1
|
Cai J, Zhou R, Ye Y, Hao J, Luo Q, Mei H, He Z, Wang F, Yalikun A, Yu Y, Wen Y. UGDH promotes 5-fluorouracil resistance in colorectal cancer via the ROS-activated PI3K/AKT-EEF1A2-PRDX1 pathway. Arch Biochem Biophys 2025; 769:110445. [PMID: 40311992 DOI: 10.1016/j.abb.2025.110445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 04/01/2025] [Accepted: 04/28/2025] [Indexed: 05/03/2025]
Abstract
5-Fluorouracil (5-FU) chemotherapy resistance is a critical determinant of poor prognosis in patients with colorectal cancer (CRC). One critical mechanism underlying this resistance is the clearance of reactive oxygen species (ROS) generated by 5-FU, which diminishes its cytotoxic efficacy. Here, we identified the differential expression of UDP-glucose dehydrogenase (UGDH) in resistant cells through sequencing, and downstream targets EEF1A2 and PRDX1 were identified via immunoprecipitation-mass spectrometry (IP-MS). Stable knockdown and overexpression cell models were generated using a lentiviral system. The effects of gene manipulation on 5-FU resistance in CRC were evaluated both in vitro and in vivo through flow cytometry for reactive oxygen species (ROS) and apoptosis, as well as TUNEL immunofluorescence assays. Sequencing was utilized to enrich the relevant pathways. Our study firstly demonstrates that ROS-induced activation of the PI3K/AKT signaling pathway upregulates UGDH expression. UGDH promotes 5-FU resistance by collaborating with downstream effectors EEF1A2 and PRDX1 to clear ROS and inhibit tumor cell apoptosis. UGDH serves as a potential biomarker for 5-FU resistance in CRC, with its expression levels providing a crucial basis for therapeutic decision-making.
Collapse
Affiliation(s)
- Jinfeng Cai
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Runkai Zhou
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yingzi Ye
- Department of Infectious Diseases, Children's Hospital of Fudan University, Shanghai, China
| | - Jialing Hao
- Department of Hepatobiliary Surgery, Peking University People's Hospital, Beijing, China
| | - Qinshan Luo
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haitao Mei
- Department of Gastrointestinal Surgery, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 274 Zhijiang Middle Rd., Shanghai, 200071, China
| | - Zeping He
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fazhi Wang
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Abudushalamu Yalikun
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yang Yu
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yugang Wen
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
2
|
Kanchanangkul N, Panawan O, Teeravirote K, Ma-In P, Mahalapbutr P, Luang S, Seubwai W, Lert-Itthiporn W, Kaewkong W, Vaeteewoottacharn K, Wongkham S, Roytrakul S, Silsirivanit A. Silencing of O-GlcNAc Transferase Attenuated O-GlcNAcylation and Metastatic Potentials of Melanoma Cells Through Suppression of Akt-NFκB Signaling Pathway. Chembiochem 2025; 26:e202400896. [PMID: 39878235 DOI: 10.1002/cbic.202400896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 01/27/2025] [Accepted: 01/28/2025] [Indexed: 01/31/2025]
Abstract
O-GlcNAcylation is an important biological process in regulating the function of many nucleocytoplasmic proteins in cells. Enhancement of O-GlcNAcylation was associated with cancer development and progression. Here, we demonstrated the involvement of O-GlcNAcylation in melanoma metastasis. Using the data from GEO database, we found that O-GlcNAcylation and its related enzymes, including glutamine fructose-6-phosphate amidotransferase (GFAT), O-GlcNAc transferase (OGT), and O-GlcNAcase (OGA); were elevated in metastatic melanoma compared with primary tumors and normal tissues. Functional analyses in melanoma cell lines - MNT-1, SK-MEL-28, and A-375 showed that suppression of O-GlcNAcylation by siRNA against OGT significantly reduces the migration and invasion abilities of the cells. Phosphorylation of Akt and NFκB was drastically suppressed after the knockdown of OGT, suggesting the role of O-GlcNAcylation in regulating the Akt-NFκB signaling pathway. In addition, we found that the NFκB target genes, such as ZEB-2 and MCT-1, were significantly upregulated in metastatic tumors compared with primary tumors. MCT-1 expression in melanoma tissues was also correlated with the O-GlcNAcylation level. Taken together, we have demonstrated in this study the possible role of O-GlcNAcylation in controlling melanoma metastasis via upregulating MCT-1 expression through activation of the Akt-NFκB signaling pathway.
Collapse
Affiliation(s)
- Nopkamol Kanchanangkul
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Orasa Panawan
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Karuntarat Teeravirote
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Prasertsri Ma-In
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Panupong Mahalapbutr
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- Center for Translational Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Sukanya Luang
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- Center for Translational Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Wunchana Seubwai
- Department of Forensic Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- Center for Translational Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Worachart Lert-Itthiporn
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- Center for Translational Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Worasak Kaewkong
- Department of Biochemistry, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand
| | - Kulthida Vaeteewoottacharn
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- Center for Translational Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Sopit Wongkham
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- Center for Translational Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Sittiruk Roytrakul
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathumthani, 12120, Thailand
| | - Atit Silsirivanit
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- Center for Translational Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| |
Collapse
|
3
|
Wei G, Jia H, Zhang Z, Qin J, Ao J, Qian H. O-GlcNAcylation: Sagacious Orchestrator of Bone-, Joint-, and Spine-Related Diseases. J Proteome Res 2025; 24:981-994. [PMID: 39921656 PMCID: PMC11894655 DOI: 10.1021/acs.jproteome.4c00859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/22/2025] [Accepted: 01/24/2025] [Indexed: 02/10/2025]
Abstract
O-linked beta-N-acetylglucosamine glycosylation (O-GlcNAcylation), a post-translational modification of proteins, occurs in multiple physiological and pathological processes. Despite comprehensive study of protein modifications, such as phosphorylation, acetylation, and ubiquitination in musculoskeletal diseases, the role of O-GlcNAcylation in this field has been largely overlooked. However, in recent years, several studies have initially elucidated the biological mechanisms through which O-GlcNAcylation regulates the development and progress of musculoskeletal diseases, including osteoarthritis, osteoporosis, osteosarcoma, and intervertebral disc degeneration. This review aims to systematically and comprehensively summarize the existing evidence, sketching the contours of the underlying mechanisms and related signaling pathways, discussing the limitations and controversies, and providing guidance for future studies on the role of O-GlcNAcylation modifications in musculoskeletal diseases.
Collapse
Affiliation(s)
- Guihuo Wei
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China
| | - Hao Jia
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China
| | - Zhuo Zhang
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China
| | - Jianpu Qin
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China
| | - Jun Ao
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China
| | - Hu Qian
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China
| |
Collapse
|
4
|
Simpson MA. Impacts of Hyaluronan on Extracellular Vesicle Production and Signaling. Cells 2025; 14:139. [PMID: 39851567 PMCID: PMC11763598 DOI: 10.3390/cells14020139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/14/2025] [Accepted: 01/15/2025] [Indexed: 01/26/2025] Open
Abstract
Hyaluronan (HA) is a critical component of cell and tissue matrices and an important signaling molecule. The enzymes that synthesize and process HA, as well as the HA receptors through which the signaling properties of HA are transmitted, have been identified in extracellular vesicles and implicated in context-specific processes associated with health and disease. The goal of this review is to present a comprehensive summary of the research on HA and its related receptors and enzymes in extracellular vesicle biogenesis and the cellular responses to vesicles bearing these extracellular matrix modulators. When present in extracellular vesicles, HA is assumed to be on the outside of the vesicle and is sometimes found associated with CD44 or the HAS enzyme itself. Hyaluronidases may be inside the vesicles or present on the vesicle surface via a transmembrane domain or GPI linkage. The implication of presenting these signals in extracellular vesicles is that there is a greater range of systemic distribution and more complex delivery media than previously thought for secreted HA or hyaluronidase alone. Understanding the context for these HA signals offers new diagnostic and therapeutic insight.
Collapse
Affiliation(s)
- Melanie A Simpson
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695-7622, USA
| |
Collapse
|
5
|
Liu Z, Hou P, Fang J, Shao C, Shi Y, Melino G, Peschiaroli A. Hyaluronic acid metabolism and chemotherapy resistance: recent advances and therapeutic potential. Mol Oncol 2024; 18:2087-2106. [PMID: 37953485 PMCID: PMC11467803 DOI: 10.1002/1878-0261.13551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/04/2023] [Accepted: 11/10/2023] [Indexed: 11/14/2023] Open
Abstract
Hyaluronic acid (HA) is a major component of the extracellular matrix, providing essential mechanical scaffolding for cells and, at the same time, mediating essential biochemical signals required for tissue homeostasis. Many solid tumors are characterized by dysregulated HA metabolism, resulting in increased HA levels in cancer tissues. HA interacts with several cell surface receptors, such as cluster of differentiation 44 and receptor for hyaluronan-mediated motility, thus co-regulating important signaling pathways in cancer development and progression. In this review, we describe the enzymes controlling HA metabolism and its intracellular effectors emphasizing their impact on cancer chemotherapy resistance. We will also explore the current and future prospects of HA-based therapy, highlighting the opportunities and challenges in the field.
Collapse
Affiliation(s)
- Zhanhong Liu
- Department of Experimental MedicineUniversity of Rome Tor VergataRomeItaly
- Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and ProtectionThe First Affiliated Hospital of Soochow University, Suzhou Medical College of Soochow UniversityChina
| | - Pengbo Hou
- Department of Experimental MedicineUniversity of Rome Tor VergataRomeItaly
- Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and ProtectionThe First Affiliated Hospital of Soochow University, Suzhou Medical College of Soochow UniversityChina
| | - Jiankai Fang
- Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and ProtectionThe First Affiliated Hospital of Soochow University, Suzhou Medical College of Soochow UniversityChina
| | - Changshun Shao
- Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and ProtectionThe First Affiliated Hospital of Soochow University, Suzhou Medical College of Soochow UniversityChina
| | - Yufang Shi
- Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and ProtectionThe First Affiliated Hospital of Soochow University, Suzhou Medical College of Soochow UniversityChina
| | - Gerry Melino
- Department of Experimental MedicineUniversity of Rome Tor VergataRomeItaly
| | - Angelo Peschiaroli
- Institute of Translational Pharmacology (IFT), National Research Council (CNR)RomeItaly
| |
Collapse
|
6
|
Simon‐Molas H, Del Prete R, Kabanova A. Glucose metabolism in B cell malignancies: a focus on glycolysis branching pathways. Mol Oncol 2024; 18:1777-1794. [PMID: 38115544 PMCID: PMC11223612 DOI: 10.1002/1878-0261.13570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/13/2023] [Accepted: 12/15/2023] [Indexed: 12/21/2023] Open
Abstract
Glucose catabolism, one of the essential pathways sustaining cellular bioenergetics, has been widely studied in the context of tumors. Nevertheless, the function of various branches of glucose metabolism that stem from 'classical' glycolysis have only been partially explored. This review focuses on discussing general mechanisms and pathological implications of glycolysis and its branching pathways in the biology of B cell malignancies. We summarize here what is known regarding pentose phosphate, hexosamine, serine biosynthesis, and glycogen synthesis pathways in this group of tumors. Despite most findings have been based on malignant B cells themselves, we also discuss the role of glucose metabolism in the tumor microenvironment, with a focus on T cells. Understanding the contribution of glycolysis branching pathways and how they are hijacked in B cell malignancies will help to dissect the role they have in sustaining the dissemination and proliferation of tumor B cells and regulating immune responses within these tumors. Ultimately, this should lead to deciphering associated vulnerabilities and improve current therapeutic schedules.
