1
|
Zhao H, Shan Y, Hu W, Yang M, Gong X, Zhou Q, Zhang D, Jin J. Carotid plaque CTA analysis in patients with initial and recurrent ischemic stroke. Eur J Radiol 2025; 186:112058. [PMID: 40120338 DOI: 10.1016/j.ejrad.2025.112058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 11/13/2024] [Accepted: 03/18/2025] [Indexed: 03/25/2025]
Abstract
OBJECTIVES Recurrent ischemic stroke leads to prolonged hospital stays, deterioration in functional outcomes, increased disability and mortality rates. The composition of plaques is closely related to the occurrence of stroke. Our aim was to explore differences in carotid plaque characteristics between patients with initial and recurrent ischemic stroke. METHODS A retrospective study was conducted on 208 anterior circulation stroke patients who had completed head and neck CT angiography (CTA) examinations. Patients were divided into initial cerebral infarction (ICI) group and recurrent cerebral infarction (RCI) group according to clinical and imaging data. The histological and morphological characteristics of the plaques were assessed by using VascuCAP software. The general demographic data, plaque characteristics, and serological indicators were compared between the two groups. Then, the association between plaque characteristics were investigated. To investigate the contribution of plaque characteristics for predicting the risk of stroke recurrence, we have constructed multivariate logistic regression models with plaque characteristics and blood lipid level parameters. RESULTS There were significant differences in total carotid plaque volume (P = 0.002) between the ICI and RCI groups. The volume and percentage of Intraplaque Hemorrhage (IPH) and calcification (CALC) in the RCI group were significantly higher than those in the ICI group (P < 0.05). There were also statistically significant differences in IPH volume (P=<0.001)and IPH percentage (P<0.001)between the symptomatic and asymptomatic sides in the RCI group. In the ICI group, the difference in the maximum stenosis of the carotid artery lumen was statistically significant between the 2 sides (P = 0.025). The total cholesterol (P = 0.024) and triglyceride levels (P = 0.049) was significantly larger in the ICI group than in the RCI group. Further, there is a significant negative correlation between the volumes and percentages of IPH and CALC in the ICI group (volume, r = -0.225, P = 0.021; percentage, r = -0.293, P = 0.002). In addition, IPH volume and percentage were independent predictors in the logistic model with combined features of plaque volume, plaque percentage and blood lipid level (AUC = 0.755, 95 %CI 0.690-0.820). CONCLUSION The volume of total carotid plaque and IPH were significantly different between the ICI group and RCI group. The IPH volume and percentage on the symptomatic side of the RCI group were higher than those on the asymptomatic side. IPH has important indicative significance in identifying patients at risk of recurrent stroke. ABBREVIATIONS CTA, computed tomography angiography; ICI, initial cerebral infarction; RCI, recurrent cerebral infarction; IPH, intraplaque hemorrhage; CALC, calcification; AUC, area under the curve; CI, confidence interval.
Collapse
Affiliation(s)
- Hui Zhao
- Department of Radiology, the Second Affiliated Hospital of Anhui Medical University, Hefei, China; Medical Imaging Research Center, Anhui Medical University, Hefei, China
| | - Yanqi Shan
- Department of Radiology, the Second Affiliated Hospital of Anhui Medical University, Hefei, China; Medical Imaging Research Center, Anhui Medical University, Hefei, China
| | - Wei Hu
- Department of Radiology, the Second Affiliated Hospital of Anhui Medical University, Hefei, China; Medical Imaging Research Center, Anhui Medical University, Hefei, China
| | - Moran Yang
- Department of Radiology, the Second Affiliated Hospital of Anhui Medical University, Hefei, China; Medical Imaging Research Center, Anhui Medical University, Hefei, China
| | - Xijun Gong
- Department of Radiology, the Second Affiliated Hospital of Anhui Medical University, Hefei, China; Medical Imaging Research Center, Anhui Medical University, Hefei, China
| | - Qisong Zhou
- Department of Medical Technology, Clinical College of Anhui Medical University, Hefei, China
| | - Dai Zhang
- Department of Radiology, the Second Affiliated Hospital of Anhui Medical University, Hefei, China; Medical Imaging Research Center, Anhui Medical University, Hefei, China.
| | - Jing Jin
- Department of Radiology, the Second Affiliated Hospital of Anhui Medical University, Hefei, China; Medical Imaging Research Center, Anhui Medical University, Hefei, China; Department of Medical Technology, Clinical College of Anhui Medical University, Hefei, China.
| |
Collapse
|
2
|
Challa SR, Levingston H, Fornal CA, Baker IM, Boston J, Shanthappa N, Unnam P, Klopfenstein JD, Veeravalli KK. Temporal mRNA Expression of Purinergic P2 Receptors in the Brain Following Cerebral Ischemia and Reperfusion: Similarities and Distinct Variations Between Rats and Mice. Int J Mol Sci 2025; 26:2379. [PMID: 40141023 PMCID: PMC11941906 DOI: 10.3390/ijms26062379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/01/2025] [Accepted: 03/05/2025] [Indexed: 03/28/2025] Open
Abstract
Purinergic P2 receptors are crucial in energy utilization and cellular signaling, making them key targets for stroke therapies. This study examines the temporal mRNA expression of all P2 receptors in rats and mice. Both species exhibited a common subset of P2X and P2Y receptors with elevated expression following cerebral ischemia and reperfusion (I/R), highlighting conserved mechanisms across these species. The receptors with upregulated expression in both species were P2X3, P2X4, P2X7, P2Y2, and P2Y6. While these similarities were observed, notable differences in receptor expression emerged between rats and mice. Rats exhibited a broader receptor profile, with five additional receptors (P2X1, P2Y1, P2Y12, P2Y13, and P2Y14) significantly upregulated compared to only two receptors (P2X2 and P2Y4) in mice, highlighting species-specific regulation of receptor expression distinct from the shared receptors. Following cerebral I/R, P2Y12 was the most upregulated receptor in rats, while P2Y2 was the most upregulated in mice. These findings reveal both conserved and species-specific changes in P2 receptor expression following cerebral I/R. Targeting purinergic receptors, particularly those conserved and upregulated in response to stroke, may represent a promising therapeutic approach.
Collapse
Affiliation(s)
- Siva Reddy Challa
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine Peoria, Peoria, IL 61605, USA; (S.R.C.); (H.L.); (C.A.F.); (I.M.B.); (J.B.); (P.U.); (J.D.K.)
| | - Hunter Levingston
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine Peoria, Peoria, IL 61605, USA; (S.R.C.); (H.L.); (C.A.F.); (I.M.B.); (J.B.); (P.U.); (J.D.K.)
| | - Casimir A. Fornal
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine Peoria, Peoria, IL 61605, USA; (S.R.C.); (H.L.); (C.A.F.); (I.M.B.); (J.B.); (P.U.); (J.D.K.)
| | - Isidra M. Baker
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine Peoria, Peoria, IL 61605, USA; (S.R.C.); (H.L.); (C.A.F.); (I.M.B.); (J.B.); (P.U.); (J.D.K.)
| | - Joseph Boston
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine Peoria, Peoria, IL 61605, USA; (S.R.C.); (H.L.); (C.A.F.); (I.M.B.); (J.B.); (P.U.); (J.D.K.)
| | - Nidhi Shanthappa
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine Peoria, Peoria, IL 61605, USA; (S.R.C.); (H.L.); (C.A.F.); (I.M.B.); (J.B.); (P.U.); (J.D.K.)
| | - Pavani Unnam
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine Peoria, Peoria, IL 61605, USA; (S.R.C.); (H.L.); (C.A.F.); (I.M.B.); (J.B.); (P.U.); (J.D.K.)
| | - Jeffrey D. Klopfenstein
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine Peoria, Peoria, IL 61605, USA; (S.R.C.); (H.L.); (C.A.F.); (I.M.B.); (J.B.); (P.U.); (J.D.K.)
- Department of Neurosurgery, University of Illinois College of Medicine Peoria, Peoria, IL 61605, USA
- Illinois Neurological Institute, OSF HealthCare, Peoria, IL 61603, USA
| | - Krishna Kumar Veeravalli
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine Peoria, Peoria, IL 61605, USA; (S.R.C.); (H.L.); (C.A.F.); (I.M.B.); (J.B.); (P.U.); (J.D.K.)
