1
|
Abu El-Asrar AM, Nawaz MI, Ahmad A, Siddiquei M, Allegaert E, Adyns L, Vanbrabant L, Gikandi PW, De Hertogh G, Struyf S, Opdenakker G. ADAMTS13 Improves Endothelial Function and Reduces Inflammation in Diabetic Retinopathy. Cells 2025; 14:85. [PMID: 39851513 PMCID: PMC11764296 DOI: 10.3390/cells14020085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 01/05/2025] [Accepted: 01/08/2025] [Indexed: 01/26/2025] Open
Abstract
The protease, a disintegrin and metalloproteinase with thrombospondin type 1 motif member 13 (ADAMTS13), known to cleave only the von Willebrand factor (VWF), has powerful regulatory effects on microvascular platelet adhesion, thrombosis, inflammation, and endothelial dysfunction. We study the protection against diabetes-induced retinal injury in experimental rats by supplementation with recombinant ADAMTS13. We compare human epiretinal membranes and vitreous samples from nondiabetic subjects and patients with proliferative diabetic retinopathy (PDR) and extend in vitro analyses with the use of various immunodetection and spectrofluorimetric methods on rat retina and human retinal glial and endothelial cell cultures. Functional studies include the assessment of the blood-retinal barrier (BRB), cell adhesion, and in vitro angiogenesis. In epiretinal membranes, endothelial cells and monocytes/macrophages express ADAMTS13. The levels of VWF, the platelet marker CD41, ADAMTS13, and the biomarkers of endothelial cell injury soluble VE-cadherin and soluble syndecan-1 are increased in PDR vitreous. ADAMTS13 is downregulated in diabetic rat retinas. The intravitreal administration of ADAMTS13 attenuates diabetes-induced BRB breakdown, the downregulation of VE-cadherin and β-catenin, and the upregulation of VWF, CD41, phospho-ERK1/2, HMGB1, VCAM-1, and ICAM-1. In Müller cells, ADAMTS13 attenuates MCP-1, MMP-9, and ROS upregulation induced by diabetic mimetic conditions. In HRMECs, ADAMTS13 attenuates the shedding of the soluble VE-cadherin and soluble syndecan-1 and the levels of phospho-ERK1/2, MCP-1, fractalkine, and ROS induced by diabetic mimetic conditions, the upregulation of ICAM-1 and VCAM-1 elicited by TNF-α, the adherence of monocytes induced by TNF-α, and VEGF-induced migration of human retinal microvascular endothelial cells. Our findings suggest that enhancing ADAMTS13 levels in situ ameliorates diabetes-induced retinal inflammation and vascular dysfunction.
Collapse
Affiliation(s)
- Ahmed M. Abu El-Asrar
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh 11411, Saudi Arabia; (M.I.N.); (A.A.); (M.S.); (P.W.G.); (G.O.)
- Dr. Nasser Al-Rashid Research Chair in Ophthalmology, College of Medicine, King Saud University, Riyadh 11411, Saudi Arabia
| | - Mohd I. Nawaz
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh 11411, Saudi Arabia; (M.I.N.); (A.A.); (M.S.); (P.W.G.); (G.O.)
| | - Ajmal Ahmad
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh 11411, Saudi Arabia; (M.I.N.); (A.A.); (M.S.); (P.W.G.); (G.O.)
| | - Mairaj Siddiquei
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh 11411, Saudi Arabia; (M.I.N.); (A.A.); (M.S.); (P.W.G.); (G.O.)
| | - Eef Allegaert
- Laboratory of Histochemistry and Cytochemistry, University of Leuven, 3000 Leuven, Belgium; (E.A.); (G.D.H.)
- University Hospitals UZ Gasthuisberg, 3000 Leuven, Belgium
| | - Lowie Adyns
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute, University of Leuven, 3000 Leuven, Belgium; (L.A.); (L.V.); (S.S.)
| | - Lotte Vanbrabant
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute, University of Leuven, 3000 Leuven, Belgium; (L.A.); (L.V.); (S.S.)
| | - Priscilla W. Gikandi
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh 11411, Saudi Arabia; (M.I.N.); (A.A.); (M.S.); (P.W.G.); (G.O.)
| | - Gert De Hertogh
- Laboratory of Histochemistry and Cytochemistry, University of Leuven, 3000 Leuven, Belgium; (E.A.); (G.D.H.)
- University Hospitals UZ Gasthuisberg, 3000 Leuven, Belgium
| | - Sofie Struyf
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute, University of Leuven, 3000 Leuven, Belgium; (L.A.); (L.V.); (S.S.)
| | - Ghislain Opdenakker
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh 11411, Saudi Arabia; (M.I.N.); (A.A.); (M.S.); (P.W.G.); (G.O.)
- University Hospitals UZ Gasthuisberg, 3000 Leuven, Belgium
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Transplantation, Rega Institute, University of Leuven, 3000 Leuven, Belgium
| |
Collapse
|
2
|
Dutta Gupta S, Ta M. ADAMTS13 regulates angiogenic markers via Ephrin/Eph signaling in human mesenchymal stem cells under serum-deprivation stress. Sci Rep 2024; 14:560. [PMID: 38177376 PMCID: PMC10766954 DOI: 10.1038/s41598-023-51079-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 12/30/2023] [Indexed: 01/06/2024] Open
Abstract
Mesenchymal stem cells (MSCs) are known to facilitate angiogenesis and promote neo-vascularization via secretion of trophic factors. Here, we explored the molecular mechanism adopted by ADAMTS13 in modulating the expression of some key angiogenic markers in human umbilical cord-derived MSCs under serum-deprivation stress. Wharton's jelly MSCs (WJ-MSCs) were isolated from the perivascular region of human umbilical cords by explant culture. ADAMTS13 was upregulated at both mRNA and protein levels in WJ-MSCs under serum-deprivation stress. Correspondingly, some key angiogenic markers were also seen to be upregulated. By screening signaling pathways, p38 and JNK pathways were identified as negative and positive regulators for expression of ADAMTS13, and the angiogenic markers, respectively. Our results also indicated the Notch pathway and p53 as other probable partners modulating the expression of ADAMTS13 and the angiogenic markers. Knockdown of ADAMTS13 using siRNA led to reversal in the expression of these angiogenic markers. Further, ADAMTS13 was shown to act via the EphrinB2/EphB4 axis followed by ERK signaling to control expression of the angiogenic markers. Interestingly, stronger expression levels were noted for ADAMTS13, VEGF and PDGF under a more stringent nutrient stress condition. Thus, we highlight a novel role of ADAMTS13 in WJ-MSCs under nutrient stress condition.
Collapse
Affiliation(s)
- Srishti Dutta Gupta
- Department of Biological Sciences, Indian Institute of Science Education and Research, Kolkata (IISER Kolkata), Mohanpur Campus, Dist: Nadia, Kolkata, West Bengal, 741246, India
| | - Malancha Ta
- Department of Biological Sciences, Indian Institute of Science Education and Research, Kolkata (IISER Kolkata), Mohanpur Campus, Dist: Nadia, Kolkata, West Bengal, 741246, India.
| |
Collapse
|
3
|
Teranishi R, Takahashi T, Obata Y, Nishida T, Ohkubo S, Kazuno H, Saito Y, Serada S, Fujimoto M, Kurokawa Y, Saito T, Yamamoto K, Yamashita K, Tanaka K, Makino T, Nakajima K, Hirota S, Naka T, Eguchi H, Doki Y. Combination of pimitespib (TAS-116) with sunitinib is an effective therapy for imatinib-resistant gastrointestinal stromal tumors. Int J Cancer 2023; 152:2580-2593. [PMID: 36752576 DOI: 10.1002/ijc.34461] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/29/2022] [Accepted: 01/26/2023] [Indexed: 02/09/2023]
Abstract
Despite the effectiveness of imatinib, most gastrointestinal stromal tumors (GISTs) develop resistance to the treatment, mainly due to the reactivation of KIT tyrosine kinase activity. Sunitinib, which inhibits the phosphorylation of KIT and vascular endothelial growth factor (VEGF) receptor, has been established as second-line therapy for GISTs. The recently-developed heat shock protein 90 (HSP90) inhibitor pimitespib (PIM; TAS-116) demonstrated clinical benefits in some clinical trials; however, the effects were limited. The aim of our study was therefore to clarify the effectiveness and mechanism of the combination of PIM with sunitinib for imatinib-resistant GISTs. We evaluated the efficacy and mechanism of the combination of PIM with sunitinib against imatinib-resistant GIST using imatinib-resistant GIST cell lines and murine xenograft models. In vitro analysis demonstrated that PIM and sunitinib combination therapy strongly inhibited growth and induced apoptosis in imatinib-resistant GIST cell lines by inhibiting KIT signaling and decreasing auto-phosphorylated KIT in the Golgi apparatus. In addition, PIM and sunitinib combination therapy enhanced antitumor responses in the murine xenograft models compared to individual therapies. Further analysis of the xenograft models showed that the combination therapy not only downregulated the KIT signaling pathway but also decreased the tumor microvessel density. Furthermore, we found that PIM suppressed VEGF expression in GIST cells by suppressing protein kinase D2 and hypoxia-inducible factor-1 alpha, which are both HSP90 client proteins. In conclusion, the combination of PIM and sunitinib is effective against imatinib-resistant GIST via the downregulation of KIT signaling and angiogenic signaling pathways.
