1
|
Prasongtanakij S, Soontrapa K, Thumkeo D. The role of prostanoids in regulatory T cells and their implications in inflammatory diseases and cancers. Eur J Cell Biol 2025; 104:151482. [PMID: 40184828 DOI: 10.1016/j.ejcb.2025.151482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 03/05/2025] [Accepted: 03/11/2025] [Indexed: 04/07/2025] Open
Abstract
Regulatory T cells (Tregs) play an important role in the immune system through the regulation of immunological self-tolerance and homeostasis. Furthermore, increasing evidence suggests the potential contribution of Tregs beyond immunity in the process of repairing various injured tissues. Tregs are generally characterised by the constitutive expression of forkhead box protein 3 (FOXP3) transcription factor in the nucleus and high expression levels of CD25 and CTLA-4 on the cell surface. To date, a large number of molecules have been identified as key regulators of Treg differentiation and function. Among these molecules are prostanoids, which are multifaceted lipid mediators. Prostanoids are produced from arachidonic acid through the catalytic activity of the enzyme cyclooxygenase and exert their functions through the 9 cognate receptors, DP1-2, EP1-EP4, FP, IP and TP. We briefly review previous studies on the regulatory mechanism of Tregs and then discuss recent works on the modulatory role of prostanoids.
Collapse
Affiliation(s)
- Somsak Prasongtanakij
- Laboratory of Immunopharmacology, Kyoto University Graduate School of Medicine, Japan
| | - Kitipong Soontrapa
- Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Thailand
| | - Dean Thumkeo
- Laboratory of Immunopharmacology, Kyoto University Graduate School of Medicine, Japan; Center for Medical Education and Internationalization, Kyoto University Faculty of Medicine, Japan.
| |
Collapse
|
2
|
Nam HJ, Gong JR, Kim YH, Nguyen-Phuong T, Byun N, Yoon JH, Kim YC, Chung H, Lee BH, Kwon H, Lee W, Kang SJ, Park K, Cha B, Kim JI, Kim HJ. Simultaneous Epigenetic and Gene Expression Profiling at Single Cell Resolution Uncovers Stem-Like Treg Subsets Induced With Oligonucleotide Expansion in Humans. Immune Netw 2024; 24:e39. [PMID: 39801740 PMCID: PMC11711129 DOI: 10.4110/in.2024.24.e39] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 10/14/2024] [Accepted: 10/17/2024] [Indexed: 01/16/2025] Open
Abstract
Tregs play a central role in maintaining immune tolerance. Recent progress in the clinical application of Tregs underscores their potential for cell therapy. Nevertheless, a notable hurdle remains in producing functional Tregs in vitro. There is also a lack of detailed studies evaluating the function of Tregs during their ex vivo expansion process. Our prior investigation showed that the ex vivo expansion with oligonucleotides produces FoxP3highHelioshigh subsets. To investigate how oligonucleotides in culture media influence on gene expression and epigenetic states at single cell resolution, we sorted Tregs from healthy individuals and profiled in vitro oligonucleotide-expanded and non-expanded Tregs. We discovered a subset of Tregs, specifically enriched in expanded Tregs (seTregs), through oligonucleotide-induced expansion. seTregs showed an enhancement in both stem-like characteristics and functional attributes. Through analysis of histone modification data and gene regulatory networks, we elucidated IKZF2 (Helios) as a pivotal transcription factor in generating these cell subsets. We believe these findings offer insights into evaluating functional regulation of in vitro expanded Tregs aimed at manufacturing Treg-based cell therapies.
Collapse
Affiliation(s)
- Hyo Jeong Nam
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Jeong-Ryeol Gong
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| | - Yong-Hee Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Thuy Nguyen-Phuong
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Nari Byun
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul 03080, Korea
- Teraimmune, Inc., Gaithersburg, MD 20878, USA
| | | | | | - Hyunwoo Chung
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Brian Hyohyoung Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Haeyoon Kwon
- Department of Medicine, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Woochan Lee
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul 03080, Korea
| | - Sung-Jun Kang
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Kyunghyuk Park
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul 03080, Korea
| | - Bukyoung Cha
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul 03080, Korea
| | - Jong-Il Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul 03080, Korea
| | - Hyun Je Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul 03080, Korea
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul 03080, Korea
- Department of Dermatology, Seoul National University Hospital, Seoul 03080, Korea
| |
Collapse
|
3
|
Mashayekhi K, Khazaie K, Faubion WA, Kim GB. Biomaterial-enhanced treg cell immunotherapy: A promising approach for transplant medicine and autoimmune disease treatment. Bioact Mater 2024; 37:269-298. [PMID: 38694761 PMCID: PMC11061617 DOI: 10.1016/j.bioactmat.2024.03.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/20/2024] [Accepted: 03/25/2024] [Indexed: 05/04/2024] Open
Abstract
Regulatory T cells (Tregs) are crucial for preserving tolerance in the body, rendering Treg immunotherapy a promising treatment option for both organ transplants and autoimmune diseases. Presently, organ transplant recipients must undergo lifelong immunosuppression to prevent allograft rejection, while autoimmune disorders lack definitive cures. In the last years, there has been notable advancement in comprehending the biology of both antigen-specific and polyclonal Tregs. Clinical trials involving Tregs have demonstrated their safety and effectiveness. To maximize the efficacy of Treg immunotherapy, it is essential for these cells to migrate to specific target tissues, maintain stability within local organs, bolster their suppressive capabilities, and ensure their intended function's longevity. In pursuit of these goals, the utilization of biomaterials emerges as an attractive supportive strategy for Treg immunotherapy in addressing these challenges. As a result, the prospect of employing biomaterial-enhanced Treg immunotherapy holds tremendous promise as a treatment option for organ transplant recipients and individuals grappling with autoimmune diseases in the near future. This paper introduces strategies based on biomaterial-assisted Treg immunotherapy to enhance transplant medicine and autoimmune treatments.
Collapse
Affiliation(s)
- Kazem Mashayekhi
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | | | - William A. Faubion
- Department of Immunology, Mayo Clinic, Scottsdale, AZ, USA
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Gloria B. Kim
- Department of Immunology, Mayo Clinic, Scottsdale, AZ, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Scottsdale, AZ, USA
| |
Collapse
|
4
|
Tang Y, Cui G, Liu H, Han Y, Cai C, Feng Z, Shen H, Zeng S. Converting "cold" to "hot": epigenetics strategies to improve immune therapy effect by regulating tumor-associated immune suppressive cells. Cancer Commun (Lond) 2024; 44:601-636. [PMID: 38715348 PMCID: PMC11194457 DOI: 10.1002/cac2.12546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 04/09/2024] [Accepted: 04/18/2024] [Indexed: 06/26/2024] Open
Abstract
Significant developments in cancer treatment have been made since the advent of immune therapies. However, there are still some patients with malignant tumors who do not benefit from immunotherapy. Tumors without immunogenicity are called "cold" tumors which are unresponsive to immunotherapy, and the opposite are "hot" tumors. Immune suppressive cells (ISCs) refer to cells which can inhibit the immune response such as tumor-associated macrophages (TAMs), myeloid-derived suppressor cells (MDSCs), regulatory T (Treg) cells and so on. The more ISCs infiltrated, the weaker the immunogenicity of the tumor, showing the characteristics of "cold" tumor. The dysfunction of ISCs in the tumor microenvironment (TME) may play essential roles in insensitive therapeutic reaction. Previous studies have found that epigenetic mechanisms play an important role in the regulation of ISCs. Regulating ISCs may be a new approach to transforming "cold" tumors into "hot" tumors. Here, we focused on the function of ISCs in the TME and discussed how epigenetics is involved in regulating ISCs. In addition, we summarized the mechanisms by which the epigenetic drugs convert immunotherapy-insensitive tumors into immunotherapy-sensitive tumors which would be an innovative tendency for future immunotherapy in "cold" tumor.
Collapse
Affiliation(s)
- Yijia Tang
- Department of OncologyXiangya HospitalCentral South UniversityChangshaHunanP. R. China
| | - Guangzu Cui
- Department of OncologyXiangya HospitalCentral South UniversityChangshaHunanP. R. China
| | - Haicong Liu
- Department of OncologyXiangya HospitalCentral South UniversityChangshaHunanP. R. China
| | - Ying Han
- Department of OncologyXiangya HospitalCentral South UniversityChangshaHunanP. R. China
| | - Changjing Cai
- Department of OncologyXiangya HospitalCentral South UniversityChangshaHunanP. R. China
| | - Ziyang Feng
- Department of OncologyXiangya HospitalCentral South UniversityChangshaHunanP. R. China
| | - Hong Shen
- Department of OncologyXiangya HospitalCentral South UniversityChangshaHunanP. R. China
- National Clinical Resaerch Center for Geriatric Disorders, Xiangya Hospital, Central South UniversityChangshaHunanChina
| | - Shan Zeng
- Department of OncologyXiangya HospitalCentral South UniversityChangshaHunanP. R. China
| |
Collapse
|
5
|
Xia Y, Chen K, Yang Q, Chen Z, Jin L, Zhang L, Yu X, Wang L, Xie C, Zhao Y, Shen Y, Tong J. Methylation in cornea and corneal diseases: a systematic review. Cell Death Discov 2024; 10:169. [PMID: 38589350 PMCID: PMC11002037 DOI: 10.1038/s41420-024-01935-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/24/2024] [Accepted: 03/25/2024] [Indexed: 04/10/2024] Open
Abstract
Corneal diseases are among the primary causes of blindness and vision loss worldwide. However, the pathogenesis of corneal diseases remains elusive, and diagnostic and therapeutic tools are limited. Thus, identifying new targets for the diagnosis and treatment of corneal diseases has gained great interest. Methylation, a type of epigenetic modification, modulates various cellular processes at both nucleic acid and protein levels. Growing evidence shows that methylation is a key regulator in the pathogenesis of corneal diseases, including inflammation, fibrosis, and neovascularization, making it an attractive potential therapeutic target. In this review, we discuss the major alterations of methylation and demethylation at the DNA, RNA, and protein levels in corneal diseases and how these dynamics contribute to the pathogenesis of corneal diseases. Also, we provide insights into identifying potential biomarkers of methylation that may improve the diagnosis and treatment of corneal diseases.
Collapse
Affiliation(s)
- Yutong Xia
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, 310003, China
| | - Kuangqi Chen
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, 310003, China
| | - Qianjie Yang
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, 310003, China
| | - Zhitong Chen
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, 310003, China
| | - Le Jin
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, 310003, China
| | - Liyue Zhang
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, 310003, China
| | - Xin Yu
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, 310003, China
| | - Liyin Wang
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, 310003, China
| | - Chen Xie
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, 310003, China
| | - Yuan Zhao
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, 310003, China
| | - Ye Shen
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, 310003, China.
| | - Jianping Tong
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, 310003, China.
| |
Collapse
|
6
|
Alvarez F, Liu Z, Bay A, Piccirillo CA. Deciphering the developmental trajectory of tissue-resident Foxp3 + regulatory T cells. Front Immunol 2024; 15:1331846. [PMID: 38605970 PMCID: PMC11007185 DOI: 10.3389/fimmu.2024.1331846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/14/2024] [Indexed: 04/13/2024] Open
Abstract
Foxp3+ TREG cells have been at the focus of intense investigation for their recognized roles in preventing autoimmunity, facilitating tissue recuperation following injury, and orchestrating a tolerance to innocuous non-self-antigens. To perform these critical tasks, TREG cells undergo deep epigenetic, transcriptional, and post-transcriptional changes that allow them to adapt to conditions found in tissues both at steady-state and during inflammation. The path leading TREG cells to express these tissue-specialized phenotypes begins during thymic development, and is further driven by epigenetic and transcriptional modifications following TCR engagement and polarizing signals in the periphery. However, this process is highly regulated and requires TREG cells to adopt strategies to avoid losing their regulatory program altogether. Here, we review the origins of tissue-resident TREG cells, from their thymic and peripheral development to the transcriptional regulators involved in their tissue residency program. In addition, we discuss the distinct signalling pathways that engage the inflammatory adaptation of tissue-resident TREG cells, and how they relate to their ability to recognize tissue and pathogen-derived danger signals.
Collapse
Affiliation(s)
- Fernando Alvarez
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- Infectious Diseases and Immunology in Global Health Program, The Research Institute of the McGill University Health Centre (RI-MUHC), Montréal, QC, Canada
- Centre of Excellence in Translational Immunology (CETI), Montréal, QC, Canada
| | - Zhiyang Liu
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- Infectious Diseases and Immunology in Global Health Program, The Research Institute of the McGill University Health Centre (RI-MUHC), Montréal, QC, Canada
- Centre of Excellence in Translational Immunology (CETI), Montréal, QC, Canada
| | - Alexandre Bay
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- Infectious Diseases and Immunology in Global Health Program, The Research Institute of the McGill University Health Centre (RI-MUHC), Montréal, QC, Canada
- Centre of Excellence in Translational Immunology (CETI), Montréal, QC, Canada
| | - Ciriaco A. Piccirillo
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- Infectious Diseases and Immunology in Global Health Program, The Research Institute of the McGill University Health Centre (RI-MUHC), Montréal, QC, Canada
- Centre of Excellence in Translational Immunology (CETI), Montréal, QC, Canada
| |
Collapse
|
7
|
Hardtke-Wolenski M, Landwehr-Kenzel S. Tipping the balance in autoimmunity: are regulatory t cells the cause, the cure, or both? Mol Cell Pediatr 2024; 11:3. [PMID: 38507159 PMCID: PMC10954601 DOI: 10.1186/s40348-024-00176-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 03/07/2024] [Indexed: 03/22/2024] Open
Abstract
Regulatory T cells (Tregs) are a specialized subgroup of T-cell lymphocytes that is crucial for maintaining immune homeostasis and preventing excessive immune responses. Depending on their differentiation route, Tregs can be subdivided into thymically derived Tregs (tTregs) and peripherally induced Tregs (pTregs), which originate from conventional T cells after extrathymic differentiation at peripheral sites. Although the regulatory attributes of tTregs and pTregs partially overlap, their modes of action, protein expression profiles, and functional stability exhibit specific characteristics unique to each subset. Over the last few years, our knowledge of Treg differentiation, maturation, plasticity, and correlations between their phenotypes and functions has increased. Genetic and functional studies in patients with numeric and functional Treg deficiencies have contributed to our mechanistic understanding of immune dysregulation and autoimmune pathologies. This review provides an overview of our current knowledge of Treg biology, discusses monogenetic Treg pathologies and explores the role of Tregs in various other autoimmune disorders. Additionally, we discuss novel approaches that explore Tregs as targets or agents of innovative treatment options.
