1
|
Exline JE, Volyanyuk M, Lotesto KM, Segismundo AB, Byram SC, Foecking EM. Progressive hippocampal senescence and persistent memory deficits in traumatic brain Injury: A role of delayed testosterone. Brain Res 2025; 1857:149611. [PMID: 40174853 DOI: 10.1016/j.brainres.2025.149611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 03/26/2025] [Accepted: 03/28/2025] [Indexed: 04/04/2025]
Abstract
Cellular senescence is a stable, pro-inflammatory cell cycle arrest that has been recently implicated in the persistent memory deficits experienced with repetitive mild traumatic brain injury (rmTBI). Testosterone (T) treatment immediately following traumatic brain injury (TBI) mitigates cognitive deficits and cellular dysfunction known to induce cellular senescence. However, it has yet to be elucidated whether the therapeutic window for T treatment can be extended to a subacute time post-injury. This study examined the progression of hippocampal cellular senescence after rmTBI and evaluated the effects of subacute T on persistent memory deficits and cellular senescence post-injury. Changes in senescence-associated markers in the hippocampus were quantified at 5- and 9-weeks post-injury (WPI). An age-independent progressive increase in senescence-associated gene expression was observed for Cdkn2a, Cdkn1a, and p53 protein levels, along with a decrease in Sirt1 gene expression. Acute and persistent cognitive deficits were observed in the rmTBI rats as compared to sham rats. Serum T levels were significantly decreased at 4 WPI. Testosterone administration at 5 WPI ameliorated these persistent memory deficits. Moreover, subacute T treatment reduced rmTBI-induced levels of Cdkn2a 4 weeks post-treatment. This study indicates that rmTBI results in a progressive cellular senescence pathology that may contribute to the underlying mechanisms of persistent cognitive symptoms. Therapeutically targeting cellular senescence within this extended temporal window holds implications for patients dealing with the chronic cognitive ramifications of rmTBI.
Collapse
Affiliation(s)
- Jacob E Exline
- Loyola University Chicago, Neuroscience Graduate Program, 2160 South 1st Avenue, Maywood, IL 60153, USA; Edward Hines Jr. VA Research and Development Service, 5000 5th Avenue, Hines, IL 60141, USA.
| | - Michael Volyanyuk
- Loyola University Chicago, Neuroscience Graduate Program, 2160 South 1st Avenue, Maywood, IL 60153, USA; Edward Hines Jr. VA Research and Development Service, 5000 5th Avenue, Hines, IL 60141, USA.
| | - Krista M Lotesto
- Edward Hines Jr. VA Research and Development Service, 5000 5th Avenue, Hines, IL 60141, USA; Loyola University Chicago, Burn and Shock Trauma Research Institute, 2160 South 1st Avenue, Maywood, IL 60153, USA.
| | - Arthur B Segismundo
- Loyola University Chicago, Neuroscience Graduate Program, 2160 South 1st Avenue, Maywood, IL 60153, USA; Edward Hines Jr. VA Research and Development Service, 5000 5th Avenue, Hines, IL 60141, USA.
| | - Susanna C Byram
- Edward Hines Jr. VA Research and Development Service, 5000 5th Avenue, Hines, IL 60141, USA; Loyola University Chicago Medical Center, Stritch School of Medicine, 2160 South 1st Avenue, Maywood, IL 60153, USA; Loyola University Chicago Medical Center, Department of Anesthesiology and Perioperative Medicine, 2160 South 1st Avenue, Maywood, IL 60153, USA; Edward Hines Jr. VA Hospital, Surgical Services, 5000 5th Avenue, Hines, IL 60141, USA.
| | - Eileen M Foecking
- Edward Hines Jr. VA Research and Development Service, 5000 5th Avenue, Hines, IL 60141, USA; Loyola University Chicago, Burn and Shock Trauma Research Institute, 2160 South 1st Avenue, Maywood, IL 60153, USA; Loyola University Chicago, Department of Molecular Pharmacology and Neuroscience, 2160 South 1st Avenue, Maywood, IL 60153, USA; Loyola University Chicago Medical Center, Department of Otolaryngology, Head and Neck Surgery, 2160 South 1st Avenue, Maywood, IL 60153, USA.
| |
Collapse
|
2
|
Santos-Sousa DC, da Rosa S, Filippi-Chiela E. Molecular signatures of cellular senescence in cancer: a critical review of prognostic implications and therapeutic opportunities. Mech Ageing Dev 2025; 225:112052. [PMID: 40120861 DOI: 10.1016/j.mad.2025.112052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 03/01/2025] [Accepted: 03/15/2025] [Indexed: 03/25/2025]
Abstract
Cellular senescence is a state of permanent loss of proliferative capacity. Therefore, cells that reach a senescent state prevent tumor initiation, acting as an anti-tumor mechanism. However, despite not being proliferative, senescent cells have high secretory activity, constituting the Senescence-Associated Secretory Phenotype (SASP). SASP includes thousands of soluble molecules and extracellular vesicles, through which senescent cells can affect other cells and the extracellular matrix. In advanced tumors, the enrichment of senescent cells can have anti- or pro-tumor effects depending on features like SASP composition, tumor microenvironment (TME) composition, the anatomic site, histopathologic characteristics of malignancy, and tumor molecular background. We reviewed the studies assessing the impact of the senescence status, measured by mRNA or lncRNA molecular signatures, in the prognosis and other clinically relevant information in cancer, including anti-tumor immunity and response to therapy. We discussed the pros and cons of different strategies to define those molecular signatures and the main limitations of the studies. Finally, we also raised clinical challenges regarding the crossroad between cellular senescence and cancer prognosis, including some therapeutic opportunities in the field.