Collapse
Affiliation(s)
- Helga Simon‐Molas
- Departments of Experimental Immunology and HematologyAmsterdam UMC location University of AmsterdamThe Netherlands
- Cancer ImmunologyCancer Center AmsterdamThe Netherlands
| | | | - Anna Kabanova
- Fondazione Toscana Life Sciences FoundationSienaItaly
| |
Collapse
|
7
|
Price MJ, Nguyen AD, Byemerwa JK, Flowers J, Baëta CD, Goodwin CR. UDP-glucose dehydrogenase (UGDH) in clinical oncology and cancer biology. Oncotarget 2023; 14:843-857. [PMID: 37769033 PMCID: PMC10538703 DOI: 10.18632/oncotarget.28514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 09/04/2023] [Indexed: 09/30/2023] Open
Abstract
UDP-glucose-6-dehydrogenase (UGDH) is a cytosolic, hexameric enzyme that converts UDP-glucose to UDP-glucuronic acid (UDP-GlcUA), a key reaction in hormone and xenobiotic metabolism and in the production of extracellular matrix precursors. In this review, we classify UGDH as a molecular indicator of tumor progression in multiple cancer types, describe its involvement in key canonical cancer signaling pathways, and identify methods to inhibit UGDH, its substrates, and its downstream products. As such, we position UGDH as an enzyme to be exploited as a potential prognostication marker in oncology and a therapeutic target in cancer biology.
Collapse
Affiliation(s)
- Meghan J. Price
- Department of Internal Medicine, John Hopkins Hospital, Baltimore, MD 21287, USA
| | - Annee D. Nguyen
- Department of Neurosurgery, Duke University Medical Center, Durham, NC 27710, USA
| | - Jovita K. Byemerwa
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27708, USA
| | - Jasmine Flowers
- Department of Neurosurgery, Associated with Duke University Medical Center, Durham, NC 27710, USA
| | - César D. Baëta
- Department of Epidemiology and Clinical Research, Stanford University, Stanford, CA 94305, USA
| | - C. Rory Goodwin
- Department of Neurosurgery, Duke Center for Brain and Spine Metastasis and Duke Cancer Institute, Durham, NC 27710, USA
| |
Collapse
|
8
|
He XF, Hu X, Wen GJ, Wang Z, Lin WJ. O-GlcNAcylation in cancer development and immunotherapy. Cancer Lett 2023; 566:216258. [PMID: 37279852 DOI: 10.1016/j.canlet.2023.216258] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/03/2023] [Accepted: 05/30/2023] [Indexed: 06/08/2023]
Abstract
O-linked β-D-N-acetylglucosamine (O-GlcNAc), as a posttranslational modification (PTM), is a reversible reaction that attaches β-N-GlcNAc to Ser/Thr residues on specific proteins by O-GlcNAc transferase (OGT). O-GlcNAcase (OGA) removes the O-GlcNAc from O-GlcNAcylated proteins. O-GlcNAcylation regulates numerous cellular processes, including signal transduction, the cell cycle, metabolism, and energy homeostasis. Dysregulation of O-GlcNAcylation contributes to the development of various diseases, including cancers. Accumulating evidence has revealed that higher expression levels of OGT and hyper-O-GlcNAcylation are detected in many cancer types and governs glucose metabolism, proliferation, metastasis, invasion, angiogenesis, migration and drug resistance. In this review, we describe the biological functions and molecular mechanisms of OGT- or O-GlcNAcylation-mediated tumorigenesis. Moreover, we discuss the potential role of O-GlcNAcylation in tumor immunotherapy. Furthermore, we highlight that compounds can target O-GlcNAcylation by regulating OGT to suppress oncogenesis. Taken together, targeting protein O-GlcNAcylation might be a promising strategy for the treatment of human malignancies.
Collapse
Affiliation(s)
- Xue-Fen He
- Department of Obstetrics and Gynecology, Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou, 325000, Zhejiang, China
| | - Xiaoli Hu
- Department of Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Gao-Jing Wen
- Department of Obstetrics and Gynecology, Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou, 325000, Zhejiang, China
| | - Zhiwei Wang
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical College, Anhui, China; Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Wen-Jing Lin
- Department of Obstetrics and Gynecology, Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou, 325000, Zhejiang, China.
| |
Collapse
|
9
|
Dixson AC, Dawson TR, Di Vizio D, Weaver AM. Context-specific regulation of extracellular vesicle biogenesis and cargo selection. Nat Rev Mol Cell Biol 2023; 24:454-476. [PMID: 36765164 PMCID: PMC10330318 DOI: 10.1038/s41580-023-00576-0] [Citation(s) in RCA: 282] [Impact Index Per Article: 141.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2023] [Indexed: 02/12/2023]
Abstract
To coordinate, adapt and respond to biological signals, cells convey specific messages to other cells. An important aspect of cell-cell communication involves secretion of molecules into the extracellular space. How these molecules are selected for secretion has been a fundamental question in the membrane trafficking field for decades. Recently, extracellular vesicles (EVs) have been recognized as key players in intercellular communication, carrying not only membrane proteins and lipids but also RNAs, cytosolic proteins and other signalling molecules to recipient cells. To communicate the right message, it is essential to sort cargoes into EVs in a regulated and context-specific manner. In recent years, a wealth of lipidomic, proteomic and RNA sequencing studies have revealed that EV cargo composition differs depending upon the donor cell type, metabolic cues and disease states. Analyses of distinct cargo 'fingerprints' have uncovered mechanistic linkages between the activation of specific molecular pathways and cargo sorting. In addition, cell biology studies are beginning to reveal novel biogenesis mechanisms regulated by cellular context. Here, we review context-specific mechanisms of EV biogenesis and cargo sorting, focusing on how cell signalling and cell state influence which cellular components are ultimately targeted to EVs.
Collapse
Affiliation(s)
- Andrew C Dixson
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - T Renee Dawson
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
- Center for Extracellular Vesicle Research, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Dolores Di Vizio
- Department of Surgery, Division of Cancer Biology and Therapeutics, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Alissa M Weaver
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA.
- Center for Extracellular Vesicle Research, Vanderbilt University School of Medicine, Nashville, TN, USA.
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
10
|
Ben Ahmed A, Lemaire Q, Scache J, Mariller C, Lefebvre T, Vercoutter-Edouart AS. O-GlcNAc Dynamics: The Sweet Side of Protein Trafficking Regulation in Mammalian Cells. Cells 2023; 12:1396. [PMID: 37408229 PMCID: PMC10216988 DOI: 10.3390/cells12101396] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 07/07/2023] Open
Abstract
The transport of proteins between the different cellular compartments and the cell surface is governed by the secretory pathway. Alternatively, unconventional secretion pathways have been described in mammalian cells, especially through multivesicular bodies and exosomes. These highly sophisticated biological processes rely on a wide variety of signaling and regulatory proteins that act sequentially and in a well-orchestrated manner to ensure the proper delivery of cargoes to their final destination. By modifying numerous proteins involved in the regulation of vesicular trafficking, post-translational modifications (PTMs) participate in the tight regulation of cargo transport in response to extracellular stimuli such as nutrient availability and stress. Among the PTMs, O-GlcNAcylation is the reversible addition of a single N-acetylglucosamine monosaccharide (GlcNAc) on serine or threonine residues of cytosolic, nuclear, and mitochondrial proteins. O-GlcNAc cycling is mediated by a single couple of enzymes: the O-GlcNAc transferase (OGT) which catalyzes the addition of O-GlcNAc onto proteins, and the O-GlcNAcase (OGA) which hydrolyses it. Here, we review the current knowledge on the emerging role of O-GlcNAc modification in the regulation of protein trafficking in mammalian cells, in classical and unconventional secretory pathways.
Collapse
|
11
|
Zheng X, Wang B, Tang X, Mao B, Zhang Q, Zhang T, Zhao J, Cui S, Chen W. Absorption, metabolism, and functions of hyaluronic acid and its therapeutic prospects in combination with microorganisms: A review. Carbohydr Polym 2023; 299:120153. [PMID: 36876779 DOI: 10.1016/j.carbpol.2022.120153] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 09/21/2022] [Accepted: 09/21/2022] [Indexed: 11/25/2022]
Abstract
Hyaluronic acid (HA) is key to the stability of the internal environment of tissues. HA content in tissues gradually decreases with age, causing age-related health problems. Exogenous HA supplements are used to prevent or treat these problems including skin dryness and wrinkles, intestinal imbalance, xerophthalmia, and arthritis after absorption. Moreover, some probiotics are able to promote endogenous HA synthesis and alleviate symptoms caused by HA loss, thus introducing potential preventative or therapeutic applications of HA and probiotics. Here, we review the oral absorption, metabolism, and biological function of HA as well as the potential role of probiotics and HA in increasing the efficacy of HA supplements.
Collapse
Affiliation(s)
- Xueli Zheng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Botao Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Bloomage Biotechnology Co., Ltd, Jinan 250000, China
| | - Xin Tang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Bingyong Mao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Qiuxiang Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Tianmeng Zhang
- Bloomage Biotechnology Co., Ltd, Jinan 250000, China; School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Shumao Cui
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
12
|
Capra J, Härkönen K, Kyykallio H, Vihinen H, Jokitalo E, Rilla K. Microscopic characterization reveals the diversity of EVs secreted by GFP-HAS3 expressing MCF7 cells. Eur J Cell Biol 2022; 101:151235. [DOI: 10.1016/j.ejcb.2022.151235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 05/05/2022] [Accepted: 05/09/2022] [Indexed: 11/27/2022] Open
|
13
|
Zimmer BM, Barycki JJ, Simpson MA. Mechanisms of coordinating hyaluronan and glycosaminoglycan production by nucleotide sugars. Am J Physiol Cell Physiol 2022; 322:C1201-C1213. [PMID: 35442826 DOI: 10.1152/ajpcell.00130.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hyaluronan is a versatile macromolecule capable of an exceptional range of functions from cushioning and hydration to dynamic signaling in development and disease. Because of its critical roles, hyaluronan production is regulated at multiple levels including epigenetic, transcriptional, and post-translational control of the three hyaluronan synthase (HAS) enzymes. Precursor availability can dictate the rate and amount of hyaluronan synthesized and shed by the cells producing it. However, the nucleotide-activated sugar substrates for hyaluronan synthesis by HAS also participate in exquisitely fine tuned cross talking pathways that intersect with central carbohydrate metabolism. Multiple UDP-sugars have alternative metabolic fates and exhibit coordinated and reciprocal allosteric control of enzymes within their biosynthetic pathways to preserve appropriate precursor ratios for accurate partitioning among downstream products, while also sensing and maintaining energy homeostasis. Since the dysregulation of nucleotide sugar and hyaluronan synthesis is associated with multiple pathologies, these pathways offer opportunities for therapeutic intervention. Recent structures of several key rate-limiting enzymes in the UDP-sugar synthesis pathways have offered new insights to the overall regulation of hyaluronan production by precursor fate decisions. The details of UDP-sugar control and the structural basis for underlying mechanisms are discussed in this review.
