serine 831 (S831) GluA1 phosphorylation nor the total GluA1 protein level. Similar effects were detected in cultured rat hippocampal neurons: Acute vortioxetine increased S845 GluA1 phosphorylation without changing S831 GluA1 phosphorylation or the total GluA1 protein level. These changes were accompanied by an increase in α subunit of Ca2+/calmodulin-dependent kinase (CaMKIIα) phosphorylation (at threonine 286) without changing the total CaMKIIα protein level in cultured neurons. In addition, chronic (1 month) vortioxetine, but not fluoxetine, restored the age-associated reduction in Arc/Arg3.1 and c-Fos transcripts in the frontal cortex of middle-aged mice. Taken together, these results demonstrated that vortioxetine modulates molecular targets that are related to neuroplasticity.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Yan Li
- 1 Lundbeck Research, Paramus, NJ, USA
| |
Collapse
|
36
|
Kumar D, Thakur MK. Anxiety like behavior due to perinatal exposure to Bisphenol-A is associated with decrease in excitatory to inhibitory synaptic density of male mouse brain. Toxicology 2017; 378:107-113. [PMID: 28089772 DOI: 10.1016/j.tox.2017.01.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 12/24/2016] [Accepted: 01/10/2017] [Indexed: 12/18/2022]
Abstract
Bisphenol-A (BPA) is a synthetic endocrine disruptor which causes anxiety like behavior in rodents, though the underlying mechanism is not clearly understood. As excitatory-inhibitory synaptic proteins are the key regulators of anxiety, we have examined the effect of perinatal exposure to BPA on this behavior and the expression of excitatory (PSD95), inhibitory (gephyrin) and presynaptic density marker (synaptophysin) proteins in cerebral cortex and hippocampus of 3 and 8 weeks postnatal male mice. In open field (OF) test, BPA exposure reduced the time spent, number of entries and distance travelled in the central zone as compared to control in 8 weeks mice. On the other hand, elevated plus maze (EPM) results showed decrease in time spent and number of entries to the open arms. Immunoblotting and immunofluorescence analysis showed significant downregulation of PSD95 and synaptophysin, but upregulation of gephyrin, leading to reduction in excitatory to inhibitory protein ratio and synaptic density in postnatal 3 and 8 weeks mice. Thus, our findings show that the anxiety like behavior due to perinatal exposure to BPA is associated with decrease in excitatory to inhibitory synaptic density in postnatal male mice.
Collapse
Affiliation(s)
- Dhiraj Kumar
- Biochemistry and Molecular Biology Laboratory, Centre of Advanced Study, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - M K Thakur
- Biochemistry and Molecular Biology Laboratory, Centre of Advanced Study, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
37
|
Wang Z, Yuan Y, Xie K, Tang X, Zhang L, Ao J, Li N, Zhang Y, Guo S, Wang G. PICK1 Regulates the Expression and Trafficking of AMPA Receptors in Remifentanil-Induced Hyperalgesia. Anesth Analg 2016; 123:771-81. [DOI: 10.1213/ane.0000000000001442] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
38
|
Lippman-Bell JJ, Zhou C, Sun H, Feske JS, Jensen FE. Early-life seizures alter synaptic calcium-permeable AMPA receptor function and plasticity. Mol Cell Neurosci 2016; 76:11-20. [PMID: 27521497 DOI: 10.1016/j.mcn.2016.08.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 07/15/2016] [Accepted: 08/09/2016] [Indexed: 12/31/2022] Open
Abstract
Calcium (Ca2+)-mediated4 signaling pathways are critical to synaptic plasticity. In adults, the NMDA glutamate receptor (NMDAR) represents a major route for activity-dependent synaptic Ca2+ entry. However, during neonatal development, when synaptic plasticity is particularly high, many AMPA glutamate receptors (AMPARs) are also permeable to Ca2+ (CP-AMPAR) due to low GluA2 subunit expression, providing an additional route for activity- and glutamate-dependent Ca2+ influx and subsequent signaling. Therefore, altered hippocampal Ca2+ signaling may represent an age-specific pathogenic mechanism. We thus aimed to assess Ca2+ responses 48h after hypoxia-induced neonatal seizures (HS) in postnatal day (P)10 rats, a post-seizure time point at which we previously reported LTP attenuation. We found that Ca2+ responses were higher in brain slices from post-HS rats than in controls and that this increase was CP-AMPAR-dependent. To determine whether synaptic CP-AMPAR expression was also altered post-HS, we assessed the expression of GluA2 at hippocampal synapses and the expression of long-term depression (LTD), which has been linked to the presence of synaptic GluA2. Here we report a decrease 48h after HS in synaptic GluA2 expression at synapses and LTD in hippocampal CA1. Given the potentially critical role of AMPAR trafficking in disease progression, we aimed to establish whether post-seizure in vivo AMPAR antagonist treatment prevented the enhanced Ca2+ responses, changes in GluA2 synaptic expression, and diminished LTD. We found that NBQX treatment prevents all three of these post-seizure consequences, further supporting a critical role for AMPARs as an age-specific therapeutic target.
