1
|
Lu W, Yang S. METTL3/IGF2BP1 promotes the development of triple-negative breast cancer by mediating m6A methylation modification of PRMT7. Tissue Cell 2025; 93:102690. [PMID: 39709713 DOI: 10.1016/j.tice.2024.102690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 12/12/2024] [Accepted: 12/13/2024] [Indexed: 12/24/2024]
Abstract
BACKGROUND PRMT7 is upregulated in breast cancer and promotes tumor metastasis. Here we aimed to explore the function and mechanism of PRMT7 in triple-negative breast cancer (TNBC). METHODS The expression of PRMT7, METTL3 and IGF2BP1 was detected by immunohistochemistry (IHC), qRT-PCR and western blot. Cell viability and proliferation were measured using MTT and EdU assay. Flow cytometry and TUNEL assays were used to evaluate apoptosis. Invasion and migration were assessed by transwell and wound healing assays, respectively. Glucose consumption and lactate production were measured to assess glycolysis. In addition, the interaction between METTL3 and PRMT was verified by methylated RNA immunoprecipitation. The roles of METTL3 and PRMT in vivo were investigated through a xenograft model. RESULTS PRMT7 was upregulated in TNBC tissues and cells, and the knockdown of PRMT7 inhibited cell proliferation, invasion, migration and glycolysis, but induced apoptosis in TNBC cells. METTL3/IGF2BP1 enhanced PRMT7 expression by mediating the m6A methylation modification of PRMT7. Besides, METTL3 knockdown suppressed the progression of TNBC cells and regulated the WNT/β-catenin pathway via PRMT7. Moreover, silencing METTL3 restrained TNBC tumor growth in vivo through regulating PRMT7. CONCLUSION METTL3/IGF2BP1 facilitates the progression of TNBC by mediating m6A methylation modification of PRMT7.
Collapse
Affiliation(s)
- Wanli Lu
- Department of General Surgery, Qinghai University Affiliated Hospital, Xining 810000, China
| | - Shenghu Yang
- Department of General Surgery, Qinghai University Affiliated Hospital, Xining 810000, China.
| |
Collapse
|
2
|
Yang GJ, Liu YJ, Chen RY, Shi JJ, Li CY, Wang R, Yu J, Lu JF, Zhang LL, Yu B, Chen J. PRMT7 in cancer: Structure, effects, and therapeutic potentials. Eur J Med Chem 2025; 283:117103. [PMID: 39615371 DOI: 10.1016/j.ejmech.2024.117103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/15/2024] [Accepted: 11/22/2024] [Indexed: 01/03/2025]
Abstract
Protein arginine methyltransferase 7 (PRMT7), a type III methyltransferase responsible solely for arginine mono-methylation, plays a critical role in numerous physiological and pathological processes. Recent studies have highlighted its aberrant expression or mutation in various cancers, implicating it in tumorigenesis, cancer progression, and drug resistance. Consequently, PRMT7 has emerged as a promising target for cancer diagnosis and therapeutic intervention. In this review, we present an overview of the molecular structure of PRMT7, discuss its roles and mechanisms in different cancer types, and analyze the binding modes and structure-activity relationships of reported PRMT7 inhibitors. Furthermore, we identify the challenges encountered in functional exploration and drug development targeting PRMT7, propose potential solutions to these challenges, and outline future directions for the development of PRMT7 inhibitors to inform future drug discovery efforts.
Collapse
Affiliation(s)
- Guan-Jun Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, 315211, Ningbo, Zhejiang, China.
| | - Yan-Jun Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, 315211, Ningbo, Zhejiang, China
| | - Ru-Yi Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, 315211, Ningbo, Zhejiang, China
| | - Jin-Jin Shi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, 315211, Ningbo, Zhejiang, China
| | - Chang-Yun Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, 315211, Ningbo, Zhejiang, China
| | - Ran Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, 315211, Ningbo, Zhejiang, China
| | - Jing Yu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, 315211, Ningbo, Zhejiang, China
| | - Jian-Fei Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, 315211, Ningbo, Zhejiang, China
| | - Le-Le Zhang
- School of Basic Medical Sciences, Chengdu University, 610106, Chengdu, China.
| | - Bin Yu
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, 450001, Zhengzhou, China; Tianjian Laboratory of Advanced Biomedical Sciences, Institute of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou 450000, China.
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, 315211, Ningbo, Zhejiang, China.
| |
Collapse
|
3
|
Bao Y, Ma Y, Huang W, Bai Y, Gao S, Xiu L, Xie Y, Wan X, Shan S, Chen C, Qu L. Regulation of autophagy and cellular signaling through non-histone protein methylation. Int J Biol Macromol 2025; 291:139057. [PMID: 39710032 DOI: 10.1016/j.ijbiomac.2024.139057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 12/06/2024] [Accepted: 12/19/2024] [Indexed: 12/24/2024]
Abstract
Autophagy is a highly conserved catabolic pathway that is precisely regulated and plays a significant role in maintaining cellular metabolic balance and intracellular homeostasis. Abnormal autophagy is directly linked to the development of various diseases, particularly immune disorders, neurodegenerative conditions, and tumors. The precise regulation of proteins is crucial for proper cellular function, and post-translational modifications (PTMs) are key epigenetic mechanisms in the regulation of numerous biological processes. Multiple proteins undergo PTMs that influence autophagy regulation. Methylation modifications on non-histone lysine and arginine residues have been identified as common PTMs critical to various life processes. This paper focused on the regulatory effects of non-histone methylation modifications on autophagy, summarizing related research on signaling pathways involved in autophagy-related non-histone methylation, and discussing current challenges and clinical significance. Our review concludes that non-histone methylation plays a pivotal role in the regulation of autophagy and its associated signaling pathways. Targeting non-histone methylation offers a promising strategy for therapeutic interventions in diseases related to autophagy dysfunction, such as cancer and neurodegenerative disorders. These findings provide a theoretical basis for the development of non-histone-methylation-targeted drugs for clinical use.
