1
|
Tanabe M, Saito Y, Takasaki A, Nakano K, Yamamoto S, Suzuki C, Kawamura N, Hattori A, Oikawa M, Nagashima S, Yanagi S, Yamaguchi T, Fukuda T. Role of immature choroid plexus in the pathology of model mice and human iPSC-derived organoids with autism spectrum disorder. Cell Rep 2025; 44:115133. [PMID: 39731733 DOI: 10.1016/j.celrep.2024.115133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 10/22/2024] [Accepted: 12/11/2024] [Indexed: 12/30/2024] Open
Abstract
During gestation, the choroid plexus (ChP) produces protein-rich cerebrospinal fluid and matures prior to brain development. It is assumed that ChP dysfunction has a profound effect on developmental neuropsychiatric disorders, such as autism spectrum disorder (ASD). However, the mechanisms linking immature ChP to the onset of ASD remain unclear. Here, we find that ChP-specific CAMDI-knockout mice develop an immature ChP alongside decreased multiciliogenesis and expression of differentiation marker genes following disruption of the cerebrospinal fluid barrier. These mice exhibit ASD-like behaviors, including anxiety and impaired socialization. Additionally, the administration of metformin, an FDA-approved drug, before the social critical period achieves ChP maturation and restores social behaviors. Furthermore, both the ASD model mice and organoids derived from patients with ASD developed an immature ChP. These results propose the involvement of an immature ChP in the pathogenesis of ASD and suggest the targeting of functional maturation of the ChP as a therapeutic strategy for ASD.
Collapse
Affiliation(s)
- Motoi Tanabe
- Laboratory of Regenerative Medicine, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Yuga Saito
- Laboratory of Regenerative Medicine, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Ayaka Takasaki
- Laboratory of Regenerative Medicine, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Keita Nakano
- Laboratory of Regenerative Medicine, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Shunta Yamamoto
- Laboratory of Regenerative Medicine, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Chikako Suzuki
- Laboratory of Regenerative Medicine, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Nao Kawamura
- Laboratory of Regenerative Medicine, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Aki Hattori
- Laboratory of Regenerative Medicine, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Mami Oikawa
- Laboratory of Regenerative Medicine, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Shun Nagashima
- Laboratory of Regenerative Medicine, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Shigeru Yanagi
- Department of Life Science, Faculty of Science, Gakushuin University, Toshima-ku, Tokyo, Japan
| | - Tomoyuki Yamaguchi
- Laboratory of Regenerative Medicine, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Toshifumi Fukuda
- Laboratory of Regenerative Medicine, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan.
| |
Collapse
|
2
|
He M, Du B, Chen G, Lyu Y, Guo H, Jia X, Xia K. Naa15 Haploinsufficiency and De Novo Missense Variants Associate With Neurodevelopmental Disorders and Interfere With Neurogenesis and Neuron Development. Autism Res 2025. [PMID: 39825710 DOI: 10.1002/aur.3308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 01/01/2025] [Accepted: 01/06/2025] [Indexed: 01/20/2025]
Abstract
Neurodevelopmental disorders (NDDs) encompass a group of conditions that impact brain development and function, exhibiting significant genetic and clinical heterogeneity. NAA15, the auxiliary subunit of the N-terminal acetyltransferase complex, has garnered attention due to its association with NDDs. However, the precise role of NAA15 in cortical development and its contribution to NDDs remain elusive. By employing targeted sequencing on a large Chinese cohort affected by ASD and conducting an extensive literature review, we have compiled 64 distinct variants in the NAA15 gene identified among individuals with neurodevelopmental disorders. Our research demonstrates that loss of NAA15 leads to a substantial increase in neuronal count, potentially resulting in aberrant brain development and triggering repetitive as well as anxious behaviors in mice models. Furthermore, disorder-associated variants within NAA15 impair axon and synapse formation processes crucial for neural connectivity establishment. These findings shed light on the consequences of NAA15 deficiency along with its de novo mutations on brain development while unraveling the cellular mechanisms underlying NDDs.
Collapse
Affiliation(s)
- Mei He
- Center for Medical Genetics and Hunan key Laboratory of Medical Genetics, MOE Key Laboratory of Rare Pediatric Disease, School of Life Sciences, Central South University, Changsha, Hunan, China
- NHC Key Laboratory of Birth Defect for Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan, China
| | - Bing Du
- Center for Medical Genetics and Hunan key Laboratory of Medical Genetics, MOE Key Laboratory of Rare Pediatric Disease, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Guodong Chen
- Center for Medical Genetics and Hunan key Laboratory of Medical Genetics, MOE Key Laboratory of Rare Pediatric Disease, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Yongqing Lyu
- Center for Medical Genetics and Hunan key Laboratory of Medical Genetics, MOE Key Laboratory of Rare Pediatric Disease, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Hui Guo
- Center for Medical Genetics and Hunan key Laboratory of Medical Genetics, MOE Key Laboratory of Rare Pediatric Disease, School of Life Sciences, Central South University, Changsha, Hunan, China
- Furong Laboratory, Changsha, Hunan, China
| | - Xiangbin Jia
- Center for Medical Genetics and Hunan key Laboratory of Medical Genetics, MOE Key Laboratory of Rare Pediatric Disease, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Kun Xia
- Center for Medical Genetics and Hunan key Laboratory of Medical Genetics, MOE Key Laboratory of Rare Pediatric Disease, School of Life Sciences, Central South University, Changsha, Hunan, China
- Hengyang Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
3
|
Wiśniewska K, Żabińska M, Gaffke L, Szulc A, Walter BM, Węgrzyn G, Pierzynowska K. Shared Gene Expression Dysregulation Across Subtypes of Sanfilippo and Morquio Diseases: The Role of PFN1 in Regulating Glycosaminoglycan Levels. FRONT BIOSCI-LANDMRK 2024; 29:415. [PMID: 39735993 DOI: 10.31083/j.fbl2912415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/27/2024] [Accepted: 10/31/2024] [Indexed: 12/31/2024]
Abstract
BACKGROUND Mucopolysaccharidosis (MPS) is a class of hereditary metabolic diseases that demonstrate itself by accumulating incompletely degraded glycosaminoglycans (GAGs). MPS are classified according to the kind(s) of stored GAG(s) and specific genetic/enzymatic defects. Despite the accumulation of the same type of GAG, two MPS diseases, Sanfilippo (MPS III) and Morquio (MPS IV), are further distinguished into subclasses based on different enzymes that are deficient. Although genetic defects in MPS are known, molecular mechanisms of particular MPS types are still incomplete. This work aimed to investigate gene expression patterns in MPS III and MPS IV subtypes to identify dysregulated genes that could indicate unidentified molecular mechanisms of the diseases. METHODS Transcriptomic analyses were conducted to assess gene expression patterns in MPS and control cells. Western blotting and immunohistochemistry determined selected protein levels (products of the most significantly dysregulated genes). Effects of decreased levels of gene expression were investigated using small interferring RNA (siRNA)-mediated gene silencing. RESULTS Transcriptomic analyses indicated 45 commonly dysregulated genes among all MPS III subtypes and as many as 150 commonly dysregulated genes among both MPS IV subtypes. A few genes revealed particularly high levels of dysregulation, including PFN1, MFAP5, and MMP12. Intriguingly, elevated levels of profilin-1 (product of the PFN1 gene) could be reduced by decreasing GAG levels in genistein-treated MPS III and MPS IV cells, while silencing of PFN1 caused a significant decrease in GAG accumulation in these cells, indicating an interdependent correlation between profilin-1 and GAG levels. CONCLUSIONS A plethora of commonly dysregulated genes were identified in MPS subtypes III and IV. Some of these genes, like PFN1, MFAP5, and MMP12, revealed highly pronounced changes in expression relative to control cells. An interdependent correlation between GAG levels and the expression of the PFN1 gene was identified. Thus, PFN1 could be suggested as a potential new therapeutic target for MPS III and IV.
