1
|
Nam Y, Kim J, Baek J, Kim W. Improvement of Cutaneous Wound Healing via Topical Application of Heat-Killed Lactococcus chungangensis CAU 1447 on Diabetic Mice. Nutrients 2021; 13:nu13082666. [PMID: 34444827 PMCID: PMC8401197 DOI: 10.3390/nu13082666] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 12/13/2022] Open
Abstract
Cutaneous wound healing comprises a complex systemic network. Probiotics, naturally extracted substances, medicine, and chemical compounds have been used for wound healing, but the application of postbiotics as therapeutic agents has yet to be explored. Our study shows potential beneficial effects of heat-killed Lactococcus chungangensis CAU 1447 on type 1 diabetic mice. The postbiotic strain significantly decreased the skin wound size. The activity of myeloperoxidase secreted from neutrophils also decreased. The molecular mechanism of wound healing was adjusted by important mediators, growth factors, chemokines, and cytokines. These elements regulated the anti-inflammatory activity and accelerated wound healing. To determine the role of the postbiotic in wound repair, we showed a similar taxonomic pattern as compared to the diabetic mice using skin microbiome analysis. These findings demonstrated that heat-killed Lactococcus chungangensis CAU 1447 had beneficial effects on wound healing and can be utilized as postbiotic therapeutic agents.
Collapse
|
2
|
Nguyen KG, Vrabel MR, Mantooth SM, Hopkins JJ, Wagner ES, Gabaldon TA, Zaharoff DA. Localized Interleukin-12 for Cancer Immunotherapy. Front Immunol 2020; 11:575597. [PMID: 33178203 PMCID: PMC7593768 DOI: 10.3389/fimmu.2020.575597] [Citation(s) in RCA: 268] [Impact Index Per Article: 53.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 09/08/2020] [Indexed: 12/30/2022] Open
Abstract
Interleukin-12 (IL-12) is a potent, pro-inflammatory type 1 cytokine that has long been studied as a potential immunotherapy for cancer. Unfortunately, IL-12's remarkable antitumor efficacy in preclinical models has yet to be replicated in humans. Early clinical trials in the mid-1990's showed that systemic delivery of IL-12 incurred dose-limiting toxicities. Nevertheless, IL-12's pleiotropic activity, i.e., its ability to engage multiple effector mechanisms and reverse tumor-induced immunosuppression, continues to entice cancer researchers. The development of strategies which maximize IL-12 delivery to the tumor microenvironment while minimizing systemic exposure are of increasing interest. Diverse IL-12 delivery systems, from immunocytokine fusions to polymeric nanoparticles, have demonstrated robust antitumor immunity with reduced adverse events in preclinical studies. Several localized IL-12 delivery approaches have recently reached the clinical stage with several more at the precipice of translation. Taken together, localized delivery systems are supporting an IL-12 renaissance which may finally allow this potent cytokine to fulfill its considerable clinical potential. This review begins with a brief historical account of cytokine monotherapies and describes how IL-12 went from promising new cure to ostracized black sheep following multiple on-study deaths. The bulk of this comprehensive review focuses on developments in diverse localized delivery strategies for IL-12-based cancer immunotherapies. Advantages and limitations of different delivery technologies are highlighted. Finally, perspectives on how IL-12-based immunotherapies may be utilized for widespread clinical application in the very near future are offered.
