1
|
Olaru M, Sachelarie L, Calin G. Hard Dental Tissues Regeneration-Approaches and Challenges. MATERIALS 2021; 14:ma14102558. [PMID: 34069265 PMCID: PMC8156070 DOI: 10.3390/ma14102558] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/10/2021] [Accepted: 05/13/2021] [Indexed: 12/13/2022]
Abstract
With the development of the modern concept of tissue engineering approach and the discovery of the potential of stem cells in dentistry, the regeneration of hard dental tissues has become a reality and a priority of modern dentistry. The present review reports the recent advances on stem-cell based regeneration strategies for hard dental tissues and analyze the feasibility of stem cells and of growth factors in scaffolds-based or scaffold-free approaches in inducing the regeneration of either the whole tooth or only of its component structures.
Collapse
Affiliation(s)
- Mihaela Olaru
- “Petru Poni” Institute of Macromolecular Chemistry, 41 A Grigore Ghica Voda Alley, 700487 Iasi, Romania;
| | - Liliana Sachelarie
- Faculty of Medical Dentistry, “Apollonia” University of Iasi, 2 Muzicii Str., 700399 Iasi, Romania;
- Correspondence:
| | - Gabriela Calin
- Faculty of Medical Dentistry, “Apollonia” University of Iasi, 2 Muzicii Str., 700399 Iasi, Romania;
| |
Collapse
|
2
|
Mohammadi Amirabad L, Zarrintaj P, Lindemuth A, Tayebi L. Whole Tooth Engineering. APPLICATIONS OF BIOMEDICAL ENGINEERING IN DENTISTRY 2020:443-462. [DOI: 10.1007/978-3-030-21583-5_19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
3
|
Wu Z, Wang F, Fan Z, Wu T, He J, Wang J, Zhang C, Wang S. Whole-Tooth Regeneration by Allogeneic Cell Reassociation in Pig Jawbone. Tissue Eng Part A 2019; 25:1202-1212. [PMID: 30648470 DOI: 10.1089/ten.tea.2018.0243] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
IMPACT STATEMENT The methods developed in this study to manipulate pig tooth germ cells in vitro and in vivo provide a reference for studying whole-tooth regeneration and tooth development in large animals. Of importance, compared with conventional ectopic tooth regeneration, conducted in the omentum, subcutaneous tissues, or kidney capsule (among other locations) with low with immune reactivity in rodent models, this study achieved orthotopic regeneration and development of whole teeth in a large mammal, representing a large stride toward the realization of tooth regenerative therapy for humans with missing teeth.
Collapse
Affiliation(s)
- Zhifang Wu
- Molecular Laboratory for Gene Therapy & Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
| | - Fu Wang
- Molecular Laboratory for Gene Therapy & Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
- School of Stomatology, Dalian Medical University, Dalian, China
| | - Zhipeng Fan
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
| | - Tingting Wu
- Molecular Laboratory for Gene Therapy & Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
| | - Junqi He
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Jinsong Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Chunmei Zhang
- Molecular Laboratory for Gene Therapy & Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
| | - Songlin Wang
- Molecular Laboratory for Gene Therapy & Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| |
Collapse
|
4
|
Abstract
Bioengineered dental tissues and whole teeth that exhibit features and properties of natural teeth can functionally surpass currently used artificial dental implants. However, no biologically based alternatives currently exist for clinical applications in dentistry. Here, we describe a newly established bioengineered tooth bud model for eventual applications in clinical dentistry. We also describe methods to fabricate and analyze bioengineered tooth tissues, including cell isolation, in vivo implantation, and post-harvest analyses.