Collapse
Affiliation(s)
- Jocelyn J Lippman-Bell
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States; Boston Children's Hospital, Boston, MA 02114, United States; Philadelphia College of Osteopathic Medicine, Philadelphia, PA 19131, United States
| | - Chengwen Zhou
- Boston Children's Hospital, Boston, MA 02114, United States
| | - Hongyu Sun
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States; Boston Children's Hospital, Boston, MA 02114, United States
| | - Joel S Feske
- Boston Children's Hospital, Boston, MA 02114, United States
| | - Frances E Jensen
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States; Boston Children's Hospital, Boston, MA 02114, United States.
| |
Collapse
|
39
|
Activation of PPARγ Ameliorates Spatial Cognitive Deficits through Restoring Expression of AMPA Receptors in Seipin Knock-Out Mice. J Neurosci 2016; 36:1242-53. [PMID: 26818512 DOI: 10.1523/jneurosci.3280-15.2016] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED A characteristic phenotype of congenital generalized lipodystrophy 2 (CGL2) that is caused by loss-of-function of seipin gene is mental retardation. Here, we show that seipin deficiency in hippocampal CA1 pyramidal cells caused the reduction of peroxisome proliferator-activated receptor gamma (PPARγ). Twelve-week-old systemic seipin knock-out mice and neuronal seipin knock-out (seipin-nKO) mice, but not adipose seipin knock-out mice, exhibited spatial cognitive deficits as assessed by the Morris water maze and Y-maze, which were ameliorated by the treatment with the PPARγ agonist rosiglitazone (rosi). In addition, seipin-nKO mice showed the synaptic dysfunction and the impairment of NMDA receptor-dependent LTP in hippocampal CA1 regions. The density of AMPA-induced current (IAMPA) in CA1 pyramidal cells and GluR1/GluR2 expression were significantly reduced in seipin-nKO mice, whereas the NMDA-induced current (INMDA) and NR1/NR2 expression were not altered. Rosi treatment in seipin-nKO mice could correct the decrease in expression and activity of AMPA receptor (AMPAR) and was accompanied by recovered synaptic function and LTP induction. Furthermore, hippocampal ERK2 and CREB phosphorylation in seipin-nKO mice were reduced and this could be rescued by rosi treatment. Rosi treatment in seipin-nKO mice elevated BDNF concentration. The MEK inhibitor U0126 blocked rosi-restored AMPAR expression and LTP induction in seipin-nKO mice, but the Trk family inhibitor K252a did not. These findings indicate that the neuronal seipin deficiency selectively suppresses AMPAR expression through reducing ERK-CREB activities, leading to the impairment of LTP and spatial memory, which can be rescued by PPARγ activation. SIGNIFICANCE STATEMENT Congenital generalized lipodystrophy 2 (CGL2), caused by loss-of-function mutation of seipin gene, is characterized by mental retardation. By the generation of systemic or neuronal seipin knock-out mice, the present study provides in vivo evidence that neuronal seipin deficiency causes deficits in spatial memory and hippocampal LTP induction. Neuronal seipin deficiency selectively suppresses AMPA receptor expression, ERK-CREB phosphorylation with the decline of PPARγ. The PPARγ agonist rosiglitazone can ameliorate spatial cognitive deficits and rescue the LTP induction in seipin knock-out mice by restoring AMPA receptor expression and ERK-CREB activities.