Collapse
Affiliation(s)
- Brenna M Zimmer
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC, United States
| | - Joseph J Barycki
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC, United States
| | - Melanie A Simpson
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
14
|
Wang G, Han JJ. Connections between metabolism and epigenetic modifications in cancer. MEDICAL REVIEW (BERLIN, GERMANY) 2021; 1:199-221. [PMID: 37724300 PMCID: PMC10388788 DOI: 10.1515/mr-2021-0015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 09/19/2021] [Indexed: 09/20/2023]
Abstract
How cells sense and respond to environmental changes is still a key question. It has been identified that cellular metabolism is an important modifier of various epigenetic modifications, such as DNA methylation, histone methylation and acetylation and RNA N6-methyladenosine (m6A) methylation. This closely links the environmental nutrient availability to the maintenance of chromatin structure and gene expression, and is crucial to regulate cellular homeostasis, cell growth and differentiation. Cancer metabolic reprogramming and epigenetic alterations are widely observed, and facilitate cancer development and progression. In cancer cells, oncogenic signaling-driven metabolic reprogramming modifies the epigenetic landscape via changes in the key metabolite levels. In this review, we briefly summarized the current evidence that the abundance of key metabolites, such as S-adenosyl methionine (SAM), acetyl-CoA, α-ketoglutarate (α-KG), 2-hydroxyglutarate (2-HG), uridine diphospho-N-acetylglucosamine (UDP-GlcNAc) and lactate, affected by metabolic reprogramming plays an important role in dynamically regulating epigenetic modifications in cancer. An improved understanding of the roles of metabolic reprogramming in epigenetic regulation can contribute to uncover the underlying mechanisms of metabolic reprogramming in cancer development and identify the potential targets for cancer therapies.
Collapse
Affiliation(s)
- Guangchao Wang
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology (CQB), Peking University, Beijing, China
| | - Jingdong J. Han
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology (CQB), Peking University, Beijing, China
| |
Collapse
|
15
|
Rilla K. Diverse plasma membrane protrusions act as platforms for extracellular vesicle shedding. J Extracell Vesicles 2021; 10:e12148. [PMID: 34533887 PMCID: PMC8448080 DOI: 10.1002/jev2.12148] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/24/2021] [Accepted: 09/07/2021] [Indexed: 12/12/2022] Open
Abstract
Plasma membrane curvature is an important factor in the regulation of cellular phenotype and is critical for various cellular activities including the shedding of extracellular vesicles (EV). One of the most striking morphological features of cells is different plasma membrane-covered extensions supported by actin core such as filopodia and microvilli. Despite the various functions of these extensions are partially unexplained, they are known to facilitate many crucial cellular functions such as migration, adhesion, absorption, and secretion. Due to the rapid increase in the research activity of EVs, there is raising evidence that one of the general features of cellular plasma membrane protrusions is to act as specialized platforms for the budding of EVs. This review will focus on early observations and recent findings supporting this hypothesis, discuss the putative budding and shedding mechanisms of protrusion-derived EVs and their biological significance.
Collapse
Affiliation(s)
- Kirsi Rilla
- Institute of BiomedicineUniversity of Eastern FinlandKuopioFinland
| |
Collapse
|
16
|
Akazawa Y, Yoshida H, Endo Y, Sugita J, Yakumaru M, Sayo T. 1-Ethyl-β-N-acetylglucosaminide increases hyaluronan production in human keratinocytes by being converted to N-acetylglucosamine via β-N-acetylglucosaminidase-dependent manner. Biosci Biotechnol Biochem 2021; 85:1433-1440. [PMID: 33836055 DOI: 10.1093/bbb/zbab060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 04/01/2021] [Indexed: 11/15/2022]
Abstract
Regulation of hyaluronan (HA) is important for the maintenance of epidermal homeostasis. Here, we examined the mechanism by which 1-ethyl-β-N-acetylglucosaminide (β-NAG2), a newly developed N-acetylglucosamine (NAG) derivative, increases HA production in cultured human epidermal keratinocytes. When keratinocytes were treated with β-NAG2, mRNA expression of HA synthase 3, which is responsible for HA production in human keratinocytes, was not influenced, but the intracellular level of UDP-NAG, a substrate used for HA synthesis, was increased. By using a synthetic substrate for β-N-acetylglucosaminidase (β-NAGase), keratinocytes were found to possess β-NAGase activity, and treatment of o-(2-acetamido-2-deoxy-d-glucopyranosylidene) amino N-phenyl carbamate (PUGNAc), an inhibitor of β-NAGase, abolished the release of NAG from β-NAG2 in keratinocytes. Furthermore, PUGNAc attenuated the β-NAG2-induced intracellular UDP-NAG and HA production in keratinocytes. These results suggest that β-NAG2 is converted to NAG by endogenous β-NAGase in keratinocytes, and the resulting NAG is further metabolized to UDP-NAG and utilized for HA production.
Collapse
Affiliation(s)
- Yumiko Akazawa
- Skin Care Products Research, Kao Corporation, Odawara-shi, Kanagawa, Japan
| | - Hiroyuki Yoshida
- Biological Science Research, Kao Corporation, Odawara-shi, Kanagawa, Japan
| | - Yoko Endo
- Biological Science Research, Kao Corporation, Odawara-shi, Kanagawa, Japan
| | - Jun Sugita
- Skin Care Products Research, Kao Corporation, Odawara-shi, Kanagawa, Japan
| | - Masafumi Yakumaru
- Skin Care Products Research, Kao Corporation, Odawara-shi, Kanagawa, Japan
| | - Tetsuya Sayo
- Biological Science Research, Kao Corporation, Odawara-shi, Kanagawa, Japan
| |
Collapse
|
17
|
Vitale DL, Caon I, Parnigoni A, Sevic I, Spinelli FM, Icardi A, Passi A, Vigetti D, Alaniz L. Initial Identification of UDP-Glucose Dehydrogenase as a Prognostic Marker in Breast Cancer Patients, Which Facilitates Epirubicin Resistance and Regulates Hyaluronan Synthesis in MDA-MB-231 Cells. Biomolecules 2021; 11:biom11020246. [PMID: 33572239 PMCID: PMC7914570 DOI: 10.3390/biom11020246] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 12/11/2022] Open
Abstract
UDP-glucose-dehydrogenase (UGDH) synthesizes UDP-glucuronic acid. It is involved in epirubicin detoxification and hyaluronan synthesis. This work aimed to evaluate the effect of UGDH knockdown on epirubicin response and hyaluronan metabolism in MDA-MB-231 breast cancer cells. Additionally, the aim was to determine UGDH as a possible prognosis marker in breast cancer. We studied UGDH expression in tumors and adjacent tissue from breast cancer patients. The prognostic value of UGDH was studied using a public Kaplan–Meier plotter. MDA-MB-231 cells were knocked-down for UGDH and treated with epirubicin. Epirubicin-accumulation and apoptosis were analyzed by flow cytometry. Hyaluronan-coated matrix and metabolism were determined. Autophagic-LC3-II was studied by Western blot and confocal microscopy. Epirubicin accumulation increased and apoptosis decreased during UGDH knockdown. Hyaluronan-coated matrix increased and a positive modulation of autophagy was detected. Higher levels of UGDH were correlated with worse prognosis in triple-negative breast cancer patients that received chemotherapy. High expression of UGDH was found in tumoral tissue from HER2--patients. However, UGDH knockdown contributes to epirubicin resistance, which might be associated with increases in the expression, deposition and catabolism of hyaluronan. The results obtained allowed us to propose UGDH as a new prognostic marker in breast cancer, positively associated with development of epirubicin resistance and modulation of extracellular matrix.
Collapse
Affiliation(s)
- Daiana L. Vitale
- Laboratorio de Microambiente Tumoral, Centro de Investigaciones Básicas y Aplicadas (CIBA), Universidad Nacional del Noroeste de la Provincia de Buenos Aires, Junín 6000, Argentina; (D.L.V.); (I.S.); (F.M.S.); (A.I.)
- Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires (CITNOBA), UNNOBA-UNSAdA-CONICET, Junín 6000, Argentina
| | - Ilaria Caon
- Dipartimento di Medicina e Chirurgia, Università degli Studio dell’Insubria, 21100 Varese, Italy; (I.C.); (A.P.); (A.P.)
| | - Arianna Parnigoni
- Dipartimento di Medicina e Chirurgia, Università degli Studio dell’Insubria, 21100 Varese, Italy; (I.C.); (A.P.); (A.P.)
| | - Ina Sevic
- Laboratorio de Microambiente Tumoral, Centro de Investigaciones Básicas y Aplicadas (CIBA), Universidad Nacional del Noroeste de la Provincia de Buenos Aires, Junín 6000, Argentina; (D.L.V.); (I.S.); (F.M.S.); (A.I.)
- Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires (CITNOBA), UNNOBA-UNSAdA-CONICET, Junín 6000, Argentina
| | - Fiorella M. Spinelli
- Laboratorio de Microambiente Tumoral, Centro de Investigaciones Básicas y Aplicadas (CIBA), Universidad Nacional del Noroeste de la Provincia de Buenos Aires, Junín 6000, Argentina; (D.L.V.); (I.S.); (F.M.S.); (A.I.)
- Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires (CITNOBA), UNNOBA-UNSAdA-CONICET, Junín 6000, Argentina
| | - Antonella Icardi
- Laboratorio de Microambiente Tumoral, Centro de Investigaciones Básicas y Aplicadas (CIBA), Universidad Nacional del Noroeste de la Provincia de Buenos Aires, Junín 6000, Argentina; (D.L.V.); (I.S.); (F.M.S.); (A.I.)
- Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires (CITNOBA), UNNOBA-UNSAdA-CONICET, Junín 6000, Argentina
| | - Alberto Passi
- Dipartimento di Medicina e Chirurgia, Università degli Studio dell’Insubria, 21100 Varese, Italy; (I.C.); (A.P.); (A.P.)
| | - Davide Vigetti
- Dipartimento di Medicina e Chirurgia, Università degli Studio dell’Insubria, 21100 Varese, Italy; (I.C.); (A.P.); (A.P.)
- Correspondence: (D.V.); (L.A.); Tel.: + 39-332-307170 (D.V.); +54-236-4-407750 (ext. 11625) (L.A.)
| | - Laura Alaniz
- Laboratorio de Microambiente Tumoral, Centro de Investigaciones Básicas y Aplicadas (CIBA), Universidad Nacional del Noroeste de la Provincia de Buenos Aires, Junín 6000, Argentina; (D.L.V.); (I.S.); (F.M.S.); (A.I.)
- Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires (CITNOBA), UNNOBA-UNSAdA-CONICET, Junín 6000, Argentina
- Correspondence: (D.V.); (L.A.); Tel.: + 39-332-307170 (D.V.); +54-236-4-407750 (ext. 11625) (L.A.)
| |
Collapse
|
18
|
Caon I, Parnigoni A, Viola M, Karousou E, Passi A, Vigetti D. Cell Energy Metabolism and Hyaluronan Synthesis. J Histochem Cytochem 2021; 69:35-47. [PMID: 32623953 PMCID: PMC7780193 DOI: 10.1369/0022155420929772] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 05/01/2020] [Indexed: 02/06/2023] Open
Abstract
Hyaluronan (HA) is a linear glycosaminoglycan (GAG) of extracellular matrix (ECM) synthesized by three hyaluronan synthases (HASes) at the plasma membrane using uridine diphosphate (UDP)-glucuronic acid (UDP-GlcUA) and UDP-N-acetylglucosamine (UDP-GlcNAc) as substrates. The production of HA is mainly regulated by hyaluronan synthase 2 (HAS2), that can be controlled at different levels, from epigenetics to transcriptional and post-translational modifications. HA biosynthesis is an energy-consuming process and, along with HA catabolism, is strongly connected to the maintenance of metabolic homeostasis. The cytoplasmic pool of UDP-sugars is critical for HA synthesis. UDP-GlcNAc is an important nutrient sensor and serves as donor substrate for the O-GlcNAcylation of many cytosolic proteins, including HAS2. This post-translational modification stabilizes HAS2 in the membrane and increases HA production. Conversely, HAS2 can be phosphorylated by AMP activated protein kinase (AMPK), a master metabolic regulator activated by low ATP/AMP ratios, which inhibits HA secretion. Similarly, HAS2 expression and the deposition of HA within the pericellular coat are inhibited by sirtuin 1 (SIRT1), another important energetic sensor, confirming the tight connection between nutrients availability and HA metabolism.
Collapse
Affiliation(s)
- Ilaria Caon
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Arianna Parnigoni
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Manuela Viola
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Evgenia Karousou
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Alberto Passi
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Davide Vigetti
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| |
Collapse
|
19
|
Arasu UT, Deen AJ, Pasonen-Seppänen S, Heikkinen S, Lalowski M, Kärnä R, Härkönen K, Mäkinen P, Lázaro-Ibáñez E, Siljander PRM, Oikari S, Levonen AL, Rilla K. HAS3-induced extracellular vesicles from melanoma cells stimulate IHH mediated c-Myc upregulation via the hedgehog signaling pathway in target cells. Cell Mol Life Sci 2020; 77:4093-4115. [PMID: 31820036 PMCID: PMC7532973 DOI: 10.1007/s00018-019-03399-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 11/11/2019] [Accepted: 11/26/2019] [Indexed: 12/17/2022]
Abstract
Intercellular communication is fundamental to the survival and maintenance of all multicellular systems, whereas dysregulation of communication pathways can drive cancer progression. Extracellular vesicles (EVs) are mediators of cell-to-cell communication that regulate a variety of cellular processes involved in tumor progression. Overexpression of a specific plasma membrane enzyme, hyaluronan synthase 3 (HAS3), is one of the factors that can induce EV shedding. HAS3, and particularly its product hyaluronan (HA), are carried by EVs and are known to be associated with the tumorigenic properties of cancer cells. To elucidate the specific effects of cancerous, HAS3-induced EVs on target cells, normal human keratinocytes and melanoma cells were treated with EVs derived from GFP-HAS3 expressing metastatic melanoma cells. We found that the HA receptor CD44 participated in the regulation of EV binding to target cells. Furthermore, GFP-HAS3-positive EVs induced HA secretion, proliferation and invasion of target cells. Our results suggest that HAS3-EVs contains increased quantities of IHH, which activates the target cell hedgehog signaling cascade and leads to the activation of c-Myc and regulation of claspin expression. This signaling of IHH in HAS3-EVs resulted in increased cell proliferation. Claspin immunostaining correlated with HA content in human cutaneous melanocytic lesions, supporting our in vitro findings and suggesting a reciprocal regulation between claspin expression and HA synthesis. This study shows for the first time that EVs originating from HAS3 overexpressing cells carry mitogenic signals that induce proliferation and epithelial-to-mesenchymal transition in target cells. The study also identifies a novel feedback regulation between the hedgehog signaling pathway and HA metabolism in melanoma, mediated by EVs carrying HA and IHH.
Collapse
Affiliation(s)
- Uma Thanigai Arasu
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland.
| | - Ashik Jawahar Deen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | | | - Sami Heikkinen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
- Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Maciej Lalowski
- Faculty of Medicine, Biochemistry and Developmental Biology, Meilahti Clinical Proteomics Core Facility, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Riikka Kärnä
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Kai Härkönen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Petri Mäkinen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Elisa Lázaro-Ibáñez
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, Centre for Drug Research, University of Helsinki, Helsinki, Finland
| | - Pia R-M Siljander
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, Centre for Drug Research, University of Helsinki, Helsinki, Finland
- EV Group and EV Core, Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Sanna Oikari
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Anna-Liisa Levonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Kirsi Rilla
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
20
|
Zimmer BM, Barycki JJ, Simpson MA. Integration of Sugar Metabolism and Proteoglycan Synthesis by UDP-glucose Dehydrogenase. J Histochem Cytochem 2020; 69:13-23. [PMID: 32749901 DOI: 10.1369/0022155420947500] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Regulation of proteoglycan and glycosaminoglycan synthesis is critical throughout development, and to maintain normal adult functions in wound healing and the immune system, among others. It has become increasingly clear that these processes are also under tight metabolic control and that availability of carbohydrate and amino acid metabolite precursors has a role in the control of proteoglycan and glycosaminoglycan turnover. The enzyme uridine diphosphate (UDP)-glucose dehydrogenase (UGDH) produces UDP-glucuronate, an essential precursor for new glycosaminoglycan synthesis that is tightly controlled at multiple levels. Here, we review the cellular mechanisms that regulate UGDH expression, discuss the structural features of the enzyme, and use the structures to provide a context for recent studies that link post-translational modifications and allosteric modulators of UGDH to its function in downstream pathways.
Collapse
Affiliation(s)
- Brenna M Zimmer
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina
| | - Joseph J Barycki
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina
| | - Melanie A Simpson
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina
| |
Collapse
|
21
|
Tazhitdinova R, Timoshenko AV. The Emerging Role of Galectins and O-GlcNAc Homeostasis in Processes of Cellular Differentiation. Cells 2020; 9:cells9081792. [PMID: 32731422 PMCID: PMC7465113 DOI: 10.3390/cells9081792] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/24/2020] [Accepted: 07/24/2020] [Indexed: 02/07/2023] Open
Abstract
Galectins are a family of soluble β-galactoside-binding proteins with diverse glycan-dependent and glycan-independent functions outside and inside the cell. Human cells express twelve out of sixteen recognized mammalian galectin genes and their expression profiles are very different between cell types and tissues. In this review, we summarize the current knowledge on the changes in the expression of individual galectins at mRNA and protein levels in different types of differentiating cells and the effects of recombinant galectins on cellular differentiation. A new model of galectin regulation is proposed considering the change in O-GlcNAc homeostasis between progenitor/stem cells and mature differentiated cells. The recognition of galectins as regulatory factors controlling cell differentiation and self-renewal is essential for developmental and cancer biology to develop innovative strategies for prevention and targeted treatment of proliferative diseases, tissue regeneration, and stem-cell therapy.
Collapse
|
22
|
Kyykallio H, Oikari S, Bueno Álvez M, Gallardo Dodd CJ, Capra J, Rilla K. The Density and Length of Filopodia Associate with the Activity of Hyaluronan Synthesis in Tumor Cells. Cancers (Basel) 2020; 12:cancers12071908. [PMID: 32679746 PMCID: PMC7409202 DOI: 10.3390/cancers12071908] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/08/2020] [Accepted: 07/14/2020] [Indexed: 01/01/2023] Open
Abstract
Filopodia are multifunctional finger-like plasma membrane protrusions with bundles of actin filaments that exist in virtually all cell types. It has been known for some time that hyaluronan synthesis activity induces filopodial growth. However, because of technical challenges in the studies of these slender and fragile structures, no quantitative analyses have been performed so far to indicate their association with hyaluronan synthesis. In this work we comprehensively address the direct quantification of filopodial traits, covering for the first time length and density measurements in a series of human cancer cell lines with variable levels of hyaluronan synthesis. The synthesis and plasma membrane binding of hyaluronan were manipulated with hyaluronan synthase 3 (HAS3) and hyaluronan receptor CD44 overexpression, and treatments with mannose, 4-methylumbelliferone (4-MU), and glucosamine. The results of this work show that the growth of filopodia was associated with the levels of hyaluronan synthesis but was not dependent on CD44 expression. The results confirm the hypothesis that abundance and length of filopodia in cancer cells is associated with the activity of hyaluronan synthesis.
Collapse
|
23
|
Intracellular hyaluronan: Importance for cellular functions. Semin Cancer Biol 2020; 62:20-30. [DOI: 10.1016/j.semcancer.2019.07.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 06/25/2019] [Accepted: 07/02/2019] [Indexed: 02/06/2023]
|
24
|
Salicylate suppresses the oncogenic hyaluronan network in metastatic breast cancer cells. Matrix Biol Plus 2020; 6-7:100031. [PMID: 33543028 PMCID: PMC7852211 DOI: 10.1016/j.mbplus.2020.100031] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 01/05/2023] Open
Abstract
The oncogenic role of hyaluronan in several aspects of tumor biology has been well established. Recent studies by us and others suggest that inhibition of hyaluronan synthesis could represent an emerging therapeutic approach with significant clinical relevance in controlling different breast cancer subtypes, including triple-negative breast cancer. Epidemiological and preclinical studies have revealed the therapeutic potential of aspirin (acetyl salicylate), a classical anti-inflammatory drug, in patients with cancer. However, the underlying molecular mechanisms remain unknown. The present study demonstrates that salicylate, a break down product of aspirin in vivo, alters the organization of hyaluronan matrices by affecting the expression levels of hyaluronan synthesizing (HAS1, 2, 3) and degrading (HYAL-1, -2) enzymes, and that of hyaluronan receptor CD44. In particular, salicylate was found to potently activate AMPK, a kinase known to inhibit HAS2 activity, and caused a dose-dependent decrease of cell associated (intracellular and membrane-bound) as well as secreted hyaluronan, followed by the down-regulation of HAS2 and the induction of HYAL-2 and CD44 in metastatic breast cancer cells. These salicylate-mediated effects were associated with the redistribution of CD44 and actin cytoskeleton that resulted in a less motile cell phenotype. Interestingly, salicylate inhibited metastatic breast cancer cell proliferation and growth by inducing cell growth arrest without signs of apoptosis as evidenced by the substantial decrease of cyclin D1 protein and the absence of cleaved caspase-3, respectively. Collectively, our study offers a possible direction for the development of new matrix-based targeted treatments of metastatic breast cancer subtypes via inhibition of hyaluronan, a pro-angiogenic, pro-inflammatory and tumor promoting glycosaminoglycan.
Collapse
|
25
|
Czyrnik ED, Wiesehöfer M, Dankert JT, Wennemuth G. The regulation of HAS3 by miR-10b and miR-29a in neuroendocrine transdifferentiated LNCaP prostate cancer cells. Biochem Biophys Res Commun 2020; 523:713-718. [PMID: 31948751 DOI: 10.1016/j.bbrc.2020.01.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 01/04/2020] [Indexed: 12/25/2022]
Abstract
Prostate cancer (PCa) is the second most common type of cancer in male worldwide. During neuroendocrine transdifferentiation (NETD), PCa cells are able to differentiate into androgen-independent neuroendocrine-like (NE-like) tumor cells, which are associated with reduced survival rates in PCa patients. The molecular processes underlying NETD have not been clarified yet, but miRNAs could play a potential role. MiRNAs are short, single-stranded, non-coding RNA molecules that regulate gene expression post-transcriptionally by binding to the 3'-untranslated region (3'UTR) of their target mRNAs. This study aimed to explore the possible relevance and function of the transmembrane Hyaluronan Synthase 3 (HAS3) and miR-10b as well as miR-29a during NETD. Here, we validated a repression of HAS3 and an induction of miR-10b and miR-29a by quantitative real-time PCR after NETD. HAS3 was predicted as a new target gene for both miRNAs, which was verified by Reporter Gene Assays and Western Blotting. Functional analyses revealed an inhibiting effect of HAS3 on cell proliferation and migration in LNCaP cells, whereas miR-10b showed no impact. Furthermore, HAS3 increased the colony forming ability, while miR-10b diminished it. These results might give a hint on the role of miR-10b and HAS3 during NETD of PCa cells.