Collapse
|
5
|
Sun N, Jiang T, Wu C, Sun H, Zhou Q, Lu L. Expression and influence of BMP-4 in human dental pulp cells cultured in vitro. Exp Ther Med 2018; 16:5112-5116. [PMID: 30542466 PMCID: PMC6257597 DOI: 10.3892/etm.2018.6824] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 08/29/2018] [Indexed: 12/31/2022] Open
Abstract
Effects of bone morphogenetic protein (BMP)-4 on proliferation and differentiation capacities of dental pulp cells through BMP-4 acting on human dental pulp cells cultured in vitro were investigated. Dental pulp tissues of lesion-free teeth extracted from patients due to orthodontics were taken, and human dental pulp cells were cultured in vitro using the tissue explant method. Immunocytochemical staining was used for the identification of vimentin and keratin. The dental pulp cells were divided into groups A and B. A total of 100 ng/ml BMP-4 was added into group A, while no inducer was added into group B as the control group. The cell growth curves at day 1, 2, 3, 5 and 7 after culture were drawn. At day 7, the cell count, alkaline phosphatase (ALP) activity, number of calcified nodules, and expression levels of dentin sialophosphoprotein (DSPP), dentin matrix protein-1 (DMP-1) and each gene related to dentinogenesis in each group were detected, respectively. Human dental pulp cells were conformed to the biological characteristics of dental pulp cells according to the identification of vimentin and keratin via immunocytochemical staining. With the prolongation of culture time, the number of cells in both groups was gradually increased, reaching the peak at day 5 and began to decline at day 7. The number of cells in group A was significantly greater than that in group B (p<0.05). According to the results of reverse transcription-quantitative polymerase chain reaction (RT-qPCR), the relative messenger ribonucleic acid (mRNA) expression levels of ALP, DSPP and DMP-1 in group A were significantly higher than those in group B (p<0.05). BMP-4 can promote the growth of dental pulp cells and remarkably enhance the differentiation of dental pulp cells into odontoblasts.
Collapse
Affiliation(s)
- Ningning Sun
- Department of Oral and Maxillofacial Surgery, School of Stomatology, China Medical University, Shenyang, Liaoning 110002, P.R. China
| | - Tianjiao Jiang
- Department of Oral Medicine, The Second Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121000, P.R. China
| | - Chuanbin Wu
- Department of Oral and Maxillofacial Surgery, School of Stomatology, China Medical University, Shenyang, Liaoning 110002, P.R. China
| | - Haijiang Sun
- Department of Oral and Maxillofacial Surgery, School of Stomatology, China Medical University, Shenyang, Liaoning 110002, P.R. China
| | - Qing Zhou
- Department of Oral and Maxillofacial Surgery, School of Stomatology, China Medical University, Shenyang, Liaoning 110002, P.R. China
| | - Li Lu
- Department of Oral and Maxillofacial Surgery, School of Stomatology, China Medical University, Shenyang, Liaoning 110002, P.R. China
| |
Collapse
|
6
|
Jiang N, Chen L, Ma Q, Ruan J. Nanostructured Ti surfaces and retinoic acid/dexamethasone present a spatial framework for the maturation and amelogenesis of LS-8 cells. Int J Nanomedicine 2018; 13:3949-3964. [PMID: 30022819 PMCID: PMC6042561 DOI: 10.2147/ijn.s167629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
PURPOSE To investigate the amelogenesis-inductive effects of surface structures at the nanoscale. For this purpose, variable nanostructured titanium dioxide (TiO2) surfaces were used as a framework to regulate the amelogenic behaviors of ameloblasts with the administration of retinoic acid (RA)/dexamethasone (DEX). MATERIALS AND METHODS TiO2 nanotubular (NT) surfaces were fabricated via anodization. Mouse ameloblast-like LS-8 cells were seeded and cultured on NT surfaces in the presence or absence of RA/DEX for 48 h. The amelogenic behaviors and extracellular matrix (ECM) mineralization of LS-8 cells on nanostructured Ti surfaces were characterized using field emission scanning electron microscope, laser scanning confocal microscope, quantitative polymerase chain reaction, MTT assay, and flow cytometry. RESULTS TiO2 NT surfaces (tube size ~30 and ~80 nm) were constructed via anodization at 5 or 20 V and denoted as NT5 and NT20, respectively. LS-8 cells exhibited significantly increased spread and proliferation, and lower rates of apoptosis and necrosis on NT surfaces. The amelogenic gene expression and ECM mineralization differed significantly on the NT20 and the NT5 and polished Ti sample surfaces in standard medium. The amelogenic behaviors of LS-8 cells were further changed by RA/DEX pretreatment, which directly drove maturation of LS-8 cells. CONCLUSION Controlling the amelogenic behaviors of ameloblast-like LS-8 cells by manipulating the nanostructure of biomaterials surfaces represents an effective tool for the establishment of a systemic framework for supporting enamel regeneration. The administration of RA/DEX is an effective approach for driving the amelogenesis and maturation of ameloblasts.