Collapse
|
40
|
Luchkina NV, Coleman SK, Huupponen J, Cai C, Kivistö A, Taira T, Keinänen K, Lauri SE. Molecular mechanisms controlling synaptic recruitment of GluA4 subunit-containing AMPA-receptors critical for functional maturation of CA1 glutamatergic synapses. Neuropharmacology 2016; 112:46-56. [PMID: 27157711 DOI: 10.1016/j.neuropharm.2016.04.049] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Revised: 04/26/2016] [Accepted: 04/27/2016] [Indexed: 11/28/2022]
Abstract
Synaptic recruitment of AMPA receptors (AMPARs) represents a key postsynaptic mechanism driving functional development and maturation of glutamatergic synapses. At immature hippocampal synapses, PKA-driven synaptic insertion of GluA4 is the predominant mechanism for synaptic reinforcement. However, the physiological significance and molecular determinants of this developmentally restricted form of plasticity are not known. Here we show that PKA activation leads to insertion of GluA4 to synaptic sites with initially weak or silent AMPAR-mediated transmission. This effect depends on a novel mechanism involving the extreme C-terminal end of GluA4, which interacts with the membrane proximal region of the C-terminal domain to control GluA4 trafficking. In the absence of GluA4, strengthening of AMPAR-mediated transmission during postnatal development was significantly delayed. These data suggest that the GluA4-mediated activation of silent synapses is a critical mechanism facilitating the functional maturation of glutamatergic circuitry during the critical period of experience-dependent fine-tuning. This article is part of the Special Issue entitled 'Ionotropic glutamate receptors'.
Collapse
Affiliation(s)
- Natalia V Luchkina
- Neuroscience Center, University of Helsinki, Finland; Department of Biosciences, University of Helsinki, Finland
| | | | - Johanna Huupponen
- Neuroscience Center, University of Helsinki, Finland; Department of Biosciences, University of Helsinki, Finland
| | - Chunlin Cai
- Department of Biosciences, University of Helsinki, Finland
| | - Anna Kivistö
- Neuroscience Center, University of Helsinki, Finland
| | - Tomi Taira
- Neuroscience Center, University of Helsinki, Finland; Department of Veterinary Biosciences, University of Helsinki, Finland
| | - Kari Keinänen
- Department of Biosciences, University of Helsinki, Finland
| | - Sari E Lauri
- Neuroscience Center, University of Helsinki, Finland; Department of Biosciences, University of Helsinki, Finland.
| |
Collapse
|
41
|
Liu Z, Wang W, Feng N, Wang L, Shi J, Wang X. Parishin C's prevention of Aβ 1-42-induced inhibition of long-term potentiation is related to NMDA receptors. Acta Pharm Sin B 2016; 6:189-97. [PMID: 27175329 PMCID: PMC4857013 DOI: 10.1016/j.apsb.2016.03.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 03/22/2016] [Accepted: 03/23/2016] [Indexed: 11/29/2022] Open
Abstract
The rhizome of Gastrodia elata (GE), a herb medicine, has been used for treatment of neuronal disorders in Eastern Asia for hundreds of years. Parishin C is a major ingredient of GE. In this study, the i.c.v. injection of soluble Aβ1–42 oligomers model of LTP injury was used. We investigated the effects of parishin C on the improvement of LTP in soluble Aβ1–42 oligomer–injected rats and the underlying electrophysiological mechanisms. Parishin C (i.p. or i.c.v.) significantly ameliorated LTP impairment induced by i.c.v. injection of soluble Aβ1–42 oligomers. In cultured hippocampal neurons, soluble Aβ1–42 oligomers significantly inhibited NMDAR currents while not affecting AMPAR currents and voltage-dependent currents. Pretreatment with parishin C protected NMDA receptor currents from the damage induced by Aβ. In summary, parishin C improved LTP deficits induced by soluble Aβ1–42 oligomers. The protection by parishin C against Aβ-induced LTP damage might be related to NMDA receptors.