Collapse
Affiliation(s)
- Ryugo Teranishi
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita-City, Osaka, Japan
| | - Tsuyoshi Takahashi
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita-City, Osaka, Japan
| | - Yuuki Obata
- National Cancer Center Research Institute, Laboratory of Intracellular Traffic and Oncology, Tsukiji, Japan
| | - Toshirou Nishida
- Department of Surgery, Japan Community Health Care Organization Osaka Hospital, Osaka, Japan
| | - Shuichi Ohkubo
- Discovery and Preclinical Research Division, Taiho Pharmaceutical Co. Ltd., Tsukuba, Japan
| | - Hiromi Kazuno
- Discovery and Preclinical Research Division, Taiho Pharmaceutical Co. Ltd., Tsukuba, Japan
| | - Yurina Saito
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita-City, Osaka, Japan
| | - Satoshi Serada
- Institute for Biomedical Sciences Molecular Pathophysiology, Iwate Medical University School of Medicine, Yahaba, Japan
| | - Minoru Fujimoto
- Division of Allergy and Rheumatology, Department of Internal Medicine, Iwate Medical University School of Medicine, Yahaba, Japan
| | - Yukinori Kurokawa
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita-City, Osaka, Japan
| | - Takuro Saito
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita-City, Osaka, Japan
| | - Kazuyoshi Yamamoto
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita-City, Osaka, Japan
| | - Kotaro Yamashita
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita-City, Osaka, Japan
| | - Koji Tanaka
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita-City, Osaka, Japan
| | - Tomoki Makino
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita-City, Osaka, Japan
| | - Kiyokazu Nakajima
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita-City, Osaka, Japan
| | - Seiichi Hirota
- Department of Surgical Pathology, Hyogo College of Medicine, Nishinomiya, Japan
| | - Tetsuji Naka
- Institute for Biomedical Sciences Molecular Pathophysiology, Iwate Medical University School of Medicine, Yahaba, Japan.,Division of Allergy and Rheumatology, Department of Internal Medicine, Iwate Medical University School of Medicine, Yahaba, Japan
| | - Hidetoshi Eguchi
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita-City, Osaka, Japan
| | - Yuichiro Doki
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita-City, Osaka, Japan
| |
Collapse
|
4
|
Qu H, Khalil RA. Role of ADAM and ADAMTS Disintegrin and Metalloproteinases in Normal Pregnancy and Preeclampsia. Biochem Pharmacol 2022; 206:115266. [PMID: 36191626 DOI: 10.1016/j.bcp.2022.115266] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022]
Abstract
Normal pregnancy (NP) involves intricate processes starting with egg fertilization, proceeding to embryo implantation, placentation and gestation, and culminating in parturition. These pregnancy-related processes require marked uteroplacental and vascular remodeling by proteolytic enzymes and metalloproteinases. A disintegrin and metalloproteinase (ADAM) and ADAM with thrombospondin motifs (ADAMTS) are members of the zinc-dependent family of proteinases with highly conserved protein structure and sequence homology, which include a pro-domain, and a metalloproteinase, disintegrin and cysteine-rich domain. In NP, ADAMs and ADAMTS regulate sperm-egg fusion, embryo implantation, trophoblast invasion, placental angiogenesis and spiral arteries remodeling through their ectodomain proteolysis of cell surface cytokines, cadherins and growth factors as well as their adhesion with integrins and cell-cell junction proteins. Preeclampsia (PE) is a serious complication of pregnancy characterized by new-onset hypertension (HTN) in pregnancy (HTN-Preg) at or after 20 weeks of gestation, with or without proteinuria. Insufficient trophoblast invasion of the uterine wall, inadequate expansive remodeling of the spiral arteries, reduced uteroplacental perfusion pressure, and placental ischemia/hypoxia are major initiating events in the pathogenesis of PE. Placental ischemia/hypoxia increase the release of reactive oxygen species (ROS), which lead to aberrant expression/activity of certain ADAMs and ADAMTS. In PE, abnormal expression/activity of specific ADAMs and ADAMTS that function as proteolytic sheddases could alter proangiogenic and growth factors, and promote the release of antiangiogenic factors and inflammatory cytokines into the placenta and maternal circulation leading to generalized inflammation, endothelial cell injury and HTN-Preg, renal injury and proteinuria, and further decreases in uteroplacental blood flow, exaggeration of placental ischemia, and consequently fetal growth restriction. Identifying the role of ADAMs and ADAMTS in NP and PE has led to a better understanding of the underlying molecular and vascular pathways, and advanced the potential for novel biomarkers for prediction and early detection, and new approaches for the management of PE.
Collapse
Affiliation(s)
- Hongmei Qu
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA
| | - Raouf A Khalil
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA.
| |
Collapse
|
5
|
Circulating ADAMTS13 Levels Are Associated with an Increased Occurrence of Obstructive Sleep Apnea. DISEASE MARKERS 2022; 2022:1504137. [PMID: 35392493 PMCID: PMC8983172 DOI: 10.1155/2022/1504137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 02/25/2022] [Indexed: 11/17/2022]
Abstract
Background and Aims. Obstructive sleep apnea (OSA) is strongly associated with obesity, metabolic diseases, coronary artery disease (CAD), stroke, hypertension, and other disorders. This study assessed the relationship between circulating a disintegrin and metalloprotease with a thrombospondin type 1 motif, member 13 (ADAMTS13) levels and the presence of OSA. Materials and Methods. This cross-sectional study included a total of 223 patients. We used a powerful high-throughput multiplexed immunobead-based assay to detect circulating levels of ADAMTS13. The associations between circulating ADAMTS13 levels and OSA were evaluated by multivariate logistic regression analysis. Results. Circulating ADAMTS13 levels were significantly elevated in patients with OSA compared with controls (0.8 vs. 2.7 μg/mL, respectively,
). After adjusting for confounding factors, circulating ADAMTS13 levels were significantly independently associated with the presence of OSA (
, 95% confidence interval (CI) =4.11–24.13,
). Furthermore, circulating ADAMTS13 levels showed discriminatory accuracy in assessing the presence of OSA (area under the curve: 0.87, 95% CI 0.81–0.93,
). Conclusion. Circulating ADAMTS13 levels were significantly correlated with the presence of OSA. ADAMTS13 may therefore function as a novel biomarker for monitoring the development and progression of OSA.
Collapse
|
6
|
Association between ADAMTS13 deficiency and cardiovascular events in chronic hemodialysis patients. Sci Rep 2021; 11:22816. [PMID: 34819564 PMCID: PMC8613234 DOI: 10.1038/s41598-021-02264-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 11/11/2021] [Indexed: 11/09/2022] Open
Abstract
A mild decrease of ADAMTS13 (a disintegrin and metalloprotease with thrombospodin type 1 motif 13) could attribute to stroke and coronary heart disease in general population. However, the role of ADAMTS13 in hemodialysis (HD) patients remains to be explored. This cross-sectional and observational cohort study enrolled 98 chronic HD patients and 100 normal subjects with the aims to compare the ADAMTS13 activity between chronic HD patients and normal subjects, and to discover the role of ADAMTS13 on the newly developed cardiovascular events for HD patients in a 2-year follow-up. Our HD patients had a significantly lower ADAMTS13 activity than normal subjects, 41.0 ± 22.8% versus 102.3 ± 17.7%, p < 0.001. ADAMTS13 activity was positively correlated with diabetes, triglyceride and hemoglobin A1c, and negatively with high-density lipoprotein cholesterol levels in HD patients. With a follow-up of 20.3 ± 7.3 months, the Cox proportional hazards model revealed that low ADAMTS13, comorbid diabetes, and coronary heart diseases have independent correlations with the development of cardiovascular events. Our study demonstrated that chronic HD patients have a markedly decreased ADAMTS13 activity than normal subjects. Although ADAMTS13 seems to correlate well with diabetes, high triglyceride and low high-density lipoprotein cholesterol levels, ADAMTS13 deficiency still carries an independent risk for cardiovascular events in chronic HD patients.