Collapse
Affiliation(s)
- Khue G Nguyen
- Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill and North Carolina State University, Raleigh, NC, United States
| | - Maura R Vrabel
- Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill and North Carolina State University, Raleigh, NC, United States
| | - Siena M Mantooth
- Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill and North Carolina State University, Raleigh, NC, United States
| | - Jared J Hopkins
- Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill and North Carolina State University, Raleigh, NC, United States
| | - Ethan S Wagner
- Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill and North Carolina State University, Raleigh, NC, United States
| | - Taylor A Gabaldon
- Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill and North Carolina State University, Raleigh, NC, United States
| | - David A Zaharoff
- Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill and North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
3
|
Kim DW, Cho JY. Recent Advances in Allogeneic CAR-T Cells. Biomolecules 2020; 10:biom10020263. [PMID: 32050611 PMCID: PMC7072190 DOI: 10.3390/biom10020263] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/07/2020] [Accepted: 02/07/2020] [Indexed: 12/19/2022] Open
Abstract
In recent decades, great advances have been made in the field of tumor treatment. Especially, cell-based therapy targeting tumor associated antigen (TAA) has developed tremendously. T cells were engineered to have the ability to attack tumor cells by generating CAR constructs consisting of genes encoding scFv, a co-stimulatory domain (CD28 or TNFRSF9), and CD247 signaling domains for T cell proliferation and activation. Principally, CAR-T cells are activated by recognizing TAA by scFv on the T cell surface, and then signaling domains inside cells connected by scFv are subsequently activated to induce downstream signaling pathways involving T cell proliferation, activation, and production of cytokines. Many efforts have been made to increase the efficacy and persistence and also to decrease T cell exhaustion. Overall, allogeneic and universal CAR-T generation has attracted much attention because of their wide and prompt usage for patients. In this review, we summarized the current techniques for generation of allogeneic and universal CAR-T cells along with their disadvantages and limitations that still need to be overcome.
Collapse
|
4
|
Jablonka-Shariff A, Lu CY, Campbell K, Monk KR, Snyder-Warwick AK. Gpr126/Adgrg6 contributes to the terminal Schwann cell response at the neuromuscular junction following peripheral nerve injury. Glia 2019; 68:1182-1200. [PMID: 31873966 DOI: 10.1002/glia.23769] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 12/03/2019] [Accepted: 12/10/2019] [Indexed: 12/12/2022]
Abstract
Gpr126/Adgrg6 is an adhesion G protein-coupled receptor essential for Schwann cell (SC) myelination with important contributions to repair after nerve crush injury. Despite critical functions in myelinating SCs, the role of Gpr126 within nonmyelinating terminal Schwann cells (tSCs) at the neuromuscular junction (NMJ), is not known. tSCs have important functions in synaptic maintenance and reinnervation, and after injury tSCs extend cytoplasmic processes to guide regenerating axons to the denervated NMJ. In this study, we show that Gpr126 is expressed in tSCs, and that absence of Gpr126 in SCs (SC-specific Gpr126 knockout, cGpr126) results in a NMJ maintenance defect in the hindlimbs of aged mice, but not in young adult mice. After nerve transection and repair, cGpr126 mice display delayed NMJ reinnervation, altered tSC morphology with decreased S100β expression, and reduced tSC cytoplasmic process extensions. The immune response promoting reinnervation at the NMJ following nerve injury is also altered with decreased macrophage infiltration, Tnfα, and anomalous cytokine expression compared to NMJs of control mice. In addition, Vegfa expression is decreased in muscle, suggesting that cGpr126 non-cell autonomously modulates angiogenesis after nerve injury. In sum, cGpr126 mice demonstrated delayed NMJ reinnervation and decreased muscle mass following nerve transection and repair compared to control littermates. The integral function of Gpr126 in tSCs at the NMJ provides the framework for new therapeutic targets for neuromuscular disease.