Collapse
Affiliation(s)
- Yongfen Bao
- Hubei Key Laboratory of Diabetes and Angiopathy, School of Pharmacy, Hubei University of Science and Technology, Xianning 437000, China; School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning 437000, China
| | - Yaoyao Ma
- Hubei Key Laboratory of Diabetes and Angiopathy, School of Pharmacy, Hubei University of Science and Technology, Xianning 437000, China; School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning 437000, China
| | - Wentao Huang
- Department of Physiology, Hunan Normal University School of Medicine, Changsha 410013, China
| | - Yujie Bai
- Department of Scientific Research and Education, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang 330000, China
| | - Siying Gao
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Luyao Xiu
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Yuyang Xie
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Xinrong Wan
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Shigang Shan
- School of Public Health and Nursing, Hubei University of Science and Technology, Hubei 437000, China
| | - Chao Chen
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Lihua Qu
- Hubei Key Laboratory of Diabetes and Angiopathy, School of Pharmacy, Hubei University of Science and Technology, Xianning 437000, China; School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning 437000, China.
| |
Collapse
|
4
|
Skórka P, Piotrowski J, Bakinowska E, Kiełbowski K, Pawlik A. The Role of Signalling Pathways in Myocardial Fibrosis in Hypertrophic Cardiomyopathy. Rev Cardiovasc Med 2025; 26:27152. [PMID: 40026508 PMCID: PMC11868901 DOI: 10.31083/rcm27152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 11/19/2024] [Accepted: 11/29/2024] [Indexed: 03/05/2025] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is the most prevalent hereditary cardiovascular disorder, characterised by left ventricular hypertrophy and cardiac fibrosis. Cardiac fibroblasts, transformed into myofibroblasts, play a crucial role in the development of fibrosis. However, interactions between fibroblasts, cardiomyocytes, and immune cells are considered major mechanisms driving fibrosis progression. While the disease has a strong genetic background, its pathogenetic mechanisms remain complex and not fully understood. Several signalling pathways are implicated in fibrosis development. Among these, transforming growth factor-beta and angiotensin II are frequently studied in the context of cardiac fibrosis. In this review, we summarise the most current evidence on the involvement of signalling pathways in the pathogenesis of HCM. Additionally, we discuss the potential role of monitoring pro-fibrotic molecules in predicting clinical outcomes in patients with HCM.
Collapse
Affiliation(s)
- Patryk Skórka
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Jakub Piotrowski
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Estera Bakinowska
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Kajetan Kiełbowski
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
| |
Collapse
|
5
|
Yu D, Zeng L, Wang Y, Cheng B, Li D. Protein arginine methyltransferase 7 modulators in disease therapy: Current progress and emerged opportunity. Bioorg Chem 2025; 154:108094. [PMID: 39733511 DOI: 10.1016/j.bioorg.2024.108094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/03/2024] [Accepted: 12/22/2024] [Indexed: 12/31/2024]
Abstract
Protein arginine methyltransferase 7 (PRMT7) is an essential epigenetic and post-translational regulator in eukaryotic organisms. Dysregulation of PRMT7 is intimately related to multiple types of human diseases, particularly cancer. In addition, PRMT7 exerts multiple effects on cellular processes such as growth, migration, invasion, apoptosis, and drug resistance in various cancers, making it as a promising target for anti-tumor therapeutics. In this review, we initially provide an overview of the structure and biological functions of PRMT7, along with its association with diseases. Subsequently, we summarized the PRMT inhibitors in clinical trials and the co-crystal structural of PRMT7 inhibitors. Moreover, we also focus on recent progress in the design and development of modulators targeting PRMT7, including isoform-selective and non-selective PRMT7 inhibitors, and the dual-target inhibitors based on PRMT7, from the perspectives of rational design, pharmacodynamics, pharmacokinetics, and the clinical status of these modulators. Finally, we also provided the challenges and prospective directions for PRMT7 targeting drug discovery in cancer therapy.
