1
|
Zhang C, Li JB, Zhang YW, Tang YS, Yu XF, Zhang QG, Jin Z, Hou SC, Shaw PC, Hu C. Novel benzamide derivatives with indole moiety as dual-target antiviral agents: Rational design, efficient synthesis, and potent anti-influenza activity through concurrent binding to PA C terminal domain and viral nucleoprotein. Eur J Med Chem 2025; 293:117681. [PMID: 40367674 DOI: 10.1016/j.ejmech.2025.117681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 04/08/2025] [Accepted: 04/23/2025] [Indexed: 05/16/2025]
Abstract
In this study, a series of benzamide derivatives with an indole moiety as dual-target inhibitors were designed, synthesized and evaluated against the RNA-dependent RNA polymerase (RdRp) complex of influenza viruses. The target compounds can simultaneously disrupt two key molecular interactions: the PAC terminal domain and the nucleoprotein (NP) oligomerization. Through efficient synthesis and structure-activity relationship (SAR) analysis, compounds 8e and 8f as highly potent inhibitors were identified. Both compounds (8e and 8f) exhibited submicromolar EC50 values (1.64 ± 0.05 μM and 1.41 ± 0.27 μM) against influenza A virus (H1N1, A/WSN/33) and broad-spectrum activity against other influenza strains, including influenza B virus and multiple subtypes of influenza A. Notably, their cytotoxicity was significantly reduced compared to previous benzofurazan derivatives, with CC50 values exceeding 100 μM. Surface plasmon resonance (SPR) experiments confirmed that 8e and 8f bound strongly to the PA C-terminal domain (KD = 8.90 μM and 4.82 μM) and NP (KD = 52.5 μM and 3.13 μM). Computational modeling approaches, including molecular docking, molecular dynamics (MD) simulations, and dynamical cross-correlation matrix (DCCM) analysis, principal component analysis (PCA) analysis and density functional theory (DFT) calculations, were employed to elucidate the putative binding modes and delineate critical interaction sites between the ligands and target proteins. These insights not only modulated subsequent structure-based lead optimization but also strengthened our understanding of the molecular determinants governing antiviral activity. This research provides a promising scaffold for developing dual-target antiviral agents with enhanced potency and safety, offering new strategies to combat influenza viruses.
Collapse
Affiliation(s)
- Chao Zhang
- Key Laboratory of Structure-based Drug Design & Discovery (Ministry of Education), Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Jia-Bin Li
- Key Laboratory of Structure-based Drug Design & Discovery (Ministry of Education), Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yi-Wen Zhang
- Key Laboratory of Structure-based Drug Design & Discovery (Ministry of Education), Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yun-Sang Tang
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region of China
| | - Xiao-Fei Yu
- Key Laboratory of Structure-based Drug Design & Discovery (Ministry of Education), Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Qing-Guang Zhang
- Key Laboratory of Structure-based Drug Design & Discovery (Ministry of Education), Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Zhe Jin
- Key Laboratory of Structure-based Drug Design & Discovery (Ministry of Education), Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Shi-Cheng Hou
- Key Laboratory of Structure-based Drug Design & Discovery (Ministry of Education), Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Pang-Chui Shaw
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region of China.
| | - Chun Hu
- Key Laboratory of Structure-based Drug Design & Discovery (Ministry of Education), Shenyang Pharmaceutical University, Shenyang, 110016, China.
| |
Collapse
|
2
|
Zhang M, Zeng Z, Chen X, Wang G, Cai X, Hu Z, Gu M, Hu S, Liu X, Wang X, Peng D, Hu J, Liu X. Phosphorylation of PA at serine 225 enhances viral fitness of the highly pathogenic H5N1 avian influenza virus in mice. Vet Microbiol 2025; 302:110400. [PMID: 39847871 DOI: 10.1016/j.vetmic.2025.110400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 01/15/2025] [Accepted: 01/18/2025] [Indexed: 01/25/2025]
Abstract
Currently, there is increasing spillover of highly pathogenic H5N1 avian influenza virus (AIV) to mammals, raising a concern of pandemic threat about this virus. Although the function of PA protein of the influenza virus is well understood, the understanding of how phosphorylation regulates this protein and influenza viral life cycle is still limited. We previously identified PA S225 as the phosphorylation site in the highly pathogenic H5N1 AIV. In this study, we investigated the role of phosphorylation in regulating PA function and viral fitness through dephosphorylation (PA S225A) or continuous phosphorylation (PA S225E)-mimetic mutation of PA S225. Structure analysis revealed that PA S225A or PA S225E mutation had no obvious effect on the structure of PA protein. Replication assay in vitro showed that PA S225A phosphorylation-ablative mutation significantly inhibited virus replication both in mammalian and avian-derived cells, while PA S225E enhanced viral replication in these cells. Correspondingly, PA S225A dephosphorylation significantly attenuated viral replication and virulence in mice, while PA S225E enhanced these aspects in mice. Mechanistically, PA S225A mutation significantly decreased viral polymerase activity, disabled viral ribonucleoprotein complex (vRNP) assembly and attenuated PA nuclear accumulation. Altogether, our study directly suggested that phosphorylation of PA protein at site S225 enhances viral fitness of the highly pathogenic H5N1 virus in mammals by assuring effective vRNP activity, providing a framework for further study of phosphorylation events in influenza virus life cycle.