Collapse
Affiliation(s)
- Albina Jablonka-Shariff
- Division of Plastic Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri
| | - Chuieng-Yi Lu
- Division of Plastic Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri.,Division of Reconstructive Microsurgery, Department of Plastic Surgery, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan, Taiwan
| | - Katherine Campbell
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri
| | - Kelly R Monk
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri.,Vollum Institute, Oregon Health & Science University, Portland, Oregon
| | - Alison K Snyder-Warwick
- Division of Plastic Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
5
|
Tejchman A, Lamerant-Fayel N, Jacquinet JC, Bielawska-Pohl A, Mleczko-Sanecka K, Grillon C, Chouaib S, Ugorski M, Kieda C. Tumor hypoxia modulates podoplanin/CCL21 interactions in CCR7+ NK cell recruitment and CCR7+ tumor cell mobilization. Oncotarget 2018; 8:31876-31887. [PMID: 28416768 PMCID: PMC5458255 DOI: 10.18632/oncotarget.16311] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 10/21/2016] [Indexed: 12/25/2022] Open
Abstract
Podoplanin (PDPN), an O-glycosylated, transmembrane, mucin-type glycoprotein, is expressed by cancer associated fibroblasts (CAFs). In malignant transformation, PDPN is subjected to changes and its role is yet to be established. Here we show that it is involved in modulating the activity of the CCL21/CCR7 chemokine/receptor axis in a hypoxia-dependent manner. In the present model, breast cancer MDA-MB-231 cells and NKL3 cells express the surface CCR7 receptor for CCL21 chemokine which is a potent chemoattractant able to bind to PDPN. The impact of the CCL21/CCR7 axis in the molecular mechanism of the adhesion of NKL3 cells and of MDA-MB-231 breast cancer cells was reduced in a hypoxic tumor environment. In addition to its known effect on migration, CCL21/CCR7 interaction was shown to allow NK cell adhesion to endothelial cells (ECs) and its reduction by hypoxia. A PDPN expressing model of CAFs made it possible to demonstrate the same CCL21/CCR7 axis involvement in the tumor cells to CAFs recognition mechanism through PDPN binding of CCL21. PDPN was induced by hypoxia and its overexpression undergoes a reduction of adhesion, making it an anti-adhesion molecule in the absence of CCL21, in the tumor. CCL21/CCR7 modulated NK cells/ECs and MDA-MB-231 cells/CAF PDPN-dependent interactions were further shown to be linked to hypoxia-dependent microRNAs as miRs: miR-210 and specifically miR-21, miR-29b which influence PDPN expression.
Collapse
Affiliation(s)
- Anna Tejchman
- Centre for Molecular Biophysics, UPR 4301 CNRS affiliated to Orléans University and INSERM, Orléans, France.,Laboratory of Glycobiology and Intercellular Interactions, Institute of Immunology and Experimental Therapy, PAN, Wroclaw, Poland
| | - Nathalie Lamerant-Fayel
- Centre for Molecular Biophysics, UPR 4301 CNRS affiliated to Orléans University and INSERM, Orléans, France
| | | | - Aleksandra Bielawska-Pohl
- Laboratory of Glycobiology and Intercellular Interactions, Institute of Immunology and Experimental Therapy, PAN, Wroclaw, Poland
| | - Katarzyna Mleczko-Sanecka
- Centre for Molecular Biophysics, UPR 4301 CNRS affiliated to Orléans University and INSERM, Orléans, France
| | - Catherine Grillon
- Centre for Molecular Biophysics, UPR 4301 CNRS affiliated to Orléans University and INSERM, Orléans, France
| | - Salem Chouaib
- INSERM U1186, Gustave Roussy Institute, Villejuif, France
| | - Maciej Ugorski
- Laboratory of Glycobiology and Intercellular Interactions, Institute of Immunology and Experimental Therapy, PAN, Wroclaw, Poland
| | - Claudine Kieda
- Centre for Molecular Biophysics, UPR 4301 CNRS affiliated to Orléans University and INSERM, Orléans, France.,Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
6
|
The role of hypoxia in shaping the recruitment of proangiogenic and immunosuppressive cells in the tumor microenvironment. Contemp Oncol (Pozn) 2018; 22:7-13. [PMID: 29628788 PMCID: PMC5885081 DOI: 10.5114/wo.2018.73874] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Hypoxia characterizes growing tumors and contributes significantly to their aggressiveness. Hypoxia-inducible factors (HIFs 1 and 2) are stabilized and act differentially as transcription factors on tumor growth and are responsible for important cancer hallmarks such as pathologic angiogenesis, cellular proliferation, apoptosis, differentiation and genetic instability as well as affecting tumor metabolism, tumor immune responses, invasion and metastasis. Taking into account the tumor tissue as a whole and considering the interplay of the various partners which react with hypoxia in the tumor site lead to reconsideration of the treatment strategies. Key limitations of treatment success result from the adaptation to the hypoxic milieu sustained by tumor anarchic angiogenesis. This raises immune tolerance by influencing the recruitment of immunosuppressive cells as bone marrow derived suppressor cells (MDSC) or by impairing the infiltration and killing of tumor cells by cytotoxic cells at the level of the endothelial cell wall of the hypoxic tumor vessels, as summarized in the schematic abstract.
