1
|
Hussain S, Rajput SA, Khan KM, Naz F, Ambreen N, Choudhary MI. Benzimidazole derivatives protect pancreatic β-cells against cytokine-induced apoptosis. Bioorg Chem 2025; 160:108472. [PMID: 40252368 DOI: 10.1016/j.bioorg.2025.108472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 03/20/2025] [Accepted: 04/11/2025] [Indexed: 04/21/2025]
Abstract
This study describes the synthesis of a series of benzimidazoles 1-30 by treating 1,2-phenylenediamines with aromatic aldehydes. To further investigate the potential of benzimidazole derivatives in safeguarding the INS-1E β-cell line against apoptosis induced by cytokines, the cellular ATP levels were measured after 48 h of incubation with a cytokine cocktail of IL-1b, INF-c, and TNF-a. Eight out of thirty derivatives demonstrated protection against cytokine effects compound 7 exhibiting significant restoration of β-cell ATP levels. Structure-activity relationship (SAR) analysis revealed that hydroxyl and methoxy groups on the phenyl ring influenced activity, with a parallel arrangement of both groups showing the highest activity. Additionally, the position of these groups played a crucial role, with the ortho position being favorable. Compounds 7, 13, and 25 exhibited excellent to moderate activity, containing hydroxyl and methoxy groups in the ortho position and a fluoro group at position 6 of the fused benzimidazole moiety. Further analysis showed that compounds reducing nitrite production in the presence of cytokines also restored glucose-stimulated insulin secretion (GSIS). Compounds 7, 13, and 25 emerged as the most potent derivatives, displaying dose-dependent increases in cellular ATP levels, inhibition of caspase-3 activity, decreased nitrite production, and restored glucose-stimulated insulin secretion (GSIS). These findings suggest the potential of benzimidazoles in protecting pancreatic β-cells against cytokine-induced apoptosis, warranting further investigation into their specific mechanisms and potential use as antidiabetic agents.
Collapse
Affiliation(s)
- Shafqat Hussain
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan; Department of Chemistry, University of Baltistan, Skardu, Pakistan
| | - Sajid Ali Rajput
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan; Institute of Biotechnology and Genetic Engineering, Allama I. I. Kazi Campus, University of Sindh, Jamshoro, Pakistan
| | - Khalid Mohammed Khan
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan; Department of Clinical Pharmacy, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P. O. Box 31441, Dammam, Saudi Arabia.
| | - Fouzia Naz
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Nida Ambreen
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan; Department of Chemistry, Abdul Wali Khan University, Mardan, Khyber Pakhtunkhwa, Pakistan
| | - M Iqbal Choudhary
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan; Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan; Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.
| |
Collapse
|
2
|
Ramakrishnan K, Rajan R, Nachimuthu L, Jayaraj P, Narasimhulu CA, Deme P, Rajagopalan S, Sivaramakrishna A, Karthikeyan S, Desikan R. Development of Novel α-Amylase Inhibitors: Synthesis, Molecular Docking, and Biochemical Studies. Cell Biochem Biophys 2025:10.1007/s12013-025-01759-6. [PMID: 40299205 DOI: 10.1007/s12013-025-01759-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/08/2025] [Indexed: 04/30/2025]
Abstract
The rising prevalence of diabetes as a major non-communicable disease underscores the critical need for effective anti-diabetic agents. The new analogs designed 3a-3j were effectively synthesised and thoroughly characterised using (1H, 13C NMR, FT-IR, GCMS, and HRMS) to investigate their structural biochemical properties. The novel analogs were investigated thoroughly by in silico (molecular docking) and in vitro (anti-oxidant (DPPH, ABTS) activity, anti-inflammation (RBC), modifications of LDL and HDL, thiobarbituric substances, cholesterol efflux assay, and anti-diabetic) assays, validated for α-amylase inhibition. Enzyme inhibition results showed α-amylase IC50 values of 1.79 ± 0.12 μg for compound 3d, 1.75 ± 0.05 μg for compound 3e, and 1.53 ± 0.20 μg for the standard drug acarbose. Among the new molecules, compounds 3c and 3d exhibited the highest inhibitory activity in all performed in silico and in vitro studies. The study demonstrated that inhibitors 3a-3j bind strongly to the active site of human pancreatic α-amylase, highlighting their potential as effective inhibitors. These research findings help to improve the field of developing lead molecules for anti-diabetic agents.
Collapse
Affiliation(s)
- K Ramakrishnan
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Reshma Rajan
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Lenin Nachimuthu
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Premkumar Jayaraj
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Chandrakala A Narasimhulu
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Pragney Deme
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sanjay Rajagopalan
- Department of Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Akella Sivaramakrishna
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - S Karthikeyan
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Rajagopal Desikan
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu, India.
| |
Collapse
|
3
|
Peytam F, Hosseini FS, Fathimolladehi R, Nayeri MJD, Moghadam MS, Bayati B, Norouzbahari M, Foroumadi R, Bonyasi F, Divsalar R, Mojtabavi S, Faramarzi MA, Tehrani MB, Firoozpour L, Foroumadi A. Design, synthesis, and evaluation of novel substituted imidazo[1,2-c]quinazoline derivatives as potential α-glucosidase inhibitors with bioactivity and molecular docking insights. Sci Rep 2024; 14:27507. [PMID: 39528585 PMCID: PMC11555253 DOI: 10.1038/s41598-024-78878-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024] Open
Abstract
α-Glucosidase inhibitors are important in the treatment of type 2 diabetes by regulating blood glucose levels and reducing carbohydrate absorption. The present study focuses on identifying new inhibitors bearing imidazo[1,2-c]quinazoline backbone through multi-step synthesis. The inhibitory potencies of the novel derivatives were tested against Saccharomyces cerevisiae α-glucosidase, revealing IC50 values ranging from 50.0 ± 0.12 µM to 268.25 ± 0.09 µM. Among them, 2-(4-(((2,3-diphenylimidazo[1,2-c]quinazolin-5-yl)thio)methyl)-1H-1,2,3-triazol-1-yl)-N-(2-methoxyphenyl)acetamide (19e) and 2-(4-((benzo[4,5]imidazo[1,2-c]quinazolin-6-ylthio)methyl)-1H-1,2,3-triazol-1-yl)-N-(2-methoxyphenyl)acetamide (27e) emerged as the most potent inhibitors and were further investigated in various assessments. Finally, molecular docking studies were performed to reveal the crucial binding interactions and to confirm the results obtained from structure-activity relationship (SAR) analysis.
Collapse
Affiliation(s)
- Fariba Peytam
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Faezeh Sadat Hosseini
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Fathimolladehi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Mahdis Sadeghi Moghadam
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Bahareh Bayati
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Norouzbahari
- Faculty of Pharmacy, Final International University, Catalkoy, Kyrenia via Mersin 10 Turkey, Turkish Republic of Northern Cyprus
| | - Roham Foroumadi
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fahimeh Bonyasi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Ruzbehan Divsalar
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Somayeh Mojtabavi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ali Faramarzi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Maliheh Barazandeh Tehrani
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Loghman Firoozpour
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran.
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| | - Alireza Foroumadi
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran.
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
4
|
Punia R, Mor S, Sindhu S, Kumar D, Pradip Das P, Kumar Jindal D, Kumar A, Mohil R, Jakhar K. Design, synthesis, α-amylase and glucose diffusion inhibition, and molecular docking studies of new indenopyrazolones bearing benzothiazole derivatives. Bioorg Med Chem Lett 2024; 103:129692. [PMID: 38452826 DOI: 10.1016/j.bmcl.2024.129692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/29/2024] [Accepted: 03/04/2024] [Indexed: 03/09/2024]
Abstract
An eco-friendly facile synthesis of a series of twenty 1-(4/6-substitutedbenzo[d]thiazol-2-yl)-3-(phenyl/substitutedphenyl)indeno[1,2-c]pyrazol-4(1H)-ones 7a-t was achieved by the reaction of 2-(benzoyl/substitutedbenzoyl)-(1H)-indene-1,3(2H)-dione 3a-t and 2-hydrazinyl-4/6-substitutedbenzo[d]thiazole 6a-t in presence of freshly dried ethanol and glacial acetic acid under reflux conditions in good yields. The newly synthesized derivatives were well characterized using different physical and spectral techniques (FTIR, 1H NMR & 13C NMR, and HRMS). All the compounds were subjected to assess their in vitro α-amylase and glucose diffusion inhibitory activity. Amongst them, the compounds 7i and 7l showed better α-amylase inhibitory activity demonstrating IC50 values of 92.99±1.94 µg/mL and 95.41±3.92 µg/mL, respectively in comparison to the standard drug acarbose (IC50 value of 103.60±2.15 µg/mL). The derivatives 7d and 7k exhibited good glucose diffusion inhibition with values of 2.25±1.16 µg/mL and 2.63±1.45 µg/mL, respectively with standard reference acarbose (2.76±0.55 µg/mL). The observed α-amylase inhibitory activity findings were corroborated through molecular docking investigations, particularly for the highly active compounds 7i (binding energy -8.0 kcal/mol) and 7l (binding energy -8.2 kcal/mol) respectively, in comparison to acarbose with a value of binding energy -6.9 kcal/mol for α-amylase.