Collapse
Affiliation(s)
- Manyu Zhang
- Key Laboratory of Avian Bioproducts Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Zixiong Zeng
- Key Laboratory of Avian Bioproducts Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xia Chen
- Key Laboratory of Avian Bioproducts Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Guoqing Wang
- Key Laboratory of Avian Bioproducts Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xinxin Cai
- Key Laboratory of Avian Bioproducts Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Zenglei Hu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Min Gu
- Key Laboratory of Avian Bioproducts Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Shunlin Hu
- Key Laboratory of Avian Bioproducts Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xiaowen Liu
- Key Laboratory of Avian Bioproducts Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xiaoquan Wang
- Key Laboratory of Avian Bioproducts Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Daxin Peng
- Key Laboratory of Avian Bioproducts Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jiao Hu
- Key Laboratory of Avian Bioproducts Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China.
| | - Xiufan Liu
- Key Laboratory of Avian Bioproducts Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
3
|
Piesche R, Breithaupt A, Pohlmann A, Ahrens AK, Beer M, Harder T, Grund C. Dominant HPAIV H5N1 genotypes of Germany 2021/2022 are linked to high virulence in Pekin ducklings. NPJ VIRUSES 2024; 2:53. [PMID: 40295819 PMCID: PMC11721377 DOI: 10.1038/s44298-024-00062-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 09/25/2024] [Indexed: 04/30/2025]
Abstract
Highly pathogenic avian influenza viruses (HPAIV) of H5 clade 2.3.4.4b pose an ongoing threat worldwide. It remains unclear whether this panzootic situation would favor low virulent phenotypes expected by the 'avirulence hypothesis' of viral evolution. Assessing virulence in Pekin ducklings in an intramuscular infection model revealed that the two genotypes that dominated the epidemiological situation in Germany during the period 2021 and 2022 (EU-RL:CH and EU-RL:AB) were of high virulence. In contrast, rare genotypes were of intermediate virulence. The genetic constellation of these reassortants pointed to an important role of the viral polymerase complex (RdRP), particularly the PB1 genome segment, in shaping virulence in ducklings. Occulo-nasal infection of ducklings confirmed the phenotypes for two representative viruses and indicated a more efficient replication for the high virulence strain. These observations would be in line with the 'virulence-transmission trade-off' model for describing HPAIV epidemiology in wild birds in Germany.
Collapse
Affiliation(s)
- Ronja Piesche
- Friedrich- Loeffler- Institute, Institute of Diagnostic Virology, Greifswald, Germany
| | - Angele Breithaupt
- Friedrich- Loeffler- Institute, Department of Experimental Animal Facilities and Biorisk Management (ATB), Greifswald, Germany
| | - Anne Pohlmann
- Friedrich- Loeffler- Institute, Institute of Diagnostic Virology, Greifswald, Germany
| | - Ann Kathrin Ahrens
- Friedrich- Loeffler- Institute, Institute of Diagnostic Virology, Greifswald, Germany
| | - Martin Beer
- Friedrich- Loeffler- Institute, Institute of Diagnostic Virology, Greifswald, Germany.
| | - Timm Harder
- Friedrich- Loeffler- Institute, Institute of Diagnostic Virology, Greifswald, Germany
| | - Christian Grund
- Friedrich- Loeffler- Institute, Institute of Diagnostic Virology, Greifswald, Germany.