Collapse
|
7
|
Kuniyoshi N, Imai H, Kiso Y, Nagaoka O, Kusakabe KT. Biological potentials for a family of disintegrin and metalloproteinase (ADAMDEC)-1 in mouse normal pregnancy. J Vet Med Sci 2021; 83:512-521. [PMID: 33612551 PMCID: PMC8025434 DOI: 10.1292/jvms.20-0570] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Our previous research has indicated local expression of ADAMDEC-1, a family of disintegrin and metalloproteinase, was confirmed in the mouse placentas and
enhancement was found in the sites for spontaneous abortion. Present study was aimed to identify biological effects of ADAMDEC-1 in pregnancy process. Syngeneic
pairs of C57BL/6J mice and heterogenic mating pairs of CBA/J and DBA/2 mice were used. Pregnant mice were treated with recombinant ADAMDEC-1 protein.
Vasculogenesis effects was evaluated using the Matrigel plugs including vascular endothelial growth factor singularity or combination with ADAMDEC-1. ADAMDEC-1
single effects were evaluated by tubal formation and proliferation assays using HuEht-1 endothelial cells. Expression of ADAMDEC-1 was not exactly corresponded
with the time periods for miscarriage initiation. ADAMDEC-1 was distributed in normal placentas and fetuses, especially at extraembryonic ectoderm, decidua
cells, uterine natural killer (uNK) cells in decidua, trophoblasts in labyrinthine zone, and hematopoietic cells in umbilical blood and fetal liver. ADAMDEC-1
treatment did not affect reproductive performances, while it elevated uNK cell recruitment in placenta and enlarged lumen sizes of the intraplacental vessels.
In vitro analysis also indicated ADAMDEC-1 promoting effect on tubal formation and cell length of HuEht-1. qPCR analysis showed that
ADAMDEC-1 modified placental gene expression especially for linkage of actin filament rearrangement. Our findings suggested that ADAMDEC-1 is correlated on cell
shape, stability, and movement via modification of actin cytoskeleton. ADMADEC-1 suspected to regulate cellular activity of endothelial cells, trophoblasts, and
uNK cells and may support normal developing of mouse placentas.
Collapse
Affiliation(s)
- Nobue Kuniyoshi
- Laboratory of Basic Veterinary Science, The United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi 753-8515, Japan
| | - Hiroyuki Imai
- Laboratory of Veterinary Anatomy, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi 753-8515, Japan
| | - Yasuo Kiso
- Laboratory of Veterinary Anatomy, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi 753-8515, Japan
| | - Orie Nagaoka
- Laboratory of Veterinary Anatomy, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi 753-8515, Japan
| | - Ken Takeshi Kusakabe
- Laboratory of Basic Veterinary Science, The United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi 753-8515, Japan.,Laboratory of Veterinary Anatomy, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi 753-8515, Japan
| |
Collapse
|
8
|
Kim HD, Park J, Amirthalingam S, Jayakumar R, Hwang NS. Bioinspired inorganic nanoparticles and vascular factor microenvironment directed neo-bone formation. Biomater Sci 2021; 8:2627-2637. [PMID: 32242197 DOI: 10.1039/d0bm00041h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Various strategies have been explored to stimulate new bone formation. These strategies include using angiogenic stimulants in combination with inorganic biomaterials. Neovascularization during the neo-bone formation provides nutrients along with bone-forming minerals. Therefore, it is crucial to design a bone stimulating microenvironment composed of both pro-angiogenic and osteogenic factors. In this respect, human vascular endothelial growth factor (hVEGF) has been shown to promote blood vessel formation and bone formation. Furthermore, in recent years, whitlockite (WH), a novel phase of magnesium-containing calcium phosphate derivatives that exist in our bone tissue, has been synthesized and applied in bone tissue engineering. In this study, our aim is to explore the potential use of hVEGF and WH for bone tissue engineering. Our study demonstrated that hVEGF and a WH microenvironment synergistically stimulated osteogenic commitment of mesenchymal stem cells both in vitro and in vivo.
Collapse
Affiliation(s)
- Hwan D Kim
- School of Chemical and Biological Engineering, the Institute of Chemical Processes, Seoul National University, Seoul, 151-742, Republic of Korea.
| | - Jungha Park
- School of Chemical and Biological Engineering, the Institute of Chemical Processes, Seoul National University, Seoul, 151-742, Republic of Korea.
| | - Sivashanmugam Amirthalingam
- Centre for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi 682041, India
| | - R Jayakumar
- Centre for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi 682041, India
| | - Nathaniel S Hwang
- School of Chemical and Biological Engineering, the Institute of Chemical Processes, Seoul National University, Seoul, 151-742, Republic of Korea. and Interdisciplinary Program in Bioengineering, Seoul National University, 151-742, Seoul, Republic of Korea and The BioMax/N-Bio Institute of Seoul National University, Seoul, 151-742, Republic of Korea
| |
Collapse
|
9
|
Takaya H, Namisaki T, Moriya K, Shimozato N, Kaji K, Ogawa H, Ishida K, Tsuji Y, Kaya D, Takagi H, Fujinaga Y, Nishimura N, Sawada Y, Kawaratani H, Akahane T, Matsumoto M, Yoshiji H. Association between ADAMTS13 activity-VWF antigen imbalance and the therapeutic effect of HAIC in patients with hepatocellular carcinoma. World J Gastroenterol 2020; 26:7232-7241. [PMID: 33362379 PMCID: PMC7723670 DOI: 10.3748/wjg.v26.i45.7232] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/09/2020] [Accepted: 11/13/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Prediction of HAIC treatment response is important for improving the prognosis in patients with hepatocellular carcinoma (HCC). The progression of HCC is related to hypercoagulability and angiogenesis. It is known that ADAMTS13 and von Willebrand factor (VWF) are related to hypercoagulability. In addition, previous study reported that the association between ADAMTS13 and VWF, and angiogenesis via vascular endothelial growth factor (VEGF). Recently, ADAMTS13 and VWF have been associated with the prognosis in patients with various kinds of cancer undergoing chemotherapy. AIM To investigate whether ADAMTS13 and VWF become useful biomarkers of treatment response in HCC patients before the initiation of HAIC treatment. METHODS Seventy-two patients were enrolled in this study. ADAMTS13 activity (ADAMTS13:AC), VWF antigen (VWF:Ag) and VEGF levels were determined via enzyme-linked immunosorbent assay. Univariable and multivariable analyses were performed to determine the predictive factors of treatment response in patients with HCC undergoing HAIC treatment. RESULTS ADAMTS13:AC levels in HCC patients with stable disease (SD) + partial response (PR) of HAIC treatment were significantly higher than those with progressive disease (PD) (P < 0.05). In contrast, VWF:Ag/ADAMTS13:AC ratio and VEGF levels in HCC patients with SD + PR were significantly lower than those with PD (both P < 0.05). Patients with high VWF:Ag/ADAMTS13:AC ratio (> 2.7) had higher VEGF levels than those with low ratio (≤ 2.7). Multivariable analysis revealed that VWF:Ag/ADAMTS13:AC ratio was a predictive factor of HAIC treatment response. CONCLUSION VWF:Ag/ADAMTS13:AC ratio may become a useful biomarker of treatment response in HCC patients before the initiation of HAIC treatment.
