1
|
Zhang Z, Yang Z, Wang S, Wang X, Mao J. Natural products and ferroptosis: A novel approach for heart failure management. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 142:156783. [PMID: 40286752 DOI: 10.1016/j.phymed.2025.156783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 03/23/2025] [Accepted: 04/17/2025] [Indexed: 04/29/2025]
Abstract
BACKGROUND The discovery of ferroptosis has brought a revolutionary breakthrough in heart failure treatment, and natural products, as a significant source of drug discovery, are gradually demonstrating their extraordinary potential in regulating ferroptosis and alleviating heart failure symptoms. In addition to chemically synthesized small molecule compounds, natural products have attracted attention as an important source for discovering compounds that target ferroptosis in treating heart failure. PURPOSE Systematically summarize and analyze the research progress on improving heart failure through natural products' modulation of the ferroptosis pathway. METHODS By comprehensively searching authoritative databases like PubMed, Web of Science, and China National Knowledge Infrastructure with keywords such as "heart failure", "cardiovascular disease", "heart disease", "ferroptosis", "natural products", "active compounds", "traditional Chinese medicine formulas", "traditional Chinese medicine", and "acupuncture", we aim to systematically review the mechanism of ferroptosis and its link with heart failure. We also want to explore natural small-molecule compounds, traditional Chinese medicine formulas, and acupuncture therapies that can inhibit ferroptosis to improve heart failure. RESULTS In this review, we not only trace the evolution of the concept of ferroptosis and clearly distinguish it from other forms of cell death but also establish a comprehensive theoretical framework encompassing core mechanisms such as iron overload and system xc-/GSH/GPX4 imbalance, along with multiple auxiliary pathways. On this basis, we innovatively link ferroptosis with various types of heart failure, covering classic heart failure types and extending our research to pre-heart failure conditions such as arrhythmia and aortic aneurysm, providing new insights for early intervention in heart failure. Importantly, this article systematically integrates multiple strategies of natural products for interfering with ferroptosis, ranging from monomeric compounds and bioactive components to crude extracts and further to traditional Chinese medicine formulae. In addition, non-pharmacological means such as acupuncture are also included. CONCLUSION This study fills the gap in the systematic description of the relationship between ferroptosis and heart failure and the therapeutic strategies of natural products, aiming to provide patients with more diverse treatment options and promote the development of the heart failure treatment field.
Collapse
Affiliation(s)
- Zeyu Zhang
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, No.88 Changling Road, Xiqing District, Tianjin 300381, PR China; Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Zhihua Yang
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, No.88 Changling Road, Xiqing District, Tianjin 300381, PR China; Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Shuai Wang
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, No.88 Changling Road, Xiqing District, Tianjin 300381, PR China
| | - Xianliang Wang
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, No.88 Changling Road, Xiqing District, Tianjin 300381, PR China.
| | - Jingyuan Mao
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, No.88 Changling Road, Xiqing District, Tianjin 300381, PR China.
| |
Collapse
|
2
|
Rousselle A, Lodka D, Sonnemann J, Kling L, Kettritz R, Schreiber A. Endothelial but not systemic ferroptosis inhibition protects from antineutrophil cytoplasmic antibody-induced crescentic glomerulonephritis. Kidney Int 2025; 107:1037-1050. [PMID: 40122342 DOI: 10.1016/j.kint.2025.02.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 12/20/2024] [Accepted: 02/25/2025] [Indexed: 03/25/2025]
Abstract
Antineutrophil cytoplasmic antibody (ANCA)-associated vasculitides (AAV) are systemic autoimmune diseases featuring small blood vessel inflammation and organ damage, including necrotizing crescentic glomerulonephritis (NCGN). Persistent vascular inflammation leads to endothelial and kidney cell necrosis. Ferroptosis is a regulated cell death pathway executed by reactive oxygen species and iron-dependent lipid peroxidation culminating in cell membrane rupture. Here we show that ANCA-activated neutrophils induced endothelial cell (EC) death in vitro that was prevented by ferroptosis inhibition with Ferrostatin-1, Liproxstatin-1 and small inhibiting RNA against the enzyme AcylCoA Synthetase Long Chain Family Member 4 (ACSL4). In contrast, neither necroptosis nor apoptosis inhibition affected EC death. Moreover, both ferroptosis inhibitors alleviated lipid peroxide accumulation in EC. Increased lipid peroxidation was detected in kidney sections of AAV mice by immunohistochemistry. We generated MPO-/- ACSL4flox Tie2-Cre+ mice lacking ACSL4 specifically in EC (ACSL4ΔEC) to study the significance of endothelial ferroptosis in vivo. ACSL4ΔEC chimeric mice, but not control mice (ACSL4WT), were protected from NCGN in an MPO-AAV bone-marrow transplantation model. These data establish that EC ferroptosis contributes to ANCA-induced glomerulonephritis. However, systemic pharmacological ferroptosis inhibition with Ferrostatin-1 or Liproxstatin-1 did not protect from NCGN in a murine AAV model. Ferrostatin-1 treatment both directly activated T-cell proliferation and indirectly myeloid-mediated T-cell proliferation and polarization in vitro. Conceivably, both effects may cancel the beneficial effect of endothelial ferroptosis inhibition. Mechanistically, we describe the importance of EC ferroptosis for the development of AAV. However, the lack of protection with systemic pharmacological ferroptosis inhibition should discourage clinicians from evaluating this treatment strategy in clinical AAV studies.
Collapse
Affiliation(s)
- Anthony Rousselle
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine (MDC) and Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Dörte Lodka
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine (MDC) and Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Janis Sonnemann
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine (MDC) and Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Department of Nephrology and Medical Intensive Care Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Lovis Kling
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine (MDC) and Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Department of Nephrology and Medical Intensive Care Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Ralph Kettritz
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine (MDC) and Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Department of Nephrology and Medical Intensive Care Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Adrian Schreiber
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine (MDC) and Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Department of Nephrology and Medical Intensive Care Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
3
|
Shimizu R, Watanabe H, Iida S, Yamamoto Y, Fujisawa A. Formation of singlet oxygen in addition to hydroxyl radical via the Fenton reaction. Redox Biol 2025; 84:103687. [PMID: 40413868 DOI: 10.1016/j.redox.2025.103687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2025] [Accepted: 05/17/2025] [Indexed: 05/27/2025] Open
Abstract
We established an LC-MS/MS method for detecting uric acid oxidation metabolites to evaluate reactive oxygen and nitrogen species, as uric acid gives specific products. Parabanic acid was identified during attempts to detect hydroxyl radical-specific products in the Fenton reaction. As parabanic acid is a singlet oxygen-specific product of uric acid, this indicates the Fenton system, which is known for the generation of hydroxyl radicals, also forms singlet oxygen products. This notion was confirmed by replacing uric acid with tryptophan, which resulted in the formation of singlet oxygen-specific oxidation products (cis- and trans-WOOH) and their reductants, cis- and trans-WOH. Product amounts were reduced in a dose-dependent manner by the addition of the singlet oxygen quenchers sodium azide or 1,4-diazabicyclo[2.2.2]octane. Surprisingly, the estimated amount of singlet oxygen produced was 50- to 70-fold greater than that of hydroxyl radical, considering the quantum yield of the reaction between uric acid and singlet oxygen. The formation of singlet oxygen under anaerobic conditions suggested it was derived from hydrogen peroxide. The production of non-labeled parabanic acid, even in an 18O2 atmosphere or the presence of H218O, supported this hypothesis. These results confirmed that singlet oxygen was derived from hydrogen peroxide. The proposed mechanism of singlet oxygen formation is as follows. Two hydrogen peroxyl radicals formed by the reaction of hydrogen peroxide and ferric ion or hydroxyl radical are coupled to form a hydrogen tetraoxide, which subsequently decomposes to form singlet oxygen and hydrogen peroxide via a Russell-like mechanism. Finally, it was observed that significantly more singlet oxygen was generated in whole human blood compared with red blood cell-depleted blood during pseudo-inflammation initiated by lipopolysaccharide addition, suggesting that singlet oxygen formation was due to the Fenton reaction. Thus, the Fenton reaction may be a novel pathway for singlet oxygen production.
Collapse
Affiliation(s)
- Rino Shimizu
- School of Bioscience and Biotechnology, Tokyo University of Technology, 1404-1 Katakura, Hachioji, Tokyo, 192-0982, Japan.
| | - Haruki Watanabe
- School of Bioscience and Biotechnology, Tokyo University of Technology, 1404-1 Katakura, Hachioji, Tokyo, 192-0982, Japan.
| | - Sayaka Iida
- School of Bioscience and Biotechnology, Tokyo University of Technology, 1404-1 Katakura, Hachioji, Tokyo, 192-0982, Japan.
| | - Yorihiro Yamamoto
- School of Bioscience and Biotechnology, Tokyo University of Technology, 1404-1 Katakura, Hachioji, Tokyo, 192-0982, Japan.
| | - Akio Fujisawa
- School of Bioscience and Biotechnology, Tokyo University of Technology, 1404-1 Katakura, Hachioji, Tokyo, 192-0982, Japan.
| |
Collapse
|
4
|
Zhang Z, Yang Z, Wang S, Wang X, Mao J. Mechanism of ferroptosis in heart failure: The role of the RAGE/TLR4-JNK1/2 pathway in cardiomyocyte ferroptosis and intervention strategies. Ageing Res Rev 2025; 109:102770. [PMID: 40360081 DOI: 10.1016/j.arr.2025.102770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 04/29/2025] [Accepted: 05/08/2025] [Indexed: 05/15/2025]
Abstract
The ferroptosis of cardiomyocytes has been recognized as the core pathological mechanism of heart failure. During the evolution of cardiovascular diseases, the accumulation of angiotensin II and advanced glycation end products can lead to the excessive activation of the RAGE/TLR4-JNK1/2 pathway, which subsequently triggers ferritinophagy, clockophagy, and enhanced p53 activity, ultimately leading to cardiomyocyte ferroptosis. It is evident that deeply unraveling the specific mechanisms in this field and comprehensively evaluating potential drugs and therapeutic strategies targeting this pathway is crucial for improving the status of cardiomyocyte ferroptosis. However, our current understanding of this pathway's specific molecular biological mechanisms in the process of cardiomyocyte ferroptosis remains limited. In light of this, this paper first comprehensively reviews the historical context of ferroptosis research, compares the similarities and differences between ferroptosis and other standard modes of cell death, elucidates the core mechanisms of ferroptosis and its close connection with heart failure, aiming to establish a basic cognitive framework for readers on ferroptosis and its role in heart failure. Subsequently, the paper delves into the pivotal role of the RAGE/TLR4-JNK1/2 pathway in cardiomyocyte ferroptosis and its intricate molecular biological regulatory network. Furthermore, it systematically integrates various therapeutic approaches aimed at inhibiting RAGE, TLR4, and JNK1/2 activity to alleviate cardiomyocyte ferroptosis, encompassing RNA interference technology, gene knockout techniques, small molecule inhibitors, natural active ingredients, as well as traditional Chinese and Western medicines, with the ultimate goal of forging new avenues and strategies for the prevention and treatment of heart failure.
Collapse
Affiliation(s)
- Zeyu Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, PR China; Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Zhihua Yang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, PR China; Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Shuai Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, PR China.
| | - Xianliang Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, PR China.
| | - Jingyuan Mao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, PR China.
| |
Collapse
|
5
|
Devos L, Dubois A, Fieuws S, Vanden Berghe T, Pirenne J, Ceulemans LJ, Monbaliu D, Jochmans I. The Efficacy of Ferroptosis Inhibition on Ischemia-Reperfusion Injury of Abdominal Organs: A Systematic Review and Meta-analysis. Transplantation 2025:00007890-990000000-01071. [PMID: 40269342 DOI: 10.1097/tp.0000000000005405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
Solid organ transplantation is hampered by complications that arise after ischemia-reperfusion injury (IRI), a detrimental type of injury for which no adequate treatment options are available. Ferroptosis, an iron-dependent form of regulated cell death, is a major driver of IRI. This systematic review and meta-analysis summarizes the effects of pharmacological ferroptosis inhibition in abdominal organs in the setting of IRI. PubMed, Embase, Web of Science and Cochrane were searched for concepts "ferroptosis" and "IRI" in August 2023. To allow for meta-analyses, inhibitors were divided into different intervention pathways: (I) lipophilic radical scavengers, (II) iron chelators, (III) antioxidants, (IV) lipid metabolism inhibitors, (V) combination treatments, and (VI) others. When available, organ function and injury effect sizes were extracted and used for random-effects meta-analyses. In total 79 articles were included, describing 59 unique inhibitors in kidney, liver, and intestinal IRI. No studies in pancreas were found. Overall bias and study quality was unclear and average to low, respectively. Apart from 1 clinical study, all inhibitors were tested in preclinical settings. The vast majority of the studies showed ferroptosis inhibition to be protective against IRI under various treatment conditions. In liver and kidney IRI, meta-analyses on standardized effect sizes from 43 articles showed a combined protective effect against IRI compared with a nontreated controls for all analyzed intervention pathways. In conclusion, ferroptosis inhibition protects against abdominal IRI in preclinical research. Important questions regarding optimal intervention pathway, bioavailability, optimal dosage, side effects etc. should be addressed before clinical introduction.
Collapse
Affiliation(s)
- Lene Devos
- Laboratory of Abdominal Transplantation, Transplantation Research Group, Department of Microbiology, Immunology, and Transplantation, KU Leuven, Leuven, Belgium
| | - Antoine Dubois
- Laboratory of Abdominal Transplantation, Transplantation Research Group, Department of Microbiology, Immunology, and Transplantation, KU Leuven, Leuven, Belgium
- Abdominal Transplantation, University Hospitals Leuven, Leuven, Belgium
| | - Steffen Fieuws
- Department of Public Health, Interuniversity Centre for Biostatistics and Statistical Bioinformatics, KU Leuven, Leuven, Belgium
| | - Tom Vanden Berghe
- Cell Death Signaling Lab, Department of Biomedical Sciences, Inflamed Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Jacques Pirenne
- Laboratory of Abdominal Transplantation, Transplantation Research Group, Department of Microbiology, Immunology, and Transplantation, KU Leuven, Leuven, Belgium
- Abdominal Transplantation, University Hospitals Leuven, Leuven, Belgium
| | - Laurens J Ceulemans
- Department of Chronic Diseases and Metabolism, BREATHE, KU Leuven, Leuven, Belgium
- Thoracic Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Diethard Monbaliu
- Laboratory of Abdominal Transplantation, Transplantation Research Group, Department of Microbiology, Immunology, and Transplantation, KU Leuven, Leuven, Belgium
- Abdominal Transplantation, University Hospitals Leuven, Leuven, Belgium
| | - Ina Jochmans
- Laboratory of Abdominal Transplantation, Transplantation Research Group, Department of Microbiology, Immunology, and Transplantation, KU Leuven, Leuven, Belgium
- Abdominal Transplantation, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
6
|
Ros U, Martinez-Osorio V, Valiente PA, Abdelwahab Y, Gojkovic M, Shalaby R, Zanna S, Saggau J, Wachsmuth L, Nemade HN, Zoeller J, Lottermoser H, Chen YG, Ibrahim M, Kelepouras K, Vasilikos L, Bedoya P, Espiritu RA, Müller S, Altmannova V, Tieleman DP, Weir J, Langer J, Adam M, Walczak H, Wong WWL, Liccardi G, Mollenhauer M, Pasparakis M, Peltzer N, García-Sáez AJ. MLKL activity requires a splicing-regulated, druggable intramolecular interaction. Mol Cell 2025; 85:1589-1605.e12. [PMID: 40209701 DOI: 10.1016/j.molcel.2025.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 02/10/2025] [Accepted: 03/17/2025] [Indexed: 04/12/2025]
Abstract
Necroptosis is an inflammatory form of regulated cell death implicated in a range of human pathologies, whose execution depends on the poorly understood pseudokinase mixed lineage kinase domain-like (MLKL). Here, we report that splicing-dependent insertion of a short amino acid sequence in the C-terminal α-helix (Hc) of MLKL abolishes cell killing activity and creates an anti-necroptotic isoform that counteracts cell death induced by the necroptosis-proficient protein in mice and humans. We show that interaction of Hc with a previously unrecognized hydrophobic groove is essential for necroptosis, which we exploited in a strategy to identify small molecules that inhibit MLKL and substantially ameliorate disease in murine models of necroptosis-driven dermatitis and abdominal aortic aneurysm. Thus, alternative splicing of microexons controls the ability of MLKL to undergo an intramolecular rearrangement essential for necroptosis with potential to guide the development of allosteric MLKL inhibitors for the treatment of human disease.