- Department of Neurosurgery, University of Illinois College of Medicine Peoria, Peoria, IL 61605, USA
- Department of Pediatrics, University of Illinois College of Medicine Peoria, Peoria, IL 61605, USA
- Department of Neurology, University of Illinois College of Medicine Peoria, Peoria, IL 61605, USA
| |
Collapse
|
3
|
Rodriguez Moore G, Melo-Escobar I, Stegner D, Bracko O. One immune cell to bind them all: platelet contribution to neurodegenerative disease. Mol Neurodegener 2024; 19:65. [PMID: 39334369 PMCID: PMC11438031 DOI: 10.1186/s13024-024-00754-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Alzheimer's disease (AD) and related dementias (ADRD) collectively affect a significant portion of the aging population worldwide. The pathological progression of AD involves not only the classical hallmarks of amyloid beta (Aβ) plaque buildup and neurofibrillary tangle development but also the effects of vasculature and chronic inflammatory processes. Recently, platelets have emerged as central players in systemic and neuroinflammation. Studies have shown that patients with altered platelet receptor expression exhibit accelerated cognitive decline independent of traditional risk factors. Additionally, platelets from AD patients exhibit heightened unstimulated activation compared to control groups. Platelet granules contain crucial AD-related proteins like tau and amyloid precursor protein (APP). Dysregulation of platelet exocytosis contributes to disease phenotypes characterized by increased bleeding, stroke, and cognitive decline risk. Recent studies have indicated that these effects are not associated with the quantity of platelets present in circulation. This underscores the hypothesis that disruptions in platelet-mediated inflammation and healing processes may play a crucial role in the development of ADRD. A thorough look at platelets, encompassing their receptors, secreted molecules, and diverse roles in inflammatory interactions with other cells in the circulatory system in AD and ADRD, holds promising prospects for disease management and intervention. This review discusses the pivotal roles of platelets in ADRD.
Collapse
Affiliation(s)
| | - Isabel Melo-Escobar
- Department of Biology, University of Miami, Coral Gables, FL, 33146, USA
- Neuroscience Program, University of Miami Leonard M. Miller School of Medicine, Miami, FL, 33136, USA
| | - David Stegner
- Institute for Experimental Biomedicine, University Hospital Würzburg, Würzburg, Germany
- Rudolf Virchow Center for Integrative and Translational Bioimaging, Julius-Maximilians University of Würzburg, Würzburg, Germany
| | - Oliver Bracko
- Department of Biology, University of Miami, Coral Gables, FL, 33146, USA.
- Department of Neurology, University of Miami Leonard M. Miller School of Medicine, Miami, FL, 33136, USA.
| |
Collapse
|
4
|
Tranter JD, Mikami RT, Kumar A, Brown G, Abd El-Aziz TM, Zhao Y, Abraham N, Meyer C, Ajanel A, Xie L, Ashworth K, Hong J, Zhang H, Kumari T, Balutowski A, Liu A, Bark D, Nair VK, Lasky NM, Feng Y, Stitziel NO, Lerner DJ, Campbell RA, Paola JD, Cho J, Sah R. LRRC8 complexes are adenosine nucleotide release channels regulating platelet activation and arterial thrombosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.26.615233. [PMID: 39386563 PMCID: PMC11463368 DOI: 10.1101/2024.09.26.615233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Platelet shape and volume changes are early mechanical events contributing to platelet activation and thrombosis. Here, we identify single-nucleotide polymorphisms in Leucine-Rich Repeat Containing 8 (LRRC8) protein subunits that form the Volume-Regulated Anion Channel (VRAC) which are independently associated with altered mean platelet volume. LRRC8A is required for functional VRAC in megakaryocytes (MKs) and regulates platelet volume, adhesion, and agonist-stimulated activation, aggregation, ATP secretion and calcium mobilization. MK-specific LRRC8A cKO mice have reduced arteriolar thrombus formation and prolonged arterial thrombosis without affecting bleeding times. Mechanistically, platelet LRRC8A mediates swell-induced ATP/ADP release to amplify agonist-stimulated calcium and PI3K-AKT signaling via P2X1, P2Y 1 and P2Y 12 receptors. Small-molecule LRRC8 channel inhibitors recapitulate defects observed in LRRC8A-null platelets in vitro and in vivo . These studies identify the mechanoresponsive LRRC8 channel complex as an ATP/ADP release channel in platelets which regulates platelet function and thrombosis, providing a proof-of-concept for a novel anti-thrombotic drug target.
Collapse
|
5
|
Martinez Bravo G, Annarapu G, Carmona E, Nawarskas J, Clark R, Novelli E, Mota Alvidrez RI. Platelets in Thrombosis and Atherosclerosis: A Double-Edged Sword. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:1608-1621. [PMID: 38885926 PMCID: PMC11373056 DOI: 10.1016/j.ajpath.2024.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/16/2024] [Accepted: 05/16/2024] [Indexed: 06/20/2024]
Abstract
This review focuses on the dual role of platelets in atherosclerosis and thrombosis, exploring their involvement in inflammation, angiogenesis, and plaque formation, as well as their hemostatic and prothrombotic functions. Beyond their thrombotic functions, platelets engage in complex interactions with diverse cell types, influencing disease resolution and progression. The contribution of platelet degranulation helps in the formation of atheromatous plaque, whereas the reciprocal interaction with monocytes adds complexity. Alterations in platelet membrane receptors and signaling cascades contribute to advanced atherosclerosis, culminating in atherothrombotic events. Understanding these multifaceted roles of platelets will lead to the development of targeted antiplatelet strategies for effective cardiovascular disease prevention and treatment. Understanding platelet functions in atherosclerosis and atherothrombosis at different stages of disease will be critical for designing targeted treatments and medications to prevent or cure the disease Through this understanding, platelets can be targeted at specific times in the atherosclerosis process, possibly preventing the development of atherothrombosis.
Collapse
Affiliation(s)
| | - Gowtham Annarapu
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Emely Carmona
- School of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - James Nawarskas
- Pharmaceutical Sciences-Pharmacy Practice, College of Pharmacy, University of New Mexico, Albuquerque, New Mexico
| | - Ross Clark
- Cell Biology and Physiology, University of New Mexico, Albuquerque, New Mexico; Clinical and Translational Science Center, University of New Mexico, Albuquerque, New Mexico
| | - Enrico Novelli
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania; School of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Roberto I Mota Alvidrez
- Biomedical Engineering Department, University of New Mexico, Albuquerque, New Mexico; Pharmaceutical Sciences-Pharmacy Practice, College of Pharmacy, University of New Mexico, Albuquerque, New Mexico; Clinical and Translational Science Center, University of New Mexico, Albuquerque, New Mexico.
| |
Collapse
|
6
|
Qi H, Tian D, Luan F, Yang R, Zeng N. Pathophysiological changes of muscle after ischemic stroke: a secondary consequence of stroke injury. Neural Regen Res 2024; 19:737-746. [PMID: 37843207 PMCID: PMC10664100 DOI: 10.4103/1673-5374.382221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/30/2023] [Accepted: 06/01/2023] [Indexed: 10/17/2023] Open
Abstract
Sufficient clinical evidence suggests that the damage caused by ischemic stroke to the body occurs not only in the acute phase but also during the recovery period, and that the latter has a greater impact on the long-term prognosis of the patient. However, current stroke studies have typically focused only on lesions in the central nervous system, ignoring secondary damage caused by this disease. Such a phenomenon arises from the slow progress of pathophysiological studies examining the central nervous system. Further, the appropriate therapeutic time window and benefits of thrombolytic therapy are still controversial, leading scholars to explore more pragmatic intervention strategies. As treatment measures targeting limb symptoms can greatly improve a patient's quality of life, they have become a critical intervention strategy. As the most vital component of the limbs, skeletal muscles have become potential points of concern. Despite this, to the best of our knowledge, there are no comprehensive reviews of pathophysiological changes and potential treatments for post-stroke skeletal muscle. The current review seeks to fill a gap in the current understanding of the pathological processes and mechanisms of muscle wasting atrophy, inflammation, neuroregeneration, mitochondrial changes, and nutritional dysregulation in stroke survivors. In addition, the challenges, as well as the optional solutions for individualized rehabilitation programs for stroke patients based on motor function are discussed.
