1
|
Roy R, Das A, Ganguly D, Chakraborty P, Paul P, Das S, Maity A, Malik M, Tribedi P. Cuminaldehyde synergistically enhances the antimicrobial and antibiofilm potential of gentamicin: A direction towards an effective combination for the control of biofilm-linked threats of Staphylococcus aureus. Braz J Microbiol 2025; 56:1033-1048. [PMID: 39934529 PMCID: PMC12095763 DOI: 10.1007/s42770-025-01628-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 01/13/2025] [Indexed: 02/13/2025] Open
Abstract
Staphylococcus aureus, a Gram-positive, coccus-shaped bacterium often causes several infections on human hosts by exploiting biofilm. This current work investigates a potential strategy to manage the threats of biofilm-linked infections by embracing a combinatorial approach involving cuminaldehyde (phytochemical) and gentamicin (antibiotic). Despite showing antimicrobial properties individually, cuminaldehyde and gentamicin could exhibit enhanced antimicrobial potential when used together against S. aureus. The fractional inhibitory concentration index (FICI = 0.36) suggested that the selected compounds (cuminaldehyde and gentamicin) offered synergistic interaction while showing antimicrobial potential against the same organism. A series of experiments indicated that the selected compounds (cuminaldehyde and gentamicin) showed substantial antibiofilm potential against S. aureus when combined. The increased antibiofilm potential was linked to the accumulation of reactive oxygen species (ROS) and increased cell membrane permeability. Additionally, the combination of the selected compounds (cuminaldehyde and gentamicin) also impeded the cell surface hydrophobicity of S. aureus, aiding in the prevention of biofilm formation. The present study also showed that combining the mentioned compounds (cuminaldehyde and gentamicin) notably reduced the secretion of several virulence factors from S. aureus. Furthermore, the current research showed that these compounds (cuminaldehyde and gentamicin) could also exhibit antibiofilm potential against the clinical strains of Methicillin-Resistant S. aureus (MRSA). Taken together, this innovative approach not only enhances the potential of existing standard antibiotics but also opens up new therapeutic possibilities for combating biofilm-related infections.
Collapse
Affiliation(s)
- Ritwik Roy
- Microbial Ecology Research Laboratory, Department of Biotechnology, The Neotia University, Sarisha, West Bengal, 743368, India
| | - Awantika Das
- Microbiology Department, Suraksha Diagnostic Pvt. Ltd., Newtown, Kolkata, West Bengal, 700156, India
| | - Debolina Ganguly
- Microbial Ecology Research Laboratory, Department of Biotechnology, The Neotia University, Sarisha, West Bengal, 743368, India
| | - Poulomi Chakraborty
- Microbial Ecology Research Laboratory, Department of Biotechnology, The Neotia University, Sarisha, West Bengal, 743368, India
| | - Payel Paul
- Microbial Ecology Research Laboratory, Department of Biotechnology, The Neotia University, Sarisha, West Bengal, 743368, India.
| | - Sharmistha Das
- Microbial Ecology Research Laboratory, Department of Biotechnology, The Neotia University, Sarisha, West Bengal, 743368, India
| | - Alakesh Maity
- Microbial Ecology Research Laboratory, Department of Biotechnology, The Neotia University, Sarisha, West Bengal, 743368, India
| | - Moumita Malik
- Microbial Ecology Research Laboratory, Department of Biotechnology, The Neotia University, Sarisha, West Bengal, 743368, India
| | - Prosun Tribedi
- Microbial Ecology Research Laboratory, Department of Biotechnology, The Neotia University, Sarisha, West Bengal, 743368, India.
| |
Collapse
|
2
|
Perronno P, Claudinon J, Senin C, Elçin-Guinot S, Wolter L, Makshakova ON, Dumas N, Klockenbring D, Lam-Weil J, Noblet V, Steltenkamp S, Römer W, Madec M. Innovative fast and low-cost method for the detection of living bacteria based on trajectory. Sci Rep 2025; 15:16535. [PMID: 40360745 PMCID: PMC12075866 DOI: 10.1038/s41598-025-95069-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 03/19/2025] [Indexed: 05/15/2025] Open
Abstract
Detection of pathogens is a major concern in many fields like medicine, pharmaceuticals, or agri-food. Most conventional detection methods require skilled staff and specific laboratory equipment for sample collection and analysis or are specific to a given pathogen. Thus, they cannot be easily integrated into a portable device. In addition, the time-to-response, including the sample collection, possible transport to the measurement equipment, and analysis, is often quite long, making real-time screening of a large number of samples impossible. This paper presents a new approach that better fulfills industry needs in terms of integrated real-time wide screening of a large number of samples. It combines optical imaging, object detection and tracking, and machine-learning-based classification. Three of the most common bacteria are selected for this study. For all of them, living bacteria are distinguished from inert and inorganic objects (1 μm latex beads) based on their trajectory, with a high degree of confidence. Discrimination between living and dead bacteria of the same species is also achieved. Finally, the method successfully detects abnormal concentrations of a given bacterium compared to a standard baseline solution. Although there is still room for improvement, these results provide a proof of concept for this technology, which has strong application potential in infection spread prevention.
Collapse
Affiliation(s)
- Paul Perronno
- ICube Laboratory, UMR 7357 (CNRS/University of Strasbourg), 67400, Illkirch-Graffenstaden, France
- Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104, Freiburg, Germany
| | - Julie Claudinon
- Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104, Freiburg, Germany
- OPHARDT Hygiene-Technik GmbH, 47661, Issum, Germany
| | - Carmen Senin
- Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine, University of Freiburg, 79104, Freiburg, Germany
| | - Serap Elçin-Guinot
- Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104, Freiburg, Germany
| | - Lena Wolter
- Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104, Freiburg, Germany
| | - Olga N Makshakova
- Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104, Freiburg, Germany
| | - Norbert Dumas
- ICube Laboratory, UMR 7357 (CNRS/University of Strasbourg), 67400, Illkirch-Graffenstaden, France
| | - Dimitri Klockenbring
- ICube Laboratory, UMR 7357 (CNRS/University of Strasbourg), 67400, Illkirch-Graffenstaden, France
| | - Joseph Lam-Weil
- ICube Laboratory, UMR 7357 (CNRS/University of Strasbourg), 67400, Illkirch-Graffenstaden, France
| | - Vincent Noblet
- ICube Laboratory, UMR 7357 (CNRS/University of Strasbourg), 67400, Illkirch-Graffenstaden, France
| | - Siegfried Steltenkamp
- Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104, Freiburg, Germany
- OPHARDT Hygiene-Technik GmbH, 47661, Issum, Germany
| | - Winfried Römer
- Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine, University of Freiburg, 79104, Freiburg, Germany
| | - Morgan Madec
- ICube Laboratory, UMR 7357 (CNRS/University of Strasbourg), 67400, Illkirch-Graffenstaden, France.
- Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany.
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104, Freiburg, Germany.
| |
Collapse
|
3
|
Maggio F, Rossi C, Serio A, Chaves-Lopez C, Casaccia M, Paparella A. Anti-biofilm mechanisms of action of essential oils by targeting genes involved in quorum sensing, motility, adhesion, and virulence: A review. Int J Food Microbiol 2025; 426:110874. [PMID: 39244811 DOI: 10.1016/j.ijfoodmicro.2024.110874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/11/2024] [Accepted: 08/15/2024] [Indexed: 09/10/2024]
Abstract
Biofilms are a critical factor for food safety, causing important economic losses. Among the novel strategies for controlling biofilms, essential oils (EOs) can represent an environmentally friendly approach, able to act both on early and mature stages of biofilm formation. This review reports the anti-biofilm mechanisms of action of EOs against five pathogenic bacterial species known for their biofilm-forming ability. These mechanisms include disturbing the expression of genes related to quorum sensing (QS), motility, adhesion, and virulence. Biofilms and QS are interconnected processes, and EOs interfere with the communication system (e.g. regulating the expression of agrBDCA, luxR, luxS, and pqsA genes), thus influencing biofilm formation. In addition, QS is an important mechanism that regulates gene expression related to bacterial survival, virulence, and pathogenicity. Similarly, EOs also influence the expression of many virulence genes. Moreover, EOs exert their effects modulating the genes associated with bacterial adhesion and motility, for example those involved in curli (csg), fimbriae (fim, lpf), and flagella (fla, fli, flh, and mot) production, as well as the ica genes responsible for synthetizing polysaccharide intercellular adhesin. This review provides a comprehensive framework on the topic for a better understanding of EOs biofilm mechanisms of action.
Collapse
Affiliation(s)
- Francesca Maggio
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Italy.
| | - Chiara Rossi
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Italy.
| | - Annalisa Serio
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Italy.
| | - Clemencia Chaves-Lopez
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Italy.
| | - Manila Casaccia
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Italy
| | - Antonello Paparella
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Italy.
| |
Collapse
|
4
|
Mukherjee D, Sen S, Jana A, Ghosh S, Jash M, Singh M, Ghosh S, Mukherjee N, Roy R, Dey T, Manoharan S, Ghosh S, Sarkar J. Emergence of an unconventional Enterobacter cloacae-derived Iturin A C-15 as a potential therapeutic agent against methicillin-resistant Staphylococcus aureus. Arch Microbiol 2024; 207:20. [PMID: 39738879 DOI: 10.1007/s00203-024-04226-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 12/23/2024] [Accepted: 12/24/2024] [Indexed: 01/02/2025]
Abstract
Antimicrobial resistance poses a significant global health threat by reducing the effectiveness of conventional antibiotics, particularly against pathogens like Methicillin-resistant Staphylococcus aureus (MRSA). This study investigates the antimicrobial potential of rhizospheric soil bacteria from Prosopis cineraria (Sangri) in the Thar Desert. Bacterial strains isolated from these samples were observed to produce secondary metabolites, notably, Iturin A C-15 cyclic lipopeptide (SS1-3-P) which was extracted from strain Enterobacter cloacae SS1-3 and was purified and characterized using reverse-phase HPLC, ESI-LC/MS, Nile-Red Assay, and FT-IR analysis. The presence of the Iturin A biosynthetic gene cluster was confirmed using gene-specific polymerase chain reaction and the biocompatibility of the purified product was assessed on HEK-293, WI38, and human RBCs. The potential of SS1-3-P to bind to and destroy MRSA membranes was validated using molecular dynamics simulation along with membranolysis and membrane depolarization assays. Antimicrobial assays like growth curve analysis, field emission scanning electron microscopy, and ROS generation confirmed the efficacy of SS1-3-P against clinical MRSA. Furthermore, the antibiofilm and anti-virulence properties of SS1-3-P were studied meticulously. Studies on NIH/3T3 cell lines and a murine excisional wound model showed significant wound-healing attributes of the lipopeptide. These results highlight the potential of desert ecosystems in developing effective antimicrobial therapies against recalcitrant nosocomial pathogens like MRSA.
Collapse
Affiliation(s)
- Dipro Mukherjee
- Department of Bioscience and Bioengineering, Indian Institute of Technology, Jodhpur, Rajasthan, 342030, India
| | - Samya Sen
- iHUB Drishti Foundation, Indian Institute of Technology, Jodhpur, Rajasthan, India
| | - Aniket Jana
- Smart Healthcare Department, Interdisciplinary Research Platform, Indian Institute of Technology, Jodhpur, Rajasthan, India
| | - Surojit Ghosh
- Smart Healthcare Department, Interdisciplinary Research Platform, Indian Institute of Technology, Jodhpur, Rajasthan, India
| | - Moumita Jash
- iHUB Drishti Foundation, Indian Institute of Technology, Jodhpur, Rajasthan, India
| | - Monika Singh
- Centre for Research and Development of Scientific Instruments (CRDSI), Indian Institute of Technology, Jodhpur, Rajasthan, 342030, India
| | - Satyajit Ghosh
- Department of Bioscience and Bioengineering, Indian Institute of Technology, Jodhpur, Rajasthan, 342030, India
| | - Nabanita Mukherjee
- Smart Healthcare Department, Interdisciplinary Research Platform, Indian Institute of Technology, Jodhpur, Rajasthan, India
| | - Rajsekhar Roy
- Department of Bioscience and Bioengineering, Indian Institute of Technology, Jodhpur, Rajasthan, 342030, India
| | - Tamal Dey
- Department of Bioscience and Bioengineering, Indian Institute of Technology, Jodhpur, Rajasthan, 342030, India
| | - Shankar Manoharan
- Department of Bioscience and Bioengineering, Indian Institute of Technology, Jodhpur, Rajasthan, 342030, India
| | - Surajit Ghosh
- Department of Bioscience and Bioengineering, Indian Institute of Technology, Jodhpur, Rajasthan, 342030, India.
- iHUB Drishti Foundation, Indian Institute of Technology, Jodhpur, Rajasthan, India.
- Smart Healthcare Department, Interdisciplinary Research Platform, Indian Institute of Technology, Jodhpur, Rajasthan, India.
| | - Jayita Sarkar
- Centre for Research and Development of Scientific Instruments (CRDSI), Indian Institute of Technology, Jodhpur, Rajasthan, 342030, India.
| |
Collapse
|
5
|
Anwar KA, Saadalla SM, Muhammad Amin AJ, Ahmed SM, Qadir MK. Antibiotic susceptibility and phenotypic profile of Staphylococcus species isolated from different clinical samples from health facilities: A cross-sectional study. SAGE Open Med 2024; 12:20503121241306968. [PMID: 39698142 PMCID: PMC11653444 DOI: 10.1177/20503121241306968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 11/25/2024] [Indexed: 12/20/2024] Open
Abstract
Background Staphylococcus species are widely distributed in nature and found in various human body sites. Objectives To determine the antibiotic susceptibility pattern of Staphylococcus species isolated from different clinical samples. Methods This cross-sectional study was conducted on 400 clinical specimens from conveniently sampled patients seeking healthcare at two health facilities in sulaimani / Iraq. Bacterial isolation and identification were done using conventional techniques, after which the antibiotic susceptibility profile of Staphylococcus species commonly prescribed antibiotics used in treating infections at the facilities was done using the disc diffusion method. Finally, MecA, methicillin-resistant Staphylococcus aureus and macrolides-lincosamide and streptogramin genes with mupirocin-resistant, beta-lactamase and vancomycin-resistance phenotypes were identified. Results Staphylococcus aureus was the prevalent isolated species (n = 197, 49.3%), followed by Staphylococcus hemolyticus (n = 115, 28.8%), Staphylococcus epidermidis (n = 49, 12.3%), Staphylococcus hominis (n = 9.0, 2.3%), Staphylococcus sciuri (n = 8.0, 2.0%) and Staphylococcus lentus (n = 4.0, 1.0%). All isolated species resisted Penicillin G, Ampicillin, Cefotaxime and Cefoxitin. Most of the isolates, 89.5% (n = 358) had the beta-lactamase phenotype, 18.0% (n = 72) had the MecA gene, 2.8% (n = 11) the Mupirocin-resistant phenotype, and 2.0% (n = 8.0) the vancomycin-resistance phenotype. Additionally, 12 isolates had both methicillin-resistant Staphylococcus aureus (66.7%) and macrolides-lincosamide and streptogramin (65.2%) genes. The majority of the patients, 43% (n = 172) were >50 years old and 52.25% (n = 209) males. Also, most samples were from patients with urinary tract infection (n = 73), wound (n = 71), blood (n = 35), sputum (n = 29), pus (n = 28), seminal fluid (n = 27), cerebrospinal fluid (n = 1.0) and stool (n = 1.0). Most isolates that had the MSLb gene were highly significantly resistant to both Clindamycin (94.6%) and Erythromycin (84.7%) (p < 0.001). Conclusions Staphylococcus aureus was the predominant Staphylococcus species isolated from the clinical samples, most of which were resistant to most commonly prescribed antibiotics and had developed resistant genes and phenotypes.