Collapse
Affiliation(s)
- Hiroaki Takaya
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara 634-8522, Japan
| | - Tadashi Namisaki
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara 634-8522, Japan
| | - Kei Moriya
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara 634-8522, Japan
| | - Naotaka Shimozato
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara 634-8522, Japan
| | - Kosuke Kaji
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara 634-8522, Japan
| | - Hiroyuki Ogawa
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara 634-8522, Japan
| | - Koji Ishida
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara 634-8522, Japan
| | - Yuki Tsuji
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara 634-8522, Japan
| | - Daisuke Kaya
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara 634-8522, Japan
| | | | - Yukihisa Fujinaga
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara 634-8522, Japan
| | - Norihisa Nishimura
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara 634-8522, Japan
| | - Yasuhiko Sawada
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara 634-8522, Japan
| | - Hideto Kawaratani
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara 634-8522, Japan
| | - Takemi Akahane
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara 634-8522, Japan
| | - Masanori Matsumoto
- Department of Blood Transfusion Medicine, Nara Medical University, Kashihara, Nara 634-8522, Japan
| | - Hitoshi Yoshiji
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara 634-8522, Japan
| |
Collapse
|
10
|
Liu L, Ma Z, Zhou X, Yin J, Lu J, Su J, Shen F, Xie L, Hu S, Ling J. Tryptophan 387 and 390 residues in ADAMTS13 are crucial to the ability of vascular tube formation and cell migration of endothelial cells. Clin Exp Pharmacol Physiol 2020; 47:1402-1409. [PMID: 32222985 DOI: 10.1111/1440-1681.13313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 03/04/2020] [Accepted: 03/20/2020] [Indexed: 01/02/2023]
Abstract
A disintegrin and metalloproteinase with thrombospondin motifs 13 (ADAMTS13) was mainly generated and secreted from endothelial cells (ECs). Our previous study showed that tryptophan (Trp) residues at 387 and 390 in ADAMTS13 are required for its secretion and enzymatic activity. However, the effects on its host cell as well as the potential mechanism have not been clear. The aim of the study was to examine the effects of Trp residues 387 and 390 of ADAMTS13 on the biological processes of ECs. Herein, Trp was substituted with alanine in ADAMTS13 to generate ADAMTS13 mutants at 387 (W387A), 390 (W390A), and double mutants at 387 and 390 (2WA), respectively. We found that substitution mutation impaired vascular endothelial growth factor (VEGF) secretion and the downstream JAK1/STAT3 activation, the binding ability to Von Willebrand factor, cell proliferation, migration, and vascular tube formation. Overall, our study concluded that Trp387 and Trp390 of ADAMTS13 play vital roles in the biological function of ECs.
Collapse
Affiliation(s)
- Ling Liu
- Department of Orthopedics, Clinical Medical Research Center of Jiangsu Province, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhenni Ma
- Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, The First Affiliated Hospital of Soochow University, Suzhou, China
- Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Xuemei Zhou
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, China
| | - Jie Yin
- Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, The First Affiliated Hospital of Soochow University, Suzhou, China
- Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Jun Lu
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, China
| | - Jian Su
- Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, The First Affiliated Hospital of Soochow University, Suzhou, China
- Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Fei Shen
- Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, The First Affiliated Hospital of Soochow University, Suzhou, China
- Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Liqian Xie
- Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, The First Affiliated Hospital of Soochow University, Suzhou, China
- Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Shaoyan Hu
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, China
| | - Jing Ling
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, China
| |
Collapse
|
11
|
Effect of Integrin Binding Peptide on Vascularization of Scaffold-Free Microtissue Spheroids. Tissue Eng Regen Med 2020; 17:595-605. [PMID: 32710228 DOI: 10.1007/s13770-020-00281-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/21/2020] [Accepted: 06/22/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Three-dimensional (3D) biomimetic models via various approaches can be used by therapeutic applications of tissue engineering. Creating an optimal vascular microenvironment in 3D model that mimics the extracellular matrix (ECM) and providing an adequate blood supply for the survival of cell transplants are major challenge that need to be overcome in tissue regeneration. However, currently available scaffolds-depended approaches fail to mimic essential functions of natural ECM. Scaffold-free microtissues (SFMs) can successfully overcome some of the major challenges caused by scaffold biomaterials such as low cell viability and high cost. METHODS Herein, we investigated the effect of soluble integrin binding peptide of arginine-glycine-aspartic acid (RGD) on vascularization of SFM spheroids of human umbilical vein endothelial cells. In vitro-fabricated microtissue spheroids were constructed and cultivated in 0 mM, 1 mM, 2 mM, and 4 mM of RGD peptide. The dimensions and viability of SFMs were measured. RESULTS Maximum dimension and cell viability observed in 2 mM RGD containing SFM. Vascular gene expression of 2 mM RGD containing SFM were higher than other groups, while 4 mM RGD containing SFM expressed minimum vascularization related genes. Immunofluorescent staining results indicating that platelet/endothelial cell adhesion molecule and vascular endothelial growth factor protein expression of 2 mM RGD containing SFM was higher compared to other groups. CONCLUSION Collectively, these findings demonstrate that SFM spheroids can be successfully vascularized in determined concentration of RGD peptide containing media. Also, soluble RGD incorporated SFMs can be used as an optimal environment for successful prevascularization strategies.
Collapse
|
12
|
Kluever AK, Braumandl A, Fischer S, Preissner KT, Deindl E. The Extraordinary Role of Extracellular RNA in Arteriogenesis, the Growth of Collateral Arteries. Int J Mol Sci 2019; 20:ijms20246177. [PMID: 31817879 PMCID: PMC6940760 DOI: 10.3390/ijms20246177] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/05/2019] [Accepted: 12/06/2019] [Indexed: 01/13/2023] Open
Abstract
Arteriogenesis is an intricate process in which increased shear stress in pre-existing arteriolar collaterals induces blood vessel expansion, mediated via endothelial cell activation, leukocyte recruitment and subsequent endothelial and smooth muscle cell proliferation. Extracellular RNA (eRNA), released from stressed cells or damaged tissue under pathological conditions, has recently been discovered to be liberated from endothelial cells in response to increased shear stress and to promote collateral growth. Until now, eRNA has been shown to enhance coagulation and inflammation by inducing cytokine release, leukocyte recruitment, and endothelial permeability, the latter being mediated by vascular endothelial growth factor (VEGF) signaling. In the context of arteriogenesis, however, eRNA has emerged as a transmitter of shear stress into endothelial activation, mediating the sterile inflammatory process essential for collateral remodeling, whereby the stimulatory effects of eRNA on the VEGF signaling axis seem to be pivotal. In addition, eRNA might influence subsequent steps of the arteriogenesis cascade as well. This article provides a comprehensive overview of the beneficial effects of eRNA during arteriogenesis, laying the foundation for further exploration of the connection between the damaging and non-damaging effects of eRNA in the context of cardiovascular occlusive diseases and of sterile inflammation.
Collapse
Affiliation(s)
- Anna-Kristina Kluever
- Walter-Brendel-Center of Experimental Medicine, University Hospital, Ludwig-Maximilians-University, 81377 Munich, Germany; (A.-K.K.); (A.B.)
| | - Anna Braumandl
- Walter-Brendel-Center of Experimental Medicine, University Hospital, Ludwig-Maximilians-University, 81377 Munich, Germany; (A.-K.K.); (A.B.)
| | - Silvia Fischer
- Institute of Biochemistry, Medical School, Justus-Liebig-University, 35392 Giessen, Germany; (S.F.); (K.T.P.)
| | - Klaus T. Preissner
- Institute of Biochemistry, Medical School, Justus-Liebig-University, 35392 Giessen, Germany; (S.F.); (K.T.P.)
| | - Elisabeth Deindl
- Walter-Brendel-Center of Experimental Medicine, University Hospital, Ludwig-Maximilians-University, 81377 Munich, Germany; (A.-K.K.); (A.B.)
- Correspondence: ; Tel.: +49-89-2180-76504
| |
Collapse
|
13
|
Takaya H, Namisaki T, Kitade M, Kaji K, Nakanishi K, Tsuji Y, Shimozato N, Moriya K, Seki K, Sawada Y, Saikawa S, Sato S, Kawaratani H, Akahane T, Noguchi R, Matsumoto M, Yoshiji H. VWF/ADAMTS13 ratio as a potential biomarker for early detection of hepatocellular carcinoma. BMC Gastroenterol 2019; 19:167. [PMID: 31638892 PMCID: PMC6802329 DOI: 10.1186/s12876-019-1082-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 09/20/2019] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND To investigate the von Willebrand factor to ADAMTS13 ratio as a potential biomarker for early detection of hepatocellular carcinoma (HCC) in cirrhosis. METHODS Serum levels of alpha-fetoprotein, des-γ-carboxy prothrombin, Lens culinaris agglutinin-reactive fraction of alpha-fetoprotein (alpha-fetoprotein-L3%), vascular endothelial growth factor, and vascular endothelial growth factor receptor-2, as well as the plasma levels of von Willebrand factor antigen (von Willebrand factor: Ag) and ADAMTS13 activity (ADAMTS13:AC), were evaluated in 41 cirrhotic patients with HCC undergoing radiofrequency ablation and in 20 cirrhotic patients without HCC. The diagnostic accuracy of each biomarker was evaluated using the receiver operating characteristic curve analysis. RESULTS The von Willebrand factor: Ag and von Willebrand factor: Ag/ADAMTS13:AC ratios were significantly higher in cirrhotic patients with HCC than in those without HCC (p < 0.05 and p < 0.01, respectively), whereas ADAMTS13:AC was significantly lower in those with HCC than those without HCC (p < 0.05). However, no relationship was observed between the von Willebrand factor: Ag/ADAMTS13:AC ratio and serum tumor markers such as alpha-fetoprotein, des-γ-carboxy prothrombin, and alpha-fetoprotein-L3%. Multivariate regression analysis identified von Willebrand factor: Ag/ADAMTS13:AC ratio and alpha-fetoprotein-L3% as significant factors of HCC development. Receiver operating characteristic analysis showed that the von Willebrand factor: Ag/ADAMTS13:AC ratio and alpha-fetoprotein-L3% had a better performance than alpha-fetoprotein, des-γ-carboxy prothrombin, alpha-fetoprotein-L3%, vascular endothelial growth factor, and vascular endothelial growth factor receptor-2, von Willebrand factor: Ag, and ADAMTS13:AC. The von Willebrand factor: Ag/ADAMTS13:AC ratio was exclusively correlated with tumor volume and stage as well as serum vascular endothelial growth factor levels. CONCLUSIONS The von Willebrand factor: Ag/ADAMTS13:AC ratio can potentially serve as a novel biomarker for early diagnosis of HCC in cirrhotic patients.