Collapse
Affiliation(s)
- Karolina Wiśniewska
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, 80-308 Gdansk, Poland
| | - Magdalena Żabińska
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, 80-308 Gdansk, Poland
| | - Lidia Gaffke
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, 80-308 Gdansk, Poland
| | - Aneta Szulc
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, 80-308 Gdansk, Poland
| | - Beata M Walter
- Structural Biology Laboratory, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, 80-307 Gdansk, Poland
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, 80-308 Gdansk, Poland
| | - Karolina Pierzynowska
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, 80-308 Gdansk, Poland
| |
Collapse
|
4
|
Liu H, Bai Q, Wang X, Jin Y, Ju X, Lu C. Immune signature of gene expression pattern shared by autism spectrum disorder and Huntington's disease. IBRO Neurosci Rep 2024; 17:311-319. [PMID: 39398347 PMCID: PMC11471255 DOI: 10.1016/j.ibneur.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/25/2024] [Accepted: 09/25/2024] [Indexed: 10/15/2024] Open
Abstract
Autism spectrum disorder (ASD) and Huntington's disease (HD) are complex neurological conditions with unclear causes and limited treatments, affecting individuals, families, and society. Despite ASD and HD representing two opposing stages of neuronal development and degeneration, they share similar clinical-pathological features in motor function. In this study, we leveraged transcriptomic data from the prefrontal cortex available in public databases to identify shared transcriptional characteristics of ASD and HD. Differential expression analysis revealed that the majority of differentially expressed genes (DEGs) were up-regulated in ASD carriers, whereas most DEGs were down-regulated in HD carriers. Among the DEGs shared between both diseases, three out of seven protein-coding genes were related to the immune system. Furthermore, we identified two enriched pathways shared between ASD and HD DEGs. The gene interaction network analysis unveiled four hub genes shared by both diseases, all of which are associated with immune functions. The findings suggest a shared gene expression pattern in the prefrontal cortex of people with ASD and HD, closely linked to the immune system. These findings will contribute to exploring the biological mechanisms underlying the shared phenotypes of these two diseases from an immunological perspective.
Collapse
Affiliation(s)
- Huanhuan Liu
- School of Psychology, Northeast Normal University, Changchun, China
| | - Qiuyu Bai
- Yancheng College of Mechatronic Technology, Yancheng, China
| | | | - Yunlei Jin
- Children’ s Hospital of Changchun, Changchun, China
| | - Xingda Ju
- School of Psychology, Northeast Normal University, Changchun, China
- Jilin Provincial Key Laboratory of Cognitive Neuroscience and Brain Development, Changchun, China
| | - Chang Lu
- School of Psychology, Northeast Normal University, Changchun, China
- Jilin Provincial Key Laboratory of Cognitive Neuroscience and Brain Development, Changchun, China
| |
Collapse
|
5
|
Morozov YM, Rakic P. Lateral expansion of the mammalian cerebral cortex is related to anchorage of centrosomes in apical neural progenitors. Cereb Cortex 2024; 34:bhae293. [PMID: 39024157 PMCID: PMC11485267 DOI: 10.1093/cercor/bhae293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/05/2024] [Accepted: 07/03/2024] [Indexed: 07/20/2024] Open
Abstract
The centrosome is the main microtubule organizing center in stem cells, and its mother centriole, anchored to the cell membrane, serves as the basal body of the primary cilium. Prolonged anchorage of centrosomes and primary cilia to the apical segment of the membrane of apical neural progenitor cells is considered vital for interkinetic nuclear translocation and repetitive cycling in the ventricular zone. In contrast, the basolateral anchorage of primary cilia has been regarded as the first step in delamination and conversion of apical to basal neural progenitor cells or neurons. Using electron microscopy analysis of serial sections, we show that centrosomes, in a fraction of cells, anchor to the basolateral cell membrane immediately after cell division and before development of cilia. In other cells, centrosomes situate freely in the cytoplasm, increasing their probability of subsequent apical anchorage. In mice, anchored centrosomes in the cells shortly after mitosis predominate during the entire cerebral neurogenesis, whereas in macaque monkeys, cytoplasmic centrosomes are more numerous. Species-specific differences in the ratio of anchored and free cytoplasmic centrosomes appear to be related to prolonged neurogenesis in the ventricular zone that is essential for lateral expansion of the cerebral cortex in primates.