Collapse
Affiliation(s)
- Khanda Abdulateef Anwar
- Branch of Clinical Sciences, College of Medicine, University of Sulaimani, Sulaimaniyah, Iraq
- Department of Microbiology, Anwar Shexa Medical City, Sulaimani Directorate of Health, Sulaimaniyah, Iraq
| | - Shyar Mustafa Saadalla
- Branch of Clinical Sciences, College of Medicine, University of Sulaimani, Sulaimaniyah, Iraq
| | | | - Shad Mahdi Ahmed
- Branch of Clinical Sciences, College of Medicine, University of Sulaimani, Sulaimaniyah, Iraq
| | - Mina Kawa Qadir
- Branch of Clinical Sciences, College of Medicine, University of Sulaimani, Sulaimaniyah, Iraq
| |
Collapse
|
6
|
Cortese YJ, Fayne J, Colbert DM, Devine DM, Fogarty A. The Development of a Biomimetic Model of Bacteria Migration on Indwelling Urinary Catheter Surfaces. Biomimetics (Basel) 2024; 9:491. [PMID: 39194470 DOI: 10.3390/biomimetics9080491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/06/2024] [Accepted: 08/12/2024] [Indexed: 08/29/2024] Open
Abstract
The aim of this study was to develop a novel biomimetic in vitro extraluminal migration model to observe the migration of bacteria along indwelling urinary catheters within the urethra and assess the efficacy of a prototype chlorhexidine diacetate (CHX) coating to prevent this migration. The in vitro urethra model utilised chromogenic agar. A catheter was inserted into each in vitro urethra. One side of the urethra was then inoculated with bacteria to replicate a contaminated urethral meatus. The models were then incubated for 30 days (d), with the migration distance recorded each day. Four indwelling catheter types were used to validate the in vitro urethra model and methodology. Using the biomimetic in vitro urethra model, E. coli and S. aureus migrated the entire length of a control catheter within 24-48 h (h). In the presence of a prototype CHX coating, full migration of the channel was prevented for 30 d. The results of this study support the hypothesis that catheter-associated urinary tract infections (CAUTIs) could be prevented by targeting catheter-mediated extraluminal microbial migration from outside of the urinary tract into the bladder.
Collapse
Affiliation(s)
- Yvonne J Cortese
- PRISM Research Institute, Technological University of the Shannon: Midlands Midwest, N37 HD68 Athlone, Ireland
| | - Joanne Fayne
- Teleflex Medical EMEA, N37 EC90 Athlone, Ireland
| | - Declan M Colbert
- PRISM Research Institute, Technological University of the Shannon: Midlands Midwest, N37 HD68 Athlone, Ireland
| | - Declan M Devine
- PRISM Research Institute, Technological University of the Shannon: Midlands Midwest, N37 HD68 Athlone, Ireland
| | - Andrew Fogarty
- Department of Bioveterinary and Microbial Sciences, Technological University of the Shannon: Midlands Midwest, N37 HD68 Athlone, Ireland
| |
Collapse
|
7
|
Jacob KM, Hernández-Villamizar S, Hammer ND, Reguera G. Mucin-induced surface dispersal of Staphylococcus aureus and Staphylococcus epidermidis via quorum-sensing dependent and independent mechanisms. mBio 2024; 15:e0156224. [PMID: 38953351 PMCID: PMC11323471 DOI: 10.1128/mbio.01562-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 06/04/2024] [Indexed: 07/04/2024] Open
Abstract
Nasopharyngeal carriage of staphylococci spreads potentially pathogenic strains into (peri)oral regions and increases the chance of cross-infections. Some laboratory strains can also move rapidly on hydrated agar surfaces, but the biological relevance of these observations is not clear. Using soft-agar [0.3% (wt/vol)] plate assays, we demonstrate the rapid surface dispersal of (peri)oral isolates of Staphylococcus aureus and Staphylococcus epidermidis and closely related laboratory strains in the presence of mucin glycoproteins. Mucin-induced dispersal was a stepwise process initiated by the passive spreading of the growing colonies followed by their rapid branching (dendrites) from the colony edge. Although most spreading strains used mucin as a growth substrate, dispersal was primarily dependent on the lubricating and hydrating properties of the mucins. Using S. aureus JE2 as a genetically tractable representative, we demonstrate that mucin-induced dendritic dispersal, but not colony spreading, is facilitated by the secretion of surfactant-active phenol-soluble modulins (PSMs) in a process regulated by the agr quorum-sensing system. Furthermore, the dendritic dispersal of S. aureus JE2 colonies was further stimulated in the presence of surfactant-active supernatants recovered from the most robust (peri)oral spreaders of S. aureus and S. epidermidis. These findings suggest complementary roles for lubricating mucins and staphylococcal PSMs in the active dispersal of potentially pathogenic strains from perioral to respiratory mucosae, where gel-forming, hydrating mucins abound. They also highlight the impact that interspecies interactions have on the co-dispersal of S. aureus with other perioral bacteria, heightening the risk of polymicrobial infections and the severity of the clinical outcomes. IMPORTANCE Despite lacking classical motility machinery, nasopharyngeal staphylococci spread rapidly in (peri)oral and respiratory mucosa and cause cross-infections. We describe laboratory conditions for the reproducible study of staphylococcal dispersal on mucosa-like surfaces and the identification of two dispersal stages (colony spreading and dendritic expansion) stimulated by mucin glycoproteins. The mucin type mattered as dispersal required the surfactant activity and hydration provided by some mucin glycoproteins. While colony spreading was a passive mode of dispersal lubricated by the mucins, the more rapid and invasive form of dendritic expansion of Staphylococcus aureus and Staphylococcus epidermidis required additional lubrication by surfactant-active peptides (phenol-soluble modulins) secreted at high cell densities through quorum sensing. These results highlight a hitherto unknown role for gel-forming mucins in the dispersal of staphylococcal strains associated with cross-infections and point at perioral regions as overlooked sources of carriage and infection by staphylococci.
Collapse
Affiliation(s)
- Kristin M. Jacob
- Department of Microbiology, Genetics and Immunology, Michigan State University, East Lansing, Michigan, USA
| | | | - Neal D. Hammer
- Department of Microbiology, Genetics and Immunology, Michigan State University, East Lansing, Michigan, USA
| | - Gemma Reguera
- Department of Microbiology, Genetics and Immunology, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
8
|
Sen S, Ghosh S, Jana A, Jash M, Ghosh S, Mukherjee N, Mukherjee D, Sarkar J, Ghosh S. Multi-Faceted Antimicrobial Efficacy of a Quinoline-Derived Bidentate Copper(II) Ligand Complex and Its Hydrogel Encapsulated Formulation in Methicillin-Resistant Staphylococcus aureus Inhibition and Wound Management. ACS APPLIED BIO MATERIALS 2024; 7:4142-4161. [PMID: 38770768 DOI: 10.1021/acsabm.4c00466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
The emergence of antimicrobial resistance, exemplified by methicillin-resistant Staphylococcus aureus (MRSA), poses a grave threat to public health globally. Over time, MRSA has evolved resistance to multiple antibiotics, challenging conventional treatment strategies. The relentless adaptability of MRSA underscores the urgent need for innovative and targeted antimicrobial approaches to combat this resilient pathogen. Ancient knowledge and practices, along with scientific evidence, have established that metallic copper, and its organic coordination complexes can act as potential antibacterial substances. In search of a smart and effective antimicrobial against MRSA, we designed, synthesized, and characterized a bidentate copper(II) ligand complex (SG-Cu) utilizing a comprehensive array of analytical techniques, including ESI-MS, elemental analysis, X-ray photoelectron spectroscopy, electron paramagnetic resonance spectroscopy, and others. Antibacterial efficacy and mechanism of action of the complex were assessed through bacterial growth analyses, bacterial membrane perturbation assays, ROS elicitation assays, and field emission scanning electron microscopy. SG-Cu was found to maintain robust biocompatibility against the mammalian cell lines HEK-293, WI-38, and NIH/3T3. Remarkably, SG-Cu demonstrated significant biofilm disruptive tendency evidenced by the retardation of sliding motility, reduction in slime production, reduction in biofilm viability, and enhanced biofilm eradication, both in vitro and in urinary catheters. In vivo studies on murine excisional wounds, with SG-Cu impregnated in a palmitic acid conjugated NAVSIQ hexapeptide (PA-NV) hydrogel, revealed the sustained release of SG-Cu from the gel matrix, facilitating accelerated wound healing and effective wound disinfection. This multifaceted investigation highlights the potential of SG-Cu as a versatile option for combating MRSA infections and promoting wound healing, solidifying its claim to be developed into a viable therapeutic.
Collapse
Affiliation(s)
- Samya Sen
- iHUB Drishti Foundation, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
| | - Surojit Ghosh
- Smart Healthcare Department, Interdisciplinary Research Platform, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
| | - Aniket Jana
- Smart Healthcare Department, Interdisciplinary Research Platform, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
| | - Moumita Jash
- iHUB Drishti Foundation, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
| | - Satyajit Ghosh
- Department of Bioscience and Bioengineering, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
| | - Nabanita Mukherjee
- Smart Healthcare Department, Interdisciplinary Research Platform, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
| | - Dipro Mukherjee
- Department of Bioscience and Bioengineering, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
| | - Jayita Sarkar
- Centre for Research and Development of Scientific Instruments (CRDSI), Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
| | - Surajit Ghosh
- Department of Bioscience and Bioengineering, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
- Smart Healthcare Department, Interdisciplinary Research Platform, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
- iHUB Drishti Foundation, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
| |
Collapse
|
9
|
Beltrán-Martínez ME, Tapia-Rodríguez MR, Ayala-Zavala JF, Gómez-Álvarez A, Robles-Zepeda RE, Torres-Moreno H, de Rodríguez DJ, López-Romero JC. Antimicrobial and Antibiofilm Potential of Flourensia retinophylla against Staphylococcus aureus. PLANTS (BASEL, SWITZERLAND) 2024; 13:1671. [PMID: 38931103 PMCID: PMC11207523 DOI: 10.3390/plants13121671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024]
Abstract
Staphylococcus aureus is a Gram-positive bacteria with the greatest impact in the clinical area, due to the high rate of infections and deaths reaching every year. A previous scenario is associated with the bacteria's ability to develop resistance against conventional antibiotic therapies as well as biofilm formation. The above situation exhibits the necessity to reach new effective strategies against this pathogen. Flourensia retinophylla is a medicinal plant commonly used for bacterial infections treatments and has demonstrated antimicrobial effect, although its effect against S. aureus and bacterial biofilms has not been investigated. The purpose of this work was to analyze the antimicrobial and antibiofilm potential of F. retinophylla against S. aureus. The antimicrobial effect was determined using an ethanolic extract of F. retinophylla. The surface charge of the bacterial membrane, the K+ leakage and the effect on motility were determined. The ability to prevent and remove bacterial biofilms was analyzed in terms of bacterial biomass, metabolic activity and viability. The results showed that F. retinophylla presents inhibitory (MIC: 250 µg/mL) and bactericidal (MBC: 500 µg/mL) activity against S. aureus. The MIC extract increased the bacterial surface charge by 1.4 times and the K+ concentration in the extracellular medium by 60%. The MIC extract inhibited the motility process by 100%, 61% and 40% after 24, 48 and 72 h, respectively. The MIC extract prevented the formation of biofilms by more than 80% in terms of biomass production and metabolic activity. An extract at 10 × MIC reduced the metabolic activity by 82% and the viability by ≈50% in preformed biofilms. The results suggest that F. retinophylla affects S. areus membrane and the process of biofilm formation and removal. This effect could set a precedent to use this plant as alternative for antimicrobial and disinfectant therapies to control infections caused by this pathogen. In addition, this shrub could be considered for carrying out a purification process in order to identify the compounds responsible for the antimicrobial and antibiofilm effect.