| |
Collapse
|
4
|
Hillung J, Olmo-Uceda MJ, Muñoz-Sánchez JC, Elena SF. Accumulation Dynamics of Defective Genomes during Experimental Evolution of Two Betacoronaviruses. Viruses 2024; 16:644. [PMID: 38675984 PMCID: PMC11053736 DOI: 10.3390/v16040644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024] Open
Abstract
Virus-encoded replicases often generate aberrant RNA genomes, known as defective viral genomes (DVGs). When co-infected with a helper virus providing necessary proteins, DVGs can multiply and spread. While DVGs depend on the helper virus for propagation, they can in some cases disrupt infectious virus replication, impact immune responses, and affect viral persistence or evolution. Understanding the dynamics of DVGs alongside standard viral genomes during infection remains unclear. To address this, we conducted a long-term experimental evolution of two betacoronaviruses, the human coronavirus OC43 (HCoV-OC43) and the murine hepatitis virus (MHV), in cell culture at both high and low multiplicities of infection (MOI). We then performed RNA-seq at regular time intervals, reconstructed DVGs, and analyzed their accumulation dynamics. Our findings indicate that DVGs evolved to exhibit greater diversity and abundance, with deletions and insertions being the most common types. Notably, some high MOI deletions showed very limited temporary existence, while others became prevalent over time. We observed differences in DVG abundance between high and low MOI conditions in HCoV-OC43 samples. The size distribution of HCoV-OC43 genomes with deletions differed between high and low MOI passages. In low MOI lineages, short and long DVGs were the most common, with an additional cluster in high MOI lineages which became more prevalent along evolutionary time. MHV also showed variations in DVG size distribution at different MOI conditions, though they were less pronounced compared to HCoV-OC43, suggesting a more random distribution of DVG sizes. We identified hotspot regions for deletions that evolved at a high MOI, primarily within cistrons encoding structural and accessory proteins. In conclusion, our study illustrates the widespread formation of DVGs during betacoronavirus evolution, influenced by MOI and cell- and virus-specific factors.
Collapse
Affiliation(s)
- Julia Hillung
- Instituto de Biología Integrativa de Sistemas (I2SysBio), CSIC-UV, Catedrático Agustín Escardino Benlloch 9, 46980 Paterna, Valencia, Spain; (J.H.); (M.J.O.-U.); (J.C.M.-S.)
| | - María J. Olmo-Uceda
- Instituto de Biología Integrativa de Sistemas (I2SysBio), CSIC-UV, Catedrático Agustín Escardino Benlloch 9, 46980 Paterna, Valencia, Spain; (J.H.); (M.J.O.-U.); (J.C.M.-S.)
| | - Juan C. Muñoz-Sánchez
- Instituto de Biología Integrativa de Sistemas (I2SysBio), CSIC-UV, Catedrático Agustín Escardino Benlloch 9, 46980 Paterna, Valencia, Spain; (J.H.); (M.J.O.-U.); (J.C.M.-S.)
| | - Santiago F. Elena
- Instituto de Biología Integrativa de Sistemas (I2SysBio), CSIC-UV, Catedrático Agustín Escardino Benlloch 9, 46980 Paterna, Valencia, Spain; (J.H.); (M.J.O.-U.); (J.C.M.-S.)
- Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA
| |
Collapse
|
5
|
Zhou Y, Li T, Zhang Y, Zhang N, Guo Y, Gao X, Peng W, Shu S, Zhao C, Cui D, Sun H, Sun Y, Liu J, Tang J, Zhang R, Pu J. BAG6 inhibits influenza A virus replication by inducing viral polymerase subunit PB2 degradation and perturbing RdRp complex assembly. PLoS Pathog 2024; 20:e1012110. [PMID: 38498560 PMCID: PMC10977894 DOI: 10.1371/journal.ppat.1012110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 03/28/2024] [Accepted: 03/09/2024] [Indexed: 03/20/2024] Open
Abstract
The interaction between influenza A virus (IAV) and host proteins is an important process that greatly influences viral replication and pathogenicity. PB2 protein is a subunit of viral ribonucleoprotein (vRNP) complex playing distinct roles in viral transcription and replication. BAG6 (BCL2-associated athanogene 6) as a multifunctional host protein participates in physiological and pathological processes. Here, we identify BAG6 as a new restriction factor for IAV replication through targeting PB2. For both avian and human influenza viruses, overexpression of BAG6 reduced viral protein expression and virus titers, whereas deletion of BAG6 significantly enhanced virus replication. Moreover, BAG6-knockdown mice developed more severe clinical symptoms and higher viral loads upon IAV infection. Mechanistically, BAG6 restricted IAV transcription and replication by inhibiting the activity of viral RNA-dependent RNA polymerase (RdRp). The co-immunoprecipitation assays showed BAG6 specifically interacted with the N-terminus of PB2 and competed with PB1 for RdRp complex assembly. The ubiquitination assay indicated that BAG6 promoted PB2 ubiquitination at K189 residue and targeted PB2 for K48-linked ubiquitination degradation. The antiviral effect of BAG6 necessitated its N-terminal region containing a ubiquitin-like (UBL) domain (17-92aa) and a PB2-binding domain (124-186aa), which are synergistically responsible for viral polymerase subunit PB2 degradation and perturbing RdRp complex assembly. These findings unravel a novel antiviral mechanism via the interaction of viral PB2 and host protein BAG6 during avian or human influenza virus infection and highlight a potential application of BAG6 for antiviral drug development.