Collapse
Affiliation(s)
- Dongmin Yu
- Department of Breast Disease Comprehensive Center, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China
| | - Limei Zeng
- College of Basic Medicine, Gannan Medical University, Ganzhou 314000, China
| | - Yuqi Wang
- College of Pharmacy, Gannan Medical University, Ganzhou 314000, China
| | - Binbin Cheng
- School of Medicine, Hubei Polytechnic University, Huangshi 435003, China.
| | - Deping Li
- Department of Pharmacy, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China.
| |
Collapse
|
6
|
Vuong TA, Zhang Y, Kim J, Leem YE, Kang JS. Prmt7 is required for the osteogenic differentiation of mesenchymal stem cells via modulation of BMP signaling. BMB Rep 2024; 57:330-335. [PMID: 38627951 PMCID: PMC11289507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/13/2023] [Accepted: 01/15/2024] [Indexed: 08/03/2024] Open
Abstract
Arginine methylation, which is catalyzed by protein arginine methyltransferases (Prmts), is known to play a key role in various biological processes. However, the function of Prmts in osteogenic differentiation of mesenchymal stem cells (MSCs) has not been clearly understood. In the current study, we attempted to elucidate a positive role of Prmt7 in osteogenic differentiation. Prmt7-depleted C3H/10T1/2 cells or bone marrow mesenchymal stem cells (BMSCs) showed the attenuated expression of osteogenic specific genes and Alizarin red staining compared to the wild-type cells. Furthermore, we found that Prmt7 deficiency reduced the activation of bone morphogenetic protein (BMP) signaling cascade, which is essential for the regulation of cell fate commitment and osteogenesis. Taken together, our data indicate that Prmt7 plays important regulatory roles in osteogenic differentiation. [BMB Reports 2024; 57(7): 330-335].
Collapse
Affiliation(s)
- Tuan Anh Vuong
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon 16419, Korea
| | - Yan Zhang
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon 16419, Korea
| | - June Kim
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon 16419, Korea
| | - Young-Eun Leem
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon 16419, Korea
| | - Jong-Sun Kang
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon 16419, Korea
| |
Collapse
|
7
|
Zhang Y, Wei S, Jin EJ, Jo Y, Oh CM, Bae GU, Kang JS, Ryu D. Protein Arginine Methyltransferases: Emerging Targets in Cardiovascular and Metabolic Disease. Diabetes Metab J 2024; 48:487-502. [PMID: 39043443 PMCID: PMC11307121 DOI: 10.4093/dmj.2023.0362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 06/17/2024] [Indexed: 07/25/2024] Open
Abstract
Cardiovascular diseases (CVDs) and metabolic disorders stand as formidable challenges that significantly impact the clinical outcomes and living quality for afflicted individuals. An intricate comprehension of the underlying mechanisms is paramount for the development of efficacious therapeutic strategies. Protein arginine methyltransferases (PRMTs), a class of enzymes responsible for the precise regulation of protein methylation, have ascended to pivotal roles and emerged as crucial regulators within the intrinsic pathophysiology of these diseases. Herein, we review recent advancements in research elucidating on the multifaceted involvements of PRMTs in cardiovascular system and metabolic diseases, contributing significantly to deepen our understanding of the pathogenesis and progression of these maladies. In addition, this review provides a comprehensive analysis to unveil the distinctive roles of PRMTs across diverse cell types implicated in cardiovascular and metabolic disorders, which holds great potential to reveal novel therapeutic interventions targeting PRMTs, thus presenting promising perspectives to effectively address the substantial global burden imposed by CVDs and metabolic disorders.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Molecular Cell Biology, Single Cell Network Research Center, Sungkyunkwan University, Suwon, Korea
| | - Shibo Wei
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Eun-Ju Jin
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Yunju Jo
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Chang-Myung Oh
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Gyu-Un Bae
- Muscle Physiome Institute, College of Pharmacy, Sookmyung Women’s University, Seoul, Korea
- Research Institute of Aging-Related Diseases, AniMusCure Inc., Suwon, Korea
| | - Jong-Sun Kang
- Department of Molecular Cell Biology, Single Cell Network Research Center, Sungkyunkwan University, Suwon, Korea
- Research Institute of Aging-Related Diseases, AniMusCure Inc., Suwon, Korea
| | - Dongryeol Ryu
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Korea
| |
Collapse
|
8
|
Yang S, Wang Z, Liu Y, Zhang X, Zhang H, Wang Z, Zhou Z, Abliz Z. Dual mass spectrometry imaging and spatial metabolomics to investigate the metabolism and nephrotoxicity of nitidine chloride. J Pharm Anal 2024; 14:100944. [PMID: 39131801 PMCID: PMC11314895 DOI: 10.1016/j.jpha.2024.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/04/2024] [Accepted: 01/31/2024] [Indexed: 08/13/2024] Open
Abstract
Evaluating toxicity and decoding the underlying mechanisms of active compounds are crucial for drug development. In this study, we present an innovative, integrated approach that combines air flow-assisted desorption electrospray ionization mass spectrometry imaging (AFADESI-MSI), time-of-flight secondary ion mass spectrometry (ToF-SIMS), and spatial metabolomics to comprehensively investigate the nephrotoxicity and underlying mechanisms of nitidine chloride (NC), a promising anti-tumor drug candidate. Our quantitive AFADESI-MSI analysis unveiled the region specific of accumulation of NC in the kidney, particularly within the inner cortex (IC) region, following single and repeated dose of NC. High spatial resolution ToF-SIMS analysis further allowed us to precisely map the localization of NC within the renal tubule. Employing spatial metabolomics based on AFADESI-MSI, we identified over 70 discriminating endogenous metabolites associated with chronic NC exposure. These findings suggest the renal tubule as the primary target of NC toxicity and implicate renal transporters (organic cation transporters, multidrug and toxin extrusion, and organic cation transporter 2 (OCT2)), metabolic enzymes (protein arginine N-methyltransferase (PRMT) and nitric oxide synthase), mitochondria, oxidative stress, and inflammation in NC-induced nephrotoxicity. This study offers novel insights into NC-induced renal damage, representing a crucial step towards devising strategies to mitigate renal damage caused by this compound.