Collapse
Affiliation(s)
- Débora C Santos-Sousa
- Center of Biotechnology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 91501-970, Brazil; Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul 90035-903, Brazil.
| | - Solon da Rosa
- Center of Biotechnology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 91501-970, Brazil; Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul 90035-903, Brazil.
| | - Eduardo Filippi-Chiela
- Center of Biotechnology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 91501-970, Brazil; Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul 90035-903, Brazil; Department of Morphological Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 90050-170, Brazil.
| |
Collapse
|
3
|
Ding F, Yu Y, Zhao J, Wei S, Zhang Y, Han JH, Li Z, Jiang HB, Ryu D, Cho M, Bae SJ, Park W, Ha KT, Gao B. The interplay of cellular senescence and reprogramming shapes the biological landscape of aging and cancer revealing novel therapeutic avenues. Front Cell Dev Biol 2025; 13:1593096. [PMID: 40356604 PMCID: PMC12066513 DOI: 10.3389/fcell.2025.1593096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Accepted: 04/17/2025] [Indexed: 05/15/2025] Open
Abstract
Cellular senescence and cellular reprogramming represent two fundamentally intertwined processes that profoundly influence aging and cancer. This paper explores how the permanent cell-cycle arrest of senescent cells and the identity-resetting capacity of reprogramming jointly shape biological outcomes in later life and tumor development. We synthesize recent findings to show that senescent cells, while halting the proliferation of damaged cells, can paradoxically promote tissue dysfunction and malignancy via their secretory phenotype. Conversely, induced reprogramming of somatic cells-exemplified by Yamanaka factors-resets cellular age and epigenetic marks, offering a potential to rejuvenate aged cells. Key findings highlight shared mechanisms (e.g., DNA damage responses and epigenetic remodeling) and bidirectional crosstalk between these processes: senescence signals can facilitate neighboring cell plasticity, whereas reprogramming attempts can trigger intrinsic senescence programs as a barrier. In aging tissues, transient (partial) reprogramming has been shown to erase senescence markers and restore cell function without inducing tumorigenesis, underlining a novel strategy to combat age-related degeneration. In cancer, we discuss how therapy-induced senescence of tumor cells may induce stem-cell-like traits in some cells and drive relapse, revealing a delicate balance between tumor suppression and tumor promotion. Understanding the interplay between senescence and reprogramming is crucial for developing innovative therapies. By targeting the senescence-reprogramming axis-for instance, via senolytic drugs, SASP inhibitors, or safe reprogramming techniques-there is significant therapeutic potential to ameliorate aging-related diseases and improve cancer treatment. Our findings underscore that carefully modulating cellular senescence and rejuvenation processes could pave the way for novel regenerative and anti-cancer strategies.
Collapse
Affiliation(s)
- Fuan Ding
- Department of Vascular Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Ying Yu
- Department of Surgery, Changchun University of Chinese Medicine, Changchun, China
| | - Jiangqi Zhao
- Department of Dermatology, The Second Hospital of Jilin University, Changchun, China
| | - Shibo Wei
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Yan Zhang
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Jung Ho Han
- Korean Medicine Application Center, Korea Institute of Oriental Medicine, Daegu, Republic of Korea
| | - Zhuo Li
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Hong-Bo Jiang
- Department of Dermatology, Qingdao Women and Children’s Hospital, Qingdao University, Qingdao, Shandong, China
| | - Dongryeol Ryu
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Minkyoung Cho
- Department of Parasitology and Tropical Medicine, and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju, Republic of Korea
| | - Sung-Jin Bae
- Department of Molecular Biology and Immunology, Kosin University College of Medicine, Busan, Republic of Korea
| | - Wonyoung Park
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan, Gyeongsangnam-do, Republic of Korea
- Research Institute for Korean Medicine, Pusan National University, Yangsan, Gyeongsangnam-do, Republic of Korea
| | - Ki-Tae Ha
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan, Gyeongsangnam-do, Republic of Korea
- Research Institute for Korean Medicine, Pusan National University, Yangsan, Gyeongsangnam-do, Republic of Korea
| | - Bo Gao
- Department of Vascular Surgery, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
4
|
Grzeczka A, Graczyk S, Kordowitzki P. Involvement of TGF-β, mTOR, and inflammatory mediators in aging alterations during myxomatous mitral valve disease in a canine model. GeroScience 2025:10.1007/s11357-025-01520-0. [PMID: 39865135 DOI: 10.1007/s11357-025-01520-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 01/07/2025] [Indexed: 01/28/2025] Open
Abstract
Inflammaging, a state of chronic low-grade inflammation associated with aging, has been linked to the development and progression of various disorders. Cellular senescence, a state of irreversible growth arrest, is another characteristic of aging that contributes to the pathogenesis of cardiovascular pathology. Senescent cells accumulate in tissues over time and secrete many inflammatory mediators, further exacerbating the inflammatory environment. This senescence-associated secretory phenotype can promote tissue dysfunction and remodeling, ultimately leading to the development of age-related cardiovascular pathologies, such as mitral valve myxomatous degeneration. The species-specific form of canine myxomatous mitral valve disease (MMVD) provides a unique opportunity to investigate the early causes of induction of ECM remodeling in mitral valve leaflets in the human form of MMVD. Studies have shown that in both humans and dogs, the microenvironment of the altered leaflets is inflammatory. More recently, the focus has been on the mechanisms leading to the transformation of resting VICs (qVICs) to myofibroblast-like VICs (aVICs). Cells affected by stress fall into a state of cell cycle arrest and become senescent cells. aVICs, under the influence of TGF-β signaling pathways and the mTOR complex, enhance ECM alteration and accumulation of systemic inflammation. This review aims to create a fresh new view of the complex interaction between aging, inflammation, immunosenescence, and MMVD in a canine model, as the domestic dog is a promising model of human aging and age-related diseases.