Collapse
Affiliation(s)
- Minerva Edith Beltrán-Martínez
- Coordinación de Tecnología de Alimentos de Origen Vegetal, Centro de Investigación en Alimentación y Desarrollo, A.C. Carretera Gustavo Astiazarán Rosas No. 46, Colonia la Victoria, Hermosillo 83304, Mexico; (M.E.B.-M.); (J.F.A.-Z.)
| | - Melvin Roberto Tapia-Rodríguez
- Departamento de Biotecnología y Ciencias Alimentarias, Instituto Tecnológico de Sonora, 5 de Febrero 818 sur, Col. Centro, Ciudad Obregón 85000, Mexico;
| | - Jesús Fernando Ayala-Zavala
- Coordinación de Tecnología de Alimentos de Origen Vegetal, Centro de Investigación en Alimentación y Desarrollo, A.C. Carretera Gustavo Astiazarán Rosas No. 46, Colonia la Victoria, Hermosillo 83304, Mexico; (M.E.B.-M.); (J.F.A.-Z.)
| | - Agustín Gómez-Álvarez
- Departamento de Ingeniería Química y Metalurgia, Universidad de Sonora, Hermosillo 83000, Mexico;
| | | | - Heriberto Torres-Moreno
- Departamento de Ciencias Químico Biológicas y Agropecuarias, Universidad de Sonora, Caborca 83600, Mexico;
| | | | - Julio César López-Romero
- Departamento de Ciencias Químico Biológicas y Agropecuarias, Universidad de Sonora, Caborca 83600, Mexico;
| |
Collapse
|
10
|
Santinon C, Borges A, Simões M, Gonçalves ASC, Beppu MM, Vieira MGA. Visible-light photoactivated proanthocyanidin and kappa-carrageenan coating with anti-adhesive properties against clinically relevant bacteria. Int J Biol Macromol 2024; 263:130611. [PMID: 38447837 DOI: 10.1016/j.ijbiomac.2024.130611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/14/2024] [Accepted: 03/02/2024] [Indexed: 03/08/2024]
Abstract
The increase of bacterial resistance to antibiotics is a growing concern worldwide and the search for new therapies could cost billions of dollars and countless lives. Inert surfaces are major sources of contamination due to easier adhesion and formation of bacterial biofilms, hindering the disinfection process. Therefore, the objective of this study was to develop a photoactivatable and anti-adhesive kappa-carrageenan coating using proanthocyanidin as a photosensitizer. The complete reduction (>5-log10 CFU/cm3) of culturable cells of Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa pathogens was achieved after 30 min of exposure to visible light (420 nm; 30 mW/cm2) with 5 % (w/v) of the photosensitizer. Cell membrane damage was confirmed by measuring potassium leakage, epifluorescence microscopy and bacterial motility analysis. Overall, visible light irradiation on coated solid surfaces mediated by proanthocyanidin showed no cytotoxicity and inactivated clinically important pathogens through the generation of reactive oxygen species, inhibiting bacterial initial adhesion. The developed coating is a promising alternative for a wide range of applications related to surface disinfection and food biopreservation.
Collapse
Affiliation(s)
- Caroline Santinon
- ªSchool of Chemical Engineering, University of Campinas - UNICAMP, Albert Einstein Av., 500, 13083-852 Campinas, SP, Brazil
| | - Anabela Borges
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, s/n, 4200-465 Porto, Portugal
| | - Manuel Simões
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, s/n, 4200-465 Porto, Portugal
| | - Ariana S C Gonçalves
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, s/n, 4200-465 Porto, Portugal
| | - Marisa Masumi Beppu
- ªSchool of Chemical Engineering, University of Campinas - UNICAMP, Albert Einstein Av., 500, 13083-852 Campinas, SP, Brazil
| | - Melissa Gurgel Adeodato Vieira
- ªSchool of Chemical Engineering, University of Campinas - UNICAMP, Albert Einstein Av., 500, 13083-852 Campinas, SP, Brazil.
| |
Collapse
|
11
|
Kastrat E, Cheng HP. Escherichia coli has an undiscovered ability to inhibit the growth of both Gram-negative and Gram-positive bacteria. Sci Rep 2024; 14:7420. [PMID: 38548840 PMCID: PMC10978900 DOI: 10.1038/s41598-024-57996-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/25/2024] [Indexed: 04/01/2024] Open
Abstract
The ability for bacteria to form boundaries between neighboring colonies as the result of intra-species inhibition has been described for a limited number of species. Here, we report that intra-species inhibition is more common than previously recognized. We demonstrated that swimming colonies of four Escherichia coli strains and six other bacteria form inhibitory zones between colonies, which is not caused by nutrient depletion. This phenomenon was similarly observed with non-flagellated bacteria. We developed a square-streaking pattern assay which revealed that Escherichia coli BW25113 inhibits the growth of other E. coli, and surprisingly, other Gram-positive and negative bacteria, including multi-drug resistant clinical isolates. Altogether, our findings demonstrate intra-species inhibition is common and might be used by E. coli to inhibit other bacteria. Our findings raise the possibility for a common mechanism shared across bacteria for intra-species inhibition. This can be further explored for a potential new class of antibiotics.
Collapse
Affiliation(s)
- Ertan Kastrat
- Department of Biological Sciences, Lehman College, City University of New York, Bronx, NY, 10468, USA
- The Graduate Center, City University of New York, New York, NY, 10016, USA
| | - Hai-Ping Cheng
- Department of Biological Sciences, Lehman College, City University of New York, Bronx, NY, 10468, USA.
- The Graduate Center, City University of New York, New York, NY, 10016, USA.
| |
Collapse
|
12
|
Gazel D, Akdoğan H, Büyüktaş Manay A, Erinmez M, Zer Y. The potential of therapeutic hyperthermia to eradicate Staphylococcus aureus bacteria; an in vitro study. J Therm Biol 2024; 120:103812. [PMID: 38447276 DOI: 10.1016/j.jtherbio.2024.103812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 02/02/2024] [Accepted: 02/04/2024] [Indexed: 03/08/2024]
Abstract
Staphylococcus aureus is one of the most common infectious agents, causing morbidity and mortality worldwide. Most pathogenic bacteria are classified in the group of mesophilic bacteria and the optimal growth temperature of these bacteria changes between 33 and 41 °C. Increased temperature can inhibit bacterial growth and mobility, which in turn, can trigger autolysis and cause cell wall damage. Hyperthermia treatment is defined as a heat-mediated treatment method applied using temperatures higher than body temperature. Nowadays, this treatment method is used especially in the treatment of tumours. Hyperthermia treatment is divided into two groups: mild hyperthermia and ablative or high-temperature hyperthermia. Mild hyperthermia is a therapeutic technique in which tumour tissue is heated above body temperature to produce a physiological or biological effect but is often not aimed at directly causing significant cell death. The goal of this method is to achieve temperatures of 40-45 °C in human tissues for up to 2 h. Hyperthermia can be used in the treatment of infections caused by such bacterial pathogens. In addition, using hyperthermia in combination with antimicrobial drugs may result in synergistic effects and reduce resistance issues. In our study, we used two different temperature levels (37 °C and 45 °C). We assessed growth inhibition, some virulence factors, alteration colony morphologies, and antimicrobial susceptibility for several antibiotics with three methods (Kirby-Bauer, E-test and broth microdilution) under hyperthermia. In the study, we observed that hyperthermia affected the urease enzyme, antibiotic sensitivity levels showed synergy with hyperthermia, and changes occurred in colony diameters and affected bacterial growth. We hypothesise that hyperthermia might be a new therapeutic option for infectious diseases as a sole agent or in combination with different antimicrobials.
Collapse
Affiliation(s)
- Deniz Gazel
- Gaziantep University, Faculty of Medicine, Department of Medical Microbiology, Gaziantep, Turkey.
| | - Hüseyin Akdoğan
- Gaziantep University, Faculty of Medicine, Department of Medical Microbiology, Gaziantep, Turkey
| | - Ayşe Büyüktaş Manay
- Gaziantep University, Faculty of Medicine, Department of Medical Microbiology, Gaziantep, Turkey
| | - Mehmet Erinmez
- Gaziantep University, Faculty of Medicine, Department of Medical Microbiology, Gaziantep, Turkey
| | - Yasemin Zer
- Gaziantep University, Faculty of Medicine, Department of Medical Microbiology, Gaziantep, Turkey
| |
Collapse
|
13
|
Huang LZY, Shaw ZL, Penman R, Cheeseman S, Truong VK, Higgins MJ, Caruso RA, Elbourne A. Cell Adhesion, Elasticity, and Rupture Forces Guide Microbial Cell Death on Nanostructured Antimicrobial Titanium Surfaces. ACS APPLIED BIO MATERIALS 2024; 7:344-361. [PMID: 38100088 DOI: 10.1021/acsabm.3c00943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
Naturally occurring and synthetic nanostructured surfaces have been widely reported to resist microbial colonization. The majority of these studies have shown that both bacterial and fungal cells are killed upon contact and subsequent surface adhesion to such surfaces. This occurs because the presence of high-aspect-ratio structures can initiate a self-driven mechanical rupture of microbial cells during the surface adsorption process. While this technology has received a large amount of scientific and medical interest, one important question still remains: what factors drive microbial death on the surface? In this work, the interplay between microbial-surface adhesion, cell elasticity, cell membrane rupture forces, and cell lysis at the microbial-nanostructure biointerface during adsorptive processes was assessed using a combination of live confocal laser scanning microscopy, scanning electron microscopy, in situ amplitude atomic force microscopy, and single-cell force spectroscopy. Specifically, the adsorptive behavior and nanomechanical properties of live Gram-negative (Pseudomonas aeruginosa) and Gram-positive (methicillin-resistant Staphylococcus aureus) bacterial cells, as well as the fungal species Candida albicans and Cryptococcus neoformans, were assessed on unmodified and nanostructured titanium surfaces. Unmodified titanium and titanium surfaces with nanostructures were used as model substrates for investigation. For all microbial species, cell elasticity, rupture force, maximum cell-surface adhesion force, the work of adhesion, and the cell-surface tether behavior were compared to the relative cell death observed for each surface examined. For cells with a lower elastic modulus, lower force to rupture through the cell, and higher work of adhesion, the surfaces had a higher antimicrobial activity, supporting the proposed biocidal mode of action for nanostructured surfaces. This study provides direct quantification of the differences observed in the efficacy of nanostructured antimicrobial surface as a function of microbial species indicating that a universal, antimicrobial surface architecture may be hard to achieve.
Collapse
Affiliation(s)
- Louisa Z Y Huang
- Applied Chemistry and Environmental Science, School of Science, College of STEM, RMIT University, Melbourne, Victoria 3000, Australia
| | - Z L Shaw
- School of Engineering, College of STEM, RMIT University, Melbourne, Victoria 3000, Australia
| | - Rowan Penman
- Applied Chemistry and Environmental Science, School of Science, College of STEM, RMIT University, Melbourne, Victoria 3000, Australia
| | - Samuel Cheeseman
- Applied Chemistry and Environmental Science, School of Science, College of STEM, RMIT University, Melbourne, Victoria 3000, Australia
- Graeme Clark Institute, Faculty of Engineering and Information Technology & Faculty of Medicine, Dentistry and Health Services, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Vi Khanh Truong
- Applied Chemistry and Environmental Science, School of Science, College of STEM, RMIT University, Melbourne, Victoria 3000, Australia
- College of Medicine and Public Health, Flinders University, Bedford Park, South Australia 5042, Australia
| | - Michael J Higgins
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, Innovation Campus, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Rachel A Caruso
- Applied Chemistry and Environmental Science, School of Science, College of STEM, RMIT University, Melbourne, Victoria 3000, Australia
| | - Aaron Elbourne
- Applied Chemistry and Environmental Science, School of Science, College of STEM, RMIT University, Melbourne, Victoria 3000, Australia
| |
Collapse
|
14
|
Verma M, Nisha A, Bathla M, Acharya A. Resveratrol-Encapsulated Glutathione-Modified Robust Mesoporous Silica Nanoparticles as an Antibacterial and Antibiofilm Coating Agent for Medical Devices. ACS APPLIED MATERIALS & INTERFACES 2023; 15:58212-58229. [PMID: 38060572 DOI: 10.1021/acsami.3c13733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
The emergence of various lethal bacterial infections and their adherence to medical devices are major public health concerns. The increased bacterial exposure and titer are accompanied by the inappropriate use of antibiotics that sometimes lead to antibiotic resistance, and therefore, a drug-free antibacterial approach is required. Several nanoparticles (NPs) have been developed as antibacterial and antibiofilm coating agents, which can overcome different drug resistance mechanisms by inhibiting the important processes related to bacterial virulence potential. However, developing safe and biocompatible nanomaterials (NMs) for these applications has remained a major challenge due to their poorly understood mechanism of action. In this work, biogenic silica NPs were modified with glutathione (GSH) to form GSH@SNP (∼80 ± 15 nm) for targeting the bacterial cell surface and biofilm. GSH@SNP was loaded with resveratrol to obtain Res_GSH@SNP (∼124 ± 15 nm) that enhances the antibacterial activity of the NPs against Staphylococcus aureus and Escherichia coli by ∼51 and ∼49%, respectively, compared to GSH@SNP. Res_GSH@SNP is responsible for binding to the bacterial cell surface receptors that interrupt the cell membrane potential, leading to reactive oxygen species (ROS) generation, membrane disruption, and DNA damage and eventually resulting in antibacterial activity. Moreover, the antibiofilm activity of Res_GSH@SNP has been found to result from the interaction of the NPs with the abundant carbohydrates present on the biofilm surface. To check the practical utility of Res_GSH@SNP, these were further evaluated as an antibacterial and antibiofilm coating agent for urinary catheters and were found to be effective even after multiple washes. Res_GSH@SNP has been found to exhibit ∼80 ± 1.4% cytocompatibility toward fibroblast NIH-3T3 cells. Overall, this study is expected to pave the way for the development of biocompatible NP-based coating agents for medical devices.
Collapse
Affiliation(s)
- Mohini Verma
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176061, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Anjali Nisha
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176061, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Manik Bathla
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176061, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Amitabha Acharya
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176061, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
15
|
Cosetta CM, Niccum B, Kamkari N, Dente M, Podniesinski M, Wolfe BE. Bacterial-fungal interactions promote parallel evolution of global transcriptional regulators in a widespread Staphylococcus species. THE ISME JOURNAL 2023; 17:1504-1516. [PMID: 37524910 PMCID: PMC10432416 DOI: 10.1038/s41396-023-01462-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 06/06/2023] [Accepted: 06/15/2023] [Indexed: 08/02/2023]
Abstract
Experimental studies of microbial evolution have largely focused on monocultures of model organisms, but most microbes live in communities where interactions with other species may impact rates and modes of evolution. Using the cheese rind model microbial community, we determined how species interactions shape the evolution of the widespread food- and animal-associated bacterium Staphylococcus xylosus. We evolved S. xylosus for 450 generations alone or in co-culture with one of three microbes: the yeast Debaryomyces hansenii, the bacterium Brevibacterium aurantiacum, and the mold Penicillium solitum. We used the frequency of colony morphology mutants (pigment and colony texture phenotypes) and whole-genome sequencing of isolates to quantify phenotypic and genomic evolution. The yeast D. hansenii strongly promoted diversification of S. xylosus. By the end of the experiment, all populations co-cultured with the yeast were dominated by pigment and colony morphology mutant phenotypes. Populations of S. xylosus grown alone, with B. aurantiacum, or with P. solitum did not evolve novel phenotypic diversity. Whole-genome sequencing of individual mutant isolates across all four treatments identified numerous unique mutations in the operons for the SigB, Agr, and WalRK global regulators, but only in the D. hansenii treatment. Phenotyping and RNA-seq experiments highlighted altered pigment and biofilm production, spreading, stress tolerance, and metabolism of S. xylosus mutants. Fitness experiments revealed antagonistic pleiotropy, where beneficial mutations that evolved in the presence of the yeast had strong negative fitness effects in other biotic environments. This work demonstrates that bacterial-fungal interactions can have long-term evolutionary consequences within multispecies microbiomes by facilitating the evolution of strain diversity.
