1
|
Giuliano CJ, Wei KJ, Harling FM, Waldman BS, Farringer MA, Boydston EA, Lan TCT, Thomas RW, Herneisen AL, Sanderlin AG, Coppens I, Dvorin JD, Lourido S. Functional profiling of the Toxoplasma genome during acute mouse infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.05.531216. [PMID: 36945434 PMCID: PMC10028831 DOI: 10.1101/2023.03.05.531216] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Within a host, pathogens encounter a diverse and changing landscape of cell types, nutrients, and immune responses. Examining host-pathogen interactions in animal models can therefore reveal aspects of infection absent from cell culture. We use CRISPR-based screens to functionally profile the entire genome of the model apicomplexan parasite Toxoplasma gondii during mouse infection. Barcoded gRNAs were used to track mutant parasite lineages, enabling detection of bottlenecks and mapping of population structures. We uncovered over 300 genes that modulate parasite fitness in mice with previously unknown roles in infection. These candidates span multiple axes of host-parasite interaction, including determinants of tropism, host organelle remodeling, and metabolic rewiring. We mechanistically characterized three novel candidates, including GTP cyclohydrolase I, against which a small-molecule inhibitor could be repurposed as an antiparasitic compound. This compound exhibited antiparasitic activity against T. gondii and Plasmodium falciparum, the most lethal agent of malaria. Taken together, we present the first complete survey of an apicomplexan genome during infection of an animal host, and point to novel interfaces of host-parasite interaction that may offer new avenues for treatment.
Collapse
Affiliation(s)
| | - Kenneth J. Wei
- Whitehead Institute, Cambridge, MA
- Biology Department, MIT, Cambridge, MA
| | - Faye M. Harling
- Whitehead Institute, Cambridge, MA
- Biology Department, MIT, Cambridge, MA
| | | | - Madeline A. Farringer
- Division of Infectious Diseases, Boston Children’s Hospital, Boston, Massachusetts, USA
- Biological Sciences in Public Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | | | | | - Raina W. Thomas
- Whitehead Institute, Cambridge, MA
- Biology Department, MIT, Cambridge, MA
| | - Alice L. Herneisen
- Whitehead Institute, Cambridge, MA
- Biology Department, MIT, Cambridge, MA
| | | | - Isabelle Coppens
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD
| | - Jeffrey D. Dvorin
- Division of Infectious Diseases, Boston Children’s Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Sebastian Lourido
- Whitehead Institute, Cambridge, MA
- Biology Department, MIT, Cambridge, MA
| |
Collapse
|
2
|
Suppression of GCH1 Sensitizes Ovarian Cancer and Breast Cancer to PARP Inhibitor. JOURNAL OF ONCOLOGY 2023; 2023:1453739. [PMID: 36793373 PMCID: PMC9925261 DOI: 10.1155/2023/1453739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/26/2022] [Accepted: 11/24/2022] [Indexed: 02/08/2023]
Abstract
Background Breast and ovarian cancers are common malignancies among women, contributing to a significant disease burden, and are characterized by a high level of genomic instability, owing to the failure of homologous recombination repair (HRR). Pharmacological inhibition of poly(ADP-ribose) polymerase (PARP) could elicit the synthetic lethal effect of tumor cells in patients with homologous recombination deficiency, ultimately achieving a favorable clinical benefit. However, primary and acquired resistance remain the greatest hurdle, limiting the efficacy of PARP inhibitors; thus, strategies conferring or augmenting tumor cell sensitivity to PARP inhibitors are urgently required. Methods Our RNA-seq data of niraparib-treated and -untreated tumor cells were analyzed by R language. Gene Set Enrichment Analysis (GSEA) was applied to assess the biological functions of GTP cyclohydrolase 1 (GCH1). Quantitative real-time PCR, Western blotting, and immunofluorescence were applied to confirm the upregulation of GCH1 upon niraparib treatment at transcriptional and translational levels. Immunohistochemistry of patient-derived xenograft (PDX)-derived tissue sections further validated that niraparib increased GCH1 expression. Tumor cell apoptosis was detected by flow cytometry, while the superiority of the combination strategy was confirmed in the PDX model. Results The expression of GCH1 was aberrantly enriched in breast and ovarian cancers and increased after niraparib treatment via JAK-STAT signaling. GCH1 was also demonstrated to be associated with the HRR pathway. Subsequently, the enhancement of the tumor-killing effect of PARP inhibitors induced by GCH1 suppression using siRNA and GCH1 inhibitor was validated by flow cytometry in vitro. Finally, using the PDX model, we further demonstrated that GCH1 inhibitors markedly potentiated PARP inhibitors' antitumor efficacy in vivo. Conclusion Our results illustrated that PARP inhibitors promote GCH1 expression via the JAK-STAT pathway. We also elucidated the potential relationship between GCH1 and the homologous recombination repair pathway and proposed a combination regimen of GCH1 suppression with PARP inhibitors in breast and ovarian cancers.