Collapse
Affiliation(s)
- Ravinder Punia
- Department of Chemistry, Guru Jambheshwar University of Science and Technology, Hisar, Haryana 125001, India
| | - Satbir Mor
- Department of Chemistry, Guru Jambheshwar University of Science and Technology, Hisar, Haryana 125001, India.
| | - Suchita Sindhu
- Department of Chemistry, Guru Jambheshwar University of Science and Technology, Hisar, Haryana 125001, India
| | - Deepak Kumar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan 173229, India
| | - Priyanku Pradip Das
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan 173229, India
| | - Deepak Kumar Jindal
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science & Technology, Hisar 125001, India
| | - Ashwani Kumar
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science & Technology, Hisar 125001, India
| | - Rajni Mohil
- Department of Chemistry, Government College, Nalwa, Hisar, Haryana 125001, India
| | - Komal Jakhar
- Department of Chemistry, Maharshi Dayanand University, Rohtak, Haryana 124001, India
| |
Collapse
|
5
|
Taj S, Ashfaq UA, Ahmad M, Noor H, Ikram A, Ahmed R, Tariq M, Masoud MS, Hasan A. The antihyperglycemic potential of pyrazolobenzothiazine 1, 1-dioxide novel derivative in mice using integrated molecular pharmacological approach. Sci Rep 2024; 14:7746. [PMID: 38565861 PMCID: PMC10987501 DOI: 10.1038/s41598-023-49932-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 12/13/2023] [Indexed: 04/04/2024] Open
Abstract
Diabetes Mellitus is a metabolic disease characterized by elevated blood sugar levels caused by inadequate insulin production, which subsequently leads to hyperglycemia. This study was aimed to investigate the antidiabetic potential of pyrazolobenzothiazine derivatives in silico, in vitro, and in vivo. Molecular docking of pyrazolobenzothiazine derivatives was performed against α-glucosidase and α-amylase and compounds were selected based on docking score, bonding interactions and low root mean square deviation (RMSD). Enzyme inhibition assay against α-glucosidase and α-amylase was performed in vitro using p-nitrophenyl-α-D-glucopyranoside (PNPG) and starch substrate. Synthetic compound pyrazolobenzothiazine (S1) exhibited minimal conformational changes during the 100 ns MD simulation run. S1 also revealed effective IC50 values for α-glucosidase (3.91 µM) and α-amylase (8.89 µM) and an enzyme kinetic study showed low ki (- 0.186 µM, - 1.267 µM) and ki' (- 0.691 µM, - 1.78 µM) values with the competitive type of inhibition for both enzymes α-glucosidase and α-amylase, respectively. Moreover, studies were conducted to check the effect of the synthetic compound in a mouse model. A low necrosis rate was observed in the liver, kidney, and pancreas through histology analysis performed on mice. Compound S1 also exhibited a good biochemical profile with lower sugar level (110-115 mg/dL), increased insulin level (25-30 μM/L), and low level of cholesterol (85 mg/dL) and creatinine (0.6 mg/dL) in blood. The treated mice group also exhibited a low % of glycated haemoglobin (3%). This study concludes that S1 is a new antidiabetic-agent that helps lower blood glucose levels and minimizes the complications associated with type-II diabetes.
Collapse
Affiliation(s)
- Saman Taj
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Usman Ali Ashfaq
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Matloob Ahmad
- Department of Chemistry, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Hasnat Noor
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Ayesha Ikram
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Rashid Ahmed
- Department of Biotechnology, Faculty of Natural and Applied Sciences, Mirpur University of Science and Technology, New Mirpur City, 10250, Pakistan
| | - Muhammad Tariq
- Department of Biotechnology, Faculty of Natural and Applied Sciences, Mirpur University of Science and Technology, New Mirpur City, 10250, Pakistan
| | - Muhammad Shareef Masoud
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, 38000, Pakistan.
| | - Anwarul Hasan
- Department of Mechanical and Industrial Engineering, Qatar University, 2713, Doha, Qatar.
- Biomedical Research Center (BRC), Qatar University, PO Box 2713, Doha, Qatar.
| |
Collapse
|
6
|
Mekala S, Sukumar G, Chawla S, Geesala R, Prashanth J, Reddy BJM, Mainkar P, Das A. Therapeutic Potential of Benzimidazoisoquinoline Derivatives in Alleviating Murine Hepatic Fibrosis. Chem Biodivers 2024; 21:e202301429. [PMID: 38221801 DOI: 10.1002/cbdv.202301429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/09/2024] [Accepted: 01/09/2024] [Indexed: 01/16/2024]
Abstract
Short Title: Benzimidazoisoquinoline derivatives as potent antifibrotics Hepatic fibrosis is a pathological condition of liver disease with an increasing number of cases worldwide. Therapeutic strategies are warranted to target the activated hepatic stellate cells (HSCs), the collagen-producing cells, an effective strategy for controlling the disease progression. Benzimidazoisoquinoline derivatives were synthesized as hybrid molecules by the combination of benzimidazoles and isoquinolines to evaluate their anti-fibrotic potential using an in-vitro and in-vivo model of hepatic fibrosis. A small library of benzimidazoisoquinoline derivatives (1-17 and 18-21) was synthesized from 2-aryl benzimidazole and acetylene functionalities through C-H and N-H activation. Compounds (10 and its recently synthesized derivatives 18-21) depicted a significant decrease in PDGF-BB and/or TGFβ-induced proliferation (1.7-1.9 -fold), migration (3.5-5.0 -fold), and fibrosis-related gene expressions in HSCs. These compounds could revert the hepatic damage caused by chronic exposure to hepatotoxicants, ethanol, and/or carbon tetrachloride as evident from the histological, biochemical, and molecular analysis. Anti-fibrotic effect of the compounds was supported by the decrease in the malondialdehyde level, collagen deposition, and gene expression levels of fibrosis-related markers such as α-SMA, COL1α1, PDGFRβ, and TGFRIIβ in the preclinical models of hepatic fibrosis. In conclusion, the synthesized benzimidazoisoquinoline derivatives (compounds 18, 19, 20, and 21) possess anti-fibrotic therapeutic potential against liver fibrosis.
Collapse
Affiliation(s)
- Sowmya Mekala
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad, TS-500 007, INDIA
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, INDIA
| | - Genji Sukumar
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad, TS-500007, INDIA
- Department of Chemistry, Adikavi Nannaya University, Rajamahendravaram, AP-533 296, INDIA
| | - Shilpa Chawla
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad, TS-500 007, INDIA
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, INDIA
| | - Ramasatyaveni Geesala
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad, TS-500 007, INDIA
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, INDIA
| | - Jupally Prashanth
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, INDIA
- Centre for X-ray Crystallography, Department of Analytical & Structural Chemistry, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad, TS-500 007, INDIA
| | - B Jagan Mohan Reddy
- Department of Chemistry, Adikavi Nannaya University, Rajamahendravaram, AP-533 296, INDIA
| | - Prathama Mainkar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, INDIA
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad, TS-500007, INDIA
| | - Amitava Das
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad, TS-500 007, INDIA
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, INDIA
| |
Collapse
|
7
|
Khan M, Ahad G, Alam A, Ullah S, Khan A, Kanwal, Salar U, Wadood A, Ajmal A, Khan KM, Perveen S, Uddin J, Al-Harrasi A. Synthesis of new bis(dimethylamino)benzophenone hydrazone for diabetic management: In-vitro and in-silico approach. Heliyon 2024; 10:e23323. [PMID: 38163112 PMCID: PMC10757017 DOI: 10.1016/j.heliyon.2023.e23323] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 11/30/2023] [Accepted: 11/30/2023] [Indexed: 01/03/2024] Open
Abstract
Inhibiting α-glucosidase is a reliable method for reducing blood sugar levels in diabetic individuals. Bis(dimethylamino)benzophenone derivatives 1-27 were synthesized from bis(dimethylamino)benzophenone via two-step reaction. Different spectroscopic techniques, including EI-MS and 1H NMR, were employed to characterize all synthetic derivatives. The elemental composition of synthetic compounds was confirmed by elemental analysis and results were found in agreement with the calculated values. The synthetic compounds 1-27 were evaluated for α-glucosidase inhibitory activity, except five compounds all derivatives showed good to moderate inhibitory potential in the range of IC50 = 0.28 ± 2.65 - 0.94 ± 2.20 μM. Among them, the most active compounds were 5, 8, 9, and 12 with IC50 values of 0.29 ± 4.63, 0.29 ± 0.93, 0.28 ± 3.65, and 0.28 ± 2.65, respectively. Furthermore, all these compounds were found to be non-toxic on human fibroblast cell lines (BJ cell lines). Kinetics study of compounds 8 and 9 revealed competitive type of inhibition with Ki values 2.79 ± 0.011 and 3.64 ± 0.012 μM, respectively. The binding interactions of synthetic compounds were also confirmed through molecular docking studies that indicated that compounds fit well in the active site of enzyme. Furthermore, a total of 30ns MD simulation was carried out for the most potent complexes of the series. The molecular dynamics study revealed that compound-8 and compound-12 were stable during the MD simulation.