Collapse
Affiliation(s)
- Casey M Cosetta
- Department of Biology, Tufts University, Medford, MA, 02155, USA
| | - Brittany Niccum
- Department of Biology, Tufts University, Medford, MA, 02155, USA
| | - Nick Kamkari
- Department of Biology, Tufts University, Medford, MA, 02155, USA
| | - Michael Dente
- Department of Biology, Tufts University, Medford, MA, 02155, USA
| | | | - Benjamin E Wolfe
- Department of Biology, Tufts University, Medford, MA, 02155, USA.
| |
Collapse
|
16
|
Mao Y, Wang Y, Luo X, Chen X, Wang G. Impact of cell-free supernatant of lactic acid bacteria on Staphylococcus aureus biofilm and its metabolites. Front Vet Sci 2023; 10:1184989. [PMID: 37397004 PMCID: PMC10310794 DOI: 10.3389/fvets.2023.1184989] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 05/26/2023] [Indexed: 07/04/2023] Open
Abstract
Introduction A safe bio-preservative agent, lactic acid bacteria (LAB) can inhibit the growth of pathogenic bacteria and spoilage organisms. Its cell-free supernatant (LAB-CFS), which is rich in bioactive compounds, is what makes LAB antibacterial work. Methods This study focused on the changes in biofilm activity and related metabolic pathways of S. aureus treated with lactic acid bacteria planktonic CFS (LAB-pk-CFS) and biofilm state (LAB-bf-CFS). Results The findings demonstrated that the LAB-CFS treatment considerably slowed Staphylococcus aureus (S. aureus) growth and prevented it from forming biofilms. Additionally, it inhibits the physiological traits of the S. aureus biofilm, including hydrophobicity, motility, eDNA, and PIA associated to the biofilm. The metabolites of S. aureus biofilm treated with LAB-CFS were greater in the LAB-bf-CFS than they were in the LAB-pk-CFS, according to metabolomics studies. Important metabolic pathways such amino acids and carbohydrates metabolism were among the most noticeably altered metabolic pathways. Discussion These findings show that LAB-CFS has a strong potential to combat S. aureus infections.
Collapse
Affiliation(s)
- Yanni Mao
- Veterinary Pharmacology Lab, School of Animal Science and Technology, Ningxia University, Yinchuan, China
| | - Yuxia Wang
- Veterinary Pharmacology Lab, School of Animal Science and Technology, Ningxia University, Yinchuan, China
| | - Xiaofeng Luo
- Veterinary Pharmacology Lab, School of Animal Science and Technology, Ningxia University, Yinchuan, China
| | - Xiaohui Chen
- Veterinary Pharmacology Lab, School of Animal Science and Technology, Ningxia University, Yinchuan, China
| | - Guiqin Wang
- Veterinary Pharmacology Lab, School of Animal Science and Technology, Ningxia University, Yinchuan, China
| |
Collapse
|
17
|
Asp ME, Thanh MTH, Dutta S, Comstock JA, Welch RD, Patteson AE. Mechanobiology as a tool for addressing the genotype-to-phenotype problem in microbiology. BIOPHYSICS REVIEWS 2023; 4:021304. [PMID: 38504926 PMCID: PMC10903382 DOI: 10.1063/5.0142121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 04/03/2023] [Indexed: 03/21/2024]
Abstract
The central hypothesis of the genotype-phenotype relationship is that the phenotype of a developing organism (i.e., its set of observable attributes) depends on its genome and the environment. However, as we learn more about the genetics and biochemistry of living systems, our understanding does not fully extend to the complex multiscale nature of how cells move, interact, and organize; this gap in understanding is referred to as the genotype-to-phenotype problem. The physics of soft matter sets the background on which living organisms evolved, and the cell environment is a strong determinant of cell phenotype. This inevitably leads to challenges as the full function of many genes, and the diversity of cellular behaviors cannot be assessed without wide screens of environmental conditions. Cellular mechanobiology is an emerging field that provides methodologies to understand how cells integrate chemical and physical environmental stress and signals, and how they are transduced to control cell function. Biofilm forming bacteria represent an attractive model because they are fast growing, genetically malleable and can display sophisticated self-organizing developmental behaviors similar to those found in higher organisms. Here, we propose mechanobiology as a new area of study in prokaryotic systems and describe its potential for unveiling new links between an organism's genome and phenome.
Collapse
|
18
|
Xu Y, Zeng C, Wen H, Shi Q, Zhao X, Meng Q, Li X, Xiao J. Discovery of AI-2 Quorum Sensing Inhibitors Targeting the LsrK/HPr Protein-Protein Interaction Site by Molecular Dynamics Simulation, Virtual Screening, and Bioassay Evaluation. Pharmaceuticals (Basel) 2023; 16:ph16050737. [PMID: 37242520 DOI: 10.3390/ph16050737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/04/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Quorum sensing (QS) is a cell-to-cell communication mechanism that regulates bacterial pathogenicity, biofilm formation, and antibiotic sensitivity. Among the identified quorum sensing, AI-2 QS exists in both Gram-negative and Gram-positive bacteria and is responsible for interspecies communication. Recent studies have highlighted the connection between the phosphotransferase system (PTS) and AI-2 QS, with this link being associated with protein-protein interaction (PPI) between HPr and LsrK. Here, we first discovered several AI-2 QSIs targeting the LsrK/HPr PPI site through molecular dynamics (MD) simulation, virtual screening, and bioassay evaluation. Of the 62 compounds purchased, eight compounds demonstrated significant inhibition in LsrK-based assays and AI-2 QS interference assays. Surface plasmon resonance (SPR) analysis confirmed that the hit compound 4171-0375 specifically bound to the LsrK-N protein (HPr binding domain, KD = 2.51 × 10-5 M), and therefore the LsrK/HPr PPI site. The structure-activity relationships (SARs) emphasized the importance of hydrophobic interactions with the hydrophobic pocket and hydrogen bonds or salt bridges with key residues of LsrK for LsrK/HPr PPI inhibitors. These new AI-2 QSIs, especially 4171-0375, exhibited novel structures, significant LsrK inhibition, and were suitable for structural modification to search for more effective AI-2 QSIs.
Collapse
Affiliation(s)
- Yijie Xu
- National Engineering Research Center for Strategic Drugs, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Chunlan Zeng
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Huiqi Wen
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Qianqian Shi
- National Engineering Research Center for Strategic Drugs, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Xu Zhao
- Department of Hepatology, Fifth Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| | - Qingbin Meng
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Xingzhou Li
- National Engineering Research Center for Strategic Drugs, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Junhai Xiao
- National Engineering Research Center for Strategic Drugs, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| |
Collapse
|
19
|
Kamer AMA, Abdelaziz AA, Al-Monofy KB, Al-Madboly LA. Antibacterial, antibiofilm, and anti-quorum sensing activities of pyocyanin against methicillin-resistant Staphylococcus aureus: in vitro and in vivo study. BMC Microbiol 2023; 23:116. [PMID: 37095436 PMCID: PMC10124065 DOI: 10.1186/s12866-023-02861-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 04/13/2023] [Indexed: 04/26/2023] Open
Abstract
BACKGROUND Methicillin-resistant Staphylococcus aureus (MRSA) infections are considered a major public health problem, as the treatment options are restricted. Biofilm formation and the quorum sensing (QS) system play a pivotal role in S. aureus pathogenicity. Hence, this study was performed to explore the antibacterial effect of pyocyanin (PCN) on MRSA as well as its effect on MRSA biofilm and QS. RESULTS Data revealed that PCN exhibited strong antibacterial activity against all test MRSA isolates (n = 30) with a MIC value equal to 8 µg/ml. About 88% of MRSA biofilms were eradicated by PCN treatment using the crystal violet assay. The disruption of MRSA biofilm was confirmed using confocal laser scanning microscopy, which showed a reduction in bacterial viability (approximately equal to 82%) and biofilm thickness (approximately equal to 60%). Additionally, the disruption of the formation of microcolonies and the disturbance of the connection between bacterial cells in the MRSA biofilm after PCN treatment were examined by scanning electron microscopy. The 1/2 and 1/4 MICs of PCN exerted promising anti-QS activity without affecting bacterial viability; Agr QS-dependent virulence factors (hemolysin, protease, and motility), and the expression of agrA gene, decreased after PCN treatment. The in silico analysis confirmed the binding of PCN to the AgrA protein active site, which blocked its action. The in vivo study using the rat wound infection model confirmed the ability of PCN to modulate the biofilm and QS of MRSA isolates. CONCLUSION The extracted PCN seems to be a good candidate for treating MRSA infection through biofilm eradication and Agr QS inhibition.
Collapse
Affiliation(s)
- Amal M Abo Kamer
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Ahmed A Abdelaziz
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Khaled B Al-Monofy
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Tanta University, Tanta, Egypt.
| | - Lamiaa A Al-Madboly
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| |
Collapse
|
20
|
Mo S, Tang K, Liao Q, Xie L, Wu Y, Wang G, Ruan Q, Gao A, Lv Y, Cai K, Tong L, Wu Z, Chu PK, Wang H. Tuning the arrangement of lamellar nanostructures: achieving the dual function of physically killing bacteria and promoting osteogenesis. MATERIALS HORIZONS 2023; 10:881-888. [PMID: 36537031 DOI: 10.1039/d2mh01147f] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Bacteria killing behavior based on physical effects is preferred for biomedical implants because of the negligible associated side effects. However, our current understanding of the antibacterial activity of nanostructures remains limited and, in practice, nanoarchitectures that are created on orthopedics should also promote osteogenesis simultaneously. In this study, tilted and vertical nanolamellar structures are fabricated on semi-crystalline polyether-ether-ketone (PEEK) via argon plasma treatment with or without pre-annealing. The two types of nanolamellae can physically kill the bacteria that come into contact with them, but the antibacterial mechanisms between the two are different. Specifically, the sharp edges of the vertically aligned nanolamellae can penetrate and damage the bacterial membrane, whereas bacteria are stuck on the tilted nanostructures and are stretched, leading to eventual destruction. The tilted nanolamellae are more desirable than the vertically aligned ones from the perspective of peri-implant bone regeneration. Our study not only reveals the role of the arrangement of nanostructures in orthopedic applications but also provides new information about different mechanisms of physical antibacterial activity.
Collapse
Affiliation(s)
- Shi Mo
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
- Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avene, Kowloon, Hong Kong, China
| | - Kaiwei Tang
- Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avene, Kowloon, Hong Kong, China
- School of Materials Science and Engineering, Xiangtan University, Xiangtan, China
| | - Qing Liao
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| | - Lingxia Xie
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| | - Yuzheng Wu
- Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avene, Kowloon, Hong Kong, China
| | - Guomin Wang
- Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avene, Kowloon, Hong Kong, China
| | - Qingdong Ruan
- Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avene, Kowloon, Hong Kong, China
| | - Ang Gao
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| | - Yuanliang Lv
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
- School of Advanced Manufacturing, Fuzhou University, Fuzhou, China
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Liping Tong
- Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avene, Kowloon, Hong Kong, China
| | - Zhengwei Wu
- Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avene, Kowloon, Hong Kong, China
- School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, China.
| | - Paul K Chu
- Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avene, Kowloon, Hong Kong, China
| | - Huaiyu Wang
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| |
Collapse
|
21
|
Katsarou EI, Petinaki E, Fthenakis GC. Associations of Ambient Environmental Conditions with Growth and Dissemination of Staphylococcus epidermidis on the Surface of Teatcups from Sheep Milking Parlours. Bioengineering (Basel) 2023; 10:bioengineering10010081. [PMID: 36671653 PMCID: PMC9855130 DOI: 10.3390/bioengineering10010081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/28/2022] [Accepted: 01/06/2023] [Indexed: 01/11/2023] Open
Abstract
The growth of two isolates of Staphylococcus epidermidis (one that was forming biofilm and one that was not) on new or used teatcups made of silicone for use in milking parlours for sheep, was assessed for 24 h after the application by smearing on the surface of the teatcup. Staphylococci were applied by smearing on an area of 0.0003142 (3.142 × 10−4) m2 on material obtained from the teatcups and their growth and expansion further on were monitored for 24 h at varying ambient conditions: temperature 21 °C or 31 °C and humidity 60% or 80%. No differences were evident between the two isolates in the frequency of recoveries in any of the conditions tested (p > 0.75 for all comparisons). Recovery rates were higher in humidity 80% compared to humidity 60%: 1678/2016 (83.2%) versus 1282/2016 (63.6%) (p < 0.0001), and in temperature 31 °C compared to temperature 21 °C: 1525/2016 (75.6%) versus 1435/2016 (71.2%) (p = 0.001). Recovery rates were also higher from new teatcups compared to used ones only in humidity 60%: 744/1008 (73.8%) versus 538/1008 (53.4%) (p < 0.0001). Humidity 80% was associated with higher speed of linear dissemination of the isolates on teatcup surface compared to humidity 60%: 0.000000640 (6.40 × 10−7) m s−1 versus 0.000000322 (3.22 × 10−7) m s−1 (+98.8%) (p < 0.0001); no such association was seen with higher temperature: 0.000000509 (5.09 × 10−7) m s−1 versus 0.000000453 (4.53 × 10−7) m s−1 for temperature 31 °C and 21 °C (+12.4%) (p = 0.29). As part of precision livestock farming, differing approaches can be instituted in accord with varying climatic conditions in different farms, as well as within the same farm with the change of seasons.
Collapse
Affiliation(s)
| | | | - George C. Fthenakis
- Veterinary Faculty, University of Thessaly, 43100 Karditsa, Greece
- Correspondence:
| |
Collapse
|
22
|
Liu CC, Lin MH. Hitchhiking motility of Staphylococcus aureus involves the interaction between its wall teichoic acids and lipopolysaccharide of Pseudomonas aeruginosa. Front Microbiol 2023; 13:1068251. [PMID: 36687638 PMCID: PMC9849799 DOI: 10.3389/fmicb.2022.1068251] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/13/2022] [Indexed: 01/07/2023] Open
Abstract
Staphylococcus aureus, which lacks pili and flagella, is nonmotile. However, it hitchhikes motile bacteria, such as Pseudomonas aeruginosa, to migrate in the environment. This study demonstrated that the hitchhiking motility of S. aureus SA113 was reduced after the tagO, which encodes an enzyme for wall teichoic acids (WTA) synthesis, was deleted. The hitchhiking motility was restored after the mutation was complemented by transforming a plasmid expressing TagO into the mutant. We also showed that adding purified lipopolysaccharide (LPS) to a culture that contains S. aureus SA113 and P. aeruginosa PAO1, reduced the movement of S. aureus, showing that WTA and LPS are involved in the hitchhiking motility of S. aureus. This study also found that P. aeruginosa promoted the movement of S. aureus in the digestive tract of Caenorhabditis elegans and in mice. In conclusion, this study reveals how S. aureus hitchhikes P. aeruginosa for translocation in an ecosystem. The results from this study improve our understanding on how a nonmotile pathogen moves in the environment and spreads in animals.