Collapse
Affiliation(s)
- Elena D Czyrnik
- Department of Anatomy, University Clinic Essen, Hufelandstrasse 55, 45147, Essen, Germany
| | - Marc Wiesehöfer
- Department of Anatomy, University Clinic Essen, Hufelandstrasse 55, 45147, Essen, Germany
| | - Jaroslaw T Dankert
- Department of Anatomy, University Clinic Essen, Hufelandstrasse 55, 45147, Essen, Germany.
| | - Gunther Wennemuth
- Department of Anatomy, University Clinic Essen, Hufelandstrasse 55, 45147, Essen, Germany.
| |
Collapse
|
26
|
Abstract
The extracellular matrix is part of the microenvironment and its functions are associated with the physical and chemical properties of the tissue. Among the extracellular components, the glycosaminoglycan hyaluronan is a key component, defining both the physical and biochemical characteristics of the healthy matrices. The hyaluronan metabolism is strictly regulated in physiological conditions, but in the tumoral tissues, its expression, size and binding proteins interaction are dysregulated. Hyaluronan from the tumor microenvironment promotes tumor cell proliferation, invasion, immune evasion, stemness alterations as well as drug resistance. This chapter describes data regarding novel concepts of hyaluronan functions in the tumor. Additionally, we discuss potential clinical applications of targeting HA metabolism in cancer therapy.
Collapse
|
27
|
Cui ZJ, Zhou XH, Zhang HY. DNA Methylation Module Network-Based Prognosis and Molecular Typing of Cancer. Genes (Basel) 2019; 10:genes10080571. [PMID: 31357729 PMCID: PMC6722866 DOI: 10.3390/genes10080571] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 07/11/2019] [Accepted: 07/26/2019] [Indexed: 12/25/2022] Open
Abstract
Achieving cancer prognosis and molecular typing is critical for cancer treatment. Previous studies have identified some gene signatures for the prognosis and typing of cancer based on gene expression data. Some studies have shown that DNA methylation is associated with cancer development, progression, and metastasis. In addition, DNA methylation data are more stable than gene expression data in cancer prognosis. Therefore, in this work, we focused on DNA methylation data. Some prior researches have shown that gene modules are more reliable in cancer prognosis than are gene signatures and that gene modules are not isolated. However, few studies have considered cross-talk among the gene modules, which may allow some important gene modules for cancer to be overlooked. Therefore, we constructed a gene co-methylation network based on the DNA methylation data of cancer patients, and detected the gene modules in the co-methylation network. Then, by permutation testing, cross-talk between every two modules was identified; thus, the module network was generated. Next, the core gene modules in the module network of cancer were identified using the K-shell method, and these core gene modules were used as features to study the prognosis and molecular typing of cancer. Our method was applied in three types of cancer (breast invasive carcinoma, skin cutaneous melanoma, and uterine corpus endometrial carcinoma). Based on the core gene modules identified by the constructed DNA methylation module networks, we can distinguish not only the prognosis of cancer patients but also use them for molecular typing of cancer. These results indicated that our method has important application value for the diagnosis of cancer and may reveal potential carcinogenic mechanisms.
Collapse
Affiliation(s)
- Ze-Jia Cui
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiong-Hui Zhou
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China.
| | - Hong-Yu Zhang
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
28
|
Twarock S, Reichert C, Bach K, Reiners O, Kretschmer I, Gorski DJ, Gorges K, Grandoch M, Fischer JW. Inhibition of the hyaluronan matrix enhances metabolic anticancer therapy by dichloroacetate in vitro and in vivo. Br J Pharmacol 2019; 176:4474-4490. [PMID: 31351004 PMCID: PMC6932941 DOI: 10.1111/bph.14808] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 07/10/2019] [Accepted: 07/12/2019] [Indexed: 12/17/2022] Open
Abstract
Background and Purpose Aerobic glycolysis is a unique feature of tumour cells that entails several advantages for cancer progression such as resistance to apoptosis. The low MW compound, dichloroacetate, is a pyruvate dehydrogenase kinase inhibitor, which restores oxidative phosphorylation and induces apoptosis in a variety of cancer entities. However, its therapeutic effectiveness is limited by resistance mechanisms. This study aimed to examine the role of the anti‐apoptotic hyaluronan (HA) matrix in this context and to identify a potential add‐on treatment option to overcome this limitation. Experimental Approach The metabolic connection between dichloroacetate treatment and HA matrix augmentation was analysed in vitro by quantitative PCR and affinity cytochemistry. Metabolic pathways were analysed using Seahorse, HPLC, fluorophore‐assisted carbohydrate electrophoresis, colourimetry, immunoblots, and immunochemistry. The effects of combining dichloroacetate with the HA synthesis inhibitor 4‐methylumbelliferone was evaluated in 2D and 3D cell cultures and in a nude mouse tumour xenograft regression model by immunoblot, immunochemistry, and FACS analysis. Key Results Mitochondrial reactivation induced by dichloroacetate metabolically activated HA synthesis by augmenting precursors as well as O‐GlcNAcylation. This process was blocked by 4‐methylumbelliferone, resulting in enhanced anti‐tumour efficacy in 2D and 3D cell culture and in a nude mouse tumour xenograft regression model. Conclusions and Implications The HA rich tumour micro‐environment represents a metabolic factor contributing to chemotherapy resistance. HA synthesis inhibition exhibited pronounced synergistic actions with dichloroacetate treatment on oesophageal tumour cell proliferation and survival in vitro and in vivo suggesting the combination of these two strategies is an effective anticancer therapy.
Collapse
Affiliation(s)
- Sören Twarock
- Institut für Pharmakologie und Klinische Pharmakologie, Universitätsklinikum der Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Christina Reichert
- Institut für Pharmakologie und Klinische Pharmakologie, Universitätsklinikum der Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Katharina Bach
- Institut für Pharmakologie und Klinische Pharmakologie, Universitätsklinikum der Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Oliver Reiners
- Institut für Pharmakologie und Klinische Pharmakologie, Universitätsklinikum der Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Inga Kretschmer
- Institut für Pharmakologie und Klinische Pharmakologie, Universitätsklinikum der Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Daniel J Gorski
- Institut für Pharmakologie und Klinische Pharmakologie, Universitätsklinikum der Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Katharina Gorges
- Institut für Pharmakologie und Klinische Pharmakologie, Universitätsklinikum der Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Maria Grandoch
- Institut für Pharmakologie und Klinische Pharmakologie, Universitätsklinikum der Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Jens W Fischer
- Institut für Pharmakologie und Klinische Pharmakologie, Universitätsklinikum der Heinrich-Heine-Universität, Düsseldorf, Germany
| |
Collapse
|
29
|
Revisiting the hallmarks of cancer: The role of hyaluronan. Semin Cancer Biol 2019; 62:9-19. [PMID: 31319162 DOI: 10.1016/j.semcancer.2019.07.007] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/19/2019] [Accepted: 07/14/2019] [Indexed: 12/15/2022]
Abstract
Extracellular matrix (ECM) is a complex network of macromolecules such as proteoglycans (PGs), glycosaminoglycans (GAGs) and fibrous proteins present within all tissues and organs. The main role of ECM is not only to provide an essential mechanical scaffold for the cells but also to mediate crucial biochemical cues that are required for tissue homeostasis. Dysregulations in ECM deposition alter cell microenvironment, triggering the onset or the rapid progression of several diseases, including cancer. Hyaluronan (HA) is a ubiquitous component of ECM considered as one of the main players of cancer initiation and progression. This review discusses how HA participate in and regulate several aspects of tumorigenesis, with particular attention to the hallmarks of cancer proposed by Hanahan and Weinberg such as sustaining of the proliferative signaling, evasion of apoptosis, angiogenesis, activation of invasion and metastases, reprogramming of energy metabolism and evasion of immune response.
Collapse
|
30
|
Tammi MI, Oikari S, Pasonen-Seppänen S, Rilla K, Auvinen P, Tammi RH. Activated hyaluronan metabolism in the tumor matrix — Causes and consequences. Matrix Biol 2019; 78-79:147-164. [PMID: 29709595 DOI: 10.1016/j.matbio.2018.04.012] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 03/13/2018] [Accepted: 04/25/2018] [Indexed: 02/08/2023]
|
31
|
Passi A, Vigetti D, Buraschi S, Iozzo RV. Dissecting the role of hyaluronan synthases in the tumor microenvironment. FEBS J 2019; 286:2937-2949. [PMID: 30974514 PMCID: PMC6716524 DOI: 10.1111/febs.14847] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 03/01/2019] [Accepted: 04/09/2019] [Indexed: 12/17/2022]
Abstract
The tumor microenvironment is becoming a crucial factor in determining the aggressiveness of neoplastic cells. The glycosaminoglycan hyaluronan is one of the principal constituents of both the tumor stroma and the cancer cell surfaces, and its accumulation can dramatically influence patient survival. Hyaluronan functions are dictated by its ability to interact with several signaling receptors that often activate pro-angiogenic and pro-tumorigenic intracellular pathways. Although hyaluronan is a linear, non-sulfated polysaccharide, and thus lacks the ability of the other sulfated glycosaminoglycans to bind and modulate growth factors, it compensates for this by the ability to form hyaluronan fragments characterized by a remarkable variability in length. Here, we will focus on the role of both high and low molecular weight hyaluronan in controlling the hallmarks of cancer cells, including cell proliferation, migration, metabolism, inflammation, and angiogenesis. We will critically assess the multilayered regulation of HAS2, the most critical hyaluronan synthase, and its role in cancer growth, metabolism, and therapy.
Collapse
Affiliation(s)
- Alberto Passi
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Davide Vigetti
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Simone Buraschi
- Department of Pathology, Anatomy and Cell Biology and the Cancer Cell Biology and Signaling Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, USA
| | - Renato V Iozzo
- Department of Pathology, Anatomy and Cell Biology and the Cancer Cell Biology and Signaling Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
32
|
de Queiroz RM, Oliveira IA, Piva B, Bouchuid Catão F, da Costa Rodrigues B, da Costa Pascoal A, Diaz BL, Todeschini AR, Caarls MB, Dias WB. Hexosamine Biosynthetic Pathway and Glycosylation Regulate Cell Migration in Melanoma Cells. Front Oncol 2019; 9:116. [PMID: 30891426 PMCID: PMC6411693 DOI: 10.3389/fonc.2019.00116] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 02/08/2019] [Indexed: 01/06/2023] Open
Abstract
The Hexosamine Biosynthetic Pathway (HBP) is a branch of glycolysis responsible for the production of a key substrate for protein glycosylation, UDP-GlcNAc. Cancer cells present altered glucose metabolism and aberrant glycosylation, pointing to alterations on HBP. Recently it was demonstrated that HBP influences many aspects of tumor biology, including the development of metastasis. In this work we characterize HBP in melanoma cells and analyze its importance to cellular processes related to the metastatic phenotype. We demonstrate that an increase in HBP flux, as well as increased O-GlcNAcylation, leads to decreased cell motility and migration in melanoma cells. In addition, inhibition of N- and O-glycosylation glycosylation reduces cell migration. High HBP flux and inhibition of N-glycosylation decrease the activity of metalloproteases 2 and 9. Our data demonstrates that modulation of HBP and different types of glycosylation impact cell migration.