Collapse
Affiliation(s)
- Shu Yang
- School of Pharmacy, Minzu University of China, Beijing, 100081, China
| | - Zhonghua Wang
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, China
- Center for Imaging and Systems Biology, College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
- Key Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Minzu University of China, Beijing, 100081, China
| | - Yanhua Liu
- Center for Imaging and Systems Biology, College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Xin Zhang
- Center for Imaging and Systems Biology, College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Hang Zhang
- School of Pharmacy, Minzu University of China, Beijing, 100081, China
| | - Zhaoying Wang
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, China
- Center for Imaging and Systems Biology, College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Zhi Zhou
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, China
- Center for Imaging and Systems Biology, College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Zeper Abliz
- School of Pharmacy, Minzu University of China, Beijing, 100081, China
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, China
- Center for Imaging and Systems Biology, College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
- Key Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Minzu University of China, Beijing, 100081, China
| |
Collapse
|
9
|
Chen M, Huang S, Weng S, Weng J, Guo R, Shi B, Liu D. Songorine ameliorates LPS-induced sepsis cardiomyopathy by Wnt/β-catenin signaling pathway-mediated mitochondrial biosynthesis. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:4713-4725. [PMID: 38133657 DOI: 10.1007/s00210-023-02897-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023]
Abstract
Septic cardiomyopathy (SCM) is manifested by impairment of cardiac contractile function with myocardial mitochondrial dysregulation. Natural product, songorine (SGR), a diterpenoid alkaloid derived from the lateral root of Aconitum carmichaeli, has been reported for the treatment of heart failure. Here, the protective role of SGR in heart injury of SCM was investigated and its underlying action of mechanism was explored. Firstly, the mouse and cardiomyocytes (H9C2 cell) SCM model induced by LPS were established to evaluate the therapeutic effect of SGR. The in vivo results exhibited that SGR rescued the survival rate of SCM mice, restored the loss of ejection fraction (EF) and fractional shortening (FS), and reduced left ventricular systolic diameter and left ventricular diastole diameter (LVIDs, LVIDd) by echocardiography. SGR improved the mitochondrial biosynthesis and myocardial fiber structure and arranged them neatly by transmission electron microscope (TEM). Further, SGR inhibited inflammatory targets myeloperoxidase (MPO) and tumor necrosis factor (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6), and plasminogen activator inhibitor-1 (PAI-1). And SGR activated the mitochondrial biosynthesis-related peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α), β-catenin, and matrix metallopeptidase 2 (MMP2) proteins. Meanwhile, the in vitro results showed that SGR promoted the increased the myocardial H9C2 cell viability, and mitochondrial biosynthesis and structure. SGR also blocked the inflammatory factors and reversed PGC-1α, β-catenin, and MMP2 in vitro, while SGR alleviated the myocardial cell apoptosis via flow cytometry. The findings indicate that SGR mitigates sepsis-caused myocardial damage by Wnt/β-catenin signaling pathway-mediated mitochondrial biosynthesis. SGR may be a promising candidate for treatment of SCM.
Collapse
Affiliation(s)
- Min Chen
- Department of Critical Care Medicine, the Affiliated Hospital of Putian University, No. 999 Dongzhen East Road, Licheng District, Putian, 351100, Fujian, China
| | - Shanjiao Huang
- Department of Critical Care Medicine, the Affiliated Hospital of Putian University, No. 999 Dongzhen East Road, Licheng District, Putian, 351100, Fujian, China
| | - Shuoyun Weng
- School of Ophthalmology&Optometry, Wenzhou Medical University, Wenzhou, 325000, China
| | - Junting Weng
- Department of Critical Care Medicine, the Affiliated Hospital of Putian University, No. 999 Dongzhen East Road, Licheng District, Putian, 351100, Fujian, China
| | - Rongjie Guo
- Department of Critical Care Medicine, the Affiliated Hospital of Putian University, No. 999 Dongzhen East Road, Licheng District, Putian, 351100, Fujian, China
| | - Bingbing Shi
- Department of Critical Care Medicine, the Affiliated Hospital of Putian University, No. 999 Dongzhen East Road, Licheng District, Putian, 351100, Fujian, China
| | - Danjuan Liu
- Department of Critical Care Medicine, the Affiliated Hospital of Putian University, No. 999 Dongzhen East Road, Licheng District, Putian, 351100, Fujian, China.