Collapse
Affiliation(s)
- Chao-Chin Liu
- 1Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan
| | - Mei-Hui Lin
- 1Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan,2Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan,3Department of Laboratory Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan,*Correspondence: Mei-Hui Lin, ✉
| |
Collapse
|
23
|
Dubay MM, Acres J, Riekeles M, Nadeau JL. Recent advances in experimental design and data analysis to characterize prokaryotic motility. J Microbiol Methods 2023; 204:106658. [PMID: 36529156 DOI: 10.1016/j.mimet.2022.106658] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/13/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
Bacterial motility plays a key role in important cell processes such as chemotaxis and biofilm formation, but is challenging to quantify due to the small size of the individual microorganisms and the complex interplay of biological and physical factors that influence motility phenotypes. Swimming, the first type of motility described in bacteria, still remains largely unquantified. Light microscopy has enabled qualitative characterization of swimming patterns seen in different strains, such as run and tumble, run-reverse-flick, run and slow, stop and coil, and push and pull, which has allowed for elucidation of the underlying physics. However, quantifying these behaviors (e.g., identifying run distances and speeds, turn angles and behavior by surfaces or cell-cell interactions) remains a challenging task. A qualitative and quantitative understanding of bacterial motility is needed to bridge the gap between experimentation, omics analysis, and bacterial motility theory. In this review, we discuss the strengths and limitations of how phase contrast microscopy, fluorescence microscopy, and digital holographic microscopy have been used to quantify bacterial motility. Approaches to automated software analysis, including cell recognition, tracking, and track analysis, are also discussed with a view to providing a guide for experimenters to setting up the appropriate imaging and analysis system for their needs.
Collapse
Affiliation(s)
- Megan Marie Dubay
- Department of Physics, Portland State University, 1719 SW 10(th) Ave., Portland, OR 97201, United States of America
| | - Jacqueline Acres
- Department of Physics, Portland State University, 1719 SW 10(th) Ave., Portland, OR 97201, United States of America
| | - Max Riekeles
- Astrobiology Group, Center of Astronomy and Astrophysics, Technical University Berlin, Hardenbergstraße 36A, 10623 Berlin, Germany
| | - Jay L Nadeau
- Department of Physics, Portland State University, 1719 SW 10(th) Ave., Portland, OR 97201, United States of America.
| |
Collapse
|
24
|
Study of SarA by DNA Affinity Capture Assay (DACA) Employing Three Promoters of Key Virulence and Resistance Genes in Methicillin-Resistant Staphylococcus aureus. Antibiotics (Basel) 2022; 11:antibiotics11121714. [PMID: 36551372 PMCID: PMC9774152 DOI: 10.3390/antibiotics11121714] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/21/2022] [Accepted: 11/25/2022] [Indexed: 11/29/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA), one of the most well-known human pathogens, houses many virulence factors and regulatory proteins that confer resistance to diverse antibiotics. Although they have been investigated intensively, the correlations among virulence factors, regulatory proteins and antibiotic resistance are still elusive. We aimed to identify the most significant global MRSA regulator by concurrently analyzing protein-binding and several promoters under same conditions and at the same time point. DNA affinity capture assay (DACA) was performed with the promoters of mecA, sarA, and sarR, all of which significantly impact survival of MRSA. Here, we show that SarA protein binds to all three promoters. Consistent with the previous reports, ΔsarA mutant exhibited weakened antibiotic resistance to oxacillin and reduced biofilm formation. Additionally, production and activity of many virulence factors such as phenol-soluble modulins (PSM), α-hemolysin, motility, staphyloxanthin, and other related proteins were decreased. Comparing the sequence of SarA with that of clinical strains of various lineages showed that all sequences were highly conserved, in contrast to that observed for AgrA, another major regulator of virulence and resistance in MRSA. We have demonstrated that SarA regulates antibiotic resistance and the expression of various virulence factors. Our results warrant that SarA could be a leading target for developing therapeutic agents against MRSA infections.
Collapse
|
25
|
Stachurová T, Rybková Z, Škrlová K, Malachová K, Havlíček M, Plachá D. Biocompatibility and biocidal effects of modified polylactide composites. Front Microbiol 2022; 13:1031783. [PMID: 36504788 PMCID: PMC9731850 DOI: 10.3389/fmicb.2022.1031783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/07/2022] [Indexed: 11/25/2022] Open
Abstract
Polylactide (PLA) materials treated with antimicrobial fillers represent a suitable alternative to the production of medical devices. Their advantage is that they can prevent the growth of microorganisms and the formation of microbial biofilms on the surface and around composites. The work is focused on the evaluation of biocompatibility and biocide effect of PLA composite films filled with vermiculite and graphene oxide modified with silver (Ag+ and Ag nanoparticles), hexadecylpyridinium (HDP) and hexadecyltrimethylammonium (HDTMA) cations and their degradation leachates monitored at 1-3-6-month intervals. The antimicrobial effect of the leachates was detected by microdilution methods on gram-negative (Escherichia coli, Pseudomonas aeruginosa, Proteus mirabilis), gram-positive (Staphylococcus aureus, Streptococcus salivarius) bacteria and yeast (Candida albicans). The biocidal effect of composites on biofilm formation on the surface of composites was monitored by Christensen method and autoaggregation and motility tests. The biocompatibility of the composite and the leachates was assessed by 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide (MTT) cytotoxicity assay. The evaluation of the antimicrobial effect of the leachates demonstrated that leachates of PLA composite filled with graphene oxide and Ag+ showed a stronger antimicrobial effect than leachates of PLA composite filled with vermiculite and Ag+ and Ag nanoparticles. The leachates of PLA composites containing vermiculite with HDP and HDTMA cations had a higher antimicrobial effect on G+ bacteria and yeast than G- bacteria. Bacterial growth, biofilm formation, autoaggregation and motility of the tested bacteria were most inhibited by the composite with vermiculite and Ag+ and Ag nanoparticles. Even after a 6-month degradation of this composite, bacterial growth and biofilm formation continued to be strongly inhibited up to 42 and 91%, respectively. The cytotoxic effect was proved only in the leachate of the composite with vermiculite containing HDP after 6 months of its degradation. Tests evaluating the biocompatibility of materials have shown that the vermiculite is the most preferred carrier and can be used in the future to bind other compounds. The study confirmed that PLA composite filled with vermiculite and Ag+ and Ag nanoparticles was the most stable and effective composite with the best biocompatible and biocidal properties.
Collapse
Affiliation(s)
- Tereza Stachurová
- Department of Biology and Ecology, University of Ostrava, Ostrava, Czechia,*Correspondence: Tereza Stachurová,
| | - Zuzana Rybková
- Department of Biology and Ecology, University of Ostrava, Ostrava, Czechia
| | - Kateřina Škrlová
- Nanotechnology Centre, VSB–Technical University of Ostrava, Ostrava, Czechia,Center of Advanced Innovation Technologies, VSB–Technical University of Ostrava, Ostrava-Poruba, Czechia
| | - Kateřina Malachová
- Department of Biology and Ecology, University of Ostrava, Ostrava, Czechia,Kateřina Malachová,
| | | | - Daniela Plachá
- Nanotechnology Centre, VSB–Technical University of Ostrava, Ostrava, Czechia,Energy Units for Utilization of Non-Traditional Energy Source (ENET) Centre, Center for Energy and Environmental Technologies (CEET), VSB–Technical University of Ostrava, Ostrava, Czechia
| |
Collapse
|
26
|
Diep TT, Needs SH, Bizley S, Edwards AD. Rapid Bacterial Motility Monitoring Using Inexpensive 3D-Printed OpenFlexure Microscopy Allows Microfluidic Antibiotic Susceptibility Testing. MICROMACHINES 2022; 13:mi13111974. [PMID: 36422401 PMCID: PMC9699482 DOI: 10.3390/mi13111974] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/10/2022] [Accepted: 11/12/2022] [Indexed: 05/30/2023]
Abstract
Antibiotic susceptibility testing is vital to tackle the emergence and spread of antimicrobial resistance. Inexpensive digital CMOS cameras can be converted into portable digital microscopes using 3D printed x-y-z stages. Microscopic examination of bacterial motility can rapidly detect the response of microbes to antibiotics to determine susceptibility. Here, we present a new simple microdevice-miniature microscope cell measurement system for multiplexed antibiotic susceptibility testing. The microdevice is made using melt-extruded plastic film strips containing ten parallel 0.2 mm diameter microcapillaries. Two different antibiotics, ceftazidime and gentamicin, were prepared in Mueller-Hinton agar (0.4%) to produce an antibiotic-loaded microdevice for simple sample addition. This combination was selected to closely match current standard methods for both antibiotic susceptibility testing and motility testing. Use of low agar concentration permits observation of motile bacteria responding to antibiotic exposure as they enter capillaries. This device fits onto the OpenFlexure 3D-printed digital microscope using a Raspberry Pi computer and v2 camera, avoiding need for expensive laboratory microscopes. This inexpensive and portable digital microscope platform had sufficient magnification to detect motile bacteria, yet wide enough field of view to monitor bacteria behavior as they entered antibiotic-loaded microcapillaries. The image quality was sufficient to detect how bacterial motility was inhibited by different concentrations of antibiotic. We conclude that a 3D-printed Raspberry Pi-based microscope combined with disposable microfluidic test strips permit rapid, easy-to-use bacterial motility detection, with potential for aiding detection of antibiotic resistance.
Collapse
Affiliation(s)
- Tai The Diep
- Reading School of Pharmacy, University of Reading, Reading RG6 6AD, UK
| | - Sarah Helen Needs
- Reading School of Pharmacy, University of Reading, Reading RG6 6AD, UK
| | - Samuel Bizley
- Reading School of Pharmacy, University of Reading, Reading RG6 6AD, UK
| | - Alexander D. Edwards
- Reading School of Pharmacy, University of Reading, Reading RG6 6AD, UK
- Capillary Film Technology Ltd., Billingshurst RH14 9TF, UK
| |
Collapse
|
27
|
Huang W, Le S, Sun Y, Lin DJ, Yao M, Shi Y, Yan J. Mechanical Stabilization of a Bacterial Adhesion Complex. J Am Chem Soc 2022; 144:16808-16818. [PMID: 36070862 PMCID: PMC9501914 DOI: 10.1021/jacs.2c03961] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The adhesions between Gram-positive bacteria and their
hosts are
exposed to varying magnitudes of tensile forces. Here, using an ultrastable
magnetic tweezer-based single-molecule approach, we show the catch-bond
kinetics of the prototypical adhesion complex of SD-repeat protein
G (SdrG) to a peptide from fibrinogen β (Fgβ) over a physiologically
important force range from piconewton (pN) to tens of pN, which was
not technologically accessible to previous studies. At 37 °C,
the lifetime of the complex exponentially increases from seconds at
several pN to ∼1000 s as the force reaches 30 pN, leading to
mechanical stabilization of the adhesion. The dissociation transition
pathway is determined as the unbinding of a critical β-strand
peptide (“latch” strand of SdrG that secures the entire
adhesion complex) away from its binding cleft, leading to the dissociation
of the Fgβ ligand. Similar mechanical stabilization behavior
is also observed in several homologous adhesions, suggesting the generality
of catch-bond kinetics in such bacterial adhesions. We reason that
such mechanical stabilization confers multiple advantages in the pathogenesis
and adaptation of bacteria.
Collapse
Affiliation(s)
- Wenmao Huang
- Department of Physics, National University of Singapore, Singapore 117542.,Mechanobiology Institute, National University of Singapore, Singapore 117411
| | - Shimin Le
- Department of Physics, National University of Singapore, Singapore 117542.,Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Lab for Soft Functional Materials Research, Department of Physics, Xiamen University, Xiamen 361005, China
| | - Yuze Sun
- Mechanobiology Institute, National University of Singapore, Singapore 117411
| | - Dennis Jingxiong Lin
- Department of Physics, National University of Singapore, Singapore 117542.,Mechanobiology Institute, National University of Singapore, Singapore 117411
| | - Mingxi Yao
- Mechanobiology Institute, National University of Singapore, Singapore 117411.,Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yi Shi
- Institute of Materials Research and Engineering, A*STAR, 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634
| | - Jie Yan
- Department of Physics, National University of Singapore, Singapore 117542.,Mechanobiology Institute, National University of Singapore, Singapore 117411.,Centre for Bioimaging Sciences, National University of Singapore, Singapore 117546
| |
Collapse
|
28
|
Brooks JP, Lupfer C, Yang W, Hao W, Kapiamba KF. The Effect of Hypochlorous Acid on the Filtration Performance and Bacterial Decontamination of N95 Filtering Facemask Respirators. Am J Infect Control 2022; 51:396-400. [PMID: 35870660 DOI: 10.1016/j.ajic.2022.07.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/30/2022] [Accepted: 07/01/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Stabilized Hypochlorous acid (HOCl) is increasingly used as a hospital disinfectant and antiseptic, yet its effect on N95 filtration facemask respirators (FFR) is unknown. These FFRs could also contribute to fomite-based transmission of nosocomial infections if worn for extended use between patient rooms. METHODS Filtration performance of N95 FFR fabric swatches was assessed after various levels of HOCl exposure. N95 swatches were then contaminated with 108 E. coli or 108 Staph aureus and treated with HOCl solution, 70% ethyl alcohol, or normal saline. Surviving bacterial numbers were assessed by plate counts. RESULTS The size-dependent filtration efficiency of HOCl-sprayed N95 FFR fabric ranged from 96 to 100%, showing no significant change. Flow resistance testing revealed almost no change compared to control. Submersion in HOCl, but not spraying, had an excellent bactericidal effect on contaminated swatches. DISCUSSION The role of the outer hydrophobic layer of N95 FFRs is discussed regarding the effects of HOCl on filtration and bacterial decontamination. CONCLUSION N95 material, sprayed with or briefly submerged in HOCl, maintained its filtration function. HOCl delivery by spray pump, however, would not accomplish decontamination of extended use FFRs between patient encounters. HOCl submersion of intact FFRs, contaminated with various hospital pathogens, is worth further study.