Collapse
Affiliation(s)
- Uris Ros
- Institute of Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne 50931, Germany; Max Planck Institute of Biophysics, Frankfurt am Main 60439, Germany.
| | - Veronica Martinez-Osorio
- Institute of Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne 50931, Germany
| | - Pedro A Valiente
- Center for Protein Studies, Faculty of Biology, Havana University, Havana 10400, Cuba
| | - Yasmin Abdelwahab
- Institute of Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne 50931, Germany
| | - Milos Gojkovic
- Institute of Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne 50931, Germany
| | - Raed Shalaby
- Institute of Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne 50931, Germany
| | - Silvia Zanna
- Institute of Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne 50931, Germany
| | - Julia Saggau
- Institute of Biochemistry I, Centre for Biochemistry, Faculty of Medicine, University of Cologne, Cologne 50931, Germany; Center for Molecular Medicine Cologne, Cologne 50931, Germany
| | - Laurens Wachsmuth
- Institute of Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne 50931, Germany
| | - Harshal N Nemade
- Department for Experimental Cardiology, Faculty of Medicine, University of Cologne, and Clinic III for Internal Medicine, University Hospital Cologne, Cologne 50931, Germany
| | - Jonathan Zoeller
- Max Planck Institute of Biophysics, Frankfurt am Main 60439, Germany
| | - Hannah Lottermoser
- Department for Experimental Cardiology, Faculty of Medicine, University of Cologne, and Clinic III for Internal Medicine, University Hospital Cologne, Cologne 50931, Germany
| | - Yu-Guang Chen
- Centre for Cell Death, Cancer, and Inflammation (CCCI), UCL Cancer Institute, University College London, London WC1E 6DD, UK; Division of Hematology/Oncology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan
| | - Mohamed Ibrahim
- Institute of Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne 50931, Germany; Center for Molecular Medicine Cologne, Cologne 50931, Germany
| | - Konstantinos Kelepouras
- Institute of Biochemistry I, Centre for Biochemistry, Faculty of Medicine, University of Cologne, Cologne 50931, Germany; Center for Molecular Medicine Cologne, Cologne 50931, Germany
| | - Lazaros Vasilikos
- Institute of Experimental Immunology, University of Zürich, Zürich 8057, Switzerland
| | - Paula Bedoya
- Institute of Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne 50931, Germany
| | - Rafael A Espiritu
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen 72076, Germany
| | - Stefan Müller
- Institute of Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne 50931, Germany
| | - Veronika Altmannova
- Friedrich Miescher Laboratory and Max Planck Institute, Tübingen 72076, Germany
| | - D Peter Tieleman
- Centre for Molecular Simulation, Department of Biological Sciences, University of Calgary, Calgary T2N 1N4, Canada
| | - John Weir
- Friedrich Miescher Laboratory and Max Planck Institute, Tübingen 72076, Germany
| | - Julian Langer
- Max Planck Institute of Biophysics, Frankfurt am Main 60439, Germany
| | - Matti Adam
- Department for Experimental Cardiology, Faculty of Medicine, University of Cologne, and Clinic III for Internal Medicine, University Hospital Cologne, Cologne 50931, Germany
| | - Henning Walczak
- Institute of Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne 50931, Germany; Institute of Biochemistry I, Centre for Biochemistry, Faculty of Medicine, University of Cologne, Cologne 50931, Germany; Centre for Cell Death, Cancer, and Inflammation (CCCI), UCL Cancer Institute, University College London, London WC1E 6DD, UK
| | - W Wei-Lynn Wong
- Institute of Experimental Immunology, University of Zürich, Zürich 8057, Switzerland
| | - Gianmaria Liccardi
- Institute of Biochemistry I, Centre for Biochemistry, Faculty of Medicine, University of Cologne, Cologne 50931, Germany; Center for Molecular Medicine Cologne, Cologne 50931, Germany
| | - Martin Mollenhauer
- Department for Experimental Cardiology, Faculty of Medicine, University of Cologne, and Clinic III for Internal Medicine, University Hospital Cologne, Cologne 50931, Germany
| | - Manolis Pasparakis
- Institute of Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne 50931, Germany
| | - Nieves Peltzer
- Institute of Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne 50931, Germany; Center for Molecular Medicine Cologne, Cologne 50931, Germany; Department of Genome Editing, Institute of Biomedical Genetics (IBMG), University of Stuttgart, Stuttgart 70569, Germany
| | - Ana J García-Sáez
- Institute of Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne 50931, Germany; Max Planck Institute of Biophysics, Frankfurt am Main 60439, Germany.
| |
Collapse
|
7
|
Chen Q, Guo J, Han S, Wang T, Xia K, Yu B, Lu Y, Qiu T, Zhou J. Cordycepin alleviates renal ischemia-reperfusion injury by suppressing the p38/JNK signaling pathway. Int Immunopharmacol 2025; 150:114264. [PMID: 39954658 DOI: 10.1016/j.intimp.2025.114264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 01/27/2025] [Accepted: 02/06/2025] [Indexed: 02/17/2025]
Abstract
Renal ischemia-reperfusion injury (IRI) makes a significant contribution to delayed graft function (DGF) and reduced allograft survival time post-transplantation, thereby complicating the prognosis of renal transplant recipients. Cordycepin, an active compound purified from the traditional Chinese medicine Cordyceps sinensis, has exhibited remarkable anti-inflammatory and organ-protective effects against various diseases, including neurological, hepatic, and metabolic disorders. Therefore, the present study used a murine model of renal ischemia/reperfusion (I/R) and HK2 cell line hypoxia/reoxygenation (H/R) to determine whether cordycepin influences renal IRI. The findings indicated that cordycepin significantly mitigated renal IRI by inhibiting the p38/JNK signaling pathway in the renal tubular epithelial cells, thereby suppressing inflammation, cell apoptosis, and ferroptosis. These findings offer a novel avenue for improving the prognosis of renal transplant recipients and allograft survival.
Collapse
Affiliation(s)
- Qi Chen
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan University ,Wuhan, Hubei 430060, China; Department of Urology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei 430060, China
| | - Jiayu Guo
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan University ,Wuhan, Hubei 430060, China; Department of Urology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei 430060, China; National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-Based Medical Materials, Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Wuhan, Hubei, China
| | - Shangting Han
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan University ,Wuhan, Hubei 430060, China; Department of Urology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei 430060, China
| | - Tianyu Wang
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan University ,Wuhan, Hubei 430060, China; Department of Urology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei 430060, China
| | - Kang Xia
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan University ,Wuhan, Hubei 430060, China; Department of Urology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei 430060, China
| | - Bo Yu
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan University ,Wuhan, Hubei 430060, China; Department of Urology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei 430060, China
| | - Yifan Lu
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan University ,Wuhan, Hubei 430060, China; Department of Urology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei 430060, China
| | - Tao Qiu
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan University ,Wuhan, Hubei 430060, China; Department of Urology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei 430060, China.
| | - Jiangqiao Zhou
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan University ,Wuhan, Hubei 430060, China; Department of Urology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei 430060, China.
| |
Collapse
|
8
|
WEI JIAHENG, ZHU LIANGMING. The role of glutathione peroxidase 4 in the progression, drug resistance, and targeted therapy of non-small cell lung cancer. Oncol Res 2025; 33:863-872. [PMID: 40191731 PMCID: PMC11964886 DOI: 10.32604/or.2024.054201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 08/26/2024] [Indexed: 04/09/2025] Open
Abstract
Lung cancer is one of the main causes of cancer-related deaths globally, with non-small cell lung cancer (NSCLC) being the most prevalent histological subtype of lung cancer. Glutathione peroxidase 4 (GPX4) is a crucial antioxidant enzyme that plays a role in regulating ferroptosis. It is also involved in a wide variety of biological processes, such as tumor cell growth invasion, migration, and resistance to drugs. This study comprehensively examined the role of GPX4 in NSCLC and investigated the clinical feasibility of targeting GPX4 for NSCLC treatment. We discovered that GPX4 influences the progression of NSCLC by modulating multiple signaling pathways, and that blocking GPX4 can trigger ferroptosis and increase the sensitivity to chemotherapy. As a result, GPX4 represents a prospective therapeutic target for NSCLC. Targeting GPX4 inhibits the development of NSCLC cells and decreases their resistance to treatment.
Collapse
Affiliation(s)
- JIAHENG WEI
- School of Clinical Medicine, Shandong Second Medical University, Weifang, 261000, China
| | - LIANGMING ZHU
- Department of Thoracic Surgery, Jinan Central Hospital, Shandong University, Jinan, 250000, China
| |
Collapse
|
9
|
Shen R, Yu X, Shi C, Fang Y, Dai C, Zhou Y. ACSL4 predicts rapid kidney function decline in patients with diabetic kidney disease. Front Endocrinol (Lausanne) 2025; 16:1499555. [PMID: 40182632 PMCID: PMC11966449 DOI: 10.3389/fendo.2025.1499555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 02/20/2025] [Indexed: 04/05/2025] Open
Abstract
Background Ferroptosis of kidney tubular epithelial cells contributes to the pathogenesis of diabetic kidney disease (DKD). An increase in the enzyme long-chain fatty acid CoA ligase 4 (ACSL4) favors ferroptosis. However, the association between ACSL4 in renal tubules and kidney outcomes of patients with DKD is unknown. Methods To investigate the predictive property of ACSL4 in rapid kidney function decline in patients with DKD, a retrospective cohort of 72 biopsy-proven DKD patients were enrolled and followed up for a median of 23 months. Tubular expression levels of ACSL4 in the renal biopsy specimens from 72 DKD patients and 12 control subjects were measured using immunohistochemistry staining. The associations between the ACSL4 level and clinical characteristics as well as rapid kidney function decline defined as an estimated glomerular filtration rate (eGFR) slope ≤ -5 ml/min/1.73m2/year were analyzed. Results ACSL4 was mainly expressed in tubular epithelial cells. The tubular ACSL4 expression levels in the DKD patients were significantly higher than those in the control subjects. ACSL4 was positively correlated with proteinuria and negatively correlated with albumin and hemoglobin at the time of the renal biopsy. During the follow-up time period, the median eGFR slope of these DKD patients was -2.30 ml/min/1.73m2/year. ACSL4 was negatively correlated with the eGFR slope. The top tertile of baseline ACSL4 was found to identify the subjects with DKD who were at high risk for rapid kidney function decline and a similar significant relationship was found using ACSL4 levels as a continuous variable. Conclusions ACSL4 was associated with a rapid progression of DKD and may serve as a novel pathological biomarker.
Collapse
Affiliation(s)
| | | | | | | | - Chunsun Dai
- Center for Kidney Disease, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yang Zhou
- Center for Kidney Disease, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
10
|
Du B, Fu Q, Yang Q, Yang Y, Li R, Yang X, Yang Q, Li S, Tian J, Liu H. Different types of cell death and their interactions in myocardial ischemia-reperfusion injury. Cell Death Discov 2025; 11:87. [PMID: 40044643 PMCID: PMC11883039 DOI: 10.1038/s41420-025-02372-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 01/10/2025] [Accepted: 02/21/2025] [Indexed: 03/09/2025] Open
Abstract
Myocardial ischemia-reperfusion (I/R) injury is a multifaceted process observed in patients with coronary artery disease when blood flow is restored to the heart tissue following ischemia-induced damage. Cardiomyocyte cell death, particularly through apoptosis, necroptosis, autophagy, pyroptosis, and ferroptosis, is pivotal in myocardial I/R injury. Preventing cell death during the process of I/R is vital for improving ischemic cardiomyopathy. These multiple forms of cell death can occur simultaneously, interact with each other, and contribute to the complexity of myocardial I/R injury. In this review, we aim to provide a comprehensive summary of the key molecular mechanisms and regulatory patterns involved in these five types of cell death in myocardial I/R injury. We will also discuss the crosstalk and intricate interactions among these mechanisms, highlighting the interplay between different types of cell death. Furthermore, we will explore specific molecules or targets that participate in different cell death pathways and elucidate their mechanisms of action. It is important to note that manipulating the molecules or targets involved in distinct cell death processes may have a significant impact on reducing myocardial I/R injury. By enhancing researchers' understanding of the mechanisms and interactions among different types of cell death in myocardial I/R injury, this review aims to pave the way for the development of novel interventions for cardio-protection in patients affected by myocardial I/R injury.
Collapse
Affiliation(s)
- Bingxin Du
- Department of Pharmacy, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qiang Fu
- Department of Chinese Formulae, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Qin Yang
- Department of Pharmacy, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yeying Yang
- Department of Pharmacy, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Rui Li
- Department of Pharmacy, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xu Yang
- Department of Pharmacy, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qingrong Yang
- Department of Pharmacy, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shuo Li
- Heilongjiang Provincial Key Laboratory of Panvascular Disease, Harbin, China
| | - Jinwei Tian
- Heilongjiang Provincial Key Laboratory of Panvascular Disease, Harbin, China.
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - Huibin Liu
- Department of Pharmacy, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.
- Heilongjiang Provincial Key Laboratory of Panvascular Disease, Harbin, China.
| |
Collapse
|
11
|
Eskander G, Abdelhamid SG, Wahdan SA, Radwan SM. Insights on the crosstalk among different cell death mechanisms. Cell Death Discov 2025; 11:56. [PMID: 39929794 PMCID: PMC11811070 DOI: 10.1038/s41420-025-02328-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 12/23/2024] [Accepted: 01/27/2025] [Indexed: 02/13/2025] Open
Abstract
The phenomenon of cell death has garnered significant scientific attention in recent years, emerging as a pivotal area of research. Recently, novel modalities of cellular death and the intricate interplay between them have been unveiled, offering insights into the pathogenesis of various diseases. This comprehensive review delves into the intricate molecular mechanisms, inducers, and inhibitors of the underlying prevalent forms of cell death, including apoptosis, autophagy, ferroptosis, necroptosis, mitophagy, and pyroptosis. Moreover, it elucidates the crosstalk and interconnection among the key pathways or molecular entities associated with these pathways, thereby paving the way for the identification of novel therapeutic targets, disease management strategies, and drug repurposing.
Collapse
Affiliation(s)
- Georgette Eskander
- Postgraduate program, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | | | - Sara A Wahdan
- Pharmacology and toxicology Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Sara M Radwan
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
12
|
Wang W, Chen J, Zhan L, Zou H, Wang L, Guo M, Gao H, Xu J, Wu W. Iron and ferroptosis in kidney disease: molecular and metabolic mechanisms. Front Immunol 2025; 16:1531577. [PMID: 39975561 PMCID: PMC11835690 DOI: 10.3389/fimmu.2025.1531577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 01/20/2025] [Indexed: 02/21/2025] Open
Abstract
Maintaining iron homeostasis is necessary for kidney functioning. There is more and more research indicating that kidney disease is often caused by iron imbalance. Over the past decade, ferroptosis' role in mediating the development and progression of renal disorders, such as acute kidney injury (renal ischemia-reperfusion injury, drug-induced acute kidney injury, severe acute pancreatitis induced acute kidney injury and sepsis-associated acute kidney injury), chronic kidney disease (diabetic nephropathy, renal fibrosis, autosomal dominant polycystic kidney disease) and renal cell carcinoma, has come into focus. Thus, knowing kidney iron metabolism and ferroptosis regulation may enhance disease therapy. In this review, we discuss the metabolic and molecular mechanisms of iron signaling and ferroptosis in kidney disease. We also explore the possible targets of ferroptosis in the therapy of renal illness, as well as their existing limitations and future strategies.
Collapse
Affiliation(s)
- Wenjie Wang
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Jingdi Chen
- Department of orthopedics, The Airborne Military Hospital, Wuhan, Hubei, China
| | - Liying Zhan
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Handong Zou
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Lu Wang
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Mengmeng Guo
- The First Clinical College of Wuhan University, Wuhan, Hubei, China
| | - Hang Gao
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Jing Xu
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Wei Wu
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
13
|
Yu Y, Zhang L, Zhang D, Dai Q, Hou M, Chen M, Gao F, Liu XL. The role of ferroptosis in acute kidney injury: mechanisms and potential therapeutic targets. Mol Cell Biochem 2025; 480:759-784. [PMID: 38943027 DOI: 10.1007/s11010-024-05056-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 06/18/2024] [Indexed: 06/30/2024]
Abstract
Acute kidney injury (AKI) is one of the most common and severe clinical renal syndromes with high morbidity and mortality. Ferroptosis is a form of programmed cell death (PCD), is characterized by iron overload, reactive oxygen species accumulation, and lipid peroxidation. As ferroptosis has been increasingly studied in recent years, it is closely associated with the pathophysiological process of AKI and provides a target for the treatment of AKI. This review offers a comprehensive overview of the regulatory mechanisms of ferroptosis, summarizes its role in various AKI models, and explores its interaction with other forms of cell death, it also presents research on ferroptosis in AKI progression to other diseases. Additionally, the review highlights methods for detecting and assessing AKI through the lens of ferroptosis and describes potential inhibitors of ferroptosis for AKI treatment. Finally, the review presents a perspective on the future of clinical AKI treatment, aiming to stimulate further research on ferroptosis in AKI.
Collapse
Affiliation(s)
- Yanxin Yu
- Yan'an Small Molecule Innovative Drug R&D Engineering Research Center, School of Medicine, Yan'an University, Yan'an, China
| | - Lei Zhang
- Yan'an Small Molecule Innovative Drug R&D Engineering Research Center, School of Medicine, Yan'an University, Yan'an, China
| | - Die Zhang
- Yan'an Small Molecule Innovative Drug R&D Engineering Research Center, School of Medicine, Yan'an University, Yan'an, China
| | - Qiangfang Dai
- Yan'an Small Molecule Innovative Drug R&D Engineering Research Center, School of Medicine, Yan'an University, Yan'an, China
| | - Mingzheng Hou
- Yan'an Small Molecule Innovative Drug R&D Engineering Research Center, School of Medicine, Yan'an University, Yan'an, China
| | - Meini Chen
- Yan'an Small Molecule Innovative Drug R&D Engineering Research Center, School of Medicine, Yan'an University, Yan'an, China
| | - Feng Gao
- Yan'an Small Molecule Innovative Drug R&D Engineering Research Center, School of Medicine, Yan'an University, Yan'an, China
| | - Xiao-Long Liu
- Yan'an Small Molecule Innovative Drug R&D Engineering Research Center, School of Medicine, Yan'an University, Yan'an, China.
| |
Collapse
|
14
|
Hoblos H, Cawthorne W, Samson AL, Murphy JM. Protein shapeshifting in necroptotic cell death signaling. Trends Biochem Sci 2025; 50:92-105. [PMID: 39730228 DOI: 10.1016/j.tibs.2024.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/16/2024] [Accepted: 11/22/2024] [Indexed: 12/29/2024]
Abstract
Necroptosis is a mode of programmed cell death executed by the mixed lineage kinase domain-like (MLKL) pseudokinase following its activation by the upstream receptor-interacting protein kinase-3 (RIPK3), subsequent to activation of death, Toll-like, and pathogen receptors. The pathway originates in innate immunity, although interest has surged in therapeutically targeting necroptosis owing to its dysregulation in inflammatory diseases. Here, we explore how protein conformation and higher order assembly of the pathway effectors - Z-DNA-binding protein-1 (ZBP1), RIPK1, RIPK3, and MLKL - can be modulated by post-translational modifications, such as phosphorylation, ubiquitylation, and lipidation, and intermolecular interactions to tune activities and modulate necroptotic signaling flux. As molecular level knowledge of cell death signaling grows, we anticipate targeting the conformations of key necrosomal effector proteins will emerge as new avenues for drug development.