Collapse
|
42
|
Acute Footshock Stress Induces Time-Dependent Modifications of AMPA/NMDA Protein Expression and AMPA Phosphorylation. Neural Plast 2016; 2016:7267865. [PMID: 26966584 PMCID: PMC4757710 DOI: 10.1155/2016/7267865] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 12/21/2015] [Accepted: 01/10/2016] [Indexed: 12/04/2022] Open
Abstract
Clinical studies on patients with stress-related neuropsychiatric disorders reported functional and morphological changes in brain areas where glutamatergic transmission is predominant, including frontal and prefrontal areas. In line with this evidence, several preclinical works suggest that glutamate receptors are targets of both rapid and long-lasting effects of stress. Here we found that acute footshock- (FS-) stress, although inducing no transcriptional and RNA editing alterations of ionotropic AMPA and NMDA glutamate receptor subunits, rapidly and transiently modulates their protein expression, phosphorylation, and localization at postsynaptic spines in prefrontal and frontal cortex. In total extract, FS-stress increased the phosphorylation levels of GluA1 AMPA subunit at Ser845 immediately after stress and of GluA2 Ser880 2 h after start of stress. At postsynaptic spines, stress induced a rapid decrease of GluA2 expression, together with an increase of its phosphorylation at Ser880, suggesting internalization of GluA2 AMPA containing receptors. GluN1 and GluN2A NMDA receptor subunits were found markedly upregulated in postsynaptic spines, 2 h after start of stress. These results suggest selected time-dependent changes in glutamatergic receptor subunits induced by acute stress, which may suggest early and transient enhancement of AMPA-mediated currents, followed by a transient activation of NMDA receptors.
Collapse
|
43
|
Increased N-Ethylmaleimide-Sensitive Factor Expression in Amygdala and Perirhinal Cortex during Habituation of Taste Neophobia. Neural Plast 2015; 2016:2726745. [PMID: 26839712 PMCID: PMC4709763 DOI: 10.1155/2016/2726745] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 10/05/2015] [Accepted: 10/15/2015] [Indexed: 11/20/2022] Open
Abstract
Interactions between GluR2 and N-ethylmaleimide-sensitive factor (NSF) mediate AMPA receptors trafficking. This might be linked with molecular mechanisms related with memory formation. Previous research has shown basolateral amygdala (BLA) dependent activity changes in the perirhinal cortex (PRh) during the formation of taste memory. In the present experiments we investigate both the behavioral performance and the expression profile of NSF and GluR2 genes in several brain areas, including PRh, BLA, and hippocampus. Twenty-one naïve male Wistar rats were exposed to a saccharin solution (0.4%) during the first (novel), the second (Familiar I), and the sixth presentation (Familiar II). Total RNA was extracted and gene expression was measured by quantitative PCR (qPCR) using TaqMan gene expression assays. In addition the expression of the synaptic plasticity related immediate early genes, Homer 1 and Narp, was also assessed. We have found increased expression of NSF gene in BLA and PRh in Group Familiar I in comparison with Familiar II. No changes in the expression of GluR2, Homer 1, and Narp genes were found. The results suggest the relevance of a potential network in the temporal lobe for taste recognition memory and open new possibilities for understanding the molecular mechanisms mediating the impact of sensory experience on brain circuit function.
Collapse
|
44
|
Carnitine palmitoyltransferase 1C: From cognition to cancer. Prog Lipid Res 2015; 61:134-48. [PMID: 26708865 DOI: 10.1016/j.plipres.2015.11.004] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 11/18/2015] [Accepted: 11/23/2015] [Indexed: 11/21/2022]
Abstract
Carnitine palmitoyltransferase 1 (CPT1) C was the last member of the CPT1 family of genes to be discovered. CPT1A and CPT1B were identified as the gate-keeper enzymes for the entry of long-chain fatty acids (as carnitine esters) into mitochondria and their further oxidation, and they show differences in their kinetics and tissue expression. Although CPT1C exhibits high sequence similarity to CPT1A and CPT1B, it is specifically expressed in neurons (a cell-type that does not use fatty acids as fuel to any major extent), it is localized in the endoplasmic reticulum of cells, and it has minimal CPT1 catalytic activity with l-carnitine and acyl-CoA esters. The lack of an easily measurable biological activity has hampered attempts to elucidate the cellular and physiological role of CPT1C but has not diminished the interest of the biomedical research community in this CPT1 isoform. The observations that CPT1C binds malonyl-CoA and long-chain acyl-CoA suggest that it is a sensor of lipid metabolism in neurons, where it appears to impact ceramide and triacylglycerol (TAG) metabolism. CPT1C global knock-out mice show a wide range of brain disorders, including impaired cognition and spatial learning, motor deficits, and a deregulation in food intake and energy homeostasis. The first disease-causing CPT1C mutation was recently described in humans, with Cpt1c being identified as the gene causing hereditary spastic paraplegia. The putative role of CPT1C in the regulation of complex-lipid metabolism is supported by the observation that it is highly expressed in certain virulent tumor cells, conferring them resistance to glucose- and oxygen-deprivation. Therefore, CPT1C may be a promising target in the treatment of cancer. Here we review the molecular, biochemical, and structural properties of CPT1C and discuss its potential roles in brain function, and cancer.