Collapse
Affiliation(s)
- Matthias Hardtke-Wolenski
- Hannover Medical School, Department of Gastroenterology Hepatology, Infectious Diseases and Endocrinology, Carl-Neuberg-Str. 1, Hannover, 30625, Germany
- University Hospital Essen, Institute of Medical Microbiology, University Duisburg-Essen, Hufelandstraße 55, Essen, 45122, Germany
| | - Sybille Landwehr-Kenzel
- Hannover Medical School, Department of Pediatric Pneumology, Allergology and Neonatology, Carl-Neuberg-Str. 1, Hannover, 30625, Germany.
- Hannover Medical School, Institute of Transfusion Medicine and Transplant Engineering, Carl-Neuberg-Str. 1, Hannover, 30625, Germany.
| |
Collapse
|
8
|
Wang Q, Fang X, Sun B, Zhu K, Yao M, Wei S, Zhang A. Rosa roxburghii Tratt juice inhibits NF-κB and increases IL-2 to alleviates the Foxp3-mediated Tregs imbalance in the peripheral blood of arseniasis patients. Food Sci Biotechnol 2024; 33:935-944. [PMID: 38371687 PMCID: PMC10866849 DOI: 10.1007/s10068-023-01384-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/19/2023] [Accepted: 07/06/2023] [Indexed: 02/20/2024] Open
Abstract
Arsenic can cause immune inflammation, which is the basis of arsenic-induced damage to multiple organs and systems. Forkhead box P3 (Foxp3)-labelled CD4+CD25+ regulatory T cells (Tregs) play an essential role in maintaining immune homeostasis. Nuclear factor-κb (NF-κB) and Interleukin-2 (IL-2) are critical regulators of Foxp3. Rosa roxburghii Tratt (RRT) is an edible medicinal plant with anti-inflammation effects. In this study, a control group (n = 41) and an arseniasis group (n = 209) were recruited, and screened subjects from the arseniasis patients for RRTJ (n = 46) or placebo (n = 43) to explore the possible mechanism by which RRT alleviates immune inflammation. The results indicated that RRTJ can inhibits NF-κB and increases IL-2, and alleviates the Foxp3-mediated Tregs imbalance in the peripheral blood of arseniasis patients. In summary, these findings suggest a novel intervention or therapeutic target for immune inflammation in arseniasis patients and provide new evidence that RRTJ inhibits immune inflammation. Graphical abstract Supplementary Information The online version contains supplementary material available at 10.1007/s10068-023-01384-0.
Collapse
Affiliation(s)
- Qi Wang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, 550025 Guizhou People’s Republic of China
| | - Xiaolin Fang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, 550025 Guizhou People’s Republic of China
| | - Baofei Sun
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, 550025 Guizhou People’s Republic of China
| | - Kai Zhu
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, 550025 Guizhou People’s Republic of China
| | - Maolin Yao
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, 550025 Guizhou People’s Republic of China
| | - Shaofeng Wei
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, 550025 Guizhou People’s Republic of China
| | - Aihua Zhang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, 550025 Guizhou People’s Republic of China
| |
Collapse
|
9
|
Yahsi B, Palaz F, Dincer P. Applications of CRISPR Epigenome Editors in Tumor Immunology and Autoimmunity. ACS Synth Biol 2024; 13:413-427. [PMID: 38298016 DOI: 10.1021/acssynbio.3c00524] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
Over the past decade, CRISPR-Cas systems have become indispensable tools for genetic engineering and have been used in clinical trials for various diseases. Beyond genome editing, CRISPR-Cas systems can also be used for performing programmable epigenetic modifications. Recent efforts in enhancing CRISPR-based epigenome modifiers have yielded potent tools enabling targeted DNA methylation/demethylation capable of sustaining epigenetic memory through numerous cell divisions. Moreover, it has been understood that during chronic inflammatory states, including cancer, T cells encounter a state called T cell exhaustion that involves elevated inhibitory receptors (e.g., LAG-3, TIM3, PD-1, CD39) and reduced effector T cell-related protein levels (IFN-γ, granzyme B, and perforin). Importantly, epigenetic dysregulation has been identified as one of the key drivers of T cell exhaustion, and it remains one of the biggest obstacles in the field of immunotherapy and decreases the efficiency of chimeric antigen receptor T (CAR-T) cell therapy. Similarly, autoimmune diseases exhibit epigenetically dysfunctional regulatory T (Treg) cells. For instance, FOXP3 intronic regions, known as conserved noncoding sequences, display hypomethylation in healthy states but hypermethylation in pathological contexts. Therefore, the reversal of epigenetic dysregulation in cancer and autoimmune diseases using CRISPR-based epigenome modifiers has important therapeutic implications. In this review, we outline the progressive refinement of CRISPR-based epigenome modifiers and explore their potential therapeutic applications in tumor immunology and autoimmunity.
Collapse
Affiliation(s)
- Berkay Yahsi
- Hacettepe University School of Medicine, Ankara 06100, Turkey
| | - Fahreddin Palaz
- Faculty of Medicine, Hacettepe University, Ankara 06100, Turkey
| | - Pervin Dincer
- Department of Medical Biology, Faculty of Medicine, Hacettepe University, Ankara 06100, Turkey
| |
Collapse
|
10
|
Garrett-Sinha LA. An update on the roles of transcription factor Ets1 in autoimmune diseases. WIREs Mech Dis 2023; 15:e1627. [PMID: 37565573 PMCID: PMC10842644 DOI: 10.1002/wsbm.1627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 08/12/2023]
Abstract
Transcription factors are crucial to regulate gene expression in immune cells and in other cell types. In lymphocytes, there are a large number of different transcription factors that are known to contribute to cell differentiation and the balance between quiescence and activation. One such transcription factor is E26 oncogene homolog 1 (Ets1). Ets1 expression is high in quiescent B and T lymphocytes and its levels are decreased upon activation. The human ETS1 gene has been identified as a susceptibility locus for many autoimmune and inflammatory diseases. In accord with this, gene knockout of Ets1 in mice leads to development of a lupus-like autoimmune disease, with enhanced activation and differentiation of both B cells and T cells. Prior reviews have summarized functional roles for Ets1 based on studies of Ets1 knockout mice. In recent years, numerous additional studies have been published that further validate ETS1 as a susceptibility locus for human diseases where immune dysregulation plays a causative role. In this update, new information that further links Ets1 to human autoimmune diseases is organized and collated to serve as a resource. This update also describes recent studies that seek to understand molecularly how Ets1 regulates immune cell activation, either using human cells and tissues or mouse models. This resource is expected to be useful to investigators seeking to understand how Ets1 may regulate the human immune response, particularly in terms of its roles in autoimmunity and inflammation. This article is categorized under: Immune System Diseases > Genetics/Genomics/Epigenetics Immune System Diseases > Molecular and Cellular Physiology.
Collapse
Affiliation(s)
- Lee Ann Garrett-Sinha
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York, Buffalo, New York, USA
| |
Collapse
|
11
|
Ma S, Feng G, Li L, Li Z, Zhou X, Zhou Y, Zhang R. Downregulation of circETS1 disrupts Th17/Treg homeostasis by inhibiting FOXP3 transcription: A new potential biomarker in systemic lupus erythematosus. Lupus 2023; 32:1430-1439. [PMID: 37852297 DOI: 10.1177/09612033231207545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease associated with an imbalance of T helper 17 (Th17) to regulatory T cells (Tregs). However, the underlying mechanism remains unclear. Increasing evidence suggests that circular RNAs play a crucial role in SLE. Although circETS1 was discovered 30 years ago, detailed exploration of its functions remains limited. In this study, we measured the expression levels of circETS1 in peripheral blood mononuclear cells (PBMCs) and CD4+ T cells of patients with SLE by quantitative polymerase chain reaction. The impact of circETS1 expression on the Th17/Treg balance and underlying mechanism were evaluated using double-luciferase reporter, gain-/loss-of-function, and rescue assays. Receiver operating characteristic (ROC) curve analysis was conducted to assess the diagnostic value of circETS1. Both circETS1 and FOXP3 expression were downregulated in the PBMCs and CD4+ T cells of patients with SLE (n = 28) compared with those in the cells of healthy controls (n = 20). Mechanistically, we found that circETS1 can bind directly to the microRNA miR-1205, acting as a sponge to upregulate the transcription of FOXP3, thereby maintaining the Th17/Treg balance. Notably, ROC analysis showed that the expression level of circETS1 in PBMCs had an area under the curve of 0.873 (95% confidence interval: 0.771-0.976; p < .001) for diagnosing SLE, with a sensitivity of 80.00% and a specificity of 89.29%. Finally, we found negative correlations between the level of circETS1 in PBMCs and disease severity (according to the Systemic Lupus Erythematosus Disease Activity Index) in patients with SLE (r = -0.7712, 95% CI: -0.8910 to -0.5509; p < .001). The imbalance in Th17/Treg cells in SLE may be attributed, in part, to the circETS1/miR-1205/FOXP3 pathway. CircETS1 has potential to serve as a valuable biomarker for the diagnosis and evaluation of SLE.
Collapse
Affiliation(s)
- Sha Ma
- Department of Rheumatology, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Guofu Feng
- Department of Disease Control and Prevention, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Li Li
- School of Public Health, Dali University, Dali, China
| | - Zi Li
- Quality Management Department, Yunnan Center for Disease Control and Prevention, Kunming, China
| | - Xiaoyu Zhou
- Department of Disease Control and Prevention, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Yan Zhou
- Department of Nephrology, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Ruixian Zhang
- Department of Disease Control and Prevention, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
12
|
Khatun A, Wu X, Qi F, Gai K, Kharel A, Kudek MR, Fraser L, Ceicko A, Kasmani MY, Majnik A, Burns R, Chen Y, Salzman N, Taparowsky EJ, Fang D, Williams CB, Cui W. BATF is Required for Treg Homeostasis and Stability to Prevent Autoimmune Pathology. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206692. [PMID: 37587835 PMCID: PMC10558681 DOI: 10.1002/advs.202206692] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 07/17/2023] [Indexed: 08/18/2023]
Abstract
Regulatory T (Treg) cells are inevitable to prevent deleterious immune responses to self and commensal microorganisms. Treg function requires continuous expression of the transcription factor (TF) FOXP3 and is divided into two major subsets: resting (rTregs) and activated (aTregs). Continuous T cell receptor (TCR) signaling plays a vital role in the differentiation of aTregs from their resting state, and in their immune homeostasis. The process by which Tregs differentiate, adapt tissue specificity, and maintain stable phenotypic expression at the transcriptional level is still inconclusivei. In this work, the role of BATF is investigated, which is induced in response to TCR stimulation in naïve T cells and during aTreg differentiation. Mice lacking BATF in Tregs developed multiorgan autoimmune pathology. As a transcriptional regulator, BATF is required for Treg differentiation, homeostasis, and stabilization of FOXP3 expression in different lymphoid and non-lymphoid tissues. Epigenetically, BATF showed direct regulation of Treg-specific genes involved in differentiation, maturation, and tissue accumulation. Most importantly, FOXP3 expression and Treg stability require continuous BATF expression in Tregs, as it regulates demethylation and accessibility of the CNS2 region of the Foxp3 locus. Considering its role in Treg stability, BATF should be considered an important therapeutic target in autoimmune disease.
Collapse
Affiliation(s)
- Achia Khatun
- Department of Microbiology and ImmunologyMedical College of WisconsinMilwaukeeWI53226USA
- Versiti Blood Research InstituteVersiti WisconsinMilwaukeeWI53226USA
| | - Xiaopeng Wu
- Department of Microbiology and ImmunologyMedical College of WisconsinMilwaukeeWI53226USA
- Versiti Blood Research InstituteVersiti WisconsinMilwaukeeWI53226USA
| | - Fu Qi
- Children's Mercy Hospital in Kansas City2401 Gillham RdKansas CityMO64108USA
| | - Kexin Gai
- Department of PathologyFeinberg School of MedicineNorthwestern University303 E Chicago AveChicagoIL60611USA
| | - Arjun Kharel
- Department of PathologyFeinberg School of MedicineNorthwestern University303 E Chicago AveChicagoIL60611USA
| | - Matthew R. Kudek
- Department of Microbiology and ImmunologyMedical College of WisconsinMilwaukeeWI53226USA
- Versiti Blood Research InstituteVersiti WisconsinMilwaukeeWI53226USA
- Department of PediatricsMedical College of Wisconsin8701 Watertown Plank RoadMilwaukeeWI53226USA
| | - Lisa Fraser
- Department of Microbiology and ImmunologyMedical College of WisconsinMilwaukeeWI53226USA
| | - Ashley Ceicko
- Department of Microbiology and ImmunologyMedical College of WisconsinMilwaukeeWI53226USA
| | - Moujtaba Y. Kasmani
- Department of Microbiology and ImmunologyMedical College of WisconsinMilwaukeeWI53226USA
- Versiti Blood Research InstituteVersiti WisconsinMilwaukeeWI53226USA
| | - Amber Majnik
- Department of Microbiology and ImmunologyMedical College of WisconsinMilwaukeeWI53226USA
- Children's Mercy Hospital in Kansas City2401 Gillham RdKansas CityMO64108USA
| | - Robert Burns
- Versiti Blood Research InstituteVersiti WisconsinMilwaukeeWI53226USA
| | - Yi‐Guang Chen
- Department of Microbiology and ImmunologyMedical College of WisconsinMilwaukeeWI53226USA
- Max McGee National Research Center for Juvenile DiabetesMedical College of Wisconsin8701 Watertown Plank RoadMilwaukeeWI53226USA
| | - Nita Salzman
- Department of Microbiology and ImmunologyMedical College of WisconsinMilwaukeeWI53226USA
- Department of PediatricsMedical College of Wisconsin8701 Watertown Plank RoadMilwaukeeWI53226USA
| | | | - Dayu Fang
- Department of PathologyFeinberg School of MedicineNorthwestern University303 E Chicago AveChicagoIL60611USA
| | - Calvin B. Williams
- Department of Microbiology and ImmunologyMedical College of WisconsinMilwaukeeWI53226USA
- Department of PediatricsMedical College of Wisconsin8701 Watertown Plank RoadMilwaukeeWI53226USA
| | - Weiguo Cui
- Department of Microbiology and ImmunologyMedical College of WisconsinMilwaukeeWI53226USA
- Versiti Blood Research InstituteVersiti WisconsinMilwaukeeWI53226USA
- Department of PathologyFeinberg School of MedicineNorthwestern University303 E Chicago AveChicagoIL60611USA
| |
Collapse
|
13
|
Battaglia M, Sunshine AC, Luo W, Jin R, Stith A, Lindemann M, Miller LS, Sinha S, Wohlfert E, Garrett-Sinha LA. Ets1 and IL17RA cooperate to regulate autoimmune responses and skin immunity to Staphylococcus aureus. Front Immunol 2023; 14:1208200. [PMID: 37691956 PMCID: PMC10486983 DOI: 10.3389/fimmu.2023.1208200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 08/08/2023] [Indexed: 09/12/2023] Open
Abstract
Introduction Ets1 is a lymphoid-enriched transcription factor that regulates B- and Tcell functions in development and disease. Mice that lack Ets1 (Ets1 KO) develop spontaneous autoimmune disease with high levels of autoantibodies. Naïve CD4 + T cells isolated from Ets1 KO mice differentiate more readily to Th17 cells that secrete IL-17, a cytokine implicated in autoimmune disease pathogenesis. To determine if increased IL-17 production contributes to the development of autoimmunity in Ets1 KO mice, we crossed Ets1 KO mice to mice lacking the IL-17 receptor A subunit (IL17RA KO) to generate double knockout (DKO) mice. Methods In this study, the status of the immune system of DKO and control mice was assessed utilizing ELISA, ELISpot, immunofluorescent microscopy, and flow cytometric analysis of the spleen, lymph node, skin. The transcriptome of ventral neck skin was analyzed through RNA sequencing. S. aureus clearance kinetics in in exogenously infected mice was conducted using bioluminescent S. aureus and tracked using an IVIS imaging experimental scheme. Results We found that the absence of IL17RA signaling did not prevent or ameliorate the autoimmune phenotype of Ets1 KO mice but rather that DKO animals exhibited worse symptoms with striking increases in activated B cells and secreted autoantibodies. This was correlated with a prominent increase in the numbers of T follicular helper (Tfh) cells. In addition to the autoimmune phenotype, DKO mice also showed signs of immunodeficiency and developed spontaneous skin lesions colonized by Staphylococcus xylosus. When DKO mice were experimentally infected with Staphylococcus aureus, they were unable to clear the bacteria, suggesting a general immunodeficiency to staphylococcal species. γδ T cells are important for the control of skin staphylococcal infections. We found that mice lacking Ets1 have a complete deficiency of the γδ T-cell subset dendritic epidermal T cells (DETCs), which are involved in skin woundhealing responses, but normal numbers of other skin γδ T cells. To determine if loss of DETC combined with impaired IL-17 signaling might promote susceptibility to staph infection, we depleted DETC from IL17RA KO mice and found that the combined loss of DETC and impaired IL-17 signaling leads to an impaired clearance of the infection. Conclusions Our studies suggest that loss of IL-17 signaling can result in enhanced autoimmunity in Ets1 deficient autoimmune-prone mice. In addition, defects in wound healing, such as that caused by loss of DETC, can cooperate with impaired IL-17 responses to lead to increased susceptibility to skin staph infections.