Collapse
Affiliation(s)
- Momin Khan
- Department of Chemistry, Abdul Wali Khan University, Mardan, 23200, Pakistan
| | - Ghulam Ahad
- Department of Chemistry, Abdul Wali Khan University, Mardan, 23200, Pakistan
| | - Aftab Alam
- Department of Chemistry, University of Malakand, Chakdara, Lower Dir, 18800, Pakistan
| | - Saeed Ullah
- Natural & Medical Sciences Research Center, University of Nizwa, P.O Box 33, Postal Code 616, Birkat Al Mauz, Nizwa, Oman
| | - Ajmal Khan
- Natural & Medical Sciences Research Center, University of Nizwa, P.O Box 33, Postal Code 616, Birkat Al Mauz, Nizwa, Oman
| | - Kanwal
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Uzma Salar
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Abdul Wadood
- Department of Biochemistry, Abdul Wali Khan University, Mardan, 23200, Pakistan
| | - Amar Ajmal
- Department of Biochemistry, Abdul Wali Khan University, Mardan, 23200, Pakistan
| | - Khalid Mohammed Khan
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
- Department of Clinical Pharmacy, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 31441, Dammam, Saudi Arabia
| | - Shahnaz Perveen
- PCSIR Laboratories Complex, Karachi, Shahrah-e-Dr. Salimuzzaman Siddiqui, Karachi, 75280, Pakistan
| | - Jalal Uddin
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, Abha, 62529, Kingdom of Saudi Arabia
| | - Ahmed Al-Harrasi
- Natural & Medical Sciences Research Center, University of Nizwa, P.O Box 33, Postal Code 616, Birkat Al Mauz, Nizwa, Oman
| |
Collapse
|
8
|
Patel P, Shah D, Bambharoliya T, Patel V, Patel M, Patel D, Bhavsar V, Padhiyar S, Patel B, Mahavar A, Patel R, Patel A. A Review on the Development of Novel Heterocycles as α-Glucosidase Inhibitors for the Treatment of Type-2 Diabetes Mellitus. Med Chem 2024; 20:503-536. [PMID: 38275074 DOI: 10.2174/0115734064264591231031065639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/30/2023] [Accepted: 09/08/2023] [Indexed: 01/27/2024]
Abstract
One of the most effective therapeutic decencies in the treatment of Type 2 Diabetes Mellitus is the inhibition of α-glucosidase enzyme, which is present at the brush border of the intestine and plays an important role in carbohydrate digestion to form mono-, di-, and polysaccharides. Acarbose, Voglibose, Miglitol, and Erniglitate have been well-known α-glucosidase inhibitors in science since 1990. However, the long synthetic route and side effects of these inhibitors forced the researchers to move their focus to innovate simple and small heterocyclic scaffolds that work as excellent α-glucosidase inhibitors. Moreover, they are also effective against the postprandial hyperglycemic condition in Type 2 Diabetes Mellitus. In this aspect, this review summarizes recent progress in the discovery and development of heterocyclic molecules that have been appraised to show outstanding inhibition of α-glucosidase to yield positive effects against diabetes.
Collapse
Affiliation(s)
- Prexa Patel
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT Campus, Changa, Gujarat, India
| | - Drashti Shah
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT Campus, Changa, Gujarat, India
| | | | - Vidhi Patel
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT Campus, Changa, Gujarat, India
| | - Mehul Patel
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT Campus, Changa, Gujarat, India
| | - Dharti Patel
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT Campus, Changa, Gujarat, India
| | | | | | | | - Anjali Mahavar
- Chandaben Mohanbhai Patel Institute of Computer Application, Charotar University of Science and Technology, CHARUSAT-Campus, Changa, Gujarat, India
| | - Riddhisiddhi Patel
- Department of Pharmaceutical Science, Saurashtra University, Rajkot, Gujarat, India
| | - Ashish Patel
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT Campus, Changa, Gujarat, India
| |
Collapse
|
9
|
Peytam F, Hosseini FS, Hekmati M, Bayati B, Moghadam MS, Emamgholipour Z, Firoozpour L, Mojtabavi S, Faramarzi MA, Sadat-Ebrahimi SE, Tehrani MB, Foroumadi A. Imidazo[1,2-c]quinazolines as a novel and potent scaffold of α-glucosidase inhibitors: design, synthesis, biological evaluations, and in silico studies. Sci Rep 2023; 13:15672. [PMID: 37735489 PMCID: PMC10514295 DOI: 10.1038/s41598-023-42549-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 09/12/2023] [Indexed: 09/23/2023] Open
Abstract
α-Glucosidase inhibition is an approved treatment for type 2 diabetes mellitus (T2DM). In an attempt to develop novel anti-α-glucosidase agents, two series of substituted imidazo[1,2-c]quinazolines, namely 6a-c and 11a-o, were synthesized using a simple, straightforward synthetic routes. These compounds were thoroughly characterized by IR, 1H and 13C NMR spectroscopy, as well as mass spectrometry and elemental analysis. Subsequently, the inhibitory activities of these compounds were evaluated against Saccharomyces cerevisiae α-glucosidase. In present study, acarbose was utilized as a positive control. These imidazoquinazolines exhibited excellent to great inhibitory potencies with IC50 values ranging from 12.44 ± 0.38 μM to 308.33 ± 0.06 μM, which were several times more potent than standard drug with IC50 value of 750.0 ± 1.5 μM. Representatively, compound 11j showed remarkable anti-α-glucosidase potency with IC50 = 12.44 ± 0.38 μM, which was 60.3 times more potent than positive control acarbose. To explore the potential inhibition mechanism, further evaluations including kinetic analysis, circular dichroism, fluorescence spectroscopy, and thermodynamic profile were carried out for the most potent compound 11j. Moreover, molecular docking studies and in silico ADME prediction for all imidazoquinazolines 6a-c and 11a-o were performed to reveal their important binding interactions, as well as their physicochemical and drug-likeness properties, respectively.
Collapse
Affiliation(s)
- Fariba Peytam
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Faezeh Sadat Hosseini
- Department of Organic Chemistry, Faculty of Pharmaceutical Chemistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Malak Hekmati
- Department of Organic Chemistry, Faculty of Pharmaceutical Chemistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Bahareh Bayati
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdis Sadeghi Moghadam
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Emamgholipour
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Loghman Firoozpour
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Somayeh Mojtabavi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ali Faramarzi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Maliheh Barazandeh Tehrani
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Foroumadi
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran.
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
10
|
Abchir O, Yamari I, Nour H, Daoui O, Elkhattabi S, Errougui A, Chtita S. Structure‐Based Virtual Screening, ADMET analysis, and Molecular Dynamics Simulation of Moroccan Natural Compounds as Candidates α‐Amylase Inhibitors. ChemistrySelect 2023; 8. [DOI: 10.1002/slct.202301092] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 06/19/2023] [Indexed: 01/04/2025]
Abstract
AbstractCurrent treatments for diabetes mellitus are ineffective, as evidenced by the rise in diabetes cases. This has forced researchers to develop novel chemicals as drugs to block the enzyme alpha‐amylase as the severe way to treat diabetes disease. Many previous studies were done to determine the biological activity of a set of molecules isolated from medicinal plants. Morocco is renowned for the abundance of plants it has and for the traditional medical uses of these plants, which drives us to employ our cultural heritage and the variety of our nation‘s natural resources in the therapeutic area. In the current study, extensive research was conducted to compile a group of phytoconstituents derived from Moroccan plants and used in conventional Moroccan medicine to treat local illnesses. To assess the stability of the generated complexes, molecular docking of the investigated compounds was carried out in the active site of 4 distinct alpha‐amylase proteins. The remaining compounds with a high negative binding affinity were then subjected to the ADMET analysis to determine their pharmacological characteristics. The findings showed that two drugs have strong binding affinity for the target proteins and may be used orally as potential alpha‐amylase inhibitors. The results of molecular dynamics analysis and MMGBSA calculation were used to validate the optimal stability of created complexes (L97 with studied proteins 1HNY, 1OSE, 1UA7 and 1BAG).