| |
Collapse
|
10
|
Su M, Chen F, Han D, Song M, Wang Y. PRMT7-Dependent Transcriptional Activation of Hmgb2 Aggravates Severe Acute Pancreatitis by Promoting Acsl1-Induced Ferroptosis. J Proteome Res 2024; 23:1075-1087. [PMID: 38376246 DOI: 10.1021/acs.jproteome.3c00830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Severe acute pancreatitis (SAP) is a highly fatal abdominal emergency, and its association with protein arginine methyltransferase 7 (PRMT7), the sole known type III enzyme responsible for the monomethylation of arginine residue, remains unexplored. In this study, we observe an increase in the PRMT7 levels in the pancreas of SAP mice and Cerulein-LPS-stimulated AR42J cells. Overexpression of Prmt7 exacerbated pancreatic damage in SAP, while the inhibition of PRMT7 improved SAP-induced pancreatic damage. Furthermore, PRMT7 overexpression promoted inflammation, oxidative stress, and ferroptosis during SAP. Mechanically, PRMT7 catalyzed monomethylation at histone H4 arginine 3 (H4R3me1) at the promoter region of high mobility group proteins 2 (HMGB2), thereby enhancing its transcriptional activity. Subsequently, HMGB2 facilitated Acyl CoA synthase long-chain family member 1 (ACSL1) transcription by binding to its promoter region, resulting in the activation of ferroptosis. Inhibition of PRMT7 effectively alleviated ferroptosis in Cerulein-LPS-induced AR42J cells by suppressing the HMGB2-ACSL1 pathway. Overall, our study reveals that PRMT7 plays a crucial role in promoting SAP through its regulation of the HMGB2-ACSL1 pathway to accelerate ferroptosis.
Collapse
Affiliation(s)
- Minghua Su
- Department of Emergency Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, Sichuan, China
| | - Feng Chen
- Department of Emergency Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, Sichuan, China
| | - Dong Han
- Department of Emergency Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, Sichuan, China
| | - Menglong Song
- Emergency Intensive Care Unit, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, Sichuan, China
| | - Yifan Wang
- Department of Emergency Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, Sichuan, China
| |
Collapse
|
11
|
Ahn BY, Zhang Y, Wei S, Jeong Y, Park DH, Lee SJ, Leem YE, Kang JS. Prmt7 regulates the JAK/STAT/Socs3 signaling pathway in postmenopausal cardiomyopathy. Exp Mol Med 2024; 56:711-720. [PMID: 38486105 PMCID: PMC10985114 DOI: 10.1038/s12276-024-01193-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 12/07/2023] [Accepted: 01/02/2024] [Indexed: 04/04/2024] Open
Abstract
Protein arginine methyltransferases (PRMTs) modulate diverse cellular processes, including stress responses. The present study explored the role of Prmt7 in protecting against menopause-associated cardiomyopathy. Mice with cardiac-specific Prmt7 ablation (cKO) exhibited sex-specific cardiomyopathy. Male cKO mice exhibited impaired cardiac function, myocardial hypertrophy, and interstitial fibrosis associated with increased oxidative stress. Interestingly, female cKO mice predominantly exhibited comparable phenotypes only after menopause or ovariectomy (OVX). Prmt7 inhibition in cardiomyocytes exacerbated doxorubicin (DOX)-induced oxidative stress and DNA double-strand breaks, along with apoptosis-related protein expression. Treatment with 17β-estradiol (E2) attenuated the DOX-induced decrease in Prmt7 expression in cardiomyocytes, and Prmt7 depletion abrogated the protective effect of E2 against DOX-induced cardiotoxicity. Transcriptome analysis of ovariectomized wild-type (WT) or cKO hearts and mechanical analysis of Prmt7-deficient cardiomyocytes demonstrated that Prmt7 is required for the control of the JAK/STAT signaling pathway by regulating the expression of suppressor of cytokine signaling 3 (Socs3), which is a negative feedback inhibitor of the JAK/STAT signaling pathway. These data indicate that Prmt7 has a sex-specific cardioprotective effect by regulating the JAK/STAT signaling pathway and, ultimately, may be a potential therapeutic tool for heart failure treatment depending on sex.
Collapse
Affiliation(s)
- Byeong-Yun Ahn
- Department of Molecular Cell Biology, Sungkyunkwan University, School of Medicine, Suwon, Republic of Korea
| | - Yan Zhang
- Department of Molecular Cell Biology, Sungkyunkwan University, School of Medicine, Suwon, Republic of Korea
| | - Shibo Wei
- Department of Molecular Cell Biology, Sungkyunkwan University, School of Medicine, Suwon, Republic of Korea
| | - Yideul Jeong
- Research Institute of Aging-Related Diseases, AniMusCure, Inc, Suwon, Republic of Korea
| | - Dong-Hyun Park
- Department of Molecular Cell Biology, Sungkyunkwan University, School of Medicine, Suwon, Republic of Korea
| | - Sang-Jin Lee
- Research Institute of Aging-Related Diseases, AniMusCure, Inc, Suwon, Republic of Korea
| | - Young-Eun Leem
- Department of Molecular Cell Biology, Sungkyunkwan University, School of Medicine, Suwon, Republic of Korea.
| | - Jong-Sun Kang
- Department of Molecular Cell Biology, Sungkyunkwan University, School of Medicine, Suwon, Republic of Korea.