Collapse
|
7
|
Collet G, Szade K, Nowak W, Klimkiewicz K, El Hafny-Rahbi B, Szczepanek K, Sugiyama D, Weglarczyk K, Foucault-Collet A, Guichard A, Mazan A, Nadim M, Fasani F, Lamerant-Fayel N, Grillon C, Petoud S, Beloeil JC, Jozkowicz A, Dulak J, Kieda C. Endothelial precursor cell-based therapy to target the pathologic angiogenesis and compensate tumor hypoxia. Cancer Lett 2015; 370:345-57. [PMID: 26577811 DOI: 10.1016/j.canlet.2015.11.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 11/04/2015] [Accepted: 11/04/2015] [Indexed: 01/08/2023]
Abstract
Hypoxia-inducing pathologies as cancer develop pathologic and inefficient angiogenesis which rules tumor facilitating microenvironment, a key target for therapy. As such, the putative ability of endothelial precursor cells (EPCs) to specifically home to hypoxic sites of neovascularization prompted to design optimized, site-specific, cell-mediated, drug-/gene-targeting approach. Thus, EPC lines were established from aorta-gonad-mesonephros (AGM) of murine 10.5 dpc and 11.5 dpc embryo when endothelial repertoire is completed. Lines representing early endothelial differentiation steps were selected: MAgEC10.5 and MagEC11.5. Distinct in maturation, they differently express VEGF receptors, VE-cadherin and chemokine/receptors. MAgEC11.5, more differentiated than MAgEC 10.5, displayed faster angiogenesis in vitro, different response to hypoxia and chemokines. Both MAgEC lines cooperated to tube-like formation with mature endothelial cells and invaded tumor spheroids through a vasculogenesis-like process. In vivo, both MAgEC-formed vessels established blood flow. Intravenously injected, both MAgECs invaded Matrigel(TM)-plugs and targeted tumors. Here we show that EPCs (MAgEC11.5) target tumor angiogenesis and allow local overexpression of hypoxia-driven soluble VEGF-receptor2 enabling drastic tumor growth reduction. We propose that such EPCs, able to target tumor angiogenesis, could act as therapeutic gene vehicles to inhibit tumor growth by vessel normalization resulting from tumor hypoxia alleviation.
Collapse
Affiliation(s)
- Guillaume Collet
- Centre for Molecular Biophysics, Cell Recognition and Glycobiology, UPR4301-CNRS, rue Charles Sadron, Orléans 45071, France; Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, ul. Gronostajowa 7, Kraków 30387, Poland
| | - Krzysztof Szade
- Centre for Molecular Biophysics, Cell Recognition and Glycobiology, UPR4301-CNRS, rue Charles Sadron, Orléans 45071, France; Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, ul. Gronostajowa 7, Kraków 30387, Poland
| | - Witold Nowak
- Centre for Molecular Biophysics, Cell Recognition and Glycobiology, UPR4301-CNRS, rue Charles Sadron, Orléans 45071, France; Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, ul. Gronostajowa 7, Kraków 30387, Poland
| | - Krzysztof Klimkiewicz
- Centre for Molecular Biophysics, Cell Recognition and Glycobiology, UPR4301-CNRS, rue Charles Sadron, Orléans 45071, France; Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, ul. Gronostajowa 7, Kraków 30387, Poland
| | - Bouchra El Hafny-Rahbi
- Centre for Molecular Biophysics, Cell Recognition and Glycobiology, UPR4301-CNRS, rue Charles Sadron, Orléans 45071, France
| | - Karol Szczepanek
- Centre for Molecular Biophysics, Cell Recognition and Glycobiology, UPR4301-CNRS, rue Charles Sadron, Orléans 45071, France; Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, ul. Gronostajowa 7, Kraków 30387, Poland
| | - Daisuke Sugiyama
- Division of Hematopoietic Stem Cells, Kyushu University Faculty of Medical Sciences, Maidashi, Higashi-Ku, Fukuoka 812-8582, Japan
| | - Kazimierz Weglarczyk
- Centre for Molecular Biophysics, Cell Recognition and Glycobiology, UPR4301-CNRS, rue Charles Sadron, Orléans 45071, France
| | - Alexandra Foucault-Collet
- Centre for Molecular Biophysics, Cell Recognition and Glycobiology, UPR4301-CNRS, rue Charles Sadron, Orléans 45071, France
| | - Alan Guichard