Collapse
Affiliation(s)
- Hiroaki Takaya
- Third Department of Internal Medicine, Nara Medical University, Shijo-cho 840, Kashihara, Nara, 634-8522 Japan
| | - Tadashi Namisaki
- Third Department of Internal Medicine, Nara Medical University, Shijo-cho 840, Kashihara, Nara, 634-8522 Japan
| | - Mitsuteru Kitade
- Third Department of Internal Medicine, Nara Medical University, Shijo-cho 840, Kashihara, Nara, 634-8522 Japan
| | - Kosuke Kaji
- Third Department of Internal Medicine, Nara Medical University, Shijo-cho 840, Kashihara, Nara, 634-8522 Japan
| | - Keisuke Nakanishi
- Third Department of Internal Medicine, Nara Medical University, Shijo-cho 840, Kashihara, Nara, 634-8522 Japan
| | - Yuki Tsuji
- Third Department of Internal Medicine, Nara Medical University, Shijo-cho 840, Kashihara, Nara, 634-8522 Japan
| | - Naotaka Shimozato
- Third Department of Internal Medicine, Nara Medical University, Shijo-cho 840, Kashihara, Nara, 634-8522 Japan
| | - Kei Moriya
- Third Department of Internal Medicine, Nara Medical University, Shijo-cho 840, Kashihara, Nara, 634-8522 Japan
| | - Kenichiro Seki
- Third Department of Internal Medicine, Nara Medical University, Shijo-cho 840, Kashihara, Nara, 634-8522 Japan
| | - Yasuhiko Sawada
- Third Department of Internal Medicine, Nara Medical University, Shijo-cho 840, Kashihara, Nara, 634-8522 Japan
| | - Soichiro Saikawa
- Third Department of Internal Medicine, Nara Medical University, Shijo-cho 840, Kashihara, Nara, 634-8522 Japan
| | - Shinya Sato
- Third Department of Internal Medicine, Nara Medical University, Shijo-cho 840, Kashihara, Nara, 634-8522 Japan
| | - Hideto Kawaratani
- Third Department of Internal Medicine, Nara Medical University, Shijo-cho 840, Kashihara, Nara, 634-8522 Japan
| | - Takemi Akahane
- Third Department of Internal Medicine, Nara Medical University, Shijo-cho 840, Kashihara, Nara, 634-8522 Japan
| | - Ryuichi Noguchi
- Third Department of Internal Medicine, Nara Medical University, Shijo-cho 840, Kashihara, Nara, 634-8522 Japan
| | - Masanori Matsumoto
- Department of Blood Transfusion Medicine, Nara Medical University, Kashihara, Nara, 634-8522 Japan
| | - Hitoshi Yoshiji
- Third Department of Internal Medicine, Nara Medical University, Shijo-cho 840, Kashihara, Nara, 634-8522 Japan
| |
Collapse
|
14
|
Chen X, Cheng X, Zhang S, Wu D. ADAMTS13: An Emerging Target in Stroke Therapy. Front Neurol 2019; 10:772. [PMID: 31379722 PMCID: PMC6650536 DOI: 10.3389/fneur.2019.00772] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 07/02/2019] [Indexed: 12/11/2022] Open
Abstract
Thrombosis is the predominant underlying mechanism of acute ischemic stroke (AIS). Though thrombolysis with tPA has been proven to be effective in treating AIS within the time window, the majority of AIS patients fail to receive tPA due to various reasons. Current medical therapies for AIS have limited efficacy and pose a risk of intracerebral hemorrhage. ADAMTS13 (a disintegrin and metalloprotease with a thrombospondin type 1 motif, member 13) is a metalloprotease that effectively breaks down the von Willebrand Factor (VWF), a key factor in thrombus formation. Previous studies have proven that dysfunction of ADAMTS13 is associated with many diseases. Recently, ADAMTS13 has been reported to be closely related to stroke. In this review, we briefly described the structure of ADAMTS13 and its role in thrombosis, inflammation, as well as angiogenesis. We then focused on the relationship between ADAMTS13 and AIS, ranging from ischemic stroke occurrence, to AIS treatment and prognosis. Based on research findings from in vitro, animal, and clinical studies, we propose that ADAMTS13 is a potential biomarker to guide appropriate treatment for ischemic stroke and a promising therapeutic agent for tPA resistant thrombi.
Collapse
Affiliation(s)
- Xin Chen
- Department of Neurology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Xin Cheng
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Shufan Zhang
- Department of Neurology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Danhong Wu
- Department of Neurology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| |
Collapse
|
15
|
Takaya H, Namisaki T, Shimozato N, Kaji K, Kitade M, Moriya K, Sato S, Kawaratani H, Akahane T, Matsumoto M, Yoshiji H. ADAMTS13 and von Willebrand factor are useful biomarkers for sorafenib treatment efficiency in patients with hepatocellular carcinoma. World J Gastrointest Oncol 2019; 11:424-435. [PMID: 31139312 PMCID: PMC6522768 DOI: 10.4251/wjgo.v11.i5.424] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/26/2019] [Accepted: 04/08/2019] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Many advanced hepatocellular carcinoma (HCC) patients are receiving sorafenib treatment. Sorafenib reportedly improves overall survival (OS) significantly in patients with HCC. Prediction of sorafenib response and prognosis in patients with HCC receiving sorafenib treatment are important due to the potentially serious side effects of sorafenib. A disintegrin-like and metalloproteinase with thrombospondin type-1 motifs 13 (ADAMTS13) and von Willebrand factor (VWF) are associated with the pathophysiology of liver cirrhosis and HCC through their roles in hypercoagulability; they are also associated with angiogenesis via vascular endothelial growth factor (VEGF). The imbalance between ADAMTS13 and VWF was associated with prognosis of various cancers in patients undergoing chemotherapy. AIM To investigate ADAMTS13 and VWF as potential biomarkers for sorafenib response and prognosis in patients with HCC receiving sorafenib treatment. METHODS Forty-one patients with HCC receiving sorafenib treatment were included in this study. The initial daily sorafenib dose was 400 mg in all patients. ADAMTS13 activity (ADAMTS13:AC), VWF antigen (VWF:Ag), VEGF levels were determined by enzyme-linked immunosorbent assay. Univariate and multivariate analyses were used to determine predictive factors for sorafenib response and prognosis in patients with HCC receiving sorafenib treatment. RESULTS ADAMTS13:AC was significantly higher in patients with stable disease (SD), partial response (PR), and complete response (CR) than in those with progressive disease (PD) (P < 0.05). In contrast, VWF:Ag and the VWF:Ag/ADAMTS13:AC ratio were significantly lower in patients with SD, PR, and CR than in those with PD (P < 0.05 for both). Multivariate analysis showed that the VWF:Ag/ADAMTS13:AC ratio was the only predictive factor for sorafenib response and ADAMTS13:AC was the only prognostic factor in patients with HCC receiving sorafenib treatment. The patients with a low ADAMTS13:AC (< 78.0) had significantly higher VEGF levels than those with a high ADAMTS13:AC (≥ 78.0) (P < 0.05). CONCLUSION The VWF:Ag/ADAMTS13:AC ratio and ADAMTS13:AC are potentially useful biomarkers for sorafenib response and prognosis, respectively, in patients with HCC receiving sorafenib treatment.