Collapse
Affiliation(s)
- Hu Qi
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Dan Tian
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Fei Luan
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Ruocong Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Nan Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| |
Collapse
|
7
|
Rayner KJ. Drugging the foam cell: identifying P2Y6 antagonists that limit atherosclerosis. Eur Heart J 2024; 45:284-286. [PMID: 38243806 DOI: 10.1093/eurheartj/ehad846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2024] Open
Affiliation(s)
- Katey J Rayner
- University of Ottawa Heart Institute, 40 Ruskin Street, Room H4211A, Ottawa, ON K1Y 4W7, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8L1, Canada
| |
Collapse
|
8
|
Liu L, Gao J, Tang Y, Guo G, Gan H. Increased expression of the P2Y 12 receptor is involved in the failure of autogenous arteriovenous fistula caused by stenosis. Ren Fail 2023; 45:2278314. [PMID: 38532720 PMCID: PMC11073481 DOI: 10.1080/0886022x.2023.2278314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 10/27/2023] [Indexed: 03/28/2024] Open
Abstract
OBJECTIVE This study investigated the role of the P2Y12 receptor in autogenous arteriovenous fistula (AVF) failure resulting from stenosis. METHODS Stenotic venous tissues and blood samples were obtained from patients with end-stage renal disease (ESRD) together with AVF stenosis, while venous tissues and blood samples were collected from patients with ESRD undergoing initial AVF surgery as controls. Immunohistochemistry and/or immunofluorescence techniques were utilized to assess the expression of P2Y12, transforming growth factor-β1 (TGF-β1), monocyte chemotactic protein 1 (MCP-1), and CD68 in the venous tissues. The expression levels of P2Y12, TGFβ1, and MCP-1 were quantified using quantitative reverse transcription-polymerase chain reaction and western blot analyses. Double and triple immunofluorescence staining was performed to precisely localize the cellular localization of P2Y12 expression. RESULTS Expression levels of P2Y12, TGFβ1, MCP-1, and CD68 were significantly higher in stenotic AVF venous tissues than in the control group tissues. Double and triple immunofluorescence staining of stenotic AVF venous tissues indicated that P2Y12 was predominantly expressed in α-SMA-positive vascular smooth muscle cells (VSMCs) and, to a lesser extent, in CD68-positive macrophages, with limited expression in CD31-positive endothelial cells. Moreover, a subset of macrophage-like VSMCs expressing P2Y12 were observed in both stenotic AVF venous tissues and control venous tissues. Additionally, a higher number of P2Y12+/TGF-β1+ double-positive cells were identified in stenotic AVF venous tissues than in the control group tissues. CONCLUSION Increased expression of P2Y12 in stenotic AVF venous tissues of patients with ESRD suggests its potential involvement in the pathogenesis of venous stenosis within AVFs.
Collapse
Affiliation(s)
- Lei Liu
- Department of Nephrology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Nephrology, Chongqing University Three Gorges Hospital, Chongqing, China
- Department of Nephrology, Chongqing Three Gorges Central Hospital, Chongqing, China
| | - Jianya Gao
- Department of Nephrology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Nephrology, Chongqing University Three Gorges Hospital, Chongqing, China
- Department of Nephrology, Chongqing Three Gorges Central Hospital, Chongqing, China
| | - Yuewu Tang
- Department of Nephrology, Chongqing University Three Gorges Hospital, Chongqing, China
- Department of Nephrology, Chongqing Three Gorges Central Hospital, Chongqing, China
| | - Guangfeng Guo
- Department of Nephrology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hua Gan
- Department of Nephrology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
9
|
Beura SK, Dhapola R, Panigrahi AR, Yadav P, Kumar R, Reddy DH, Singh SK. Antiplatelet drugs: Potential therapeutic options for the management of neurodegenerative diseases. Med Res Rev 2023; 43:1835-1877. [PMID: 37132460 DOI: 10.1002/med.21965] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 03/13/2023] [Accepted: 04/12/2023] [Indexed: 05/04/2023]
Abstract
The blood platelet plays an important role but often remains under-recognized in several vascular complications and associated diseases. Surprisingly, platelet hyperactivity and hyperaggregability have often been considered the critical risk factors for developing vascular dysfunctions in several neurodegenerative diseases (NDDs) like Alzheimer's disease, Parkinson's disease, Huntington's disease, and multiple sclerosis. In addition, platelet structural and functional impairments promote prothrombotic and proinflammatory environment that can aggravate the progression of several NDDs. These findings provide the rationale for using antiplatelet agents not only to prevent morbidity but also to reduce mortality caused by NDDs. Therefore, we thoroughly review the evidence supporting the potential pleiotropic effects of several novel classes of synthetic antiplatelet drugs, that is, cyclooxygenase inhibitors, adenosine diphosphate receptor antagonists, protease-activated receptor blockers, and glycoprotein IIb/IIIa receptor inhibitors in NDDs. Apart from this, the review also emphasizes the recent developments of selected natural antiplatelet phytochemicals belonging to key classes of plant-based bioactive compounds, including polyphenols, alkaloids, terpenoids, and flavonoids as potential therapeutic candidates in NDDs. We believe that the broad analysis of contemporary strategies and specific approaches for plausible therapeutic treatment for NDDs presented in this review could be helpful for further successful research in this area.
Collapse
Affiliation(s)
- Samir K Beura
- Department of Zoology, School of Biological Sciences, Central University of Punjab, Ghudda, Bathinda, Punjab, India
| | - Rishika Dhapola
- Department of Pharmacology, School of Health Sciences, Central University of Punjab, Ghudda, Bathinda, Punjab, India
| | - Abhishek R Panigrahi
- Department of Zoology, School of Biological Sciences, Central University of Punjab, Ghudda, Bathinda, Punjab, India
| | - Pooja Yadav
- Department of Zoology, School of Biological Sciences, Central University of Punjab, Ghudda, Bathinda, Punjab, India
| | - Reetesh Kumar
- Department of Agricultural Sciences, Institute of Applied Sciences and Humanities, GLA University, Mathura, Uttar Pradesh, India
| | - Dibbanti H Reddy
- Department of Pharmacology, School of Health Sciences, Central University of Punjab, Ghudda, Bathinda, Punjab, India
| | - Sunil K Singh
- Department of Zoology, School of Biological Sciences, Central University of Punjab, Ghudda, Bathinda, Punjab, India
| |
Collapse
|
10
|
Yang B, Wang X, Hu X, Xiao Y, Xu X, Yu X, Wang M, Luo H, Li J, Ma Y, Shen W. Platelet morphology, ultrastructure and function changes in acute ischemic stroke patients based on structured illumination microscopy. Heliyon 2023; 9:e18543. [PMID: 37600369 PMCID: PMC10432616 DOI: 10.1016/j.heliyon.2023.e18543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 08/22/2023] Open
Abstract
Acute ischemic stroke (AIS) is the second leading cause of death worldwide. This study aims at assessing platelet morphology, ultrastructure and function changes of platelets in acute ischemic stroke (AIS) patients by the technique of Structured Illumination Microscopy (SIM). This assay collected platelet-rich plasma (PRP) from 11 AIS patients and 12 healthy controls. Each PRP sample was divided into 7 groups:1) rest group; 2) Thrombin-treated 5 min group; 3) Thrombin plus 2MeSAMP-treated 5 min group; 4) Thrombin plus Aspirin-treated 5 min group; 5) Thrombin-treated 1 h group; 6) Thrombin plus 2MeSAMP-treated 1 h group; 7) Thrombin plus Aspirin-treated 1 h group. SIM was applied to observe dense granules and α-granules morphology changes of platelet in AIS patients. FIJI was used to quantify the image data. We finally observed 1448 images of platelets within the 7 groups. In rest group, 7162 platelets were calculated platelet diameter, CD63 dots, average CD63-positive dots area, CD63-positive area per platelet, CD63-positive area Fov, VWF dots, average VWF-positive dots area, VWF-positive area per platelet and VWF-positive area Fov. ELISA was used to detect release of platelet factor 4 (PF4) of α-granules. The results showed that AIS patients had lower number and smaller area of platelet granules. Platelet α-granules of AIS patients concentrated to parenchymal-like fluorescent blocks in Thrombin-treated 1 h group. Antiplatelet drug treatment could reverse the concentration of platelets α-granules, and 2MeSAMP was more powerful than Aspirin in vitro. This study complemented detail information of platelet ultrastructure of AIS patients, provided a new perspective on the pathogenesis of AIS and the mechanism of antiplatelet drugs based on SIM and provided a reference for future related studies. SIM-based analysis of platelet ultrastructure may be useful for detecting antiplatelet drugs and AIS in the future.