Collapse
Affiliation(s)
- Arkadiusz Grzeczka
- Department for Basic and Preclinical Sciences, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, 87-100, Torun, Poland
| | - Szymon Graczyk
- Department for Basic and Preclinical Sciences, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, 87-100, Torun, Poland
| | - Pawel Kordowitzki
- Department for Basic and Preclinical Sciences, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, 87-100, Torun, Poland.
| |
Collapse
|
5
|
Abdelmohsen K, Mazan-Mamczarz K, Tsitsipatis D, Rossi M, Munk RB, Gorospe M. Dissecting the Heterogeneity of Senescent Cells Through CITE-seq Integration. Methods Mol Biol 2025; 2908:99-109. [PMID: 40304905 DOI: 10.1007/978-1-0716-4434-8_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2025]
Abstract
Cellular senescence, a state of persistent growth arrest following cell damage, is associated with aging and age-related diseases. Understanding cell heterogeneity within senescent populations is crucial for developing therapies to mitigate senescence-associated pathologies. The protocol described here outlines an integrated approach to exploit the presence of cell surface proteins on subsets of senescent cells to study their heterogeneity at the single-cell level. After identifying senescence-associated surface proteins by mass spectrometry (MS) and then performing cellular indexing of transcriptomes and epitopes sequencing (CITE-seq) single-cell analysis, we were able to identify unique transcriptomic programs associated with specific surface protein markers expressed in some senescent cells but not in others. We illustrate the utility of this approach by investigating the complex heterogeneity of senescent cell populations. However, this methodology can be applied to other biological scenarios where cells with unique transcriptomic profiles can be studied individually, thanks to the presence of specific cell surface proteins that distinguish them from other cells within the same population.
Collapse
Affiliation(s)
| | | | | | - Martina Rossi
- Translational Gerontology Branch, National Institute on Aging (NIA) Intramural Research Program (IRP), National Institutes of Health (NIH), Baltimore, MD, USA
| | - Rachel B Munk
- Laboratory of Genetics and Genomics, Baltimore, MD, USA
| | | |
Collapse
|
6
|
Martic I, Feldmann D, Cavinato M. Isolation and Characterization of EVs Containing Mitochondria from OIS Cells. Methods Mol Biol 2025; 2906:243-254. [PMID: 40082360 DOI: 10.1007/978-1-0716-4426-3_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
Oncogene activation triggers oncogene-induced senescence (OIS), a tumor-suppression mechanism characterized by mitochondrial dysfunction and the secretion of various factors collectively known as the senescence-associated secretory phenotype (SASP). Recent evidence highlights that extracellular vesicles (EVs), nanosized membrane-bound particles, are part of the SASP and act as a novel intercellular communication pathway. Additionally, EVs containing mitochondrial compartments are hypothesized to function as a mitochondrial quality control mechanism, eliminating damaged mitochondria in senescent cells. However, the exact role of mitochondria-enriched vesicles in OIS remains elucidated. The diversity of protocols for isolating and characterizing EVs complicates the unification of research findings. Here, we provide a concise overview of current protocols for investigating vesicles-containing mitochondria in oncogene-induced senescent cells including size exclusion chromatography, NTA analysis, flow cytometry, confocal microscopy, and Western blot.
Collapse
Affiliation(s)
- Ines Martic
- Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck, Austria
- Center for Molecular Biosciences Innsbruck (CMBI), Innsbruck, Austria
| | - David Feldmann
- Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck, Austria
- Center for Molecular Biosciences Innsbruck (CMBI), Innsbruck, Austria
| | - Maria Cavinato
- Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck, Austria.
- Center for Molecular Biosciences Innsbruck (CMBI), Innsbruck, Austria.
| |
Collapse
|
7
|
Li Y, Li C, Yao X, Lv J, Li W, Fu R, Chen M, Yang P, Dai Q, Wei W, Li Z. IDO1-mediated kynurenine production inhibits IGFBP5 signaling to promote 5-fluorouracil-induced senescence escape and chemoresistance in colorectal cancer. Am J Cancer Res 2024; 14:4551-4566. [PMID: 39417170 PMCID: PMC11477834 DOI: 10.62347/xtrc3347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 09/22/2024] [Indexed: 10/19/2024] Open
Abstract
Cellular senescence is an irreversible state of growth arrest, and induction of senescence is considered a potential therapeutic strategy against cancer. Indoleamine 2,3-dioxygenase 1 (IDO1), an enzyme catabolizing L-tryptophan into kynurenine, plays a key role in tumor immune tolerance. However, the roles of IDO1 in cellular senescence and chemoresistance remain elusive. Herein, we observed a significant elevation of IDO1 expression in colorectal cancer (CRC) tissues compared to non-neoplastic controls, based on both the GEPIA database and mouse model. Functionally, ectopic expression of IDO1 blunted 5-fluorouracil (5-FU)-induced cell senescence and rendered CRC cells more refractory towards 5-FU treatment, whereas IDO1 silencing resulted in opposing effects. Further studies demonstrated that IDO1 overexpression decreased the levels of senescent-related proteins, including p16, p21, p53, and cyclin D1. Mechanistically, the kynurenine released from IDO1-expressing CRC cells inhibited the IGFBP5/p53 signaling pathway, accounting for IDO1-mediated suppression of cell senescence and induction of chemoresistance. Collectively, these data revealed an unrecognized role of IDO1 in senescence escape and chemoresistance via releasing its catabolite kynurenine, implicating that therapeutically targeting IDO1 or IGFBP5/p53 signaling pathway holds great promise for CRC treatment.