Collapse
Affiliation(s)
- Michael Battaglia
- Department of Biochemistry, State University of New York at Buffalo, Buffalo, NY, United States
| | - Alex C. Sunshine
- Department of Biochemistry, State University of New York at Buffalo, Buffalo, NY, United States
| | - Wei Luo
- Department of Biochemistry, State University of New York at Buffalo, Buffalo, NY, United States
| | - Richard Jin
- Department of Microbiology and Immunology, State University of New York at Buffalo, Buffalo, NY, United States
| | - Alifa Stith
- Department of Biochemistry, State University of New York at Buffalo, Buffalo, NY, United States
| | | | - Lloyd S. Miller
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Satrajit Sinha
- Department of Biochemistry, State University of New York at Buffalo, Buffalo, NY, United States
| | - Elizabeth Wohlfert
- Department of Microbiology and Immunology, State University of New York at Buffalo, Buffalo, NY, United States
| | - Lee Ann Garrett-Sinha
- Department of Biochemistry, State University of New York at Buffalo, Buffalo, NY, United States
| |
Collapse
|
14
|
Golzari-Sorkheh M, Zúñiga-Pflücker JC. Development and function of FOXP3+ regulators of immune responses. Clin Exp Immunol 2023; 213:13-22. [PMID: 37085947 PMCID: PMC10324550 DOI: 10.1093/cei/uxad048] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/08/2023] [Accepted: 04/21/2023] [Indexed: 04/23/2023] Open
Abstract
The Forkhead Box P3 (FOXP3) protein is an essential transcription factor for the development and function of regulatory T cells (Tregs), involved in the maintenance of immunological tolerance. Although extensive research over the last decade has investigated the critical role of FOXP3+ cells in preserving immune homeostasis, our understanding of their specific functions remains limited. Therefore, unveiling the molecular mechanisms underpinning the up- and downstream transcriptional regulation of and by FOXP3 is crucial for developing Treg-targeted therapeutics. Dysfunctions in FOXP3+ Tregs have also been found to be inherent drivers of autoimmune disorders and have been shown to exhibit multifaceted functions in the context of cancer. Recent research suggests that these cells may also be involved in tissue-specific repair and regeneration. Herein, we summarize current understanding of the thymic-transcriptional regulatory landscape of FOXP3+ Tregs, their epigenetic modulators, and associated signaling pathways. Finally, we highlight the contributions of FOXP3 on the functional development of Tregs and reflect on the clinical implications in the context of pathological and physiological immune responses.
Collapse
Affiliation(s)
| | - Juan Carlos Zúñiga-Pflücker
- Department of Immunology, University of Toronto, Toronto, ON, Canada
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
| |
Collapse
|
15
|
McCaffrey TA, Toma I, Yang Z, Katz R, Reiner J, Mazhari R, Shah P, Falk Z, Wargowsky R, Goldman J, Jones D, Shtokalo D, Antonets D, Jepson T, Fetisova A, Jaatinen K, Ree N, Ri M. RNAseq profiling of blood from patients with coronary artery disease: Signature of a T cell imbalance. JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY PLUS 2023; 4:100033. [PMID: 37303712 PMCID: PMC10256136 DOI: 10.1016/j.jmccpl.2023.100033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Background Cardiovascular disease had a global prevalence of 523 million cases and 18.6 million deaths in 2019. The current standard for diagnosing coronary artery disease (CAD) is coronary angiography either by invasive catheterization (ICA) or computed tomography (CTA). Prior studies employed single-molecule, amplification-independent RNA sequencing of whole blood to identify an RNA signature in patients with angiographically confirmed CAD. The present studies employed Illumina RNAseq and network co-expression analysis to identify systematic changes underlying CAD. Methods Whole blood RNA was depleted of ribosomal RNA (rRNA) and analyzed by Illumina total RNA sequencing (RNAseq) to identify transcripts associated with CAD in 177 patients presenting for elective invasive coronary catheterization. The resulting transcript counts were compared between groups to identify differentially expressed genes (DEGs) and to identify patterns of changes through whole genome co-expression network analysis (WGCNA). Results The correlation between Illumina amplified RNAseq and the prior SeqLL unamplified RNAseq was quite strong (r = 0.87), but there was only 9 % overlap in the DEGs identified. Consistent with the prior RNAseq, the majority (93 %) of DEGs were down-regulated ~1.7-fold in patients with moderate to severe CAD (>20 % stenosis). DEGs were predominantly related to T cells, consistent with known reductions in Tregs in CAD. Network analysis did not identify pre-existing modules with a strong association with CAD, but patterns of T cell dysregulation were evident. DEGs were enriched for transcripts associated with ciliary and synaptic transcripts, consistent with changes in the immune synapse of developing T cells. Conclusions These studies confirm and extend a novel mRNA signature of a Treg-like defect in CAD. The pattern of changes is consistent with stress-related changes in the maturation of T and Treg cells, possibly due to changes in the immune synapse.
Collapse
Affiliation(s)
- Timothy A. McCaffrey
- Department of Medicine, Division of Genomic Medicine, The George Washington University, 2300 I Street NW, Washington, DC 20037, United States of America
- The St. Laurent Institute, 317 New Boston Street, Woburn, MA 01801, United States of America
- Department of Microbiology, Immunology, and Tropical Medicine, The George Washington University, 2300 I Street NW, Washington, DC 20037, United States of America
- True Bearing Diagnostics, 2450 Virginia Avenue, Washington, DC 20037, United States of America
| | - Ian Toma
- Department of Medicine, Division of Genomic Medicine, The George Washington University, 2300 I Street NW, Washington, DC 20037, United States of America
- Department of Clinical Research and Leadership, The George Washington University, 2300 I Street NW, Washington, DC 20037, United States of America
- True Bearing Diagnostics, 2450 Virginia Avenue, Washington, DC 20037, United States of America
| | - Zhaoqing Yang
- Department of Medicine, Division of Genomic Medicine, The George Washington University, 2300 I Street NW, Washington, DC 20037, United States of America
| | - Richard Katz
- Department of Medicine, Division of Cardiology, The George Washington University, 2300 I Street NW, Washington, DC 20037, United States of America
| | - Jonathan Reiner
- Department of Medicine, Division of Cardiology, The George Washington University, 2300 I Street NW, Washington, DC 20037, United States of America
| | - Ramesh Mazhari
- Department of Medicine, Division of Cardiology, The George Washington University, 2300 I Street NW, Washington, DC 20037, United States of America
| | - Palak Shah
- INOVA Heart and Vascular Institute, 3300 Gallows Road, Fairfax, VA 22042, United States of America
| | - Zachary Falk
- Department of Medicine, Division of Genomic Medicine, The George Washington University, 2300 I Street NW, Washington, DC 20037, United States of America
| | - Richard Wargowsky
- Department of Medicine, Division of Genomic Medicine, The George Washington University, 2300 I Street NW, Washington, DC 20037, United States of America
| | - Jennifer Goldman
- Department of Medicine, Division of Genomic Medicine, The George Washington University, 2300 I Street NW, Washington, DC 20037, United States of America
| | - Dan Jones
- SeqLL, Inc., 3 Federal Street, Billerica, MA 01821, United States of America
| | - Dmitry Shtokalo
- The St. Laurent Institute, 317 New Boston Street, Woburn, MA 01801, United States of America
- A.P. Ershov Institute of Informatics Systems SB RAS, 6, Acad. Lavrentyeva Ave, Novosibirsk 630090, Russia
| | - Denis Antonets
- The St. Laurent Institute, 317 New Boston Street, Woburn, MA 01801, United States of America
| | - Tisha Jepson
- Department of Medicine, Division of Genomic Medicine, The George Washington University, 2300 I Street NW, Washington, DC 20037, United States of America
- The St. Laurent Institute, 317 New Boston Street, Woburn, MA 01801, United States of America
- True Bearing Diagnostics, 2450 Virginia Avenue, Washington, DC 20037, United States of America
| | - Anastasia Fetisova
- Department of Medicine, Division of Genomic Medicine, The George Washington University, 2300 I Street NW, Washington, DC 20037, United States of America
| | - Kevin Jaatinen
- Department of Medicine, Division of Genomic Medicine, The George Washington University, 2300 I Street NW, Washington, DC 20037, United States of America
| | - Natalia Ree
- Center for Mitochondrial Functional Genomics, Institute of Living Systems, Immanuel Kant Baltic Federal University, Kalingrad 236040, Russia
| | - Maxim Ri
- The St. Laurent Institute, 317 New Boston Street, Woburn, MA 01801, United States of America
- A.P. Ershov Institute of Informatics Systems SB RAS, 6, Acad. Lavrentyeva Ave, Novosibirsk 630090, Russia
| |
Collapse
|
16
|
van Gulijk M, van Krimpen A, Schetters S, Eterman M, van Elsas M, Mankor J, Klaase L, de Bruijn M, van Nimwegen M, van Tienhoven T, van Ijcken W, Boon L, van der Schoot J, Verdoes M, Scheeren F, van der Burg SH, Lambrecht BN, Stadhouders R, Dammeijer F, Aerts J, van Hall T. PD-L1 checkpoint blockade promotes regulatory T cell activity that underlies therapy resistance. Sci Immunol 2023; 8:eabn6173. [PMID: 37205768 DOI: 10.1126/sciimmunol.abn6173] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 04/24/2023] [Indexed: 05/21/2023]
Abstract
Despite the clinical success of immune checkpoint blockade (ICB), in certain cancer types, most patients with cancer do not respond well. Furthermore, in patients for whom ICB is initially successful, this is often short-lived because of the development of resistance to ICB. The mechanisms underlying primary or secondary ICB resistance are incompletely understood. Here, we identified preferential activation and enhanced suppressive capacity of regulatory T cells (Treg cells) in αPD-L1 therapy-resistant solid tumor-bearing mice. Treg cell depletion reversed resistance to αPD-L1 with concomitant expansion of effector T cells. Moreover, we found that tumor-infiltrating Treg cells in human patients with skin cancer, and in patients with non-small cell lung cancer, up-regulated a suppressive transcriptional gene program after ICB treatment, which correlated with lack of treatment response. αPD-1/PD-L1-induced PD-1+ Treg cell activation was also seen in peripheral blood of patients with lung cancer and mesothelioma, especially in nonresponders. Together, these data reveal that treatment with αPD-1 and αPD-L1 unleashes the immunosuppressive role of Treg cells, resulting in therapy resistance, suggesting that Treg cell targeting is an important adjunct strategy to enhance therapeutic efficacy.