Collapse
|
45
|
Almeida-Suhett CP, Prager EM, Pidoplichko V, Figueiredo TH, Marini AM, Li Z, Eiden LE, Braga MF. GABAergic interneuronal loss and reduced inhibitory synaptic transmission in the hippocampal CA1 region after mild traumatic brain injury. Exp Neurol 2015; 273:11-23. [DOI: 10.1016/j.expneurol.2015.07.028] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 07/24/2015] [Accepted: 07/30/2015] [Indexed: 01/07/2023]
|
46
|
Wang S, Zhang J, Sheng T, Lu W, Miao D. Hippocampal ischemia causes deficits in local field potential and synaptic plasticity. J Biomed Res 2015; 29:370-9. [PMID: 26445570 PMCID: PMC4585431 DOI: 10.7555/jbr.29.20150010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 03/16/2015] [Accepted: 05/10/2015] [Indexed: 11/16/2022] Open
Abstract
The long-term enhancement in glutamate receptor mediated excitatory responses has been observed in stroke model. This pathological form of plasticity, termed post-ischemic long-term potentiation (i-LTP), points to functional reorganization after stroke. Little is known, however, about whether and how this i-LTP would affect subsequent induction of synaptic plasticity. Here, we first directly confirmed that i-LTP was induced in the endothelin-1-induced ischemia model as in other in vitro models. We also demonstrated increased expression of NR2B, CaMKII and p-CaMKII, which are reminiscent of i-LTP. We further induced LTP of field excitatory postsynaptic potentials (fEPSPs) on CA1 hippocampal neurons in peri-infarct regions of the endothelin-1-induced mini-stroke model. We found that LTP of fEPSPs, induced by high-frequency stimulation, displayed a progressive impairment at 12 and 24 hours after ischemia. Moreover, using in vivo multi-channel recording, we found that the local field potential, which represents electrical property of cell ensembles in more restricted regions, was also dampened at these two time points. These results suggest that i-LTP elevates the induction threshold of subsequent synaptic plasticity. Our data helps to deepen the knowledge of meta-synaptic regulation of plasticity after focal ischemia.
Collapse
Affiliation(s)
- Shaoli Wang
- The Research Center for Bone and Stem Cells, Department of Human Anatomy
| | - Jingyun Zhang
- The Key Laboratory of Developmental Genes and Human Disease, Institute of Life Sciences, Southeast University , Nanjing, Jiangsu 210096 , China
| | - Tao Sheng
- The Center of Metabolic Disease Research, Nanjing Medical University , Nanjing, Jiangsu 210029 , China
| | - Wei Lu
- Department of Neurobiology ; The Key Laboratory of Developmental Genes and Human Disease, Institute of Life Sciences, Southeast University , Nanjing, Jiangsu 210096 , China
| | - Dengshun Miao
- The Research Center for Bone and Stem Cells, Department of Human Anatomy
| |
Collapse
|
47
|
The Deleterious Effects of Oxidative and Nitrosative Stress on Palmitoylation, Membrane Lipid Rafts and Lipid-Based Cellular Signalling: New Drug Targets in Neuroimmune Disorders. Mol Neurobiol 2015; 53:4638-58. [PMID: 26310971 DOI: 10.1007/s12035-015-9392-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2015] [Accepted: 08/11/2015] [Indexed: 12/18/2022]
Abstract
Oxidative and nitrosative stress (O&NS) is causatively implicated in the pathogenesis of Alzheimer's and Parkinson's disease, multiple sclerosis, chronic fatigue syndrome, schizophrenia and depression. Many of the consequences stemming from O&NS, including damage to proteins, lipids and DNA, are well known, whereas the effects of O&NS on lipoprotein-based cellular signalling involving palmitoylation and plasma membrane lipid rafts are less well documented. The aim of this narrative review is to discuss the mechanisms involved in lipid-based signalling, including palmitoylation, membrane/lipid raft (MLR) and n-3 polyunsaturated fatty acid (PUFA) functions, the effects of O&NS processes on these processes and their role in the abovementioned diseases. S-palmitoylation is a post-translational modification, which regulates protein trafficking and association with the plasma membrane, protein subcellular location and functions. Palmitoylation and MRLs play a key role in neuronal functions, including glutamatergic neurotransmission, and immune-inflammatory responses. Palmitoylation, MLRs and n-3 PUFAs are vulnerable to the corruptive effects of O&NS. Chronic O&NS inhibits palmitoylation and causes profound changes in lipid membrane composition, e.g. n-3 PUFA depletion, increased membrane permeability and reduced fluidity, which together lead to disorders in intracellular signal transduction, receptor dysfunction and increased neurotoxicity. Disruption of lipid-based signalling is a source of the neuroimmune disorders involved in the pathophysiology of the abovementioned diseases. n-3 PUFA supplementation is a rational therapeutic approach targeting disruptions in lipid-based signalling.