Collapse
Affiliation(s)
- Nan Jiang
- Department of Preventive Dentistry, College of Stomatology, Xi'an JiaoTong University, Xi'an, People's Republic of China,
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an JiaoTong University, Xi'an, People's Republic of China,
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an JiaoTong University, Xi'an, People's Republic of China,
| | - Lu Chen
- Department of Preventive Dentistry, College of Stomatology, Xi'an JiaoTong University, Xi'an, People's Republic of China,
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an JiaoTong University, Xi'an, People's Republic of China,
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an JiaoTong University, Xi'an, People's Republic of China,
| | - Qianli Ma
- Department of Immunology, School of Basic Medicine, Fourth Military Medical University, Xi'an, People's Republic of China,
- Department of Prosthodontics, College of Stomatology, Xi'an JiaoTong University, Xi'an, People's Republic of China,
| | - Jianping Ruan
- Department of Preventive Dentistry, College of Stomatology, Xi'an JiaoTong University, Xi'an, People's Republic of China,
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an JiaoTong University, Xi'an, People's Republic of China,
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an JiaoTong University, Xi'an, People's Republic of China,
| |
Collapse
|
7
|
Tsikandelova R, Mladenov P, Planchon S, Kalenderova S, Praskova M, Mihaylova Z, Stanimirov P, Mitev V, Renaut J, Ishkitiev N. Proteome response of dental pulp cells to exogenous FGF8. J Proteomics 2018; 183:14-24. [PMID: 29758290 DOI: 10.1016/j.jprot.2018.05.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 04/17/2018] [Accepted: 05/02/2018] [Indexed: 12/14/2022]
Abstract
FGF8 specifies early tooth development by directing the migration of the early tooth founder cells to the site of tooth emergence. To date the effect of the FGF8 in adult dental pulp has not been studied. We have assessed the regenerative potential of FGF8 by evaluating changes in the proteome landscape of dental pulp following short- and long-term exposure to recombinant FGF8 protein. In addition, we carried out qRT PCR analysis to determine extracellular/adhesion gene marker expression and assessed cell proliferation and mineralization in response to FGF8 treatment. 2D and mass spectrometry data showed differential expression of proteins implicated in cytoskeleton/ECM remodeling and migration, cell proliferation and odontogenic differentiation as evidenced by the upregulation of gelsolin, moesin, LMNA, WDR1, PLOD2, COPS5 and downregulation of P4HB. qRT PCR showed downregulation of proteins involved in cell-matrix adhesion such as ADAMTS8, LAMB3 and ANOS1 and increased expression of the angiogenesis marker PECAM1. We have observed that, FGF8 treatment was able to boost dental pulp cell proliferation and to enhance dental pulp mineralization. Collectively, our data suggest that, FGF8 treatment could promote endogenous healing of the dental pulp via recruitment of dental pulp progenitors as well as by promoting their angiogenic and odontogenic differentiation. SIGNIFICANCE Dental pulp cells (DP) have been studied extensively for the purposes of mineralized tissue repair, particularly for the reconstruction of hard and soft tissue maxillofacial defects. Canonical FGF signaling has been implicated throughout multiple stages of tooth development by regulating cell proliferation, differentiation, survival as well as cellular migration. FGF8 expression is indispensible for normal tooth development and particularly for the migration of early tooth progenitors to the sites of tooth emergence. The present study provides proteome and qRT PCR data with regard to the future application and biological relevance of FGF8 in dental regenerative medicine. AUTHORS WITH ORCID Rozaliya Tsikandelova - 0000-0003-0178-3767 Zornitsa Mihaylova - 0000-0003-1748-4489 Sébastien Planchon - 0000-0002-0455-0574 Nikolay Ishkitiev - 0000-0002-4351-5579.