Collapse
Affiliation(s)
- Mandy van Gulijk
- Department of Pulmonary Medicine, Erasmus Medical Center Rotterdam, Rotterdam, Netherlands
- Erasmus MC Cancer Institute, Erasmus Medical Center Rotterdam, Rotterdam, Netherlands
| | - Anneloes van Krimpen
- Department of Pulmonary Medicine, Erasmus Medical Center Rotterdam, Rotterdam, Netherlands
- Erasmus MC Cancer Institute, Erasmus Medical Center Rotterdam, Rotterdam, Netherlands
| | - Sjoerd Schetters
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Mike Eterman
- Department of Pulmonary Medicine, Erasmus Medical Center Rotterdam, Rotterdam, Netherlands
- Erasmus MC Cancer Institute, Erasmus Medical Center Rotterdam, Rotterdam, Netherlands
| | - Marit van Elsas
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, Netherlands
| | - Joanne Mankor
- Department of Pulmonary Medicine, Erasmus Medical Center Rotterdam, Rotterdam, Netherlands
- Erasmus MC Cancer Institute, Erasmus Medical Center Rotterdam, Rotterdam, Netherlands
| | - Larissa Klaase
- Department of Pulmonary Medicine, Erasmus Medical Center Rotterdam, Rotterdam, Netherlands
| | - Marjolein de Bruijn
- Department of Pulmonary Medicine, Erasmus Medical Center Rotterdam, Rotterdam, Netherlands
| | - Menno van Nimwegen
- Department of Pulmonary Medicine, Erasmus Medical Center Rotterdam, Rotterdam, Netherlands
| | - Tim van Tienhoven
- Department of Pulmonary Medicine, Erasmus Medical Center Rotterdam, Rotterdam, Netherlands
| | - Wilfred van Ijcken
- Department of Biomics, Erasmus Medical Center Rotterdam, Rotterdam, Netherlands
| | | | - Johan van der Schoot
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Martijn Verdoes
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
- Institute for Chemical Immunology, Nijmegen, Netherlands
| | - Ferenc Scheeren
- Department of Dermatology, Leiden University Medical Center, Leiden, Netherlands
| | - Sjoerd H van der Burg
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, Netherlands
| | - Bart N Lambrecht
- Department of Pulmonary Medicine, Erasmus Medical Center Rotterdam, Rotterdam, Netherlands
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Ralph Stadhouders
- Department of Pulmonary Medicine, Erasmus Medical Center Rotterdam, Rotterdam, Netherlands
- Department of Cell Biology, Erasmus Medical Center Rotterdam, Rotterdam, Netherlands
| | - Floris Dammeijer
- Department of Pulmonary Medicine, Erasmus Medical Center Rotterdam, Rotterdam, Netherlands
- Erasmus MC Cancer Institute, Erasmus Medical Center Rotterdam, Rotterdam, Netherlands
| | - Joachim Aerts
- Department of Pulmonary Medicine, Erasmus Medical Center Rotterdam, Rotterdam, Netherlands
- Erasmus MC Cancer Institute, Erasmus Medical Center Rotterdam, Rotterdam, Netherlands
| | - Thorbald van Hall
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
17
|
Zhuo B, Zhang Q, Xie T, Wang Y, Chen Z, Zuo D, Guo B. Integrative epigenetic analysis reveals AP-1 promotes activation of tumor-infiltrating regulatory T cells in HCC. Cell Mol Life Sci 2023; 80:103. [PMID: 36941472 PMCID: PMC11071886 DOI: 10.1007/s00018-023-04746-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/06/2023] [Accepted: 03/02/2023] [Indexed: 03/23/2023]
Abstract
Regulatory T (Treg) cells that infiltrate human tumors exhibit stronger immunosuppressive activity compared to peripheral blood Treg cells (PBTRs), thus hindering the induction of effective antitumor immunity. Previous transcriptome studies have identified a set of genes that are conserved in tumor-infiltrating Treg cells (TITRs). However, epigenetic profiles of TITRs have not yet been completely deciphered. Here, we employed ATAC-seq and CUT&Tag assays to integrate transcriptome profiles and identify functional regulatory elements in TITRs. We observed a global difference in chromatin accessibility and enhancer landscapes between TITRs and PBTRs. We identified two types of active enhancer formation in TITRs. The H3K4me1-predetermined enhancers are poised to be activated in response to tumor microenvironmental stimuli. We found that AP-1 family motifs are enriched at the enhancer regions of TITRs. Finally, we validated that c-Jun binds at regulatory regions to regulate signature genes of TITRs and AP-1 is required for Treg cells activation in vitro. High c-Jun expression is correlated with poor survival in human HCC. Overall, our results provide insights into the mechanism of AP-1-mediated activation of TITRs and can hopefully be used to develop new therapeutic strategies targeting TITRs in liver cancer treatment.
Collapse
Affiliation(s)
- Baowen Zhuo
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, China
- Medical Research Institute, Shenzhen Baoan Women's and Children's Hospital, Jinan University, Shenzhen, 518102, Guangdong, China
| | - Qifan Zhang
- Department of General Surgery, Division of Hepatobiliopancreatic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Tingyan Xie
- Medical Research Institute, Shenzhen Baoan Women's and Children's Hospital, Jinan University, Shenzhen, 518102, Guangdong, China
| | - Yidan Wang
- Department of Laboratory Medicine, Shenzhen Baoan Women's and Children's Hospital, Jinan University, Shenzhen, 518102, Guangdong, China
| | - Zhengliang Chen
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| | - Daming Zuo
- Department of Medical Laboratory, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| | - Bo Guo
- Medical Research Institute, Shenzhen Baoan Women's and Children's Hospital, Jinan University, Shenzhen, 518102, Guangdong, China.
| |
Collapse
|
18
|
Riet T, Chmielewski M. Regulatory CAR-T cells in autoimmune diseases: Progress and current challenges. Front Immunol 2022; 13:934343. [PMID: 36032080 PMCID: PMC9399761 DOI: 10.3389/fimmu.2022.934343] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
CAR (Chimeric Antigen Receptor) T-cell therapy has revolutionized the field of oncology in recent years. This innovative shift in cancer treatment also provides the opportunity to improve therapies for many patients suffering from various autoimmune diseases. Recent studies have confirmed the therapeutic suppressive potential of regulatory T cells (Tregs) to modulate immune response in autoimmune diseases. However, the polyclonal character of regulatory T cells and their unknown TCR specificity impaired their therapeutic potency in clinical implementation. Genetical engineering of these immune modulating cells to express antigen-specific receptors and using them therapeutically is a logical step on the way to overcome present limitations of the Treg strategy for the treatment of autoimmune diseases. Encouraging preclinical studies successfully demonstrated immune modulating properties of CAR Tregs in various mouse models. Still, there are many concerns about targeted Treg therapies relating to CAR target selectivity, suppressive functions, phenotype stability and safety aspects. Here, we summarize recent developments in CAR design, Treg biology and future strategies and perspectives in CAR Treg immunotherapy aiming at clinical translation.
Collapse
|
19
|
Abstract
The transforming growth factor-β (TGF-β) family includes cytokines controlling cell behavior, differentiation and homeostasis of various tissues including components of the immune system. Despite well recognized importance of TGF-β in controlling T cell functions, the immunomodulatory roles of many other members of the TGF-β cytokine family, especially bone morphogenetic proteins (BMPs), start to emerge. Bone Morphogenic Protein Receptor 1α (BMPR1α) is upregulated by activated effector and Foxp3+ regulatory CD4+ T cells (Treg cells) and modulates functions of both of these cell types. BMPR1α inhibits generation of proinflammatory Th17 cells and sustains peripheral Treg cells. This finding underscores the importance of the BMPs in controlling Treg cell plasticity and transition between Treg and Th cells. BMPR1α deficiency in in vitro induced and peripheral Treg cells led to upregulation of Kdm6b (Jmjd3) demethylase, an antagonist of polycomb repressive complex 2 (PRC2), and cell cycle inhibitor Cdkn1a (p21Cip1) promoting cell senescence. This indicates that BMPs and BMPR1α may represent regulatory modules shaping epigenetic landscape and controlling proinflammatory reprogramming of Th and Treg cells. Revealing functions of other BMP receptors and their crosstalk with receptors for TGF-β will contribute to our understanding of peripheral immunoregulation.
Collapse
Affiliation(s)
- Piotr Kraj
- Department of Biological Sciences, Old Dominion University, Norfolk, VA, United States
| |
Collapse
|
20
|
Campe J, Ullrich E. T Helper Cell Lineage-Defining Transcription Factors: Potent Targets for Specific GVHD Therapy? Front Immunol 2022; 12:806529. [PMID: 35069590 PMCID: PMC8766661 DOI: 10.3389/fimmu.2021.806529] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 12/14/2021] [Indexed: 12/12/2022] Open
Abstract
Allogenic hematopoietic stem cell transplantation (allo-HSCT) represents a potent and potentially curative treatment for many hematopoietic malignancies and hematologic disorders in adults and children. The donor-derived immunity, elicited by the stem cell transplant, can prevent disease relapse but is also responsible for the induction of graft-versus-host disease (GVHD). The pathophysiology of acute GVHD is not completely understood yet. In general, acute GVHD is driven by the inflammatory and cytotoxic effect of alloreactive donor T cells. Since several experimental approaches indicate that CD4 T cells play an important role in initiation and progression of acute GVHD, the contribution of the different CD4 T helper (Th) cell subtypes in the pathomechanism and regulation of the disease is a central point of current research. Th lineages derive from naïve CD4 T cell progenitors and lineage commitment is initiated by the surrounding cytokine milieu and subsequent changes in the transcription factor (TF) profile. Each T cell subtype has its own effector characteristics, immunologic function, and lineage specific cytokine profile, leading to the association with different immune responses and diseases. Acute GVHD is thought to be mainly driven by the Th1/Th17 axis, whereas Treg cells are attributed to attenuate GVHD effects. As the differentiation of each Th subset highly depends on the specific composition of activating and repressing TFs, these present a potent target to alter the Th cell landscape towards a GVHD-ameliorating direction, e.g. by inhibiting Th1 and Th17 differentiation. The finding, that targeting of Th1 and Th17 differentiation appears more effective for GVHD-prevention than a strategy to inhibit Th1 and Th17 cytokines supports this concept. In this review, we shed light on the current advances of potent TF inhibitors to alter Th cell differentiation and consecutively attenuate GVHD. We will focus especially on preclinical studies and outcomes of TF inhibition in murine GVHD models. Finally, we will point out the possible impact of a Th cell subset-specific immune modulation in context of GVHD.
Collapse
Affiliation(s)
- Julia Campe
- Experimental Immunology, Children's University Hospital, Goethe University Frankfurt, Frankfurt am Main, Germany.,Children's University Hospital, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Evelyn Ullrich
- Experimental Immunology, Children's University Hospital, Goethe University Frankfurt, Frankfurt am Main, Germany.,Children's University Hospital, Goethe University Frankfurt, Frankfurt am Main, Germany.,Frankfurt Cancer Institute, Goethe University Frankfurt, Frankfurt am Main, Germany.,German Cancer Consortium (Deutsches Konsortium für Translationale Krebsforschung (DKTK)), Partner Site Frankfurt/Mainz, Frankfurt am Main, Germany
| |
Collapse
|
21
|
Rajendeeran A, Tenbrock K. Regulatory T cell function in autoimmune disease. J Transl Autoimmun 2022; 4:100130. [PMID: 35005594 PMCID: PMC8716637 DOI: 10.1016/j.jtauto.2021.100130] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/26/2021] [Indexed: 12/16/2022] Open
Abstract
Autoimmune diseases are characterized by a failure of tolerance to own body components resulting in tissue damage. Regulatory T cells are gatekeepers of tolerance. This review focusses on the function and pathophysiology of regulatory T cells in the context of autoimmune diseases including rheumatoid and juvenile idiopathic arthritis as well as systemic lupus erythematosus with an overview over current and future therapeutic options to boost Treg function. Regulatory T cells are critical mediators of immune tolerance and critically depend on external IL-2. Tregs are expanded during inflammation, where the local milieu enhances resistance to suppression in T effector cells. Human Tregs are characterized by different markers, which hampers the comparability of studies in patients with autoimmunity.
Collapse
Affiliation(s)
- Anandi Rajendeeran
- RWTH Aachen University, Department of Pediatrics, Pediatric Rheumatology, Pauwelsstr 30, 52074, Aachen, Germany
| | - Klaus Tenbrock
- RWTH Aachen University, Department of Pediatrics, Pediatric Rheumatology, Pauwelsstr 30, 52074, Aachen, Germany
| |
Collapse
|
22
|
Li D, Cheng J, Calderone R, Bellanti JA. Measurements of Treg Cell Induction by Candida albicans DNA Using Flow Cytometry. Methods Mol Biol 2022; 2542:301-306. [PMID: 36008674 DOI: 10.1007/978-1-0716-2549-1_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Microbiota and their metabolites in the human gut regulate a variety of immune cells including regulatory T cells (Treg cells) and cytokine production. The T helper 17 (Th17)/Treg ratio biomarker (Th17/Treg), for example, has been linked to the development and progression of certain inflammatory diseases, insulin resistance, and systemic lupus erythematosus (SLE). Candida albicans is an opportunistic fungal pathogen that also colonizes the gut. T cell reactivity through T helper cells play critical roles in fungal clearance by the host through the secretion of proinflammatory cytokines. While these cytokines are mainly produced by the Th1 and Th17 subsets of T cells, another subset of T cells, the Treg cells, are also induced by antigenic ligands from pathogens that inhibit the responses of other effector T cells during the inflammation. The antigenic ligands for Treg induction have been found to include microbial cell wall polysaccharides (PSA), metabolites like short chain fatty acids (SCFA), or even microbial DNA.
Collapse
Affiliation(s)
- Dongmei Li
- Department of Microbiology & Immunology, Georgetown University Medical Center, Washington, DC, USA
| | - Jie Cheng
- Department of Microbiology & Immunology, Georgetown University Medical Center, Washington, DC, USA
| | - Richard Calderone
- Department of Microbiology & Immunology, Georgetown University Medical Center, Washington, DC, USA
| | - Joseph A Bellanti
- Department of Microbiology & Immunology, Georgetown University Medical Center, Washington, DC, USA
- Department of Pediatrics, Georgetown University Medical Center, Washington, DC, USA
| |
Collapse
|
23
|
Zhong Y, Walker SK, Pritykin Y, Leslie CS, Rudensky AY, van der Veeken J. Hierarchical regulation of the resting and activated T cell epigenome by major transcription factor families. Nat Immunol 2021; 23:122-134. [PMID: 34937932 PMCID: PMC8712421 DOI: 10.1038/s41590-021-01086-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 11/02/2021] [Indexed: 12/24/2022]
Abstract
T cell activation, a key early event in the adaptive immune response, is subject to elaborate transcriptional control. Here, we examined how the activities of eight major transcription factor (TF) families are integrated to shape the epigenome of naïve and activated CD4 and CD8 T cells. By leveraging extensive polymorphisms in evolutionarily divergent mice, we identified the “heavy lifters” positively influencing chromatin accessibility. Members of Ets, Runx, and TCF/Lef TF families occupied the vast majority of accessible chromatin regions, acting as “housekeepers”, “universal amplifiers”, and “placeholders”, respectively, at sites that maintained or gained accessibility upon T cell activation. Additionally, a small subset of strongly induced immune response genes displayed a non-canonical TF recruitment pattern. Our study provides a key resource and foundation for the understanding of transcriptional and epigenetic regulation in T cells and offers a new perspective on the hierarchical interactions between critical TFs.