Collapse
Affiliation(s)
- Yury M Morozov
- Department of Neuroscience, Yale University School of Medicine and Kavli Institute for Neuroscience, 333 Cedar Street, SHM, C-303, New Haven, CT 06510, United States
| | - Pasko Rakic
- Department of Neuroscience, Yale University School of Medicine and Kavli Institute for Neuroscience, 333 Cedar Street, SHM, C-303, New Haven, CT 06510, United States
| |
Collapse
|
6
|
Al-Ayadhi L, Bhat RS, Alghamdi FA, Alhadlaq AS, El-Ansary A. Influence of Auditory Integrative Training on Casein Kinase 2 and Its Impact on Behavioral and Social Interaction in Children with Autism Spectrum Disorder. Curr Issues Mol Biol 2023; 45:4317-4330. [PMID: 37232743 DOI: 10.3390/cimb45050274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/07/2023] [Accepted: 05/08/2023] [Indexed: 05/27/2023] Open
Abstract
Considerable disturbances in post-translational protein phosphorylation have recently been discovered in multiple neurological disorders. Casein kinase-2 (CK2) is a tetrameric Ser/Thr protein kinase that phosphorylates a large number of substrates and contributes in several cellular physiological and pathological processes. CK2 is highly expressed in the mammalian brain and catalyzes the phosphorylation of a large number of substrates that are crucial in neuronal or glial homeostasis and inflammatory signaling processes across synapses. In this study, we investigated the impact of auditory integration therapy (AIT) for the treatment of sensory processing abnormalities in autism on plasma CK2 levels. A total of 25 ASD children, aged between 5 and 12 years, were enrolled and participated in the present research study. AIT was performed for two weeks, for a period of 30 min, twice a day, with a 3 h interval between sessions. Before and after AIT, the Childhood Autism Rating Scale (CARS), Social Responsiveness Scale (SRS), and Short Sensory Profile (SSP) scores were calculated, and plasma CK2 levels were assayed using an ELISA test. The CARS and SRS indices of autism severity improved as a result of AIT, which could be related to the decreased level of plasma CK2. However, the mean value of the SSP scores was not significantly increased after AIT. The relationship between CK2 downregulation and glutamate excitotoxicity, neuro-inflammation, and leaky gut, as etiological mechanisms in ASD, was proposed and discussed. Further research, conducted on a larger scale and with a longer study duration, are required to assess whether the cognitive improvement in ASD children after AIT is related to the downregulation of CK2.
Collapse
Affiliation(s)
- Laila Al-Ayadhi
- Department of Physiology, Faculty of Medicine, King Saud University, Riyadh 11495, Saudi Arabia
- Autism Research and Treatment Center, Riyadh 12713, Saudi Arabia
| | - Ramesa Shafi Bhat
- Biochemistry Department, College of Science, King Saud University, Riyadh 11495, Saudi Arabia
| | - Farah Ali Alghamdi
- College of Medicine, Dar Al Uloom University, Riyadh 13314, Saudi Arabia
| | | | - Afaf El-Ansary
- Autism Research and Treatment Center, Riyadh 12713, Saudi Arabia
- Autism Center, Lotus Holistic Medical Center, Abu Dhabi 110281, United Arab Emirates
| |
Collapse
|
7
|
Jiang T, Yang Y, Wu C, Qu C, Chen JG, Cao H. MicroRNA-218 regulates neuronal radial migration and morphogenesis by targeting Satb2 in developing neocortex. Biochem Biophys Res Commun 2023; 647:9-15. [PMID: 36708662 DOI: 10.1016/j.bbrc.2023.01.053] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 01/18/2023] [Indexed: 01/24/2023]
Abstract
Neuronal migration and morphogenesis are fundamental processes for cortical development. Their defects may cause abnormities in neural circuit formation and even neuropsychiatric disorders. Many proteins, especially layer-specific transcription factors and adhesion molecules, have been reported to regulate the processes. However, the involvement of non-coding RNAs in cortical development has not been extensively studied. Here, we identified microRNA-218 (miR-218) as a layer V-specific microRNA in mouse brains. Expression of miR-218 was elevated in patients with autism spectrum disorder (ASD) and schizophrenia. We found in this study that miR-218 overexpression in developing mouse cortex led to severe defects in radial migration, morphogenesis, and spatial distribution of the cortical neurons. Moreover, we identified Satb2, an upper-layer marker, as a molecular target repressed by miR-218. These results suggest an underlying mechanism of miR-218 involvement in neuropsychiatric disorders, and the interactions of layer-specific non-coding RNAs and proteins in regulating cortical development.
Collapse
Affiliation(s)
- Tian Jiang
- Department of Clinical Laboratory, The Affiliated Wenling Hospital, Wenzhou Medical University, Wenling, 317500, PR China; School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, State Key Laboratory of Optometry, Ophthalmology and Vision Science, and Zhejiang Provincial Key Laboratory of Optometry and Ophthalmology, 270 Xueyuan Road, Wenzhou, Zhejiang, 325027, PR China
| | - Yaojuan Yang
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, State Key Laboratory of Optometry, Ophthalmology and Vision Science, and Zhejiang Provincial Key Laboratory of Optometry and Ophthalmology, 270 Xueyuan Road, Wenzhou, Zhejiang, 325027, PR China
| | - Chunping Wu
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, State Key Laboratory of Optometry, Ophthalmology and Vision Science, and Zhejiang Provincial Key Laboratory of Optometry and Ophthalmology, 270 Xueyuan Road, Wenzhou, Zhejiang, 325027, PR China
| | - Chunsheng Qu
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, State Key Laboratory of Optometry, Ophthalmology and Vision Science, and Zhejiang Provincial Key Laboratory of Optometry and Ophthalmology, 270 Xueyuan Road, Wenzhou, Zhejiang, 325027, PR China
| | - Jie-Guang Chen
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, State Key Laboratory of Optometry, Ophthalmology and Vision Science, and Zhejiang Provincial Key Laboratory of Optometry and Ophthalmology, 270 Xueyuan Road, Wenzhou, Zhejiang, 325027, PR China.
| | - Huateng Cao
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, State Key Laboratory of Optometry, Ophthalmology and Vision Science, and Zhejiang Provincial Key Laboratory of Optometry and Ophthalmology, 270 Xueyuan Road, Wenzhou, Zhejiang, 325027, PR China.
| |
Collapse
|
8
|
Liu X, Dai SK, Liu PP, Liu CM. Arid1a regulates neural stem/progenitor cell proliferation and differentiation during cortical development. Cell Prolif 2021; 54:e13124. [PMID: 34562292 PMCID: PMC8560606 DOI: 10.1111/cpr.13124] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/03/2021] [Accepted: 09/03/2021] [Indexed: 12/26/2022] Open
Abstract
Objective Neurodevelopmental diseases are common disorders caused by the disruption of essential neurodevelopmental processes. Recent human exome sequencing and genome‐wide association studies have shown that mutations in the subunits of the SWI/SNF (BAF) complex are risk factors for neurodevelopmental diseases. Clinical studies have found that ARID1A (BAF250a) is the most frequently mutated SWI/SNF gene and its mutations lead to mental retardation and microcephaly. However, the function of ARID1A in brain development and its underlying mechanisms still remain elusive. Methods The present study used Cre/loxP system to generate an Arid1a conditional knockout mouse line. Cell proliferation, cell apoptosis and cell differentiation of NSPCs were studied by immunofluorescence staining. In addition, RNA‐seq and RT‐PCR were performed to dissect the molecular mechanisms of Arid1a underlying cortical neurogenesis. Finally, rescue experiments were conducted to evaluate the effects of Neurod1 or Fezf2 overexpression on the differentiation of NSPCs in vitro. Results Conditional knockout of Arid1a reduces cortical thickness in the developing cortex. Arid1a loss of function inhibits the proliferation of radial glial cells, and increases cell death during late cortical development, and leads to dysregulated expression of genes associated with proliferation and differentiation. Overexpression of Neurod1 or Fezf2 in Arid1a cKO NSPCs rescues their neural differentiation defect in vitro. Conclusions This study demonstrates for the first time that Arid1a plays an important role in regulating the proliferation and differentiation of NSPCs during cortical development, and proposes several gene candidates that are worth to understand the pathological mechanisms and to develop novel interventions of neurodevelopment disorders caused by Arid1a mutations.