- Centre for Molecular Biophysics, Cell Recognition and Glycobiology, UPR4301-CNRS, rue Charles Sadron, Orléans 45071, France
| | - Andrzej Mazan
- Centre for Molecular Biophysics, Cell Recognition and Glycobiology, UPR4301-CNRS, rue Charles Sadron, Orléans 45071, France; Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, ul. Gronostajowa 7, Kraków 30387, Poland
| | - Mahdi Nadim
- Centre for Molecular Biophysics, Cell Recognition and Glycobiology, UPR4301-CNRS, rue Charles Sadron, Orléans 45071, France
| | - Fabienne Fasani
- Centre for Molecular Biophysics, Cell Recognition and Glycobiology, UPR4301-CNRS, rue Charles Sadron, Orléans 45071, France
| | - Nathalie Lamerant-Fayel
- Centre for Molecular Biophysics, Cell Recognition and Glycobiology, UPR4301-CNRS, rue Charles Sadron, Orléans 45071, France
| | - Catherine Grillon
- Centre for Molecular Biophysics, Cell Recognition and Glycobiology, UPR4301-CNRS, rue Charles Sadron, Orléans 45071, France
| | - Stéphane Petoud
- Centre for Molecular Biophysics, Cell Recognition and Glycobiology, UPR4301-CNRS, rue Charles Sadron, Orléans 45071, France
| | - Jean-Claude Beloeil
- Centre for Molecular Biophysics, Cell Recognition and Glycobiology, UPR4301-CNRS, rue Charles Sadron, Orléans 45071, France
| | - Alicja Jozkowicz
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, ul. Gronostajowa 7, Kraków 30387, Poland; Malopolska Biotechnology Centre, Jagiellonian University, Gronostajowa 7A, Kraków 30387, Poland
| | - Jozef Dulak
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, ul. Gronostajowa 7, Kraków 30387, Poland; Malopolska Biotechnology Centre, Jagiellonian University, Gronostajowa 7A, Kraków 30387, Poland.
| | - Claudine Kieda
- Centre for Molecular Biophysics, Cell Recognition and Glycobiology, UPR4301-CNRS, rue Charles Sadron, Orléans 45071, France; Malopolska Biotechnology Centre, Jagiellonian University, Gronostajowa 7A, Kraków 30387, Poland.
| |
Collapse
|
8
|
Heiker JT, Kunath A, Kosacka J, Flehmig G, Knigge A, Kern M, Stumvoll M, Kovacs P, Blüher M, Klöting N. Identification of genetic loci associated with different responses to high-fat diet-induced obesity in C57BL/6N and C57BL/6J substrains. Physiol Genomics 2014; 46:377-84. [DOI: 10.1152/physiolgenomics.00014.2014] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
We have recently demonstrated that C57BL/6NTac and C57BL/6JRj substrains are significantly different in their response to high-fat diet-induced obesity (DIO). The C57BL/6JRj substrain seems to be protected from DIO and genetic differences between C57BL/6J and C57BL/6N substrains at 11 single nucleotide polymorphism (SNP) loci have been identified. To define genetic variants as well as differences in parameters of glucose homeostasis and insulin sensitivity between C57BL/6NTac and C57BL/6JRj substrains that may explain the different response to DIO, we analyzed 208 first backcross (BC1) hybrids of C57BL/6NTac and C57BL/6JRj [(C57BL/6NTac × C57BL/6JRj)F1 × C57BL/6NTac] mice. Body weight, epigonadal and subcutaneous fat mass, circulating leptin, as well as parameters of glucose metabolism were measured after 10 wk of high-fat diet (HFD). Genetic profiling of BC1 hybrids were performed using TaqMan SNP genotyping assays. Furthermore, to assess whether SNP polymorphisms could affect mRNA level, we carried out gene expression analysis in murine liver samples. Human subcutaneous adipose tissue was used to verify murine data of SNAP29. We identified four sex-specific variants that are associated with the extent of HFD-induced weight gain and fat depot mass. BC1 hybrids carrying the combination of risk or beneficial alleles exhibit the phenotypical extremes of the parental strains. Murine and human SC expression analysis revealed Snap29 as strongest candidate. Our data indicate an important role of these loci in responsiveness to HFD-induced obesity and suggest genes of the synaptic vesicle release system such as Snap29 being involved in the regulation of high-fat DIO.