Collapse
Affiliation(s)
- Bingxin Yang
- Wuhan Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Xifeng Wang
- Wuhan Forth Hospital, Wuhan, Hubei, 430030, China
| | - Xiaoyu Hu
- Wuhan Blood Center-Huazhong University of Science and Technology United Hematology Optical Imaging Center, Hubei Institute of Blood Transfusion, Wuhan Blood Center, Wuhan, Hubei, 430030, China
| | - Yao Xiao
- Wuhan Forth Hospital, Wuhan, Hubei, 430030, China
| | - Xueyu Xu
- Wuhan Forth Hospital, Wuhan, Hubei, 430030, China
| | - Xiaomei Yu
- Wuhan Forth Hospital, Wuhan, Hubei, 430030, China
| | - Min Wang
- Wuhan Forth Hospital, Wuhan, Hubei, 430030, China
| | - Honglian Luo
- Wuhan Forth Hospital, Wuhan, Hubei, 430030, China
| | - Jun Li
- Wuhan Forth Hospital, Wuhan, Hubei, 430030, China
| | - Yan Ma
- Wuhan Blood Center-Huazhong University of Science and Technology United Hematology Optical Imaging Center, Hubei Institute of Blood Transfusion, Wuhan Blood Center, Wuhan, Hubei, 430030, China
| | - Wei Shen
- Wuhan Forth Hospital, Wuhan, Hubei, 430030, China
| |
Collapse
|
11
|
Entsie P, Kang Y, Amoafo EB, Schöneberg T, Liverani E. The Signaling Pathway of the ADP Receptor P2Y 12 in the Immune System: Recent Discoveries and New Challenges. Int J Mol Sci 2023; 24:6709. [PMID: 37047682 PMCID: PMC10095349 DOI: 10.3390/ijms24076709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/27/2023] [Accepted: 03/30/2023] [Indexed: 04/07/2023] Open
Abstract
P2Y12 is a G-protein-coupled receptor that is activated upon ADP binding. Considering its well-established role in platelet activation, blocking P2Y12 has been used as a therapeutic strategy for antiplatelet aggregation in cardiovascular disease patients. However, receptor studies have shown that P2Y12 is functionally expressed not only in platelets and the microglia but also in other cells of the immune system, such as in monocytes, dendritic cells, and T lymphocytes. As a result, studies were carried out investigating whether therapies targeting P2Y12 could also ameliorate inflammatory conditions, such as sepsis, rheumatoid arthritis, neuroinflammation, cancer, COVID-19, atherosclerosis, and diabetes-associated inflammation in animal models and human subjects. This review reports what is known about the expression of P2Y12 in the cells of the immune system and the effect of P2Y12 activation and/or inhibition in inflammatory conditions. Lastly, we will discuss the major problems and challenges in studying this receptor and provide insights on how they can be overcome.
Collapse
Affiliation(s)
- Philomena Entsie
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo, ND 58105, USA
| | - Ying Kang
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo, ND 58105, USA
| | - Emmanuel Boadi Amoafo
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo, ND 58105, USA
| | - Torsten Schöneberg
- Division of Molecular Biochemistry, Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, 04103 Leipzig, Germany
| | - Elisabetta Liverani
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo, ND 58105, USA
| |
Collapse
|
12
|
Schädlich IS, Winzer R, Stabernack J, Tolosa E, Magnus T, Rissiek B. The role of the ATP-adenosine axis in ischemic stroke. Semin Immunopathol 2023:10.1007/s00281-023-00987-3. [PMID: 36917241 DOI: 10.1007/s00281-023-00987-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 01/25/2023] [Indexed: 03/16/2023]
Abstract
In ischemic stroke, the primary neuronal injury caused by the disruption of energy supply is further exacerbated by secondary sterile inflammation. The inflammatory cascade is largely initiated by the purine adenosine triphosphate (ATP) which is extensively released to the interstitial space during brain ischemia and functions as an extracellular danger signaling molecule. By engaging P2 receptors, extracellular ATP activates microglia leading to cytokine and chemokine production and subsequent immune cell recruitment from the periphery which further amplifies post-stroke inflammation. The ectonucleotidases CD39 and CD73 shape and balance the inflammatory environment by stepwise degrading extracellular ATP to adenosine which itself has neuroprotective and anti-inflammatory signaling properties. The neuroprotective effects of adenosine are mainly mediated through A1 receptors and inhibition of glutamatergic excitotoxicity, while the anti-inflammatory capacities of adenosine have been primarily attributed to A2A receptor activation on infiltrating immune cells in the subacute phase after stroke. In this review, we summarize the current state of knowledge on the ATP-adenosine axis in ischemic stroke, discuss contradictory results, and point out potential pitfalls towards translating therapeutic approaches from rodent stroke models to human patients.
Collapse
Affiliation(s)
- Ines Sophie Schädlich
- Department of Neurology, University Medical Centre Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Riekje Winzer
- Institute of Immunology, University Medical Centre Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Joschi Stabernack
- Department of Neurology, University Medical Centre Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Eva Tolosa
- Institute of Immunology, University Medical Centre Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Tim Magnus
- Department of Neurology, University Medical Centre Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany.
| | - Björn Rissiek
- Department of Neurology, University Medical Centre Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| |
Collapse
|
13
|
Wang Q, Shi NR, Lv P, Liu J, Zhang JZ, Deng BL, Zuo YQ, Yang J, Wang X, Chen X, Hu XM, Liu TT, Liu J. P2Y12 receptor gene polymorphisms are associated with epilepsy. Purinergic Signal 2023; 19:155-162. [PMID: 35175489 PMCID: PMC9984642 DOI: 10.1007/s11302-022-09848-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 02/01/2022] [Indexed: 10/19/2022] Open
Abstract
The basic research indicated that microglial P2Y12 receptors (P2Y12Rs) are involved in the pathophysiology of epilepsy through regulated microglial-neuronal interactions, aberrant neurogenesis, or immature neuronal projections. However, whether the clinic case of epilepsy would be associated with P2Y12 receptor gene polymorphisms is presented with few data. In our study, a total of 176 patients with epilepsy and 50 healthy controls were enrolled. Two single-nucleotide polymorphisms, namely rs1491974 and rs6798347, were selected for analysis. The results revealed that carriers of the G allele of rs1491974 G>A or rs6798347 G>A may be associated with an increased risk of epilepsy (OR = 0.576, 95% CI = 0.368-0.901, p = 0.015; OR = 0.603, 95% CI = 0.367-0.988, p = 0.043). Interestingly, we found that the rs1491974 G>A genotype and allele frequencies have only a significant difference in female instead of male case (p = 0.004 for genotype; p = 0.001 for allele). The subgroup analysis demonstrated that individuals with the rs1491974 G>A genotype might have more frequent seizure (OR = 0.476, 95% CI = 0.255-0.890; p = 0.019). These data implied that both rs1491974 and rs6798347 polymorphisms of P2Y12R would be able to play import roles in epilepsy susceptibility, whereas the rs1491974 polymorphism may be specifically related to seizure frequency.