| |
Collapse
|
12
|
Bin S, Xinyi F, Huan P, Xiaoqin Z, Jiming W, Yi H, Ziyue L, Xiaochun Z, Zhouqi L, Bangwei Z, Jing J, Shihui L, Jinlai G. SOX4 as a potential therapeutic target for pathological cardiac hypertrophy. Eur J Pharmacol 2023; 958:176071. [PMID: 37741429 DOI: 10.1016/j.ejphar.2023.176071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 09/20/2023] [Accepted: 09/20/2023] [Indexed: 09/25/2023]
Abstract
Pathological cardiac hypertrophy can lead to heart failure, making its prevention crucial. SOX4, a SOX transcription factor, regulates tissue growth and development, although its role in pathological cardiac hypertrophy is unclear. We found that the SOX4 expression was elevated in hypertrophic hearts and angiotensin II (Ang II)-treated neonatal rat cardiomyocytes (NRCMs), and knocking down the SOX4 expression in NRCMs and mouse hearts significantly reduced the hypertrophic response. Mechanistically, SOX4 can bind to the SIRT3 promoter, inhibit SIRT3 transcription and expression, and thus affect downstream MnSOD acetylation levels, leading to abnormal increases in ROS and oxidative stress levels and promoting the occurrence of cardiac hypertrophy. In conclusion, this study identified a new role for SOX4 in regulating cardiac hypertrophy, and decreasing SOX4 expression may be a potential treatment for pathological cardiac hypertrophy.
Collapse
Affiliation(s)
- Shen Bin
- Department of Pharmacology, College of Medical, Jiaxing University, Jiaxing, 314000, China
| | - Feng Xinyi
- Department of Pharmacology, College of Medical, Jiaxing University, Jiaxing, 314000, China
| | - Pan Huan
- Department of Central Laboratory, The Affiliated Hospital of Jiaxing University, Jiaxing, 314000, China
| | - Zhang Xiaoqin
- Department of Pharmacology, College of Medical, Jiaxing University, Jiaxing, 314000, China
| | - Wu Jiming
- Department of Pharmacology, College of Medical, Jiaxing University, Jiaxing, 314000, China
| | - He Yi
- Department of Central Laboratory, The Affiliated Hospital of Jiaxing University, Jiaxing, 314000, China; Department of Urology, The Affiliated Hospital of Jiaxing University, Jiaxing, 314000, China
| | - Li Ziyue
- Department of Pharmacology, College of Medical, Jiaxing University, Jiaxing, 314000, China
| | - Zou Xiaochun
- Department of Pharmacology, College of Medical, Jiaxing University, Jiaxing, 314000, China
| | - Lu Zhouqi
- Department of Pharmacology, College of Medical, Jiaxing University, Jiaxing, 314000, China
| | - Zhou Bangwei
- Department of Pharmacology, College of Medical, Jiaxing University, Jiaxing, 314000, China
| | - Jin Jing
- Department of Urology, The Affiliated Hospital of Jiaxing University, Jiaxing, 314000, China.
| | - Liu Shihui
- Department of Pharmacology, College of Medical, Jiaxing University, Jiaxing, 314000, China.
| | - Gao Jinlai
- Department of Pharmacology, College of Medical, Jiaxing University, Jiaxing, 314000, China.
| |
Collapse
|
13
|
Ling ZN, Jiang YF, Ru JN, Lu JH, Ding B, Wu J. Amino acid metabolism in health and disease. Signal Transduct Target Ther 2023; 8:345. [PMID: 37699892 PMCID: PMC10497558 DOI: 10.1038/s41392-023-01569-3] [Citation(s) in RCA: 152] [Impact Index Per Article: 76.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 06/12/2023] [Accepted: 07/13/2023] [Indexed: 09/14/2023] Open
Abstract
Amino acids are the building blocks of protein synthesis. They are structural elements and energy sources of cells necessary for normal cell growth, differentiation and function. Amino acid metabolism disorders have been linked with a number of pathological conditions, including metabolic diseases, cardiovascular diseases, immune diseases, and cancer. In the case of tumors, alterations in amino acid metabolism can be used not only as clinical indicators of cancer progression but also as therapeutic strategies. Since the growth and development of tumors depend on the intake of foreign amino acids, more and more studies have targeted the metabolism of tumor-related amino acids to selectively kill tumor cells. Furthermore, immune-related studies have confirmed that amino acid metabolism regulates the function of effector T cells and regulatory T cells, affecting the function of immune cells. Therefore, studying amino acid metabolism associated with disease and identifying targets in amino acid metabolic pathways may be helpful for disease treatment. This article mainly focuses on the research of amino acid metabolism in tumor-oriented diseases, and reviews the research and clinical research progress of metabolic diseases, cardiovascular diseases and immune-related diseases related to amino acid metabolism, in order to provide theoretical basis for targeted therapy of amino acid metabolism.
Collapse
Affiliation(s)
- Zhe-Nan Ling
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, Zhejiang Province, 310003, P.R. China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, Zhejiang Province, P.R. China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, Zhejiang Province, P.R. China
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, Zhejiang Province, P.R. China
| | - Yi-Fan Jiang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, Zhejiang Province, 310003, P.R. China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, Zhejiang Province, P.R. China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, Zhejiang Province, P.R. China
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, Zhejiang Province, P.R. China
| | - Jun-Nan Ru
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, Zhejiang Province, 310003, P.R. China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, Zhejiang Province, P.R. China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, Zhejiang Province, P.R. China
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, Zhejiang Province, P.R. China
| | - Jia-Hua Lu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, Zhejiang Province, 310003, P.R. China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, Zhejiang Province, P.R. China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, Zhejiang Province, P.R. China
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, Zhejiang Province, P.R. China
| | - Bo Ding
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, Zhejiang Province, 310003, P.R. China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, Zhejiang Province, P.R. China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, Zhejiang Province, P.R. China
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, Zhejiang Province, P.R. China
| | - Jian Wu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, Zhejiang Province, 310003, P.R. China.