Collapse
|
48
|
Olde Loohuis NFM, Ba W, Stoerchel PH, Kos A, Jager A, Schratt G, Martens GJM, van Bokhoven H, Nadif Kasri N, Aschrafi A. MicroRNA-137 Controls AMPA-Receptor-Mediated Transmission and mGluR-Dependent LTD. Cell Rep 2015; 11:1876-84. [PMID: 26095359 DOI: 10.1016/j.celrep.2015.05.040] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Revised: 04/13/2015] [Accepted: 05/26/2015] [Indexed: 10/23/2022] Open
Abstract
Mutations affecting the levels of microRNA miR-137 are associated with intellectual disability and schizophrenia. However, the pathophysiological role of miR-137 remains poorly understood. Here, we describe a highly conserved miR-137-binding site within the mRNA encoding the GluA1 subunit of AMPA-type glutamate receptors (AMPARs) and confirm that GluA1 is a direct target of miR-137. Postsynaptic downregulation of miR-137 at the CA3-CA1 hippocampal synapse selectively enhances AMPAR-mediated synaptic transmission and converts silent synapses to active synapses. Conversely, miR-137 overexpression selectively reduces AMPAR-mediated synaptic transmission and silences active synapses. In addition, we find that miR-137 is transiently upregulated in response to metabotropic glutamate receptor 5 (mGluR5), but not mGluR1 activation. Consequently, acute interference with miR-137 function impedes mGluR-LTD expression. Our findings suggest that miR-137 is a key factor in the control of synaptic efficacy and mGluR-dependent synaptic plasticity, supporting the notion that glutamatergic dysfunction contributes to the pathogenesis of miR-137-linked cognitive impairments.
Collapse
Affiliation(s)
- Nikkie F M Olde Loohuis
- Department of Cognitive Neuroscience, Radboudumc, 6500 HB Nijmegen, the Netherlands; Donders Institute for Brain, Cognition, and Behaviour, Centre for Neuroscience, 6525 AJ Nijmegen, the Netherlands
| | - Wei Ba
- Department of Human Genetics, Radboudumc, 6500 HB Nijmegen, the Netherlands; Donders Institute for Brain, Cognition, and Behaviour, Centre for Neuroscience, 6525 AJ Nijmegen, the Netherlands
| | - Peter H Stoerchel
- Institute of Physiological Chemistry, Biochemical-Pharmacological Center Marburg, Philipps University Marburg, 35032 Marburg, Germany
| | - Aron Kos
- Department of Cognitive Neuroscience, Radboudumc, 6500 HB Nijmegen, the Netherlands; Donders Institute for Brain, Cognition, and Behaviour, Centre for Neuroscience, 6525 AJ Nijmegen, the Netherlands
| | - Amanda Jager
- Department of Cognitive Neuroscience, Radboudumc, 6500 HB Nijmegen, the Netherlands; Donders Institute for Brain, Cognition, and Behaviour, Centre for Neuroscience, 6525 AJ Nijmegen, the Netherlands
| | - Gerhard Schratt
- Institute of Physiological Chemistry, Biochemical-Pharmacological Center Marburg, Philipps University Marburg, 35032 Marburg, Germany
| | - Gerard J M Martens
- Department of Molecular Animal Physiology, Radboud University Nijmegen, 6525 HP Nijmegen, the Netherlands; Donders Institute for Brain, Cognition, and Behaviour, Centre for Neuroscience, 6525 AJ Nijmegen, the Netherlands
| | - Hans van Bokhoven
- Department of Cognitive Neuroscience, Radboudumc, 6500 HB Nijmegen, the Netherlands; Department of Human Genetics, Radboudumc, 6500 HB Nijmegen, the Netherlands; Donders Institute for Brain, Cognition, and Behaviour, Centre for Neuroscience, 6525 AJ Nijmegen, the Netherlands
| | - Nael Nadif Kasri
- Department of Cognitive Neuroscience, Radboudumc, 6500 HB Nijmegen, the Netherlands; Department of Human Genetics, Radboudumc, 6500 HB Nijmegen, the Netherlands; Donders Institute for Brain, Cognition, and Behaviour, Centre for Neuroscience, 6525 AJ Nijmegen, the Netherlands.