Collapse
Affiliation(s)
- Yong Zhou
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Department of Preventive Veterinary, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Tian Li
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Department of Preventive Veterinary, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yunfan Zhang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Department of Basic Veterinary, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Nianzhi Zhang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Department of Preventive Veterinary, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yuxin Guo
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Department of Preventive Veterinary, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xiaoyi Gao
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Department of Preventive Veterinary, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Wenjing Peng
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Department of Preventive Veterinary, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Sicheng Shu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Department of Preventive Veterinary, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Chuankuo Zhao
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Department of Preventive Veterinary, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Di Cui
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Department of Basic Veterinary, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Honglei Sun
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Department of Preventive Veterinary, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yipeng Sun
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Department of Preventive Veterinary, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jinhua Liu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Department of Preventive Veterinary, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jun Tang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Department of Basic Veterinary, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Rui Zhang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Department of Basic Veterinary, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Juan Pu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Department of Preventive Veterinary, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
6
|
Hu J, Zeng Z, Chen X, Zhang M, Hu Z, Gu M, Wang X, Gao R, Hu S, Chen Y, Liu X, Peng D, Liu X. Phosphorylation of PB2 at serine 181 restricts viral replication and virulence of the highly pathogenic H5N1 avian influenza virus in mice. Virol Sin 2024; 39:97-112. [PMID: 38103645 PMCID: PMC10877443 DOI: 10.1016/j.virs.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 12/12/2023] [Indexed: 12/19/2023] Open
Abstract
Influenza A virus (IAV) continues to pose a pandemic threat to public health, resulting a high mortality rate annually and during pandemic years. Posttranslational modification of viral protein plays a substantial role in regulating IAV infection. Here, based on immunoprecipitation (IP)-based mass spectrometry (MS) and purified virus-coupled MS, a total of 89 phosphorylation sites distributed among 10 encoded viral proteins of IAV were identified, including 60 novel phosphorylation sites. Additionally, for the first time, we provide evidence that PB2 can also be acetylated at site K187. Notably, the PB2 S181 phosphorylation site was consistently identified in both IP-based MS and purified virus-based MS. Both S181 and K187 are exposed on the surface of the PB2 protein and are highly conserved in various IAV strains, suggesting their fundamental importance in the IAV life cycle. Bioinformatic analysis results demonstrated that S181E/A and K187Q/R mimic mutations do not significantly alter the PB2 protein structure. While continuous phosphorylation mimicked by the PB2 S181E mutation substantially decreases viral fitness in mice, PB2 K187Q mimetic acetylation slightly enhances viral virulence in mice. Mechanistically, PB2 S181E substantially impairs viral polymerase activity and viral replication, remarkably dampens protein stability and nuclear accumulation of PB2, and significantly weakens IAV-induced inflammatory responses. Therefore, our study further enriches the database of phosphorylation and acetylation sites of influenza viral proteins, laying a foundation for subsequent mechanistic studies. Meanwhile, the unraveled antiviral effect of PB2 S181E mimetic phosphorylation may provide a new target for the subsequent study of antiviral drugs.