Collapse
Affiliation(s)
- Yu Li
- School of Life Science, Anhui Medical UniversityHefei 230032, Anhui, China
| | - Chao Li
- School of Life Science, Anhui Medical UniversityHefei 230032, Anhui, China
| | - Xufeng Yao
- School of Life Science, Anhui Medical UniversityHefei 230032, Anhui, China
| | - Junjie Lv
- Department of Oncology, The First Affiliated Hospital of Anhui Medical UniversityHefei 230022, Anhui, China
| | - Wenjun Li
- School of Life Science, Anhui Medical UniversityHefei 230032, Anhui, China
| | - Rong Fu
- School of Basic Medical Sciences, Shanxi Medical UniversityTaiyuan 030001, Shanxi, China
| | - Mengyang Chen
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi UniversityTaiyuan 030006, Shanxi, China
| | - Peng Yang
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi UniversityTaiyuan 030006, Shanxi, China
| | - Qian Dai
- School of Life Science, Anhui Medical UniversityHefei 230032, Anhui, China
| | - Wei Wei
- Department of Oncology, The First Affiliated Hospital of Anhui Medical UniversityHefei 230022, Anhui, China
| | - Zongwei Li
- School of Life Science, Anhui Medical UniversityHefei 230032, Anhui, China
| |
Collapse
|
8
|
Dong Z, Luo Y, Yuan Z, Tian Y, Jin T, Xu F. Cellular senescence and SASP in tumor progression and therapeutic opportunities. Mol Cancer 2024; 23:181. [PMID: 39217404 PMCID: PMC11365203 DOI: 10.1186/s12943-024-02096-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024] Open
Abstract
Cellular senescence (CS), a permanent and irreversible arrest of the cell cycle and proliferation leading to the degeneration of cellular structure and function, has been implicated in various key physiological and pathological processes, particularly in cancer. Initially, CS was recognized as a barrier to tumorigenesis, serving as an intrinsic defense mechanism to protect cells from malignant transformation. However, increasing evidence suggests that senescent cells can promote tumor progression to overt malignancy, primarily through a set of factors known as senescence-associated secretory phenotypes (SASPs), including chemokines, growth factors, cytokines, and stromal metalloproteinases. These factors significantly reshape the tumor microenvironment (TME), enabling tumors to evade immune destruction. Interestingly, some studies have also suggested that SASPs may impede tumor development by enhancing immunosurveillance. These opposing roles highlight the complexity and heterogeneity of CS and SASPs in diverse cancers. Consequently, there has been growing interest in pharmacological interventions targeting CS or SASPs in cancer therapy, such as senolytics and senomorphics, to either promote the clearance of senescent cells or mitigate the harmful effects of SASPs. In this review, we will interpret the concept of CS, delve into the role of SASPs in reshaping the TME, and summarize recent advances in anti-tumor strategies targeting CS or SASPs.
Collapse
Affiliation(s)
- Zening Dong
- Hepatobiliary and Splenic Surgery Ward, Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yahan Luo
- Shanghai TCM-Integrated Hospital, Shanghai University of TCM, Shanghai, China
| | - Zhangchen Yuan
- Hepatobiliary and Splenic Surgery Ward, Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yu Tian
- Hepatobiliary and Splenic Surgery Ward, Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Tianqiang Jin
- Hepatobiliary and Splenic Surgery Ward, Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Feng Xu
- Hepatobiliary and Splenic Surgery Ward, Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
9
|
Păcularu-Burada B, Cîrîc AI, Begea M. Anti-Aging Effects of Flavonoids from Plant Extracts. Foods 2024; 13:2441. [PMID: 39123632 PMCID: PMC11311508 DOI: 10.3390/foods13152441] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/25/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Aging is a natural and irreversible process, affecting living organisms by negatively impacting the tissues' and cells' morphology and functionality and consequently being responsible for aging-related diseases. Taking into account the actual preoccupations of both consumers and researchers, healthy anti-aging alternatives are being intensively studied in order to address such concerns. Due to their functional features, plant flavonoids can be considered valuable nutraceuticals. This paper highlights the possibilities to use flavonoids extracted from various plants for their anti-aging potential on the skin, brain, and heart. Moreover, their anticarcinogenic, anti-inflammatory, and anti-diabetic properties are summarized, along with the senescence-associated mechanisms. Both the nutraceutical and cosmeceutical fields are continuously developing and flavonoids originating from plants are promising candidates to obtain such products. Thus, the bioactive compounds' extraction and their subsequent involvement in innovative product manufacturing must be carefully performed while being aware of the various intrinsic and extrinsic factors that may affect the phytochemicals' structures, bioavailability, and health effects.
Collapse
Affiliation(s)
- Bogdan Păcularu-Burada
- ICA Research & Development S.R.L., 202 Splaiul Independenței, 060021 Bucharest, Romania;
- Dan Voiculescu Foundation for the Development of Romania, 011885 Bucharest, Romania
| | - Alexandru-Ionuț Cîrîc
- Faculty of Biotechnical Systems Engineering, National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independenței, 060042 Bucharest, Romania;
| | - Mihaela Begea
- Faculty of Biotechnical Systems Engineering, National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independenței, 060042 Bucharest, Romania;
| |
Collapse
|
10
|
Guo S, Tang Q, Gao X, Hu L, Hu K, Zhang H, Zhang Q, Lai Y, Liu Y, Wang Z, Chang S, Zhang Y, Hu H, An D, Peng Y, Cai H, Shi J. EZH2 inhibition induces senescence via ERK1/2 signaling pathway in multiple myeloma. Acta Biochim Biophys Sin (Shanghai) 2024; 56:1055-1064. [PMID: 38804044 PMCID: PMC11322866 DOI: 10.3724/abbs.2024077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/04/2024] [Indexed: 05/29/2024] Open
Abstract
Epigenetic modifications play an important role in cellular senescence, and enhancer of zeste homolog 2 (EZH2) is a key methyltransferase involved in epigenetic remodeling in multiple myeloma (MM) cells. We have previously demonstrated that GSK126, a specific EZH2 inhibitor, exhibits anti-MM therapeutic efficacy and safety in vivo and in vitro; however, its specific mechanism remains unclear. This study shows that GSK126 induces cellular senescence in MM, which is characterized by the accumulation of senescence-associated heterochromatin foci (SAHF) and p21, and increased senescence-associated β galactosidase activity. Furthermore, EZH2 is inhibited in ribonucleotide reductase regulatory subunit M2 (RRM2)-overexpressing OCI-MY5 and RPMI-8226 cells. RRM2 overexpression inhibits the methyltransferase function of EZH2 and promotes its degradation through the ubiquitin-proteasome pathway, thereby inducing cellular senescence. In this senescence model, Lamin B1, a key component of the nuclear envelope and a marker of senescence, does not decrease but instead undergoes aberrant accumulation. Meanwhile, phosphorylation of extracellular signal-regulated protein kinase (ERK1/2) is significantly increased. The inhibition of ERK1/2 phosphorylation in turn partially restores Lamin B1 level and alleviates senescence. These findings suggest that EZH2 inhibition increases Lamin B1 level and induces senescence by promoting ERK1/2 phosphorylation. These data indicate that EZH2 plays an important role in MM cellular senescence and provide insights into the relationships among Lamin B1, p-ERK1/2, and cellular senescence.