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, Zhejiang Province, P.R. China.
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, Zhejiang Province, P.R. China.
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, Zhejiang Province, P.R. China.
| |
Collapse
|
14
|
Acosta CH, Clemons GA, Citadin CT, Carr WC, Udo MSB, Tesic V, Sanicola HW, Freelin AH, Toms JB, Jordan JD, Guthikonda B, Rodgers KM, Wu CYC, Lee RHC, Lin HW. PRMT7 can prevent neurovascular uncoupling, blood-brain barrier permeability, and mitochondrial dysfunction in repetitive and mild traumatic brain injury. Exp Neurol 2023; 366:114445. [PMID: 37196697 PMCID: PMC10960645 DOI: 10.1016/j.expneurol.2023.114445] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/03/2023] [Accepted: 05/12/2023] [Indexed: 05/19/2023]
Abstract
Mild traumatic brain injury (TBI) comprises the largest percentage of TBI-related injuries, with pathophysiological and functional deficits that persist in a subset of TBI patients. In our three-hit paradigm of repetitive and mild traumatic brain injury (rmTBI), we observed neurovascular uncoupling via decreased red blood cell velocity, microvessel diameter, and leukocyte rolling velocity 3 days post-rmTBI via intra-vital two-photon laser scanning microscopy. Furthermore, our data suggest increased blood-brain barrier (BBB) permeability (leakage), with corresponding decrease in junctional protein expression post-rmTBI. Mitochondrial oxygen consumption rates (measured via Seahorse XFe24) were also altered 3 days post-rmTBI, along with disrupted mitochondrial dynamics of fission and fusion. Overall, these pathophysiological findings correlated with decreased protein arginine methyltransferase 7 (PRMT7) protein levels and activity post-rmTBI. Here, we increased PRMT7 levels in vivo to assess the role of the neurovasculature and mitochondria post-rmTBI. In vivo overexpression of PRMT7 using a neuronal specific AAV vector led to restoration of neurovascular coupling, prevented BBB leakage, and promoted mitochondrial respiration, altogether to suggest a protective and functional role of PRMT7 in rmTBI.
Collapse
Affiliation(s)
- Christina H Acosta
- Department of Cellular Biology & Anatomy, Louisiana State University Health Sciences Center, Shreveport, LA, United States of America
| | - Garrett A Clemons
- Department of Cellular Biology & Anatomy, Louisiana State University Health Sciences Center, Shreveport, LA, United States of America
| | - Cristiane T Citadin
- Department of Cellular Biology & Anatomy, Louisiana State University Health Sciences Center, Shreveport, LA, United States of America
| | - William C Carr
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, LA, United States of America
| | - Mariana Sayuri Berto Udo
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, LA, United States of America
| | - Vesna Tesic
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, LA, United States of America
| | - Henry W Sanicola
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, LA, United States of America; Department of Neurosurgery, Louisiana State University Health Sciences Center, Shreveport, LA, United States of America
| | - Anne H Freelin
- Department of Neurosurgery, Louisiana State University Health Sciences Center, Shreveport, LA, United States of America
| | - Jamie B Toms
- Department of Neurosurgery, Louisiana State University Health Sciences Center, Shreveport, LA, United States of America
| | - J Dedrick Jordan
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, LA, United States of America
| | - Bharat Guthikonda
- Department of Neurosurgery, Louisiana State University Health Sciences Center, Shreveport, LA, United States of America
| | - Krista M Rodgers
- Department of Cellular Biology & Anatomy, Louisiana State University Health Sciences Center, Shreveport, LA, United States of America
| | - Celeste Yin-Chieh Wu
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, LA, United States of America
| | - Reggie Hui-Chao Lee
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, LA, United States of America
| | - Hung Wen Lin
- Department of Cellular Biology & Anatomy, Louisiana State University Health Sciences Center, Shreveport, LA, United States of America; Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, LA, United States of America.
| |
Collapse
|
15
|
Ahn BY, Jeong Y, Kim S, Zhang Y, Kim SW, Leem YE, Kang JS. Cdon suppresses vascular smooth muscle calcification via repression of the Wnt/Runx2 Axis. Exp Mol Med 2023; 55:120-131. [PMID: 36609601 PMCID: PMC9898282 DOI: 10.1038/s12276-022-00909-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 10/26/2022] [Accepted: 11/08/2022] [Indexed: 01/09/2023] Open
Abstract
Osteogenic transdifferentiation of vascular smooth muscle cells (VSMCs) is a risk factor associated with vascular diseases. Wnt signaling is one of the major mechanisms implicated in the osteogenic conversion of VSMCs. Since Cdon has a negative effect on Wnt signaling in distinct cellular processes, we sought to investigate the role of Cdon in vascular calcification. The expression of Cdon was significantly downregulated in VSMCs of the aortas of patients with atherosclerosis and aortic stenosis. Consistently, calcification models, including vitamin D3 (VD3)-injected mice and VSMCs cultured with calcifying media, exhibited reduced Cdon expression. Cdon ablation mice (cKO) exhibited exacerbated aortic stiffness and calcification in response to VD3 compared to the controls. Cdon depletion induced the osteogenic conversion of VSMCs accompanied by cellular senescence. The Cdon-deficient aortas showed a significant alteration in gene expression related to cell proliferation and differentiation together with Wnt signaling regulators. Consistently, Cdon depletion or overexpression in VSMCs elevated or attenuated Wnt-reporter activities, respectively. The deletion mutant of the second immunoglobulin domain (Ig2) in the Cdon ectodomain failed to suppress Wnt signaling and osteogenic conversion of VSMCs. Furthermore, treatment with purified recombinant proteins of the entire ectodomain or Ig2 domain of Cdon displayed suppressive effects on Wnt signaling and VSMC calcification. Our results demonstrate a protective role of Cdon in VSMC calcification by suppressing Wnt signaling. The Ig2 domain of Cdon has the potential as a therapeutic tool to prevent vascular calcification.