Collapse
Affiliation(s)
- John T. Heiker
- Department of Medicine, Endocrinology and Diabetes, Leipzig University, Leipzig, Germany
- Institute of Biochemistry, Leipzig University, Leipzig, Germany
| | - Anne Kunath
- IFB AdiposityDiseases, Junior Research Group 2 “Animal models of obesity”, Leipzig University, Leipzig, Germany; and
| | - Joanna Kosacka
- Department of Medicine, Endocrinology and Diabetes, Leipzig University, Leipzig, Germany
| | - Gesine Flehmig
- Department of Medicine, Endocrinology and Diabetes, Leipzig University, Leipzig, Germany
- IFB AdiposityDiseases, Leipzig University, Leipzig, Germany
| | - Anja Knigge
- Department of Medicine, Endocrinology and Diabetes, Leipzig University, Leipzig, Germany
| | - Matthias Kern
- Department of Medicine, Endocrinology and Diabetes, Leipzig University, Leipzig, Germany
| | - Michael Stumvoll
- Department of Medicine, Endocrinology and Diabetes, Leipzig University, Leipzig, Germany
- IFB AdiposityDiseases, Leipzig University, Leipzig, Germany
| | - Peter Kovacs
- IFB AdiposityDiseases, Leipzig University, Leipzig, Germany
| | - Matthias Blüher
- Department of Medicine, Endocrinology and Diabetes, Leipzig University, Leipzig, Germany
- IFB AdiposityDiseases, Leipzig University, Leipzig, Germany
| | - Nora Klöting
- Department of Medicine, Endocrinology and Diabetes, Leipzig University, Leipzig, Germany
- IFB AdiposityDiseases, Junior Research Group 2 “Animal models of obesity”, Leipzig University, Leipzig, Germany; and
| |
Collapse
|
9
|
Sultan SS. Paravertebral block can attenuate cytokine response when it replaces general anesthesia for cancer breast surgeries. Saudi J Anaesth 2013; 7:373-7. [PMID: 24348286 PMCID: PMC3858685 DOI: 10.4103/1658-354x.121043] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Context: Cytokine release is a well-known response to surgery especially when it is linked to cancer. Paravertebral block (PVB) is the suitable regional anesthesia for breast surgery. Aim: We tested the effect of replacing general anesthesia (GA) with PVB on cytokine response during and after surgeries for cancer breast. Settings and Design: Controlled randomized study. Methods: Forty cancer breast patients were divided in two groups; Group I received PVB and Group II received GA during performance of unilateral breast surgery without axillary clearance. Plasma concentrations of interleukin (IL)-6, IL-10, IL-12 and interferon-γ (IFN-γ) were measured and IL-10/IFN-γ were estimated in the following points; before starting PVB in Group I or induction of GA in Group II (Sample A), before skin incision (Sample B), at the end of procedure before shifting out of operating room (Sample C), 4-h post-operatively (Sample D) and 24-h post-operatively (Sample E). Statistical Analysis: unpaired Student t-test. Results: IL-6 increased progressively in both groups with statistically significant lower levels in samples C and D in Group I. IL-10 levels showed progressive increasing in both groups without differences between groups. IL-12 showed progressive decrease in both groups with statistically significant higher levels in samples C and D in Group I. IFN-levels showed significantly higher levels in samples C and D in Group I. IL-10/IFN-γ ratio was significantly lower in Group II in samples C and D. Conclusion: Replacing GA with PVB can attenuate cytokines response to cancer breast surgeries.