Collapse
Affiliation(s)
- Shushan Guo
- Shanghai Clinical CollegeAnhui Medical UniversityShanghai200072China
- Department of HematologyShanghai East HospitalTongji University School of MedicineShanghai200120China
- The Fifth Clinical Medical College of Anhui Medical UniversityHefei230022China
| | - Qiongwei Tang
- Department of HematologyShanghai East HospitalTongji University School of MedicineShanghai200120China
| | - Xuejie Gao
- Department of HematologyShanghai East HospitalTongji University School of MedicineShanghai200120China
| | - Liangning Hu
- Department of HematologySir Run Run Shaw HospitalZhejiang UniversityHangzhou310016China
| | - Ke Hu
- Department of HematologyShanghai East HospitalTongji University School of MedicineShanghai200120China
| | - Hui Zhang
- Department of HematologyShanghai East HospitalTongji University School of MedicineShanghai200120China
| | - Qikai Zhang
- Department of HematologyShanghai East HospitalTongji University School of MedicineShanghai200120China
| | - Yue Lai
- Department of HematologyShanghai East HospitalTongji University School of MedicineShanghai200120China
| | - Yujie Liu
- Department of HematologyShanghai East HospitalTongji University School of MedicineShanghai200120China
| | - Zhuning Wang
- Department of HematologyShanghai East HospitalTongji University School of MedicineShanghai200120China
| | - Shuaikang Chang
- Department of HematologyShanghai East HospitalTongji University School of MedicineShanghai200120China
| | - Yifei Zhang
- Department of HematologyShanghai East HospitalTongji University School of MedicineShanghai200120China
| | - Huifang Hu
- Department of HematologyShanghai East HospitalTongji University School of MedicineShanghai200120China
| | - Dong An
- Department of HematologyShanghai East HospitalTongji University School of MedicineShanghai200120China
| | - Yu Peng
- Department of HematologyShanghai East HospitalTongji University School of MedicineShanghai200120China
| | - Haiyan Cai
- Department of HematologyShanghai East HospitalTongji University School of MedicineShanghai200120China
| | - Jumei Shi
- Shanghai Clinical CollegeAnhui Medical UniversityShanghai200072China
- Department of HematologyShanghai East HospitalTongji University School of MedicineShanghai200120China
- The Fifth Clinical Medical College of Anhui Medical UniversityHefei230022China
| |
Collapse
|
11
|
Tufail M, Huang YQ, Hu JJ, Liang J, He CY, Wan WD, Jiang CH, Wu H, Li N. Cellular Aging and Senescence in Cancer: A Holistic Review of Cellular Fate Determinants. Aging Dis 2024; 16:1483-1512. [PMID: 38913050 PMCID: PMC12096907 DOI: 10.14336/ad.2024.0421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 05/21/2024] [Indexed: 06/25/2024] Open
Abstract
This comprehensive review navigates the complex relationship between cellular aging, senescence, and cancer, unraveling the determinants of cellular fate. Beginning with an overview of cellular aging's significance in cancer, the review explores processes, changes, and molecular pathways influencing senescence. The review explores senescence as a dual mechanism in cancer, acting as a suppressor and contributor, focusing on its impact on therapy response. This review highlights opportunities for cancer therapies that target cellular senescence. The review further examines the senescence-associated secretory phenotype and strategies to modulate cellular aging to influence tumor behavior. Additionally, the review highlights the mechanisms of senescence escape in aging and cancer cells, emphasizing their impact on cancer prognosis and resistance to therapy. The article addresses current advances, unexplored aspects, and future perspectives in understanding cellular aging and senescence in cancer.
Collapse
Affiliation(s)
- Muhammad Tufail
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China.
| | - Yu-Qi Huang
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China.
| | - Jia-Ju Hu
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China.
| | - Jie Liang
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China.
| | - Cai-Yun He
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China.
| | - Wen-Dong Wan
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China.
| | - Can-Hua Jiang
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China.
- Institute of Oral Precancerous Lesions, Central South University, Changsha, China.
- Research Center of Oral and Maxillofacial Tumor, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| | - Hong Wu
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, China
| | - Ning Li
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China.
- Institute of Oral Precancerous Lesions, Central South University, Changsha, China.
- Research Center of Oral and Maxillofacial Tumor, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
12
|
Mori JO, Elhussin I, Brennen WN, Graham MK, Lotan TL, Yates CC, De Marzo AM, Denmeade SR, Yegnasubramanian S, Nelson WG, Denis GV, Platz EA, Meeker AK, Heaphy CM. Prognostic and therapeutic potential of senescent stromal fibroblasts in prostate cancer. Nat Rev Urol 2024; 21:258-273. [PMID: 37907729 PMCID: PMC11058122 DOI: 10.1038/s41585-023-00827-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2023] [Indexed: 11/02/2023]
Abstract
The stromal component of the tumour microenvironment in primary and metastatic prostate cancer can influence and promote disease progression. Within the prostatic stroma, fibroblasts are one of the most prevalent cell types associated with precancerous and cancerous lesions; they have a vital role in the structural composition, organization and integrity of the extracellular matrix. Fibroblasts within the tumour microenvironment can undergo cellular senescence, which is a stable arrest of cell growth and a phenomenon that is emerging as a recognized hallmark of cancer. Supporting the idea that cellular senescence has a pro-tumorigenic role, a subset of senescent cells exhibits a senescence-associated secretory phenotype (SASP), which, along with increased inflammation, can promote prostate cancer cell growth and survival. These cellular characteristics make targeting senescent cells and/or modulating SASP attractive as a potential preventive or therapeutic option for prostate cancer.
Collapse
Affiliation(s)
- Joakin O Mori
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine and Boston Medical Center, Boston, MA, USA
| | - Isra Elhussin
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Urology and the James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - W Nathaniel Brennen
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Urology and the James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Mindy K Graham
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Tamara L Lotan
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Urology and the James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Clayton C Yates
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Urology and the James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Angelo M De Marzo
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Urology and the James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Samuel R Denmeade
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Urology and the James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Srinivasan Yegnasubramanian
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Urology and the James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - William G Nelson
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Urology and the James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Gerald V Denis
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine and Boston Medical Center, Boston, MA, USA
- Department of Pharmacology and Experimental Therapeutics, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Elizabeth A Platz
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Urology and the James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Alan K Meeker
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Urology and the James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Christopher M Heaphy
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine and Boston Medical Center, Boston, MA, USA.