Collapse
Affiliation(s)
- Hanadi Hoblos
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Wayne Cawthorne
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - André L Samson
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - James M Murphy
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia; Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia.
| |
Collapse
|
15
|
Pefanis A, Bongoni AK, McRae JL, Salvaris EJ, Fisicaro N, Murphy JM, Ierino FL, Cowan PJ. Inhibition of RIPK1 or RIPK3 kinase activity post ischemia-reperfusion reduces the development of chronic kidney injury. Biochem J 2025; 482:73-86. [PMID: 39705008 DOI: 10.1042/bcj20240569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 12/19/2024] [Accepted: 12/20/2024] [Indexed: 12/21/2024]
Abstract
Ischemia-reperfusion injury (IRI) occurs when the blood supply to an organ is temporarily reduced and then restored. Kidney IRI is a form of acute kidney injury (AKI), which often progresses to kidney fibrosis. Necroptosis is a regulated necrosis pathway that has been implicated in kidney IRI. Necroptotic cell death involves the recruitment of the RIPK1 and RIPK3 kinases and the activation of the terminal effector, the mixed lineage kinase domain-like (MLKL) pseudokinase. Phosphorylated MLKL causes cell death by plasma membrane rupture, driving 'necroinflammation'. Owing to their apical role in the pathway, RIPK1 and RIPK3 have been implicated in the development of kidney fibrosis. Here, we used a mouse model of unilateral kidney IRI to assess whether the inhibition of RIPK1 or RIPK3 kinase activity reduces AKI and the progression to kidney fibrosis. Mice treated with the RIPK1 inhibitor Nec-1s, either before or after IR, showed reduced kidney injury at 24 hr compared with controls, whereas no protection was offered by the RIPK3 inhibitor GSK´872. In contrast, treatment with either inhibitor from days 3 to 9 post-IR reduced the degree of kidney fibrosis at day 28. These findings further support the role of necroptosis in IRI and provide important validation for the contribution of both RIPK1 and RIPK3 catalytic activities in the progression of kidney fibrosis. Targeting the necroptosis pathway could be a promising therapeutic strategy to mitigate kidney disease following IR.
Collapse
Affiliation(s)
- Aspasia Pefanis
- Immunology Research Centre, St Vincent's Hospital, Melbourne, Victoria, Australia
- Department of Medicine, The University of Melbourne, Melbourne, Victoria, Australia
- Department of Nephrology, St Vincent's Hospital, Melbourne, Victoria, Australia
| | - Anjan K Bongoni
- Immunology Research Centre, St Vincent's Hospital, Melbourne, Victoria, Australia
| | - Jennifer L McRae
- Immunology Research Centre, St Vincent's Hospital, Melbourne, Victoria, Australia
| | - Evelyn J Salvaris
- Immunology Research Centre, St Vincent's Hospital, Melbourne, Victoria, Australia
| | - Nella Fisicaro
- Immunology Research Centre, St Vincent's Hospital, Melbourne, Victoria, Australia
| | - James M Murphy
- Walter and Eliza Hall Institute of Medical Research, Parkville, Melbourne, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Victoria, Australia
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Francesco L Ierino
- Department of Medicine, The University of Melbourne, Melbourne, Victoria, Australia
- Department of Nephrology, St Vincent's Hospital, Melbourne, Victoria, Australia
| | - Peter J Cowan
- Immunology Research Centre, St Vincent's Hospital, Melbourne, Victoria, Australia
- Department of Medicine, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
16
|
Hu Y, Tang J, Hong H, Chen Y, Ye B, Gao Z, Zhu G, Wang L, Liu W, Wang Y. Ferroptosis in kidney disease: a bibliometric analysis from 2012 to 2024. Front Pharmacol 2025; 15:1507574. [PMID: 39872050 PMCID: PMC11769937 DOI: 10.3389/fphar.2024.1507574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 12/27/2024] [Indexed: 01/29/2025] Open
Abstract
Background and aims Ferroptosis, a novel concept of programmed cell death proposed in 2012, in kidney disease, has garnered significant attention based on evidence of abnormal iron deposition and lipid peroxidation damage in the kidney. Our study aim to examine the trends and future research directions in the field of ferroptosis in kidney disease, so as to further explore the target or treatment strategy for clinical treatment of kidney disease. Material and Methods A thorough survey using the Web of Science Core Collection, focusing on literature published between 2012 and 2024 examining the interaction between kidney disease and ferroptosis was conducted. VOSviewer, CiteSpace, and Biblioshiny were used for in-depth scientometric and visualized analyses. Results From 2012 to 2024, a total of 2,244 articles met the inclusion criteria for final analysis. The number of annual publications in this area of study showed a steady pattern at the beginning of the decade. The top 3 journals with the highest publication output were Renal Failure, Oxidative Medicine And Cellular Longevity, and Biomedicine & Pharmacotherapy. China and the United States had the highest number of publications. Central South University and Guangzhou Medical University as the most active and influential institutions. Documents and citation analysis suggested that Andreas Linkermann, Jolanta Malyszko, and Alberto Ortiz are active researchers, and the research by Scott J. Dixon and Jose Pedro Friedmann Angeli, as the most cited article, are more important drivers in the development of the field. Keywords associated with glutathione, lipid peroxidation, and nitric oxide had high frequency in the early studies. In recent years, however, there has been a shift towards biomarkers, inflammation and necrosis, which indicate current and future research directions in this area. Conclusion The global landscape of the ferroptosis research in kidney disease from 2012 to 2024 was presented. Basic research and mechanism exploration for renal fibrosis and chronic kidney disease may be a hot spot in the future.
Collapse
Affiliation(s)
- Yuxin Hu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
- Renal Research Institution of Beijing University of Chinese Medicine, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Jingyi Tang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
- Renal Research Institution of Beijing University of Chinese Medicine, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Hanzhang Hong
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
| | - Yexin Chen
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
| | - Beibei Ye
- Beijing University of Chinese Medicine, Beijing, China
| | - Ziheng Gao
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
| | | | - Lin Wang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Renal Research Institution of Beijing University of Chinese Medicine, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Weijing Liu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Renal Research Institution of Beijing University of Chinese Medicine, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Yaoxian Wang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
- Henan University of Chinese Medicine, Zhengzhou, Henan, China
| |
Collapse
|
17
|
Tian R, Guo S, Chen S, Wu J, Long A, Cheng R, Wang X, Huang L, Li C, Mao W, Xu P, Yu L, Pan H, Liu L. Natural products as Nrf2 modulators for ferroptosis inhibition in renal disease therapy: Recent progress and future prospects. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 136:156342. [PMID: 39742572 DOI: 10.1016/j.phymed.2024.156342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/13/2024] [Accepted: 12/19/2024] [Indexed: 01/03/2025]
Abstract
BACKGROUND The transcription factor Nrf2 (nuclear factor erythroid 2-related factor 2, NFE2L2) is a pivotal regulator of redox balance, metabolism, protein homeostasis and inflammation. Nrf2 is critically involved in both ferroptosis and renal diseases, and may serve as a significant target for many natural products in the treatment of renal diseases. However, a comprehensive overview on this topic is still lacking. PURPOSE To review the protective or therapeutic effects of natural products regulating Nrf2-related ferroptosis against various renal diseases. METHODS We systematically searched the electronic databases involving PubMed, Web of Science, Google Scholar, China National Knowledge Internet (CNKI), Wanfang Database and VIP Database. To ensure a comprehensive exploration, keywords including Nrf2, ferroptosis, natural products, phytochemicals, renal disease, kidney disease, kidney injury and nephropathy were employed. RESULTS Ferroptosis is deeply implicated in various kinds of renal diseases, notably including cisplatin-induced acute kidney injury, sepsis-associated acute kidney injury, renal ischemia/reperfusion injury, diabetic nephropathy, kidney stones and renal fibrosis. Nrf2 plays a regulatory role on many important genes related to iron metabolism, antioxidant system and lipid metabolism, thereby modulating ferroptosis. More than twenty natural products exert renoprotective effects by inhibiting ferroptosis via the regulation of Nrf2. This review presents a comprehensive overview of recent advancements in elucidating the ferroptosis involvement in renal diseases, the role of Nrf2 in regulating ferroptosis, and summarizes the renoprotective natural products as Nrf2 modulators for ferroptosis inhibition. CONCLUSION Through the comprehensive insights, this review clarifies the protective or therapeutic effects of natural products as Nrf2 modulators for ferroptosis inhibition in renal disease therapy, in the pursuit of providing new research ideas and directions for the treatment of renal diseases. Further drug development aimed at discovering more natural products and optimizing their utilization for disease treatment is necessary.
Collapse
Affiliation(s)
- Ruimin Tian
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau 999078, China; The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, China
| | - Shan Guo
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Shudong Chen
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Jiaqi Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau 999078, China; The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Aoyang Long
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Ran Cheng
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Xiaowan Wang
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, China
| | - Lihua Huang
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, China
| | - Chuang Li
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, China
| | - Wei Mao
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, China; Chinese Medicine Guangdong Laboratory (Hengqin Laboratory), Guangdong-Macao In-Depth Cooperation Zone in Hengqin, 519000, China
| | - Peng Xu
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, China; Chinese Medicine Guangdong Laboratory (Hengqin Laboratory), Guangdong-Macao In-Depth Cooperation Zone in Hengqin, 519000, China
| | - Lili Yu
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau 999078, China
| | - Hudan Pan
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Chinese Medicine Guangdong Laboratory (Hengqin Laboratory), Guangdong-Macao In-Depth Cooperation Zone in Hengqin, 519000, China.
| | - Liang Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau 999078, China; State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Chinese Medicine Guangdong Laboratory (Hengqin Laboratory), Guangdong-Macao In-Depth Cooperation Zone in Hengqin, 519000, China.
| |
Collapse
|
18
|
Thorwald MA, Godoy‐Lugo JA, Garcia G, Silva J, Kim M, Christensen A, Mack WJ, Head E, O'Day PA, Benayoun BA, Morgan TE, Pike CJ, Higuchi‐Sanabria R, Forman HJ, Finch CE. Iron-associated lipid peroxidation in Alzheimer's disease is increased in lipid rafts with decreased ferroptosis suppressors, tested by chelation in mice. Alzheimers Dement 2025; 21:e14541. [PMID: 39876821 PMCID: PMC11775463 DOI: 10.1002/alz.14541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 12/05/2024] [Accepted: 12/18/2024] [Indexed: 01/31/2025]
Abstract
INTRODUCTION Iron-mediated cell death (ferroptosis) is a proposed mechanism of Alzheimer's disease (AD) pathology. While iron is essential for basic biological functions, its reactivity generates oxidants which contribute to cell damage and death. METHODS To further resolve mechanisms of iron-mediated toxicity in AD, we analyzed post mortem human brain and ApoEFAD mice. RESULTS AD brains had decreased antioxidant enzymes, including those mediated by glutathione (GSH). Subcellular analyses of AD brains showed greater oxidative damage and lower antioxidant enzymes in lipid rafts, the site of amyloid processing, than in the non-raft membrane fraction. Apolipoprotein E ε4 carriers had lower lipid raft yield with greater membrane oxidation. The hypothesized role of iron in AD pathology was tested in ApoEFAD mice by iron chelation with deferoxamine, which decreased fibrillar amyloid and lipid peroxidation, together with increased GSH-mediated antioxidants. DISCUSSION These novel molecular pathways highlight iron-mediated damage to lipid rafts during AD. HIGHLGHTS Alzheimer's disease (AD) brains have numerous markers for ferroptosis, including increased lipid peroxidation, reduced antioxidant levels, and increased iron storage. Lipid rafts in AD cases have increased oxidative damage and reduced antioxidant enzyme levels and activity which are most severe in apolipoprotein E ε4 carriers. Neuronal markers are correlated with lipid peroxidation, antioxidant defense, and iron signaling proteins suggesting that neuronal loss is linked to these events. Chelation of iron in the early-onset familial AD model reduces iron-mediated lipid peroxidation and fibrillar amyloid.
Collapse
Affiliation(s)
- Max A. Thorwald
- Leonard Davis School of GerontologyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Jose A. Godoy‐Lugo
- Leonard Davis School of GerontologyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Gilberto Garcia
- Leonard Davis School of GerontologyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Justine Silva
- Department of Pathology and Laboratory MedicineUniversity of CaliforniaIrvineCaliforniaUSA
| | - Minhoo Kim
- Leonard Davis School of GerontologyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Amy Christensen
- Leonard Davis School of GerontologyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Wendy J. Mack
- Department of PediatricsKeck School of Medicine of the University of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Elizabeth Head
- Department of Pathology and Laboratory MedicineUniversity of CaliforniaIrvineCaliforniaUSA
| | - Peggy A. O'Day
- Life and Environmental Sciences DepartmentUniversity of CaliforniaMercedCaliforniaUSA
| | - Bérénice A. Benayoun
- Leonard Davis School of GerontologyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Todd E. Morgan
- Leonard Davis School of GerontologyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Christian J. Pike
- Leonard Davis School of GerontologyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Ryo Higuchi‐Sanabria
- Leonard Davis School of GerontologyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Henry Jay Forman
- Leonard Davis School of GerontologyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
- School of Natural SciencesUniversity of California MercedMercedCaliforniaUSA
| | - Caleb E. Finch
- Leonard Davis School of GerontologyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
- Dornsife CollegeUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| |
Collapse
|
19
|
Liu F, Yang Z, Li J, Wu T, Li X, Zhao L, Wang W, Yu W, Zhang G, Xu Y. Targeting programmed cell death in diabetic kidney disease: from molecular mechanisms to pharmacotherapy. Mol Med 2024; 30:265. [PMID: 39707216 DOI: 10.1186/s10020-024-01020-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 11/29/2024] [Indexed: 12/23/2024] Open
Abstract
Diabetic kidney disease (DKD), one of the most prevalent microvascular complications of diabetes, arises from dysregulated glucose and lipid metabolism induced by hyperglycemia, resulting in the deterioration of renal cells such as podocytes and tubular epithelial cells. Programmed cell death (PCD), comprising apoptosis, autophagy, ferroptosis, pyroptosis, and necroptosis, represents a spectrum of cell demise processes intricately governed by genetic mechanisms in vivo. Under physiological conditions, PCD facilitates the turnover of cellular populations and serves as a protective mechanism to eliminate impaired podocytes or tubular epithelial cells, thereby preserving renal tissue homeostasis amidst hyperglycemic stress. However, existing research predominantly elucidates individual modes of cell death, neglecting the intricate interplay and mutual modulation observed among various forms of PCD. In this comprehensive review, we delineate the diverse regulatory mechanisms governing PCD and elucidate the intricate crosstalk dynamics among distinct PCD pathways. Furthermore, we review recent advancements in understanding the pathogenesis of PCD and explore their implications in DKD. Additionally, we explore the potential of natural products derived primarily from botanical sources as therapeutic agents, highlighting their multifaceted effects on modulating PCD crosstalk, thereby proposing novel strategies for DKD treatment.
Collapse
Affiliation(s)
- Fengzhao Liu
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Zhenyu Yang
- Graduate School of Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Jixin Li
- Xi Yuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Tao Wu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xiangyu Li
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, 100102, China
| | - Lijuan Zhao
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Wenru Wang
- Xi Yuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Wenfei Yu
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Guangheng Zhang
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Yunsheng Xu
- Department of Endocrinology, Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250001, China.
| |
Collapse
|
20
|
Wu SF, Ga Y, Ma DY, Hou SL, Hui QY, Hao ZH. The role of ferroptosis in environmental pollution-induced male reproductive system toxicity. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125118. [PMID: 39414070 DOI: 10.1016/j.envpol.2024.125118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 09/28/2024] [Accepted: 10/12/2024] [Indexed: 10/18/2024]
Abstract
This article provides a comprehensive review of the toxic effects of environmental pollution on the male reproductive system, with a particular emphasis on ferroptosis, a form of programmed cell death. Research has shown that environmental pollutants, such as heavy metals, pesticide residues, and plastic additives, can disrupt oxidative stress, increasing the production of reactive oxygen species (ROS) in germ cells. This disruption damages cellular lipids, proteins, and DNA, culminating in cell dysfunction or death. Ferroptosis, a cell death pathway closely linked to oxidative stress, is characterized by the accumulation of intracellular iron ions and elevated levels of lipid ROS. This review also explores the role of ferroptosis in male reproductive disorders, including its contributions to reduced sperm count, decreased motility, and abnormal morphology. Environmental pollutants, particularly heavy metals, can induce ferroptosis by interfering with intracellular antioxidant systems, notably the NRF2, GSH, and GPX4 pathways, accumulating toxic lipid peroxides. Furthermore, the article examines the potential interplay between ferroptosis and other forms of cell death, such as apoptosis, autophagy, pyroptosis, and necrosis, in the context of male reproductive health. The review underscores the critical need for further research into the link between environmental pollutants and male fertility, particularly focusing on ferroptosis. It advocates for targeted research efforts to mitigate the adverse effects of ferroptosis and protect reproductive health, emphasizing that a deeper understanding of these mechanisms could lead to innovative preventive strategies against environmental threats to fertility.