| | - Armaz Aschrafi
- Department of Neuroinformatics, Radboud University Nijmegen, 6525 HP Nijmegen, the Netherlands; Donders Institute for Brain, Cognition, and Behaviour, Centre for Neuroscience, 6525 AJ Nijmegen, the Netherlands.
| |
Collapse
|
49
|
Cheng N, Hu X, Tian T, Lu W. PKMζ knockdown disrupts post-ischemic long-term potentiation via inhibiting postsynaptic expression of aminomethyl phosphonic acid receptors. J Biomed Res 2015; 29:241-9. [PMID: 26060448 PMCID: PMC4449492 DOI: 10.7555/jbr.28.20140033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 03/11/2014] [Accepted: 05/07/2014] [Indexed: 11/12/2022] Open
Abstract
Post-ischemic long-term potentiation (i-LTP) is a pathological form of plasticity that was observed in glutamate receptor-mediated neurotransmission after stroke and may exert a detrimental effect via facilitating excitotoxic damage. The mechanism underlying i-LTP, however, remains less understood. By employing electrophysiological recording and immunofluorescence assay on hippocampal slices and cultured neurons, we found that protein kinase Mζ (PKMζ), an atypical protein kinase C isoform, was involved in enhancing aminomethyl phosphonic acid (AMPA) receptor (AMPAR) expression after i-LTP induction. PKMζ knockdown attenuated postsynaptic expression of AMPA receptors and disrupted i-LTP. Consistently, we observed less neuronal death of cultured hippocampal cells with PKMζ knockdown. Meanwhile, these findings indicate that PKMζ plays an important role in i-LTP by regulating postsynaptic expression of AMPA receptors. This work adds new knowledge to the mechanism of i-LTP, and thus is helpful to find the potential target for clinical therapy of ischemic stroke.
Collapse
Affiliation(s)
- Nan Cheng
- Department of Neurobiology, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Xiaoqiao Hu
- Department of Neurobiology, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Tian Tian
- Department of Neurobiology, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Wei Lu
- Department of Neurobiology, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| |
Collapse
|
50
|
Upward synaptic scaling is dependent on neurotransmission rather than spiking. Nat Commun 2015; 6:6339. [PMID: 25751516 PMCID: PMC4355957 DOI: 10.1038/ncomms7339] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Accepted: 01/21/2015] [Indexed: 01/10/2023] Open
Abstract
Homeostatic plasticity encompasses a set of mechanisms that are thought to stabilize firing rates in neural circuits. The most widely studied form of homeostatic plasticity is upward synaptic scaling (upscaling), characterized by a multiplicative increase in the strength of excitatory synaptic inputs to a neuron as a compensatory response to chronic reductions in firing rate. While reduced spiking is thought to trigger upscaling, an alternative possibility is that reduced glutamatergic transmission generates this plasticity directly. However, spiking and neurotransmission are tightly coupled, so it has been difficult to determine their independent roles in the scaling process. Here we combined chronic multielectrode recording, closed-loop optogenetic stimulation, and pharmacology to show that reduced glutamatergic transmission directly triggers cell-wide synaptic upscaling. This work highlights the importance of synaptic activity in initiating signalling cascades that mediate upscaling. Moreover, our findings challenge the prevailing view that upscaling functions to homeostatically stabilize firing rates.
Collapse
|