- Department of Pathology and Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA.
| |
Collapse
|
13
|
Donovan LJ, Brewer CL, Bond SF, Lopez AP, Hansen LH, Jordan CE, González OC, de Lecea L, Kauer JA, Tawfik VL. Aging and injury drive neuronal senescence in the dorsal root ganglia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.20.576299. [PMID: 39829815 PMCID: PMC11741248 DOI: 10.1101/2024.01.20.576299] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Aging negatively impacts central nervous system function; however, the cellular impact of aging in the peripheral nervous system remains poorly understood. Aged individuals are more likely to experience increased pain and slower recovery after trauma. Such injury can damage vulnerable peripheral axons of dorsal root ganglion (DRG) neurons resulting in somatosensory dysfunction. One cellular mechanism common to both aging and injury is cellular senescence, a complex cell state that can contribute to the aged pro-inflammatory environment. We uncovered, for the first time, DRG neuron senescence in the context of aging and pain-inducing peripheral nerve injury in young and aged mice. Aged DRG neurons displayed multiple markers of senescence (SA-β-gal, p21, p16, IL6) when compared to young DRG neurons. Peripheral nerve injury triggered a further accumulation of senescent DRG neurons over time post-injury in young and aged DRG. These senescent neurons were dynamic and heterogeneous in their expression of senescence markers, p16, p21, and senescence-associated secretory phenotype (SASP) expression of IL6, which was influenced by age. An electrophysiological characterization of senescence marker-expressing neurons revealed high-firing and nociceptor-like phenotypes within these populations. In addition, we observed improvement in nociceptive behaviors in young and aged nerve-injured mice after treatment with a senolytic agent that eliminates senescent cells. Finally, we confirmed in human post-mortem DRG samples that neuronal senescence is present and increases with age. Overall, we describe a susceptibility of the peripheral nervous system to neuronal senescence with age or injury that may be a targetable mechanism to treat sensory dysfunction, such as chronic pain, particularly in aged populations.
Collapse
Affiliation(s)
- Lauren J. Donovan
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA 94305, USA
| | - Chelsie L. Brewer
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Sabrina F. Bond
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA 94305, USA
| | - Aleishai Pena Lopez
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA 94305, USA
| | - Linus H. Hansen
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA 94305, USA
| | - Claire E. Jordan
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA 94305, USA
| | - Oscar C. González
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Luis de Lecea
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Julie A. Kauer
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Vivianne L. Tawfik
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
14
|
Li X, Zeng Q, Xu F, Jiang Y, Jiang Z. Progress in programmed cell death-1/programmed cell death-ligand 1 pathway inhibitors and binding mode analysis. Mol Divers 2023; 27:1935-1955. [PMID: 35948846 DOI: 10.1007/s11030-022-10509-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 07/28/2022] [Indexed: 10/15/2022]
Abstract
Programmed cell death protein 1 (PD-1)/programmed cell death protein ligand 1 (PD-L1) plays an important role in negative regulating immunity. The search for effective PD-1/PD-L1 inhibitors has been at the cutting-edge of academic and industrial medicinal chemistry, leading to the emergence of 16 clinical candidate drugs and the launch of six monoclonal antibodies (mAbs) drugs. However, due to the unclear mechanism of the interaction between drugs and substances in vivo, the screening of preclinical drugs often takes a long time. In order to shorten the time of drug development as much as possible, the binding mode analysis that can simulate the interaction between drugs and substances in vivo at the molecular level can significantly shorten the drug development process. This paper reviews the mechanism of PD-1/PD-L1 signaling pathway at the molecular level, as well as the research progress and obstacles of inhibitors. Besides, we analyzed the binding mode of recently reported PD-1/PD-L1 inhibitors with PD-1 or PD-L1 protein in detail in order to provide ideas for the development of PD-1/PD-L1 inhibitors.
Collapse
Affiliation(s)
- Xiaoyun Li
- Department of Pharmacy, Chun'an County Hospital of Traditional Chinese Medicine, Hangzhou, 311700, Zhejiang, China
| | - Qin Zeng
- Laboratory of Pharmacology, Department of Pharmacology, School of Pharmacy, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Fengjiao Xu
- Laboratory of Pharmacology, Department of Pharmacology, School of Pharmacy, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yuying Jiang
- Laboratory of Pharmacology, Department of Pharmacology, School of Pharmacy, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Zhongmei Jiang
- Department of Pharmacy, Chun'an County Hospital of Traditional Chinese Medicine, Hangzhou, 311700, Zhejiang, China.
| |
Collapse
|
15
|
Wan R, Srikaram P, Guntupalli V, Hu C, Chen Q, Gao P. Cellular senescence in asthma: from pathogenesis to therapeutic challenges. EBioMedicine 2023; 94:104717. [PMID: 37442061 PMCID: PMC10362295 DOI: 10.1016/j.ebiom.2023.104717] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023] Open
Abstract
Asthma is a heterogeneous chronic respiratory disease that impacts nearly 10% of the population worldwide. While cellular senescence is a normal physiological process, the accumulation of senescent cells is considered a trigger that transforms physiology into the pathophysiology of a tissue/organ. Recent advances have suggested the significance of cellular senescence in asthma. With this review, we focus on the literature regarding the physiology and pathophysiology of cellular senescence and cellular stress responses that link the triggers of asthma to cellular senescence, including telomere shortening, DNA damage, oncogene activation, oxidative-related senescence, and senescence-associated secretory phenotype (SASP). The association of cellular senescence to asthma phenotypes, airway inflammation and remodeling, was also reviewed. Importantly, several approaches targeting cellular senescence, such as senolytics and senomorphics, have emerged as promising strategies for asthma treatment. Therefore, cellular senescence might represent a mechanism in asthma, and the senescence-related molecules and pathways could be targeted for therapeutic benefit.