Collapse
Affiliation(s)
- Shao-Feng Wu
- Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya, 572025, China.
| | - Yu Ga
- Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya, 572025, China.
| | - Dan-Yang Ma
- Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya, 572025, China.
| | - Si-Lu Hou
- Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya, 572025, China.
| | - Qiao-Yue Hui
- Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya, 572025, China.
| | - Zhi-Hui Hao
- Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya, 572025, China; Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing, 100193, China; National Center of Technology Innovation for Medicinal Function of Food, National Food and Strategic Reserves Administration, Beijing, 100193, China.
| |
Collapse
|
21
|
Li Y, Zhang J, Qiu X, Zhang Y, Wu J, Bi Q, Sun Z, Wang W. Diverse regulated cell death patterns and immune traits in kidney allograft with fibrosis: a prediction of renal allograft failure based on machine learning, single-nucleus RNA sequencing and molecular docking. Ren Fail 2024; 46:2435487. [PMID: 39632251 PMCID: PMC11619039 DOI: 10.1080/0886022x.2024.2435487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 11/02/2024] [Accepted: 11/23/2024] [Indexed: 12/07/2024] Open
Abstract
Objectives: Post-transplant allograft fibrosis remains a challenge in prolonging allograft survival. Regulated cell death has been widely implicated in various kidney diseases, including renal fibrosis. However, the role of different regulated cell death (RCD) pathways in post-transplant allograft fibrosis remains unclear. Methods and Results: Microarray transcriptome profiling and single-nuclei sequencing data of post-transplant fibrotic and normal grafts were obtained and used to identify RCD-related differentially expressed genes. The enrichment activity of nine RCD modalities in tissue and cells was examined using single-sample gene set enrichment analysis, and their relations with immune infiltration in renal allograft samples were also assessed. Parenchymal and non-parenchymal cells displayed heterogeneity in RCD activation. Additionally, cell-cell communication analysis was also conducted in fibrotic samples. Subsequently, weighted gene co-expression network analysis and seven machine learning algorithms were employed to identify RCD-related hub genes for renal fibrosis. A 9-gene signature, termed RCD risk score (RCDI), was constructed using the least absolute shrinkage and selection operator and multivariate Cox regression algorithms. This signature showed robust accuracy in predicting 1-, 2-, and 3-year allograft survival status (area under the curve for 1-, 2-, and 3-year were 0.900, 0.877, 0.858, respectively). Immune infiltration analysis showed a strong correlation with RCDI and the nine model genes. Finally, molecular docking simulation suggested rapamycin, tacrolimus and mycophenolate mofetil exhibit strong interactions with core RCD-related receptors. Conclusions: In summary, this study explored the activation of nine RCD pathways and their relationships with immune traits, identified potential RCD-related hub genes associated with renal fibrosis, and highlighted potential therapeutic targets for renal allograft fibrosis.
Collapse
Affiliation(s)
- Yuqing Li
- Department of Urology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
- Institute of Urology, Capital Medical University, Beijing, China
| | - Jiandong Zhang
- Department of Urology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
- Institute of Urology, Capital Medical University, Beijing, China
| | - Xuemeng Qiu
- Department of Urology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
- Institute of Urology, Capital Medical University, Beijing, China
| | - Yifei Zhang
- Department of Urology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
- Institute of Urology, Capital Medical University, Beijing, China
| | - Jiyue Wu
- Department of Urology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
- Institute of Urology, Capital Medical University, Beijing, China
| | - Qing Bi
- Department of Urology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
- Institute of Urology, Capital Medical University, Beijing, China
| | - Zejia Sun
- Department of Urology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
- Institute of Urology, Capital Medical University, Beijing, China
| | - Wei Wang
- Department of Urology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
- Institute of Urology, Capital Medical University, Beijing, China
| |
Collapse
|
22
|
Guo Z, Zhuang H, Shi X. Therapeutic efficacy of ferroptosis in the treatment of colorectal cancer (Review). Oncol Lett 2024; 28:563. [PMID: 39390976 PMCID: PMC11465226 DOI: 10.3892/ol.2024.14697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/12/2024] [Indexed: 10/12/2024] Open
Abstract
Colorectal cancer (CRC) is the third most common malignancy worldwide, and the second leading cause of cancer-associated mortality. The incidence and mortality rates of CRC remain high, posing a significant threat to humans and overall quality of life. Current therapeutic strategies, such as surgery and chemotherapy, are limited due to disease recurrence, chemotherapeutic drug resistance and toxicity. Thus, research is focused on the development of novel treatment approaches. In 2012, ferroptosis was identified as a form of regulated cell death that is iron-dependent and driven by lipid peroxidation. Notably, therapies targeting ferroptosis exhibit potential in the treatment of disease; however, their role in CRC treatment remains controversial. The present study aimed to systematically review the mechanisms and signaling pathways of ferroptosis in CRC, and the specific role within the tumor microenvironment. Moreover, the present study aimed to review the role of ferroptosis in drug resistance, offering novel perspectives for the diagnosis and treatment of CRC.
Collapse
Affiliation(s)
- Zhao Guo
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250000, P.R. China
| | - Haoyan Zhuang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250000, P.R. China
| | - Xuewen Shi
- Department of Anorectal, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250000, P.R. China
| |
Collapse
|
23
|
Zhang L, Wang X, Chang L, Ren Y, Sui M, Fu Y, Zhang L, Hao L. Quercetin improves diabetic kidney disease by inhibiting ferroptosis and regulating the Nrf2 in streptozotocin-induced diabetic rats. Ren Fail 2024; 46:2327495. [PMID: 38465879 DOI: 10.1080/0886022x.2024.2327495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 03/03/2024] [Indexed: 03/12/2024] Open
Abstract
Diabetic kidney disease (DKD) is a leading factor in end-stage renal disease. The complexity of its pathogenesis, combined with the limited treatment efficacy, necessitates deeper insights into potential causes. Studies suggest that ferroptosis-driven renal tubular damage contributes to DKD's progression, making its counteraction a potential therapeutic strategy. Quercetin, a flavonoid found in numerous fruits and vegetables, has demonstrated DKD mitigation in mouse models, though its protective mechanism remains ambiguous. In this study, we delved into quercetin's potential anti-ferroptotic properties, employing a DKD rat model and high glucose (HG)-treated renal tubular epithelial cell models. Our findings revealed that HG prompted unusual ferroptosis activation in renal tubular epithelial cells. However, quercetin counteracted this by inhibiting ferroptosis and activating NFE2-related factor 2 (Nrf2) expression in both DKD rats and HG-treated HK-2 cells, indicating its renal protective role. Further experiments, both in vivo and in vitro, validated that quercetin stimulates Nrf2. Thus, our research underscores quercetin's potential in DKD treatment by modulating the ferroptosis process via activating Nrf2 in a distinct DKD rat model, offering a fresh perspective on quercetin's protective mechanisms.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Nephropathy and Hemodialysis, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Xingzhi Wang
- Department of Nephropathy and Hemodialysis, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Liang Chang
- Department of Nephropathy and Hemodialysis, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Yiqun Ren
- Department of Pathology, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Manshu Sui
- Department of Nephropathy and Hemodialysis, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Yuting Fu
- Department of Nephropathy and Hemodialysis, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Lei Zhang
- Department of Nephropathy and Hemodialysis, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Lirong Hao
- Department of Nephropathy and Hemodialysis, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
- Department of Nephropathy, Southern University of Science and Technology Hospital, Shenzhen, China
| |
Collapse
|
24
|
Zheng Y, Sun J, Luo Z, Li Y, Huang Y. Emerging mechanisms of lipid peroxidation in regulated cell death and its physiological implications. Cell Death Dis 2024; 15:859. [PMID: 39587094 PMCID: PMC11589755 DOI: 10.1038/s41419-024-07244-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/08/2024] [Accepted: 11/12/2024] [Indexed: 11/27/2024]
Abstract
Regulated cell death (RCD) refers to the form of cell death that can be regulated by various biomacromolecules. Each cell death modalities have their distinct morphological changes and molecular mechanisms. However, intense evidences suggest that lipid peroxidation can be the common feature that initiates and propagates the cell death. Excessive lipid peroxidation alters the property of membrane and further damage the proteins and nucleic acids, which is implicated in various human pathologies. Here, we firstly review the classical chain process of lipid peroxidation, and further clarify the current understanding of the myriad roles and molecular mechanisms of lipid peroxidation in various RCD types. We also discuss how lipid peroxidation involves in diseases and how such intimate association between lipid peroxidation-driven cell death and diseases can be leveraged to develop rational therapeutic strategies.
Collapse
Affiliation(s)
- Yongxin Zheng
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Guangzhou Institute of Respiratory Health Guangzhou, Guangzhou, China
- State Key Laboratory of Respiratory Diseases, Guangzhou, China
| | - Junlu Sun
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Guangzhou Institute of Respiratory Health Guangzhou, Guangzhou, China
- State Key Laboratory of Respiratory Diseases, Guangzhou, China
- Guangzhou National Laboratory, Guangzhou, China
| | - Zhiting Luo
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Guangzhou Institute of Respiratory Health Guangzhou, Guangzhou, China
- State Key Laboratory of Respiratory Diseases, Guangzhou, China
- Guangzhou National Laboratory, Guangzhou, China
| | - Yimin Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
- Guangzhou Institute of Respiratory Health Guangzhou, Guangzhou, China.
- State Key Laboratory of Respiratory Diseases, Guangzhou, China.
- Guangzhou National Laboratory, Guangzhou, China.
| | - Yongbo Huang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
- Guangzhou Institute of Respiratory Health Guangzhou, Guangzhou, China.
- State Key Laboratory of Respiratory Diseases, Guangzhou, China.
| |
Collapse
|
25
|
Schaale D, Laspa Z, Balmes A, Sigle M, Dicenta-Baunach V, Hochuli R, Fu X, Serafimov K, Castor T, Harm T, Müller KAL, Rohlfing AK, Laufer S, Schäffer TE, Lämmerhofer M, Gawaz M. Hemin promotes platelet activation and plasma membrane disintegration regulated by the subtilisin-like proprotein convertase furin. FASEB J 2024; 38:e70155. [PMID: 39530531 DOI: 10.1096/fj.202400863rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 10/14/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024]
Abstract
Platelet activation plays a critical role in thrombosis and hemostasis. Several pathophysiological situations lead to hemolysis, resulting in the liberation of free ferric iron-containing hemin. Hemin has been shown to activate platelets and induce thrombo-inflammation. Classical antiplatelet therapy failed to prevent hemin-induced platelet activation. Thus, the aim of the present study was to characterize the mechanism of hemin-induced platelet death (ferroptosis). We evaluated the in vitro effect of hemin on platelet activation, signaling, oxylipins, and plasma membrane destruction using light transmission aggregometry, ex vivo thrombus formation, multiparametric flow cytometry, micro-UHPLC mass spectrometry for oxylipin profiling, and scanning ion conductance microscopy (SICM). We found that hemin induces platelet cell death indicated by increased ROS levels, phosphatidyl serine (PS) exposure, and loss of mitochondrial membrane potential (ΔΨm). Further, hemin causes lipid peroxidation and generation of distinct oxylipins, which strongly affects plasma membrane integrity leading to generation of platelet-derived microvesicles. Interestingly, hemin-dependent platelet death (ferroptosis) is specifically regulated by the subtilisin-like proprotein convertase furin. In summary, platelet undergo a non-apoptotic cell death mediated by furin. Inhibition of furin may offer a therapeutic strategy to control hemin-induced thrombosis and thrombo-inflammation at a site of hemolysis.
Collapse
Affiliation(s)
- David Schaale
- Department of Cardiology and Angiology, University Hospital Tübingen, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Zoi Laspa
- Department of Cardiology and Angiology, University Hospital Tübingen, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Aylin Balmes
- Institute of Applied Physics, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Manuel Sigle
- Department of Cardiology and Angiology, University Hospital Tübingen, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Valerie Dicenta-Baunach
- Department of Cardiology and Angiology, University Hospital Tübingen, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Ravi Hochuli
- Department of Cardiology and Angiology, University Hospital Tübingen, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Xiaoqing Fu
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical and Medicinal Chemistry, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Kristian Serafimov
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical and Medicinal Chemistry, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Tatsiana Castor
- Department of Cardiology and Angiology, University Hospital Tübingen, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Tobias Harm
- Department of Cardiology and Angiology, University Hospital Tübingen, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Karin Anne Lydia Müller
- Department of Cardiology and Angiology, University Hospital Tübingen, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Anne-Katrin Rohlfing
- Department of Cardiology and Angiology, University Hospital Tübingen, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Stefan Laufer
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical and Medicinal Chemistry, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Tilman E Schäffer
- Institute of Applied Physics, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Michael Lämmerhofer
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical and Medicinal Chemistry, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Meinrad Gawaz
- Department of Cardiology and Angiology, University Hospital Tübingen, Eberhard Karls University of Tübingen, Tübingen, Germany
| |
Collapse
|
26
|
Yang X, Liu Y, Wang Z, Jin Y, Gu W. Ferroptosis as a new tool for tumor suppression through lipid peroxidation. Commun Biol 2024; 7:1475. [PMID: 39521912 PMCID: PMC11550846 DOI: 10.1038/s42003-024-07180-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
As a newly defined type of programmed cell death, ferroptosis is considered a potent weapon against tumors due to its distinct mechanism from other types of programmed cell death. Ferroptosis is triggered by the uncontrolled accumulation of hydroperoxyl polyunsaturated fatty acid-containing phospholipids, also called lipid peroxidation. The lipid peroxidation, generated through enzymatic and non-enzymatic mechanisms, drives changes in cell morphology and the destruction of membrane integrity. Here, we dissect the mechanisms of ferroptosis induced enzymatically or non-enzymatically, summarize the major metabolism pathways in modulating lipid peroxidation, and provide insights into the relationship between ferroptosis and tumor suppression. In this review, we discuss the recent advances of ferroptosis in tumor microenvironments and the prospect of potential therapeutic application.
Collapse
Affiliation(s)
- Xin Yang
- Suzhou Ninth Hospital Affiliated to Soochow University, The Institutes of Biology and Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China.
- Institute for Cancer Genetics, and Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA.
| | - Yanqing Liu
- Institute for Cancer Genetics, and Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Zhe Wang
- Institute for Cancer Genetics, and Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Ying Jin
- Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou Ninth People's Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Wei Gu
- Institute for Cancer Genetics, and Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA.
- Department of Pathology and Cell Biology, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA.
| |
Collapse
|
27
|
Wang YM, Feng LS, Xu A, Ma XH, Zhang MT, Zhang J. Copper ions: The invisible killer of cardiovascular disease (Review). Mol Med Rep 2024; 30:210. [PMID: 39301641 PMCID: PMC11425066 DOI: 10.3892/mmr.2024.13334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 08/29/2024] [Indexed: 09/22/2024] Open
Abstract
Copper, a vital trace element, is indispensable for the maintenance of physiological functioning, particularly in the cardiac system. Unlike other forms of cell death such as iron death and apoptosis, copper‑induced cell death has gained increasing recognition as a significant process influencing the development of cardiovascular diseases. The present review highlights the significance of maintaining copper homeostasis in addressing cardiovascular diseases. This review delves into the crucial roles of copper in physiology, including the metabolic pathways and its absorption, transport and excretion. It provides detailed insights into the mechanisms underlying cardiovascular diseases resulting from both excess and deficient copper levels. Additionally, it summarizes strategies for treating copper imbalances through approaches such as copper chelators and ion carriers while discussing their limitations and future prospects.
Collapse
Affiliation(s)
- Yi-Ming Wang
- First Clinical Medical College, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712000, P.R. China
| | - Lan-Shuan Feng
- First Clinical Medical College, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712000, P.R. China
| | - Ao Xu
- First Clinical Medical College, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712000, P.R. China
| | - Xiao-Han Ma
- First Clinical Medical College, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712000, P.R. China
| | - Miao-Tiao Zhang
- First Clinical Medical College, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712000, P.R. China
| | - Jie Zhang
- Cardiovascular Department, Xi'an Fifth Hospital, Xi'an, Shaanxi 710000, P.R. China
| |
Collapse
|
28
|
Zhao Y, Wang Q, Zhu J, Cai J, Feng X, Song Q, Jiang H, Ren W, He Y, Wang P, Feng D, Yu J, Liu Y, Wu Q, Jitkaew S, Cai Z. Identification of KW-2449 as a dual inhibitor of ferroptosis and necroptosis reveals that autophagy is a targetable pathway for necroptosis inhibitors to prevent ferroptosis. Cell Death Dis 2024; 15:764. [PMID: 39433736 PMCID: PMC11493980 DOI: 10.1038/s41419-024-07157-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 10/10/2024] [Accepted: 10/14/2024] [Indexed: 10/23/2024]
Abstract
Necroptosis and ferroptosis are two distinct forms of necrotic-like cell death in terms of their morphological features and regulatory mechanisms. These two types of cell death can coexist in disease and contribute to pathological processes. Inhibition of both necroptosis and ferroptosis has been shown to enhance therapeutic effects in treating complex necrosis-related diseases. However, targeting both necroptosis and ferroptosis by a single compound can be challenging, as these two forms of cell death involve distinct molecular pathways. In this study, we discovered that KW-2449, a previously described necroptosis inhibitor, also prevented ferroptosis both in vitro and in vivo. Mechanistically, KW-2449 inhibited ferroptosis by targeting the autophagy pathway. We further identified that KW-2449 functioned as a ULK1 (Unc-51-like kinase 1) inhibitor to block ULK1 kinase activity in autophagy. Remarkably, we found that Necrostatin-1, a classic necroptosis inhibitor that has been shown to prevent ferroptosis, also targets the autophagy pathway to suppress ferroptosis. This study provides the first understanding of how necroptosis inhibitors can prevent ferroptosis and suggests that autophagy is a targetable pathway for necroptosis inhibitors to prevent ferroptosis. Therefore, the identification and design of pharmaceutical molecules that target the autophagy pathway from necroptosis inhibitors is a promising strategy to develop dual inhibitors of necroptosis and ferroptosis in clinical application.