Collapse
Affiliation(s)
- Oussama Abchir
- Laboratory of Analytical and Molecular Chemistry Faculty of Sciences Ben M'Sik Hassan II University of Casablanca P.O. Box 7955 Casablanca Morocco
| | - Imane Yamari
- Laboratory of Analytical and Molecular Chemistry Faculty of Sciences Ben M'Sik Hassan II University of Casablanca P.O. Box 7955 Casablanca Morocco
| | - Hassan Nour
- Laboratory of Analytical and Molecular Chemistry Faculty of Sciences Ben M'Sik Hassan II University of Casablanca P.O. Box 7955 Casablanca Morocco
| | - Ossama Daoui
- Laboratory of Engineering, Systems, and Applications National School of Applied Sciences Sidi Mohamed Ben Abdellah-Fez University P.O. Box 72 Fez Morocco
| | - Souad Elkhattabi
- Laboratory of Engineering, Systems, and Applications National School of Applied Sciences Sidi Mohamed Ben Abdellah-Fez University P.O. Box 72 Fez Morocco
| | - Abdelkbir Errougui
- Laboratory of Analytical and Molecular Chemistry Faculty of Sciences Ben M'Sik Hassan II University of Casablanca P.O. Box 7955 Casablanca Morocco
| | - Samir Chtita
- Laboratory of Analytical and Molecular Chemistry Faculty of Sciences Ben M'Sik Hassan II University of Casablanca P.O. Box 7955 Casablanca Morocco
| |
Collapse
|
11
|
Moghadam Farid S, Noori M, Nazari Montazer M, Khalili Ghomi M, Mollazadeh M, Dastyafteh N, Irajie C, Zomorodian K, Mirfazli SS, Mojtabavi S, Faramarzi MA, Larijani B, Iraji A, Mahdavi M. Synthesis and structure-activity relationship studies of benzimidazole-thioquinoline derivatives as α-glucosidase inhibitors. Sci Rep 2023; 13:4392. [PMID: 36928433 PMCID: PMC10020548 DOI: 10.1038/s41598-023-31080-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 03/06/2023] [Indexed: 03/18/2023] Open
Abstract
In this article, different s-substituted benzimidazole-thioquinoline derivatives were designed, synthesized, and evaluated for their possible α-glucosidase inhibitory activities. The most active compound in this series, 6j (X = 4-bromobenzyl) exhibited significant potency with an IC50 value of 28.0 ± 0.6 µM compared to acarbose as the positive control with an IC50 value of 750.0 µM. The kinetic study showed a competitive inhibition pattern against α-glucosidase for the 6j derivative. Also, the molecular dynamic simulations were performed to determine key interactions between compounds and the targeted enzyme. The in silico pharmacodynamics and ADMET properties were executed to illustrate the druggability of the novel derivatives. In general, it can be concluded that these derivatives can serve as promising leads to the design of potential α-glucosidase inhibitors.
Collapse
Affiliation(s)
- Sara Moghadam Farid
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Milad Noori
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Nazari Montazer
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Minoo Khalili Ghomi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Marjan Mollazadeh
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Navid Dastyafteh
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Cambyz Irajie
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Kamiar Zomorodian
- Department of Medical Mycology and Parasitology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyedeh Sara Mirfazli
- Department of Medicinal Chemistry, School of Pharmacy, Iran University of Medical Sciences, Tehran, Iran
| | - Somayeh Mojtabavi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ali Faramarzi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Aida Iraji
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
- Central Research Laboratory, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
12
|
Acar Çevik U, Celik I, Paşayeva L, Fatullayev H, Bostancı HE, Özkay Y, Kaplancıklı ZA. New benzimidazole-oxadiazole derivatives: Synthesis, α-glucosidase, α-amylase activity, and molecular modeling studies as potential antidiabetic agents. Arch Pharm (Weinheim) 2023; 356:e2200663. [PMID: 36760015 DOI: 10.1002/ardp.202200663] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 02/11/2023]
Abstract
Benzimidazole-1,3,4-oxadiazole derivatives (5a-z) were synthesized and characterized with different spectroscopic techniques such as 1 H NMR, 13 C NMR, and HRMS. The synthesized analogs were examined against α-glucosidase and α-amylase enzymes to determine their antidiabetic potential. Compounds 5g and 5q showed the most activity with 35.04 ± 1.28 and 47.60 ± 2.16 µg/mL when compared with the reference drug acarbose (IC50 = 54.63 ± 1.95 µg/mL). Compounds 5g, 5o, 5s, and 5x were screened against the α-amylase enzyme and were found to show excellent potential, with IC50 values ranging from 22.39 ± 1.40 to 32.07 ± 1.55 µg/mL, when compared with the standard acarbose (IC50 = 46.21 ± 1.49 µg/mL). The antioxidant activities of the effective compounds (5o, 5g, 5s, 5x, and 5q) were evaluated by TAS methods. A molecular docking research study was conducted to identify the active site and explain the functions of the active chemicals. To investigate the most likely binding mode of the substances 5g, 5o, 5q, 5s, and 5x, a molecular dynamics simulation was also carried out.
Collapse
Affiliation(s)
- Ulviye Acar Çevik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| | - Ismail Celik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey
| | - Leyla Paşayeva
- Department of Pharmacognosy, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey
| | - Hanifa Fatullayev
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey
| | - Hayrani E Bostancı
- Department of Biochemistry, Faculty of Pharmacy, Sivas Cumhuriyet University, Sivas, Turkey
| | - Yusuf Özkay
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| | - Zafer A Kaplancıklı
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| |
Collapse
|
13
|
Garg P, Rawat RS, Bhatt H, Kumar S, Reddy SR. Recent Developments in the Synthesis of N‐Heterocyclic Compounds as α‐Amylase Inhibitors via In‐Vitro and In‐Silico Analysis: Future Drugs for Treating Diabetes. ChemistrySelect 2022. [DOI: 10.1002/slct.202201706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Pooja Garg
- Department of Chemistry SAS Vellore Institute of Technology Vellore-632014 Tamil Nadu India
| | - Ravindra Singh Rawat
- Centre for Bio Separation and Technology Vellore Institute of Technology Vellore- 632014 Tamil Nadu India
| | - Harshil Bhatt
- Centre for Bio Separation and Technology Vellore Institute of Technology Vellore- 632014 Tamil Nadu India
| | - Sanjit Kumar
- Centre for Bio Separation and Technology Vellore Institute of Technology Vellore- 632014 Tamil Nadu India
| | | |
Collapse
|
14
|
Simone MI, Wood A, Campkin D, Kiefel MJ, Houston TA. Recent results from non-basic glycosidase inhibitors: How structural diversity can inform general strategies for improving inhibition potency. Eur J Med Chem 2022; 235:114282. [DOI: 10.1016/j.ejmech.2022.114282] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 03/06/2022] [Accepted: 03/09/2022] [Indexed: 01/01/2023]
|
15
|
Design of novel benzimidazole derivatives as potential α-amylase inhibitors using QSAR, pharmacokinetics, molecular docking, and molecular dynamics simulation studies. J Mol Model 2022; 28:106. [DOI: 10.1007/s00894-022-05097-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 03/15/2022] [Indexed: 02/06/2023]
|
16
|
Akande A, Salar U, Khan KM, Syed S, Aboaba SA, Chigurupati S, Wadood A, Riaz M, Taha M, Bhatia S, Kanwal, Shamim S, Perveen S. Substituted Benzimidazole Analogues as Potential α-Amylase Inhibitors and Radical Scavengers. ACS OMEGA 2021; 6:22726-22739. [PMID: 34514244 PMCID: PMC8427641 DOI: 10.1021/acsomega.1c03056] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 08/13/2021] [Indexed: 08/25/2023]
Abstract
Benzimidazole scaffolds are known to have a diverse range of biological activities and found to be antidiabetic and antioxidant. In this study, a variety of arylated benzimidazoles 1-31 were synthesized. Except for compounds 1, 6, 7, and 8, all are new derivatives. All compounds were screened for α-amylase inhibitory, 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), and 2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activities. In vitro screening results revealed that all molecules demonstrated significant α-amylase inhibition with IC50 values of 1.86 ± 0.08 to 3.16 ± 0.31 μM as compared to standard acarbose (IC50 = 1.46 ± 0.26 μM). However, compounds showed significant ABTS and DPPH radical scavenging potentials with IC50 values in the range of 1.37 ± 0.21 to 4.00 ± 0.10 μM for ABTS and 1.36 ± 0.09 to 3.60 ± 0.20 μM for DPPH radical scavenging activities when compared to ascorbic acid with IC50 values of 0.72 ± 0.21 and 0.73 ± 0.05 μM for ABTS and DPPH radical scavenging potentials, respectively. Structure-activity relationship (SAR) was established after critical analysis of varying substitution effects on α-amylase inhibitory and radical scavenging (ABTS and DPPH) potentials. However, molecular docking was also performed to figure out the active participation of different groups of synthetic molecules during binding with the active pocket of the α-amylase enzyme.
Collapse
Affiliation(s)
- Akinsola
Adegboye Akande
- H.
E. J. Research Institute of Chemistry, International Center for Chemical
and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
- Organic
Unit, Chemistry Department, University of
Ibadan, Ibadan 200132, Nigeria
| | - Uzma Salar
- Dr.