Collapse
Affiliation(s)
- Rongjun Wan
- Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA; Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Prakhyath Srikaram
- Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
| | - Vineeta Guntupalli
- Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
| | - Chengping Hu
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Qiong Chen
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Peisong Gao
- Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA.
| |
Collapse
|
16
|
Varghese SS, Dhawan S. Senescence: a double-edged sword in beta-cell health and failure? Front Endocrinol (Lausanne) 2023; 14:1196460. [PMID: 37229454 PMCID: PMC10203573 DOI: 10.3389/fendo.2023.1196460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 04/19/2023] [Indexed: 05/27/2023] Open
Abstract
Cellular senescence is a complex process marked by permanent cell-cycle arrest in response to a variety of stressors, and acts as a safeguard against the proliferation of damaged cells. Senescence is not only a key process underlying aging and development of many diseases, but has also been shown to play a vital role in embryogenesis as well as tissue regeneration and repair. In context of the pancreatic beta-cells, that are essential for maintaining glucose homeostasis, replicative senescence is responsible for the age-related decline in regenerative capacity. Stress induced premature senescence is also a key early event underlying beta-cell failure in both type 1 and type 2 diabetes. Targeting senescence has therefore emerged as a promising therapeutic avenue for diabetes. However, the molecular mechanisms that mediate the induction of beta-cell senescence in response to various stressors remain unclear. Nor do we know if senescence plays any role during beta-cell growth and development. In this perspective, we discuss the significance of senescence in beta-cell homeostasis and pathology and highlight emerging directions in this area that warrant our attention.
Collapse
Affiliation(s)
| | - Sangeeta Dhawan
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA, United States
| |
Collapse
|
17
|
Mysiris DS, Vavougios GD, Karamichali E, Papoutsopoulou S, Stavrou VT, Papayianni E, Boutlas S, Mavridis T, Foka P, Zarogiannis SG, Gourgoulianis K, Xiromerisiou G. Post-COVID-19 Parkinsonism and Parkinson's Disease Pathogenesis: The Exosomal Cargo Hypothesis. Int J Mol Sci 2022; 23:9739. [PMID: 36077138 PMCID: PMC9456372 DOI: 10.3390/ijms23179739] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/21/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
Parkinson's disease (PD) is the second most prevalent neurodegenerative disease after Alzheimer's disease, globally. Dopaminergic neuron degeneration in substantia nigra pars compacta and aggregation of misfolded alpha-synuclein are the PD hallmarks, accompanied by motor and non-motor symptoms. Several viruses have been linked to the appearance of a post-infection parkinsonian phenotype. Coronavirus disease 2019 (COVID-19), caused by emerging severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection, has evolved from a novel pneumonia to a multifaceted syndrome with multiple clinical manifestations, among which neurological sequalae appear insidious and potentially long-lasting. Exosomes are extracellular nanovesicles bearing a complex cargo of active biomolecules and playing crucial roles in intercellular communication under pathophysiological conditions. Exosomes constitute a reliable route for misfolded protein transmission, contributing to PD pathogenesis and diagnosis. Herein, we summarize recent evidence suggesting that SARS-CoV-2 infection shares numerous clinical manifestations and inflammatory and molecular pathways with PD. We carry on hypothesizing that these similarities may be reflected in exosomal cargo modulated by the virus in correlation with disease severity. Travelling from the periphery to the brain, SARS-CoV-2-related exosomal cargo contains SARS-CoV-2 RNA, viral proteins, inflammatory mediators, and modified host proteins that could operate as promoters of neurodegenerative and neuroinflammatory cascades, potentially leading to a future parkinsonism and PD development.
Collapse
Affiliation(s)
| | - George D. Vavougios
- Department of Neurology, Faculty of Medicine, University of Cyprus, Lefkosia 1678, Cyprus
- Laboratory of Pulmonary Testing and Rehabilitation, Department of Respiratory Medicine, Faculty of Medicine, University of Thessaly, 41110 Larissa, Greece
| | - Eirini Karamichali
- Molecular Virology Laboratory, Hellenic Pasteur Institute, 11521 Athens, Greece
| | - Stamatia Papoutsopoulou
- Department of Biochemistry and Biotechnology, Faculty of Life Sciences, University of Thessaly, Mezourlo, 41500 Larissa, Greece
| | - Vasileios T. Stavrou
- Laboratory of Pulmonary Testing and Rehabilitation, Department of Respiratory Medicine, Faculty of Medicine, University of Thessaly, 41110 Larissa, Greece
| | - Eirini Papayianni
- Laboratory of Pulmonary Testing and Rehabilitation, Department of Respiratory Medicine, Faculty of Medicine, University of Thessaly, 41110 Larissa, Greece
| | - Stylianos Boutlas
- Laboratory of Pulmonary Testing and Rehabilitation, Department of Respiratory Medicine, Faculty of Medicine, University of Thessaly, 41110 Larissa, Greece
| | - Theodoros Mavridis
- 1st Neurology Department, Eginition Hospital, Medical School, National & Kapodistrian University of Athens, 11528 Athens, Greece
| | - Pelagia Foka
- Molecular Virology Laboratory, Hellenic Pasteur Institute, 11521 Athens, Greece
| | - Sotirios G. Zarogiannis
- Department of Physiology, Faculty of Medicine, University of Thessaly, Biopolis, 41500 Larissa, Greece
| | - Konstantinos Gourgoulianis
- Laboratory of Pulmonary Testing and Rehabilitation, Department of Respiratory Medicine, Faculty of Medicine, University of Thessaly, 41110 Larissa, Greece
| | - Georgia Xiromerisiou
- Department of Neurology, University Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41110 Larissa, Greece
| |
Collapse
|
18
|
Sikora E, Bielak-Zmijewska A, Mosieniak G. A common signature of cellular senescence; does it exist? Ageing Res Rev 2021; 71:101458. [PMID: 34500043 DOI: 10.1016/j.arr.2021.101458] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/25/2021] [Accepted: 09/01/2021] [Indexed: 02/08/2023]
Abstract
Cellular senescence is a stress response, which can be evoked in all type of somatic cells by different stimuli. Senescent cells accumulate in the body and participate in aging and aging-related diseases mainly by their secretory activity, commonly known as senescence-associated secretory phenotype-SASP. Senescence is typically described as cell cycle arrest. This definition stems from the original observation concerning limited cell division potential of human fibroblasts in vitro. At present, the process of cell senescence is attributed also to cancer cells and to non-proliferating post-mitotic cells. Many cellular signaling pathways and specific and unspecific markers contribute to the complex, dynamic and heterogeneous phenotype of senescent cells. Considering the diversity of cells that can undergo senescence upon different inducers and variety of mechanisms involved in the execution of this process, we ask if there is a common signature of cell senescence. It seems that cell cycle arrest in G0, G1 or G2 is indispensable for cell senescence; however, to ensure irreversibility of divisions, the exit from the cell cycle to the state, which we call a GS (Gero Stage), is necessary. The DNA damage, changes in nuclear architecture and chromatin rearrangement are involved in signaling pathways leading to altered gene transcription and secretion of SASP components. Thus, nuclear changes and SASP are vital features of cell senescence that, together with temporal arrest in the cell cycle (G1 or/and G2), which may be followed by polyploidisation/depolyploidisation or exit from the cell cycle leading to permanent proliferation arrest (GS), define the signature of cellular senescence.