Collapse
Affiliation(s)
- Yaxing Zhao
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Qingsong Wang
- College of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, Yinchuan, China
| | - Jing Zhu
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Biochemistry and Molecular Biology, School of Medicine, Tongji University, Shanghai, China
| | - Jin Cai
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Biochemistry and Molecular Biology, School of Medicine, Tongji University, Shanghai, China
| | - Xiaona Feng
- College of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, Yinchuan, China
| | - Qianqian Song
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Biochemistry and Molecular Biology, School of Medicine, Tongji University, Shanghai, China
| | - Hui Jiang
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Biochemistry and Molecular Biology, School of Medicine, Tongji University, Shanghai, China
| | - Wenqing Ren
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yuan He
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ping Wang
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Du Feng
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Jianqiang Yu
- College of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, Yinchuan, China
| | - Yue Liu
- College of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, Yinchuan, China
| | - Qihui Wu
- Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Siriporn Jitkaew
- Center of Excellence for Cancer and Inflammation, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Zhenyu Cai
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China.
- College of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, Yinchuan, China.
- State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
29
|
Azuma K, Suzuki T, Kobayashi K, Nagahara M, Imai H, Suga A, Iwata T, Shiraya T, Aihara M, Ueta T. Retinal pigment epithelium-specific ablation of GPx4 in adult mice recapitulates key features of geographic atrophy in age-related macular degeneration. Cell Death Dis 2024; 15:763. [PMID: 39426958 PMCID: PMC11490617 DOI: 10.1038/s41419-024-07150-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 10/08/2024] [Accepted: 10/10/2024] [Indexed: 10/21/2024]
Abstract
Age-related macular degeneration (AMD) is a leading cause of irreversible vision loss in the elderly population, particularly the late-stage of dry AMD known as geographic atrophy (GA), lacks effective treatment options. Genetic mouse models of AMD have revealed the significance of impaired lipid metabolism and anti-oxidative capacity in early/intermediate stage of AMD, but remains unclear in GA that severely damages visual function. Here, to investigate the potential relevance of peroxidized lipids in RPE for late-stage dry AMD, GPx4fl/fl mice underwent subretinal injections of RPE-specific AAV-Cre vector or control AAV vector. RPE-specific GPx4 deficiency led to rapid RPE degeneration resembling key features of late-stage dry AMD, including preceding loss of RPE cell polarity, accumulation of acrolein, malondialdehyde, and 4-hydroxynonenal, photoreceptor loss, lipofuscin-laden subretinal melanophage infiltration, and complement activation. Treatment with α-tocopherol and ferrostatin-1 mitigated RPE degeneration, and shrunk mitochondria were observed in GPx4 deficient mice, suggesting involvement of ferroptosis. Unexpectedly, necrostatin-1s, an inhibitor of necroptosis, also ameliorated RPE degeneration, and activation of RIP3 and MLKL along with inactivation of caspase-8 was observed, indicating crosstalk between ferroptosis and necroptosis pathways. Our findings shed light on the intricate mechanisms underlying RPE degeneration in AMD and highlight GPx4/lipid peroxidation as potential therapeutic targets. RPE-specific ablation of GPx4 in mice provides a valuable tool for further elucidating the interplay between lipid peroxidation, cell death pathways, and AMD pathogenesis, offering new insights for preclinical research and therapeutic development targeting GA.
Collapse
Affiliation(s)
- Kunihiro Azuma
- Department of Ophthalmology, The Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Bunkyo Ward, Japan
- Department of Ophthalmology, National Center for Global Health and Medicine, Shinjuku Ward, Japan
| | - Takafumi Suzuki
- Department of Ophthalmology, The Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Bunkyo Ward, Japan
| | - Kenta Kobayashi
- Section of Viral Vector Development, Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi, Japan
| | - Masako Nagahara
- Department of Ophthalmology, The Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Bunkyo Ward, Japan
| | - Hirotaka Imai
- Department of Hygienic Chemistry and Medical Research Laboratories, School of Pharmaceutical Sciences, Kitasato University, Tokyo, Japan
| | - Akiko Suga
- Molecular and Cellular Biology Division, National Institute of Sensory Organs, NHO Tokyo Medical Center, Tokyo, Japan
| | - Takeshi Iwata
- Molecular and Cellular Biology Division, National Institute of Sensory Organs, NHO Tokyo Medical Center, Tokyo, Japan
| | - Tomoyasu Shiraya
- Department of Ophthalmology, The Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Bunkyo Ward, Japan
| | - Makoto Aihara
- Department of Ophthalmology, The Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Bunkyo Ward, Japan
| | - Takashi Ueta
- Department of Ophthalmology, The Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Bunkyo Ward, Japan.
| |
Collapse
|
30
|
Wei Q, Huang J, Livingston MJ, Wang S, Dong G, Xu H, Zhou J, Dong Z. Pseudogene GSTM3P1 derived long non-coding RNA promotes ischemic acute kidney injury by target directed microRNA degradation of kidney-protective mir-668. Kidney Int 2024; 106:640-657. [PMID: 39074555 PMCID: PMC11416318 DOI: 10.1016/j.kint.2024.06.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 05/21/2024] [Accepted: 06/17/2024] [Indexed: 07/31/2024]
Abstract
Long non-coding RNAs (lncRNAs) are a group of epigenetic regulators that have been implicated in kidney diseases including acute kidney injury (AKI). However, very little is known about the specific lncRNAs involved in AKI and the mechanisms underlying their pathologic roles. Here, we report a new lncRNA derived from the pseudogene GSTM3P1, which mediates ischemic AKI by interacting with and promoting the degradation of mir-668, a kidney-protective microRNA. GSTM3P1 and its mouse orthologue Gstm2-ps1 were induced by hypoxia in cultured kidney proximal tubular cells. In mouse kidneys, Gstm2-ps1 was significantly upregulated in proximal tubules at an early stage of ischemic AKI. This transient induction of Gstm2-ps1 depends on G3BP1, a key component in stress granules. GSTM3P1 overexpression increased kidney proximal tubular apoptosis after ATP depletion, which was rescued by mir-668. Notably, kidney proximal tubule-specific knockout of Gstm2-ps1 protected mice from ischemic AKI, as evidenced by improved kidney function, diminished tubular damage and apoptosis, and reduced kidney injury biomarker (NGAL) induction. To test the therapeutic potential, Gstm2-ps1 siRNAs were introduced into cultured mouse proximal tubular cells or administered to mice. In cultured cells, Gstm2-ps1 knockdown suppressed ATP depletion-associated apoptosis. In mice, Gstm2-ps1 knockdown ameliorated ischemic AKI. Mechanistically, both GSTM3P1 and Gstm2-ps1 possessed mir-668 binding sites and downregulated the mature form of mir-668. Specifically, GSTM3P1 directly bound to mature mir-668 to induce its decay via target-directed microRNA degradation. Thus, our results identify GSTM3P1 as a novel lncRNA that promotes kidney tubular cell death in AKI by binding mir-668 to inducing its degradation.
Collapse
Affiliation(s)
- Qingqing Wei
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, Georgia, USA.
| | - Jing Huang
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, Georgia, USA; Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Man Jiang Livingston
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Shixuan Wang
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Guie Dong
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Hongyan Xu
- Department of Biostatistics, Data Science and Epidemiology, School of Public Health, Augusta University, Augusta, Georgia, USA
| | - Jiliang Zhou
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Zheng Dong
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, Georgia, USA; Charlie Norwood VA Medical Center, Augusta, Georgia, USA.
| |
Collapse
|
31
|
Liang X, Long L, Guan F, Xu Z, Huang H. Research status and potential applications of circRNAs affecting colorectal cancer by regulating ferroptosis. Life Sci 2024; 352:122870. [PMID: 38942360 DOI: 10.1016/j.lfs.2024.122870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/20/2024] [Accepted: 06/23/2024] [Indexed: 06/30/2024]
Abstract
Ferroptosis is an emerging form of non-apoptotic programmed cell death (PCD), characterized by iron-mediated oxidative imbalance. This process plays a significant role in the development and progression of various tumors, including colorectal cancer, gastric cancer, and others. Circular RNA (circRNA) is a stable, non-coding RNA type with a single-stranded, covalently closed loop structure, which is intricately linked to the proliferation, invasion, and metastasis of tumor cells. Recent studies have shown that many circRNAs regulate various pathways leading to cellular ferroptosis. Colorectal cancer, known for its high incidence and mortality among cancers, is marked by a poor prognosis and pronounced chemoresistance. To enhance our understanding of how circRNA-mediated regulation of ferroptosis influences colorectal cancer development, this review systematically examines the mechanisms by which specific circRNAs regulate ferroptosis and their critical role in the progression of colorectal cancer. Furthermore, it explores the potential of circRNAs as biomarkers and therapeutic targets in colorectal cancer treatment, offering a novel approach to clinical management.
Collapse
Affiliation(s)
- Xiyuan Liang
- School of Basic Medical Science, Central South University, Changsha 410013, China
| | - Linna Long
- Department of Histology & Embryology, Xiangya School of Medicine, Central South University, Changsha 410013, China
| | - Fan Guan
- School of Basic Medical Science, Central South University, Changsha 410013, China
| | - Zilu Xu
- School of Basic Medical Science, Central South University, Changsha 410013, China
| | - He Huang
- Department of Histology & Embryology, Xiangya School of Medicine, Central South University, Changsha 410013, China.
| |
Collapse
|
32
|
Dai E, Chen X, Linkermann A, Jiang X, Kang R, Kagan VE, Bayir H, Yang WS, Garcia-Saez AJ, Ioannou MS, Janowitz T, Ran Q, Gu W, Gan B, Krysko DV, Zhu X, Wang J, Krautwald S, Toyokuni S, Xie Y, Greten FR, Yi Q, Schick J, Liu J, Gabrilovich DI, Liu J, Zeh HJ, Zhang DD, Yang M, Iovanna J, Kopf M, Adolph TE, Chi JT, Li C, Ichijo H, Karin M, Sankaran VG, Zou W, Galluzzi L, Bush AI, Li B, Melino G, Baehrecke EH, Lotze MT, Klionsky DJ, Stockwell BR, Kroemer G, Tang D. A guideline on the molecular ecosystem regulating ferroptosis. Nat Cell Biol 2024; 26:1447-1457. [PMID: 38424270 PMCID: PMC11650678 DOI: 10.1038/s41556-024-01360-8] [Citation(s) in RCA: 75] [Impact Index Per Article: 75.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 01/18/2024] [Indexed: 03/02/2024]
Abstract
Ferroptosis, an intricately regulated form of cell death characterized by uncontrolled lipid peroxidation, has garnered substantial interest since this term was first coined in 2012. Recent years have witnessed remarkable progress in elucidating the detailed molecular mechanisms that govern ferroptosis induction and defence, with particular emphasis on the roles of heterogeneity and plasticity. In this Review, we discuss the molecular ecosystem of ferroptosis, with implications that may inform and enable safe and effective therapeutic strategies across a broad spectrum of diseases.
Collapse
Affiliation(s)
- Enyong Dai
- Department of Oncology and Hematology, China-Japan Union Hospital of Jilin University, Changchun, China.
| | - Xin Chen
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Andreas Linkermann
- Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
- Division of Nephrology, Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, NY, USA
| | - Xuejun Jiang
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Rui Kang
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Valerian E Kagan
- Department of Environmental Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Hülya Bayir
- Department of Pediatrics, Columbia University, New York, NY, USA
| | - Wan Seok Yang
- Department of Biological Sciences, St. John's University, New York, NY, USA
| | - Ana J Garcia-Saez
- Institute for Genetics, CECAD, University of Cologne, Cologne, Germany
| | - Maria S Ioannou
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
| | | | - Qitao Ran
- Department of Cell Systems and Anatomy, South Texas Veterans Health Care System, San Antonio, TX, USA
| | - Wei Gu
- Institute for Cancer Genetics, and Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Boyi Gan
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Dmitri V Krysko
- Cell Death Investigation and Therapy (CDIT) Laboratory, Department of Human Structure and Repair, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent, Belgium
| | - Xiaofeng Zhu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, and Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jiayi Wang
- Department of Clinical Laboratory, Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital and College of Medical Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Stefan Krautwald
- Department of Nephrology and Hypertension, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Shinya Toyokuni
- Department of Pathology and Biological Response, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Center for Low-Temperature Plasma Sciences, Nagoya University, Nagoya, Japan
| | - Yangchun Xie
- Department of Oncology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Florian R Greten
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt am Main, Germany
- Frankfurt Cancer Institute, Goethe University, Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Qing Yi
- Houston Methodist Neal Cancer Center/Houston Methodist Research Institute, Houston Methodist Hospital, Houston, Texas, USA
| | - Joel Schick
- Genetics and Cellular Engineering Group, Institute of Molecular Toxicology and Pharmacology, Helmholtz Zentrum Munich, Neuherberg, Germany
| | - Jiao Liu
- DAMP Laboratory, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | | | - Jinbao Liu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Herbert J Zeh
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Donna D Zhang
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, USA
| | - Minghua Yang
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, China
- Hunan Clinical Research Center of Pediatric Cancer, Changsha, China
| | - Juan Iovanna
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Marseille, France
| | - Manfred Kopf
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Timon E Adolph
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, and Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Jen-Tsan Chi
- Department of Molecular Genetics and Microbiology Center for Applied Genomic Technologies, Duke University, Durham, NC, USA
| | - Changfeng Li
- Department of Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Hidenori Ichijo
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Michael Karin
- Laboratory of Gene Regulation and Signal Transduction, Departments of Pharmacology and Pathology, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Vijay G Sankaran
- Division of Hematology/Oncology, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Weiping Zou
- Departments of Surgery and Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, New York, NY, USA
- Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA
| | - Ashley I Bush
- Melbourne Dementia Research Centre, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Binghui Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
- Department of Cancer Cell Biology and National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Gerry Melino
- Department of Experimental Medicine, Tor Vergata University of Rome, Rome, Italy
| | - Eric H Baehrecke
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Michael T Lotze
- Departments of Surgery, Immunology and Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Daniel J Klionsky
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Brent R Stockwell
- Department of Biological Sciences and Department of Chemistry, Columbia University, New York, NY, USA.
| | - Guido Kroemer
- Equipe labellisée par la Ligue contre le cancer, Centre de Recherche des Cordeliers, Université de Paris, Sorbonne Université, INSERM U1138, Institut Universitaire de France, Paris, France.
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France.
- Department of Biology, Institut du Cancer Paris CARPEM, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.
| | - Daolin Tang
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
33
|
Jiang M, Wu S, Xie K, Zhou G, Zhou W, Bao P. The significance of ferroptosis in renal diseases and its therapeutic potential. Heliyon 2024; 10:e35882. [PMID: 39220983 PMCID: PMC11363859 DOI: 10.1016/j.heliyon.2024.e35882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 04/04/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
Kidney diseases are significant global public health concern, with increasing prevalence and substantial economic impact. Developing novel therapeutic approaches are essential for delaying disease progression and improving patient quality of life. Cell death signifying the termination of cellular life, could facilitate appropriate bodily development and internal homeostasis. Recently, regulated cell death (RCD) forms such as ferroptosis, characterized by iron-dependent lipid peroxidation, has garnered attention in diverse renal diseases and other pathological conditions. This review offers a comprehensive examination of ferroptosis, encompassing an analysis of the involvement of iron and lipid metabolism, the System Xc - /glutathione/glutathione peroxidase 4 signaling, and additional associated pathways. Meanwhile, the review delves into the potential of targeting ferroptosis as a therapeutic approach in the management of acute kidney injury (AKI), chronic kidney disease (CKD), diabetic nephropathy, and renal tumors. Furthermore, it emphasizes the significance of ferroptosis in the transition from AKI to CKD and further accentuates the potential for repurposing drug and utilizing traditional medicine in targeting ferroptosis-related pathways for clinical applications. The integrated review provides valuable insights into the role of ferroptosis in kidney diseases and highlights the potential for targeting ferroptosis as a therapeutic strategy.
Collapse
Affiliation(s)
- Mingzhu Jiang
- The Yangzhou Clinical Medical College of Xuzhou Medical University, Yangzhou, China
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
| | - Shujun Wu
- The Yangzhou School of Clinical Medicine of Dalian Medical University, Yangzhou, China
| | - Kun Xie
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
| | - Gang Zhou
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
| | - Wei Zhou
- Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, China
| | - Ping Bao
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
| |
Collapse
|
34
|
Chen Y, Wu MF, Xie MM, Lu Y, Li C, Xie SS, Ma WX, Ji ML, Hou R, Dong ZH, He RB, Zhang MM, Lu H, Gao L, Wen JG, Jin J, Dong XW, Che JX, Meng XM. Cpd-A1 alleviates acute kidney injury by inhibiting ferroptosis. Acta Pharmacol Sin 2024; 45:1673-1685. [PMID: 38641746 PMCID: PMC11272937 DOI: 10.1038/s41401-024-01277-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 03/25/2024] [Indexed: 04/21/2024]
Abstract
Acute kidney injury (AKI) is defined as sudden loss of renal function characterized by increased serum creatinine levels and reduced urinary output with a duration of 7 days. Ferroptosis, an iron-dependent regulated necrotic pathway, has been implicated in the progression of AKI, while ferrostatin-1 (Fer-1), a selective inhibitor of ferroptosis, inhibited renal damage, oxidative stress and tubular cell death in AKI mouse models. However, the clinical translation of Fer-1 is limited due to its lack of efficacy and metabolic instability. In this study we designed and synthesized four Fer-1 analogs (Cpd-A1, Cpd-B1, Cpd-B2, Cpd-B3) with superior plasma stability, and evaluated their therapeutic potential in the treatment of AKI. Compared with Fer-1, all the four analogs displayed a higher distribution in mouse renal tissue in a pharmacokinetic assay and a more effective ferroptosis inhibition in erastin-treated mouse tubular epithelial cells (mTECs) with Cpd-A1 (N-methyl-substituted-tetrazole-Fer-1 analog) being the most efficacious one. In hypoxia/reoxygenation (H/R)- or LPS-treated mTECs, treatment with Cpd-A1 (0.25 μM) effectively attenuated cell damage, reduced inflammatory responses, and inhibited ferroptosis. In ischemia/reperfusion (I/R)- or cecal ligation and puncture (CLP)-induced AKI mouse models, pre-injection of Cpd-A1 (1.25, 2.5, 5 mg·kg-1·d-1, i.p.) dose-dependently improved kidney function, mitigated renal tubular injury, and abrogated inflammation. We conclude that Cpd-A1 may serve as a promising therapeutic agent for the treatment of AKI.