Collapse
|
24
|
Li J, Xia Y, Fan X, Wu X, Yang F, Hu S, Wang Z. HUWE1 Causes an Immune Imbalance in Immune Thrombocytopenic Purpura by Reducing the Number and Function of Treg Cells Through the Ubiquitination Degradation of Ets-1. Front Cell Dev Biol 2021; 9:708562. [PMID: 34900980 PMCID: PMC8660631 DOI: 10.3389/fcell.2021.708562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 10/18/2021] [Indexed: 12/14/2022] Open
Abstract
Background: Immune thrombocytopenic purpura (ITP) is an autoimmune bleeding disorder and the decreased number and immunosuppressive dysfunction of Treg cells are key promoters of ITP. However, their mechanisms in ITP development have not been fully clarified. Methods: HUWE1 mRNA and protein levels in CD4+ T cells in peripheral blood from ITP patients were assessed by quantitative real-time PCR and Western blot. HUWE1 function in ITP was estimated using flow cytometry, enzyme-linked immunosorbent assay and immunosuppression assay. Besides, the HUWE1 mechanism in reducing the number and function of Treg cells in ITP was investigated by immunoprecipitation, cycloheximide-chase assay, ubiquitin experiment and immunofluorescence assay. Results: HUWE1 expression was elevated in CD4+ T cells in peripheral blood from ITP patients and HUWE1 mRNA level was negatively correlated with platelet counts and Treg cell percentage. Moreover, the interference with HUWE1 increased the number of Treg cells and enhanced its immunosuppressive function, and the HUWE1 overexpression produced the opposite results. For the exploration of mechanism, HUWE1 interacted with E26 transformation-specific-1 (Ets-1) and this binding was dependent on the negative regulation of the phosphorylation level of Ets-1 (Thr38) and HUWE1 facilitated the ubiquitin degradation of Ets-1 protein to restrain Treg cell differentiation and weaken their immunosuppressive functions. The in vivo assay confirmed that the HUWE1 inhibitor alleviated ITP in mice. Conclusion: HUWE1 induced the immune imbalance in ITP by decreasing the number and weakening the function of Treg cells through the ubiquitination degradation of Ets-1.
Collapse
Affiliation(s)
- Jianqin Li
- Department of Hematology, The Children's Hospital of Soochow University, Suzhou, China
| | - Yalin Xia
- Department of Hematology, The Children's Hospital of Soochow University, Suzhou, China
| | - Xiaoru Fan
- Department of Hematology, The Children's Hospital of Soochow University, Suzhou, China
| | - Xiaofang Wu
- Department of Hematology, The Children's Hospital of Soochow University, Suzhou, China
| | - Feiyun Yang
- Department of Hematology, The Children's Hospital of Soochow University, Suzhou, China
| | - Shaoyan Hu
- Department of Hematology, The Children's Hospital of Soochow University, Suzhou, China
| | - Zhaoyue Wang
- Department of Hematology, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
25
|
Li J, Xu B, He M, Zong X, Cunningham T, Sha C, Fan Y, Cross R, Hanna JH, Feng Y. Control of Foxp3 induction and maintenance by sequential histone acetylation and DNA demethylation. Cell Rep 2021; 37:110124. [PMID: 34910919 PMCID: PMC8711072 DOI: 10.1016/j.celrep.2021.110124] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 09/07/2021] [Accepted: 11/22/2021] [Indexed: 12/18/2022] Open
Abstract
Regulatory T (Treg) cells play crucial roles in suppressing deleterious immune response. Here, we investigate how Treg cells are mechanistically induced in vitro (iTreg) and stabilized via transcriptional regulation of Treg lineage-specifying factor Foxp3. We find that acetylation of histone tails at the Foxp3 promoter is required for inducing Foxp3 transcription. Upon induction, histone acetylation signals via bromodomain-containing proteins, particularly targets of inhibitor JQ1, and sustains Foxp3 transcription via a global or trans effect. Subsequently, Tet-mediated DNA demethylation of Foxp3 cis-regulatory elements, mainly enhancer CNS2, increases chromatin accessibility and protein binding, stabilizing Foxp3 transcription and obviating the need for the histone acetylation signal. These processes transform stochastic iTreg induction into a stable cell fate, with the former sensitive and the latter resistant to genetic and environmental perturbations. Thus, sequential histone acetylation and DNA demethylation in Foxp3 induction and maintenance reflect stepwise mechanical switches governing iTreg cell lineage specification.
Collapse
Affiliation(s)
- Jun Li
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Beisi Xu
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Minghong He
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Xinying Zong
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Trevor Cunningham
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Cher Sha
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Yiping Fan
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Richard Cross
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jacob H Hanna
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Yongqiang Feng
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
26
|
Hatzioannou A, Boumpas A, Papadopoulou M, Papafragkos I, Varveri A, Alissafi T, Verginis P. Regulatory T Cells in Autoimmunity and Cancer: A Duplicitous Lifestyle. Front Immunol 2021; 12:731947. [PMID: 34539668 PMCID: PMC8446642 DOI: 10.3389/fimmu.2021.731947] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/18/2021] [Indexed: 01/08/2023] Open
Abstract
Regulatory T (Treg) cells, possess a strategic role in the maintenance of immune homeostasis, and their function has been closely linked to development of diverse pathologies including autoimmunity and cancer. Comprehensive studies in various disease contexts revealed an increased plasticity as a characteristic of Treg cells. Although Treg cell plasticity comes in various flavors, the major categories enclose the loss of Foxp3 expression, which is the master regulator of Treg cell lineage, giving rise to “ex-Treg” cells and the “fragile” Treg cells in which FOXP3 expression is retained but accompanied by the engagement of an inflammatory program and attenuation of the suppressive activity. Treg cell plasticity possess a tremendous therapeutic potential either by inducing Treg cell de-stabilization to promote anti-tumor immunity, or re-enforcing Treg cell stability to attenuate chronic inflammation. Herein, we review the literature on the Treg cell plasticity with lessons learned in autoimmunity and cancer and discuss challenges and open questions with potential therapeutic implications.
Collapse
Affiliation(s)
- Aikaterini Hatzioannou
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Athina Boumpas
- Center of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Miranta Papadopoulou
- Center of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Iosif Papafragkos
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology - Hellas (FORTH), Heraklion, Greece.,Laboratory of Immune Regulation and Tolerance, Division of Basic Sciences, Medical School, University of Crete, Heraklion, Greece
| | - Athina Varveri
- Center of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Themis Alissafi
- Center of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Panayotis Verginis
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany.,Center of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece.,Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology - Hellas (FORTH), Heraklion, Greece.,Laboratory of Immune Regulation and Tolerance, Division of Basic Sciences, Medical School, University of Crete, Heraklion, Greece
| |
Collapse
|
27
|
Lam AJ, Lin DTS, Gillies JK, Uday P, Pesenacker AM, Kobor MS, Levings MK. Optimized CRISPR-mediated gene knockin reveals FOXP3-independent maintenance of human Treg identity. Cell Rep 2021; 36:109494. [PMID: 34348163 DOI: 10.1016/j.celrep.2021.109494] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 06/28/2021] [Accepted: 07/14/2021] [Indexed: 12/30/2022] Open
Abstract
Regulatory T cell (Treg) therapy is a promising curative approach for a variety of immune-mediated conditions. CRISPR-based genome editing allows precise insertion of transgenes through homology-directed repair, but its use in human Tregs has been limited. We report an optimized protocol for CRISPR-mediated gene knockin in human Tregs with high-yield expansion. To establish a benchmark of human Treg dysfunction, we target the master transcription factor FOXP3 in naive and memory Tregs. Although FOXP3-ablated Tregs upregulate cytokine expression, effects on suppressive capacity in vitro manifest slowly and primarily in memory Tregs. Moreover, FOXP3-ablated Tregs retain their characteristic protein, transcriptional, and DNA methylation profile. Instead, FOXP3 maintains DNA methylation at regions enriched for AP-1 binding sites. Thus, although FOXP3 is important for human Treg development, it has a limited role in maintaining mature Treg identity. Optimized gene knockin with human Tregs will enable mechanistic studies and the development of tailored, next-generation Treg cell therapies.
Collapse
Affiliation(s)
- Avery J Lam
- Department of Surgery, University of British Columbia, Vancouver, BC V5Z 1M9, Canada; BC Children's Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada
| | - David T S Lin
- BC Children's Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, BC V6H 3N1, Canada
| | - Jana K Gillies
- Department of Surgery, University of British Columbia, Vancouver, BC V5Z 1M9, Canada; BC Children's Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada
| | - Prakruti Uday
- Department of Surgery, University of British Columbia, Vancouver, BC V5Z 1M9, Canada; BC Children's Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada
| | - Anne M Pesenacker
- Department of Surgery, University of British Columbia, Vancouver, BC V5Z 1M9, Canada; BC Children's Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada
| | - Michael S Kobor
- BC Children's Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, BC V6H 3N1, Canada
| | - Megan K Levings
- Department of Surgery, University of British Columbia, Vancouver, BC V5Z 1M9, Canada; BC Children's Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada; School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
| |
Collapse
|
28
|
Wei X, Zhang J, Zhou X. Ex-TFRs: A Missing Piece of the SLE Puzzle? Front Immunol 2021; 12:662305. [PMID: 33897710 PMCID: PMC8062926 DOI: 10.3389/fimmu.2021.662305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/18/2021] [Indexed: 11/13/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a chronic multi-organ autoimmune disease involving the production of a wide range of autoantibodies and complement activation. The production of these high-affinity autoantibodies requires T cell/B cell collaboration as well as germinal center (GC) formation. T follicular regulatory cells (TFRs) are functional specialized T regulatory cells (Tregs) that safeguard against both self-reactive T and B cells. However, recent evidence suggests that TFRs are not always stable and can lose Foxp3 expression to become pathogenic “ex-TFRs” that gain potent effector functions. In this review, we summarize the literature on intrinsic and extrinsic mechanisms of regulation of TFR stability and discuss the potential role of TFR reprogramming in autoantibody production and SLE pathogenesis.
Collapse
Affiliation(s)
- Xundong Wei
- Center of Biotherapy, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Jianhua Zhang
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China.,CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Xuyu Zhou
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China.,CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| |
Collapse
|
29
|
Bellanti JA, Li D. Treg Cells and Epigenetic Regulation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1278:95-114. [PMID: 33523445 DOI: 10.1007/978-981-15-6407-9_6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The discovery of the epigenetic regulation of Treg cells, a cell population with fundamental immunoregulatory properties, has shed considerable insights into an understanding of the role of these cells in health and disease. Research over the past several years has shown that the interaction of Treg cells with the gut microbiota are critical not only for the development of Treg function in health but also for abnormalities of Treg function that play a critical role in the pathogenesis of human diseases such as the allergic diseases, the autoimmune disorders, and cancer. The equilibrium between phenotypic plasticity and stability of Treg cells is defined by the fine-tuned transcriptional and epigenetic events required to ensure stable expression of Foxp3 in Treg cells. In this chapter, we discuss the molecular events that control Foxp3 gene expression and address the importance of DNA methylation as an important molecular switch that regulates the genetic expression of Treg induction and the possible implications of these findings for the treatment of human diseases characterized by abnormalities of Treg cell function.
Collapse
Affiliation(s)
- Joseph A Bellanti
- Department of Pediatrics, Georgetown University Medical Center, Washington, DC, USA. .,Department of Microbiology-Immunology, Georgetown University Medical Center, Washington, DC, USA. .,International Center for Interdisciplinary Studies of Immunology (ICISI), Georgetown University Medical Center, Washington, DC, USA.
| | - Dongmei Li
- Department of Microbiology-Immunology, Georgetown University Medical Center, Washington, DC, USA.,International Center for Interdisciplinary Studies of Immunology (ICISI), Georgetown University Medical Center, Washington, DC, USA
| |
Collapse
|
30
|
Zeng G, Jin L, Ying Q, Chen H, Thembinkosi MC, Yang C, Zhao J, Ji H, Lin S, Peng R, Zhang M, Sun D. Regulatory T Cells in Cancer Immunotherapy: Basic Research Outcomes and Clinical Directions. Cancer Manag Res 2020; 12:10411-10421. [PMID: 33116895 PMCID: PMC7586057 DOI: 10.2147/cmar.s265828] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 09/08/2020] [Indexed: 01/01/2023] Open
Abstract
Cancer immunotherapy is a promising approach that has recently gained its importance in treating cancer. Despite various approaches of immunotherapies being used to target cancer cells, they are either not effective against all types of cancer or for all patients. Although efforts are being made to improve the cancer immunotherapy in all possible ways, one important hindrance that lowers the immune response to kill cancer cells is the infiltration of Regulatory T (Treg) cells into the tumor cells, favoring tumor progression, on one hand, and inhibiting the activation of T cells to respond to cancer cells, on the other hand. Therefore, new anti-cancer drugs and vaccines fail to show promising results against cancer. This is due to the infiltration of Treg cells into the tumor region and suppression of anti-cancer activity. Thus, regardless of various types of immunotherapies being practiced, understanding the mechanisms of how Treg cells favor tumor progression and inhibition of anti-cancer activity is worthwhile. Therefore, the review highlights the importance of Tregs cells and how depletion of Treg cells can pave the way to an effective immunotherapy by activating the immune responses against cancer.