Collapse
Affiliation(s)
- Byeong-Yun Ahn
- grid.264381.a0000 0001 2181 989XDepartment of Molecular Cell Biology, Single Cell Network Research Center, Sungkyunkwan University, School of Medicine, Suwon, South Korea
| | - Yideul Jeong
- Research Institute of Aging Related Disease, AniMusCure, Inc., Suwon, South Korea
| | - Sunghee Kim
- grid.264381.a0000 0001 2181 989XDepartment of Molecular Cell Biology, Single Cell Network Research Center, Sungkyunkwan University, School of Medicine, Suwon, South Korea
| | - Yan Zhang
- grid.264381.a0000 0001 2181 989XDepartment of Molecular Cell Biology, Single Cell Network Research Center, Sungkyunkwan University, School of Medicine, Suwon, South Korea
| | - Su Woo Kim
- grid.264381.a0000 0001 2181 989XDepartment of Molecular Cell Biology, Single Cell Network Research Center, Sungkyunkwan University, School of Medicine, Suwon, South Korea
| | - Young-Eun Leem
- Department of Molecular Cell Biology, Single Cell Network Research Center, Sungkyunkwan University, School of Medicine, Suwon, South Korea.
| | - Jong-Sun Kang
- Department of Molecular Cell Biology, Single Cell Network Research Center, Sungkyunkwan University, School of Medicine, Suwon, South Korea.
| |
Collapse
|
16
|
Jeong A, Cho Y, Cho M, Bae GU, Song DG, Kim SN, Kim YK. PRMT7 Inhibitor SGC8158 Enhances Doxorubicin-Induced DNA Damage and Its Cytotoxicity. Int J Mol Sci 2022; 23:ijms232012323. [PMID: 36293180 PMCID: PMC9604017 DOI: 10.3390/ijms232012323] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/09/2022] [Accepted: 10/13/2022] [Indexed: 11/07/2022] Open
Abstract
Protein arginine methyltransferase 7 (PRMT7) regulates various cellular responses, including gene expression, cell migration, stress responses, and stemness. In this study, we investigated the biological role of PRMT7 in cell cycle progression and DNA damage response (DDR) by inhibiting PRMT7 activity with either SGC8158 treatment or its specific siRNA transfection. Suppression of PRMT7 caused cell cycle arrest at the G1 phase, resulting from the stabilization and subsequent accumulation of p21 protein. In addition, PRMT7 activity is closely associated with DNA repair pathways, including both homologous recombination and non-homologous end-joining. Interestingly, SGC8158, in combination with doxorubicin, led to a synergistic increase in both DNA damage and cytotoxicity in MCF7 cells. Taken together, our data demonstrate that PRMT7 is a critical modulator of cell growth and DDR, indicating that it is a promising target for cancer treatment.
Collapse
Affiliation(s)
- Ahyeon Jeong
- Muscle Physiome Research Center and Drug Information Research Institute, College of Pharmacy, Sookmyung Women’s University, Seoul 04310, Korea
| | - Yena Cho
- Muscle Physiome Research Center and Drug Information Research Institute, College of Pharmacy, Sookmyung Women’s University, Seoul 04310, Korea
| | - Minkyeong Cho
- Muscle Physiome Research Center and Drug Information Research Institute, College of Pharmacy, Sookmyung Women’s University, Seoul 04310, Korea
| | - Gyu-Un Bae
- Muscle Physiome Research Center and Drug Information Research Institute, College of Pharmacy, Sookmyung Women’s University, Seoul 04310, Korea
| | - Dae-Geun Song
- Natural Products Research Institute, KIST Gangneung, Gangneung 25451, Korea
| | - Su-Nam Kim
- Natural Products Research Institute, KIST Gangneung, Gangneung 25451, Korea
- Division of Bio-Medical Science and Technology, University of Science and Technology KIST School, Seoul 02792, Korea
- Correspondence: (S.-N.K.); (Y.K.K.); Tel.: +82-33-650-3503 (S.-N.K.); +82-2-2077-7688 (Y.K.K.)
| | - Yong Kee Kim
- Muscle Physiome Research Center and Drug Information Research Institute, College of Pharmacy, Sookmyung Women’s University, Seoul 04310, Korea
- Correspondence: (S.-N.K.); (Y.K.K.); Tel.: +82-33-650-3503 (S.-N.K.); +82-2-2077-7688 (Y.K.K.)
| |
Collapse
|