Collapse
Affiliation(s)
- Ying Chen
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Ming-Fei Wu
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Man-Man Xie
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Yang Lu
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Chao Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Shuai-Shuai Xie
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Wen-Xian Ma
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Ming-Lu Ji
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Rui Hou
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Ze-Hui Dong
- Department of Pharmacy, The Second Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, 230061, China
| | - Ruo-Bing He
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Meng-Meng Zhang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Hao Lu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Li Gao
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Jia-Gen Wen
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Juan Jin
- School of Basic Medicine, Anhui Medical University, Hefei, 230032, China
| | - Xiao-Wu Dong
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jin-Xin Che
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Xiao-Ming Meng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
35
|
Tan X, He Y, Yu P, Deng Y, Xie Z, Guo J, Hou Q, Li P, Lin X, Ouyang S, Ma W, Xie Y, Guo Z, Chen D, Zhang Z, Zhu Y, Huang F, Zhao Z, Zhang C, Guo Z, Chen X, Peng T, Li L, Xie W. The dual role of FSP1 in programmed cell death: resisting ferroptosis in the cell membrane and promoting necroptosis in the nucleus of THP-1 cells. Mol Med 2024; 30:102. [PMID: 39009982 PMCID: PMC11247902 DOI: 10.1186/s10020-024-00861-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 06/10/2024] [Indexed: 07/17/2024] Open
Abstract
BACKGROUND Acute monocytic leukemia-M5 (AML-M5) remains a challenging disease due to its high morbidity and poor prognosis. In addition to the evidence mentioned earlier, several studies have shown that programmed cell death (PCD) serves a critical function in treatment of AML-M5. However, the role and relationship between ferroptosis and necroptosis in AML-M5 remains unclear. METHODS THP-1 cells were mainly treated with Erastin and IMP-366. The changes of ferroptosis and necroptosis levels were detected by CCK-8, western blot, quantitative real-time PCR, and electron microscopy. Flow cytometry was applied to detect the ROS and lipid ROS levels. MDA, 4-HNE, GSH and GSSG were assessed by ELISA kits. Intracellular distribution of FSP1 was studied by immunofluorescent staining and western blot. RESULTS The addition of the myristoylation inhibitor IMP-366 to erastin-treated acute monocytic leukemia cell line THP-1 cell not only resulted in greater susceptibility to ferroptosis characterized by lipid peroxidation, glutathione (GSH) depletion and mitochondrial shrinkage, as the FSP1 position on membrane was inhibited, but also increased p-RIPK1 and p-MLKL protein expression, as well as a decrease in caspase-8 expression, and triggered the characteristic necroptosis phenomena, including cytoplasmic translucency, mitochondrial swelling, membranous fractures by FSP1 migration into the nucleus via binding importin α2. It is interesting to note that ferroptosis inhibitor fer-1 reversed necroptosis. CONCLUSION We demonstrated that inhibition of myristoylation by IMP-366 is capable of switching ferroptosis and ferroptosis-dependent necroptosis in THP-1 cells. In these findings, FSP1-mediated ferroptosis and necroptosis are described as alternative mechanisms of PCD of THP-1 cells, providing potential therapeutic strategies and targets for AML-M5.
Collapse
Affiliation(s)
- Xiaoqian Tan
- Department of Physiology, Clinical Anatomy and Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
- School of Basic Medical Sciences, Xiangnan University, Chenzhou, 423000, Hunan, China
| | - Yinling He
- Department of Physiology, Clinical Anatomy and Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Panpan Yu
- Department of Physiology, Clinical Anatomy and Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Yunong Deng
- Department of Physiology, Clinical Anatomy and Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Zhongcheng Xie
- Department of Physiology, Clinical Anatomy and Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Jiami Guo
- Department of Physiology, Clinical Anatomy and Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Qin Hou
- Department of Physiology, Clinical Anatomy and Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Pin Li
- Department of Physiology, Clinical Anatomy and Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Xiaoyan Lin
- Department of Physiology, Clinical Anatomy and Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Siyu Ouyang
- Department of Physiology, Clinical Anatomy and Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Wentao Ma
- Department of Physiology, Clinical Anatomy and Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Yushu Xie
- Class of Clinical Medicine, University of South China, Hengyang, 421001, Hunan, China
| | - Zilong Guo
- Class of Clinical Medicine, University of South China, Hengyang, 421001, Hunan, China
| | - Dandan Chen
- Class of Clinical Medicine, University of South China, Hengyang, 421001, Hunan, China
| | - Zhixia Zhang
- Class of Clinical Medicine, University of South China, Hengyang, 421001, Hunan, China
| | - Yunyu Zhu
- Class of Clinical Medicine, University of South China, Hengyang, 421001, Hunan, China
| | - Fei Huang
- Class of Clinical Medicine, University of South China, Hengyang, 421001, Hunan, China
| | - Ziye Zhao
- Class of Clinical Medicine, University of South China, Hengyang, 421001, Hunan, China
| | - Cen Zhang
- Class of Clinical Medicine, University of South China, Hengyang, 421001, Hunan, China
| | - Zhirong Guo
- Class of Clinical Medicine, University of South China, Hengyang, 421001, Hunan, China
| | - Xi Chen
- Department of Physiology, Clinical Anatomy and Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Tianhong Peng
- Department of Physiology, Clinical Anatomy and Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| | - Liang Li
- Department of Physiology, Clinical Anatomy and Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| | - Wei Xie
- Department of Physiology, Clinical Anatomy and Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| |
Collapse
|
36
|
Fan J, Zhu T, Tian X, Liu S, Zhang SL. Exploration of ferroptosis and necroptosis-related genes and potential molecular mechanisms in psoriasis and atherosclerosis. Front Immunol 2024; 15:1372303. [PMID: 39072329 PMCID: PMC11272566 DOI: 10.3389/fimmu.2024.1372303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 06/21/2024] [Indexed: 07/30/2024] Open
Abstract
Objective Ferroptosis and necroptosis are two recently identified forms of non-apoptotic cell death. Their dysregulation plays a critical role in the development and progression of Psoriasis (PsD) and Atherosclerosis (AS). This study explores shared Ferroptosis and necroptosis-related genes and elucidates their molecular mechanisms in PsD and AS through the analysis of public databases. Methods Data sets for PsD (GSE30999) and AS (GSE28829) were retrieved from the GEO database. Differential gene expression (DEG) and weighted gene co-expression network analysis (WGCNA) were performed. Machine learning algorithms identified candidate biomarkers, whose diagnostic values were assessed using Receiver Operating Characteristic (ROC) curve analysis. Additionally, the expression levels of these biomarkers in cell models of AS and PsD were quantitatively measured using Western Blot (WB) and real-time quantitative PCR (RT-qPCR). Furthermore, CIBERSORT evaluated immune cell infiltration in PsD and AS tissues, highlighting the correlation between characteristic genes and immune cells. Predictive analysis for candidate drugs targeting characteristic genes was conducted using the DGIdb database, and an lncRNA-miRNA-mRNA network related to these genes was constructed. Results We identified 44 differentially expressed ferroptosis-related genes (DE-FRGs) and 30 differentially expressed necroptosis-related genes (DE-NRGs). GO and KEGG enrichment analyses revealed significant enrichment of these genes in immune-related and inflammatory pathways, especially in NOD-like receptor and TNF signaling pathways. Two ferroptosis-related genes (NAMPT, ZFP36) and eight necroptosis-related genes (C7, CARD6, CASP1, CTSD, HMOX1, NOD2, PYCARD, TNFRSF21) showed high sensitivity and specificity in ROC curve analysis. These findings were corroborated in external validation datasets and cell models. Immune infiltration analysis revealed increased levels of T cells gamma delta, Macrophages M0, and Macrophages M2 in PsD and AS samples. Additionally, we identified 43 drugs targeting 5 characteristic genes. Notably, the XIST-miR-93-5p-ZFP36/HMOX1 and NEAT1-miR-93-5p-ZFP36/HMOX1 pathways have been identified as promising RNA regulatory pathways in AS and PsD. Conclusion The two ferroptosis-related genes (NAMPT, ZFP36) and eight necroptosis-related genes (C7, CARD6, CASP1, CTSD, HMOX1, NOD2, PYCARD, TNFRSF21) are potential key biomarkers for PsD and AS. These genes significantly influence the pathogenesis of PsD and AS by modulating macrophage activity, participating in immune regulation, and mediating inflammatory responses.
Collapse
Affiliation(s)
- Jilin Fan
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Tingting Zhu
- Department of Neurosurgery Ward 5, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Xiaoling Tian
- Department of Neurosurgery Ward 5, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Sijia Liu
- Cardiovascular Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Shi-Liang Zhang
- Cardiovascular Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| |
Collapse
|
37
|
Noh MR, Padanilam BJ. Cell death induced by acute renal injury: a perspective on the contributions of accidental and programmed cell death. Am J Physiol Renal Physiol 2024; 327:F4-F20. [PMID: 38660714 PMCID: PMC11390133 DOI: 10.1152/ajprenal.00275.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 04/11/2024] [Accepted: 04/19/2024] [Indexed: 04/26/2024] Open
Abstract
The involvement of cell death in acute kidney injury (AKI) is linked to multiple factors including energy depletion, electrolyte imbalance, reactive oxygen species, inflammation, mitochondrial dysfunction, and activation of several cell death pathway components. Since our review in 2003, discussing the relative contributions of apoptosis and necrosis, several other forms of cell death have been identified and are shown to contribute to AKI. Currently, these various forms of cell death can be fundamentally divided into accidental cell death and regulated or programmed cell death based on functional aspects. Several death initiator and effector molecules switch molecules that may act as signaling components triggering either death or protective mechanisms or alternate cell death pathways have been identified as part of the machinery. Intriguingly, several of these cell death pathways share components and signaling pathways suggesting complementary or compensatory functions. Thus, defining the cross talk between distinct cell death pathways and identifying the unique molecular effectors for each type of cell death may be required to develop novel strategies to prevent cell death. Furthermore, depending on the multiple forms of cell death simultaneously induced in different AKI settings, strategies for combination therapies that block multiple cell death pathways need to be developed to completely prevent injury, cell death, and renal function. This review highlights the various cell death pathways, cross talk, and interactions between different cell death modalities in AKI.
Collapse
Affiliation(s)
- Mi Ra Noh
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - Babu J Padanilam
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| |
Collapse
|
38
|
Liu L, Gao W, Yang S, Yang F, Li S, Tian Y, Yang L, Deng Q, Gan Z, Tu S. Ferritinophagy-Mediated Hippocampus Ferroptosis is Involved in Cognitive Impairment in Immature Rats Induced by Hypoxia Combined with Propofol. Neurochem Res 2024; 49:1703-1719. [PMID: 38512425 DOI: 10.1007/s11064-024-04128-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 02/12/2024] [Accepted: 02/14/2024] [Indexed: 03/23/2024]
Abstract
Propofol is a clinically common intravenous general anesthetic and is widely used for anesthesia induction, maintenance and intensive care unit (ICU) sedation in children. Hypoxemia is a common perioperative complication. In clinical work, we found that children with hypoxemia who received propofol anesthesia experienced significant postoperative cognitive changes. To explore the causes of this phenomenon, we conducted the study. In this study, our in vivo experiments found that immature rats exposed to hypoxia combined with propofol (HCWP) could develop cognitive impairment. We performed the RNA-seq analysis of its hippocampal tissues and found that autophagy and ferroptosis may play a role in our model. Next, we verified the participation of the two modes of death by detecting the expression of autophagy-related indexes Sequestosome 1 (SQSTM1) and Beclin1, and ferroptosis-related indicators Fe2+, reactive oxygen species (ROS) and glutathione peroxidase 4 (GPX4). Meanwhile, we found that ferrostatin-1 (Fer-1), an inhibitor of ferroptosis, could improve cognitive impairment in immature rats caused by HCWP. In addition, we found that nuclear receptor coactivator 4 (NCOA4)-mediated ferritinophagy, which acted as a key junction between autophagy and ferroptosis, was also involved. Finally, our in vitro experiments concluded that autophagy activation was an upstream factor in HCWP-induced hippocampus ferroptosis through the intervention of autophagy inhibitor 3-methyladenine (3-MA). Our study was expected to provide an attractive therapeutic target for cognitive impairment that occurred after HCWP exposures.
Collapse
Affiliation(s)
- Ling Liu
- Department of Anesthesiology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing City, China
| | - Wen Gao
- Department of Anesthesiology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing City, China
| | - Shun Yang
- Department of Anesthesiology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing City, China
| | - Fei Yang
- Department of Anesthesiology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing City, China
| | - Shangyingying Li
- Department of Anesthesiology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing City, China
| | - Yaqiong Tian
- Department of Anesthesiology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing City, China
| | - Li Yang
- Department of Anesthesiology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing City, China
| | - Qianyu Deng
- Department of Anesthesiology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing City, China
| | - Zhengwei Gan
- Department of Anesthesiology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing City, China
| | - Shengfen Tu
- Department of Anesthesiology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing City, China.
| |
Collapse
|
39
|
Kelepouras K, Saggau J, Varanda AB, Zrilic M, Kiefer C, Rakhsh-Khorshid H, Lisewski I, Uranga-Murillo I, Arias M, Pardo J, Tonnus W, Linkermann A, Annibaldi A, Walczak H, Liccardi G. The importance of murine phospho-MLKL-S345 in situ detection for necroptosis assessment in vivo. Cell Death Differ 2024; 31:897-909. [PMID: 38783091 PMCID: PMC11239901 DOI: 10.1038/s41418-024-01313-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 05/02/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024] Open
Abstract
Necroptosis is a caspase-independent modality of cell death implicated in many inflammatory pathologies. The execution of this pathway requires the formation of a cytosolic platform that comprises RIPK1 and RIPK3 which, in turn, mediates the phosphorylation of the pseudokinase MLKL (S345 in mouse). The activation of this executioner is followed by its oligomerisation and accumulation at the plasma-membrane where it leads to cell death via plasma-membrane destabilisation and consequent permeabilisation. While the biochemical and cellular characterisation of these events have been amply investigated, the study of necroptosis involvement in vivo in animal models is currently limited to the use of Mlkl-/- or Ripk3-/- mice. Yet, even in many of the models in which the involvement of necroptosis in disease aetiology has been genetically demonstrated, the fundamental in vivo characterisation regarding the question as to which tissue(s) and specific cell type(s) therein is/are affected by the pathogenic necroptotic death are missing. Here, we describe and validate an immunohistochemistry and immunofluorescence-based method to reliably detect the phosphorylation of mouse MLKL at serine 345 (pMLKL-S345). We first validate the method using tissues derived from mice in which Caspase-8 (Casp8) or FADD are specifically deleted from keratinocytes, or intestinal epithelial cells, respectively. We next demonstrate the presence of necroptotic activation in the lungs of SARS-CoV-infected mice and in the skin and spleen of mice bearing a Sharpin inactivating mutation. Finally, we exclude necroptosis occurrence in the intestines of mice subjected to TNF-induced septic shock. Importantly, by directly comparing the staining of pMLKL-345 with that of cleaved Caspase-3 staining in some of these models, we identify spatio-temporal and functional differences between necroptosis and apoptosis supporting a role of RIPK3 in inflammation independently of MLKL versus the role of RIPK3 in activation of necroptosis.
Collapse
Grants
- Wellcome Trust
- G.L. is funded by the Center for Biochemistry, Univeristy of Cologne - 956400, Köln Fortune, CANcer TARgeting (CANTAR) project NW21-062A, two collaborative research center grants: SFB1399-413326622 Project C06, SFB1530-455784452 Project A03 both funded by the Deutsche Forschungsgemeinschaft (DFG)) and associated to the collaborative SFB1403 also funded by the DFG
- H.W. is funded by the Alexander von Humboldt Foundation, a Wellcome Trust Investigator Award (214342/Z/18/Z), a Medical Research Council Grant (MR/S00811X/1), a Cancer Research UK Programme Grant (A27323) and three collaborative research center grants (SFB1399, Project C06, SFB1530-455784452, Project A03 and SFB1403–414786233) funded by the Deutsche Forschungsgemeinschaft (DFG) and CANcer TARgeting (CANTAR) funded by Netzwerke 2021.
- AA is funded by the Center for Molecular Medine Cologne (CMMC) Junior Research Group program, Deutsche Forschungsgemeinschaft (DFG) (project number AN1717/1-1), the Jürgen Manchot Stiftung foundation, the collaborative research center SFB1530 (Project A5, ID: 455784452)
- JP is funded by FEDER (Fondo Europeo de Desarrollo Regional), Gobierno de Aragón (Group B29_23R), CIBERINFEC (CB21/13/00087), Ministerio de Ciencia, Innovación y Universidades (MCNU)/Agencia Estatal de Investigación (PID2020-113963RBI00)
- MA is funded by a Postdoctoral Juan de la Cierva Contract.