Collapse
Affiliation(s)
- Jiao Hu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, 225009, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, 225009, China
| | - Zixiong Zeng
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, 225009, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, 225009, China
| | - Xia Chen
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, 225009, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, 225009, China
| | - Manyu Zhang
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, 225009, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, 225009, China
| | - Zenglei Hu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, 225009, China
| | - Min Gu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, 225009, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, 225009, China
| | - Xiaoquan Wang
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, 225009, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, 225009, China
| | - Ruyi Gao
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, 225009, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, 225009, China
| | - Shunlin Hu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, 225009, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, 225009, China
| | - Yu Chen
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, 225009, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, 225009, China
| | - Xiaowen Liu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, 225009, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, 225009, China
| | - Daxin Peng
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, 225009, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, 225009, China
| | - Xiufan Liu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, 225009, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
7
|
Jung KI, McKenna S, Vijayamahantesh V, He Y, Hahm B. Protective versus Pathogenic Type I Interferon Responses during Virus Infections. Viruses 2023; 15:1916. [PMID: 37766322 PMCID: PMC10538102 DOI: 10.3390/v15091916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Following virus infections, type I interferons are synthesized to induce the expression of antiviral molecules and interfere with virus replication. The importance of early antiviral type I IFN response against virus invasion has been emphasized during COVID-19 as well as in studies on the microbiome. Further, type I IFNs can directly act on various immune cells to enhance protective host immune responses to viral infections. However, accumulating data indicate that IFN responses can be harmful to the host by instigating inflammatory responses or inducing T cell suppression during virus infections. Also, inhibition of lymphocyte and dendritic cell development can be caused by type I IFN, which is independent of the traditional signal transducer and activator of transcription 1 signaling. Additionally, IFNs were shown to impair airway epithelial cell proliferation, which may affect late-stage lung tissue recovery from the infection. As such, type I IFN-virus interaction research is diverse, including host antiviral innate immune mechanisms in cells, viral strategies of IFN evasion, protective immunity, excessive inflammation, immune suppression, and regulation of tissue repair. In this report, these IFN activities are summarized with an emphasis placed on the functions of type I IFNs recently observed during acute or chronic virus infections.
Collapse
Affiliation(s)
| | | | | | | | - Bumsuk Hahm
- Departments of Surgery & Molecular Microbiology and Immunology, University of Missouri, Columbia, MO 65212, USA; (K.I.J.); (S.M.); (V.V.); (Y.H.)
| |
Collapse
|
8
|
Rigby CV, Sabsay KR, Bisht K, Eggink D, Jalal H, te Velthuis AJW. Evolution of transient RNA structure-RNA polymerase interactions in respiratory RNA virus genomes. Virus Evol 2023; 9:vead056. [PMID: 37692892 PMCID: PMC10492445 DOI: 10.1093/ve/vead056] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/02/2023] [Accepted: 08/24/2023] [Indexed: 09/12/2023] Open
Abstract
RNA viruses are important human pathogens that cause seasonal epidemics and occasional pandemics. Examples are influenza A viruses (IAV) and coronaviruses (CoV). When emerging IAV and CoV spill over to humans, they adapt to evade immune responses and optimize their replication and spread in human cells. In IAV, adaptation occurs in all viral proteins, including the viral ribonucleoprotein (RNP) complex. RNPs consist of a copy of the viral RNA polymerase, a double-helical coil of nucleoprotein, and one of the eight segments of the IAV RNA genome. The RNA segments and their transcripts are partially structured to coordinate the packaging of the viral genome and modulate viral mRNA translation. In addition, RNA structures can affect the efficiency of viral RNA synthesis and the activation of host innate immune response. Here, we investigated if RNA structures that modulate IAV replication processivity, so-called template loops (t-loops), vary during the adaptation of pandemic and emerging IAV to humans. Using cell culture-based replication assays and in silico sequence analyses, we find that the sensitivity of the IAV H3N2 RNA polymerase to t-loops increased between isolates from 1968 and 2017, whereas the total free energy of t-loops in the IAV H3N2 genome was reduced. This reduction is particularly prominent in the PB1 gene. In H1N1 IAV, we find two separate reductions in t-loop free energy, one following the 1918 pandemic and one following the 2009 pandemic. No destabilization of t-loops is observed in the influenza B virus genome, whereas analysis of SARS-CoV-2 isolates reveals destabilization of viral RNA structures. Overall, we propose that a loss of free energy in the RNA genome of emerging respiratory RNA viruses may contribute to the adaption of these viruses to the human population.