Collapse
Affiliation(s)
- Rozaliya Tsikandelova
- Medical University Sofia, Dept. of Medical Chemistry and Biochemistry, 2 Zdrave Str. Sofia, 1431, Bulgaria
| | - Petko Mladenov
- Agrobioinstitute, Agricultural Academy, Dr. Tsankov Blvd 8, 1164 Sofia, Bulgaria
| | - Sébastien Planchon
- Luxembourg Institute of Science and Technology, 5 Avenue des Hauts-Fourneaux, 4362 Esch-sur-Alzette, Luxembourg
| | - Silvia Kalenderova
- Medical University Sofia, Dept. of Medical Chemistry and Biochemistry, 2 Zdrave Str. Sofia, 1431, Bulgaria
| | - Maria Praskova
- Medical University Sofia, Dept. of Medical Chemistry and Biochemistry, 2 Zdrave Str. Sofia, 1431, Bulgaria
| | - Zornitsa Mihaylova
- Medical University Sofia, Dept. of Oral and Maxillofacial Surgery, 1 G. Sofiyski str. Sofia, 1431, Bulgaria
| | - Pavel Stanimirov
- Medical University Sofia, Dept. of Oral and Maxillofacial Surgery, 1 G. Sofiyski str. Sofia, 1431, Bulgaria
| | - Vanyo Mitev
- Medical University Sofia, Dept. of Medical Chemistry and Biochemistry, 2 Zdrave Str. Sofia, 1431, Bulgaria
| | - Jenny Renaut
- Luxembourg Institute of Science and Technology, 5 Avenue des Hauts-Fourneaux, 4362 Esch-sur-Alzette, Luxembourg
| | - Nikolay Ishkitiev
- Medical University Sofia, Dept. of Medical Chemistry and Biochemistry, 2 Zdrave Str. Sofia, 1431, Bulgaria.
| |
Collapse
|
8
|
Smith EE, Zhang W, Schiele NR, Khademhosseini A, Kuo CK, Yelick PC. Developing a biomimetic tooth bud model. J Tissue Eng Regen Med 2017; 11:3326-3336. [PMID: 28066993 PMCID: PMC6687074 DOI: 10.1002/term.2246] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 04/11/2016] [Accepted: 06/20/2016] [Indexed: 12/31/2022]
Abstract
A long-term goal is to bioengineer, fully functional, living teeth for regenerative medicine and dentistry applications. Biologically based replacement teeth would avoid insufficiencies of the currently used dental implants. Using natural tooth development as a guide, a model was fabricated using post-natal porcine dental epithelial (pDE), porcine dental mesenchymal (pDM) progenitor cells, and human umbilical vein endothelial cells (HUVEC) encapsulated within gelatin methacrylate (GelMA) hydrogels. Previous publications have shown that post-natal DE and DM cells seeded onto synthetic scaffolds exhibited mineralized tooth crowns composed of dentin and enamel. However, these tooth structures were small and formed within the pores of the scaffolds. The present study shows that dental cell-encapsulated GelMA constructs can support mineralized dental tissue formation of predictable size and shape. Individually encapsulated pDE or pDM cell GelMA constructs were analysed to identify formulas that supported pDE and pDM cell attachment, spreading, metabolic activity, and neo-vasculature formation with co-seeded endothelial cells (HUVECs). GelMa constructs consisting of pDE-HUVECS in 3% GelMA and pDM-HUVECs within 5% GelMA supported dental cell differentiation and vascular mineralized dental tissue formation in vivo. These studies are the first to demonstrate the use of GelMA hydrogels to support the formation of post-natal dental progenitor cell-derived mineralized and functionally vascularized tissues of specified size and shape. These results introduce a novel three-dimensional biomimetic tooth bud model for eventual bioengineered tooth replacement teeth in humans. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Elizabeth E. Smith
- Department of Cell, Molecular, and Developmental Biology,
Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine
Boston USA
| | - Weibo Zhang
- Department of Orthodontics Tufts University School of
Dental Medicine Boston MA USA
| | - Nathan R. Schiele
- Department of Biomedical Engineering Tufts University
Science and Technology Center Medford MA USA
| | - Ali Khademhosseini
- Division of Health Sciences and Technology Harvard-MIT
Biomaterials Innovations Research Center and Division of Biomedical Engineering,
Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Catherine K. Kuo
- Center for Musculoskeletal Research Genetics, Department of
Biomedical Engineering, University of Rochester, Rochester, NY, USA
| | - Pamela C. Yelick
- Department of Cell, Molecular, and Developmental Biology,
Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine
Boston USA
- Department of Orthodontics Tufts University School of
Dental Medicine Boston MA USA
- Department of Biomedical Engineering Tufts University