- Work in the Linkermann Lab was funded by the German Research Foundation SFB-TRR205, SFB-TRR 127, SPP2306, and a Heisenberg-Professorship to A.L., project number 324141047, and the international research training group (IRTG) 2251. It was further supported by the BMBF (FERROPath consortium), the TU Dresden / Kings College London transcampus initiative and the DFG-Sachbeihilfe LI 2107/10-1.
Collapse
Affiliation(s)
- Konstantinos Kelepouras
- Genome Instability, Inflammation and Cell Death Laboratory, Institute of Biochemistry I, Centre for Biochemistry, Faculty of Medicine, University of Cologne, 50931, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931, Cologne, Germany
| | - Julia Saggau
- Genome Instability, Inflammation and Cell Death Laboratory, Institute of Biochemistry I, Centre for Biochemistry, Faculty of Medicine, University of Cologne, 50931, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931, Cologne, Germany
- Cell Death, Inflammation and Immunity Laboratory, CECAD Cluster of Excellence, University of Cologne, 50931, Cologne, Germany
- Cell Death, Inflammation and Immunity Laboratory, Institute of Biochemistry I, Centre for Biochemistry, Faculty of Medicine, University of Cologne, 50931, Cologne, Germany
| | - Ana Beatriz Varanda
- Cell Death, Inflammation and Immunity Laboratory, CECAD Cluster of Excellence, University of Cologne, 50931, Cologne, Germany
- Cell Death, Inflammation and Immunity Laboratory, Institute of Biochemistry I, Centre for Biochemistry, Faculty of Medicine, University of Cologne, 50931, Cologne, Germany
| | - Matea Zrilic
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931, Cologne, Germany
| | - Christine Kiefer
- Genome Instability, Inflammation and Cell Death Laboratory, Institute of Biochemistry I, Centre for Biochemistry, Faculty of Medicine, University of Cologne, 50931, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931, Cologne, Germany
| | - Hassan Rakhsh-Khorshid
- Genome Instability, Inflammation and Cell Death Laboratory, Institute of Biochemistry I, Centre for Biochemistry, Faculty of Medicine, University of Cologne, 50931, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931, Cologne, Germany
| | - Ina Lisewski
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931, Cologne, Germany
| | - Iratxe Uranga-Murillo
- Department of Microbiology, Radiology, Paediatry and Public Heath, Faculty of Medicine, University of Zaragoza/IIS, Aragon, Spain
- Centro de Investigacion Biomedica en Red de Enfermedades infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Maykel Arias
- Department of Microbiology, Radiology, Paediatry and Public Heath, Faculty of Medicine, University of Zaragoza/IIS, Aragon, Spain
- Centro de Investigacion Biomedica en Red de Enfermedades infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Julian Pardo
- Department of Microbiology, Radiology, Paediatry and Public Heath, Faculty of Medicine, University of Zaragoza/IIS, Aragon, Spain
- Centro de Investigacion Biomedica en Red de Enfermedades infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Wulf Tonnus
- Division of Nephrology, Department of Internal Medicine 3, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
| | - Andreas Linkermann
- Division of Nephrology, Department of Internal Medicine 3, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
- Division of Nephrology, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Alessandro Annibaldi
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931, Cologne, Germany
| | - Henning Walczak
- Cell Death, Inflammation and Immunity Laboratory, CECAD Cluster of Excellence, University of Cologne, 50931, Cologne, Germany
- Cell Death, Inflammation and Immunity Laboratory, Institute of Biochemistry I, Centre for Biochemistry, Faculty of Medicine, University of Cologne, 50931, Cologne, Germany
- Centre for Cell Death, Cancer and Inflammation, UCL Cancer Institute, University College London, WC1E 6BT, London, UK
| | - Gianmaria Liccardi
- Genome Instability, Inflammation and Cell Death Laboratory, Institute of Biochemistry I, Centre for Biochemistry, Faculty of Medicine, University of Cologne, 50931, Cologne, Germany.
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931, Cologne, Germany.
| |
Collapse
|
40
|
Zhang Z, Yang Z, Wang S, Wang X, Mao J. Decoding ferroptosis: Revealing the hidden assassin behind cardiovascular diseases. Biomed Pharmacother 2024; 176:116761. [PMID: 38788596 DOI: 10.1016/j.biopha.2024.116761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/09/2024] [Accepted: 05/17/2024] [Indexed: 05/26/2024] Open
Abstract
The discovery of regulatory cell death processes has driven innovation in cardiovascular disease (CVD) therapeutic strategies. Over the past decade, ferroptosis, an iron-dependent form of regulated cell death driven by excessive lipid peroxidation, has been shown to drive the development of multiple CVDs. This review provides insights into the evolution of the concept of ferroptosis, the similarities and differences with traditional modes of programmed cell death (e.g., apoptosis, autophagy, and necrosis), as well as the core regulatory mechanisms of ferroptosis (including cystine/glutamate transporter blockade, imbalance of iron metabolism, and lipid peroxidation). In addition, it provides not only a detailed review of the role of ferroptosis and its therapeutic potential in widely studied CVDs such as coronary atherosclerotic heart disease, myocardial infarction, myocardial ischemia/reperfusion injury, heart failure, cardiomyopathy, and aortic aneurysm but also an overview of the phenomenon and therapeutic perspectives of ferroptosis in lesser-addressed CVDs such as cardiac valvulopathy, pulmonary hypertension, and sickle cell disease. This article aims to integrate this knowledge to provide a comprehensive view of ferroptosis in a wide range of CVDs and to drive innovation and progress in therapeutic strategies in this field.
Collapse
Affiliation(s)
- Zeyu Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China; Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zhihua Yang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China; Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Shuai Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Xianliang Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China.
| | - Jingyuan Mao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China.
| |
Collapse
|
41
|
Yang Y, Lin Y, Han Z, Wang B, Zheng W, Wei L. Ferroptosis: a novel mechanism of cell death in ophthalmic conditions. Front Immunol 2024; 15:1440309. [PMID: 38994366 PMCID: PMC11236620 DOI: 10.3389/fimmu.2024.1440309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 06/14/2024] [Indexed: 07/13/2024] Open
Abstract
Ferroptosis, a new type of programmed cell death proposed in recent years, is characterized mainly by reactive oxygen species and iron-mediated lipid peroxidation and differs from programmed cell death, such as apoptosis, necrosis, and autophagy. Ferroptosis is associated with a variety of physiological and pathophysiological processes. Recent studies have shown that ferroptosis can aggravate or reduce the occurrence and development of diseases by targeting metabolic pathways and signaling pathways in tumors, ischemic organ damage, and other degenerative diseases related to lipid peroxidation. Increasing evidence suggests that ferroptosis is closely linked to the onset and progression of various ophthalmic conditions, including corneal injury, glaucoma, age-related macular degeneration, diabetic retinopathy, retinal detachment, and retinoblastoma. Our review of the current research on ferroptosis in ophthalmic diseases reveals significant advancements in our understanding of the pathogenesis, aetiology, and treatment of these conditions.
Collapse
Affiliation(s)
- Yaqi Yang
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Yumeng Lin
- Naniing Tongren Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Zhongyu Han
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, China
- Naniing Tongren Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Bo Wang
- Ophthalmology Department, Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, Jilin, China
| | - Wei Zheng
- Ophthalmology Department, Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, Jilin, China
| | - Lijuan Wei
- Ophthalmology Department, Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, Jilin, China
| |
Collapse
|
42
|
Chen X, Tsvetkov AS, Shen HM, Isidoro C, Ktistakis NT, Linkermann A, Koopman WJ, Simon HU, Galluzzi L, Luo S, Xu D, Gu W, Peulen O, Cai Q, Rubinsztein DC, Chi JT, Zhang DD, Li C, Toyokuni S, Liu J, Roh JL, Dai E, Juhasz G, Liu W, Zhang J, Yang M, Liu J, Zhu LQ, Zou W, Piacentini M, Ding WX, Yue Z, Xie Y, Petersen M, Gewirtz DA, Mandell MA, Chu CT, Sinha D, Eftekharpour E, Zhivotovsky B, Besteiro S, Gabrilovich DI, Kim DH, Kagan VE, Bayir H, Chen GC, Ayton S, Lünemann JD, Komatsu M, Krautwald S, Loos B, Baehrecke EH, Wang J, Lane JD, Sadoshima J, Yang WS, Gao M, Münz C, Thumm M, Kampmann M, Yu D, Lipinski MM, Jones JW, Jiang X, Zeh HJ, Kang R, Klionsky DJ, Kroemer G, Tang D. International consensus guidelines for the definition, detection, and interpretation of autophagy-dependent ferroptosis. Autophagy 2024; 20:1213-1246. [PMID: 38442890 PMCID: PMC11210914 DOI: 10.1080/15548627.2024.2319901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/29/2023] [Accepted: 10/19/2023] [Indexed: 03/07/2024] Open
Abstract
Macroautophagy/autophagy is a complex degradation process with a dual role in cell death that is influenced by the cell types that are involved and the stressors they are exposed to. Ferroptosis is an iron-dependent oxidative form of cell death characterized by unrestricted lipid peroxidation in the context of heterogeneous and plastic mechanisms. Recent studies have shed light on the involvement of specific types of autophagy (e.g. ferritinophagy, lipophagy, and clockophagy) in initiating or executing ferroptotic cell death through the selective degradation of anti-injury proteins or organelles. Conversely, other forms of selective autophagy (e.g. reticulophagy and lysophagy) enhance the cellular defense against ferroptotic damage. Dysregulated autophagy-dependent ferroptosis has implications for a diverse range of pathological conditions. This review aims to present an updated definition of autophagy-dependent ferroptosis, discuss influential substrates and receptors, outline experimental methods, and propose guidelines for interpreting the results.Abbreviation: 3-MA:3-methyladenine; 4HNE: 4-hydroxynonenal; ACD: accidentalcell death; ADF: autophagy-dependentferroptosis; ARE: antioxidant response element; BH2:dihydrobiopterin; BH4: tetrahydrobiopterin; BMDMs: bonemarrow-derived macrophages; CMA: chaperone-mediated autophagy; CQ:chloroquine; DAMPs: danger/damage-associated molecular patterns; EMT,epithelial-mesenchymal transition; EPR: electronparamagnetic resonance; ER, endoplasmic reticulum; FRET: Försterresonance energy transfer; GFP: green fluorescent protein;GSH: glutathione;IF: immunofluorescence; IHC: immunohistochemistry; IOP, intraocularpressure; IRI: ischemia-reperfusion injury; LAA: linoleamide alkyne;MDA: malondialdehyde; PGSK: Phen Green™ SK;RCD: regulatedcell death; PUFAs: polyunsaturated fatty acids; RFP: red fluorescentprotein;ROS: reactive oxygen species; TBA: thiobarbituricacid; TBARS: thiobarbituric acid reactive substances; TEM:transmission electron microscopy.
Collapse
Affiliation(s)
- Xin Chen
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Andrey S. Tsvetkov
- Department of Neurology, The University of Texas McGovern Medical School at Houston, Houston, TX, USA
| | - Han-Ming Shen
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Macau, China
| | - Ciro Isidoro
- Department of Health Sciences, University of Piemonte Orientale, Novara, Italy
| | | | - Andreas Linkermann
- Division of Nephrology, Department of Internal Medicine 3, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Germany
- Division of Nephrology, Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Werner J.H. Koopman
- Department of Pediatrics, Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
- Human and Animal Physiology, Wageningen University, Wageningen, The Netherlands
| | - Hans-Uwe Simon
- Institute of Pharmacology, University of Bern, Bern, Switzerland
- Institute of Biochemistry, Brandenburg Medical School, Neuruppin, Germany
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, New York, NY, USA
- Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA
| | - Shouqing Luo
- Peninsula Medical School, University of Plymouth, Plymouth, UK
| | - Daqian Xu
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Wei Gu
- Institute for Cancer Genetics, and Department of Pathology and Cell Biology, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Olivier Peulen
- Metastasis Research Laboratory, GIGA Cancer-University of Liège, Liège, Belgium
| | - Qian Cai
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - David C. Rubinsztein
- Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
- UK Dementia Research Institute, University of Cambridge, Cambridge, UK
| | - Jen-Tsan Chi
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA
| | - Donna D. Zhang
- Pharmacology and Toxicology, R. Ken Coit College of Pharmacy, University of Arizona, Tucson, AZ, USA
| | - Changfeng Li
- Department of Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Shinya Toyokuni
- Department of Pathology and Biological Response, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Center for Low-temperature Plasma Sciences, Nagoya University, Nagoya, Japan
| | - Jinbao Liu
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Jong-Lyel Roh
- Department of Otorhinolaryngology-Head and Neck Surgery, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea
| | - Enyong Dai
- The Second Department of Hematology and Oncology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Gabor Juhasz
- Biological Research Center, Institute of Genetics, Szeged, Hungary
- Department of Anatomy, Cell and Developmental Biology, Eotvos Lorand University, Budapest, Hungary
| | - Wei Liu
- Department of Orthopedics, Changzheng Hospital, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Jianhua Zhang
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Minghua Yang
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Clinical Research Center of Pediatric Cancer, Changsha, China
| | - Jiao Liu
- DAMP Laboratory, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Ling-Qiang Zhu
- Department of Pathophysiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weiping Zou
- Departments of Surgery and Pathology, University of Michigan Medical School, Ann Arbor, USA
| | - Mauro Piacentini
- Department of Biology, University of Rome “Tor Vergata”, Rome, Italy
- National Institute for Infectious Diseases IRCCS “Lazzaro Spallanzani”, Rome, Italy
| | - Wen-Xing Ding
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, KS, USA
| | - Zhenyu Yue
- Department of Neurology, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yangchun Xie
- Department of Oncology, Central South University, Changsha, Hunan, China
| | - Morten Petersen
- Functional genomics, Department of Biology, Copenhagen University, Denmark
| | - David A. Gewirtz
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Massey Cancer Center, Richmond, VA, USA
| | - Michael A. Mandell
- Department of Molecular Genetics and Microbiology, University of New Mexico, Albuquerque, USA
| | - Charleen T. Chu
- Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Debasish Sinha
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA; Wilmer Eye lnstitute, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Eftekhar Eftekharpour
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Canada
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer, Villejuif, France; Gustave Roussy Cancer, Villejuif, France
| | - Boris Zhivotovsky
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden, Europe
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
- Engelhardt Institute of Molecular Biology, Moscow, Russia
| | - Sébastien Besteiro
- LPHI, University Montpellier, CNRS, Montpellier, France
- Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
| | | | - Do-Hyung Kim
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Valerian E. Kagan
- Department of Environmental Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Hülya Bayir
- Department of Pediatrics, Columbia University, New York, USA
| | - Guang-Chao Chen
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Scott Ayton
- Florey Institute, University of Melbourne, Parkville, Australia
| | - Jan D. Lünemann
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany
| | - Masaaki Komatsu
- Department of Physiology, Juntendo University School of Medicine, Bunkyo-ku Tokyo, Japan
| | - Stefan Krautwald
- Department of Nephrology and Hypertension, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Ben Loos
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Eric H. Baehrecke
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Jiayi Wang
- Department of Clinical Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Thoracic Oncology Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Medical Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jon D. Lane
- School of Biochemistry, University of Bristol, Bristol, UK
| | - Junichi Sadoshima
- Rutgers New Jersey Medical School, Department of Cell Biology and Molecular Medicine, Newark, USA
| | - Wan Seok Yang
- Department of Biological Sciences, St. John’s University, New York City, NY, USA
| | - Minghui Gao
- The HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Christian Münz
- Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Michael Thumm
- Department of Cellular Biochemistry, University Medical Center Goettingen, Goettingen, Germany
| | - Martin Kampmann
- Department of Biochemistry & Biophysics, University of California, San Francisco, USA
- Institute for Neurodegenerative Diseases, University of California, San Francisco, USA
| | - Di Yu
- Faculty of Medicine, Frazer Institute, University of Queensland, Brisbane, Australia
- Faculty of Medicine, Ian Frazer Centre for Children’s Immunotherapy Research, Child Health Research Centre, University of Queensland, Brisbane, Australia
| | - Marta M. Lipinski
- Department of Anesthesiology & Department of Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jace W. Jones
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD, USA
| | - Xuejun Jiang
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Herbert J. Zeh
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| | - Daniel J. Klionsky
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Université de Paris, Sorbonne Université, INSERM U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer, Villejuif, France; Gustave Roussy Cancer, Villejuif, France
- Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
43
|
Shen J, Fu H, Ding Y, Yuan Z, Xiang Z, Ding M, Huang M, Peng Y, Li T, Zha K, Ye Q. The role of iron overload and ferroptosis in arrhythmia pathogenesis. IJC HEART & VASCULATURE 2024; 52:101414. [PMID: 38694269 PMCID: PMC11060960 DOI: 10.1016/j.ijcha.2024.101414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 04/20/2024] [Accepted: 04/23/2024] [Indexed: 05/04/2024]
Abstract
Ferroptosis is a newly discovered form of programmed cell death triggered by intracellular iron overload, which leads to the accumulation of lipid peroxides in various cells. It has been implicated in the pathogenesis and progression of various diseases, including tumors, neurological disorders, and cardiovascular diseases. The intricate mechanism underlying ferroptosis involves an imbalance between the oxidation and antioxidant systems, disturbances in iron metabolism, membrane lipid peroxidation, and dysregulation of amino acid metabolism. We highlight the key molecular mechanisms governing iron overload and ferroptosis, and discuss potential molecular pathways linking ferroptosis with arrhythmias.