Panjwani Center for Molecular Medicine and Drug Research, International
Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Khalid Mohammed Khan
- H.
E. J. Research Institute of Chemistry, International Center for Chemical
and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
- Department
of Clinical Pharmacy, Institute for Research and Medical Consultations
(IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Shazia Syed
- H.
E. J. Research Institute of Chemistry, International Center for Chemical
and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | | | - Sridevi Chigurupati
- Department
of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraidah 52571, Saudi Arabia
| | - Abdul Wadood
- Department
of Biochemistry, Computational Medicinal Chemistry Laboratory, UCSS, Abdul Wali Khan University, Mardan 23200, Pakistan
| | - Muhammad Riaz
- Department
of Biochemistry, Computational Medicinal Chemistry Laboratory, UCSS, Abdul Wali Khan University, Mardan 23200, Pakistan
| | - Muhammad Taha
- Department
of Clinical Pharmacy, Institute for Research and Medical Consultations
(IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Saurabh Bhatia
- Natural
& Medical Sciences Research Center, University of Nizwa, P.O. Box 33, 616 Birkat Al Mauz, Nizwa, Oman
| | - Kanwal
- H.
E. J. Research Institute of Chemistry, International Center for Chemical
and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Shahbaz Shamim
- H.
E. J. Research Institute of Chemistry, International Center for Chemical
and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Shahnaz Perveen
- PCSIR
Laboratories Complex, Karachi, Shahrah-e-Dr. Salimuzzaman Siddiqui, Karachi 75280, Pakistan
| |
Collapse
|
17
|
Das S, Maity S, Ghosh P, Dutta A. The ninhydrin core as carbonyl source to access 2-(2′-hydroxyaryl)benzimidazoles exploiting the ortho selectivity of ninhydrin-phenol adducts. SYNTHETIC COMMUN 2021. [DOI: 10.1080/00397911.2021.1960379] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Suven Das
- Department of Chemistry, Rishi Bankim Chandra College for Women, Naihati, India
| | - Suvendu Maity
- Department of Chemistry, R K Mission Residential College, Narendrapur, Kolkata, India
| | - Prasanta Ghosh
- Department of Chemistry, R K Mission Residential College, Narendrapur, Kolkata, India
| | - Arpita Dutta
- Department of Chemistry, Rishi Bankim Chandra Evening College, Naihati, India
| |
Collapse
|
18
|
Tahir T, Shahzad MI, Tabassum R, Rafiq M, Ashfaq M, Hassan M, Kotwica-Mojzych K, Mojzych M. Diaryl azo derivatives as anti-diabetic and antimicrobial agents: synthesis, in vitro, kinetic and docking studies. J Enzyme Inhib Med Chem 2021; 36:1509-1520. [PMID: 34238110 PMCID: PMC8274517 DOI: 10.1080/14756366.2021.1929949] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
In the present study, a series of azo derivatives (TR-1 to TR-9) have been synthesised via the diazo-coupling approach between substituted aromatic amines with phenol or naphthol derivatives. The compounds were evaluated for their therapeutic applications against alpha-glucosidase (anti-diabetic) and pathogenic bacterial strains E. coli (gram-negative), S. aureus (gram-positive), S. aureus (gram-positive) drug-resistant strain, P. aeruginosa (gram-negative), P. aeruginosa (gram-negative) drug-resistant strain and P. vulgaris (gram-negative). The IC50 (µg/mL) of TR-1 was found to be most effective (15.70 ± 1.3 µg/mL) compared to the reference drug acarbose (21.59 ± 1.5 µg/mL), hence, it was further selected for the kinetic studies in order to illustrate the mechanism of inhibition. The enzyme inhibitory kinetics and mode of binding for the most active inhibitor (TR-1) was performed which showed that the compound is a non-competitive inhibitor and effectively inhibits the target enzyme by binding to its binuclear active site reversibly.
Collapse
Affiliation(s)
- Tehreem Tahir
- Institute of Biochemistry, Biotechnology and Bioinformatics, Faculty of Science, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Mirza Imran Shahzad
- Institute of Biochemistry, Biotechnology and Bioinformatics, Faculty of Science, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Rukhsana Tabassum
- Department of Chemistry, Faculty of Science, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Muhammad Rafiq
- Department of Physiology and Biochemistry, Faculty of Bio-Sciences, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan
| | - Muhammad Ashfaq
- Department of Chemistry, Faculty of Science, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Mubashir Hassan
- Institute of Molecular Biology & Biotechnology, The University of Lahore (Defense Road Campus), Lahore, Pakistan
| | - Katarzyna Kotwica-Mojzych
- Department of Histology, Embryology and Cytophysiology, Medical University of Lublin, Lublin, Poland
| | - Mariusz Mojzych
- Department of Chemistry, Siedlce University of Natural Sciences and Humanities, Siedlce, Poland
| |
Collapse
|
19
|
Peytam F, Takalloobanafshi G, Saadattalab T, Norouzbahari M, Emamgholipour Z, Moghimi S, Firoozpour L, Bijanzadeh HR, Faramarzi MA, Mojtabavi S, Rashidi-Ranjbar P, Karima S, Pakraad R, Foroumadi A. Design, synthesis, molecular docking, and in vitro α-glucosidase inhibitory activities of novel 3-amino-2,4-diarylbenzo[4,5]imidazo[1,2-a]pyrimidines against yeast and rat α-glucosidase. Sci Rep 2021; 11:11911. [PMID: 34099819 PMCID: PMC8184976 DOI: 10.1038/s41598-021-91473-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 05/20/2021] [Indexed: 11/23/2022] Open
Abstract
In an attempt to find novel, potent α-glucosidase inhibitors, a library of poly-substituted 3-amino-2,4-diarylbenzo[4,5]imidazo[1,2-a]pyrimidines 3a-ag have been synthesized through heating a mixture of 2-aminobenzimidazoles 1 and α-azidochalcone 2 under the mild conditions. This efficient, facile protocol has been resulted into the desirable compounds with a wide substrate scope in good to excellent yields. Afterwards, their inhibitory activities against yeast α-glucosidase enzyme were investigated. Showing IC50 values ranging from 16.4 ± 0.36 µM to 297.0 ± 1.2 µM confirmed their excellent potency to inhibit α-glucosidase which encouraged us to perform further studies on α-glucosidase enzymes obtained from rat as a mammal source. Among various synthesized 3-amino-2,4-diarylbenzo[4,5]imidazo[1,2-a]pyrimidines, compound 3k exhibited the highest potency against both Saccharomyces cerevisiae α-glucosidase (IC50 = 16.4 ± 0.36 μM) and rat small intestine α-glucosidase (IC50 = 45.0 ± 8.2 μM). Moreover, the role of amine moiety on the observed activity was studied through substituting with chlorine and hydrogen resulted into a considerable deterioration on the inhibitory activity. Kinetic study and molecular docking study have confirmed the in-vitro results.
Collapse
Affiliation(s)
- Fariba Peytam
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | | | - Toktam Saadattalab
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Norouzbahari
- Faculty of Medicine, Eastern Mediterranean University, via Mersin 10, Famagusta, Northern Cyprus, Turkey
| | - Zahra Emamgholipour
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Setareh Moghimi
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Loghman Firoozpour
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Reza Bijanzadeh
- Department of Environmental Sciences, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Ali Faramarzi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Somayeh Mojtabavi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Saeed Karima
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences (SBMU), Tehran, Iran
| | - Roya Pakraad
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences (SBMU), Tehran, Iran
| | - Alireza Foroumadi
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran.
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
20
|
Zhu Z, Liu Z, Cui J, Huang Y, Chen H, Wu Y, Huang X, Gan C. Apoptosis inducing properties of 3-biotinylate-6-benzimidazole B-nor-cholesterol analogues. Steroids 2021; 169:108822. [PMID: 33722574 DOI: 10.1016/j.steroids.2021.108822] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 03/01/2021] [Accepted: 03/04/2021] [Indexed: 01/14/2023]
Abstract
In this work, a series of Biotin-substituted B-nor-cholesteryl benzimidazole compounds were synthesized. The antiproliferativeactivities of these compounds were evaluated in vitro using a series of human cancer cell lines, including HeLa (cervical cancer), SKOV3 (ovarian cancer), T-47D (thymus gland cancer), MCF-7 (human breast cancer) and HEK293T (normal renal epithelial) cells. These compounds displayed distinct antiproliferative activities against the currently tested cancer cells. The apoptotic properties induced by compound 6d were further investigated. Our results showed that compound 6d could induce the apoptosis of SKOV3 cells, blocking the cell growth in S-phase. Western blotting analyses revealed that compound 6d can induce cell apoptosis via the mitochondria-dependent pathway.