Collapse
Affiliation(s)
- Guoming Zeng
- Chongqing University of Science and Technology, Chongqing 401331, People's Republic of China.,China Metallurgical Construction Engineering Group Co., Ltd., Chongqing 400044, People's Republic of China
| | - Libo Jin
- Institute of Life Sciences, Wenzhou University, Wenzhou, Zhejiang 325035, People's Republic of China.,Biomedical Collaborative Innovation Center of Zhejiang Province & Engineering Laboratory of Zhejiang Province for Pharmaceutical Development of Growth Factors, Biomedical Collaborative Innovation Center of Wenzhou, Wenzhou, Zhejiang 325035, People's Republic of China
| | - Qinsi Ying
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325035, People's Republic of China
| | - Haojie Chen
- Institute of Life Sciences, Wenzhou University, Wenzhou, Zhejiang 325035, People's Republic of China
| | | | - Chunguang Yang
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang, Liaoning 110016, People's Republic of China
| | - Jinlong Zhao
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang, Liaoning 110016, People's Republic of China
| | - Hao Ji
- Institute of Life Sciences, Wenzhou University, Wenzhou, Zhejiang 325035, People's Republic of China
| | - Sue Lin
- Institute of Life Sciences, Wenzhou University, Wenzhou, Zhejiang 325035, People's Republic of China
| | - Renyi Peng
- Institute of Life Sciences, Wenzhou University, Wenzhou, Zhejiang 325035, People's Republic of China
| | - Maolan Zhang
- Chongqing University of Science and Technology, Chongqing 401331, People's Republic of China.,Institute of Life Sciences, Wenzhou University, Wenzhou, Zhejiang 325035, People's Republic of China
| | - Da Sun
- Institute of Life Sciences, Wenzhou University, Wenzhou, Zhejiang 325035, People's Republic of China
| |
Collapse
|
31
|
Piao W, Xiong Y, Li L, Saxena V, Smith KD, Hippen KL, Paluskievicz C, Willsonshirkey M, Blazar BR, Abdi R, Bromberg JS. Regulatory T Cells Condition Lymphatic Endothelia for Enhanced Transendothelial Migration. Cell Rep 2020; 30:1052-1062.e5. [PMID: 31995749 DOI: 10.1016/j.celrep.2019.12.083] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 11/01/2019] [Accepted: 12/20/2019] [Indexed: 01/28/2023] Open
Abstract
Regulatory T cells (Tregs) express high levels of cell surface lymphotoxin alpha beta (LTα1β2) to activate the LT beta receptor (LTβR) on the lymphatic endothelial cells (LECs), modulating LEC adhesion molecules, intercellular junctions, and chemokines. We demonstrate a role for Tregs through this pathway to condition the permissiveness of lymphatic endothelia for transendothelial migration (TEM), thus gating leukocyte traffic. Human Tregs share the same property with murine Tregs. Activation of TLR2 on Tregs during inflammation specifically augments LTα1β2-LTβR signaling, which further enhances the permissiveness of LECs to facilitate TEM. The conditioning of endothelia may promote the resolution of inflammation by directing leukocytes out of tissues to lymphatic vessels and draining lymph nodes (dLNs). Thus, Tregs interact with lymphatic endothelia under homeostasis and inflammation and dictate endothelial permissiveness and gating mechanisms for subsequent leukocyte migration through endothelial barriers.
Collapse
Affiliation(s)
- Wenji Piao
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Yanbao Xiong
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Lushen Li
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Vikas Saxena
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Kile D Smith
- Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota Cancer Center, Minneapolis, MN 55455, USA
| | - Keli L Hippen
- Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota Cancer Center, Minneapolis, MN 55455, USA
| | - Christina Paluskievicz
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Marina Willsonshirkey
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Bruce R Blazar
- Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota Cancer Center, Minneapolis, MN 55455, USA
| | - Reza Abdi
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jonathan S Bromberg
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
32
|
Andersen L, Gülich AF, Alteneder M, Preglej T, Orola MJ, Dhele N, Stolz V, Schebesta A, Hamminger P, Hladik A, Floess S, Krausgruber T, Faux T, Andrabi SBA, Huehn J, Knapp S, Sparwasser T, Bock C, Laiho A, Elo LL, Rasool O, Lahesmaa R, Sakaguchi S, Ellmeier W. The Transcription Factor MAZR/PATZ1 Regulates the Development of FOXP3 + Regulatory T Cells. Cell Rep 2020; 29:4447-4459.e6. [PMID: 31875552 DOI: 10.1016/j.celrep.2019.11.089] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 10/24/2019] [Accepted: 11/21/2019] [Indexed: 01/22/2023] Open
Abstract
Forkhead box protein P3+ (FOXP3+) regulatory T cells (Treg cells) play a key role in maintaining tolerance and immune homeostasis. Here, we report that a T cell-specific deletion of the transcription factor MAZR (also known as PATZ1) leads to an increased frequency of Treg cells, while enforced MAZR expression impairs Treg cell differentiation. Further, MAZR expression levels are progressively downregulated during thymic Treg cell development and during in-vitro-induced human Treg cell differentiation, suggesting that MAZR protein levels are critical for controlling Treg cell development. However, MAZR-deficient Treg cells show only minor transcriptional changes ex vivo, indicating that MAZR is not essential for establishing the transcriptional program of peripheral Treg cells. Finally, the loss of MAZR reduces the clinical score in dextran-sodium sulfate (DSS)-induced colitis, suggesting that MAZR activity in T cells controls the extent of intestinal inflammation. Together, these data indicate that MAZR is part of a Treg cell-intrinsic transcriptional network that modulates Treg cell development.
Collapse
Affiliation(s)
- Liisa Andersen
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Alexandra Franziska Gülich
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Marlis Alteneder
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Teresa Preglej
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Maria Jonah Orola
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Narendra Dhele
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Valentina Stolz
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Alexandra Schebesta
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Patricia Hamminger
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Anastasiya Hladik
- Laboratory of Infection Biology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Stefan Floess
- Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Thomas Krausgruber
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Thomas Faux
- Medical Bioinformatics Centre, Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Syed Bilal Ahmad Andrabi
- Molecular Systems Immunology, Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Jochen Huehn
- Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Sylvia Knapp
- Laboratory of Infection Biology, Department of Medicine I, Medical University of Vienna, Vienna, Austria; CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Tim Sparwasser
- Department of Medical Microbiology and Hygiene, Medical Center of the Johannes Gutenberg-University of Mainz, Mainz, Germany
| | - Christoph Bock
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria; Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Asta Laiho
- Medical Bioinformatics Centre, Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Laura L Elo
- Medical Bioinformatics Centre, Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Omid Rasool
- Molecular Systems Immunology, Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Riitta Lahesmaa
- Molecular Systems Immunology, Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Shinya Sakaguchi
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Wilfried Ellmeier
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
33
|
Brown CY, Sadlon T, Hope CM, Wong YY, Wong S, Liu N, Withers H, Brown K, Bandara V, Gundsambuu B, Pederson S, Breen J, Robertson SA, Forrest A, Beyer M, Barry SC. Molecular Insights Into Regulatory T-Cell Adaptation to Self, Environment, and Host Tissues: Plasticity or Loss of Function in Autoimmune Disease. Front Immunol 2020; 11:1269. [PMID: 33072063 PMCID: PMC7533603 DOI: 10.3389/fimmu.2020.01269] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 05/19/2020] [Indexed: 12/19/2022] Open
Abstract
There has been much interest in the ability of regulatory T cells (Treg) to switch function in vivo, either as a result of genetic risk of disease or in response to environmental and metabolic cues. The relationship between levels of FOXP3 and functional fitness plays a significant part in this plasticity. There is an emerging role for Treg in tissue repair that may be less dependent on FOXP3, and the molecular mechanisms underpinning this are not fully understood. As a result of detailed, high-resolution functional genomics, the gene regulatory networks and key functional mediators of Treg phenotype downstream of FOXP3 have been mapped, enabling a mechanistic insight into Treg function. This transcription factor-driven programming of T-cell function to generate Treg requires the switching on and off of key genes that form part of the Treg gene regulatory network and raises the possibility that this is reversible. It is plausible that subtle shifts in expression levels of specific genes, including transcription factors and non-coding RNAs, change the regulation of the Treg gene network. The subtle skewing of gene expression initiates changes in function, with the potential to promote chronic disease and/or to license appropriate inflammatory responses. In the case of autoimmunity, there is an underlying genetic risk, and the interplay of genetic and environmental cues is complex and impacts gene regulation networks frequently involving promoters and enhancers, the regulatory elements that control gene expression levels and responsiveness. These promoter–enhancer interactions can operate over long distances and are highly cell type specific. In autoimmunity, the genetic risk can result in changes in these enhancer/promoter interactions, and this mainly impacts genes which are expressed in T cells and hence impacts Treg/conventional T-cell (Tconv) function. Genetic risk may cause the subtle alterations to the responsiveness of gene regulatory networks which are controlled by or control FOXP3 and its target genes, and the application of assays of the 3D organization of chromatin, enabling the connection of non-coding regulatory regions to the genes they control, is revealing the direct impact of environmental/metabolic/genetic risk on T-cell function and is providing mechanistic insight into susceptibility to inflammatory and autoimmune conditions.
Collapse
Affiliation(s)
- Cheryl Y Brown
- Molecular Immunology, Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia
| | - Timothy Sadlon
- Molecular Immunology, Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia.,Women's and Children's Health Network, North Adelaide, SA, Australia
| | | | - Ying Y Wong
- Molecular Immunology, Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia
| | - Soon Wong
- Molecular Immunology, Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia
| | - Ning Liu
- Bioinformatics Hub, University of Adelaide, Adelaide, SA, Australia
| | - Holly Withers
- Molecular Immunology, Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia
| | - Katherine Brown
- Molecular Immunology, Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia
| | - Veronika Bandara
- Molecular Immunology, Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia
| | - Batjargal Gundsambuu
- Molecular Immunology, Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia
| | - Stephen Pederson
- Bioinformatics Hub, University of Adelaide, Adelaide, SA, Australia
| | - James Breen
- Bioinformatics Hub, University of Adelaide, Adelaide, SA, Australia
| | - Sarah Anne Robertson
- Molecular Immunology, Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia
| | - Alistair Forrest
- QEII Medical Centre and Centre for Medical Research, Harry Perkins Institute of Medical Research, Murdoch, WA, Australia
| | - Marc Beyer
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Simon Charles Barry
- Molecular Immunology, Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia.,Women's and Children's Health Network, North Adelaide, SA, Australia
| |
Collapse
|
34
|
Mannie MD, DeOca KB, Bastian AG, Moorman CD. Tolerogenic vaccines: Targeting the antigenic and cytokine niches of FOXP3 + regulatory T cells. Cell Immunol 2020; 355:104173. [PMID: 32712270 PMCID: PMC7444458 DOI: 10.1016/j.cellimm.2020.104173] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/06/2020] [Accepted: 07/10/2020] [Indexed: 02/06/2023]
Abstract
FOXP3+ regulatory T cells (Tregs) constitute a critical barrier that enforces tolerance to both the self-peptidome and the extended-self peptidome to ensure tissue-specific resistance to autoimmune, allergic, and other inflammatory disorders. Here, we review intuitive models regarding how T cell antigen receptor (TCR) specificity and antigen recognition efficiency shape the Treg and conventional T cell (Tcon) repertoires to adaptively regulate T cell maintenance, tissue-residency, phenotypic stability, and immune function in peripheral tissues. Three zones of TCR recognition efficiency are considered, including Tcon recognition of specific low-efficiency self MHC-ligands, Treg recognition of intermediate-efficiency agonistic self MHC-ligands, and Tcon recognition of cross-reactive high-efficiency agonistic foreign MHC-ligands. These respective zones of TCR recognition efficiency are key to understanding how tissue-resident immune networks integrate the antigenic complexity of local environments to provide adaptive decisions setting the balance of suppressive and immunogenic responses. Importantly, deficiencies in the Treg repertoire appear to be an important cause of chronic inflammatory disease. Deficiencies may include global deficiencies in Treg numbers or function, subtle 'holes in the Treg repertoire' in tissue-resident Treg populations, or simply Treg insufficiencies that are unable to counter an overwhelming molecular mimicry stimulus. Tolerogenic vaccination and Treg-based immunotherapy are two therapeutic modalities meant to restore dominance of Treg networks to reverse chronic inflammatory disease. Studies of these therapeutic modalities in a preclinical setting have provided insight into the Treg niche, including the concept that intermediate-efficiency TCR signaling, high IFN-β concentrations, and low IL-2 concentrations favor Treg responses and active dominant mechanisms of immune tolerance. Overall, the purpose here is to assimilate new and established concepts regarding how cognate TCR specificity of the Treg repertoire and the contingent cytokine networks provide a foundation for understanding Treg suppressive strategy.
Collapse
Affiliation(s)
- Mark D Mannie
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, United States.
| | - Kayla B DeOca
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, United States
| | - Alexander G Bastian
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, United States
| | - Cody D Moorman
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, United States
| |
Collapse
|
35
|
Barbato-Ferreira DA, Costa SFDS, Gomez RS, Bastos JV. DNA Methylation patterns of immune response-related genes in inflammatory external root resorption. Braz Oral Res 2020; 34:e087. [PMID: 32785479 DOI: 10.1590/1807-3107bor-2020.vol34.0087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 04/28/2020] [Indexed: 11/22/2022] Open
Abstract
Inflammatory external root resorption (IERR) is a pathological process defined by the progressive loss of dental hard tissue, dentin, and cementum, resulting from the combination of the loss of external root protective apparatus and root canal infection. It has been suggested that healing patterns after tooth replantation may be influenced by the genetic and immunological profiles of the patients. The purpose of the present investigation was to evaluate the DNA methylation patterns of 22 immune response-related genes in extracted human teeth presenting with IERR. Methylation assays were performed on samples of root fragments showing IERR and compared with healthy bone tissue collected during the surgical extraction of impacted teeth. The methylation patterns were quantified using EpiTect Methyl II Signature Human Cytokine Production PCR Array. The results revealed significantly higher hypermethylation of the FOXP3 gene promoter in IERR (65.95%) than in the bone group (23.43%) (p < 0.001). The ELANE gene was also highly methylated in the pooled IERR sample, although the difference was not statistically significant (p= 0.054). Our study suggests that the differential methylation patterns of immune response-related genes, such as FOXP3 and ELANE, may be involved in IERR modulation, and this could be related to the presence of root canal infection. However, further studies are needed to corroborate these findings to determine the functional relevance of these alterations and their role in the pathogenesis of IERR.