Collapse
Affiliation(s)
- Xiao Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Shang-Kun Dai
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Pei-Pei Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Chang-Mei Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| |
Collapse
|
9
|
Mencer S, Kartawy M, Lendenfeld F, Soluh H, Tripathi MK, Khaliulin I, Amal H. Proteomics of autism and Alzheimer's mouse models reveal common alterations in mTOR signaling pathway. Transl Psychiatry 2021; 11:480. [PMID: 34535637 PMCID: PMC8448888 DOI: 10.1038/s41398-021-01578-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 08/03/2021] [Accepted: 08/20/2021] [Indexed: 12/14/2022] Open
Abstract
Autism spectrum disorder (ASD) and Alzheimer's disease (AD) are two different neurological disorders that share common clinical features, such as language impairment, executive functions, and motor problems. A genetic convergence has been proposed as well. However, the molecular mechanisms of these pathologies are still not well understood. Protein S-nitrosylation (SNO), the nitric oxide (NO)-mediated posttranslational modification, targets key proteins implicated in synaptic and neuronal functions. Previously, we have shown that NO and SNO are involved in the InsG3680(+/+) ASD and P301S AD mouse models. Here, we performed large-scale computational biology analysis of the SNO-proteome followed by biochemical validation to decipher the shared mechanisms between the pathologies. This analysis pointed to the mammalian target of rapamycin complex 1 (mTORC1) signaling pathway as one of the shared molecular mechanisms. Activation of mTOR in the cortex of both mouse models was confirmed by western blots that showed increased phosphorylation of RPS6, a major substrate of mTORC1. Other molecular alterations affected by SNO and shared between the two mouse models, such as synaptic-associated processes, PKA signaling, and cytoskeleton-related processes were also detected. This is the first study to decipher the SNO-related shared mechanisms between SHANK3 and MAPT mutations. Understanding the involvement of SNO in neurological disorders and its intersection between ASD and AD might help developing an effective novel therapy for both neuropathologies.
Collapse
Affiliation(s)
- Shira Mencer
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Maryam Kartawy
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Felix Lendenfeld
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Huda Soluh
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Manish Kumar Tripathi
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Igor Khaliulin
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Haitham Amal
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
10
|
Pathogenic variants in PIDD1 lead to an autosomal recessive neurodevelopmental disorder with pachygyria and psychiatric features. Eur J Hum Genet 2021; 29:1226-1234. [PMID: 34163010 PMCID: PMC8385073 DOI: 10.1038/s41431-021-00910-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 04/01/2021] [Accepted: 05/20/2021] [Indexed: 02/02/2023] Open
Abstract
The PIDDosome is a multiprotein complex, composed by the p53-induced death domain protein 1 (PIDD1), the bipartite linker protein CRADD (also known as RAIDD) and the proform of caspase-2 that induces apoptosis in response to DNA damage. In the recent years, biallelic pathogenic variants in CRADD have been associated with a neurodevelopmental disorder (MRT34; MIM 614499) characterized by pachygyria with a predominant anterior gradient, megalencephaly, epilepsy and intellectual disability. More recently, biallelic pathogenic variants in PIDD1 have been described in a few families with apparently nonsydnromic intellectual disability. Here, we aim to delineate the genetic and radio-clinical features of PIDD1-related disorder. Exome sequencing was carried out in six consanguineous families. Thorough clinical and neuroradiological evaluation was performed for all the affected individuals as well as reviewing all the data from previously reported cases. We identified five distinct novel homozygous variants (c.2584C>T p.(Arg862Trp), c.1340G>A p.(Trp447*), c.2116_2120del p.(Val706Hisfs*30), c.1564_1565delCA p.(Gln522fs*44), and c.1804_1805del p.(Gly602fs*26) in eleven subjects displaying intellectual disability, behaviorial and psychiatric features, and a typical anterior-predominant pachygyria, remarkably resembling the CRADD-related neuroimaging pattern. In summary, we outlin`e the phenotypic and molecular spectrum of PIDD1 biallelic variants supporting the evidence that the PIDD1/CRADD/caspase-2 signaling is crucial for normal gyration of the developing human neocortex as well as cognition and behavior.
Collapse
|
11
|
Okuda S, Sato M, Kato S, Nagashima S, Inatome R, Yanagi S, Fukuda T. Oscillation of Cdc20-APC/C-mediated CAMDI stability is critical for cortical neuron migration. J Biol Chem 2021; 297:100986. [PMID: 34298015 PMCID: PMC8353494 DOI: 10.1016/j.jbc.2021.100986] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 06/28/2021] [Accepted: 07/14/2021] [Indexed: 11/08/2022] Open
Abstract
Radial migration during cortical development is required for formation of the six-layered structure of the mammalian cortex. Defective migration of neurons is linked to several developmental disorders such as autism and schizophrenia. A unique swollen structure called the dilation is formed in migrating neurons and is required for movement of the centrosome and nucleus. However, the detailed molecular mechanism by which this dilation forms is unclear. We report that CAMDI, a gene whose deletion is associated with psychiatric behavior, is degraded by cell division cycle protein 20 (Cdc20)–anaphase-promoting complex/cyclosome (APC/C) cell-cycle machinery after centrosome migration into the dilation in mouse brain development. We also show that CAMDI is restabilized in the dilation until the centrosome enters the dilation, at which point it is once again immediately destabilized. CAMDI degradation is carried out by binding to Cdc20–APC/C via the destruction box degron of CAMDI. CAMDI destruction box mutant overexpression inhibits dilation formation and neuronal cell migration via maintaining the stabilized state of CAMDI. These results indicate that CAMDI is a substrate of the Cdc20–APC/C system and that the oscillatory regulation of CAMDI protein correlates with dilation formation for proper cortical migration.