Collapse
Affiliation(s)
- Zhiling Zhu
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Key Laboratory of Beibu Gulf Environment Change and Resources Utilization, School of Chemistry and Material, Nanning Normal University, Nanning 530001, PR China
| | - Zhiping Liu
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Key Laboratory of Beibu Gulf Environment Change and Resources Utilization, School of Chemistry and Material, Nanning Normal University, Nanning 530001, PR China
| | - Jianguo Cui
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Key Laboratory of Beibu Gulf Environment Change and Resources Utilization, School of Chemistry and Material, Nanning Normal University, Nanning 530001, PR China
| | - Yanmin Huang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Key Laboratory of Beibu Gulf Environment Change and Resources Utilization, School of Chemistry and Material, Nanning Normal University, Nanning 530001, PR China
| | - Hualong Chen
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Key Laboratory of Beibu Gulf Environment Change and Resources Utilization, School of Chemistry and Material, Nanning Normal University, Nanning 530001, PR China
| | - Yulan Wu
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Key Laboratory of Beibu Gulf Environment Change and Resources Utilization, School of Chemistry and Material, Nanning Normal University, Nanning 530001, PR China
| | - Xiaotong Huang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Key Laboratory of Beibu Gulf Environment Change and Resources Utilization, School of Chemistry and Material, Nanning Normal University, Nanning 530001, PR China
| | - Chunfang Gan
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Key Laboratory of Beibu Gulf Environment Change and Resources Utilization, School of Chemistry and Material, Nanning Normal University, Nanning 530001, PR China.
| |
Collapse
|
21
|
Hussain S, Taha M, Rahim F, Hayat S, Zaman K, Iqbal N, Selvaraj M, Sajid M, Bangesh MA, Khan F, Khan KM, Uddin N, Shah SAA, Ali M. Synthesis of benzimidazole derivatives as potent inhibitors for α-amylase and their molecular docking study in management of type-II diabetes. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
22
|
Ali I, Rafique R, Khan KM, Chigurupati S, Ji X, Wadood A, Rehman AU, Salar U, Iqbal MS, Taha M, Perveen S, Ali B. Potent α-amylase inhibitors and radical (DPPH and ABTS) scavengers based on benzofuran-2-yl(phenyl)methanone derivatives: Syntheses, in vitro, kinetics, and in silico studies. Bioorg Chem 2020; 104:104238. [PMID: 32911195 DOI: 10.1016/j.bioorg.2020.104238] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 05/03/2020] [Accepted: 08/10/2020] [Indexed: 12/19/2022]
Abstract
Thirty benzofuran-2-yl(phenyl)methanones 1-30 were synthesized and characterized their structures by spectroscopic techniques. Substituted phenacyl bromide and different derivatives of 2-hydroxy-benzaldehyde treated in the presence of anhydrous K2CO3 in acetonitrile at room temperature to afford the desired benzofurans 1-30. All compounds were screened for their in vitro α-amylase inhibitory and radical scavenging (DPPH and ABTS) activities. Results revealed that para substituted compounds were found to be more active than the others with IC50 values ranges for α-amylase inhibition (IC50 = 18.04-48.33 µM), DPPH (IC50 = 16.04-32.33 µM) and ABTS (IC50 = 16.99-33.01 µM) radical scavenging activities. Activities results were compared with the standards acarbose (IC50 = 16.08 ± 0.07 µM) for α-amylase, ascorbic acid (IC50 = 15.08 ± 0.03 and 15.09 ± 0.17 µM) for DPPH and ABTS radical scavenging activities, respectively. Kinetic studies predicted that all compounds followed non-competitive mechanism of inhibition. Molecular docking results showed good protein-ligand interactions profile against the corresponding target. To the best of our knowledge, out of thirty molecules, ten compounds 18-20, 22, and 25-30 were structurally new.
Collapse
Affiliation(s)
- Irfan Ali
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological, Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Rafaila Rafique
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological, Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Khalid Mohammed Khan
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological, Sciences, University of Karachi, Karachi 75270, Pakistan; Department of Clinical Pharmacy, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 31441, Dammam, Saudi Arabia.
| | - Sridevi Chigurupati
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraidah 52571, Saudi Arabia
| | - Xingyue Ji
- Department of Medicinal Chemistry, College of Pharmaceutical Science, Soochow University, Suzhou, China
| | - Abdul Wadood
- Department of Biochemistry, Shankar Campus, Abdul Wali Khan University, Mardan, Khyber Pukhtoonkhwa, Pakistan
| | - Ashfaq Ur Rehman
- Department of Biochemistry, Shankar Campus, Abdul Wali Khan University, Mardan, Khyber Pukhtoonkhwa, Pakistan
| | - Uzma Salar
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Muhammad Shahid Iqbal
- Department of Clinical Pharmacy, College of Pharmacy, Prince Sattam bin Abdulaziz University, Alkharj, Saudi Arabia
| | - Muhammad Taha
- Department of Clinical Pharmacy, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 31441, Dammam, Saudi Arabia
| | - Shahnaz Perveen
- PCSIR Laboratories Complex, Karachi, Shahrah-e-Dr. Salimuzzaman Siddiqui, Karachi 75280, Pakistan
| | - Basharat Ali
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological, Sciences, University of Karachi, Karachi 75270, Pakistan
| |
Collapse
|
23
|
Synthesis, molecular docking, α-glucosidase inhibition, and antioxidant activity studies of novel benzimidazole derivatives. Med Chem Res 2020. [DOI: 10.1007/s00044-020-02605-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
24
|
Rafique R, Khan KM, Arshia, Chigurupati S, Wadood A, Rehman AU, Salar U, Venugopal V, Shamim S, Taha M, Perveen S. Synthesis, in vitro α-amylase inhibitory, and radicals (DPPH & ABTS) scavenging potentials of new N-sulfonohydrazide substituted indazoles. Bioorg Chem 2020; 94:103410. [PMID: 31732193 DOI: 10.1016/j.bioorg.2019.103410] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 10/28/2019] [Accepted: 10/28/2019] [Indexed: 11/22/2022]
Abstract
Over-expression of α-amylase enzyme causes hyperglycemia which lead to many physiological complications including oxidative stress, one of the most commonly associated problem with diabetes mellitus. Marketed α-amylase inhibitors such as acarbose, voglibose, and miglitol used to treat type-II diabetes mellitus, but also linked to several harmful effects. Therefore, it is essential to explore new and nontoxic antidiabetic agents with additional antioxidant properties. In this connection, a series of new N-sulfonohydrazide substituted indazoles 1-19 were synthesized by multistep reaction scheme and assessed for in vitro α-amylase inhibitory and radical (DPPH and ABTS) scavenging properties. All compounds were fully characterized by different spectroscopic techniques including 1H, 13C NMR, EI-MS, HREI-MS, ESI-MS, and HRESI-MS. Compounds showed promising α-amylase inhibitory activities (IC50 = 1.23 ± 0.06-4.5 ± 0.03 µM) as compared to the standard acarbose (IC50 1.20 ± 0.09 µM). In addition to that all derivatives were found good to moderate scavengers of DPPH (IC50 2.01 ± 0.13-5.3 ± 0.11) and ABTS (IC50 = 2.34 ± 0.07-5.5 ± 0.07 µM) radicals, in comparison with standard ascorbic acid having scavenging activities with IC50 = 1.99 ± 0.09 µM, and IC50 2.03 ± 0.11 µM for DPPH and ABTS radicals. In silico molecular docking study was conducted to rationalize the binding interaction of α-amylase enzyme with ligands. Compounds were observed as mixed type inhibitors in enzyme kinetic characterization.
Collapse
Affiliation(s)
- Rafaila Rafique
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological, Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Khalid Mohammed Khan
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological, Sciences, University of Karachi, Karachi 75270, Pakistan; Department of Clinical Pharmacy, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 31441, Dammam, Saudi Arabia.
| | - Arshia
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological, Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Sridevi Chigurupati
- Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Qassim University, Buraidah 52571, Saudi Arabia
| | - Abdul Wadood
- Department of Biochemistry, Shankar Campus, Abdul Wali Khan University, Mardan, Khyber Pukhtoonkhwa, Pakistan
| | - Ashfaq Ur Rehman
- Department of Biochemistry, Shankar Campus, Abdul Wali Khan University, Mardan, Khyber Pukhtoonkhwa, Pakistan
| | - Uzma Salar
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | | | - Shahbaz Shamim
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological, Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Muhammad Taha
- Department of Clinical Pharmacy, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 31441, Dammam, Saudi Arabia
| | - Shahnaz Perveen
- PCSIR Laboratories Complex, Karachi, Shahrah-e-Dr. Salimuzzaman Siddiqui, Karachi 75280, Pakistan
| |
Collapse
|
25
|
Rafique R, Khan KM, Arshia, Kanwal, Chigurupati S, Wadood A, Rehman AU, Karunanidhi A, Hameed S, Taha M, Al-Rashida M. Synthesis of new indazole based dual inhibitors of α-glucosidase and α-amylase enzymes, their in vitro, in silico and kinetics studies. Bioorg Chem 2020; 94:103195. [PMID: 31451297 DOI: 10.1016/j.bioorg.2019.103195] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 07/01/2019] [Accepted: 08/11/2019] [Indexed: 12/20/2022]
Abstract
The current study describes the discovery of novel inhibitors of α-glucosidase and α-amylase enzymes. For that purpose, new hybrid analogs of N-hydrazinecarbothioamide substituted indazoles 4-18 were synthesized and fully characterized by EI-MS, FAB-MS, HRFAB-MS, 1H-, and 13C NMR spectroscopic techniques. Stereochemistry of the imine double bond was established by NOESY measurements. All derivatives 4-18 with their intermediates 1-3, were evaluated for in vitro α-glucosidase and α-amylase enzyme inhibition. It is worth mentioning that all synthetic compounds showed good inhibition potential in the range of 1.54 ± 0.02-4.89 ± 0.02 µM for α-glucosidase and for α-amylase 1.42 ± 0.04-4.5 ± 0.18 µM in comparison with the standard acarbose (IC50 value of 1.36 ± 0.01 µM). In silico studies were carried out to rationalize the mode of binding interaction of ligands with the active site of enzymes. Moreover, enzyme inhibitory kinetic characterization was also performed to understand the mechanism of enzyme inhibition.