Collapse
Affiliation(s)
- Sherif S Sultan
- Department of Anesthesia and Intensive Care, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| |
Collapse
|
10
|
Matejuk A, Collet G, Nadim M, Grillon C, Kieda C. MicroRNAs and tumor vasculature normalization: impact on anti-tumor immune response. Arch Immunol Ther Exp (Warsz) 2013; 61:285-99. [PMID: 23575964 DOI: 10.1007/s00005-013-0231-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 01/15/2013] [Indexed: 12/21/2022]
Abstract
Inefficient immune response is a major glitch during tumor growth and progression. Chaotic and leaky blood vessels created in the process of angiogenesis allow tumor cells to escape and extricate anti-cancer immunity. Proangiogenic characteristics of hypoxic tumor microenvironment maintained by low oxygen tension attract endothelial progenitor cells, drive expansion of cancer stem cells, and deviantly differentiate monocyte descendants. Such cellular milieu further boosts immune tolerance and eventually appoint immunity for cancer advantage. Blood vessel normalization strategies that equilibrate oxygen levels within tumor and fix abnormal vasculature bring exciting promises to future anticancer therapies especially when combined with conventional chemotherapy. Recently, a new group of microRNAs (miRs) engaged in angiogenesis, called angiomiRs and hypoxamiRs, emerged as new therapeutic targets in cancer. Some of those miRs were found to efficiently regulate cancer immunity and their dysregulation efficiently programs aberrant angiogenesis and cancer metastasis. The present review highlights new findings in the field of miRs proficiency to normalize aberrant angiogenesis and to restore anti-tumor immune responses.
Collapse
Affiliation(s)
- Agata Matejuk
- Centre de Biophysique Moléculaire, CNRS UPR 4301, rue Charles Sadron, 45071 Orléans, France.
| | | | | | | | | |
Collapse
|
11
|
Collet G, Grillon C, Nadim M, Kieda C. Trojan horse at cellular level for tumor gene therapies. Gene 2013; 525:208-16. [PMID: 23542073 DOI: 10.1016/j.gene.2013.03.057] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Revised: 02/27/2013] [Accepted: 03/07/2013] [Indexed: 01/14/2023]
Abstract
Among innovative strategies developed for cancer treatments, gene therapies stand of great interest despite their well-known limitations in targeting, delivery, toxicity or stability. The success of any given gene-therapy is highly dependent on the carrier efficiency. New approaches are often revisiting the mythic trojan horse concept to carry therapeutic nucleic acid, i.e. DNAs, RNAs or small interfering RNAs, to pathologic tumor site. Recent investigations are focusing on engineering carrying modalities to overtake the above limitations bringing new promise to cancer patients. This review describes recent advances and perspectives for gene therapies devoted to tumor treatment, taking advantage of available knowledge in biotechnology and medicine.
Collapse
Affiliation(s)
- Guillaume Collet
- Centre de Biophysique Moléculaire, UPR4301 CNRS, Rue Charles Sadron, 45071, Orléans, cedex 2, France.
| | | | | | | |
Collapse
|
12
|
Zapała Ł, Wolny R, Wachowska M, Jakóbisiak M, Lasek W. Synergistic antitumor effect of JAWSII dendritic cells and interleukin 12 in a melanoma mouse model. Oncol Rep 2012; 29:1208-14. [PMID: 23254470 DOI: 10.3892/or.2012.2193] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 11/16/2012] [Indexed: 11/06/2022] Open
Abstract
One of the possible ways to augment dendritic cell (DC) efficacy in presentation of tumor antigens to effector T cells is pulsing them with tumor-cell lysates and incubation with certain immunostimulators. We present the results of an immunotherapeutic approach in a murine B78-H1 model using as a vaccine JAWSII DCs in combination with IL-12. Prior to the in vivo experiments, phenotypic characterization of JAWSII cells was performed and optimal conditions for stimulation of these cells were established. As no production of IL-12 by JAWSII cells was found, injections of this cytokine were introduced to vaccination protocols. Three vaccination schedules have been tested: i) prophylactic, ii) therapeutic-intratumoral, and iii) therapeutic-systemic. In all the protocols, vaccination with pulsed + stimulated JAWSII cells in combination with IL-12 was superior to the treatment with either agent alone and led to eradication of the tumor in several cases. The results of the study may be helpful in planning optimal DC-based therapeutic protocols in cancer patients.