Collapse
Affiliation(s)
- Jingsong Shen
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Hengsong Fu
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Yanling Ding
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Ziyang Yuan
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Zeming Xiang
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Miao Ding
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Min Huang
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Yongquan Peng
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Tao Li
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China
| | - Kelan Zha
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Qiang Ye
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
44
|
Han Z, Luo Y, Chen H, Zhang G, You L, Zhang M, Lin Y, Yuan L, Zhou S. A Deep Insight into Ferroptosis in Renal Disease: Facts and Perspectives. KIDNEY DISEASES (BASEL, SWITZERLAND) 2024; 10:224-236. [PMID: 38835406 PMCID: PMC11149998 DOI: 10.1159/000538106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 02/25/2024] [Indexed: 06/06/2024]
Abstract
Background Ferroptosis, a newly recognized form of programmed cell death, is distinguished by its reliance on reactive oxygen species and iron-mediated lipid peroxidation, setting it apart from established types like apoptosis, cell necrosis, and autophagy. Recent studies suggest its role in exacerbating or mitigating diseases by influencing metabolic and signaling pathways in conditions such as tumors and ischemic organ damage. Evidence also links ferroptosis to various kidney diseases, prompting a review of its research status and potential breakthroughs in understanding and treating these conditions. Summary In acute kidney disease (AKI), ferroptosis has been confirmed in animal kidneys after being induced by various factors such as renal ischemia-reperfusion and cisplatin, and glutathione peroxidase 4 (GPX4) is linked with AKI. Ferroptosis is associated with renal fibrosis in chronic kidney disease (CKD), TGF-β1 being crucial in this regard. In diabetic nephropathy (DN), high SLC7A11 and low nuclear receptor coactivator 4 (NCOA4) expressions are linked to disease progression. For polycystic kidney disease (PKD), ferroptosis promotes the disease by regulating ferroptosis in kidney tissue. Renal cell carcinoma (RCC) and lupus nephritis (LN) also have links to ferroptosis, with mtDNA and iron accumulation causing RCC and oxidative stress causing LN. Key Messages Ferroptosis is a newly identified form of programmed cell death that is associated with various diseases. It targets metabolic and signaling pathways and has been linked to kidney diseases such as AKI, CKD, PKD, DN, LN, and clear cell RCC. Understanding its role in these diseases could lead to breakthroughs in their pathogenesis, etiology, and treatment.
Collapse
Affiliation(s)
- Zhongyu Han
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuanke Luo
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Haoran Chen
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Guochen Zhang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Luling You
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Meiqi Zhang
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yumeng Lin
- Eye School of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lan Yuan
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shiyi Zhou
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
45
|
Jia X, Zhu L, Zhu Q, Zhang J. The role of mitochondrial dysfunction in kidney injury and disease. Autoimmun Rev 2024; 23:103576. [PMID: 38909720 DOI: 10.1016/j.autrev.2024.103576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 06/25/2024]
Abstract
Mitochondria are the main sites of aerobic respiration in the cell and mainly provide energy for the organism, and play key roles in adenosine triphosphate (ATP) synthesis, metabolic regulation, and cell differentiation and death. Mitochondrial dysfunction has been identified as a contributing factor to a variety of diseases. The kidney is rich in mitochondria to meet energy needs, and stable mitochondrial structure and function are essential for normal kidney function. Recently, many studies have shown a link between mitochondrial dysfunction and kidney disease, maintaining mitochondrial homeostasis has become an important target for kidney therapy. In this review, we integrate the role of mitochondrial dysfunction in different kidney diseases, and specifically elaborate the mechanism of mitochondrial reactive oxygen species (mtROS), autophagy and ferroptosis involved in the occurrence and development of kidney diseases, providing insights for improved treatment of kidney diseases.
Collapse
Affiliation(s)
- Xueqian Jia
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, PR China
| | - Lifu Zhu
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, PR China
| | - Qixing Zhu
- Institute of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, PR China; Key Laboratory of Dermatology, Ministry of Education, The First Affiliated Hospital of Anhui Medical University, Hefei, PR China.
| | - Jiaxiang Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, PR China; Key Laboratory of Dermatology, Ministry of Education, The First Affiliated Hospital of Anhui Medical University, Hefei, PR China; The Center for Scientific Research, Anhui Medical University, Hefei, PR China.
| |
Collapse
|
46
|
Dong J, Liu W, Liu W, Wen Y, Liu Q, Wang H, Xiang G, Liu Y, Hao H. Acute lung injury: a view from the perspective of necroptosis. Inflamm Res 2024; 73:997-1018. [PMID: 38615296 DOI: 10.1007/s00011-024-01879-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/23/2024] [Accepted: 03/31/2024] [Indexed: 04/15/2024] Open
Abstract
BACKGROUND ALI/ARDS is a syndrome of acute onset characterized by progressive hypoxemia and noncardiogenic pulmonary edema as the primary clinical manifestations. Necroptosis is a form of programmed cell necrosis that is precisely regulated by molecular signals. This process is characterized by organelle swelling and membrane rupture, is highly immunogenic, involves extensive crosstalk with various cellular stress mechanisms, and is significantly implicated in the onset and progression of ALI/ARDS. METHODS The current body of literature on necroptosis and ALI/ARDS was thoroughly reviewed. Initially, an overview of the molecular mechanism of necroptosis was provided, followed by an examination of its interactions with apoptosis, pyroptosis, autophagy, ferroptosis, PANOptosis, and NETosis. Subsequently, the involvement of necroptosis in various stages of ALI/ARDS progression was delineated. Lastly, drugs targeting necroptosis, biomarkers, and current obstacles were presented. CONCLUSION Necroptosis plays an important role in the progression of ALI/ARDS. However, since ALI/ARDS is a clinical syndrome caused by a variety of mechanisms, we emphasize that while focusing on necroptosis, it may be more beneficial to treat ALI/ARDS by collaborating with other mechanisms.
Collapse
Affiliation(s)
- Jinyan Dong
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250000, Shandong, China
| | - Weihong Liu
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250000, Shandong, China
| | - Wenli Liu
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250000, Shandong, China
| | - Yuqi Wen
- Second Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250000, Shandong, China
| | - Qingkuo Liu
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250000, Shandong, China
| | - Hongtao Wang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250000, Shandong, China
| | - Guohan Xiang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250000, Shandong, China
| | - Yang Liu
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250000, Shandong, China.
| | - Hao Hao
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250000, Shandong, China.
| |
Collapse
|
47
|
Liao X, Lu J, Huang Z, Lin J, Zhang M, Chen H, Lin X, Gao X, Gong S. Aminophylline suppresses chronic renal failure progression by activating SIRT1/AMPK/mTOR-dependent autophagy. Acta Biochim Biophys Sin (Shanghai) 2024; 56:1311-1322. [PMID: 38808395 PMCID: PMC11532209 DOI: 10.3724/abbs.2024049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 02/20/2024] [Indexed: 05/30/2024] Open
Abstract
Chronic renal failure (CRF) is a severe syndrome affecting the urinary system for which there are no effective therapeutics. In this study, we investigate the effects and mechanisms of aminophylline in preventing CRF development. A rat model of chronic renal failure is established by 5/6 nephrectomy. The levels of serum creatinine (SCR), urinary protein (UPR), and blood urea nitrogen (BUN) are detected by ELISA. Histological evaluations of renal tissues are performed by H&E, Masson staining, and PAS staining. Functional protein expression is detected by western blot analysis or immunofluorescence microscopy. Glomerular cell apoptosis is determined using the TUNEL method. Results show that Aminophylline significantly reduces the levels of SCR, UPR, and BUN in the CRF model rats. Histological analyses show that aminophylline effectively alleviates renal tissue injuries in CRF rats. The protein expression levels of nephrin, podocin, SIRT1, p-AMPK, and p-ULK1 are greatly increased, while p-mTOR protein expression is markedly decreased by aminophylline treatment. Additionally, the protein level of LC3B in CRF rats is significantly increased by aminophylline. Moreover, aminophylline alleviates apoptosis in the glomerular tissues of CRF rats. Furthermore, resveratrol promotes SIRT1, p-AMPK, and p-ULK1 protein expressions and reduces p-mTOR and LC3B protein expressions in CRF rats. Selisistat (a SIRT1 inhibitor) mitigates the changes in SIRT1, p-AMPK, p-ULK1, p-mTOR, and LC3B expressions induced by aminophylline. Finally, RAPA alleviates renal injury and apoptosis in CRF rats, and 3-MA eliminates the aminophylline-induced inhibition of renal injury and apoptosis in CRF rats. Aminophylline suppresses chronic renal failure progression by modulating the SIRT1/AMPK/mTOR-mediated autophagy process.
Collapse
Affiliation(s)
- Xin Liao
- Pediatric Departmentthe First Affiliated Hospital of Jinan UniversityGuangzhou510030China
- Department of NephrologyGuangzhou Women and Children’s Medical CenterGuangzhou Medical UniversityGuangzhou510623China
| | - Jieyi Lu
- Pediatric Departmentthe First Affiliated Hospital of Jinan UniversityGuangzhou510030China
- Department of NephrologyGuangzhou Women and Children’s Medical CenterGuangzhou Medical UniversityGuangzhou510623China
| | - Zhifeng Huang
- Department of Burns and Wound Repair SurgeryGuangdong Provincial People’s HospitalGuangdong Academy of Medical SciencesGuangzhou510080China
| | - Jinai Lin
- Department of NephrologyGuangzhou Women and Children’s Medical CenterGuangzhou Medical UniversityGuangzhou510623China
| | - Miao Zhang
- Department of NephrologyGuangzhou Women and Children’s Medical CenterGuangzhou Medical UniversityGuangzhou510623China
| | - Huanru Chen
- Department of NephrologyGuangzhou Women and Children’s Medical CenterGuangzhou Medical UniversityGuangzhou510623China
| | - Xiaoqing Lin
- Department of NephrologyGuangzhou Women and Children’s Medical CenterGuangzhou Medical UniversityGuangzhou510623China
| | - Xia Gao
- Department of NephrologyGuangzhou Women and Children’s Medical CenterGuangzhou Medical UniversityGuangzhou510623China
| | - Sitang Gong
- Department of NephrologyGuangzhou Women and Children’s Medical CenterGuangzhou Medical UniversityGuangzhou510623China
| |
Collapse
|
48
|
Li C, Yu Y, Zhu S, Hu Y, Ling X, Xu L, Zhang H, Guo K. The emerging role of regulated cell death in ischemia and reperfusion-induced acute kidney injury: current evidence and future perspectives. Cell Death Discov 2024; 10:216. [PMID: 38704372 PMCID: PMC11069531 DOI: 10.1038/s41420-024-01979-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 04/14/2024] [Accepted: 04/18/2024] [Indexed: 05/06/2024] Open
Abstract
Renal ischemia‒reperfusion injury (IRI) is one of the main causes of acute kidney injury (AKI), which is a potentially life-threatening condition with a high mortality rate. IRI is a complex process involving multiple underlying mechanisms and pathways of cell injury and dysfunction. Additionally, various types of cell death have been linked to IRI, including necroptosis, apoptosis, pyroptosis, and ferroptosis. These processes operate differently and to varying degrees in different patients, but each plays a role in the various pathological conditions of AKI. Advances in understanding the underlying pathophysiology will lead to the development of new therapeutic approaches that hold promise for improving outcomes for patients with AKI. This review provides an overview of the recent research on the molecular mechanisms and pathways underlying IRI-AKI, with a focus on regulated cell death (RCD) forms such as necroptosis, pyroptosis, and ferroptosis. Overall, targeting RCD shows promise as a potential approach to treating IRI-AKI.
Collapse
Affiliation(s)
- Chenning Li
- Department of Anesthesiology, Zhongshan Hospital, Shanghai, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Ying Yu
- Department of Anesthesiology, Zhongshan Hospital, Shanghai, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Shuainan Zhu
- Department of Anesthesiology, Zhongshan Hospital, Shanghai, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Yan Hu
- Department of Anesthesiology, Zhongshan Hospital, Shanghai, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Xiaomin Ling
- Department of Anesthesiology, Zhongshan Hospital, Shanghai, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Liying Xu
- Department of Anesthesiology, Zhongshan Hospital, Shanghai, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Hao Zhang
- Department of Anesthesiology, Zhongshan Hospital, Shanghai, China.
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China.
| | - Kefang Guo
- Department of Anesthesiology, Zhongshan Hospital, Shanghai, China.
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China.
| |
Collapse
|
49
|
Xu C, Wang Q, Du C, Chen L, Zhou Z, Zhang Z, Cai N, Li J, Huang C, Ma T. Histone deacetylase-mediated silencing of PSTPIP2 expression contributes to aristolochic acid nephropathy-induced PANoptosis. Br J Pharmacol 2024; 181:1452-1473. [PMID: 38073114 DOI: 10.1111/bph.16299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 11/21/2023] [Accepted: 11/29/2023] [Indexed: 01/26/2024] Open
Abstract
BACKGROUND AND PURPOSE Aristolochic acid nephropathy (AAN) is a progressive kidney disease caused by using herbal medicines. Currently, no therapies are available to treat or prevent aristolochic acid nephropathy. Histone deacetylase (HDAC) plays a crucial role in the development and progression of renal disease. We tested whether HDAC inhibitors could prevent aristolochic acid nephropathy and determined the underlying mechanism. EXPERIMENTAL APPROACH HDACs expression in the aristolochic acid nephropathy model was examined. The activation of PANoptosis of mouse kidney and renal tubular epithelial cell were assessed after exposure to HDAC1 and HDAC2 blockade. Kidney-specific knock-in of proline-serine-threonine-phosphatase-interacting protein 2 (PSTPIP2) mice were used to investigate whether PSTPIP2 affected the production of PANoptosome. KEY RESULTS Aristolochic acid upregulated the expression of HDAC1 and HDAC2 in the kidneys. Notably, the HDAC1 and HDAC2 specific inhibitor, romidepsin (FK228, depsipeptide), suppressed aristolochic acid-induced kidney injury, epithelial cell pyroptosis, apoptosis and necroptosis (PANoptosis). Moreover, romidepsin upregulated PSTPIP2 in renal tubular epithelial cells, which was enhanced by aristolochic acid treatment. Conditional knock-in of PSTPIP2 in the kidney protected against aristolochic acid nephropathy. In contrast, the knockdown of PSTPIP2 expression in PSTPIP2-knock-in mice restored kidney damage and PANoptosis. PSTPIP2 function was determined in vitro using PSTPIP2 knockdown or overexpression in mouse renal tubular epithelial cells (mTECs). Additionally, PSTPIP2 was found to regulate caspase 8 in aristolochic acid nephropathy. CONCLUSION AND IMPLICATIONS HDAC-mediated silencing of PSTPIP2 may contribute to aristolochic acid nephropathy. Hence, HDAC1 and HDAC2 specific inhibitors or PSTPIP2 could be valuable therapeutic agents for preventing aristolochic acid nephropathy.
Collapse
Affiliation(s)
- Chuanting Xu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
- Center of Traditional Chinese Medicine Formula Granule, Anhui Medical University, Hefei, China
| | - Qi Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Changlin Du
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Lu Chen
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Zhongnan Zhou
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Zhenming Zhang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Na Cai
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Jun Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Cheng Huang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
- Anhui Provincial Institute of Translational Medicine, Hefei, China
| | - Taotao Ma
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
- Center of Traditional Chinese Medicine Formula Granule, Anhui Medical University, Hefei, China
- Anhui Provincial Institute of Translational Medicine, Hefei, China
| |
Collapse
|
50
|
Huang X, Liu R, Zhan C, Wu H, Fan J, Li Z, Yang X. Aristolochic acid induces acute kidney injury through ferroptosis. Front Pharmacol 2024; 15:1330376. [PMID: 38601472 PMCID: PMC11004286 DOI: 10.3389/fphar.2024.1330376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 03/11/2024] [Indexed: 04/12/2024] Open
Abstract
Aristolochic acid (AA)-induced acute kidney injury (AKI) presents with progressive decline in renal function and rapid progression to end-stage renal disease. Among the multiple mechanisms identified in AKI, ferroptosis has been shown to be involved in various forms of AKI. But few studies have elucidated the role of ferroptosis in AA-induced AKI. In this study, we investigated the role of ferroptosis in AA-induced acute renal tubular injury in vivo and in vitro. Mice with acute aristolochic acid nephropathy showed increased malondialdehyde levels, aggravated lipid peroxidation, decreased superoxide dismutase activity, and glutathione depletion. The expression of glutathione peroxidase 4 was decreased and the expression of acyl-CoA synthetase long-chain family member 4 was increased. Inhibition of ferroptosis by ferrostatin-1 significantly improved the renal function, reduced histopathological lesions, partially alleviated lipid peroxidation, and restored the antioxidant capacity. In vitro studies also revealed that AA significantly reduced cell viability, induced reactive oxygen species production, increased intracellular iron level and decreased ferroptosis-related protein expression. Inhibition of ferroptosis significantly increased cell viability and attenuated AA-induced renal tubular epithelial cell injury. It is suggested that ferroptosis plays an important role in AA-induced acute tubular injury. And inhibition of ferroptosis may exert renoprotective effects possibly by preventing lipid peroxidation, restoring the antioxidant activity or regulating iron metabolism.
Collapse
Affiliation(s)
- Xuan Huang
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Nephrology, National Health Commission and Guangdong Province, Guangzhou, China
| | - Ruihua Liu
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Nephrology, National Health Commission and Guangdong Province, Guangzhou, China
| | - Cuixia Zhan
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Nephrology, National Health Commission and Guangdong Province, Guangzhou, China
| | - Haishan Wu
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Nephrology, National Health Commission and Guangdong Province, Guangzhou, China
| | - Jinjin Fan
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Nephrology, National Health Commission and Guangdong Province, Guangzhou, China
| | - Zhijian Li
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Nephrology, National Health Commission and Guangdong Province, Guangzhou, China
| | - Xiao Yang
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Nephrology, National Health Commission and Guangdong Province, Guangzhou, China
| |
Collapse
|