Collapse
Affiliation(s)
- J Patrick Brooks
- Department of Biomedical Science and School of Anesthesia, Missouri State University.
| | | | - Wang Yang
- Department of Civil, Architectural, and Environmental Engineering, Missouri University of Science and Technology; Department of Chemical, Environmental and Materials Engineering, University of Miami
| | - Weixing Hao
- Department of Civil, Architectural, and Environmental Engineering, Missouri University of Science and Technology
| | - Kashala Fabrice Kapiamba
- Department of Civil, Architectural, and Environmental Engineering, Missouri University of Science and Technology
| |
Collapse
|
29
|
Kim BC, Kim H, Lee HS, Kim SH, Cho DH, Jung HJ, Bhatia SK, Yune PS, Joo HS, Kim JS, Kim W, Yang YH. 4-Chloro-2-Isopropyl-5-Methylphenol Exhibits Antimicrobial and Adjuvant Activity against Methicillin-Resistant Staphylococcus aureus. J Microbiol Biotechnol 2022; 32:730-739. [PMID: 35586930 PMCID: PMC9628901 DOI: 10.4014/jmb.2203.03054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/30/2022] [Accepted: 05/02/2022] [Indexed: 12/15/2022]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) causes severe infections and poses a global healthcare challenge. The utilization of novel molecules which confer synergistical effects to existing MRSA-directed antibiotics is one of the well-accepted strategies in lieu of de novo development of new antibiotics. Thymol is a key component of the essential oil of plants in the Thymus and Origanum genera. Despite the absence of antimicrobial potency, thymol is known to inhibit MRSA biofilm formation. However, the anti-MRSA activity of thymol analogs is not well characterized. Here, we assessed the antimicrobial activity of several thymol derivatives and found that 4-chloro-2-isopropyl-5-methylphenol (chlorothymol) has antimicrobial activity against MRSA and in addition it also prevents biofilm formation. Chlorothymol inhibited staphyloxanthin production, slowed MRSA motility, and altered bacterial cell density and size. This compound also showed a synergistic antimicrobial activity with oxacillin against highly resistant S. aureus clinical isolates and biofilms associated with these isolates. Our results demonstrate that chlorinated thymol derivatives should be considered as a new lead compound in anti-MRSA therapeutics.
Collapse
Affiliation(s)
- Byung Chan Kim
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Hyerim Kim
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Hye Soo Lee
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Su Hyun Kim
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Do-Hyun Cho
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Hee Ju Jung
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Philip S. Yune
- Division of Infectious Diseases, Department of Medicine, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Hwang-Soo Joo
- Department of Biotechnology, College of Engineering, Duksung Women’s University, Seoul 01369, Republic of Korea
| | - Jae-Seok Kim
- Department of Laboratory Medicine, Kangdong Sacred Heart Hospital, Hallym University College of Medicine, Seoul 07226, Republic of Korea
| | - Wooseong Kim
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea,
W. Kim Phone: +82-2-3277-3372 Fax: +82-2-3277-4527 E-mail:
| | - Yung-Hun Yang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea,Corresponding authors Y.-H. Yang Phone: +82-2-3277-3372 Fax: +82-2-3437-8360 E-mail:
| |
Collapse
|
30
|
Jothipandiyan S, Suresh D, Sekaran S, Sudharsan M, Subramanian R, Paramasivam N. Transition metal complex laminated bioactive implant alleviates Methicillin Resistant Staphylococcus aureus virulence. BIOMATERIALS ADVANCES 2022; 137:212813. [PMID: 35929252 DOI: 10.1016/j.bioadv.2022.212813] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/30/2022] [Accepted: 04/15/2022] [Indexed: 06/15/2023]
Abstract
Orthopedic implant infections cause a serious threat after implantation. The major source of implant infection is biofilms which are highly tolerant to antibiotics due to the presence of rigid biofilm matrix. Hence to overcome biofilm mediated implant infections, we developed a novel antibiofilm agent, palladium (II) thiazolinyl picolinamide complex (Pd(II)-E). From our study, it was found that Pd(II)-E have profound biofilm inhibition activity and also reduced various virulence factors of Methicillin resistant Staphylococcus aureus (MRSA) including slime synthesis, Phenol soluble modulin (PSM) mediated spreading, Exopolysaccharides production and staphyloxanthin synthesis. Further, Pd(II)-E was coated over the titanium plates which was confirmed using EDX (Energy Dispersive X-Ray) analysis. The Pd(II)-E coated plates were able to prevent the biofilm formation on them which was evident under a Scanning electron microscope (SEM) and several virulent genes were found to be downregulated in the biofilms on the coated titanium plates which confirmed by qPCR. From our findings, it was found that Pd(II)-E coated titanium implants would be an effective alternate approach for preventing biofilm mediated implant infections.
Collapse
Affiliation(s)
- Sowndarya Jothipandiyan
- Biofilm Biology Laboratory, Centre for Research on Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur 613 401, Tamil Nadu, India
| | - Devarajan Suresh
- Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613 401, Tamil Nadu, India
| | - Saravanan Sekaran
- Department of Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute for Medical and Technical Sciences, Chennai 600077, Tamil Nadu, India
| | - Murugesan Sudharsan
- Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613 401, Tamil Nadu, India
| | - Raghunandhakumar Subramanian
- Department of Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute for Medical and Technical Sciences, Chennai 600077, Tamil Nadu, India
| | - Nithyanand Paramasivam
- Biofilm Biology Laboratory, Centre for Research on Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur 613 401, Tamil Nadu, India.
| |
Collapse
|
31
|
Ultrafast and Multiplexed Bacteriophage Susceptibility Testing by Surface Plasmon Resonance and Phase Imaging of Immobilized Phage Microarrays. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10050192] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In the context of bacteriophage (phage) therapy, there is an urgent need for a method permitting multiplexed, parallel phage susceptibility testing (PST) prior to the formulation of personalized phage cocktails for administration to patients suffering from antimicrobial-resistant bacterial infections. Methods based on surface plasmon resonance imaging (SPRi) and phase imaging were demonstrated as candidates for very rapid (<2 h) PST in the broth phase. Biosensing layers composed of arrays of phages 44AHJD, P68, and gh-1 were covalently immobilized on the surface of an SPRi prism and exposed to liquid culture of either Pseudomonas putida or methicillin-resistant Staphylococcus aureus (i.e., either the phages’ host or non-host bacteria). Monitoring of reflectivity reveals susceptibility of the challenge bacteria to the immobilized phage strains. Investigation of phase imaging of lytic replication of gh-1 demonstrates PST at the single-cell scale, without requiring phage immobilization. SPRi sensorgrams show that on-target regions increase in reflectivity more slowly, stabilizing later and to a lower level compared to off-target regions. Phage susceptibility can be revealed in as little as 30 min in both the SPRi and phase imaging methods.
Collapse
|
32
|
Investigating the microbial and metalloprotease sequestration properties of superabsorbent wound dressings. Sci Rep 2022; 12:4747. [PMID: 35306513 PMCID: PMC8934342 DOI: 10.1038/s41598-022-08361-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 02/21/2022] [Indexed: 11/08/2022] Open
Abstract
AbstractExudate production is a natural part of the wound healing process, however levels of exudate need to be appropriately managed to maintain a moist wound environment which supports healing. An overly-exuding wound creates an environment favourable to bacterial growth. In recent years, a significant increase in commercially available superabsorbent dressings have become available which claim to absorb and retain excess exudate and its components. However, the effectiveness of these dressings in sequestering and retaining bacteria and host-derived proteins has not been compared. We have therefore investigated several superabsorbent dressings for their ability to absorb and retain bacteria (Staphylococcus aureus and Pseudomonas aeruginosa), their impact on bacterial viability, and their ability to sequester matrix metalloproteinases (MMP)-2 and 9 over 7 days. Whilst all dressings could sequester bacteria, some dressings internalised bacteria more effectively. There was considerable variation in bacterial viability within the dressings’ core, as well as differences in bacterial retention. Some dressings effectively internalised and retained bacteria over time, whereas other dressings retained significantly less. These differences were reflected visually using scanning electron microscopy. Most dressings fully sequestered MMP-2 and 9. These data illustrate differences in the ability of superabsorbent dressings to absorb and retain exudate and its components.
Collapse
|
33
|
Palma V, Gutiérrez MS, Vargas O, Parthasarathy R, Navarrete P. Methods to Evaluate Bacterial Motility and Its Role in Bacterial–Host Interactions. Microorganisms 2022; 10:microorganisms10030563. [PMID: 35336138 PMCID: PMC8953368 DOI: 10.3390/microorganisms10030563] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/02/2022] [Accepted: 02/06/2022] [Indexed: 11/16/2022] Open
Abstract
Bacterial motility is a widespread characteristic that can provide several advantages for the cell, allowing it to move towards more favorable conditions and enabling host-associated processes such as colonization. There are different bacterial motility types, and their expression is highly regulated by the environmental conditions. Because of this, methods for studying motility under realistic experimental conditions are required. A wide variety of approaches have been developed to study bacterial motility. Here, we present the most common techniques and recent advances and discuss their strengths as well as their limitations. We classify them as macroscopic or microscopic and highlight the advantages of three-dimensional imaging in microscopic approaches. Lastly, we discuss methods suited for studying motility in bacterial–host interactions, including the use of the zebrafish model.
Collapse
Affiliation(s)
- Victoria Palma
- Laboratory of Microbiology and Probiotics, Institute of Nutrition and Food Technology (INTA), University of Chile, El Líbano 5524, Santiago 7830490, Chile; (V.P.); (M.S.G.); (O.V.)
| | - María Soledad Gutiérrez
- Laboratory of Microbiology and Probiotics, Institute of Nutrition and Food Technology (INTA), University of Chile, El Líbano 5524, Santiago 7830490, Chile; (V.P.); (M.S.G.); (O.V.)
- Millennium Science Initiative Program, Milenium Nucleus in the Biology of the Intestinal Microbiota, National Agency for Research and Development (ANID), Moneda 1375, Santiago 8200000, Chile
| | - Orlando Vargas
- Laboratory of Microbiology and Probiotics, Institute of Nutrition and Food Technology (INTA), University of Chile, El Líbano 5524, Santiago 7830490, Chile; (V.P.); (M.S.G.); (O.V.)
| | - Raghuveer Parthasarathy
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA;
- Department of Physics and Materials Science Institute, University of Oregon, Eugene, OR 97403, USA
| | - Paola Navarrete
- Laboratory of Microbiology and Probiotics, Institute of Nutrition and Food Technology (INTA), University of Chile, El Líbano 5524, Santiago 7830490, Chile; (V.P.); (M.S.G.); (O.V.)
- Millennium Science Initiative Program, Milenium Nucleus in the Biology of the Intestinal Microbiota, National Agency for Research and Development (ANID), Moneda 1375, Santiago 8200000, Chile
- Correspondence:
| |
Collapse
|
34
|
Jacob KM, Reguera G. Competitive advantage of oral streptococci for colonization of the middle ear mucosa. Biofilm 2022; 4:100067. [PMID: 35146417 PMCID: PMC8818537 DOI: 10.1016/j.bioflm.2022.100067] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 12/17/2021] [Accepted: 01/10/2022] [Indexed: 10/29/2022] Open
|
35
|
Das S, Paul P, Chatterjee S, Chakraborty P, Sarker RK, Das A, Maiti D, Tribedi P. Piperine exhibits promising antibiofilm activity against Staphylococcus aureus by accumulating reactive oxygen species (ROS). Arch Microbiol 2021; 204:59. [DOI: 10.1007/s00203-021-02642-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 10/23/2021] [Accepted: 11/04/2021] [Indexed: 11/28/2022]
|
36
|
Kim G, Xu YJ, Farha AK, Sui ZQ, Corke H. Bactericidal and antibiofilm properties of Rumex japonicus Houtt. on multidrug-resistant Staphylococcus aureus isolated from milk. J Dairy Sci 2021; 105:2011-2024. [PMID: 34955261 DOI: 10.3168/jds.2021-21221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/12/2021] [Indexed: 01/15/2023]
Abstract
Multidrug-resistant (MDR) Staphylococcus aureus and its biofilm formation have been challenging to control in milk and dairy industries. Biofilms formed by Staph. aureus may result in the failure of antibacterial agents and disinfectants to penetrate the biofilm in an attempt to control contamination. Novel natural antibacterial agents are required to combat MDR bacteria and biofilms. In this study, we evaluated the bactericidal, antibiofilm, and antimotility effects of Rumex japonicus Houtt. (RJH) extract on MDR Staph. aureus isolated from milk. The RJH extract exhibited good antibacterial activity against MDR strains with minimum inhibitory concentrations (MIC) ranging from 0.78 to 6.25 mg/mL and minimum bactericidal concentrations ranging from 3.125 to 12.5 mg/mL. The extract showed strong inhibition of biofilm formation (81.9%) at sub-MIC value and eradication of biofilm at higher concentrations. The motility of Staph. aureus was effectively blocked by the extract. Major compounds emodin, chrysophanol, and physcion were identified in RJH extract using HPLC-linear trap quadrupole (LTQ)/Orbitrap-mass spectrometry. The extract was nontoxic to human epithelial cell lines such as Caco-2 and HT-29 cell lines at concentrations ranging from 0.1 to 0.5 mg/mL, and from 0.1 to 0.75 mg/mL, respectively. These findings suggest that RJH extract could be an alternative to synthetic preservatives in milk and dairy products.