Collapse
Affiliation(s)
- Hiroaki Takaya
- Third Department of Internal Medicine, Nara Medical University, Kashihara, Nara 634-8522, Japan
| | - Tadashi Namisaki
- Third Department of Internal Medicine, Nara Medical University, Kashihara, Nara 634-8522, Japan
| | - Naotaka Shimozato
- Third Department of Internal Medicine, Nara Medical University, Kashihara, Nara 634-8522, Japan
| | - Kosuke Kaji
- Third Department of Internal Medicine, Nara Medical University, Kashihara, Nara 634-8522, Japan
| | - Mitsuteru Kitade
- Third Department of Internal Medicine, Nara Medical University, Kashihara, Nara 634-8522, Japan
| | - Kei Moriya
- Third Department of Internal Medicine, Nara Medical University, Kashihara, Nara 634-8522, Japan
| | - Shinya Sato
- Third Department of Internal Medicine, Nara Medical University, Kashihara, Nara 634-8522, Japan
| | - Hideto Kawaratani
- Third Department of Internal Medicine, Nara Medical University, Kashihara, Nara 634-8522, Japan
| | - Takemi Akahane
- Third Department of Internal Medicine, Nara Medical University, Kashihara, Nara 634-8522, Japan
| | - Masanori Matsumoto
- Department of Blood Transfusion Medicine, Nara Medical University, Kashihara, Nara 634-8522, Japan
| | - Hitoshi Yoshiji
- Third Department of Internal Medicine, Nara Medical University, Kashihara, Nara 634-8522, Japan
| |
Collapse
|
16
|
Factor VIII: Long-established role in haemophilia A and emerging evidence beyond haemostasis. Blood Rev 2019; 35:43-50. [DOI: 10.1016/j.blre.2019.03.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 02/01/2019] [Accepted: 03/01/2019] [Indexed: 12/20/2022]
|
17
|
|
18
|
Xiao J, Feng Y, Li X, Li W, Fan L, Liu J, Zeng X, Chen K, Chen X, Zhou X, Zheng XL, Chen S. Expression of ADAMTS13 in Normal and Abnormal Placentae and Its Potential Role in Angiogenesis and Placenta Development. Arterioscler Thromb Vasc Biol 2017; 37:1748-1756. [PMID: 28751574 DOI: 10.1161/atvbaha.117.309735] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 07/17/2017] [Indexed: 01/06/2023]
Abstract
OBJECTIVE ADAMTS13 (a disintegrin and metalloproteinase with thrombospondin type 1 repeats, member 13) is primarily synthesized in liver. The biosynthesis of ADAMTS13 and its physiological role in placenta are not known. APPROACH AND RESULTS We used real-time polymerase chain reaction, immunohistochemistry, and Western blotting analyses, as well as proteolytic cleavage of FRETS (fluorescent resonance energy transfers)-VWF73, to determine ADAMTS13 expression in placenta and trophoblasts obtained from individuals with normal pregnancy and patients with severe preeclampsia. We also determined the role of ADAMTS13 in extravillous trophoblasts using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, wound scratch assay, transwell migration assay, tube formation assay, and tissue outgrowth assays. We showed that full-length and proteolytically active ADAMTS13 was expressed in normal human placenta, primarily in the trophoblasts and villous core fetal vessel endothelium during pregnancy. Placental expression of ADAMTS13 mRNA, protein, and proteolytic activity was at the highest levels during the first trimester and significantly reduced at the term of gestation. Additionally, significantly reduced levels of placental ADAMTS13 expression was detected under hypoxic conditions and in patients with preeclampsia. In addition, recombinant ADAMTS13 protease stimulated proliferation, migration, invasion, and network formation of trophoblastic cells in culture. Finally, knockdown of ADAMTS13 expression attenuated the ability of tube formation in trophoblast (HTR-8/SVNEO) cells and the extravillous trophoblast outgrowth in placental explants. CONCLUSIONS Our results demonstrate for the first time the expression of ADAMTS13 mRNA and protein in normal and abnormal placental tissues and its role in promoting angiogenesis and trophoblastic cell development. The findings support the potential role of the ADAMTS13-von Willebrand factor pathway in normal pregnancy and pathogenesis of preeclampsia.
Collapse
Affiliation(s)
- Juan Xiao
- From the Department of Obstetrics & Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (J.X., Y.F., W.L., L.F., J.L., X. Zeng, K.C., X.C., S.C.); Department of Urology, Zhengzhou First People's Hospital, Henan, China (X.L.); Department of Obstetrics & Gynecology, The Second Affiliated Hospital of Zhengzhou University, Henan, China (X. Zhou); and Division of Laboratory Medicine, Department of Pathology, The University of Alabama at Birmingham (X.L.Z.)
| | - Yun Feng
- From the Department of Obstetrics & Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (J.X., Y.F., W.L., L.F., J.L., X. Zeng, K.C., X.C., S.C.); Department of Urology, Zhengzhou First People's Hospital, Henan, China (X.L.); Department of Obstetrics & Gynecology, The Second Affiliated Hospital of Zhengzhou University, Henan, China (X. Zhou); and Division of Laboratory Medicine, Department of Pathology, The University of Alabama at Birmingham (X.L.Z.)
| | - Xueyin Li
- From the Department of Obstetrics & Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (J.X., Y.F., W.L., L.F., J.L., X. Zeng, K.C., X.C., S.C.); Department of Urology, Zhengzhou First People's Hospital, Henan, China (X.L.); Department of Obstetrics & Gynecology, The Second Affiliated Hospital of Zhengzhou University, Henan, China (X. Zhou); and Division of Laboratory Medicine, Department of Pathology, The University of Alabama at Birmingham (X.L.Z.)
| | - Wei Li
- From the Department of Obstetrics & Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (J.X., Y.F., W.L., L.F., J.L., X. Zeng, K.C., X.C., S.C.); Department of Urology, Zhengzhou First People's Hospital, Henan, China (X.L.); Department of Obstetrics & Gynecology, The Second Affiliated Hospital of Zhengzhou University, Henan, China (X. Zhou); and Division of Laboratory Medicine, Department of Pathology, The University of Alabama at Birmingham (X.L.Z.)
| | - Lei Fan
- From the Department of Obstetrics & Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (J.X., Y.F., W.L., L.F., J.L., X. Zeng, K.C., X.C., S.C.); Department of Urology, Zhengzhou First People's Hospital, Henan, China (X.L.); Department of Obstetrics & Gynecology, The Second Affiliated Hospital of Zhengzhou University, Henan, China (X. Zhou); and Division of Laboratory Medicine, Department of Pathology, The University of Alabama at Birmingham (X.L.Z.)
| | - Jing Liu
- From the Department of Obstetrics & Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (J.X., Y.F., W.L., L.F., J.L., X. Zeng, K.C., X.C., S.C.); Department of Urology, Zhengzhou First People's Hospital, Henan, China (X.L.); Department of Obstetrics & Gynecology, The Second Affiliated Hospital of Zhengzhou University, Henan, China (X. Zhou); and Division of Laboratory Medicine, Department of Pathology, The University of Alabama at Birmingham (X.L.Z.)
| | - Xue Zeng
- From the Department of Obstetrics & Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (J.X., Y.F., W.L., L.F., J.L., X. Zeng, K.C., X.C., S.C.); Department of Urology, Zhengzhou First People's Hospital, Henan, China (X.L.); Department of Obstetrics & Gynecology, The Second Affiliated Hospital of Zhengzhou University, Henan, China (X. Zhou); and Division of Laboratory Medicine, Department of Pathology, The University of Alabama at Birmingham (X.L.Z.)
| | - Kaiyue Chen
- From the Department of Obstetrics & Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (J.X., Y.F., W.L., L.F., J.L., X. Zeng, K.C., X.C., S.C.); Department of Urology, Zhengzhou First People's Hospital, Henan, China (X.L.); Department of Obstetrics & Gynecology, The Second Affiliated Hospital of Zhengzhou University, Henan, China (X. Zhou); and Division of Laboratory Medicine, Department of Pathology, The University of Alabama at Birmingham (X.L.Z.)
| | - Xi Chen
- From the Department of Obstetrics & Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (J.X., Y.F., W.L., L.F., J.L., X. Zeng, K.C., X.C., S.C.); Department of Urology, Zhengzhou First People's Hospital, Henan, China (X.L.); Department of Obstetrics & Gynecology, The Second Affiliated Hospital of Zhengzhou University, Henan, China (X. Zhou); and Division of Laboratory Medicine, Department of Pathology, The University of Alabama at Birmingham (X.L.Z.)
| | - Xiaoshui Zhou
- From the Department of Obstetrics & Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (J.X., Y.F., W.L., L.F., J.L., X. Zeng, K.C., X.C., S.C.); Department of Urology, Zhengzhou First People's Hospital, Henan, China (X.L.); Department of Obstetrics & Gynecology, The Second Affiliated Hospital of Zhengzhou University, Henan, China (X. Zhou); and Division of Laboratory Medicine, Department of Pathology, The University of Alabama at Birmingham (X.L.Z.)