Collapse
Affiliation(s)
| | - Sara Ferreira Dos Santos Costa
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ricardo Santiago Gomez
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Juliana Vilela Bastos
- Department of Restorative Dentistry, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| |
Collapse
|
36
|
Ghelani A, Bates D, Conner K, Wu MZ, Lu J, Hu YL, Li CM, Chaudhry A, Sohn SJ. Defining the Threshold IL-2 Signal Required for Induction of Selective Treg Cell Responses Using Engineered IL-2 Muteins. Front Immunol 2020; 11:1106. [PMID: 32582190 PMCID: PMC7291599 DOI: 10.3389/fimmu.2020.01106] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 05/06/2020] [Indexed: 12/29/2022] Open
Abstract
Among all T and NK cell subsets, regulatory T (Treg) cells typically respond to the lowest concentrations of IL-2 due to elevated surface expression of the IL-2R alpha chain (IL2RA; CD25) and the high affinity IL-2 receptor (IL-2R) complex. This enhanced sensitivity forms the basis for low-dose (LD) IL-2 therapy for the treatment of inflammatory diseases, where efficacy correlates with increased Treg cell number and expression of functional markers. Despite strong preclinical support for this approach, moderate and variable clinical efficacy has raised concerns that adequate Treg selectivity still cannot be achieved with LD IL-2, and/or that doses are too low to stimulate effective Treg-mediated suppression within tissues. This has prompted development of IL-2 variants with greater Treg selectivity, achieved through attenuated affinity for the signaling chains of the IL-2R complex (IL2RB or CD122 and IL2RG or CD132) and, consequently, greater reliance on high CD25 levels for full receptor binding and signaling. While certain IL-2 variants have advanced to the clinic, it remains unknown if the full range of IL-2R signaling potency and Treg-selectivity observed with low concentrations of wildtype IL-2 can be sufficiently recapitulated with attenuated IL-2 muteins at high concentrations. Using a panel of engineered IL-2 muteins, we investigated how a range of IL-2R signaling intensity, benchmarked by the degree of STAT5 phosphorylation, relates to biologically relevant Treg cell responses such as proliferation, lineage and phenotypic marker expression, and suppressor function. Our results demonstrate that a surprisingly wide dynamic range of IL-2R signaling intensity leads to productive biological responses in Treg cells, with negligible STAT5 phosphorylation associating with nearly complete downstream effects such as Treg proliferation and suppressor activity. Furthermore, we show with both in vitro and humanized mouse in vivo systems that different biological responses in Treg cells require different minimal IL-2R signaling thresholds. Our findings suggest that more than minimal IL-2R signaling, beyond that capable of driving Treg cell proliferation, may be required to fully enhance Treg cell stability and suppressor function in vivo.
Collapse
Affiliation(s)
- Aazam Ghelani
- Amgen Research, Amgen Inc, South San Francisco, CA, United States
| | - Darren Bates
- Amgen Research, Amgen Inc, South San Francisco, CA, United States
| | - Kip Conner
- Amgen Research, Amgen Inc, South San Francisco, CA, United States
| | - Min-Zu Wu
- Amgen Research, Amgen Inc, South San Francisco, CA, United States
| | - Jiamiao Lu
- Amgen Research, Amgen Inc, South San Francisco, CA, United States
| | - Yi-Ling Hu
- Amgen Research, Amgen Inc, Thousand Oaks, CA, United States
| | - Chi-Ming Li
- Amgen Research, Amgen Inc, South San Francisco, CA, United States
| | | | - Sue J. Sohn
- Amgen Research, Amgen Inc, South San Francisco, CA, United States
| |
Collapse
|
37
|
Ohkura N, Sakaguchi S. Transcriptional and epigenetic basis of Treg cell development and function: its genetic anomalies or variations in autoimmune diseases. Cell Res 2020; 30:465-474. [PMID: 32367041 PMCID: PMC7264322 DOI: 10.1038/s41422-020-0324-7] [Citation(s) in RCA: 204] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 04/08/2020] [Indexed: 01/01/2023] Open
Abstract
Naturally arising regulatory CD4+ T (Treg) cells, which specifically express the transcription factor FoxP3 in the nucleus and CD25 and CTLA-4 on the cell surface, are a T-cell subpopulation specialized for immune suppression, playing a key role in maintaining immunological self-tolerance and homeostasis. FoxP3 is required for Treg function, especially for its suppressive activity. However, FoxP3 expression per se is not necessary for Treg cell lineage commitment in the thymus and insufficient for full Treg-type gene expression in mature Treg cells. It is Treg-specific epigenetic changes such as CpG demethylation and histone modification that can confer a stable and heritable pattern of Treg type gene expression on developing Treg cells in a FoxP3-independent manner. Anomalies in the formation of Treg-specific epigenome, in particular, Treg-specific super-enhancers, which largely include Treg-specific DNA demethylated regions, are indeed able to cause autoimmune diseases in rodents. Furthermore, in humans, single nucleotide polymorphisms in Treg-specific DNA demethylated regions associated with Treg signature genes, such as IL2RA (CD25) and CTLA4, can affect the development and function of naïve Treg cells rather than effector T cells. Such genetic variations are therefore causative of polygenic common autoimmune diseases including type 1 diabetes and rheumatoid arthritis via affecting endogenous natural Treg cells. These findings on the transcription factor network with FoxP3 at a key position as well as Treg-specific epigenetic landscape facilitate our understanding of Treg cell development and function, and can be exploited to prepare functionally stable FoxP3-expressing Treg cells from antigen-specific conventional T cells to treat autoimmune diseases.
Collapse
Affiliation(s)
- Naganari Ohkura
- Experimental immunology, Immunology Frontier Research Center, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Shimon Sakaguchi
- Experimental immunology, Immunology Frontier Research Center, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
38
|
Ohkura N, Yasumizu Y, Kitagawa Y, Tanaka A, Nakamura Y, Motooka D, Nakamura S, Okada Y, Sakaguchi S. Regulatory T Cell-Specific Epigenomic Region Variants Are a Key Determinant of Susceptibility to Common Autoimmune Diseases. Immunity 2020; 52:1119-1132.e4. [DOI: 10.1016/j.immuni.2020.04.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 02/19/2020] [Accepted: 04/15/2020] [Indexed: 12/11/2022]
|
39
|
Yang L, Chen Z, Stout ES, Delerue F, Ittner LM, Wilkins MR, Quinlan KGR, Crossley M. Methylation of a CGATA element inhibits binding and regulation by GATA-1. Nat Commun 2020; 11:2560. [PMID: 32444652 PMCID: PMC7244756 DOI: 10.1038/s41467-020-16388-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 04/29/2020] [Indexed: 02/07/2023] Open
Abstract
Alterations in DNA methylation occur during development, but the mechanisms by which they influence gene expression remain uncertain. There are few examples where modification of a single CpG dinucleotide directly affects transcription factor binding and regulation of a target gene in vivo. Here, we show that the erythroid transcription factor GATA-1 — that typically binds T/AGATA sites — can also recognise CGATA elements, but only if the CpG dinucleotide is unmethylated. We focus on a single CGATA site in the c-Kit gene which progressively becomes unmethylated during haematopoiesis. We observe that methylation attenuates GATA-1 binding and gene regulation in cell lines. In mice, converting the CGATA element to a TGATA site that cannot be methylated leads to accumulation of megakaryocyte-erythroid progenitors. Thus, the CpG dinucleotide is essential for normal erythropoiesis and this study illustrates how a single methylated CpG can directly affect transcription factor binding and cellular regulation. While DNA methylation is thought to play a regulatory role, there are few examples where modification of a single CpG dinucleotide directly affects transcription factor binding. Here the authors show that methylation of a single CGATA element within the c-Kit gene inhibits binding and regulation by erythroid transcription factor GATA-1, both in cells and in mice, suggesting that methylation at this site plays an essential role in erythropoiesis.
Collapse
Affiliation(s)
- Lu Yang
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Zhiliang Chen
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Elizabeth S Stout
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Fabien Delerue
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, 2109, Australia.,Mark Wainwright Analytical Centre, Transgenic Animal Unit, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Lars M Ittner
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, 2109, Australia.,Mark Wainwright Analytical Centre, Transgenic Animal Unit, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Marc R Wilkins
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Kate G R Quinlan
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Merlin Crossley
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, NSW, 2052, Australia.
| |
Collapse
|
40
|
Garg G, Muschaweckh A, Moreno H, Vasanthakumar A, Floess S, Lepennetier G, Oellinger R, Zhan Y, Regen T, Hiltensperger M, Peter C, Aly L, Knier B, Palam LR, Kapur R, Kaplan MH, Waisman A, Rad R, Schotta G, Huehn J, Kallies A, Korn T. Blimp1 Prevents Methylation of Foxp3 and Loss of Regulatory T Cell Identity at Sites of Inflammation. Cell Rep 2020; 26:1854-1868.e5. [PMID: 30759395 PMCID: PMC6389594 DOI: 10.1016/j.celrep.2019.01.070] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 12/13/2018] [Accepted: 01/17/2019] [Indexed: 01/16/2023] Open
Abstract
Foxp3+ regulatory T (Treg) cells restrict immune pathology in inflamed tissues; however, an inflammatory environment presents a threat to Treg cell identity and function. Here, we establish a transcriptional signature of central nervous system (CNS) Treg cells that accumulate during experimental autoimmune encephalitis (EAE) and identify a pathway that maintains Treg cell function and identity during severe inflammation. This pathway is dependent on the transcriptional regulator Blimp1, which prevents downregulation of Foxp3 expression and “toxic” gain-of-function of Treg cells in the inflamed CNS. Blimp1 negatively regulates IL-6- and STAT3-dependent Dnmt3a expression and function restraining methylation of Treg cell-specific conserved non-coding sequence 2 (CNS2) in the Foxp3 locus. Consequently, CNS2 is heavily methylated when Blimp1 is ablated, leading to a loss of Foxp3 expression and severe disease. These findings identify a Blimp1-dependent pathway that preserves Treg cell stability in inflamed non-lymphoid tissues. Most Foxp3+ Treg cells in the inflamed CNS express Blimp1 Blimp1 inhibits Dnmt3a and prevents methylation of the Foxp3 locus IL-6 contributes to methylation of the Foxp3 locus in a Dnmt3a-dependent manner Blimp1 counteracts the IL-6-driven destabilization of Treg cells
Collapse
Affiliation(s)
- Garima Garg
- Klinikum Rechts der Isar, Department of Experimental Neuroimmunology, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany
| | - Andreas Muschaweckh
- Klinikum Rechts der Isar, Department of Experimental Neuroimmunology, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany
| | - Helena Moreno
- Biomedical Center (BMC) and Center for Integrated Protein Science Munich, Faculty of Medicine, LMU Munich, Grosshaderner Str. 9, 82152 Planegg-Martinsried, Germany
| | - Ajithkumar Vasanthakumar
- The Peter Doherty Institute for Infection and Immunity, University of Melbourne, 792 Elizabeth St., Melbourne Victoria 3000, Australia; The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia
| | - Stefan Floess
- Experimental Immunology, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124 Braunschweig, Germany
| | - Gildas Lepennetier
- Klinikum Rechts der Isar, Department of Experimental Neuroimmunology, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany
| | - Rupert Oellinger
- Institute of Molecular Oncology and Functional Genomics, TranslaTUM Cancer Center, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany; Klinikum Rechts der Isar, Department of Medicine II, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany
| | - Yifan Zhan
- The Peter Doherty Institute for Infection and Immunity, University of Melbourne, 792 Elizabeth St., Melbourne Victoria 3000, Australia; The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia
| | - Tommy Regen
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg University of Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Michael Hiltensperger
- Klinikum Rechts der Isar, Department of Experimental Neuroimmunology, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany
| | - Christian Peter
- Klinikum Rechts der Isar, Department of Experimental Neuroimmunology, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany
| | - Lilian Aly
- Klinikum Rechts der Isar, Department of Experimental Neuroimmunology, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Feodor-Lynen-Str. 17, 81377 Munich, Germany
| | - Benjamin Knier
- Klinikum Rechts der Isar, Department of Experimental Neuroimmunology, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany
| | - Lakshmi Reddy Palam
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, 1044 West Walnut St., Indianapolis, IN 46202, USA
| | - Reuben Kapur
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, 1044 West Walnut St., Indianapolis, IN 46202, USA
| | - Mark H Kaplan
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, 1044 West Walnut St., Indianapolis, IN 46202, USA
| | - Ari Waisman
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg University of Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Roland Rad
- Institute of Molecular Oncology and Functional Genomics, TranslaTUM Cancer Center, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany; Klinikum Rechts der Isar, Department of Medicine II, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany
| | - Gunnar Schotta
- Biomedical Center (BMC) and Center for Integrated Protein Science Munich, Faculty of Medicine, LMU Munich, Grosshaderner Str. 9, 82152 Planegg-Martinsried, Germany
| | - Jochen Huehn
- Experimental Immunology, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124 Braunschweig, Germany
| | - Axel Kallies
- The Peter Doherty Institute for Infection and Immunity, University of Melbourne, 792 Elizabeth St., Melbourne Victoria 3000, Australia; The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia
| | - Thomas Korn
- Klinikum Rechts der Isar, Department of Experimental Neuroimmunology, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Feodor-Lynen-Str. 17, 81377 Munich, Germany.
| |
Collapse
|
41
|
Histone Deacetylation Inhibitors as Modulators of Regulatory T Cells. Int J Mol Sci 2020; 21:ijms21072356. [PMID: 32235291 PMCID: PMC7177531 DOI: 10.3390/ijms21072356] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/12/2020] [Accepted: 03/26/2020] [Indexed: 02/07/2023] Open
Abstract
Regulatory T cells (Tregs) are important mediators of immunological self-tolerance and homeostasis. Being cluster of differentiation 4+Forkhead box protein3+ (CD4+FOXP3+), these cells are a subset of CD4+ T lymphocytes and can originate from the thymus (tTregs) or from the periphery (pTregs). The malfunction of CD4+ Tregs is associated with autoimmune responses such as rheumatoid arthritis (RA), multiple sclerosis (MS), type 1 diabetes (T1D), inflammatory bowel diseases (IBD), psoriasis, systemic lupus erythematosus (SLE), and transplant rejection. Recent evidence supports an opposed role in sepsis. Therefore, maintaining functional Tregs is considered as a therapy regimen to prevent autoimmunity and allograft rejection, whereas blocking Treg differentiation might be favorable in sepsis patients. It has been shown that Tregs can be generated from conventional naïve T cells, called iTregs, due to their induced differentiation. Moreover, Tregs can be effectively expanded in vitro based on blood-derived tTregs. Taking into consideration that the suppressive role of Tregs has been mainly attributed to the expression and function of the transcription factor Foxp3, modulating its expression and binding to the promoter regions of target genes by altering the chromatin histone acetylation state may turn out beneficial. Hence, we discuss the role of histone deacetylation inhibitors as epigenetic modulators of Tregs in this review in detail.