Collapse
Affiliation(s)
- Rafaila Rafique
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Khalid Mohammed Khan
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; Department of Clinical Pharmacy, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 31441, Dammam, Saudi Arabia.
| | - Arshia
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Kanwal
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Sridevi Chigurupati
- Department of Pharmacology, Faculty of Pharmacy, Qassim University, Buraidah 52571, Saudi Arabia
| | - Abdul Wadood
- Department of Biochemistry, Shankar Campus, Abdul Wali Khan University, Mardan, Khyber Pukhtoonkhwa, Pakistan
| | - Ashfaq Ur Rehman
- Department of Biochemistry, Shankar Campus, Abdul Wali Khan University, Mardan, Khyber Pukhtoonkhwa, Pakistan
| | - Arunkumar Karunanidhi
- Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Shehryar Hameed
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Muhammad Taha
- Department of Clinical Pharmacy, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 31441, Dammam, Saudi Arabia
| | - Mariya Al-Rashida
- Department of Chemistry, Forman Christian College (A Chartered University), Lahore, Pakistan
| |
Collapse
|
26
|
Matysiak J, Skrzypek A, Karpińska M, Czarnecka K, Szymański P, Bajda M, Niewiadomy A. Biological Evaluation, Molecular Docking, and SAR Studies of Novel 2-(2,4-Dihydroxyphenyl)-1 H- Benzimidazole Analogues. Biomolecules 2019; 9:biom9120870. [PMID: 31842463 PMCID: PMC6995558 DOI: 10.3390/biom9120870] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/09/2019] [Accepted: 12/10/2019] [Indexed: 12/28/2022] Open
Abstract
In the present study, new 4-(1H-benzimidazol-2-yl)-benzene-1,3-diols, modified in both rings, have been synthesized and their efficacies as acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) inhibitors have been determined. The modified Ellman’s spectrophotometric method was applied for the biological evaluation. The compounds showed strong (IC50 80–90 nM) AChE and moderate (IC50 5–0.2 µM) BuChE inhibition in vitro. Some compounds were effective toward AChE/BuChE, exhibiting high selectivity ratios versus BuChE, while the other compounds were active against both enzymes. The structure–activity relationships were discussed. The compounds inhibited also in vitro self-induced Aβ(1–42) aggregation and exhibited antioxidant properties. The docking simulations showed that the benzimidazoles under consideration interact mainly with the catalytic site of AChE and mimic the binding mode of tacrine.
Collapse
Affiliation(s)
- Joanna Matysiak
- Department of Chemistry, University of Life Sciences in Lublin, Akademicka 15, 20-950 Lublin, Poland; (A.S.); (A.N.)
- Correspondence:
| | - Alicja Skrzypek
- Department of Chemistry, University of Life Sciences in Lublin, Akademicka 15, 20-950 Lublin, Poland; (A.S.); (A.N.)
| | - Monika Karpińska
- Łukasiewicz Research Network – Institute of Industrial Organic Chemistry, Annopol 6, 03-236 Warsaw, Poland;
| | - Kamila Czarnecka
- Department of Pharmaceutical Chemistry, Drug Analyses and Radiopharmacy, Faculty of Pharmacy, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland; (K.C.); (P.S.)
| | - Paweł Szymański
- Department of Pharmaceutical Chemistry, Drug Analyses and Radiopharmacy, Faculty of Pharmacy, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland; (K.C.); (P.S.)
| | - Marek Bajda
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Cracow, Poland;
| | - Andrzej Niewiadomy
- Department of Chemistry, University of Life Sciences in Lublin, Akademicka 15, 20-950 Lublin, Poland; (A.S.); (A.N.)
- Łukasiewicz Research Network – Institute of Industrial Organic Chemistry, Annopol 6, 03-236 Warsaw, Poland;
| |
Collapse
|
27
|
Dhameja M, Gupta P. Synthetic heterocyclic candidates as promising α-glucosidase inhibitors: An overview. Eur J Med Chem 2019; 176:343-377. [DOI: 10.1016/j.ejmech.2019.04.025] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 03/19/2019] [Accepted: 04/10/2019] [Indexed: 01/18/2023]
|
28
|
Ullah S, Mirza S, Salar U, Hussain S, Javaid K, Khan KM, Khalil R, Atia-Tul-Wahab, Ul-Haq Z, Perveen S, Choudhary MI. 2-Mercapto Benzothiazole Derivatives: As Potential Leads for the Diabetic Management. Med Chem 2019; 16:826-840. [PMID: 31195949 DOI: 10.2174/1573406415666190612153150] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 05/07/2019] [Accepted: 05/17/2019] [Indexed: 01/14/2023]
Abstract
BACKGROUND Results of our previous studies on antiglycation activity, and the noncytotoxicity of 2-mercapto benzothiazoles, encouraged us to further widen our investigation towards the identification of leads against diabetes mellitus. METHODS 33 derivatives of 2-mercapto benzothiazoles 1-33 were evaluated for in vitro α- glucosidase inhibitory activity. Mode of inhibition was deduced by kinetic studies. To predict the interactions of 2-mercapto benzothiazole derivatives 1-33 with the binding pocket of α-glucosidase enzyme, molecular docking studies were performed on the selected inhibitors. RESULTS Compounds 2-4, 6-7, 9-26, 28 and 30 showed many folds potent α-glucosidase inhibitory activity in the range of IC50 = 31.21-208.63 μM, as compared to the standard drug acarbose (IC50 = 875.75 ± 2.08 μM). It was important to note that except derivative 28, all other derivatives were also found previously to have antiglycating potential in the range of IC50 = 187.12-707.21 μM. CONCLUSION A number of compounds were identified as dual nature as antiglycating agent and α- glucosidase inhibitors. These compounds may serve as potential lead candidates for the management of diabetes mellitus.
Collapse
Affiliation(s)
- Saeed Ullah
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi-75270, Pakistan
| | - Salma Mirza
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi-75270, Pakistan
| | - Uzma Salar
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi-75270, Pakistan
| | - Shafqat Hussain
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi-75270, Pakistan
| | - Kulsoom Javaid
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi-75270, Pakistan
| | - Khalid M Khan
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi-75270, Pakistan,Department of Clinical Pharmacy, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Ruqaiya Khalil
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi-75270, Pakistan
| | - Atia-Tul-Wahab
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi-75270, Pakistan
| | - Zaheer Ul-Haq
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi-75270, Pakistan
| | - Shahnaz Perveen
- PCSIR Laboratories Complex Karachi, Shahrah-e-Dr. Salimuzzaman Siddiqui, Karachi-75280, Pakistan
| | - Muhammad I Choudhary
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi-75270, Pakistan,Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah-21412, Saudi Arabia
| |
Collapse
|
29
|
Adegboye AA, Khan KM, Salar U, Aboaba SA, Kanwal, Chigurupati S, Fatima I, Taha M, Wadood A, Mohammad JI, Khan H, Perveen S. 2-Aryl benzimidazoles: Synthesis, In vitro α-amylase inhibitory activity, and molecular docking study. Eur J Med Chem 2018; 150:248-260. [PMID: 29533872 DOI: 10.1016/j.ejmech.2018.03.011] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 02/18/2018] [Accepted: 03/02/2018] [Indexed: 01/04/2023]
Abstract
Despite of many diverse biological activities exhibited by benzimidazole scaffold, it is rarely explored for the α-amylase inhibitory activity. For that purpose, 2-aryl benzimidazole derivatives 1-45 were synthesized and screened for in vitro α-amylase inhibitory activity. Structures of all synthetic compounds were deduced by various spectroscopic techniques. All compounds revealed inhibition potential with IC50 values of 1.48 ± 0.38-2.99 ± 0.14 μM, when compared to the standard acarbose (IC50 = 1.46 ± 0.26 μM). Limited SAR suggested that the variation in the inhibitory activities of the compounds are the result of different substitutions on aryl ring. In order to rationalize the binding interactions of most active compounds with the active site of α-amylase enzyme, in silico study was conducted.