| | - X Long Zheng
- From the Department of Obstetrics & Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (J.X., Y.F., W.L., L.F., J.L., X. Zeng, K.C., X.C., S.C.); Department of Urology, Zhengzhou First People's Hospital, Henan, China (X.L.); Department of Obstetrics & Gynecology, The Second Affiliated Hospital of Zhengzhou University, Henan, China (X. Zhou); and Division of Laboratory Medicine, Department of Pathology, The University of Alabama at Birmingham (X.L.Z.).
| | - Suhua Chen
- From the Department of Obstetrics & Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (J.X., Y.F., W.L., L.F., J.L., X. Zeng, K.C., X.C., S.C.); Department of Urology, Zhengzhou First People's Hospital, Henan, China (X.L.); Department of Obstetrics & Gynecology, The Second Affiliated Hospital of Zhengzhou University, Henan, China (X. Zhou); and Division of Laboratory Medicine, Department of Pathology, The University of Alabama at Birmingham (X.L.Z.).
| |
Collapse
|
19
|
Xu H, Cao Y, Yang X, Cai P, Kang L, Zhu X, Luo H, Lu L, Wei L, Bai X, Zhu Y, Zhao BQ, Fan W. ADAMTS13 controls vascular remodeling by modifying VWF reactivity during stroke recovery. Blood 2017; 130:11-22. [PMID: 28428179 PMCID: PMC5501147 DOI: 10.1182/blood-2016-10-747089] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 04/16/2017] [Indexed: 12/12/2022] Open
Abstract
Angiogenic response is essential for ischemic brain repair. The von Willebrand factor (VWF)-cleaving protease disintegrin and metalloprotease with thrombospondin type I motif, member 13 (ADAMTS13) is required for endothelial tube formation in vitro, but there is currently no in vivo evidence supporting a function of ADAMTS13 in angiogenesis. Here we show that mice deficient in ADAMTS13 exhibited reduced neovascularization, brain capillary perfusion, pericyte and smooth muscle cell coverage on microvessels, expression of the tight junction and basement membrane proteins, and accelerated blood-brain barrier (BBB) breakdown and extravascular deposits of serum proteins in the peri-infarct cortex at 14 days after stroke. Deficiency of VWF or anti-VWF antibody treatment significantly increased microvessels, perfused capillary length, and reversed pericyte loss and BBB changes in Adamts13-/- mice. Furthermore, we observed that ADAMTS13 deficiency decreased angiopoietin-2 and galectin-3 levels in the isolated brain microvessels, whereas VWF deficiency had the opposite effect. Correlating with this, overexpression of angiopoietin-2 by adenoviruses treatment or administration of recombinant galectin-3 normalized microvascular reductions, pericyte loss, and BBB breakdown in Adamts13-/- mice. The vascular changes induced by angiopoietin-2 overexpression and recombinant galectin-3 treatment in Adamts13-/- mice were abolished by the vascular endothelial growth factor receptor-2 antagonist SU1498. Importantly, treating wild-type mice with recombinant ADAMTS13 at 7 days after stroke markedly increased neovascularization and vascular repair and improved functional recovery at 14 days. Our results suggest that ADAMTS13 controls key steps of ischemic vascular remodeling and that recombinant ADAMTS13 is a putative therapeutic avenue for promoting stroke recovery.
Collapse
Affiliation(s)
- Haochen Xu
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Collaborative Innovation Center for Brain Science and School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yongliang Cao
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Collaborative Innovation Center for Brain Science and School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Xing Yang
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Collaborative Innovation Center for Brain Science and School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Ping Cai
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Collaborative Innovation Center for Brain Science and School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Lijing Kang
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Collaborative Innovation Center for Brain Science and School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Ximin Zhu
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Collaborative Innovation Center for Brain Science and School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Haiyu Luo
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Collaborative Innovation Center for Brain Science and School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Lu Lu
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Collaborative Innovation Center for Brain Science and School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Lixiang Wei
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Collaborative Innovation Center for Brain Science and School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Xiaofei Bai
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Collaborative Innovation Center for Brain Science and School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yuanbo Zhu
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Collaborative Innovation Center for Brain Science and School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Bing-Qiao Zhao
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Collaborative Innovation Center for Brain Science and School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Wenying Fan
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Collaborative Innovation Center for Brain Science and School of Basic Medical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
20
|
Tang H, Lee M, Kim EH, Bishop D, Rodgers GM. siRNA-knockdown of ADAMTS-13 modulates endothelial cell angiogenesis. Microvasc Res 2017; 113:65-70. [PMID: 28546076 DOI: 10.1016/j.mvr.2017.05.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 05/18/2017] [Accepted: 05/20/2017] [Indexed: 12/25/2022]
Abstract
ADAMTS-13, a disintegrin and metalloproteinase with a thrombospondin type 1 motif, member 13, is a zinc-containing metalloprotease that cleaves von Willebrand factor (vWf). Previous publications by our laboratory have shown that ADAMTS-13 may also be involved in angiogenesis. For this study, we report the successful transient knockdown of endogenous ADAMTS-13 in human umbilical vein endothelial cells (HUVEC) via siRNA and the effects of reduced endogenous ADAMTS-13 on HUVEC angiogenesis functions. 15nM of ADAMTS-13 siRNA reduced HUVEC ADAMTS-13 protein levels by 90% after 24h incubation, whereas control siRNA did not affect endogenous ADAMTS-13 levels. Furthermore, this transfection did not affect the HUVEC endogenous protein level of ADAMTS-1, a related family member of ADAMTS-13 indicating the specificity of the siRNA. Transfection of HUVEC with 15nM of ADAMTS-13 siRNA resulted in a 21% decrease in proliferation after 24h incubation. The effects of ADAMTS-13 knockdown on migration of HUVEC across a scratch wound were also evaluated. 24h after transfection with control siRNA, there was increased cell migration across the scratch wound. This dramatic migration did not occur with ADAMTS-13 knockdown cells. Decreased protein levels of endogenous ADAMTS-13 also affected angiogenesis as measured by endothelial cell tube formation using a Matrigel matrix method. The tube lengths, sizes and junction numbers of the ADAMTS-13 knockdown cells were all significantly lower compared to control cells by about 40%. The protein level of vascular endothelial growth factor (VEGF), a well-known regulator of angiogenesis, was significantly decreased by 45% upon knockdown of ADAMTS-13. Moreover, activity of the AKT pathway, one of the VEGF angiogenesis downstream signaling pathways was down-regulated by ADAMTS-13 siRNA. These data indicate that in cultured endothelial cells, one role of endogenous ADAMTS-13 is regulation of angiogenesis, mediated through VEGF and AKT signaling pathway. Overall, our data suggest an additional model of endogenous ADAMTS-13 functionality, beyond that of cleaving von Willebrand factor.
Collapse
Affiliation(s)
- Huiyuan Tang
- Division of Hematology and Hematologic Malignancies, University of Utah Health Sciences Center, Salt Lake City, UT 84132, USA.
| | - Manfai Lee
- Division of Hematology and Hematologic Malignancies, University of Utah Health Sciences Center, Salt Lake City, UT 84132, USA
| | - Eun Ho Kim
- Division of Hematology and Hematologic Malignancies, University of Utah Health Sciences Center, Salt Lake City, UT 84132, USA
| | - Daniel Bishop
- Division of Hematology and Hematologic Malignancies, University of Utah Health Sciences Center, Salt Lake City, UT 84132, USA
| | - George M Rodgers
- Division of Hematology and Hematologic Malignancies, University of Utah Health Sciences Center, Salt Lake City, UT 84132, USA; Department of Pathology and ARUP Laboratories, Salt Lake City, UT 84132, USA
| |
Collapse
|
21
|
de Vries PS, van Herpt TTW, Ligthart S, Hofman A, Ikram MA, van Hoek M, Sijbrands EJG, Franco OH, de Maat MPM, Leebeek FWG, Dehghan A. ADAMTS13 activity as a novel risk factor for incident type 2 diabetes mellitus: a population-based cohort study. Diabetologia 2017; 60:280-286. [PMID: 27787621 PMCID: PMC6518068 DOI: 10.1007/s00125-016-4139-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 09/26/2016] [Indexed: 01/01/2023]
Abstract
AIMS/HYPOTHESIS ADAMTS13 is a protease that breaks down von Willebrand factor (VWF) multimers into smaller, less active particles. VWF has been associated with an increased risk of incident type 2 diabetes mellitus. Here, we determine whether ADAMTS13 activity and VWF antigen are associated with incident diabetes. METHODS This study included 5176 participants from the Rotterdam Study, a prospective population-based cohort study. Participants were free of diabetes at baseline and followed up for more than 20 years. Cox proportional hazards models were used to examine the association of ADAMTS13 activity and VWF antigen with incident diabetes. RESULTS ADAMTS13 activity was associated with an increased risk of incident diabetes (HR 1.17 [95% CI 1.08, 1.27]) after adjustment for known risk factors and VWF antigen levels. Although ADAMTS13 activity was positively associated with fasting glucose and insulin, the association with incident diabetes did not change when we adjusted for these covariates. ADAMTS13 activity was also associated with incident prediabetes (defined on the basis of both fasting and non-fasting blood glucose) after adjustment for known risk factors (HR 1.11 [95% CI 1.03, 1.19]), while the VWF antigen level was not. VWF antigen was associated with incident diabetes, but this association was attenuated after adjustment for known risk factors. CONCLUSIONS/INTERPRETATION ADAMTS13 activity appears to be an independent risk factor for incident prediabetes and type 2 diabetes. As the association between ADAMTS13 and diabetes did not appear to be explained by its cleavage of VWF, ADAMTS13 may have an independent role in the development of diabetes.