Collapse
Affiliation(s)
- Qi Wang
- School of Clinical Medicine, Southwest Medical University, 646000, Luzhou, China
| | - Nan-Rui Shi
- School of Acupuncture and Tuina, Chengdu University of Traditional Medicine, Chengdu, 610075, China
| | - Peng Lv
- School of Acupuncture and Tuina, Chengdu University of Traditional Medicine, Chengdu, 610075, China
| | - Juan Liu
- School of Sports Medicine and Health, Sports Medicine Key Laboratory of Sichuan Province, Chengdu Sport University, Chengdu, 610041, China
| | - Ji-Zhou Zhang
- School of Acupuncture and Tuina, Chengdu University of Traditional Medicine, Chengdu, 610075, China
| | - Bin-Lu Deng
- School of Clinical Medicine, Southwest Medical University, 646000, Luzhou, China
| | - Yan-Qin Zuo
- School of Acupuncture and Tuina, Chengdu University of Traditional Medicine, Chengdu, 610075, China
| | - Jie Yang
- Department of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Xin Wang
- School of Acupuncture and Tuina, Chengdu University of Traditional Medicine, Chengdu, 610075, China
| | - Xiang Chen
- School of Clinical Medicine, Southwest Medical University, 646000, Luzhou, China
| | - Xiu-Min Hu
- School of Acupuncture and Tuina, Chengdu University of Traditional Medicine, Chengdu, 610075, China
| | - Ting-Ting Liu
- Sichuan Academy of Medical Sciences &, Sichuan Provincial People's Hospital, Chengdu, 610072, China
| | - Jie Liu
- School of Clinical Medicine, Southwest Medical University, 646000, Luzhou, China. .,Department of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China. .,Sichuan Academy of Medical Sciences &, Sichuan Provincial People's Hospital, Chengdu, 610072, China.
| |
Collapse
|
14
|
Abstract
In addition to the key role in hemostasis and thrombosis, platelets have also been wildly acknowledged as immune regulatory cells and involving in the pathogenesis of inflammation-related diseases. Since purine receptor P2Y12 plays a crucial role in platelet activation, P2Y12 antagonists such as clopidogrel, prasugrel, and ticagrelor have been widely used in cardiovascular diseases worldwide in recent decades due to their potent antiplatelet and antithrombotic effects. Meanwhile, the role of P2Y12 in inflammatory diseases has also been extensively studied. Relatively, there are few studies on the regulation of P2Y12. This review first summarizes the various roles of P2Y12 in the process of platelet activation, as well as downstream effects and signaling pathways; then introduces the effects of P2Y12 in inflammatory diseases such as sepsis, atherosclerosis, cancer, autoimmune diseases, and asthma; and finally reviews the current researches on P2Y12 regulation.
Collapse
Affiliation(s)
- Xiaohua Li
- Department of Infectious Diseases, The First Hospital of Jilin University, Changchun, 130021, Jilin, China
- Department of Pharmacology, School of Pharmacy, Jilin University, Fujin Road, Changchun, 130021, Jilin, China
| | | | - Xia Cao
- Department of Pharmacology, School of Pharmacy, Jilin University, Fujin Road, Changchun, 130021, Jilin, China.
| |
Collapse
|
15
|
Cao X, Du X, Jiao H, An Q, Chen R, Fang P, Wang J, Yu B. Carbohydrate-based drugs launched during 2000 -2021. Acta Pharm Sin B 2022; 12:3783-3821. [PMID: 36213536 PMCID: PMC9532563 DOI: 10.1016/j.apsb.2022.05.020] [Citation(s) in RCA: 103] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/18/2022] [Accepted: 05/12/2022] [Indexed: 01/09/2023] Open
Abstract
Carbohydrates are fundamental molecules involved in nearly all aspects of lives, such as being involved in formating the genetic and energy materials, supporting the structure of organisms, constituting invasion and host defense systems, and forming antibiotics secondary metabolites. The naturally occurring carbohydrates and their derivatives have been extensively studied as therapeutic agents for the treatment of various diseases. During 2000 to 2021, totally 54 carbohydrate-based drugs which contain carbohydrate moities as the major structural units have been approved as drugs or diagnostic agents. Here we provide a comprehensive review on the chemical structures, activities, and clinical trial results of these carbohydrate-based drugs, which are categorized by their indications into antiviral drugs, antibacterial/antiparasitic drugs, anticancer drugs, antidiabetics drugs, cardiovascular drugs, nervous system drugs, and other agents.
Collapse
Affiliation(s)
- Xin Cao
- Zhongshan Hospital Institute of Clinical Science, Fudan University Shanghai Medical College, Shanghai 200032, China
| | - Xiaojing Du
- Zhongshan Hospital Institute of Clinical Science, Fudan University Shanghai Medical College, Shanghai 200032, China
| | - Heng Jiao
- Zhongshan Hospital Institute of Clinical Science, Fudan University Shanghai Medical College, Shanghai 200032, China
| | - Quanlin An
- Zhongshan Hospital Institute of Clinical Science, Fudan University Shanghai Medical College, Shanghai 200032, China
| | - Ruoxue Chen
- Zhongshan Hospital Institute of Clinical Science, Fudan University Shanghai Medical College, Shanghai 200032, China
| | - Pengfei Fang
- State Key Laboratory of Bio-organic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jing Wang
- State Key Laboratory of Bio-organic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Biao Yu
- State Key Laboratory of Bio-organic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
16
|
Jin M, Wang N, Li X, Zhang H, Zhou J, Cong M, Niu J, Lin C, Hu Y, Wu N, Liu J, Zhang K, Qiu C. Relationship between MTHFR C677T, homocysteine, and ischemic stroke in a large sample of the Han Chinese population. Medicine (Baltimore) 2022; 101:e30562. [PMID: 36197177 PMCID: PMC9509028 DOI: 10.1097/md.0000000000030562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Ischemic stroke, one of the prevalent causes of death and disability worldwide, is linked to environmental and genetic factors, including polymorphisms in the methylenetetrahydrofolate reductase (MTHFR) gene involved in homocysteine metabolism. The present study aimed to explore the relationship between the MTHFR C677T variant, plasma homocysteine, and risk of developing large-artery atherosclerotic ischemic stroke (LAAIS) among Han Chinese. A population-based case-control study, which included 1810 patients with LAAIS and 1765 unrelated control subjects, was conducted. Compared to the controls, LAAIS patients had a significantly higher prevalence of hypertension, diabetes mellitus, smoking, and alcohol consumption (P < .001), as well as significantly higher mean fasting blood glucose, triglyceride, total cholesterol, and plasma homocysteine levels (P < .001). The TT homozygous genotype correlated with increased risk of developing LAAIS, as indicated by a significantly higher odds ratio (OR) compared to the CT and CC genotypes, in both additive (OR = 3.215, P = .01) and recessive models (OR = 3.265, P = .01). The plasma homocysteine level was genotype-dependent according to the following trend: TT > CT > CC. In conclusion, our data demonstrate that, in spite of its low prevalence in both patients and controls (1.5% vs 0.8%), the MTHFR C677T variant could, at least in part, affect homocysteine levels and this, either alone or in combination with other factors, increases the risk of LAAIS.