Collapse
Affiliation(s)
- Charlotte V Rigby
- Lewis Thomas Laboratory, Department of Molecular Biology, Princeton University, Washington Road, Princeton, NJ 08544, USA
- Department of Pathology, Addenbrooke’s Hospital, University of Cambridge, Hills Road, Cambridge CB2 2QQ, UK
- Addenbrooke’s Hospital, Public Health England, Hills Road, Cambridge CB2 2QQ, UK
| | - Kimberly R Sabsay
- Lewis Thomas Laboratory, Department of Molecular Biology, Princeton University, Washington Road, Princeton, NJ 08544, USA
- Carl Icahn Laboratory, Lewis-Sigler Institute, Princeton University, South Drive, Princeton, NJ 08544, USA
| | - Karishma Bisht
- Lewis Thomas Laboratory, Department of Molecular Biology, Princeton University, Washington Road, Princeton, NJ 08544, USA
| | - Dirk Eggink
- Department of Medical Microbiology, Amsterdam UMC, Meibergdreef 9, Amsterdam 1105 AZ, The Netherlands
| | - Hamid Jalal
- Addenbrooke’s Hospital, Public Health England, Hills Road, Cambridge CB2 2QQ, UK
| | - Aartjan J W te Velthuis
- Lewis Thomas Laboratory, Department of Molecular Biology, Princeton University, Washington Road, Princeton, NJ 08544, USA
- Center for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Antonie van Leeuwenhoeklaan 9, Bilthoven 3721 MA, the Netherlands
| |
Collapse
|
9
|
Rigby C, Sabsay K, Bisht K, Eggink D, Jalal H, te Velthuis AJ. Evolution of transient RNA structure-RNA polymerase interactions in respiratory RNA virus genomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.25.542331. [PMID: 37292879 PMCID: PMC10245964 DOI: 10.1101/2023.05.25.542331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
RNA viruses are important human pathogens that cause seasonal epidemics and occasional pandemics. Examples are influenza A viruses (IAV) and coronaviruses (CoV). When emerging IAV and CoV spill over to humans, they adapt to evade immune responses and optimize their replication and spread in human cells. In IAV, adaptation occurs in all viral proteins, including the viral ribonucleoprotein (RNP) complex. RNPs consists of a copy of the viral RNA polymerase, a double-helical coil of nucleoprotein, and one of the eight segments of the IAV RNA genome. The RNA segments and their transcripts are partially structured to coordinate the packaging of the viral genome and modulate viral mRNA translation. In addition, RNA structures can affect the efficiency of viral RNA synthesis and the activation of host innate immune response. Here, we investigated if RNA structures that modulate IAV replication processivity, so called template loops (t-loops), vary during the adaptation of pandemic and emerging IAV to humans. Using cell culture-based replication assays and in silico sequence analyses, we find that the sensitivity of the IAV H3N2 RNA polymerase to t-loops increased between isolates from 1968 and 2017, whereas the total free energy of t-loops in the IAV H3N2 genome was reduced. This reduction is particularly prominent in the PB1 gene. In H1N1 IAV, we find two separate reductions in t-loop free energy, one following the 1918 pandemic and one following the 2009 pandemic. No destabilization of t-loops is observed in the IBV genome, whereas analysis of SARS-CoV-2 isolates reveals destabilization of viral RNA structures. Overall, we propose that a loss of free energy in the RNA genome of emerging respiratory RNA viruses may contribute to the adaption of these viruses to the human population.