Science and Technology Center Medford MA USA
| |
Collapse
|
9
|
Monteiro N, Yelick PC. Advances and perspectives in tooth tissue engineering. J Tissue Eng Regen Med 2017; 11:2443-2461. [PMID: 27151766 PMCID: PMC6625321 DOI: 10.1002/term.2134] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 11/30/2015] [Accepted: 12/10/2015] [Indexed: 12/20/2022]
Abstract
Bio-engineered teeth that can grow and remodel in a manner similar to that of natural teeth have the potential to serve as permanent replacements to the currently used prosthetic teeth, such as dental implants. A major challenge in designing functional bio-engineered teeth is to mimic both the structural and anisotropic mechanical characteristics of the native tooth. Therefore, the field of dental and whole tooth regeneration has advanced towards the molecular and nanoscale design of bio-active, biomimetic systems, using biomaterials, drug delivery systems and stem cells. The focus of this review is to discuss recent advances in tooth tissue engineering, using biomimetic scaffolds that provide proper architectural cues, exhibit the capacity to support dental stem cell proliferation and differentiation and sequester and release bio-active agents, such as growth factors and nucleic acids, in a spatiotemporal controlled manner. Although many in vitro and in vivo studies on tooth regeneration appear promising, before tooth tissue engineering becomes a reality for humans, additional research is needed to perfect methods that use adult human dental stem cells, as opposed to embryonic dental stem cells, and to devise the means to generate bio-engineered teeth of predetermined size and shape. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Nelson Monteiro
- Department of Oral and Maxillofacial Pathology, Tufts University, Boston, MA, USA
| | - Pamela C. Yelick
- Department of Oral and Maxillofacial Pathology, Tufts University, Boston, MA, USA
| |
Collapse
|
10
|
Malyshev IY, Yanushevich OO. [Tissue engineering of the tooth: directions of development, achievements and unresolved problems]. STOMATOLOGIIA 2017; 96:72-79. [PMID: 28858286 DOI: 10.17116/stomat201796472-79] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Affiliation(s)
- I Yu Malyshev
- Moscow State University of Medicine and Dentistry named after A.I. Evdokimov, Moscow, Russia
| | - O O Yanushevich
- Moscow State University of Medicine and Dentistry named after A.I. Evdokimov, Moscow, Russia
| |
Collapse
|
11
|
Monteiro N, Smith EE, Angstadt S, Zhang W, Khademhosseini A, Yelick PC. Dental cell sheet biomimetic tooth bud model. Biomaterials 2016; 106:167-79. [PMID: 27565550 PMCID: PMC5025039 DOI: 10.1016/j.biomaterials.2016.08.024] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 08/12/2016] [Accepted: 08/15/2016] [Indexed: 12/16/2022]
Abstract
Tissue engineering and regenerative medicine technologies offer promising therapies for both medicine and dentistry. Our long-term goal is to create functional biomimetic tooth buds for eventual tooth replacement in humans. Here, our objective was to create a biomimetic 3D tooth bud model consisting of dental epithelial (DE) - dental mesenchymal (DM) cell sheets (CSs) combined with biomimetic enamel organ and pulp organ layers created using GelMA hydrogels. Pig DE or DM cells seeded on temperature-responsive plates at various cell densities (0.02, 0.114 and 0.228 cells 10(6)/cm(2)) and cultured for 7, 14 and 21 days were used to generate DE and DM cell sheets, respectively. Dental CSs were combined with GelMA encapsulated DE and DM cell layers to form bioengineered 3D tooth buds. Biomimetic 3D tooth bud constructs were cultured in vitro, or implanted in vivo for 3 weeks. Analyses were performed using micro-CT, H&E staining, polarized light (Pol) microscopy, immunofluorescent (IF) and immunohistochemical (IHC) analyses. H&E, IHC and IF analyses showed that in vitro cultured multilayered DE-DM CSs expressed appropriate tooth marker expression patterns including SHH, BMP2, RUNX2, tenascin and syndecan, which normally direct DE-DM interactions, DM cell condensation, and dental cell differentiation. In vivo implanted 3D tooth bud constructs exhibited mineralized tissue formation of specified size and shape, and SHH, BMP2 and RUNX2and dental cell differentiation marker expression. We propose our biomimetic 3D tooth buds as models to study optimized DE-DM cell interactions leading to functional biomimetic replacement tooth formation.