Collapse
Affiliation(s)
- G Kim
- Department of Food Science and Technology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Y J Xu
- Department of Food Science and Technology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - A K Farha
- Department of Food Science and Technology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Z Q Sui
- Department of Food Science and Technology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - H Corke
- Biotechnology and Food Engineering Program, Guangdong Technion-Israel Institute of Technology, Shantou 515063, China; Faculty of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel.
| |
Collapse
|
37
|
Lee HS, Song HS, Lee HJ, Kim SH, Suh MJ, Cho JY, Ham S, Kim YG, Joo HS, Kim W, Lee SH, Yoo D, Bhatia SK, Yang YH. Comparative Study of the Difference in Behavior of the Accessory Gene Regulator (Agr) in USA300 and USA400 Community-Associated Methicillin-Resistant Staphylococcus aureus (CA-MRSA). J Microbiol Biotechnol 2021; 31:1060-1068. [PMID: 34226408 PMCID: PMC9705881 DOI: 10.4014/jmb.2104.04032] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/07/2021] [Accepted: 06/09/2021] [Indexed: 12/15/2022]
Abstract
Community-associated Methicillin-Resistant Staphylococcus aureus (CA-MRSA) is notorious as a leading cause of soft tissue infections. Despite several studies on the Agr regulator, the mechanisms of action of Agr on the virulence factors in different strains are still unknown. To reveal the role of Agr in different CA-MRSA, we investigated the LACΔagr mutant and the MW2Δagr mutant by comparing LAC (USA300), MW2 (USA400), and Δagr mutants. The changes of Δagr mutants in sensitivity to oxacillin and several virulence factors such as biofilm formation, pigmentation, motility, and membrane properties were monitored. LACΔagr and MW2Δagr mutants showed different oxacillin sensitivity and biofilm formation compared to the LAC and MW2 strains. Regardless of the strain, the motility was reduced in Δagr mutants. And there was an increase in the long chain fatty acid in phospholipid fatty acid composition of Δagr mutants. Other properties such as biofilm formation, pigmentation, motility, and membrane properties were different in both Δagr mutants. The Agr regulator may have a common role like the control of motility and straindependent roles such as antibiotic resistance, biofilm formation, change of membrane, and pigment production. It does not seem easy to control all MRSA by targeting the Agr regulator only as it showed strain-dependent behaviors.
Collapse
Affiliation(s)
- Hye Soo Lee
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Hun-Suk Song
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Hong-Ju Lee
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Sang Hyun Kim
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Min Ju Suh
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Jang Yeon Cho
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Sion Ham
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Yun-Gon Kim
- Department of Chemical Engineering, Soongsil University, Seoul 07040, Republic of Korea
| | - Hwang-Soo Joo
- Department of Biotechnology, College of Engineering, Duksung Women’s University, Seoul 01369, Republic of Korea
| | - Wooseong Kim
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Sang Ho Lee
- Department of Pharmacy, College of Pharmacy, Jeju National University, Jeju 63243, Republic of Korea
| | - Dongwon Yoo
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea,Corresponding authors S.K. Bhatia Phone: +82-2-450-3936 Fax: + 82-2-3437-8360 E-mail:
| | - Yung-Hun Yang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea,
Y.-H. Yang E-mail:
| |
Collapse
|
38
|
Katsarou EI, Katsafadou AI, Karakasidis T, Chatzopoulos DC, Vasileiou NGC, Lianou DT, Mavrogianni VS, Petinaki E, Fthenakis GC. Growth of Staphylococcus epidermidis on the Surface of Teatcups from Milking Parlours. Microorganisms 2021; 9:microorganisms9040852. [PMID: 33921135 PMCID: PMC8071573 DOI: 10.3390/microorganisms9040852] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/09/2021] [Accepted: 04/13/2021] [Indexed: 11/16/2022] Open
Abstract
The growth of two Staphylococcus epidermidis isolates (one biofilm-forming and one not) on teatcups for cattle (made of rubber) or sheep (made of silicone) were assessed in nine multiplicates for 24 h post-smearing on the teatcup surface. Staphylococci were smeared on an area of 0.0003142 m2 on the material and their growth and expansion further on were monitored for 24 h. There were no differences in the frequency of recoveries between the two isolates (p > 0.82 for all comparisons). There were more recoveries from sheep teatcups than from cattle teatcups: 1280/1728 (74.1%) versus 942/1728 (54.5%), for both isolates (p < 0.0001). Significance was observed only 6 h to 15 h after smearing (p < 0.0001 for all comparisons). The median speed of linear dissemination of the isolates was 0.00000021 m s−1 on cattle teatcups and 0.00000033 m s−1 on sheep teatcups (p < 0.0001). The increased growth and faster expansion of staphylococci on silicone teatcups raise important points from a clinical viewpoint. The model could be used in the testing of staphylococcal growth in the material of milking parlours in various conditions.
Collapse
Affiliation(s)
- Eleni I. Katsarou
- Veterinary Faculty, University of Thessaly, 43100 Karditsa, Greece; (E.I.K.); (D.T.L.); (V.S.M.)
| | - Angeliki I. Katsafadou
- Faculty of Public and Integrated (One) Health, University of Thessaly, 43100 Karditsa, Greece; (A.I.K.); (D.C.C.)
| | | | - Dimitris C. Chatzopoulos
- Faculty of Public and Integrated (One) Health, University of Thessaly, 43100 Karditsa, Greece; (A.I.K.); (D.C.C.)
| | | | - Daphne T. Lianou
- Veterinary Faculty, University of Thessaly, 43100 Karditsa, Greece; (E.I.K.); (D.T.L.); (V.S.M.)
| | - Vasia S. Mavrogianni
- Veterinary Faculty, University of Thessaly, 43100 Karditsa, Greece; (E.I.K.); (D.T.L.); (V.S.M.)
| | | | - George C. Fthenakis
- Veterinary Faculty, University of Thessaly, 43100 Karditsa, Greece; (E.I.K.); (D.T.L.); (V.S.M.)
- Correspondence:
| |
Collapse
|
39
|
Transient surface hydration impacts biogeography and intercellular interactions of non-motile bacteria. Appl Environ Microbiol 2021; 87:AEM.03067-20. [PMID: 33579687 PMCID: PMC8091113 DOI: 10.1128/aem.03067-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
There are many hydrated surface niches that are neither static nor continuously flowing that are colonized by microbes such as bacteria. Such periodic hydrodynamic regimes are distinct from aquatic systems where microbial dissemination is reasonably predicted by assuming continuous flow or static systems where motile microbes largely control their own fate. Here we show how non-motile bacteria exhibit rapid, dispersive bursts of movement over surfaces using transient confluent hydration from the environment, which we term "surface hydrodispersion" where cells traverse thousands of cell lengths within minutes. The fraction of the population disseminated by surface hydrodispersion is small-on order of 1 cell per million. Thus, surface hydrodispersion can promote isolated distribution of single cells, which is unlike other characterized active and passive surface motilities. We describe this translocation using a continuous time random walk modeling approach and find in computational simulations that transient fluid accumulation, dilution, and gravitational pull are the contributing factors. Surface hydrodispersion, consistent with advection, is unlike simple colony expansion as it dramatically alters spatial relationships, shown here with Staphylococcus aureus, which becomes increasingly virulent when isolated from Corynebacterium striatum Surface hydrodispersion of non-motile bacteria exploiting transient fluid availability and gravity is a mechanism that can result in sporadic and sudden shifts in microbial community behavior. To better understand how this movement can impact biogeography on the millimeter scale, this work describes a system for study of primary factors behind this movement as well as a stochastic model describing this dispersal.Importance: Understanding the dynamics within microbiome communities is a challenge. Knowledge of phylogeny and spatial arrangement has led to increased understanding of numerous polymicrobial communities yet, these snapshots do not convey the dynamics of populations over time. The actual biogeography of any microbiome controls the potential interactions, governing any possible antagonistic or synergistic behavior. Accordingly, a shift in biogeography can enable new behavior. Little is known about the movement mechanisms of "non-motile" microbes. Here we characterize a universal means of movement we term hydrodispersion where non-motile bacteria are transported thousands of cell lengths in minutes. We show that only a small fraction of the population is translocated by hydrodispersion and describe this movement further using a random-walk mathematical model approach in silico We demonstrate the importance of hydrodispersion by showing that Staphylococcus aureus can separate from a coculture inoculation with Corynebacterium striatum thus permitting transition to a more virulent state.
Collapse
|
40
|
Wang H, Agrawal A, Wang Y, Crawford DW, Siler ZD, Peterson ML, Woofter RT, Labib M, Shin HY, Baumann AP, Phillips KS. An ex vivo model of medical device-mediated bacterial skin translocation. Sci Rep 2021; 11:5746. [PMID: 33707493 PMCID: PMC7952406 DOI: 10.1038/s41598-021-84826-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 02/03/2021] [Indexed: 12/13/2022] Open
Abstract
The skin is a barrier and part of the immune system that protects us from harmful bacteria. Because indwelling medical devices break this barrier, they greatly increase the risk of infection by microbial pathogens. To study how these infections can be prevented through improved clinical practices and medical device technology, it is important to have preclinical models that replicate the early stages of microbial contamination, ingress, and colonization leading up to infection. At present, there are no preclinical ex vivo models specifically developed to simulate conditions for indwelling medical devices. Translocation of pathogens from outside the body across broken skin to normally sterile internal compartments is a rate-limiting step in infectious pathogenesis. In this work, we report a sensitive and reproducible ex vivo porcine skin-catheter model to test how long antimicrobial interventions can delay translocation. Skin preparation was first optimized to minimize tissue damage. The presence of skin dramatically decreased bacterial migration time across the polyurethane catheter interface from > 96 h to 12 h. Using visual colony detection, fluorescence, a luminescent in vitro imaging system, and confocal microscopy, the model was used to quantify time-dependent differences in translocation for eluting and non-eluting antimicrobial catheters. The results show the importance of including tissue in preclinical biofilm models and help to explain current gaps between in vitro testing and clinical outcomes for antimicrobial devices.
Collapse
Affiliation(s)
- Hao Wang
- Center for Devices and Radiological Health, Office of Science and Engineering Laboratories, Division of Biology, Chemistry, and Materials Science, United States Food and Drug Administration, Silver Spring, USA
| | - Anant Agrawal
- Center for Devices and Radiological Health, Office of Science and Engineering Laboratories, Division of Biomedical Physics, United States Food and Drug Administration, Silver Spring, USA
| | - Yi Wang
- Center for Devices and Radiological Health, Office of Science and Engineering Laboratories, Division of Biology, Chemistry, and Materials Science, United States Food and Drug Administration, Silver Spring, USA
| | - David W Crawford
- Perfectus Biomed Group (Formerly Extherid Biosciences, LLC), Jackson, WY, USA
| | - Zachary D Siler
- Perfectus Biomed Group (Formerly Extherid Biosciences, LLC), Jackson, WY, USA
| | - Marnie L Peterson
- Perfectus Biomed Group (Formerly Extherid Biosciences, LLC), Jackson, WY, USA
| | | | | | - Hainsworth Y Shin
- Center for Devices and Radiological Health, Office of Science and Engineering Laboratories, Division of Biology, Chemistry, and Materials Science, United States Food and Drug Administration, Silver Spring, USA
| | - Andrew P Baumann
- Center for Devices and Radiological Health, Office of Science and Engineering Laboratories, Division of Applied Mechanics, United States Food and Drug Administration, Silver Spring, USA
| | - K Scott Phillips
- Center for Devices and Radiological Health, Office of Science and Engineering Laboratories, Division of Biology, Chemistry, and Materials Science, United States Food and Drug Administration, Silver Spring, USA.
| |
Collapse
|
41
|
Yung DBY, Sircombe KJ, Pletzer D. Friends or enemies? The complicated relationship between Pseudomonas aeruginosa and Staphylococcus aureus. Mol Microbiol 2021; 116:1-15. [PMID: 33576132 DOI: 10.1111/mmi.14699] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 10/22/2022]
Abstract
Pseudomonas aeruginosa (Pa) and Staphylococcus aureus (Sa) are opportunistic pathogens that are most commonly co-isolated from chronic wounds and the sputum of cystic fibrosis patients. Over the last few years, there have been plenty of contrasting results from studies involving P. aeruginosa and S. aureus co-cultures. The general concept that P. aeruginosa outcompetes S. aureus has been challenged and there is more evidence now that they can co-exist. Nevertheless, it still remains difficult to mimic polymicrobial infections in vitro and in vivo. In this review, we discuss recent advances in regard to Pa-Sa molecular interactions, their physical responses, and in vitro and in vivo models. We believe it is important to optimize growth conditions in the laboratory, determine appropriate bacterial starting ratios, and consider environmental factors to study the co-existence of these two pathogens. Ideally, optimized growth media should reflect host-mimicking conditions with or without host cells that allow both bacteria to co-exist. To further identify mechanisms that could help to treat these complex infections, we propose to use relevant polymicrobial animal models. Ultimately, we briefly discuss how polymicrobial infections can increase antibiotic tolerance.
Collapse
Affiliation(s)
- Deborah Bow Yue Yung
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | | | - Daniel Pletzer
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
42
|
Chen YW, Yeh WH, Tang HJ, Chen JW, Shu HY, Su YC, Wang ST, Kuo CJ, Chuang YC, Chen CC, Ko WC, Chen CS, Chen PL. UvrY is required for the full virulence of Aeromonas dhakensis. Virulence 2021; 11:502-520. [PMID: 32434424 PMCID: PMC7250320 DOI: 10.1080/21505594.2020.1768339] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Aeromonas dhakensis is an emerging human pathogen which causes fast and severe infections worldwide. Under the gradual pressure of lacking useful antibiotics, finding a new strategy against A. dhakensis infection is urgent. To understand its pathogenesis, we created an A. dhakensis AAK1 mini-Tn10 transposon library to study the mechanism of A. dhakensis infection. By using a Caenorhabditis elegans model, we established a screening platform for the purpose of identifying attenuated mutants. The uvrY mutant, which conferred the most attenuated toxicity toward C. elegans, was identified. The uvrY mutant was also less virulent in C2C12 fibroblast and mice models, in line with in vitro results. To further elucidate the mechanism of UvrY in controlling the toxicity in A. dhakensis, we conducted a transcriptomic analysis. The RNAseq results showed that the expression of a unique hemolysin ahh1 and other virulence factors were regulated by UvrY. Complementation of Ahh1, one of the most important virulence factors, rescued the pore-formation phenotype of uvrY mutant in C. elegans; however, complementation of ahh1 endogenous promoter-driven ahh1 could not produce Ahh1 and rescue the virulence in the uvrY mutant. These findings suggest that UvrY is required for the expression of Ahh1 in A. dhakensis. Taken together, our results suggested that UvrY controls several different virulence factors and is required for the full virulence of A. dhakensis. The two-component regulator UvrY therefore a potential therapeutic target which is worthy of further study.