Collapse
Affiliation(s)
- Shohei Okuda
- Laboratory of Molecular Biochemistry, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Mariko Sato
- Laboratory of Molecular Biochemistry, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Saho Kato
- Laboratory of Molecular Biochemistry, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Shun Nagashima
- Laboratory of Molecular Biochemistry, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Ryoko Inatome
- Department of Life Science, Faculty of Science, Gakushuin University, Toshima-ku, Tokyo, Japan
| | - Shigeru Yanagi
- Department of Life Science, Faculty of Science, Gakushuin University, Toshima-ku, Tokyo, Japan
| | - Toshifumi Fukuda
- Laboratory of Molecular Biochemistry, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan.
| |
Collapse
|
12
|
Pang W, Yi X, Li L, Liu L, Xiang W, Xiao L. Untangle the Multi-Facet Functions of Auts2 as an Entry Point to Understand Neurodevelopmental Disorders. Front Psychiatry 2021; 12:580433. [PMID: 33967843 PMCID: PMC8102784 DOI: 10.3389/fpsyt.2021.580433] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 03/22/2021] [Indexed: 12/27/2022] Open
Abstract
Neurodevelopmental disorders are psychiatric diseases that are usually first diagnosed in infancy, childhood and adolescence. Autism spectrum disorder (ASD) is a neurodevelopmental disorder, characterized by core symptoms including impaired social communication, cognitive rigidity and repetitive behavior, accompanied by a wide range of comorbidities such as intellectual disability (ID) and dysmorphisms. While the cause remains largely unknown, genetic, epigenetic, and environmental factors are believed to contribute toward the onset of the disease. Autism Susceptibility Candidate 2 (Auts2) is a gene highly associated with ID and ASD. Therefore, understanding the function of Auts2 gene can provide a unique entry point to untangle the complex neuronal phenotypes of neurodevelpmental disorders. In this review, we discuss the recent discoveries regarding the molecular and cellular functions of Auts2. Auts2 was shown to be a key-regulator of transcriptional network and a mediator of epigenetic regulation in neurodevelopment, the latter potentially providing a link for the neuronal changes of ASD upon environmental risk-factor exposure. In addition, Auts2 could synchronize the balance between excitation and inhibition through regulating the number of excitatory synapses. Cytoplasmic Auts2 could join the fine-tuning of actin dynamics during neuronal migration and neuritogenesis. Furthermore, Auts2 was expressed in developing mouse and human brain regions such as the frontal cortex, dorsal thalamus, and hippocampus, which have been implicated in the impaired cognitive and social function of ASD. Taken together, a comprehensive understanding of Auts2 functions can give deep insights into the cause of the heterogenous manifestation of neurodevelopmental disorders such as ASD.
Collapse
Affiliation(s)
- Wenbin Pang
- Key Laboratory of Brain Science Research & Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou, China
- National Health Commission (NHC) Key Laboratory of Control of Tropical Diseases, Hainan Medical University, Haikou, China
| | - Xinan Yi
- Key Laboratory of Brain Science Research & Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou, China
| | - Ling Li
- Department of Pediatric Rehabilitation, Hainan Women and Children's Medical Center, Haikou, China
| | - Liyan Liu
- Department of Pediatric Rehabilitation, Hainan Women and Children's Medical Center, Haikou, China
| | - Wei Xiang
- National Health Commission (NHC) Key Laboratory of Control of Tropical Diseases, Hainan Medical University, Haikou, China
| | - Le Xiao
- Key Laboratory of Brain Science Research & Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou, China
- Department of Pediatric Rehabilitation, Hainan Women and Children's Medical Center, Haikou, China
| |
Collapse
|
13
|
Umemura M, Kaneko Y, Tanabe R, Takahashi Y. ATF5 deficiency causes abnormal cortical development. Sci Rep 2021; 11:7295. [PMID: 33790322 PMCID: PMC8012588 DOI: 10.1038/s41598-021-86442-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 03/15/2021] [Indexed: 11/29/2022] Open
Abstract
Activating transcription factor 5 (ATF5) is a member of the cAMP response element binding protein (CREB)/ATF family of basic leucine zipper transcription factors. We previously reported that ATF5-deficient (ATF5−/−) mice exhibited behavioural abnormalities, including abnormal social interactions, reduced behavioural flexibility, increased anxiety-like behaviours, and hyperactivity in novel environments. ATF5−/− mice may therefore be a useful animal model for psychiatric disorders. ATF5 is highly expressed in the ventricular zone and subventricular zone during cortical development, but its physiological role in higher-order brain structures remains unknown. To investigate the cause of abnormal behaviours exhibited by ATF5−/− mice, we analysed the embryonic cerebral cortex of ATF5−/− mice. The ATF5−/− embryonic cerebral cortex was slightly thinner and had reduced numbers of radial glial cells and neural progenitor cells, compared to a wild-type cerebral cortex. ATF5 deficiency also affected the basal processes of radial glial cells, which serve as a scaffold for radial migration during cortical development. Further, the radial migration of cortical upper layer neurons was impaired in ATF5−/− mice. These results suggest that ATF5 deficiency affects cortical development and radial migration, which may partly contribute to the observed abnormal behaviours.
Collapse
Affiliation(s)
- Mariko Umemura
- Laboratory of Environmental Molecular Physiology, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan.
| | - Yasuyuki Kaneko
- Laboratory of Environmental Molecular Physiology, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan
| | - Ryoko Tanabe
- Laboratory of Environmental Molecular Physiology, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan
| | - Yuji Takahashi
- Laboratory of Environmental Molecular Physiology, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan
| |
Collapse
|
14
|
Morozov YM, Mackie K, Rakic P. Cannabinoid Type 1 Receptor is Undetectable in Rodent and Primate Cerebral Neural Stem Cells but Participates in Radial Neuronal Migration. Int J Mol Sci 2020; 21:ijms21228657. [PMID: 33212822 PMCID: PMC7696736 DOI: 10.3390/ijms21228657] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/13/2020] [Accepted: 11/15/2020] [Indexed: 12/14/2022] Open
Abstract
Cannabinoid type 1 receptor (CB1R) is expressed and participates in several aspects of cerebral cortex embryonic development as demonstrated with whole-transcriptome mRNA sequencing and other contemporary methods. However, the cellular location of CB1R, which helps to specify molecular mechanisms, remains to be documented. Using three-dimensional (3D) electron microscopic reconstruction, we examined CB1R immunolabeling in proliferating neural stem cells (NSCs) and migrating neurons in the embryonic mouse (Mus musculus) and rhesus macaque (Macaca mulatta) cerebral cortex. We found that the mitotic and postmitotic ventricular and subventricular zone (VZ and SVZ) cells are immunonegative in both species while radially migrating neurons in the intermediate zone (IZ) and cortical plate (CP) contain CB1R-positive intracellular vesicles. CB1R immunolabeling was more numerous and more extensive in monkeys compared to mice. In CB1R-knock out mice, projection neurons in the IZ show migration abnormalities such as an increased number of lateral processes. Thus, in radially migrating neurons CB1R provides a molecular substrate for the regulation of cell movement. Undetectable level of CB1R in VZ/SVZ cells indicates that previously suggested direct CB1R-transmitted regulation of cellular proliferation and fate determination demands rigorous re-examination. More abundant CB1R expression in monkey compared to mouse suggests that therapeutic or recreational cannabis use may be more distressing for immature primate neurons than inferred from experiments with rodents.