Collapse
Affiliation(s)
- Nelson Monteiro
- Department of Orthodontics, Division of Craniofacial and Molecular Genetics, Tufts University, 136 Harrison Avenue, M824, Boston, MA 02111, USA.
| | - Elizabeth E Smith
- Department of Orthodontics, Division of Craniofacial and Molecular Genetics, Tufts University, 136 Harrison Avenue, M824, Boston, MA 02111, USA.
| | - Shantel Angstadt
- Department of Orthodontics, Division of Craniofacial and Molecular Genetics, Tufts University, 136 Harrison Avenue, M824, Boston, MA 02111, USA.
| | - Weibo Zhang
- Department of Orthodontics, Division of Craniofacial and Molecular Genetics, Tufts University, 136 Harrison Avenue, M824, Boston, MA 02111, USA.
| | - Ali Khademhosseini
- Division of Health Sciences and Technology, Harvard-MIT, Biomaterials Innovations Research Center, Division of Biomedical Engineering, Brigham and Women's Hospital, Harvard Medical School, 65 Landsdowne Street Cambridge, MA 02139, USA.
| | - Pamela C Yelick
- Department of Orthodontics, Division of Craniofacial and Molecular Genetics, Tufts University, 136 Harrison Avenue, M824, Boston, MA 02111, USA.
| |
Collapse
|
12
|
Smith EE, Yelick PC. Progress in Bioengineered Whole Tooth Research: From Bench to Dental Patient Chair. ACTA ACUST UNITED AC 2016; 3:302-308. [PMID: 28255531 DOI: 10.1007/s40496-016-0110-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Tooth loss is a significant health issue that affects the physiological and social aspects of everyday life. Missing teeth impair simple tasks of chewing and speaking, and can also contribute to reduced self-confidence. An emerging and exciting area of regenerative medicine based dental research focuses on the formation of bioengineered whole tooth replacement therapies that can provide both the function and sensory responsiveness of natural teeth. This area of research aims to enhance the quality of dental and oral health for those suffering from tooth loss. Current approaches use a combination of dental progenitor cells, scaffolds and growth factors to create biologically based replacement teeth to serve as improved alternatives to currently used artificial dental prosthetics. This article is an overview of current progress, challenges, and future clinical applications of bioengineered whole teeth.
Collapse
Affiliation(s)
- Elizabeth E Smith
- Department of Cell, Molecular, and Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University School Medicine, Department of Orthodontics, Tufts University School of Dental Medicine
| | - Pamela C Yelick
- Director, Division of Craniofacial and Molecular Genetics, Professor, Department of Orthodontics, Tufts University School of Dental Medicine, Department of Biomedical Engineering, Tufts University, Department of Cell, Molecular, and Developmental Biology, Sackler School of Graduate Biomedical Sciences Tufts University School of Medicine, 136 Harrison Avenue, M824, Boston MA 02111
| |
Collapse
|