Collapse
Affiliation(s)
- Yi-Wei Chen
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Division of Oral Biology and Medicine, School of Dentistry, University of California, Los Angeles, CA, USA
| | - Wen-Hsuan Yeh
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Hung-Jen Tang
- Department of Medicine, Chi Mei Medical Center, Tainan, Taiwan
| | - Jenn-Wei Chen
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Hung-Yu Shu
- Department of Bioscience Technology, Chang Jung Christian University, Tainan, Taiwan
| | - Yu-Chen Su
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Sin-Tian Wang
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Cheng-Ju Kuo
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yin-Ching Chuang
- Department of Medicine, Chi Mei Medical Center, Tainan, Taiwan.,Department of Medical Research, Chi Mei Medical Center, Tainan, Taiwan
| | - Chi-Chung Chen
- Department of Medical Research, Chi Mei Medical Center, Tainan, Taiwan.,Department of Food Science, National Chiayi University, Chiayi, Taiwan
| | - Wen-Chien Ko
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chang-Shi Chen
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Po-Lin Chen
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
43
|
Aroney STN, Poole PS, Sánchez-Cañizares C. Rhizobial Chemotaxis and Motility Systems at Work in the Soil. FRONTIERS IN PLANT SCIENCE 2021; 12:725338. [PMID: 34512702 PMCID: PMC8429497 DOI: 10.3389/fpls.2021.725338] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/06/2021] [Indexed: 05/17/2023]
Abstract
Bacteria navigate their way often as individual cells through their chemical and biological environment in aqueous medium or across solid surfaces. They swim when starved or in response to physical and chemical stimuli. Flagella-driven chemotaxis in bacteria has emerged as a paradigm for both signal transduction and cellular decision-making. By altering motility, bacteria swim toward nutrient-rich environments, movement modulated by their chemotaxis systems with the addition of pili for surface movement. The numbers and types of chemoreceptors reflect the bacterial niche and lifestyle, with those adapted to complex environments having diverse metabolic capabilities, encoding far more chemoreceptors in their genomes. The Alpha-proteobacteria typify the latter case, with soil bacteria such as rhizobia, endosymbionts of legume plants, where motility and chemotaxis are essential for competitive symbiosis initiation, among other processes. This review describes the current knowledge of motility and chemotaxis in six model soil bacteria: Sinorhizobium meliloti, Agrobacterium fabacearum, Rhizobium leguminosarum, Azorhizobium caulinodans, Azospirillum brasilense, and Bradyrhizobium diazoefficiens. Although motility and chemotaxis systems have a conserved core, rhizobia possess several modifications that optimize their movements in soil and root surface environments. The soil provides a unique challenge for microbial mobility, since water pathways through particles are not always continuous, especially in drier conditions. The effectiveness of symbiont inoculants in a field context relies on their mobility and dispersal through the soil, often assisted by water percolation or macroorganism movement or networks. Thus, this review summarizes the factors that make it essential to consider and test rhizobial motility and chemotaxis for any potential inoculant.
Collapse
|
44
|
Mahavy CE, Duez P, ElJaziri M, Rasamiravaka T. African Plant-Based Natural Products with Antivirulence Activities to the Rescue of Antibiotics. Antibiotics (Basel) 2020; 9:antibiotics9110830. [PMID: 33228261 PMCID: PMC7699609 DOI: 10.3390/antibiotics9110830] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 11/14/2020] [Accepted: 11/16/2020] [Indexed: 12/14/2022] Open
Abstract
The worldwide emergence of antibiotic-resistant bacteria and the thread of widespread superbug infections have led researchers to constantly look for novel effective antimicrobial agents. Within the past two decades, there has been an increase in studies attempting to discover molecules with innovative properties against pathogenic bacteria, notably by disrupting mechanisms of bacterial virulence and/or biofilm formation which are both regulated by the cell-to-cell communication mechanism called ‘quorum sensing’ (QS). Certainly, targeting the virulence of bacteria and their capacity to form biofilms, without affecting their viability, may contribute to reduce their pathogenicity, allowing sufficient time for an immune response to infection and a reduction in the use of antibiotics. African plants, through their huge biodiversity, present a considerable reservoir of secondary metabolites with a very broad spectrum of biological activities, a potential source of natural products targeting such non-microbicidal mechanisms. The present paper aims to provide an overview on two main aspects: (i) succinct presentation of bacterial virulence and biofilm formation as well as their entanglement through QS mechanisms and (ii) detailed reports on African plant extracts and isolated compounds with antivirulence properties against particular pathogenic bacteria.
Collapse
Affiliation(s)
- Christian Emmanuel Mahavy
- Laboratory of Biotechnology and Microbiology, University of Antananarivo, BP 906 Antananarivo 101, Madagascar;
- Laboratory of Plant Biotechnology, Université Libre de Bruxelles, B-1050 Brussels, Belgium;
| | - Pierre Duez
- Unit of Therapeutic Chemistry and Pharmacognosy, University of Mons, 7000 Mons, Belgium;
| | - Mondher ElJaziri
- Laboratory of Plant Biotechnology, Université Libre de Bruxelles, B-1050 Brussels, Belgium;
| | - Tsiry Rasamiravaka
- Laboratory of Biotechnology and Microbiology, University of Antananarivo, BP 906 Antananarivo 101, Madagascar;
- Correspondence: ; Tel.: +261-32-61-903-38
| |
Collapse
|
45
|
Valeriani RG, Beard LL, Moller A, Ohtani K, Vidal JE. Gas gangrene-associated gliding motility is regulated by the Clostridium perfringens CpAL/VirSR system. Anaerobe 2020; 66:102287. [PMID: 33130105 DOI: 10.1016/j.anaerobe.2020.102287] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 10/01/2020] [Accepted: 10/21/2020] [Indexed: 11/29/2022]
Abstract
Clostridium perfringens strains cause a wide variety of human and animal disease, including gas gangrene or myonecrosis. Production of toxins required for myonecrosis, PFO and CPA, is regulated by the C. perfringens Agr-like (CpAL) system via the VirSR two-component system. Myonecrosis begins at the site of infection from where bacteria migrate deep into the host tissue likely using a previously described gliding motility phenotype. We therefore assessed whether gliding motility was under the control of the CpAL/VirSR regulon. The migration rate of myonecrosis-causing C. perfringens strain 13 (S13) was investigated during a 96 h period, including an adaptation phase with bacterial migration (∼1.4 mm/day) followed by a gliding phase allowing bacteria faster migration (∼8.6 mm/day). Gliding required both an intact CpAL system, and signaling through VirSR. Mutants lacking ΔagrB, or ΔvirR, were impaired for onward gliding while a complemented strain S13ΔagrB/pTS1303 had the gliding phenotype restored. Gene expression studies revealed upregulated transcription of pili genes (pilA1, pilA2 and pilT) whose encoded proteins were previously found to be required for gliding motility and CpAL/VirSR-regulated pfoA and cpa toxin genes. Compared to S13, transcription of cpa and pfoA significantly decreased in S13ΔagrB, or S13ΔvirR, strains but not that of pili genes. Further experiments demonstrated that mutants S13ΔpfoA and S13Δcpa migrated at the same rate as S13 wt. We demonstrated that CpAL/VirSR regulates C. perfringens gliding motility and that gliding bacteria have an increased transcription of toxin genes involved in myonecrosis.
Collapse
Affiliation(s)
| | - LaMonta L Beard
- Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Abraham Moller
- Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Kaori Ohtani
- Tokai University School of Medicine, Ishihara-shi, Kanagawa, Japan
| | - Jorge E Vidal
- Rollins School of Public Health, Emory University, Atlanta, GA, USA; Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, MS, USA.
| |
Collapse
|
46
|
Doan VS, Saingam P, Yan T, Shin S. A Trace Amount of Surfactants Enables Diffusiophoretic Swimming of Bacteria. ACS NANO 2020; 14:14219-14227. [PMID: 33000940 DOI: 10.1021/acsnano.0c07502] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
From birth to health, surfactants play an essential role in our lives. Due to the importance, their environmental impacts are well understood. One of the aspects that has been extensively studied is their impact on bacteria, particularly on their motility. Here, we uncover an alternate chemotactic strategy triggered by surfactants-diffusiophoresis. We show that even a trace amount of ionic surfactants, down to a single ppm level, can promote the bacterial diffusiophoresis by boosting the surface charge of the cells. Because diffusiophoresis is driven by the surface-solute interactions, surfactant-enhanced diffusiophoresis is observed regardless of the types of bacteria. Whether Gram-positive or -negative, flagellated or nonflagellated, the surfactants enable fast migration of freely suspended bacteria, suggesting a ubiquitous locomotion mechanism that has been largely overlooked. We also demonstrate the implication of surfactant-enhanced bacterial diffusiophoresis on the rapid formation of biofilms in flow networks, suggesting environmental and biomedical implications.
Collapse
Affiliation(s)
- Viet Sang Doan
- Department of Mechanical Engineering, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
| | - Prakit Saingam
- Department of Civil and Environmental Engineering, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
| | - Tao Yan
- Department of Civil and Environmental Engineering, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
| | - Sangwoo Shin
- Department of Mechanical Engineering, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
| |
Collapse
|
47
|
Capillary bacterial migration on non-nutritive solid surfaces. Arh Hig Rada Toksikol 2020; 71:251-260. [PMID: 33074174 PMCID: PMC7968502 DOI: 10.2478/aiht-2020-71-3436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 08/01/2020] [Indexed: 12/04/2022] Open
Abstract
Here we describe an additional type of bacterial migration in which bacterial cells migrate vertically across a non-nutritive solid surface carried by capillary forces. Unlike standard motility experiments, these were run on a glass slide inserted into a Falcon tube, partly immersed in a nutrient medium and partly exposed to air. Observations revealed that capillary forces initiated upward cell migration when biofilm was formed at the border between liquid and air. The movement was facilitated by the production of extracellular polymeric substances (EPS). This motility differs from earlier described swarming, twitching, gliding, sliding, or surfing, although these types of movements are not excluded. We therefore propose to call it “capillary movement of biofilm”. This phenomenon may be an ecologically important mode of bacterial motility on solid surfaces.
Collapse
|
48
|
Liu R, Zheng R, Liu G, Sun C. The cyclic lipopeptides suppress the motility of Vibrio alginolyticus via targeting the Na + -driven flagellar motor component MotX. Environ Microbiol 2020; 22:4424-4437. [PMID: 32608186 DOI: 10.1111/1462-2920.15144] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/18/2020] [Accepted: 06/28/2020] [Indexed: 01/17/2023]
Abstract
In our previous study, we found that pumilacidin-like cyclic lipopeptides (CLPs) derived from marine bacterium Bacillus sp. strain 176 significantly suppressed the mobile capability and virulence of Vibrio alginolyticus. Here, to further disclose the mechanism of CLPs inhibiting the motility of V. alginolyticus, we first applied transcriptomic analysis to V. alginolyticus treated with or without CLPs. The transcriptomic results showed that the expression of several important components of the Na+ -driven flagellar motor closely related to bacterial motility were markedly suppressed, suggesting that the structure and function of Na+ -driven flagellar motor might be disabled by CLPs. The transcriptomic data were further analysed by the protein-protein interaction network, and the results supported that MotX, one of the essential components of Na+ -driven flagellar motor was most likely the action target of CLPs. In combination of gene knockout, electrophoretic mobility shift assay and immunoblotting techniques, CLPs were demonstrated to affect the rotation of flagella of Vibrio alginolyticus via direct interacting with the Na+ -driven flagellar motor component MotX, which eventually inhibited the bacterial motility. Interestingly, homologues of MotX were found broadly distributed and highly conserved in different pathogenic species, which extends the application range of CLPs as an antibacterial drug targeting bacterial motility in many pathogens.
Collapse
Affiliation(s)
- Rui Liu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China.,College of Earth Science, University of Chinese Academy of Sciences, Beijing, China
| | - Rikuan Zheng
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China.,College of Earth Science, University of Chinese Academy of Sciences, Beijing, China.,Center of Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Ge Liu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China.,College of Earth Science, University of Chinese Academy of Sciences, Beijing, China
| | - Chaomin Sun
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China.,College of Earth Science, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
49
|
Agaric acid reduces Salmonella biofilm formation by inhibiting flagellar motility. Biofilm 2020; 2:100022. [PMID: 33447808 PMCID: PMC7798450 DOI: 10.1016/j.bioflm.2020.100022] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/11/2020] [Accepted: 03/04/2020] [Indexed: 12/31/2022] Open
Abstract
Salmonella biofilms are a common cause of contaminations in the food or feed industry. In a screening for novel compounds to combat biofilm-associated foodborne outbreaks, we identified agaric acid as a Salmonella Typhimurium biofilm inhibitor that does not affect planktonic growth. Importantly, the remaining biofilm cells after preventive treatment with agaric acid were significantly more sensitive to the common disinfectant hydrogen peroxide. Screening of a GFP-promoter fusion library of biofilm related genes revealed that agaric acid downregulates the transcription of genes responsible for flagellar motility. Concurrently, swimming motility was completely abrogated in the presence of agaric acid, indicating that biofilm inhibition occurs via interference with the motility phenotype. Moreover, agaric acid also reduced biofilm formation of Pseudomonas aeruginosa, Staphylococcus aureus and Escherichia coli. Agaric acid thus shows potential as an anti-virulence compound that inhibits both motility and biofilm formation.
Collapse
|
50
|
Liu CC, Lin MH. Involvement of Heme in Colony Spreading of Staphylococcus aureus. Front Microbiol 2020; 11:170. [PMID: 32117177 PMCID: PMC7026375 DOI: 10.3389/fmicb.2020.00170] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 01/24/2020] [Indexed: 11/13/2022] Open
Abstract
Staphylococcus aureus spreads rapidly on the surface of soft agar medium. The spreading depends on the synthesis of biosurfactants, i.e., phenol soluble modulins (PSMs), which facilitate colony spreading of S. aureus. Our earlier study demonstrated that water accumulates in a colony is important to modulate colony spreading of S. aureus. The current study screened a transposon-based mutant library of S. aureus HG001 and obtained four non-spreading mutants with mutations in hemY and ctaA, which are involved in heme synthesis. The spreading ability of these mutants was restored when the mutants are transformed with a plasmid encoding hemY or ctaA, respectively. HemY mutants, which do not synthesize heme B, were able to spread on agar medium supplemented with hemin, a heme B derivative. By contrast, hemin supplementation did not rescue the spreading of the ctaA mutant, which lacks heme B and heme A, indicating that heme A is also critical for colony spreading. Moreover, mutations in hemY and ctaA had little effect on PSMs production but affect ATP production and water accumulation in the colony. In conclusion, this study sheds light on the role of heme synthesis and energy production in the regulation of S. aureus colony spreading, which is important for understanding the movement mechanisms of bacteria lacking a motor apparatus.
Collapse
Affiliation(s)
- Chao-Chin Liu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Mei-Hui Lin
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Laboratory Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- *Correspondence: Mei-Hui Lin,
| |
Collapse
|