Collapse
Affiliation(s)
- Yury M. Morozov
- Department of Neuroscience, Kavli Institute for Neuroscience, Yale School of Medicine, Yale University, New Haven, CT 6510, USA
- Correspondence: (Y.M.M.); (P.R.)
| | - Ken Mackie
- Gill Center for Biomolecular Science, Indiana University, Bloomington, IN 47405-2204, USA;
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405-2204, USA
| | - Pasko Rakic
- Department of Neuroscience, Kavli Institute for Neuroscience, Yale School of Medicine, Yale University, New Haven, CT 6510, USA
- Correspondence: (Y.M.M.); (P.R.)
| |
Collapse
|
15
|
Diab A, Qi J, Shahin I, Milligan C, Fawcett JP. NCK1 Regulates Amygdala Activity to Control Context-dependent Stress Responses and Anxiety in Male Mice. Neuroscience 2020; 448:107-125. [PMID: 32946951 DOI: 10.1016/j.neuroscience.2020.09.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 08/20/2020] [Accepted: 09/08/2020] [Indexed: 10/23/2022]
Abstract
Anxiety disorder (AD) is characterized by the development of maladaptive neuronal circuits and changes to the excitatory/inhibitory (E/I) balance of the central nervous system. Although AD is considered to be heritable, specific genetic markers remain elusive. Recent genome-wide association studies (GWAS) studies have identified non-catalytic region of tyrosine kinase adaptor protein 1 (NCK1), a gene that codes for an intracellular adaptor protein involved in actin dynamics, as an important gene in the regulation of mood. Using a murine model in which NCK1 is inactivated, we show that male, but not female, mice display increased levels of context-dependent anxiety-like behaviors along with an increase in circulating serum corticosterone relative to control. Treatment of male NCK1 mutant mice with a positive allosteric modulator of the GABAA receptor rescued the anxiety-like behaviors implicating NCK1 in regulating neuronal excitability. These defects are not attributable to apparent defects in gross brain structure or in axon guidance. However, when challenged in an approach-avoidance conflict paradigm, male NCK1-deficient mice have decreased neuronal activation in the prefrontal cortex (PFC), as well as decreased activation of inhibitory interneurons in the basolateral amygdala (BLA). Finally, NCK1 deficiency results in loss of dendritic spine density in principal neurons of the BLA. Taken together, these data implicate NCK1 in the control of E/I balance in BLA. Our work identifies a novel role for NCK1 in the regulation of sex-specific neuronal circuitry necessary for controlling anxiety-like behaviors. Further, our work points to this animal model as a useful preclinical tool for the study of novel anxiolytics and its significance towards understanding sex differences in anxiolytic function.
Collapse
Affiliation(s)
- Antonios Diab
- Department of Pharmacology, Dalhousie University, Canada
| | - Jiansong Qi
- Department of Pharmacology, Dalhousie University, Canada
| | - Ibrahim Shahin
- Department of Pharmacology, Dalhousie University, Canada
| | | | - James P Fawcett
- Department of Pharmacology, Dalhousie University, Canada; Department of Surgery, Dalhousie University, Canada.
| |
Collapse
|
16
|
Peregrina C, Del Toro D. FLRTing Neurons in Cortical Migration During Cerebral Cortex Development. Front Cell Dev Biol 2020; 8:578506. [PMID: 33043013 PMCID: PMC7527468 DOI: 10.3389/fcell.2020.578506] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 08/17/2020] [Indexed: 01/26/2023] Open
Abstract
During development, two coordinated events shape the morphology of the mammalian cerebral cortex, leading to the cortex's columnar and layered structure: the proliferation of neuronal progenitors and cortical migration. Pyramidal neurons originating from germinal zones migrate along radial glial fibers to their final position in the cortical plate by both radial migration and tangential dispersion. These processes rely on the delicate balance of intercellular adhesive and repulsive signaling that takes place between neurons interacting with different substrates and guidance cues. Here, we focus on the function of the cell adhesion molecules fibronectin leucine-rich repeat transmembrane proteins (FLRTs) in regulating both the radial migration of neurons, as well as their tangential spread, and the impact these processes have on cortex morphogenesis. In combining structural and functional analysis, recent studies have begun to reveal how FLRT-mediated responses are precisely tuned - from forming different protein complexes to modulate either cell adhesion or repulsion in neurons. These approaches provide a deeper understanding of the context-dependent interactions of FLRTs with multiple receptors involved in axon guidance and synapse formation that contribute to finely regulated neuronal migration.
Collapse
Affiliation(s)
- Claudia Peregrina
- Department of Biological Sciences, Faculty of Medicine, Institute of Neurosciences, University of Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Daniel Del Toro
- Department of Biological Sciences, Faculty of Medicine, Institute of Neurosciences, University of Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| |
Collapse
|
17
|
Accogli A, Addour-Boudrahem N, Srour M. Neurogenesis, neuronal migration, and axon guidance. HANDBOOK OF CLINICAL NEUROLOGY 2020; 173:25-42. [PMID: 32958178 DOI: 10.1016/b978-0-444-64150-2.00004-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Development of the central nervous system (CNS) is a complex, dynamic process that involves a precisely orchestrated sequence of genetic, environmental, biochemical, and physical factors from early embryonic stages to postnatal life. Duringthe past decade, great strides have been made to unravel mechanisms underlying human CNS development through the employment of modern genetic techniques and experimental approaches. In this chapter, we review the current knowledge regarding the main developmental processes and signaling mechanisms of (i) neurogenesis, (ii) neuronal migration, and (iii) axon guidance. We discuss mechanisms related to neural stem cells proliferation, migration, terminal translocation of neuronal progenitors, and axon guidance and pathfinding. For each section, we also provide a comprehensive overview of the underlying regulatory processes, including transcriptional, posttranscriptional, and epigenetic factors, and a myriad of signaling pathways that are pivotal to determine the fate of neuronal progenitors and newly formed migrating neurons. We further highlight how impairment of this complex regulating system, such as mutations in its core components, may cause cortical malformation, epilepsy, intellectual disability, and autism in humans. A thorough understanding of normal human CNS development is thus crucial to decipher mechanisms responsible for neurodevelopmental disorders and in turn guide the development of effective and targeted therapeutic strategies.