Collapse
|
42
|
Ono M. Control of regulatory T-cell differentiation and function by T-cell receptor signalling and Foxp3 transcription factor complexes. Immunology 2020; 160:24-37. [PMID: 32022254 DOI: 10.1111/imm.13178] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 12/18/2019] [Accepted: 01/11/2020] [Indexed: 12/11/2022] Open
Abstract
The transcription factor Foxp3 controls the differentiation and function of regulatory T-cells (Treg). Studies in the past decades identified numerous Foxp3-interacting protein partners. However, it is still not clear how Foxp3 produces the Treg-type transcriptomic landscape through cooperating with its partners. Here I show the current understanding of how Foxp3 transcription factor complexes regulate the differentiation, maintenance and functional maturation of Treg. Importantly, T-cell receptor (TCR) signalling plays central roles in Treg differentiation and Foxp3-mediated gene regulation. Differentiating Treg will have recognized their cognate antigens and received TCR signals before initiating Foxp3 transcription, which is triggered by TCR-induced transcription factors including NFAT, AP-1 and NF-κB. Once expressed, Foxp3 seizes TCR signal-induced transcriptional and epigenetic mechanisms through interacting with AML1/Runx1 and NFAT. Thus, Foxp3 modifies gene expression dynamics of TCR-induced genes, which constitute cardinal mechanisms for Treg-mediated immune suppression. Next, I discuss the following key topics, proposing new mechanistic models for Foxp3-mediated gene regulation: (i) how Foxp3 transcription is induced and maintained by the Foxp3-inducing enhanceosome and the Foxp3 autoregulatory transcription factor complex; (ii) molecular mechanisms for effector Treg differentiation (i.e. Treg maturation); (iii) how Foxp3 activates or represses its target genes through recruiting coactivators and corepressors; (iv) the 'decision-making' Foxp3-containing transcription factor complex for Th17 and Treg differentiation; and (v) the roles of post-translational modification in Foxp3 regulation. Thus, this article provides cutting-edge understanding of molecular biology of Foxp3 and Treg, integrating findings by biochemical and genomic studies.
Collapse
Affiliation(s)
- Masahiro Ono
- Department of Life Sciences, Imperial College London, London, UK
| |
Collapse
|
43
|
Epigenetical Targeting of the FOXP3 Gene by S-Adenosylmethionine Diminishes the Suppressive Capacity of Regulatory T Cells Ex Vivo and Alters the Expression Profiles. J Immunother 2020; 42:11-22. [PMID: 30407230 DOI: 10.1097/cji.0000000000000247] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Regulatory T cells (Treg cells), a subgroup of CD4 lymphocytes, play a crucial role in serving as an immune suppressor and in maintaining peripheral tolerance. As the accumulation of Treg cells in the tumor microenvironment is significantly associated with a decreased survival time of patients, they are considered as an important therapeutic target in the immunotherapy of human cancers. These cells are either derived from the thymus, which are called (CD4CD25CD127) natural Treg cells (nTreg cells), or they are generated from CD4CD25 naive T cells by transforming growth factor-beta 1 and interleukin 2 (IL-2) in the periphery, which are called induced Treg cells (iTreg cells). Although iTreg cells are unstable, nTreg cells stably express forkhead box P3 (FOXP3) protein. Moreover, nTreg cells can be classified as memory (CD45RA) and naive (CD45RA) Treg cells, and this classification is based on the expression of CD45RA. FOXP3, which is a master regulator transcription factor, is essential for the functions of Treg cells, and it is mainly controlled by epigenetic mechanisms. The cyclooxygenase 2 (COX2)/prostaglandin E2 (PGE2) pathway is also reported to contribute to the regulatory functions of tumor-infiltrating Treg cells. As a new approach, we investigated whether S-adenosylmethionine (SAM), a substrate of DNA methyltransferase, attenuates the immune-suppressive capacity of the naive subtype of nTreg cells (CD4CD25CD127CD45RA). Moreover, we examined the effects of PGE2/COX2 pathway blockers on the suppressive capacity of Treg cells. We found that SAM diminished the suppression competency of Treg cells by decreasing the FOXP3 mRNA and protein levels in a dose-dependent manner. SAM increased the DNA methylation of FOXP3 at the first intron site. In addition, SAM decreased the mRNA and protein levels of the IL-10 cytokine, which has suppressive roles in the immune system. Moreover, mRNA levels of interferon gamma (IFNG) were found to be increased. COX2 inhibition and blockage of PGE2 receptors also reduced the protein and mRNA levels of IL-10, but they did not exhibit any significant effect on Treg cells' suppression in the coculture system. Our results show that SAM might be considered and investigated as a promising agent for immunotherapy in the future.
Collapse
|
44
|
Abstract
Foxp3-expressing CD4+ regulatory T (Treg) cells play key roles in the prevention of autoimmunity and the maintenance of immune homeostasis and represent a major barrier to the induction of robust antitumor immune responses. Thus, a clear understanding of the mechanisms coordinating Treg cell differentiation is crucial for understanding numerous facets of health and disease and for developing approaches to modulate Treg cells for clinical benefit. Here, we discuss current knowledge of the signals that coordinate Treg cell development, the antigen-presenting cell types that direct Treg cell selection, and the nature of endogenous Treg cell ligands, focusing on evidence from studies in mice. We also highlight recent advances in this area and identify key unanswered questions.
Collapse
Affiliation(s)
- Peter A Savage
- Department of Pathology, University of Chicago, Chicago, Illinois 60637, USA; , ,
| | - David E J Klawon
- Department of Pathology, University of Chicago, Chicago, Illinois 60637, USA; , ,
| | - Christine H Miller
- Department of Pathology, University of Chicago, Chicago, Illinois 60637, USA; , ,
| |
Collapse
|
45
|
Zhu X, Chen Q, Liu Z, Luo D, Li L, Zhong Y. Low expression and hypermethylation of FOXP3 in regulatory T cells are associated with asthma in children. Exp Ther Med 2020; 19:2045-2052. [PMID: 32104264 PMCID: PMC7027311 DOI: 10.3892/etm.2020.8443] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Accepted: 09/19/2019] [Indexed: 12/16/2022] Open
Abstract
The aim of the present study was to determine the expression and methylation levels of forkhead transcription factor P3 (FOXP3) in peripheral blood CD4+CD25+ regulatory T cells (Tregs) harvested from children with asthma, and to explore the pathogenesis of asthma. The percentages of CD4+CD25+FOXP3+ Tregs in CD4+ T lymphocytes from 15 children with asthma and 15 healthy controls were measured by flow cytometry, and FOXP3 mRNA expression in the CD4+CD25+ Tregs was measured by reverse transcriptase-quantitative PCR. In addition, the forced expiratory volume in one second (FEV1) was measured to determine lung function. The methylation statuses of 16 CpG sites in two regions of the FOXP3 gene's exon and intron were analysed with bisulfite-specific PCR and pyrophosphate sequencing. The differences in methylation levels between the asthma and control groups were compared. The percentage of CD4+CD25+FOXP3+ Tregs in CD4+ T lymphocytes and FOXP3 mRNA expression were significantly lower in children with asthma than in control children (P<0.05). The FOXP3 mRNA levels in children with asthma were positively correlated with FEV1 (P<0.001; r=0.895). The methylation levels in 12 of the 16 studied CpG loci of the FOXP3 gene, and of the 6th CpG locus in the exon regions, were significantly higher in the asthma group compared with the control group (P<0.05). In summary, low expression and hypermethylation of the FOXP3 gene in the peripheral blood were associated with the pathogenesis of asthma in children. Thus, the FOXP3 mRNA expression level can be used to predict the severity of asthma in children.
Collapse
Affiliation(s)
- Xiaohua Zhu
- Respiratory Department, Jiangxi Provincial Children's Hospital, Nanchang, Jiangxi 330006, P.R. China
| | - Qiang Chen
- Respiratory Department, Jiangxi Provincial Children's Hospital, Nanchang, Jiangxi 330006, P.R. China
| | - Zhiqiang Liu
- Clinical Laboratory, Jiangxi Children's Hospital, Nanchang, Jiangxi 330006, P.R. China
| | - Daya Luo
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Lan Li
- Respiratory Department, Jiangxi Provincial Children's Hospital, Nanchang, Jiangxi 330006, P.R. China
| | - Ying Zhong
- Graduate School of Medicine, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
46
|
Scheinecker C, Göschl L, Bonelli M. Treg cells in health and autoimmune diseases: New insights from single cell analysis. J Autoimmun 2019; 110:102376. [PMID: 31862128 DOI: 10.1016/j.jaut.2019.102376] [Citation(s) in RCA: 149] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 11/22/2019] [Indexed: 02/07/2023]
Abstract
Autoimmune diseases, such as Systemic Lupus Erythematosus (SLE) or Rheumatoid Arthritis (RA) are characterized by the breakdown of immunological tolerance. Defects of regulatory T cells have been described among the various mechanisms, that are important for the development of autoimmune diseases, due to their critical role as regulators of peripheral immune tolerance and homeostasis. Initially T suppressor cells have been described as one population of peripheral T cells. Based on new technological advances a new understanding of the heterogeneity of different Treg cell populations in the lymphoid and non-lymphoid tissue has evolved over the last years. While initially Foxp3 has been defined as the main master regulator of Treg cells, we have learned that Treg cells from various tissue can be identified by a specific transcriptomic and epigenetic signature. Epigenetic mechanisms allow Treg cell stability, but we have also learned that certain Treg subsets are plastic and can under specific circumstances even enhance autoimmunity and inflammatory processes. Quantitative and functional defects of Treg cells have been observed in a variety of autoimmune diseases. Due to our understanding of the nature of this cell population, Treg cells have been a target of new Treg based therapies, such as low-dose IL-2. In addition, ongoing clinical trials aim to test safety and efficacy of transferred, in vitro expanded Treg cells in patients with autoimmune diseases and transplant patients.
Collapse
Affiliation(s)
- Clemens Scheinecker
- Internal Medicine III, Division of Rheumatology, Medical University of Vienna, Vienna, Austria.
| | - Lisa Göschl
- Internal Medicine III, Division of Rheumatology, Medical University of Vienna, Vienna, Austria.
| | - Michael Bonelli
- Internal Medicine III, Division of Rheumatology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
47
|
Shi H, Chi H. Metabolic Control of Treg Cell Stability, Plasticity, and Tissue-Specific Heterogeneity. Front Immunol 2019; 10:2716. [PMID: 31921097 PMCID: PMC6917616 DOI: 10.3389/fimmu.2019.02716] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 11/05/2019] [Indexed: 12/21/2022] Open
Abstract
Regulatory T (Treg) cells are crucial for peripheral immune tolerance and prevention of autoimmunity and tissue damage. Treg cells are inherently defined by the expression of the transcription factor Foxp3, which enforces lineage development and immune suppressive function of these cells. Under various conditions as observed in autoimmunity, cancer and non-lymphoid tissues, a proportion of Treg cells respond to specific environmental signals and display altered stability, plasticity and tissue-specific heterogeneity, which further shape their context-dependent suppressive functions. Recent studies have revealed that metabolic programs play pivotal roles in controlling these processes in Treg cells, thereby considerably expanding our understanding of Treg cell biology. Here we summarize these recent advances that highlight how cell-extrinsic factors, such as nutrients, vitamins and metabolites, and cell-intrinsic metabolic programs, orchestrate Treg cell stability, plasticity, and tissue-specific heterogeneity. Understanding metabolic regulation of Treg cells should provide new insight into immune homeostasis and disease, with important therapeutic implications for autoimmunity, cancer, and other immune-mediated disorders.
Collapse
Affiliation(s)
- Hao Shi
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Hongbo Chi
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, United States
| |
Collapse
|
48
|
Sasidharan Nair V, Toor SM, Taouk G, Pfister G, Ouararhni K, Alajez NM, Elkord E. Pembrolizumab Interferes with the Differentiation of Human FOXP3+–Induced T Regulatory Cells, but Not with FOXP3 Stability, through Activation of mTOR. THE JOURNAL OF IMMUNOLOGY 2019; 204:199-211. [DOI: 10.4049/jimmunol.1900575] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 10/27/2019] [Indexed: 12/16/2022]
|
49
|
Korn T, Muschaweckh A. Stability and Maintenance of Foxp3 + Treg Cells in Non-lymphoid Microenvironments. Front Immunol 2019; 10:2634. [PMID: 31798580 PMCID: PMC6868061 DOI: 10.3389/fimmu.2019.02634] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 10/24/2019] [Indexed: 01/05/2023] Open
Abstract
Foxp3+ Treg cells are indispensable for maintaining self-tolerance in secondary lymphoid organs (SLOs). However, Treg cells are also recruited to non-lymphoid tissues (NLTs) during inflammation. Recent advances in the understanding of Treg cell biology provided us with molecular mechanisms-both transcriptional and epigenetic-that enable Treg cells to retain their identity in an inflammatory milieu that is per se hostile to sustained expression of high levels of Foxp3. While Treg cells are recruited to sites of inflammation in order to resolve inflammation and re-establish appropriate organ function, it is increasingly recognized that a series of inflammatory (but also non-inflammatory) perturbations of organ function lead to the constitution of relatively long lived populations of Treg cells in NLTs. NLT Treg cells are heterogeneous according to their respective site of residence and it will be an important goal of future investigations to determine how these NLT Treg cells are maintained, e.g., what the role of antigen recognition by NLT Treg cells is and which growth factors are responsible for their self-renewal in the relative deficiency of IL-2. Finally, it is an open question what functions NLT Treg cells have besides their role in maintaining immunologic tolerance. In this review, we will highlight and summarize major ideas on the biology of NLT Treg cells (in the central nervous system but also at other peripheral sites) during inflammation and in steady state.
Collapse
Affiliation(s)
- Thomas Korn
- Department of Experimental Neuroimmunology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,Department of Neurology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Andreas Muschaweckh
- Department of Experimental Neuroimmunology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,Department of Neurology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| |
Collapse
|
50
|
Rare variants in non-coding regulatory regions of the genome that affect gene expression in systemic lupus erythematosus. Sci Rep 2019; 9:15433. [PMID: 31659207 PMCID: PMC6817816 DOI: 10.1038/s41598-019-51864-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 10/09/2019] [Indexed: 12/16/2022] Open
Abstract
Personalized medicine approaches are increasingly sought for diseases with a heritable component. Systemic lupus erythematosus (SLE) is the prototypic autoimmune disease resulting from loss of immunologic tolerance, but the genetic basis of SLE remains incompletely understood. Genome wide association studies (GWAS) identify regions associated with disease, based on common single nucleotide polymorphisms (SNPs) within them, but these SNPs may simply be markers in linkage disequilibrium with other, causative mutations. Here we use an hierarchical screening approach for prediction and testing of true functional variants within regions identified in GWAS; this involved bioinformatic identification of putative regulatory elements within close proximity to SLE SNPs, screening those regions for potentially causative mutations by high resolution melt analysis, and functional validation using reporter assays. Using this approach, we screened 15 SLE associated loci in 143 SLE patients, identifying 7 new variants including 5 SNPs and 2 insertions. Reporter assays revealed that the 5 SNPs were functional, altering enhancer activity. One novel variant was linked to the relatively well characterized rs9888739 SNP at the ITGAM locus, and may explain some of the SLE heritability at this site. Our study demonstrates that non-coding regulatory elements can contain private sequence variants affecting gene expression, which may explain part of the heritability of SLE.
Collapse
|