Collapse
Affiliation(s)
- Paul S de Vries
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands
- Human Genetics Center, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Thijs T W van Herpt
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Symen Ligthart
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Albert Hofman
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - M Arfan Ikram
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands
- Department of Neurology, Erasmus University Medical Center, Rotterdam, the Netherlands
- Department of Radiology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Mandy van Hoek
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Eric J G Sijbrands
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Oscar H Franco
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Moniek P M de Maat
- Department of Hematology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Frank W G Leebeek
- Department of Hematology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Abbas Dehghan
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands.
- Department of Epidemiology and Biostatistics, Imperial College London, St Mary's Campus, Norfolk Place, London, W2 1PG, UK.
| |
Collapse
|
22
|
ADAMTS13: more than a regulator of thrombosis. Int J Hematol 2016; 104:534-539. [PMID: 27696191 DOI: 10.1007/s12185-016-2091-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 09/20/2016] [Accepted: 09/26/2016] [Indexed: 12/17/2022]
Abstract
ADAMTS13, a plasma reprolysin-like metalloprotease, proteolyzes von Willebrand factor (VWF). ADAMTS13 is primarily synthesized by hepatic stellate cells (HSCs), and mainly regulates thrombogenesis by cleaving VWF. Recent studies demonstrate that ADAMTS13 also plays a role in the down-regulation of inflammation, regulation angiogenesis, and degradation of extracellular matrix. The purpose of this review is to introduce the state of progress with respect to some of the theorized roles of ADAMTS13.
Collapse
|
23
|
Lee M, Keener J, Rodgers GM, Adachi RY. Novel polymer container systems for protein therapeutics and cell culturing. INT J POLYM MATER PO 2016. [DOI: 10.1080/00914037.2016.1149845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Manfai Lee
- School of Medicine, University of Utah, Salt Lake City, Utah
| | - Justin Keener
- School of Medicine, University of Utah, Salt Lake City, Utah
| | | | | |
Collapse
|
24
|
Liu Y, Huang H, Sun G, Alwadani S, Semba RD, Lutty GA, Yiu S, Edward DP. Gene Expression Profile of Extracellular Matrix and Adhesion Molecules in the Human Normal Corneal Stroma. Curr Eye Res 2016; 42:520-527. [PMID: 27442190 DOI: 10.1080/02713683.2016.1200099] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
PURPOSE There is limited information on region-specific gene expression in the human corneal stroma. In this study, we aimed to investigate the expression profile of the extracellular matrix and adhesion molecules in the normal corneal stroma using laser capture microdissection (LCM) and molecular techniques. METHODS Frozen sections of human cornea without ocular disease were used to isolate the central and peripheral corneal stromal keratocytes by LCM. RNA was extracted from LCM-captured tissues and the RT2 Profiler PCR Arrays were used to examine the expression profile of extracellular matrix and adhesion molecules in the central and peripheral stroma. Real-time quantitative PCR was used to quantify gene expression. Proteomic and western blotting (WB) analyses were performed to confirm gene expression at protein level. Function association network was generated via the web tools String and Cytoscape. RESULTS The gene expression profiling demonstrated that 35 out of the 84 extracellular matrix and adhesion molecules represented in the array were expressed in stromal keratocytes. Among them, 24 genes were not previously described in the corneal stroma. Two genes were found more abundantly expressed in the central stroma than in the periphery: TGFBI, COL6A2 (p < 0.05). ADAMTS13 was detected only in the central stroma. Proteomics and WB analysis confirmed the expression of 10 genes. Functional analysis revealed that most identified genes were presented in a core cluster that had multiple and strong associations with other genes. CONCLUSION This study identified genes not previously described in the corneal stroma, revealed regional differences in gene expression between central and peripheral stroma, and also detected some interesting candidate genes that may play important roles in corneal function. These observations serve as the foundation to further investigate the molecular and cellular mechanisms regulating the pathogenesis of regional corneal stromal disorders such as keratoconus.
Collapse
Affiliation(s)
- Ying Liu
- a Wilmer Eye Institute , Johns Hopkins University School of Medicine , Baltimore , MD , USA.,c Aier Eye Hospital , Changsha , Hunan , China
| | - Hu Huang
- a Wilmer Eye Institute , Johns Hopkins University School of Medicine , Baltimore , MD , USA
| | - Guoying Sun
- d Joint Shantou International Eye Center , Shantou University and the Chinese University of Hong Kong , Shantou , China
| | - Saeed Alwadani
- a Wilmer Eye Institute , Johns Hopkins University School of Medicine , Baltimore , MD , USA.,e Department of Ophthalmology , College of Medicine, King Saud University , Riyadh , Saudi Arabia
| | - Richard D Semba
- a Wilmer Eye Institute , Johns Hopkins University School of Medicine , Baltimore , MD , USA
| | - Gerard A Lutty
- a Wilmer Eye Institute , Johns Hopkins University School of Medicine , Baltimore , MD , USA
| | - Samuel Yiu
- a Wilmer Eye Institute , Johns Hopkins University School of Medicine , Baltimore , MD , USA
| | - Deepak P Edward
- a Wilmer Eye Institute , Johns Hopkins University School of Medicine , Baltimore , MD , USA.,b King Khaled Eye Specialist Hospital , Riyadh , Saudi Arabia
| |
Collapse
|
25
|
Geys L, Scroyen I, Roose E, Vanhoorelbeke K, Lijnen HR. ADAMTS13 deficiency in mice does not affect adipose tissue development. Biochim Biophys Acta Gen Subj 2015; 1850:1368-74. [DOI: 10.1016/j.bbagen.2015.03.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 02/26/2015] [Accepted: 03/17/2015] [Indexed: 10/23/2022]
|
26
|
Rodríguez-Manzaneque JC, Fernández-Rodríguez R, Rodríguez-Baena FJ, Iruela-Arispe ML. ADAMTS proteases in vascular biology. Matrix Biol 2015; 44-46:38-45. [PMID: 25698314 DOI: 10.1016/j.matbio.2015.02.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 02/09/2015] [Accepted: 02/10/2015] [Indexed: 02/03/2023]
Abstract
ADAMTS (a disintegrin and metalloprotease with thrombospondin motifs) proteases comprise the most recently discovered branch of the extracellular metalloenzymes. Research during the last 15years, uncovered their association with a variety of physiological and pathological processes including blood coagulation, tissue repair, fertility, arthritis and cancer. Importantly, a frequent feature of ADAMTS enzymes relates to their effects on vascular-related phenomena, including angiogenesis. Their specific roles in vascular biology have been clarified by information on their expression profiles and substrate specificity. Through their catalytic activity, ADAMTS proteases modify rather than degrade extracellular proteins. They predominantly target proteoglycans and glycoproteins abundant in the basement membrane, therefore their broad contributions to the vasculature should not come as a surprise. Furthermore, in addition to their proteolytic functions, non-enzymatic roles for ADAMTS have also been identified expanding our understanding on the multiple activities of these enzymes in vascular-related processes.
Collapse
Affiliation(s)
| | - Rubén Fernández-Rodríguez
- GENYO, Centre for Genomics and Oncological Research, Pfizer, Universidad de Granada, Junta de Andalucía, 18016 Granada, Spain
| | | | - M Luisa Iruela-Arispe
- Department of Molecular, Cell, and Developmental Biology, Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|