Collapse
Affiliation(s)
- Andrea Accogli
- Unit of Medical Genetics, Istituto Giannina Gaslini Pediatric Hospital, Genova, Italy; Departments of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal-Child Science, Università degli Studi di Genova, Genova, Italy
| | | | - Myriam Srour
- Research Institute, McGill University Health Centre, Montreal, QC, Canada; Department of Pediatrics, Division of Pediatric Neurology, McGill University, Montreal, QC, Canada.
| |
Collapse
|
18
|
Lucchese G, Flöel A, Stahl B. A Peptide Link Between Human Cytomegalovirus Infection, Neuronal Migration, and Psychosis. Front Psychiatry 2020; 11:349. [PMID: 32457660 PMCID: PMC7225321 DOI: 10.3389/fpsyt.2020.00349] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 04/06/2020] [Indexed: 01/28/2023] Open
Abstract
Alongside biological, psychological, and social risk factors, psychotic syndromes may be related to disturbances of neuronal migration. This highly complex process characterizes the developing brain of the fetus, the early postnatal brain, and the adult brain, as reflected by changes within the subventricular zone and the dentate gyrus of the hippocampus, where neurogenesis persists throughout life. Psychosis also appears to be linked to human cytomegalovirus (HCMV) infection. However, little is known about the connection between psychosis, HCMV infection, and disruption of neuronal migration. The present study addresses the hypothesis that HCMV infection may lead to mental disorders through mechanisms of autoimmune cross-reactivity. Searching for common peptides that underlie immune cross-reactions, the analyses focus on HCMV and human proteins involved in neuronal migration. Results demonstrate a large overlap of viral peptides with human proteins associated with neuronal migration, such as ventral anterior homeobox 1 and cell adhesion molecule 1 implicated in GABAergic and glutamatergic neurotransmission. The present findings support the possibility of immune cross-reactivity between HCMV and human proteins that-when altered, mutated, or improperly functioning-may disrupt normal neuronal migration. In addition, these findings are consistent with a molecular and mechanistic framework for pathological sequences of events, beginning with HCMV infection, followed by immune activation, cross-reactivity, and neuronal protein variations that may ultimately contribute to the emergence of mental disorders, including psychosis.
Collapse
Affiliation(s)
- Guglielmo Lucchese
- Department of Neurology, University of Greifswald, Greifswald, Germany.,Department of Computing, Goldsmiths, University of London, London, United Kingdom
| | - Agnes Flöel
- Department of Neurology, University of Greifswald, Greifswald, Germany.,Partner Site Rostock/Greifswald, German Center for Neurodegenerative Diseases, Greifswald, Germany
| | - Benjamin Stahl
- Department of Neurology, University of Greifswald, Greifswald, Germany.,Department of Neurology, Charité Universitätsmedizin Berlin, Berlin, Germany.,Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,Psychologische Hochschule Berlin, Berlin, Germany
| |
Collapse
|
19
|
Fukuda T, Nagashima S, Inatome R, Yanagi S. CAMDI interacts with the human memory-associated protein KIBRA and regulates AMPAR cell surface expression and cognition. PLoS One 2019; 14:e0224967. [PMID: 31730661 PMCID: PMC6857912 DOI: 10.1371/journal.pone.0224967] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 10/25/2019] [Indexed: 01/06/2023] Open
Abstract
Little is known about the molecular mechanisms of cognitive deficits in psychiatric disorders. CAMDI is a psychiatric disorder-related factor, the deficiency of which in mice results in delayed neuronal migration and psychiatrically abnormal behaviors. Here, we found that CAMDI-deficient mice exhibited impaired recognition memory and spatial reference memory. Knockdown of CAMDI in hippocampal neurons increased the amount of internalized alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate receptor (AMPAR) and attenuated the chemical long-term potentiation (LTP)-dependent cell surface expression of AMPAR. KIBRA was identified as a novel CAMDI-binding protein that retains AMPAR in the cytosol after internalization. KIBRA inhibited CAMDI-dependent Rab11 activation, thereby attenuating AMPAR cell surface expression. These results suggest that CAMDI regulates AMPAR cell surface expression during LTP. CAMDI dysfunction may partly explain the mechanism underlying cognitive deficits in psychiatric diseases.
Collapse
Affiliation(s)
- Toshifumi Fukuda
- Laboratory of Molecular Biochemistry, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
- * E-mail: (SY); (TF)
| | - Shun Nagashima
- Laboratory of Molecular Biochemistry, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Ryoko Inatome
- Laboratory of Molecular Biochemistry, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Shigeru Yanagi
- Laboratory of Molecular Biochemistry, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
- * E-mail: (SY); (TF)
| |
Collapse
|
20
|
Pan YH, Wu N, Yuan XB. Toward a Better Understanding of Neuronal Migration Deficits in Autism Spectrum Disorders. Front Cell Dev Biol 2019; 7:205. [PMID: 31620440 PMCID: PMC6763556 DOI: 10.3389/fcell.2019.00205] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Accepted: 09/06/2019] [Indexed: 11/13/2022] Open
Abstract
Newborn neurons in developing brains actively migrate from germinal zones to designated regions before being wired into functional circuits. The motility and trajectory of migrating neurons are regulated by both extracellular factors and intracellular signaling cascades. Defects in the molecular machinery of neuronal migration lead to mis-localization of affected neurons and are considered as an important etiology of multiple developmental disorders including epilepsy, dyslexia, schizophrenia (SCZ), and autism spectrum disorders (ASD). However, the mechanisms that link neuronal migration deficits to the development of these diseases remain elusive. This review focuses on neuronal migration deficits in ASD. From a translational perspective, we discuss (1) whether neuronal migration deficits are general neuropathological characteristics of ASD; (2) how the phenotypic heterogeneity of neuronal migration disorders is generated; (3) how neuronal migration deficits lead to functional defects of brain circuits; and (4) how therapeutic intervention of neuronal migration deficits can be a potential treatment for ASD.