Collapse
Affiliation(s)
- Charlotte Rigby
- Lewis Thomas Laboratory, Department of Molecular Biology, Princeton University, 08544 New Jersey, United States
- University of Cambridge, Department of Pathology, Addenbrooke’s Hospital, Cambridge CB2 2QQ, United Kingdom
- Public Health England, Addenbrooke’s Hospital, Cambridge CB2 2QQ, United Kingdom
| | - Kimberly Sabsay
- Lewis Thomas Laboratory, Department of Molecular Biology, Princeton University, 08544 New Jersey, United States
- Sigler Institute, Princeton University, Princeton, NJ 08544, United States
| | - Karishma Bisht
- Lewis Thomas Laboratory, Department of Molecular Biology, Princeton University, 08544 New Jersey, United States
| | - Dirk Eggink
- Department of Medical Microbiology, Amsterdam UMC, Amsterdam, The Netherlands
- Center for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Hamid Jalal
- Public Health England, Addenbrooke’s Hospital, Cambridge CB2 2QQ, United Kingdom
| | - Aartjan J.W. te Velthuis
- Lewis Thomas Laboratory, Department of Molecular Biology, Princeton University, 08544 New Jersey, United States
| |
Collapse
|
10
|
Lee S, Kang S, Heo J, Hong Y, Vu TH, Truong AD, Lillehoj HS, Hong YH. MicroRNA expression profiling in the lungs of genetically different Ri chicken lines against the highly pathogenic avian influenza H5N1 virus. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2023; 65:838-855. [PMID: 37970505 PMCID: PMC10640957 DOI: 10.5187/jast.2022.e127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/09/2022] [Accepted: 12/23/2022] [Indexed: 11/17/2023]
Abstract
The highly pathogenic avian influenza (HPAI) virus triggers infectious diseases, resulting in pulmonary damage and high mortality in domestic poultry worldwide. This study aimed to analyze miRNA expression profiles after infection with the HPAI H5N1 virus in resistant and susceptible lines of Ri chickens.For this purpose, resistant and susceptible lines of Vietnamese Ri chicken were used based on the A/G allele of Mx and BF2 genes. These genes are responsible for innate antiviral activity and were selected to determine differentially expressed (DE) miRNAs in HPAI-infected chicken lines using small RNA sequencing. A total of 44 miRNAs were DE after 3 days of infection with the H5N1 virus. Computational program analysis indicated the candidate target genes for DE miRNAs to possess significant functions related to cytokines, chemokines, MAPK signaling pathway, ErBb signaling pathway, and Wnt signaling pathway. Several DE miRNA-mRNA matches were suggested to play crucial roles in mediating immune functions against viral evasion. These results revealed the potential regulatory roles of miRNAs in the immune response of the two Ri chicken lines against HPAI H5N1 virus infection in the lungs.
Collapse
Affiliation(s)
- Sooyeon Lee
- Department of Animal Science and
Technology, Chung-Ang University, Anseong 17546, Korea
| | - Suyeon Kang
- Department of Animal Science and
Technology, Chung-Ang University, Anseong 17546, Korea
| | - Jubi Heo
- Department of Animal Science and
Technology, Chung-Ang University, Anseong 17546, Korea
| | - Yeojin Hong
- Department of Animal Science and
Technology, Chung-Ang University, Anseong 17546, Korea
| | - Thi Hao Vu
- Department of Animal Science and
Technology, Chung-Ang University, Anseong 17546, Korea
| | - Anh Duc Truong
- Department of Biochemistry and Immunology,
National Institute of Veterinary Research, Hanoi 100000, Viet
Nam
| | - Hyun S Lillehoj
- Animal Biosciences and Biotechnology
Laboratory, Agricultural Research Services, United States Department of
Agriculture, Beltsville, MD 20705, USA
| | - Yeong Ho Hong
- Department of Animal Science and
Technology, Chung-Ang University, Anseong 17546, Korea
| |
Collapse
|
11
|
Zhang Y, Yang J, Liu P, Zhang RJ, Li JD, Bi YH, Li Y. Regulatory role of ncRNAs in pulmonary epithelial and endothelial barriers: Molecular therapy clues of influenza-induced acute lung injury. Pharmacol Res 2022; 185:106509. [DOI: 10.1016/j.phrs.2022.106509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/23/2022] [Accepted: 10/10/2022] [Indexed: 10/31/2022]
|
12
|
Abstract
RNA viruses include respiratory viruses, such as coronaviruses and influenza viruses, as well as vector-borne viruses, like dengue and West Nile virus. RNA viruses like these encounter various environments when they copy themselves and spread from cell to cell or host to host. Ex vivo differences, such as geographical location and humidity, affect their stability and transmission, while in vivo differences, such as pH and host gene expression, impact viral receptor binding, viral replication, and the host immune response against the viral infection. A critical factor affecting RNA viruses both ex vivo and in vivo, and defining the outcome of viral infections and the direction of viral evolution, is temperature. In this minireview, we discuss the impact of temperature on viral replication, stability, transmission, and adaptation, as well as the host innate immune response. Improving our understanding of how RNA viruses function, survive, and spread at different temperatures will improve our models of viral replication and transmission risk analyses.