Collapse
Affiliation(s)
- Ming Jin
- Institute of Polygenic Disease, Qiqihar Medical University, Qiqihar, Heilongjiang Province, People’s Republic of China
| | - Ningning Wang
- Institute of Polygenic Disease, Qiqihar Medical University, Qiqihar, Heilongjiang Province, People’s Republic of China
| | - Xueyan Li
- Institute of Polygenic Disease, Qiqihar Medical University, Qiqihar, Heilongjiang Province, People’s Republic of China
| | - Hao Zhang
- Institute of Polygenic Disease, Qiqihar Medical University, Qiqihar, Heilongjiang Province, People’s Republic of China
| | - Jexin Zhou
- Institute of Polygenic Disease, Qiqihar Medical University, Qiqihar, Heilongjiang Province, People’s Republic of China
| | - Mingyu Cong
- Institute of Polygenic Disease, Qiqihar Medical University, Qiqihar, Heilongjiang Province, People’s Republic of China
| | - Jun Niu
- Mohe City Hospital, Mohe, Heilongjiang Province, People’s Republic of China
| | - Chongyang Lin
- Mohe City Hospital, Mohe, Heilongjiang Province, People’s Republic of China
| | - Ying Hu
- Institute of Polygenic Disease, Qiqihar Medical University, Qiqihar, Heilongjiang Province, People’s Republic of China
| | - Nan Wu
- Institute of Polygenic Disease, Qiqihar Medical University, Qiqihar, Heilongjiang Province, People’s Republic of China
| | - Jicheng Liu
- Institute of Polygenic Disease, Qiqihar Medical University, Qiqihar, Heilongjiang Province, People’s Republic of China
| | - Keyong Zhang
- Institute of Polygenic Disease, Qiqihar Medical University, Qiqihar, Heilongjiang Province, People’s Republic of China
- *Correspondence: Keyong Zhang, Institute of Medical Sciences, Qiqihar Medical University, 333 Bukui North Street, Qiqihar, Heilongjiang Province, 161006, People’s Republic of China (e-mail: )
| | - Changchun Qiu
- Institute of Polygenic Disease, Qiqihar Medical University, Qiqihar, Heilongjiang Province, People’s Republic of China
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences Peking Union Medical College, Beijing, People’s Republic of China
| |
Collapse
|
17
|
Yang Y, Li B. Novel Peptide Motifs Containing Asp-Glu-Gly Target P 2Y 12 and Thromboxane A2 Receptors to Inhibit Platelet Aggregation and Thrombus Formation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:785-793. [PMID: 35016500 DOI: 10.1021/acs.jafc.1c06159] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Increasing evidence has shown that collagen peptides have multiple biological activities. Our previous study has separated and identified antiplatelet aggregation peptides Asp-Glu-Gly-Pro (DEGP) from Salmo salar skin. This study is to investigate the cellular target of DEGP on platelets and its underlying mechanism. DEGP inhibited platelet aggregation in a dose-dependent manner induced by 2MeS-ADP and U46619 and significantly attenuated tail thrombosis formation by 30% in mice at the dose of 50 mg/kg body weight. Mechanically, DEGP displayed apparent antagonism effects on TP and P2Y12 receptors by the drug affinity responsive target stability (DARTS) technique to regulate the phosphorylation of RhoAS188, PLCβ3S537, as well as VASPS157. The molecular docking results revealed a stronger binding energy with the target protein of modified peptides DEGI and DDEGL. Practically, DEGI exhibited the highest inhibition activity against 2MeS-ADP- and U46619-induced platelet aggregation in vitro with IC50 values of 0.88 ± 0.10 and 0.85 ± 0.10 mM, respectively, and comparable antithrombosis activity with aspirin at the dose of 25 mg/kg body weight in vivo. These results indicated the possibility that the peptide motifs containing Asp-Glu-Gly could potentially be developed as a novel therapeutic agent in the prevention and treatment of thrombotic diseases.
Collapse
Affiliation(s)
- Yijie Yang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Bo Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Functional Dairy, Ministry of Education, Beijing 100083, China
| |
Collapse
|
18
|
Ding PF, Zhang HS, Wang J, Gao YY, Mao JN, Hang CH, Li W. Insulin resistance in ischemic stroke: Mechanisms and therapeutic approaches. Front Endocrinol (Lausanne) 2022; 13:1092431. [PMID: 36589857 PMCID: PMC9798125 DOI: 10.3389/fendo.2022.1092431] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022] Open
Abstract
The pathological condition of insulin resistance prevents the neuroprotective effects of insulin. Numerous studies have demonstrated that insulin resistance, as an independent risk factor for ischemic stroke, accelerates the formation of thrombosis and promotes the development of atherosclerosis, both of which are major mechanisms of ischemic stroke. Additionally, insulin resistance negatively affects the prognosis of patients with ischemic stroke regardless of whether the patient has diabetes, but the mechanisms are not well studied. We explored the association between insulin resistance and the primary mechanisms of brain injury in ischemic stroke (inflammation, oxidative stress, and neuronal damage), looking for potential causes of poor prognosis in patients with ischemic stroke due to insulin resistance. Furthermore, we summarize insulin resistance therapeutic approaches to propose new therapeutic directions for clinically improving prognosis in patients with ischemic stroke.
Collapse
Affiliation(s)
- Peng-Fei Ding
- Department of Neurosurgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Hua-Sheng Zhang
- Department of Neurosurgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Jie Wang
- Department of Neurosurgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Yong-Yue Gao
- Department of Neurosurgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Jian-Nan Mao
- Department of Neurosurgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Chun-Hua Hang
- Department of Neurosurgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Wei Li
- Department of Neurosurgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
- *Correspondence: Chunhua Hang, ; Wei Li,
| |
Collapse
|
19
|
Application and Prospect of Platelet Multi-Omics Technology in Study of Blood Stasis Syndrome. Chin J Integr Med 2021; 28:99-105. [PMID: 34935097 DOI: 10.1007/s11655-021-3349-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2021] [Indexed: 10/19/2022]
Abstract
The abnormality of platelet function plays an important role in the pathogenesis and evolution of blood stasis syndrome (BSS). The explanation of its mechanism is a key scientific issue in the study of cardiovascular and cerebrovascular diseases and treatment. System biology technology provides a good technical platform for further development of platelet multi-omics, which is conducive to the scientific interpretation of the biological mechanism of BSS. The article summarized the pathogenesis of platelets in BSS, the mechanism of action of blood activating and stasis resolving drugs, and the application of genomics, proteomics, and metabonomics in platelet research, and put forward the concept of "plateletomics in BSS". Through the combination and cross-validation of multi-omics technology, it mainly focuses on the clinical and basic research of cardiovascular and cerebrovascular diseases; through the interactive verification of multi-omics technology and system biology, it mainly focuses on the platelet function and secretion system. The article systematically explains the molecular biological mechanism of platelet activation, aggregation, release, and other stages in the formation and development of BSS, and provides a new research idea and method for clarifying the pathogenesis of BSS and the mechanism of action of blood activating and stasis resolving drugs.
Collapse
|
20
|
Pharmacokinetics, mass balance, and metabolism of [ 14C]vicagrel, a novel irreversible P2Y 12 inhibitor in humans. Acta Pharmacol Sin 2021; 42:1535-1546. [PMID: 33244163 PMCID: PMC8379165 DOI: 10.1038/s41401-020-00547-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 09/23/2020] [Indexed: 12/12/2022]
Abstract
Vicagrel, a novel irreversible P2Y12 receptor inhibitor, is undergoing phase III trials for the treatment of acute coronary syndromes in China. In this study, we evaluated the pharmacokinetics, mass balance, and metabolism of vicagrel in six healthy male Chinese subjects after a single oral dose of 20 mg [14C]vicagrel (120 µCi). Vicagrel absorption was fast (Tmax = 0.625 h), and the mean t1/2 of vicagrel-related components was ~38.0 h in both plasma and blood. The blood-to-plasma radioactivity AUCinf ratio was 0.55, suggesting preferential distribution of drug-related material in plasma. At 168 h after oral administration, the mean cumulative excreted radioactivity was 96.71% of the dose, including 68.03% in urine and 28.67% in feces. A total of 22 metabolites were identified, and the parent vicagrel was not detected in plasma, urine, or feces. The most important metabolic spot of vicagrel was on the thiophene ring. In plasma pretreated with the derivatization reagent, M9-2, which is a methylated metabolite after thiophene ring opening, was the predominant drug-related component, accounting for 39.43% of the radioactivity in pooled AUC0-8 h plasma. M4, a mono-oxidation metabolite upon ring-opening, was the most abundant metabolite in urine, accounting for 16.25% of the dose, followed by M3-1, accounting for 12.59% of the dose. By comparison, M21 was the major metabolite in feces, accounting for 6.81% of the dose. Overall, renal elimination plays a crucial role in vicagrel disposition, and the thiophene ring is the predominant metabolic site.
Collapse
|
21
|
Li F, Xu D, Hou K, Gou X, Li Y. The role of P2Y12 receptor inhibition in ischemic stroke on microglia, platelets and vascular smooth muscle cells. J Thromb Thrombolysis 2021; 50:874-885. [PMID: 32248335 DOI: 10.1007/s11239-020-02098-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
P2Y12 receptors on platelets have long been the main target of antiplatelet drugs. However, a growing number of studies have revealed that P2Y12 receptor activation on microglia and vascular smooth muscle cells (VSMCs) also aggravates ischemic stroke injury. The proliferation and migration of VSMCs in the vascular wall have important influence on the early lesion of atherosclerosis, which may lead to the origin of cerebral ischemic attack of atherosclerosis. Blockage of cellular P2Y12 receptors could inhibit microglial activation, block formation of platelet-leukocyte aggregates, reduce proinflammatory cytokine levels and suppress migration and proliferation of VSMCs, implying that apart from anti-thrombotic effect, P2Y12 inhibitors have additional neuroprotective, anti-inflammatory and anti-atherosclerotic therapeutic benefits against ischemic stroke. In this review, we will summarize recent advances in studies on P2Y12 receptors and emphatically introduce their significance in microglia, platelets and VSMCs after ischemic stroke, discussing how to exert the beneficial effects of P2Y12 inhibition.