Collapse
Affiliation(s)
- Rafaela Muniz de Queiroz
- Laboratório de Glicobiologia Estrutural e Funcional, Centro de Ciências da Saúde, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro, Brazil
| | - Isadora Araújo Oliveira
- Laboratório de Glicobiologia Estrutural e Funcional, Centro de Ciências da Saúde, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro, Brazil
| | - Bruno Piva
- Laboratório de Inflamação, Centro de Ciências da Saúde, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro, Brazil
| | - Felipe Bouchuid Catão
- Laboratório de Inflamação, Centro de Ciências da Saúde, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro, Brazil.,Laboratório de Matriz Extracelular, Centro de Ciências da Saúde, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro, Brazil
| | - Bruno da Costa Rodrigues
- Laboratório de Glicobiologia Estrutural e Funcional, Centro de Ciências da Saúde, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro, Brazil
| | - Adriana da Costa Pascoal
- Laboratório de Glicobiologia Estrutural e Funcional, Centro de Ciências da Saúde, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro, Brazil
| | - Bruno Lourenço Diaz
- Laboratório de Inflamação, Centro de Ciências da Saúde, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro, Brazil
| | - Adriane Regina Todeschini
- Laboratório de Glicobiologia Estrutural e Funcional, Centro de Ciências da Saúde, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro, Brazil
| | - Michelle Botelho Caarls
- Laboratório de Matriz Extracelular, Centro de Ciências da Saúde, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro, Brazil
| | - Wagner Barbosa Dias
- Laboratório de Glicobiologia Estrutural e Funcional, Centro de Ciências da Saúde, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro, Brazil
| |
Collapse
|
33
|
Gao H, Shi M, Wang R, Wang C, Shao C, Gu Y, Yu W. A widely compatible expression system for the production of highly O-GlcNAcylated recombinant protein in Escherichia coli. Glycobiology 2019; 28:949-957. [PMID: 30462203 DOI: 10.1093/glycob/cwy077] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 08/22/2018] [Indexed: 02/06/2023] Open
Abstract
O-GlcNAcylation is a ubiquitous and dynamic post-translational modification on serine/threonine residues of nucleocytoplasmic proteins in metazoa, which plays a critical role in numerous physiological and pathological processes. But the O-GlcNAcylation on most proteins is often substoichiometric, which hinders the functional study of the O-GlcNAcylation. This study aimed to improve the production of highly O-GlcNAcylated recombinant proteins in Escherichia coli (E. coli). To achieve this goal, we constructed a bacterial artificial chromosome-based chloramphenicol-resistant expression vector co-expressing O-GlcNAc transferase (OGT) and key enzymes (phosphoglucose mutase, GlmM and N-acetylglucosamine-1-phosphate uridyltransferase, GlmU) of the uridine diphosphate N-acetylglucosamine (UDP-GlcNAc) synthesis pathway in E. coli, which can effectively increase the O-GlcNAcylation of the OGT target protein expressed by another vector. The results revealed that the expression of GlmM and GlmU increases the cellular concentration of UDP-GlcNAc in E. coli, which markedly enhanced the activity of the co-expressed OGT to its target proteins, such as H2B, p53 and TAB1. Altogether, we established a widely compatible E. coli expression system for producing highly O-GlcNAcylated protein, which could be used for modifying OGT target proteins expressed by almost any commercial expression vectors in E. coli. This new expression system provides possibility for investigating the roles of O-GlcNAcylation in the enzymatic activity, protein-protein interaction and structure of OGT target proteins.
Collapse
Affiliation(s)
- Hong Gao
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao, China.,Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Wenhai Road, Aoshanwei, Qingdao, China
| | - Minghui Shi
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao, China.,Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Wenhai Road, Aoshanwei, Qingdao, China
| | - Ruihong Wang
- Outpatient Department, Qingdao Central Hospital, 127 Siliu Road, Qingdao, China
| | - Chaojie Wang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao, China.,Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Wenhai Road, Aoshanwei, Qingdao, China.,Key Laboratory of Glycoscience & Glycotechnology of Shandong Province, Qingdao, China
| | - Changlun Shao
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao, China.,Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Wenhai Road, Aoshanwei, Qingdao, China.,Key Laboratory of Glycoscience & Glycotechnology of Shandong Province, Qingdao, China
| | - Yuchao Gu
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao, China.,Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Wenhai Road, Aoshanwei, Qingdao, China.,Key Laboratory of Glycoscience & Glycotechnology of Shandong Province, Qingdao, China
| | - Wengong Yu
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao, China.,Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Wenhai Road, Aoshanwei, Qingdao, China.,Key Laboratory of Glycoscience & Glycotechnology of Shandong Province, Qingdao, China
| |
Collapse
|
34
|
Biwi J, Biot C, Guerardel Y, Vercoutter-Edouart AS, Lefebvre T. The Many Ways by Which O-GlcNAcylation May Orchestrate the Diversity of Complex Glycosylations. Molecules 2018; 23:molecules23112858. [PMID: 30400201 PMCID: PMC6278486 DOI: 10.3390/molecules23112858] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 10/25/2018] [Accepted: 10/30/2018] [Indexed: 12/31/2022] Open
Abstract
Unlike complex glycosylations, O-GlcNAcylation consists of the addition of a single N-acetylglucosamine unit to serine and threonine residues of target proteins, and is confined within the nucleocytoplasmic and mitochondrial compartments. Nevertheless, a number of clues tend to show that O-GlcNAcylation is a pivotal regulatory element of its complex counterparts. In this perspective, we gather the evidence reported to date regarding this connection. We propose different levels of regulation that encompass the competition for the nucleotide sugar UDP-GlcNAc, and that control the wide class of glycosylation enzymes via their expression, catalytic activity, and trafficking. We sought to better envision that nutrient fluxes control the elaboration of glycans, not only at the level of their structure composition, but also through sweet regulating actors.
Collapse
Affiliation(s)
- James Biwi
- Unité de Glycobiologie Structurale et Fonctionnelle, Université de Lille, CNRS, UMR 8576, UGSF, 59000 Lille, France.
| | - Christophe Biot
- Unité de Glycobiologie Structurale et Fonctionnelle, Université de Lille, CNRS, UMR 8576, UGSF, 59000 Lille, France.
| | - Yann Guerardel
- Unité de Glycobiologie Structurale et Fonctionnelle, Université de Lille, CNRS, UMR 8576, UGSF, 59000 Lille, France.
| | | | - Tony Lefebvre
- Unité de Glycobiologie Structurale et Fonctionnelle, Université de Lille, CNRS, UMR 8576, UGSF, 59000 Lille, France.
| |
Collapse
|
35
|
Melero-Fernandez de Mera RM, Arasu UT, Kärnä R, Oikari S, Rilla K, Vigetti D, Passi A, Heldin P, Tammi MI, Deen AJ. Effects of mutations in the post-translational modification sites on the trafficking of hyaluronan synthase 2 (HAS2). Matrix Biol 2018; 80:85-103. [PMID: 30394292 DOI: 10.1016/j.matbio.2018.10.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 10/22/2018] [Accepted: 10/22/2018] [Indexed: 01/01/2023]
Abstract
Vesicular trafficking of hyaluronan synthases (HAS1-3) from endoplasmic reticulum (ER) through Golgi to plasma membrane (PM), and either back to endosomes and lysosomes, or out into extracellular vesicles, is important for their activities. We studied how post-translational modifications affect the trafficking of HAS2 by mutagenesis of the sites of ubiquitination (K190R), phosphorylation (T110A) and O-GlcNAcylation (S221A), using Dendra2- and EGFP-HAS2 transfected into COS1 cells. Confocal microscopy showed HAS2 wild type (wt) and its K190R and S221A mutants in ER, Golgi and extracellular vesicles, while the T110A mutant remained mostly in the ER. HA synthesis was reduced by S221A, while completely blocked by K190R and T110A. Cell-surface biotinylation indicated that T110A was absent from PM, while S221A was close to the level of wt, and K190R was increased in PM. TIRF microscopy analysis gave similar results. Rab10 silencing increased HA secretion by HAS2, likely by inhibiting endocytosis of the enzyme from PM, as reported before for HAS3. Green-to-red photo-conversion of Dendra2-HAS2 constructs suggested slower decay of K190R and S221A than HAS2 wt, while T110A was barely degraded at all. S221D and S221E, the phosphomimetic mutants of this site, decayed faster and blocked hyaluronan synthesis, suggesting alternative O-GlcNAc/-PO4 substitution to regulate the stability of the enzyme. Probing the role of dynamic O-GlcNAcylation at S221 by adding glucosamine increased the half-life of only HAS2 wt. The Dendra2·HAS2 disappearance from Golgi was slower for K190R. Of the two inactive constructs, K190R co-transfected with HAS2 wt suppressed, whereas T110A had no effect on HA synthesis. Interestingly, the HAS2-stimulated shedding of extracellular vesicles was dependent on HAS residence in PM but independent of HA synthesis. The results indicate that post-translational modifications control the trafficking of HAS2, and that trafficking is an integral part of the post-translational regulation of HAS2 activity.
Collapse
Affiliation(s)
| | - U T Arasu
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - R Kärnä
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - S Oikari
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - K Rilla
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - D Vigetti
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - A Passi
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - P Heldin
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - M I Tammi
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - A J Deen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland; A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
36
|
Extracellular ATP activates hyaluronan synthase 2 ( HAS2) in epidermal keratinocytes via P2Y 2, Ca 2+ signaling, and MAPK pathways. Biochem J 2018; 475:1755-1772. [PMID: 29626161 DOI: 10.1042/bcj20180054] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 03/28/2018] [Accepted: 04/06/2018] [Indexed: 01/04/2023]
Abstract
Extracellular nucleotides are used as signaling molecules by several cell types. In epidermis, their release is triggered by insults such as ultraviolet radiation, barrier disruption, and tissue wounding, and by specific nerve terminals firing. Increased synthesis of hyaluronan, a ubiquitous extracellular matrix glycosaminoglycan, also occurs in response to stress, leading to the attractive hypothesis that nucleotide signaling and hyaluronan synthesis could also be linked. In HaCaT keratinocytes, ATP caused a rapid and strong but transient activation of hyaluronan synthase 2 (HAS2) expression via protein kinase C-, Ca2+/calmodulin-dependent protein kinase II-, mitogen-activated protein kinase-, and calcium response element-binding protein-dependent pathways by activating the purinergic P2Y2 receptor. Smaller but more persistent up-regulation of HAS3 and CD44, and delayed up-regulation of HAS1 were also observed. Accumulation of peri- and extracellular hyaluronan followed 4-6 h after stimulation, an effect further enhanced by the hyaluronan precursor glucosamine. AMP and adenosine, the degradation products of ATP, markedly inhibited HAS2 expression and, despite concomitant up-regulation of HAS1 and HAS3, inhibited hyaluronan synthesis. Functionally, ATP moderately increased cell migration, whereas AMP and adenosine had no effect. Our data highlight the strong influence of adenosinergic signaling on hyaluronan metabolism in human keratinocytes. Epidermal insults are associated with extracellular ATP release, as well as rapid up-regulation of HAS2/3, CD44, and hyaluronan synthesis, and we show here that the two phenomena are linked. Furthermore, as ATP is rapidly degraded, the opposite effects of its less phosphorylated derivatives facilitate a rapid shut-off of the hyaluronan response, providing a feedback mechanism to prevent excessive reactions when more persistent signals are absent.