Collapse
Affiliation(s)
| | - Khalid Mohammed Khan
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan; Department of Clinical Pharmacy, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia.
| | - Uzma Salar
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | | | - Kanwal
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Sridevi Chigurupati
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, AIMST University, Semeling, 08100 Bedong, Kedah, Malaysia
| | - Itrat Fatima
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Mohammad Taha
- Department of Clinical Pharmacy, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Abdul Wadood
- Department of Biochemistry, Computational Medicinal Chemistry Laboratory, UCSS, Abdul Wali Khan University, Mardan, Pakistan
| | - Jahidul Isalm Mohammad
- Department of Pharmacology, Faculty of Medicine, Cyberjaya University College of Medical Sciences, CUCMS, Cyberjaya, 63000, Malaysia
| | - Huma Khan
- Department of Biochemistry, Computational Medicinal Chemistry Laboratory, UCSS, Abdul Wali Khan University, Mardan, Pakistan
| | - Shahnaz Perveen
- PCSIR Laboratories Complex, Karachi, Shahrah-e-Dr. SalimuzzamanSiddiqui, Karachi, 75280, Pakistan
| |
Collapse
|
30
|
A simple and efficient synthesis of benzimidazoles containing piperazine or morpholine skeleton at C-6 position as glucosidase inhibitors with antioxidant activity. Bioorg Chem 2018; 76:468-477. [DOI: 10.1016/j.bioorg.2017.12.019] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 12/15/2017] [Accepted: 12/15/2017] [Indexed: 01/10/2023]
|
31
|
Salar U, Khan KM, Chigurupati S, Taha M, Wadood A, Vijayabalan S, Ghufran M, Perveen S. New Hybrid Hydrazinyl Thiazole Substituted Chromones: As Potential α-Amylase Inhibitors and Radical (DPPH & ABTS) Scavengers. Sci Rep 2017; 7:16980. [PMID: 29209017 PMCID: PMC5717224 DOI: 10.1038/s41598-017-17261-w] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 11/16/2017] [Indexed: 12/22/2022] Open
Abstract
Current research is based on the identification of novel inhibitors of α-amylase enzyme. For that purpose, new hybrid molecules of hydrazinyl thiazole substituted chromones 5-27 were synthesized by multi-step reaction and fully characterized by various spectroscopic techniques such as EI-MS, HREI-MS, 1H-NMR and 13C-NMR. Stereochemistry of the iminic bond was confirmed by NOESY analysis of a representative molecule. All compounds 5-27 along with their intervening intermediates 1-4, were screened for in vitro α-amylase inhibitory, DPPH and ABTS radical scavenging activities. All compounds showed good inhibition potential in the range of IC50 = 2.186-3.405 µM as compared to standard acarbose having IC50 value of 1.9 ± 0.07 µM. It is worth mentioning that compounds were also demonstrated good DPPH (IC50 = 0.09-2.233 µM) and ABTS (IC50 = 0.584-3.738 µM) radical scavenging activities as compared to standard ascorbic acid having IC50 = 0.33 ± 0.18 µM for DPPH and IC50 = 0.53 ± 0.3 µM for ABTS radical scavenging activities. In addition to that cytotoxicity of the compounds were checked on NIH-3T3 mouse fibroblast cell line and found to be non-toxic. In silico studies were performed to rationalize the binding mode of compounds (ligands) with the active site of α-amylase enzyme.
Collapse
Affiliation(s)
- Uzma Salar
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Khalid Mohammed Khan
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan.
| | - Sridevi Chigurupati
- Department of Pharmaceutical chemistry, Faculty of Pharmacy, AIMST University, Semeling, 08100, Bedong, Kedah, Malaysia
| | - Muhammad Taha
- Department of Clinical Pharmacy, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, P.O. Box 31441, Saudi Arabia
| | - Abdul Wadood
- Department of Biochemistry, Computational Medicinal Chemistry Laboratory, UCSS, Abdul Wali Khan University, Mardan, Pakistan
| | - Shantini Vijayabalan
- Department of Pharmaceutical chemistry, Faculty of Pharmacy, AIMST University, Semeling, 08100, Bedong, Kedah, Malaysia
| | - Mehreen Ghufran
- Department of Biochemistry, Computational Medicinal Chemistry Laboratory, UCSS, Abdul Wali Khan University, Mardan, Pakistan
| | - Shahnaz Perveen
- PCSIR Laboratories Complex, Karachi, Shahrah-e-Dr. SalimuzzamanSiddiqui, Karachi, 75280, Pakistan
| |
Collapse
|
32
|
Luthra T, Agarwal R, Estari M, Adepally U, Sen S. A novel library of -arylketones as potential inhibitors of α-glucosidase: Their design, synthesis, in vitro and in vivo studies. Sci Rep 2017; 7:13246. [PMID: 29038580 PMCID: PMC5643545 DOI: 10.1038/s41598-017-13798-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 09/26/2017] [Indexed: 11/09/2022] Open
Abstract
α-glucosidase is an essential enzyme located at the brush border of intestines. It is an important therapeutic target for type II diabetes. Herein we have designed a library of novel α-arylketones as inhibitors of α-glucosidase (yeast origin) via scaffold hopping and bioisosteric modification of known inhibitors of α-glucosidase. The design was validated through molecular docking that revealed strong binding interactions of the newly designed compounds against α-glucosidase. A library comprising of 15 compounds was synthesized in a combinatorial fashion, where the advanced amide intermediates were accessed through “shot gun” synthesis. The final compounds were characterized by 1H, 13C-NMR and with high resolution mass spectroscopy. In vitro screening of the compounds against yeast α-glucosidase revealed substantial inhibition with IC50s in the range of 4–10 μM (the standard drug acarbose inhibits α-glucosidase with an IC50 of 9.95 μM). Reaction kinetics suggested mixed type inhibition. Finally, in vivo studies of the most active compound 3c against Streptozotocin induced male albino Wistar rats revealed that its administration in the rats for about 4 weeks lead to a highly significant (P < 0.001) decrease in the fasting blood glucose (FBG) compared to the untreated diabetic rats. Moreover, lower dose of 3c had better control over FBG in contrast to high-dose.
Collapse
Affiliation(s)
- Tania Luthra
- Department of Chemistry, School of Natural Sciences, Shiv Nadar University, Dadri, Chithera, GautamBudh Nagar, Uttar Pradesh, 201314, India
| | - Rahul Agarwal
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Dadri, Chithera, GautamBudh Nagar, Uttar Pradesh, 201314, India
| | - Mamidala Estari
- Department of Zoology, Kakatiya University, Warangal-506009, Telengana, India
| | - Uma Adepally
- Institute of Science and Technology Jawaharlal Nehru Technological University, Kukatpally, Hyderabad, Telangana, India.
| | - Subhabrata Sen
- Department of Chemistry, School of Natural Sciences, Shiv Nadar University, Dadri, Chithera, GautamBudh Nagar, Uttar Pradesh, 201314, India.
| |
Collapse
|
33
|
Hydrazinyl arylthiazole based pyridine scaffolds: Synthesis, structural characterization, in vitro α-glucosidase inhibitory activity, and in silico studies. Eur J Med Chem 2017; 138:255-272. [DOI: 10.1016/j.ejmech.2017.06.041] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 06/03/2017] [Accepted: 06/23/2017] [Indexed: 12/30/2022]
|
34
|
Arshad T, Khan KM, Rasool N, Salar U, Hussain S, Asghar H, Ashraf M, Wadood A, Riaz M, Perveen S, Taha M, Ismail NH. 5-Bromo-2-aryl benzimidazole derivatives as non-cytotoxic potential dual inhibitors of α -glucosidase and urease enzymes. Bioorg Chem 2017; 72:21-31. [DOI: 10.1016/j.bioorg.2017.03.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 02/18/2017] [Accepted: 03/17/2017] [Indexed: 12/31/2022]
|
35
|
Liu Z, Ma S. Recent Advances in Synthetic α-Glucosidase Inhibitors. ChemMedChem 2017; 12:819-829. [PMID: 28498640 DOI: 10.1002/cmdc.201700216] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 05/08/2017] [Indexed: 11/09/2022]
Affiliation(s)
- Zhiyang Liu
- Department of Medicinal Chemistry; Key Laboratory of Chemical Biology (Ministry of Education); School of Pharmaceutical Sciences; Shandong University; 44 West Culture Road Jinan 250012 P.R. China
| | - Shutao Ma
- Department of Medicinal Chemistry; Key Laboratory of Chemical Biology (Ministry of Education); School of Pharmaceutical Sciences; Shandong University; 44 West Culture Road Jinan 250012 P.R. China
| |
Collapse
|