Collapse
|
19
|
Leu JD, Wang CY, Lo CC, Lin MY, Chang CY, Hung WC, Lin ST, Wang BS, Lee YJ. Involvement of c-Myc in low dose radiation-induced senescence enhanced migration and invasion of unirradiated cancer cells. Aging (Albany NY) 2021; 13:22208-22231. [PMID: 34552037 PMCID: PMC8507273 DOI: 10.18632/aging.203527] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 08/11/2021] [Indexed: 12/27/2022]
Abstract
Ionizing radiation is known to cause cell apoptosis at high dose range, but little is known about the cellular response to low dose radiation. In this study, we found that conditioned medium harvested from WI-38 lung fibroblasts and H1299 lung adenocarcinoma cells exposed to 0.1Gy to 1Gy could enhance the migration and invasion of unirradiated H1299 cells in both 2D and 3D culturing circumstances. Low dose radiation did not induce apoptosis, but induced senescence in irradiated cells. We next examined the expression of immediately early genes including c-Myc and K-Ras. Although both genes could be up-regulated by low dose radiation, induction of c-Myc was more specific to low dose range (0.5Gy) at transcriptional and translational levels. Knockdown of c-Myc by shRNA could repress the senescence induced by low dose radiation. The conditioned medium of irradiated cells induced migration of unirradiated cells was also repressed by knockdown of c-Myc. The c-Myc inhibitor 10058-F4 could suppress low dose radiation induced cell senescence, and the conditioned medium harvested from irradiated cells pretreated with 10058-F4 also lost the ability to enhance the migration of unirradiated cells. The cytokine array analysis revealed that immunosuppressive monocyte chemoattractant protein-1 increased by low dose radiation could be repressed by 10058-F4. We also showed that 10058-F4 could suppress low dose radiation induced tumor progression in a xenograft tumor model. Taken together, current data suggest that -Myc is involved in low dose radiation induced cell senescence and potent bystander effect to increase the motility of unirradiated cells.
Collapse
Affiliation(s)
- Jyh-Der Leu
- Department of Radiation Oncology, Taipei City Hospital, Taipei 110, Taiwan.,Institute of Neuroscience, National Cheng Chi University, Taipei 116, Taiwan
| | - Chung-Yih Wang
- Radiotherapy, Department of Medical Imaging, Cheng Hsin General Hospital, Taipei 112, Taiwan
| | - Chia-Chien Lo
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Min-Ying Lin
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Chun-Yuan Chang
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan.,Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ 08903-2681, USA
| | - Wen-Chin Hung
- Department of Radiation Oncology, Taipei City Hospital, Taipei 110, Taiwan
| | - Shi-Ting Lin
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Bo-Shen Wang
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Yi-Jang Lee
- Department of Radiation Oncology, Taipei City Hospital, Taipei 110, Taiwan.,Cancer Progression Research Center, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| |
Collapse
|
20
|
Abstract
Cellular senescence has been found to have beneficial roles in development, tissue regeneration, and wound healing. However, in aging senescence increases, and the ability to properly repair and heal wounds significantly declines across multiple tissues. This age-related accumulation of senescent cells may cause loss of tissue homeostasis leading to dysregulation of normal and timely wound healing processes. The delays in wound healing of aging have widespread clinical and economic impacts, thus novel strategies to improve wound healing in aging are needed and targeting senescence may be a promising area.
Collapse
|
21
|
Glioblastoma Therapy: Rationale for a Mesenchymal Stem Cell-based Vehicle to Carry Recombinant Viruses. Stem Cell Rev Rep 2021; 18:523-543. [PMID: 34319509 DOI: 10.1007/s12015-021-10207-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2021] [Indexed: 12/12/2022]
Abstract
Evasion of growth suppression is among the prominent hallmarks of cancer. Phosphatase and tensin homolog (PTEN) and p53 tumor-suppressive pathways are compromised in most human cancers, including glioblastoma (GB). Hence, these signaling pathways are an ideal point of focus for novel cancer therapeutics. Recombinant viruses can selectivity kill cancer cells and carry therapeutic genes to tumors. Specifically, oncolytic viruses (OV) have been successfully employed for gene delivery in GB animal models and showed potential to neutralize immunosuppression at the tumor site. However, the associated systemic immunogenicity, inefficient transduction of GB cells, and inadequate distribution to metastatic tumors have been the major bottlenecks in clinical studies. Mesenchymal stem cells (MSCs), with tumor-tropic properties and immune privilege, can improve OVs targeting. Remarkably, combining the two approaches can address their individual issues. Herein, we summarize findings to advocate the reactivation of tumor suppressors p53 and PTEN in GB treatment and use MSCs as a "Trojan horse" to carry oncolytic viral cargo to disseminated tumor beds. The integration of MSCs and OVs can emerge as the new paradigm in cancer treatment.
Collapse
|