Collapse
|
37
|
Hämäläinen L, Kärkkäinen E, Takabe P, Rauhala L, Bart G, Kärnä R, Pasonen-Seppänen S, Oikari S, Tammi MI, Tammi RH. Hyaluronan metabolism enhanced during epidermal differentiation is suppressed by vitamin C. Br J Dermatol 2018; 179:651-661. [PMID: 29405260 DOI: 10.1111/bjd.16423] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2018] [Indexed: 12/21/2022]
Abstract
BACKGROUND Hyaluronan is a large, linear glycosaminoglycan present throughout the narrow extracellular space of the vital epidermis. Increased hyaluronan metabolism takes place in epidermal hypertrophy, wound healing and cancer. Hyaluronan is produced by hyaluronan synthases and catabolized by hyaluronidases, reactive oxygen species and KIAA1199. OBJECTIVES To investigate the changes in hyaluronan metabolism during epidermal stratification and maturation, and the impact of vitamin C on these events. METHODS Hyaluronan synthesis and expression of the hyaluronan-related genes were analysed during epidermal maturation from a simple epithelium to a fully differentiated epidermis in organotypic cultures of rat epidermal keratinocytes using quantitative reverse transcriptase polymerase chain reaction, immunostaining and Western blotting, in the presence and absence of vitamin C. RESULTS With epidermal stratification, both the production and the degradation of hyaluronan were enhanced, resulting in an increase of hyaluronan fragments of various sizes. While the mRNA levels of Has3 and KIAA1199 remained stable during the maturation, Has1, Has2 and Hyal2 showed a transient upregulation during stratification, Hyal1 transcription remained permanently increased and transcription of the hyaluronan receptor, Cd44, decreased. At maturation, vitamin C downregulated Has2, Hyal2 and Cd44, whereas it increased high-molecular-mass hyaluronan in the epidermis, and reduced small fragments in the medium, suggesting stabilization of epidermal hyaluronan. CONCLUSIONS Epidermal stratification and maturation is associated with enhanced hyaluronan turnover, and release of large amounts of hyaluronan fragments. The high turnover is suppressed by vitamin C, which is suggested to enhance normal epidermal differentiation in part through its effect on hyaluronan.
Collapse
Affiliation(s)
- L Hämäläinen
- Institute of Biomedicine/Anatomy, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - E Kärkkäinen
- Institute of Biomedicine/Anatomy, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - P Takabe
- Institute of Biomedicine/Anatomy, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - L Rauhala
- Institute of Biomedicine/Anatomy, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - G Bart
- Institute of Biomedicine/Anatomy, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - R Kärnä
- Institute of Biomedicine/Anatomy, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - S Pasonen-Seppänen
- Institute of Biomedicine/Anatomy, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - S Oikari
- Institute of Biomedicine/Anatomy, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland.,Dentistry, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - M I Tammi
- Institute of Biomedicine/Anatomy, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - R H Tammi
- Institute of Biomedicine/Anatomy, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| |
Collapse
|
38
|
O-GlcNAc in cancer: An Oncometabolism-fueled vicious cycle. J Bioenerg Biomembr 2018; 50:155-173. [PMID: 29594839 DOI: 10.1007/s10863-018-9751-2] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 03/15/2018] [Indexed: 12/17/2022]
Abstract
Cancer cells exhibit unregulated growth, altered metabolism, enhanced metastatic potential and altered cell surface glycans. Fueled by oncometabolism and elevated uptake of glucose and glutamine, the hexosamine biosynthetic pathway (HBP) sustains glycosylation in the endomembrane system. In addition, the elevated pools of UDP-GlcNAc drives the O-GlcNAc modification of key targets in the cytoplasm, nucleus and mitochondrion. These targets include transcription factors, kinases, key cytoplasmic enzymes of intermediary metabolism, and electron transport chain complexes. O-GlcNAcylation can thereby alter epigenetics, transcription, signaling, proteostasis, and bioenergetics, key 'hallmarks of cancer'. In this review, we summarize accumulating evidence that many cancer hallmarks are linked to dysregulation of O-GlcNAc cycling on cancer-relevant targets. We argue that onconutrient and oncometabolite-fueled elevation increases HBP flux and triggers O-GlcNAcylation of key regulatory enzymes in glycolysis, Kreb's cycle, pentose-phosphate pathway, and the HBP itself. The resulting rerouting of glucose metabolites leads to elevated O-GlcNAcylation of oncogenes and tumor suppressors further escalating elevation in HBP flux creating a 'vicious cycle'. Downstream, elevated O-GlcNAcylation alters DNA repair and cellular stress pathways which influence oncogenesis. The elevated steady-state levels of O-GlcNAcylated targets found in many cancers may also provide these cells with a selective advantage for sustained growth, enhanced metastatic potential, and immune evasion in the tumor microenvironment.
Collapse
|
39
|
Heldin P, Lin CY, Kolliopoulos C, Chen YH, Skandalis SS. Regulation of hyaluronan biosynthesis and clinical impact of excessive hyaluronan production. Matrix Biol 2018; 78-79:100-117. [PMID: 29374576 DOI: 10.1016/j.matbio.2018.01.017] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 01/22/2018] [Accepted: 01/22/2018] [Indexed: 10/25/2022]
Abstract
The tightly regulated biosynthesis and catabolism of the glycosaminoglycan hyaluronan, as well as its role in organizing tissues and cell signaling, is crucial for the homeostasis of tissues. Overexpression of hyaluronan plays pivotal roles in inflammation and cancer, and markedly high serum and tissue levels of hyaluronan are noted under such pathological conditions. This review focuses on the complexity of the regulation at transcriptional and posttranslational level of hyaluronan synthetic enzymes, and the outcome of their aberrant expression and accumulation of hyaluronan in clinical conditions, such as systemic B-cell cancers, aggressive breast carcinomas, metabolic diseases and virus infection.
Collapse
Affiliation(s)
- Paraskevi Heldin
- Department Medical Biochemistry and Microbiology, Uppsala University, Box 582, SE-751 23 Uppsala, Sweden.
| | - Chun-Yu Lin
- Department Medical Biochemistry and Microbiology, Uppsala University, Box 582, SE-751 23 Uppsala, Sweden; Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; School of Medicine, Graduate Institute of Medicine, Sepsis Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Constantinos Kolliopoulos
- Department Medical Biochemistry and Microbiology, Uppsala University, Box 582, SE-751 23 Uppsala, Sweden
| | - Yen-Hsu Chen
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; School of Medicine, Graduate Institute of Medicine, Sepsis Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Biological Science and Technology, College of Biological Science and Technology, National Chiao Tung University, Hsin Chu, Taiwan
| | - Spyros S Skandalis
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26110 Patras, Greece
| |
Collapse
|
40
|
Oikari S, Kettunen T, Tiainen S, Häyrinen J, Masarwah A, Sudah M, Sutela A, Vanninen R, Tammi M, Auvinen P. UDP-sugar accumulation drives hyaluronan synthesis in breast cancer. Matrix Biol 2018; 67:63-74. [PMID: 29331336 DOI: 10.1016/j.matbio.2017.12.015] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 12/29/2017] [Accepted: 12/29/2017] [Indexed: 02/07/2023]
Abstract
Increased uptake of glucose, a general hallmark of malignant tumors, leads to an accumulation of intermediate metabolites of glycolysis. We investigated whether the high supply of these intermediates promotes their flow into UDP-sugars, and consequently into hyaluronan, a tumor-promoting matrix molecule. We quantified UDP-N-Acetylglucosamine (UDP-GlcNAc) and UDP-glucuronic acid (UDP-GlcUA) in human breast cancer biopsies, the levels of enzymes contributing to their synthesis, and their association with the hyaluronan accumulation in the tumor. The content of UDP-GlcUA was 4 times, and that of UDP-GlcNAc 12 times higher in the tumors as compared to normal glandular tissue obtained from breast reductions. The surge of UDP-GlcNAc correlated with an elevated mRNA expression of glutamine-fructose-6-phosphate aminotransferase 2 (GFAT2), one of the key enzymes in the biosynthesis of UDP-GlcNAc, and the expression of GFAT1 was also elevated. The contents of both UDP-sugars strongly correlated with tumor hyaluronan levels. Interestingly, hyaluronan content did not correlate with the mRNA levels of the hyaluronan synthases (HAS1-3), thus emphasizing the role of the UDP-sugar substrates of these enzymes. The UDP-sugars showed a trend to higher levels in ductal vs. lobular cancer subtypes. The results reveal for the first time a dramatic increase of UDP-sugars in breast cancer, and suggest that their high supply drives the accumulation of hyaluronan, a known promoter of breast cancer and other malignancies. In general, the study shows how the disturbed glucose metabolism typical for malignant tumors can influence cancer microenvironment through UDP-sugars and hyaluronan.
Collapse
Affiliation(s)
- Sanna Oikari
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland.
| | - Tiia Kettunen
- Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland; Department of Oncology, Kuopio University Hospital, Kuopio, Finland; Cancer Center, Kuopio University Hospital, Kuopio, Finland
| | - Satu Tiainen
- Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland; Department of Oncology, Kuopio University Hospital, Kuopio, Finland; Cancer Center, Kuopio University Hospital, Kuopio, Finland
| | - Jukka Häyrinen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Amro Masarwah
- Department of Clinical Radiology, Kuopio University Hospital, Kuopio, Finland; Cancer Center, Kuopio University Hospital, Kuopio, Finland
| | - Mazen Sudah
- Department of Clinical Radiology, Kuopio University Hospital, Kuopio, Finland
| | - Anna Sutela
- Department of Clinical Radiology, Kuopio University Hospital, Kuopio, Finland
| | - Ritva Vanninen
- Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland; Department of Clinical Radiology, Kuopio University Hospital, Kuopio, Finland
| | - Markku Tammi
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Päivi Auvinen
- Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland; Department of Oncology, Kuopio University Hospital, Kuopio, Finland; Cancer Center, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
41
|
Chin-Hun Kuo J, Gandhi JG, Zia RN, Paszek MJ. Physical biology of the cancer cell glycocalyx. NATURE PHYSICS 2018; 14:658-669. [PMID: 33859716 PMCID: PMC8046174 DOI: 10.1038/s41567-018-0186-9] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The glycocalyx coating the outside of most cells is a polymer meshwork comprising proteins and complex sugar chains called glycans. From a physical perspective, the glycocalyx has long been considered a simple 'slime' that protects cells from mechanical disruption or against pathogen interactions, but the great complexity of the structure argues for the evolution of more advanced functionality: the glycocalyx serves as the complex physical environment within which cell-surface receptors reside and operate. Recent studies have demonstrated that the glycocalyx can exert thermodynamic and kinetic control over cell signalling by serving as the local medium within which receptors diffuse, assemble and function. The composition and structure of the glycocalyx change markedly with changes in cell state, including transformation. Notably, cancer-specific changes fuel the synthesis of monomeric building blocks and machinery for production of long-chain polymers that alter the physical and chemical structure of the glycocalyx. In this Review, we discuss these changes and their physical consequences on receptor function and emergent cell behaviours.