Collapse
Affiliation(s)
- Łukasz Zapała
- Department of Immunology, Centre of Biostructure Research, Medical University of Warsaw, 02-097 Warsaw, Poland
| | | | | | | | | |
Collapse
|
13
|
Rosca EV, Lal B, Koskimaki JE, Popel AS, Laterra J. Collagen IV and CXC chemokine-derived antiangiogenic peptides suppress glioma xenograft growth. Anticancer Drugs 2012; 23:706-12. [PMID: 22495619 DOI: 10.1097/cad.0b013e3283531041] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Peptides are receiving increasing attention as therapeutic agents due to their high binding specificity and versatility to be modified as targeting or carrier molecules. Particularly, peptides with antiangiogenic activity are of high interest because of their applicability to a wide range of cancers. In this study, we investigate the biological activity of two novel antiangiogenic peptides in preclinical glioma models. One peptide SP2000 is derived from collagen IV and the other peptide SP3019 belongs to the CXC family. We have previously characterized the capacity of SP2000 and SP3019 to inhibit multiple biological endpoints linked to angiogenesis in human endothelial cells in several assays. Here, we report additional studies using endothelial cells and focus on the activity of these peptides against human glioma cell growth, migration and adhesion in vitro, and growth as tumor xenografts in vivo. We found that SP2000 completely inhibits migration of the glioma cells at 50 µmol/l and SP3019 produced 50% inhibition at 100 µmol/l. Their relative antiadhesion activities were similar, with SP2000 and SP3019 generating 50% adhesion inhibition at 4.9 ± 0.82 and 21.3 ± 5.92 µmol/l, respectively. In-vivo glioma growth inhibition was 63% for SP2000 and 76% for SP3019 after 2 weeks of administration at daily doses of 10 and 20 mg/kg, respectively. The direct activity of these peptides against glioma cells in conjunction with their antiangiogenic activities warrants their further development as either stand-alone agents or in combination with standard cytotoxic or emerging targeted therapies in malignant brain tumors.
Collapse
Affiliation(s)
- Elena Victoria Rosca
- Department of Biomedical Engineering, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA.
| | | | | | | | | |
Collapse
|
14
|
Matejuk A, Leng Q, Chou ST, Mixson AJ. Vaccines targeting the neovasculature of tumors. Vasc Cell 2011; 3:7. [PMID: 21385454 PMCID: PMC3061948 DOI: 10.1186/2045-824x-3-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Accepted: 03/08/2011] [Indexed: 01/04/2023] Open
Abstract
Angiogenesis has a critical role in physiologic and disease processes. For the growth of tumors, angiogenesis must occur to carry sufficient nutrients to the tumor. In addition to growth, development of new blood vessels is necessary for invasion and metastases of the tumor. A number of strategies have been developed to inhibit tumor angiogenesis and further understanding of the interplay between tumors and angiogenesis should allow new approaches and advances in angiogenic therapy. One such promising angiogenic approach is to target and inhibit angiogenesis with vaccines. This review will discuss recent advances and future prospects in vaccines targeting aberrant angiogenesis of tumors. The strategies utilized by investigators have included whole endothelial cell vaccines as well as vaccines with defined targets on endothelial cells and pericytes of the developing tumor endothelium. To date, several promising anti-angiogenic vaccine strategies have demonstrated marked inhibition of tumor growth in pre-clinical trials with some showing no observed interference with physiologic angiogenic processes such as wound healing and fertility.
Collapse
Affiliation(s)
- Agata Matejuk
- Department of Pathology, University of Maryland Baltimore, MSTF Building, 10 South Pine Street, Baltimore, MD 21201, USA.
| | | | | | | |
Collapse
|