Collapse
Affiliation(s)
- Karishma Bisht
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | | |
Collapse
|
13
|
French H, Pitré E, Oade MS, Elshina E, Bisht K, King A, Bauer DL, te Velthuis AJ. Transient RNA structures cause aberrant influenza virus replication and innate immune activation. SCIENCE ADVANCES 2022; 8:eabp8655. [PMID: 36083899 PMCID: PMC9462681 DOI: 10.1126/sciadv.abp8655] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 07/26/2022] [Indexed: 05/06/2023]
Abstract
During infection, the influenza A virus RNA polymerase produces both full-length and aberrant RNA molecules, such as defective viral genomes (DVGs) and mini viral RNAs (mvRNAs). Subsequent innate immune activation involves the binding of host pathogen receptor retinoic acid-inducible gene I (RIG-I) to viral RNAs. However, it is not clear what factors determine which influenza A virus RNAs are RIG-I agonists. Here, we provide evidence that RNA structures, called template loops (t-loops), stall the viral RNA polymerase and contribute to innate immune activation by mvRNAs during influenza A virus infection. Impairment of replication by t-loops depends on the formation of an RNA duplex near the template entry and exit channels of the RNA polymerase, and this effect is enhanced by mutation of the template exit path from the RNA polymerase active site. Overall, these findings are suggestive of a mechanism involving polymerase stalling that links aberrant viral replication to the activation of the innate immune response.
Collapse
Affiliation(s)
- Hollie French
- University of Cambridge, Department of Pathology, Addenbrooke’s Hospital, Cambridge CB2 2QQ, UK
| | - Emmanuelle Pitré
- University of Cambridge, Department of Pathology, Addenbrooke’s Hospital, Cambridge CB2 2QQ, UK
- Lewis Thomas Laboratory, Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Michael S. Oade
- University of Cambridge, Department of Pathology, Addenbrooke’s Hospital, Cambridge CB2 2QQ, UK
- Lewis Thomas Laboratory, Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Elizaveta Elshina
- University of Cambridge, Department of Pathology, Addenbrooke’s Hospital, Cambridge CB2 2QQ, UK
- Lewis Thomas Laboratory, Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Karishma Bisht
- Lewis Thomas Laboratory, Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Alannah King
- University of Cambridge, Department of Pathology, Addenbrooke’s Hospital, Cambridge CB2 2QQ, UK
| | - David L.V. Bauer
- RNA Virus Replication Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Aartjan J.W. te Velthuis
- University of Cambridge, Department of Pathology, Addenbrooke’s Hospital, Cambridge CB2 2QQ, UK
- Lewis Thomas Laboratory, Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
14
|
Hinay AA, Kakee S, Kageyama S, Tsuneki-Tokunaga A, Perdana WY, Akena Y, Nishiyama S, Kanai K. Pro-Inflammatory Cytokines and Interferon-Stimulated Gene Responses Induced by Seasonal Influenza A Virus with Varying Growth Capabilities in Human Lung Epithelial Cell Lines. Vaccines (Basel) 2022; 10:vaccines10091507. [PMID: 36146585 PMCID: PMC9503125 DOI: 10.3390/vaccines10091507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/05/2022] [Accepted: 09/05/2022] [Indexed: 11/16/2022] Open
Abstract
In a previous study, we described the diverse growth capabilities of circulating seasonal influenza A viruses (IAVs) with low to high viral copy numbers in vitro. In this study, we analyzed the cause of differences in growth capability by evaluating pro-inflammatory cytokines (TNF-α, IL-6, IFN-β) and antiviral interferon-stimulated genes (ISG-15, IFIM1, and TRIM22). A549 cells (3.0 × 105 cells) were inoculated with circulating seasonal IAV strains and incubated for 6 and 24 h. In cells inoculated for 6 h, IAV production was assessed using IAV-RNA copies in the culture supernatant and cell pellets to evaluate gene expression. At 24 h post-infection, cells were collected for IFN-β and ISG-15 protein expression. A549 cells inoculated with seasonal IAV strains with a high growth capability expressed lower levels of IFN-β and ISGs than strains with low growth capabilities. Moreover, suppression of the JAK/STAT pathway enhanced the viral copies of seasonal IAV strains with a low growth capability. Our results suggest that the expression of ISG-15, IFIM1, and TRIM22 in seasonal IAV-inoculated A549 cells could influence the regulation of viral replication, indicating the existence of strains with high and low growth capability. Our results may contribute to the development of new and effective therapeutic strategies to reduce the risk of severe influenza infections.
Collapse
|
15
|
Application of microneedle-based vaccines in biosecurity. JOURNAL OF BIOSAFETY AND BIOSECURITY 2022. [DOI: 10.1016/j.jobb.2022.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|