Collapse
Affiliation(s)
- Fengyang Li
- State Key Laboratory of Natural Medicines, Department of Physiology, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Dan Xu
- State Key Laboratory of Natural Medicines, Department of Physiology, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Kai Hou
- State Key Laboratory of Natural Medicines, Department of Physiology, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Xue Gou
- State Key Laboratory of Natural Medicines, Department of Physiology, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Yunman Li
- State Key Laboratory of Natural Medicines, Department of Physiology, China Pharmaceutical University, Nanjing, 210009, People's Republic of China.
| |
Collapse
|
22
|
Wang L, Tang C. Targeting Platelet in Atherosclerosis Plaque Formation: Current Knowledge and Future Perspectives. Int J Mol Sci 2020; 21:ijms21249760. [PMID: 33371312 PMCID: PMC7767086 DOI: 10.3390/ijms21249760] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/09/2020] [Accepted: 12/16/2020] [Indexed: 12/23/2022] Open
Abstract
Besides their role in hemostasis and thrombosis, it has become increasingly clear that platelets are also involved in many other pathological processes of the vascular system, such as atherosclerotic plaque formation. Atherosclerosis is a chronic vascular inflammatory disease, which preferentially develops at sites under disturbed blood flow with low speeds and chaotic directions. Hyperglycemia, hyperlipidemia, and hypertension are all risk factors for atherosclerosis. When the vascular microenvironment changes, platelets can respond quickly to interact with endothelial cells and leukocytes, participating in atherosclerosis. This review discusses the important roles of platelets in the plaque formation under pro-atherogenic factors. Specifically, we discussed the platelet behaviors under disturbed flow, hyperglycemia, and hyperlipidemia conditions. We also summarized the molecular mechanisms involved in vascular inflammation during atherogenesis based on platelet receptors and secretion of inflammatory factors. Finally, we highlighted the studies of platelet migration in atherogenesis. In general, we elaborated an atherogenic role of platelets and the aspects that should be further studied in the future.
Collapse
Affiliation(s)
- Lei Wang
- Cyrus Tang Hematology Center, Cyrus Tang Medical Institute, Soochow University, Suzhou 215123, China;
| | - Chaojun Tang
- Cyrus Tang Hematology Center, Cyrus Tang Medical Institute, Soochow University, Suzhou 215123, China;
- Collaborative Innovation Center of Hematology of Jiangsu Province, Soochow University, Suzhou 215123, China
- National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou 215123, China
- Correspondence: ; Tel.: +86-512-6588-0899
| |
Collapse
|
23
|
Wernly B, Zhou 周稚超 Z. More purinergic receptors deserve attention as therapeutic targets for the treatment of cardiovascular disease. Am J Physiol Heart Circ Physiol 2020; 319:H723-H729. [PMID: 32822211 DOI: 10.1152/ajpheart.00417.2020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cardiovascular disease is a major cause of morbidity and mortality worldwide. Innovative new treatment options for this cardiovascular pandemic are urgently needed. Activation of purinergic receptors (PRs) is critically involved in the development and progression of cardiovascular disease including atherosclerosis, ischemic heart disease, hypertension, and diabetes. PRs have been targeted for the treatment of several cardiovascular diseases in a clinical setting. The P2Y12R antagonists such as clopidogrel, ticagrelor, and others are the most successful class of purinergic drugs targeting platelets for the treatment of acute coronary syndrome. In addition to targeting platelets, ticagrelor may exert P2Y12R-independent effect by targeting erythrocyte-mediated purinergic activation. The partial A1R agonist neladenoson and the A2AR agonist regadenoson have been applied in cardiovascular medicine. In experimental studies, many other PRs have been shown to play a significant role in the development and progression of cardiovascular diseases, and targeting these receptors have resulted in promising outcomes. Therefore, many of these PRs including A2BR, A3R, P2X3R, P2X4R, P2X7R, P2Y1R, P2Y4R, P2Y6R, and P2Y11R can be considered as therapeutic targets. However, the multitude of PR subtypes expressed in different cells of the cardiovascular system may constitute a challenge whether single or multiple receptors should be targeted at the same time for the best efficacy. The present review discusses the promising purinergic drugs used in clinical studies for the treatment of cardiovascular disease. We also update experimental evidence for many other PRs that can be considered as therapeutic targets for future drug development.
Collapse
Affiliation(s)
- Bernhard Wernly
- Department of Internal Medicine II, Division of Cardiology, Paracelsus Medical University of Salzburg, Salzburg, Austria
| | - Zhichao Zhou 周稚超
- Division of Cardiology, Department of Medicine, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
24
|
Abstract
Cardiovascular complications remain the main cause of mortality and morbidity in diabetes. This is related to advanced vascular pathology in this population, together with an enhanced thrombotic environment. The increased risk in thrombosis is secondary to platelet hyper-reactivity and increased levels and/or altered activity of coagulation factors. The current review is focused on the role of antiplatelet agents in modulating the thrombotic milieu in diabetes and improving vascular outcome in this high-risk population. We review the latest evidence for the use of aspirin in primary vascular prevention together with long-term treatment with this agent for secondary prevention. We also discuss the effects of the various P2Y12 inhibitors, including clopidogrel, prasugrel and ticagrelor, on both short- and long-term secondary vascular prevention. Moreover, we briefly review antiplatelet therapies in special groups of people including those intolerant to aspirin, individuals with peripheral vascular disease and those with cerebrovascular pathology. The overall aim of this review is to provide the healthcare professional with a pragmatic guide for the management of thrombotic risk using established antiplatelet therapies to improve vascular outcome in persons with diabetes.
Collapse
Affiliation(s)
- R C Sagar
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - K M Naseem
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - R A Ajjan
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| |
Collapse
|
25
|
Chen J, Pi S, Yu C, Shi H, Liu Y, Guo X, Zhou L, Li Y, He H, Xia Y, Mao L, Hu B. sLRP1 (Soluble Low-Density Lipoprotein Receptor-Related Protein 1): A Novel Biomarker for P2Y12 (P2Y Purinoceptor 12) Receptor Expression in Atherosclerotic Plaques. Arterioscler Thromb Vasc Biol 2020; 40:e166-e179. [PMID: 32349534 DOI: 10.1161/atvbaha.120.314350] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Recent studies suggest that the P2Y12 (P2Y purinoceptor 12) receptor of vascular smooth muscle cells in atherosclerotic plaques aggravates atherosclerosis, and P2Y12 receptor inhibitors such as CDL (clopidogrel) may effectively treat atherosclerosis. It is imperative to identify an effective biomarker for reflecting the P2Y12 receptor expression on vascular smooth muscle cells in plaques. Approach and Results: We found that there was a positive correlation between the level of circulating sLRP1 (soluble low-density lipoprotein receptor-related protein 1) and the number of LRP1+ α-SMA+ (α-smooth muscle actin), P2Y12+, or P2Y12+ LRP1+ cells in plaques from apoE-/- mice fed a high-fat diet. Furthermore, activation of the P2Y12 receptor increased the expression and shedding of LRP1 in vascular smooth muscle cells by inhibiting cAMP (3'-5'-cyclic adenosine monophosphate)/PKA (protein kinase A)/SREBP-2 (sterol regulatory element binding transcription factor 2). Conversely, genetic knockdown or pharmacological inhibition of the P2Y12 receptor had the opposite effects. Additionally, CDL decreased the number of lesional LRP1+ α-SMA+ cells and the levels of circulating sLRP1 by activating cAMP/PKA/SREBP-2 in apoE-/- mice fed a high-fat diet. CONCLUSIONS Our study suggests that sLRP1 may be a biomarker that reflects the P2Y12 receptor level in plaques and has the potential to be an indicator for administering P2Y12 receptor inhibitors for patients with atherosclerosis.