Collapse
Affiliation(s)
- Joe Chin-Hun Kuo
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA
| | - Jay G. Gandhi
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA
| | - Roseanna N. Zia
- Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Matthew J. Paszek
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
- Field of Biophysics, Cornell University, Ithaca, NY, USA
- Correspondence should be addressed to M.J.P.
| |
Collapse
|
42
|
Arasu UT, Kärnä R, Härkönen K, Oikari S, Koistinen A, Kröger H, Qu C, Lammi MJ, Rilla K. Human mesenchymal stem cells secrete hyaluronan-coated extracellular vesicles. Matrix Biol 2017; 64:54-68. [PMID: 28483644 DOI: 10.1016/j.matbio.2017.05.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 04/27/2017] [Accepted: 05/02/2017] [Indexed: 12/22/2022]
Abstract
Extracellular vesicles (EVs) secreted by stem cells are potential factors mediating tissue regeneration. They travel from bone marrow stem cells into damaged tissues, suggesting that they can repair tissue injuries without directly replacing parenchymal cells. We have discovered that hyaluronan (HA) synthesis is associated with the shedding of HA-coated EVs. The aim of this study was to test whether bone marrow-derived hMSCs secrete HA-coated EVs. The EVs secreted by MSCs were isolated by differential centrifugation and characterized by nanoparticle tracking analysis. Their morphology and budding mechanisms were inspected by confocal microscopy and correlative light and electron microscopy. Hyaluronan synthesis of hMSCs was induced by lipopolysaccharide and inhibited by RNA interference and 4-methylumbelliferone. It was found that the MSCs have extremely long apical and lateral HA-coated filopodia, typical for cells with an active HA secretion. Additionally, they secreted HA-coated EVs carrying mRNAs for CD44 and all HAS isoforms. The results show that stem cells have a strong intrinsic potential for HA synthesis and EV secretion, and the amount of HA carried on EVs reflects the HA content of the original cells. These results show that the secretion of HA-coated EVs by hMSCs is a general process, that may contribute to many of the mechanisms of HA-mediated tissue regeneration. Additionally, an HA coat on EVs may regulate their interactions with target cells and participate in extracellular matrix remodeling.
Collapse
Affiliation(s)
- Uma Thanigai Arasu
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Riikka Kärnä
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Kai Härkönen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Sanna Oikari
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Arto Koistinen
- SIB Labs, University of Eastern Finland, Kuopio, Finland
| | - Heikki Kröger
- Department of Orthopaedics and Traumatology, Kuopio University Hospital, Kuopio, Finland; Bone and Cartilage Research Unit, Surgery, Institute of Clinical Medicine, University of Eastern Finland
| | - Chengjuan Qu
- Department of Integrative Medical Biology, Umeå University, Sweden
| | - Mikko J Lammi
- Department of Integrative Medical Biology, Umeå University, Sweden; School of Public Health, Health Science Center of Xi'an Jiaotong University, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, PR China
| | - Kirsi Rilla
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland.
| |
Collapse
|
43
|
Jokela T, Kärnä R, Rauhala L, Bart G, Pasonen-Seppänen S, Oikari S, Tammi MI, Tammi RH. Human Keratinocytes Respond to Extracellular UTP by Induction of Hyaluronan Synthase 2 Expression and Increased Hyaluronan Synthesis. J Biol Chem 2017; 292:4861-4872. [PMID: 28188289 DOI: 10.1074/jbc.m116.760322] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Revised: 01/26/2017] [Indexed: 12/16/2022] Open
Abstract
The release of nucleotides into extracellular space is triggered by insults like wounding and ultraviolet radiation, resulting in stimulatory or inhibitory signals via plasma membrane nucleotide receptors. As similar insults are known to activate hyaluronan synthesis we explored the possibility that extracellular UTP or its breakdown products UDP and UMP act as mediators for hyaluronan synthase (HAS) activation in human epidermal keratinocytes. UTP increased hyaluronan both in the pericellular matrix and in the culture medium of HaCaT cells. 10-100 μm UTP strongly up-regulated HAS2 expression, although the other hyaluronan synthases (HAS1, HAS3) and hyaluronidases (HYAL1, HYAL2) were not affected. The HAS2 response was rapid and transient, with the maximum stimulation at 1.5 h. UDP exerted a similar effect, but higher concentrations were required for the response, and UMP showed no stimulation at all. Specific siRNAs against the UTP receptor P2Y2, and inhibitors of UDP receptors P2Y6 and P2Y14, indicated that the response to UTP was mediated mainly through P2Y2 and to a lesser extent via UDP receptors. UTP increased the phosphorylation of p38, ERK, CREB, and Ser-727 of STAT3 and induced nuclear translocation of pCaMKII. Inhibitors of PKC, p38, ERK, CaMKII, STAT3, and CREB partially blocked the activation of HAS2 expression, confirming the involvement of these pathways in the UTP-induced HAS2 response. The present data reveal a selective up-regulation of HAS2 expression by extracellular UTP, which is likely to contribute to the previously reported rapid activation of hyaluronan metabolism in response to tissue trauma or ultraviolet radiation.
Collapse
Affiliation(s)
- Tiina Jokela
- From the Institute of Biomedicine, University of Eastern Finland, 70211 Kuopio, Finland
| | - Riikka Kärnä
- From the Institute of Biomedicine, University of Eastern Finland, 70211 Kuopio, Finland
| | - Leena Rauhala
- From the Institute of Biomedicine, University of Eastern Finland, 70211 Kuopio, Finland
| | - Genevieve Bart
- From the Institute of Biomedicine, University of Eastern Finland, 70211 Kuopio, Finland
| | | | - Sanna Oikari
- From the Institute of Biomedicine, University of Eastern Finland, 70211 Kuopio, Finland
| | - Markku I Tammi
- From the Institute of Biomedicine, University of Eastern Finland, 70211 Kuopio, Finland
| | - Raija H Tammi
- From the Institute of Biomedicine, University of Eastern Finland, 70211 Kuopio, Finland
| |
Collapse
|
44
|
High extent of O-GlcNAcylation in breast cancer cells correlates with the levels of HAS enzymes, accumulation of hyaluronan, and poor outcome. Breast Cancer Res Treat 2016; 160:237-247. [DOI: 10.1007/s10549-016-3996-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 09/20/2016] [Indexed: 02/06/2023]
|
45
|
Taparra K, Tran PT, Zachara NE. Hijacking the Hexosamine Biosynthetic Pathway to Promote EMT-Mediated Neoplastic Phenotypes. Front Oncol 2016; 6:85. [PMID: 27148477 PMCID: PMC4834358 DOI: 10.3389/fonc.2016.00085] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 03/27/2016] [Indexed: 01/07/2023] Open
Abstract
The epithelial-mesenchymal transition (EMT) is a highly conserved program necessary for orchestrating distant cell migration during embryonic development. Multiple studies in cancer have demonstrated a critical role for EMT during the initial stages of tumorigenesis and later during tumor invasion. Transcription factors (TFs) such as SNAIL, TWIST, and ZEB are master EMT regulators that are aberrantly overexpressed in many malignancies. Recent evidence correlates EMT-related transcriptomic alterations with metabolic reprograming in cancer. Metabolic alterations may allow cancer to adapt to environmental stressors, supporting the irregular macromolecular demand of rapid proliferation. One potential metabolic pathway of increasing importance is the hexosamine biosynthesis pathway (HBP). The HBP utilizes glycolytic intermediates to generate the metabolite UDP-GlcNAc. This and other charged nucleotide sugars serve as the basis for biosynthesis of glycoproteins and other glycoconjugates. Recent reports in the field of glycobiology have cultivated great curiosity within the cancer research community. However, specific mechanistic relationships between the HBP and fundamental pathways of cancer, such as EMT, have yet to be elucidated. Altered protein glycosylation downstream of the HBP is well positioned to mediate many cellular changes associated with EMT including cell-cell adhesion, responsiveness to growth factors, immune system evasion, and signal transduction programs. Here, we outline some of the basics of the HBP and putative roles the HBP may have in driving EMT-related cancer processes. With novel appreciation of the HBP's connection to EMT, we hope to illuminate the potential for new therapeutic targets of cancer.
Collapse
Affiliation(s)
- Kekoa Taparra
- Department of Radiation Oncology and Molecular Radiation Sciences, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Phuoc T Tran
- Department of Radiation Oncology and Molecular Radiation Sciences, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Natasha E Zachara
- Department of Biological Chemistry, Johns Hopkins University School of Medicine , Baltimore, MD , USA
| |
Collapse
|
46
|
Oikari S, Makkonen K, Deen AJ, Tyni I, Kärnä R, Tammi RH, Tammi MI. Hexosamine biosynthesis in keratinocytes: roles of GFAT and GNPDA enzymes in the maintenance of UDP-GlcNAc content and hyaluronan synthesis. Glycobiology 2016; 26:710-22. [PMID: 26887390 DOI: 10.1093/glycob/cww019] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 02/12/2016] [Indexed: 12/18/2022] Open
Abstract
UDP-N-acetylglucosamine (UDP-GlcNAc) is a glucose metabolite with pivotal functions as a key substrate for the synthesis of glycoconjugates like hyaluronan, and as a metabolic sensor that controls cell functions through O-GlcNAc modification of intracellular proteins. However, little is known about the regulation of hexosamine biosynthesis that controls UDP-GlcNAc content. Four enzymes can catalyze the crucial starting point of the pathway, conversion of fructose-6-phosphate (Fru6P) to glucosamine-6-phosphate (GlcN6P): glutamine-fructose-6-phosphate aminotransferases (GFAT1 and 2) and glucosamine-6-phosphate deaminases (GNPDA1 and 2). Using siRNA silencing, we studied the contributions of these enzymes to UDP-GlcNAc content and hyaluronan synthesis in human keratinocytes. Depletion of GFAT1 reduced the cellular pool of UDP-GlcNAc and hyaluronan synthesis, while simultaneous blocking of both GNPDA1 and GDPDA2 exerted opposite effects, indicating that in standard culture conditions keratinocyte GNPDAs mainly catalyzed the reaction from GlcN6P back to Fru6P. However, when hexosamine biosynthesis was blocked by GFAT1 siRNA, the effect by GNPDAs was reversed, now catalyzing Fru6P towards GlcN6P, likely in an attempt to maintain UDP-GlcNAc content. Silencing of these enzymes also changed the gene expression of related enzymes: GNPDA1 siRNA induced GFAT2 which was hardly measurable in these cells under standard culture conditions, GNPDA2 siRNA increased GFAT1, and GFAT1 siRNA increased the expression of hyaluronan synthase 2 (HAS2). Silencing of GFAT1 stimulated GNPDA1 and GDPDA2, and inhibited cell migration. The multiple delicate adjustments of these reactions demonstrate the importance of hexosamine biosynthesis in cellular homeostasis, known to be deranged in diseases like diabetes and cancer.
Collapse
Affiliation(s)
- Sanna Oikari
- Institutes of Biomedicine Department of Dentistry, University of Eastern Finland, Yliopistonranta 1E, PO Box 1627, Kuopio 70211, Finland
| | - Katri Makkonen
- Institutes of Biomedicine Department of Dentistry, University of Eastern Finland, Yliopistonranta 1E, PO Box 1627, Kuopio 70211, Finland
| | | | | | | | | | | |
Collapse
|