Collapse
Affiliation(s)
- Yi-Hsuan Pan
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), Institute of Brain Functional Genomics, School of Life Sciences and the Collaborative Innovation Center for Brain Science, East China Normal University, Shanghai, China
| | - Nan Wu
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), Institute of Brain Functional Genomics, School of Life Sciences and the Collaborative Innovation Center for Brain Science, East China Normal University, Shanghai, China
| | - Xiao-Bing Yuan
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), Institute of Brain Functional Genomics, School of Life Sciences and the Collaborative Innovation Center for Brain Science, East China Normal University, Shanghai, China.,Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
21
|
Liang C, Carrel D, Omelchenko A, Kim H, Patel A, Fanget I, Firestein BL. Cortical Neuron Migration and Dendrite Morphology are Regulated by Carboxypeptidase E. Cereb Cortex 2019; 29:2890-2903. [PMID: 29982499 PMCID: PMC6611459 DOI: 10.1093/cercor/bhy155] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 06/08/2018] [Accepted: 06/12/2018] [Indexed: 12/28/2022] Open
Abstract
Higher brain function relies on proper development of the cerebral cortex, including correct positioning of neurons and dendrite morphology. Disruptions in these processes may result in various neurocognitive disorders. Mutations in the CPE gene, which encodes carboxypeptidase E (CPE), have been linked to depression and intellectual disability. However, it remains unclear whether CPE is involved in early brain development and in turn contributes to the pathophysiology of neurocognitive disorders. Here, we investigate the effects of CPE knockdown on early brain development and explore the functional significance of the interaction between CPE and its binding partner p150Glued. We demonstrate that CPE is required for cortical neuron migration and dendrite arborization. Furthermore, we show that expression of CPE-C10 redistributes p150Glued from the centrosome and that disruption of CPE interaction with p150Glued leads to abnormal neuronal migration and dendrite morphology, suggesting that a complex between CPE and p150Glued is necessary for proper neurodevelopment.
Collapse
Affiliation(s)
- Chen Liang
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, 604 Allison Road, Piscataway, NJ, USA
- Molecular Biosciences Graduate Program, Rutgers, The State University of New Jersey, 604 Allison Road, Piscataway, NJ, USA
| | - Damien Carrel
- Neurophotonics Laboratory, Université Paris Descartes, Sorbonne Paris Cité, Centre National de la Recherche Scientifique UMR 8250, Paris, France
| | - Anton Omelchenko
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, 604 Allison Road, Piscataway, NJ, USA
- Neuroscience Graduate Program, Rutgers, The State University of New Jersey, 683 Hoes Lane West, USA
| | - Hyuck Kim
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, 604 Allison Road, Piscataway, NJ, USA
| | - Aashini Patel
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, 604 Allison Road, Piscataway, NJ, USA
| | - Isabelle Fanget
- Neurophotonics Laboratory, Université Paris Descartes, Sorbonne Paris Cité, Centre National de la Recherche Scientifique UMR 8250, Paris, France
| | - Bonnie L Firestein
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, 604 Allison Road, Piscataway, NJ, USA
| |
Collapse
|
22
|
Csmd2 Is a Synaptic Transmembrane Protein that Interacts with PSD-95 and Is Required for Neuronal Maturation. eNeuro 2019; 6:ENEURO.0434-18.2019. [PMID: 31068362 PMCID: PMC6506821 DOI: 10.1523/eneuro.0434-18.2019] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 04/01/2019] [Accepted: 04/05/2019] [Indexed: 12/21/2022] Open
Abstract
Mutations and copy number variants of the CUB and Sushi multiple domains 2 (CSMD2) gene are associated with neuropsychiatric disease. CSMD2 encodes a single-pass transmembrane protein with a large extracellular domain comprising repeats of CUB and Sushi domains. High expression of CSMD2 in the developing and mature brain suggests possible roles in neuron development or function, but the cellular functions of CSMD2 are not known. In this study, we show that mouse Csmd2 is expressed in excitatory and inhibitory neurons in the forebrain. Csmd2 protein exhibits a somatodendritic localization in the neocortex and hippocampus, with smaller puncta localizing to the neuropil. Using immunohistochemical and biochemical methods, we demonstrate that Csmd2 localizes to dendritic spines and is enriched in the postsynaptic density (PSD). Accordingly, we show that the cytoplasmic tail domain of Csmd2 interacts with synaptic scaffolding proteins of the membrane-associated guanylate kinase (MAGUK) family. The association between Csmd2 and MAGUK member PSD-95 is dependent on a PDZ-binding domain on the Csmd2 tail, which is also required for synaptic targeting of Csmd2. Finally, we show that knock-down of Csmd2 expression in hippocampal neuron cultures results in reduced complexity of dendritic arbors and deficits in dendritic spine density. Knock-down of Csmd2 in immature developing neurons results in reduced filopodia density, whereas Csmd2 knock-down in mature neurons causes significant reductions in dendritic spine density and dendrite complexity. Together, these results point toward a function for Csmd2 in development and maintenance of dendrites and synapses, which may account for its association with certain psychiatric disorders.
Collapse
|
23
|
Pruski M, Lang B. Primary Cilia-An Underexplored Topic in Major Mental Illness. Front Psychiatry 2019; 10:104. [PMID: 30886591 PMCID: PMC6409319 DOI: 10.3389/fpsyt.2019.00104] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 02/12/2019] [Indexed: 12/20/2022] Open
Abstract
Though much progress has been made in recent years towards understanding the function and physiology of primary cilia, they remain a somewhat elusive organelle. Some studies have explored the role of primary cilia in the developing nervous system, and their dysfunction has been linked with several neurosensory deficits. Yet, very little has been written on their potential role in psychiatric disorders. This article provides an overview of some of the functions of primary cilia in signalling pathways, and demonstrates that they are a worthy candidate in psychiatric research. The links between primary cilia and major mental illness have been demonstrated to exist at several levels, spanning genetics, signalling pathways, and pharmacology as well as cell division and migration. The primary focus of this review is on the sensory role of the primary cilium and the neurodevelopmental hypothesis of psychiatric disease. As such, the primary cilium is demonstrated to be a key link between the cellular environment and cell behaviour, and hence of key importance in the considerations of the nature and nurture debate in psychiatric research.
Collapse
Affiliation(s)
- Michal Pruski
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China
- Critical Care Laboratory, Critical Care Directorate, Manchester Royal Infirmary, Manchester University NHS Foundation Trust, Manchester, United Kingdom
- School of Healthcare Science, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, United Kingdom
| | - Bing Lang
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| |
Collapse
|
24
|
Purinergic system in psychiatric diseases. Mol Psychiatry 2018; 23:94-106. [PMID: 28948971 DOI: 10.1038/mp.2017.188] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 07/15/2017] [Accepted: 07/20/2017] [Indexed: 12/14/2022]
Abstract
Psychiatric disorders are debilitating diseases, affecting >80 million people worldwide. There are no causal cures for psychiatric disorders and available therapies only treat the symptoms. The etiology of psychiatric disorders is unknown, although it has been speculated to be a combination of environmental, stress and genetic factors. One of the neurotransmitter systems implicated in the biology of psychiatric disorders is the purinergic system. In this review, we performed a comprehensive search of the literature about the role and function of the purinergic system in the development and predisposition to psychiatric disorders, with a focus on depression, schizophrenia, bipolar disorder, autism, anxiety and attention deficit/hyperactivity disorder. We also describe how therapeutics used for psychiatric disorders act on the purinergic system.
Collapse
|