Collapse
Affiliation(s)
- Jiefang Chen
- From the Department of Neurology (J.C., S.P., H.S., Y. Liu, X.G., L.Z., Y. Li, H.H., Y.X., L.M., B.H.), Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shulan Pi
- From the Department of Neurology (J.C., S.P., H.S., Y. Liu, X.G., L.Z., Y. Li, H.H., Y.X., L.M., B.H.), Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cheng Yu
- Department of Ultrasound (C.Y.), Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hanqing Shi
- From the Department of Neurology (J.C., S.P., H.S., Y. Liu, X.G., L.Z., Y. Li, H.H., Y.X., L.M., B.H.), Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuxiao Liu
- From the Department of Neurology (J.C., S.P., H.S., Y. Liu, X.G., L.Z., Y. Li, H.H., Y.X., L.M., B.H.), Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoqing Guo
- From the Department of Neurology (J.C., S.P., H.S., Y. Liu, X.G., L.Z., Y. Li, H.H., Y.X., L.M., B.H.), Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lian Zhou
- From the Department of Neurology (J.C., S.P., H.S., Y. Liu, X.G., L.Z., Y. Li, H.H., Y.X., L.M., B.H.), Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuanyuan Li
- From the Department of Neurology (J.C., S.P., H.S., Y. Liu, X.G., L.Z., Y. Li, H.H., Y.X., L.M., B.H.), Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui He
- From the Department of Neurology (J.C., S.P., H.S., Y. Liu, X.G., L.Z., Y. Li, H.H., Y.X., L.M., B.H.), Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuanpeng Xia
- From the Department of Neurology (J.C., S.P., H.S., Y. Liu, X.G., L.Z., Y. Li, H.H., Y.X., L.M., B.H.), Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ling Mao
- From the Department of Neurology (J.C., S.P., H.S., Y. Liu, X.G., L.Z., Y. Li, H.H., Y.X., L.M., B.H.), Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bo Hu
- From the Department of Neurology (J.C., S.P., H.S., Y. Liu, X.G., L.Z., Y. Li, H.H., Y.X., L.M., B.H.), Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
26
|
Pi S, Mao L, Chen J, Shi H, Liu Y, Guo X, Li Y, Zhou L, He H, Yu C, Liu J, Dang Y, Xia Y, He Q, Jin H, Li Y, Hu Y, Miao Y, Yue Z, Hu B. The P2RY12 receptor promotes VSMC-derived foam cell formation by inhibiting autophagy in advanced atherosclerosis. Autophagy 2020; 17:980-1000. [PMID: 32160082 DOI: 10.1080/15548627.2020.1741202] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Vascular smooth muscle cells (VSMCs) are an important source of foam cells in atherosclerosis. The mechanism for VSMC-derived foam cell formation is, however, poorly understood. Here, we demonstrate that the P2RY12/P2Y12 receptor is important in regulating macroautophagy/autophagy and VSMC-derived foam cell formation in advanced atherosclerosis. Inhibition of the P2RY12 receptor ameliorated lipid accumulation and VSMC-derived foam cell formation in high-fat diet-fed apoe-/- mice (atherosclerosis model) independent of LDL-c levels. Activation of the P2RY12 receptor blocked cholesterol efflux via PI3K-AKT, while genetic knockdown or pharmacological inhibition of the P2RY12 receptor inhibited this effect in VSMCs. Phosphoproteomic analysis showed that the P2RY12 receptor regulated the autophagy pathway in VSMCs. Additionally, activation of the P2RY12 receptor inhibited MAP1LC3/LC3 maturation, SQSTM1 degradation, and autophagosome formation in VSMCs. Genetic knockdown of the essential autophagy gene Atg5 significantly attenuated P2RY12 receptor inhibitor-induced cholesterol efflux in VSMCs. Furthermore, activation of the P2RY12 receptor led to the activation of MTOR through PI3K-AKT in VSMCs, whereas blocking MTOR activity (rapamycin) or reducing MTOR expression reversed the inhibition of cholesterol efflux mediated by the P2RY12 receptor in VSMCs. In vivo, inhibition of the P2RY12 receptor promoted autophagy of VSMCs through PI3K-AKT-MTOR in advanced atherosclerosis in apoe-/- mice, which could be impeded by an autophagy inhibitor (chloroquine). Therefore, we conclude that activation of the P2RY12 receptor decreases cholesterol efflux and promotes VSMC-derived foam cell formation by blocking autophagy in advanced atherosclerosis. Our study thus suggests that the P2RY12 receptor is a therapeutic target for treating atherosclerosis.Abbreviations: 2-MeSAMP: 2-methylthioadenosine 5'-monophosphate; 8-CPT-cAMP: 8-(4-chlorophenylthio)-adenosine-3',5'-cyclic-monophosphate; ABCA1: ATP binding cassette subfamily A member 1; ABCG1: ATP binding cassette subfamily G member 1; ACTB: actin beta; ADPβs: adenosine 5'-(alpha, beta-methylene) diphosphate; ALs: autolysosomes; AMPK: AMP-activated protein kinase; APOA1: apolipoprotein A1; APs: autophagosomes; ATG5: autophagy related 5; ATV: atorvastatin; AVs: autophagic vacuoles; CD: chow diet; CDL: clopidogrel; CQ: chloroquine; DAPI: 4',6-diamidino-2-phenylindole; dbcAMP: dibutyryl-cAMP; DIL-oxLDL: dioctadecyl-3,3,3,3-tetramethylin docarbocyanine-oxLDL; EIF4EBP1/4E-BP1: eukaryotic translation initiation factor 4E binding protein 1; EVG: elastic van gieson; HE: hematoxylin-eosin; HDL: high-density lipoprotein; HFD: high-fat diet; KEGG: Kyoto Encyclopedia of Genes and Genomes; LDL-c: low-density lipoprotein cholesterol; LDs: lipid droplets; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; Masson: masson trichrome; MCPT: maximal carotid plaque thickness; MK2206: MK-2206 2HCL; NBD-cholesterol: 22-(N-[7-nitrobenz-2-oxa-1,3-diazol-4-yl] amino)-23,24-bisnor-5-cholen-3β-ol; OLR1/LOX-1: oxidized low density lipoprotein receptor 1; ORO: oil Red O; ox-LDL: oxidized low-density lipoprotein; SQSTM1/p62: sequestosome 1; TEM: transmission electron microscopy; TIC: ticagrelor; ULK1: unc-51 like autophagy activating kinase 1; VSMCs: vascular smooth muscle cells.
Collapse
Affiliation(s)
- Shulan Pi
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ling Mao
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiefang Chen
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hanqing Shi
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuxiao Liu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoqing Guo
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuanyuan Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lian Zhou
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui He
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cheng Yu
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianyong Liu
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yiping Dang
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuanpeng Xia
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Quanwei He
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huijuan Jin
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanan Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Hu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yiliang Miao
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Zhenyu Yue
- Department of Neurology, The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Bo Hu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
27
|
P2Y 12 Inhibition beyond Thrombosis: Effects on Inflammation. Int J Mol Sci 2020; 21:ijms21041391. [PMID: 32092903 PMCID: PMC7073040 DOI: 10.3390/ijms21041391] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/14/2020] [Accepted: 02/15/2020] [Indexed: 12/18/2022] Open
Abstract
The P2Y12 receptor is a key player in platelet activation and a major target for antithrombotic drugs. The beneficial effects of P2Y12 receptor antagonists might, however, not be restricted to the primary and secondary prevention of arterial thrombosis. Indeed, it has been established that platelet activation also has an essential role in inflammation. Additionally, nonplatelet P2Y12 receptors present in immune cells and vascular smooth muscle cells might be effective players in the inflammatory response. This review will investigate the biological and clinical impact of P2Y12 receptor inhibition beyond its platelet-driven antithrombotic effects, focusing on its anti-inflammatory role. We will discuss the potential molecular and cellular mechanisms of P2Y12-mediated inflammation, including cytokine release, platelet–leukocyte interactions and neutrophil extracellular trap formation. Then we will summarize the current evidence on the beneficial effects of P2Y12 antagonists during various clinical inflammatory diseases, especially during sepsis, acute lung injury, asthma, atherosclerosis, and cancer.
Collapse
|