Collapse
|
3
|
Hussein D. In Silico Investigation of the Human GTP Cyclohydrolase 1 Enzyme Reveals the Potential of Drug Repurposing Approaches towards the Discovery of Effective BH 4 Therapeutics. Int J Mol Sci 2023; 24:ijms24021210. [PMID: 36674724 PMCID: PMC9862521 DOI: 10.3390/ijms24021210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/23/2022] [Accepted: 12/30/2022] [Indexed: 01/11/2023] Open
Abstract
The GTP cyclohydrolase 1 enzyme (GTPCH1) is the rate-limiting enzyme of the tetrahydrobiopterin (BH4) biosynthetic pathway. Physiologically, BH4 plays a crucial role as an essential cofactor for the production of catecholamine neurotransmitters, including epinephrine, norepinephrine and dopamine, as well as the gaseous signaling molecule, nitric oxide. Pathological levels of the cofactor have been reported in a number of disease states, such as inflammatory conditions, neuropathic pain and cancer. Targeting the GTPCH1 enzyme has great potential in the management of a number of disease pathologies associated with dysregulated BH4 physiology. This study is an in silico investigation of the human GTPCH1 enzyme using virtual screening and molecular dynamic simulation to identify molecules that can be repurposed to therapeutically target the enzyme. A three-tier molecular docking protocol was employed in the virtual screening of a comprehensive library of over 7000 approved medications and nutraceuticals in order to identify hit compounds capable of binding to the GTPCH1 binding pocket with the highest affinity. Hit compounds were further verified by molecular dynamic simulation studies to provide a detailed insight regarding the stability and nature of the binding interaction. In this study, we identify a number of drugs and natural compounds with recognized anti-inflammatory, analgesic and cytotoxic effects, including the aminosalicylate olsalazine, the antiepileptic phenytoin catechol, and the phlorotannins phlorofucofuroeckol and eckol. Our results suggest that the therapeutic and clinical effects of hit compounds may be partially attributed to the inhibition of the GTPCH1 enzyme. Notably, this study offers an understanding of the off-target effects of a number of compounds and advocates the potential role of aminosalicylates in the regulation of BH4 production in inflammatory disease states. It highlights an in silico drug repurposing approach to identify a potential means of safely targeting the BH4 biosynthetic pathway using established therapeutic agents.
Collapse
Affiliation(s)
- Dania Hussein
- Department of Pharmacology and Toxicology, College of Clinical Pharmacy, Imam Abdulrahman bin Faisal University, Khobar 31441, Saudi Arabia
| |
Collapse
|
4
|
Song S, Shu P. Expression of ferroptosis-related gene correlates with immune microenvironment and predicts prognosis in gastric cancer. Sci Rep 2022; 12:8785. [PMID: 35610340 PMCID: PMC9129902 DOI: 10.1038/s41598-022-12800-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 05/10/2022] [Indexed: 11/09/2022] Open
Abstract
The study is to explore the role of ferroptosis-related genes (FRGs) in the occurrence and development of gastric cancer (GC), and to construct a new prognosis signature to predict the prognosis in GC. Clinical information and corresponding RNA data of GC patients were downloaded from TCGA and GEO databases. Consensus clustering was performed to identify new molecular subgroups. ESTIMATE, CIBERSORT, McpCounter and TIMER algorithm were used to analyze the infiltration of immune cells in two molecular subgroups. LASSO algorithm and multivariate Cox analysis were used to construct a prognostic risk signature. Functional analysis was conducted to elucidate the underlying mechanisms. Finally, the FRPGs were verified by Quantitative Real-Time PCR. We obtained 16 FRGs and divided GC patients into two subgroups by consistent clustering. Cluster C1 with a higher abundance of immune cell infiltration but lower probability in response to immunotherapy, it was reasonable to speculate that Cluster C1 was in accordance with the immune rejection type. Functional analysis showed that the biological process of DEGs in training cohort mainly included immune globulin, and human immune response mediated by circulating immune globulin. GSEA analysis showed that compared with Cluster C2, Cluster C1 showed lower expression in lipid metabolism. The nomogram combined with risk signature and clinical features can accurately predict the prognosis of GC patients. We identified two molecular subtypes, Clusters C1 and C2. In Cluster C1, patients with poor prognosis present with a hyperimmune status and low lipid metabolism, and we speculate that Cluster C1 was in accordance with the immune rejection type. The risk model based on FRPGs can accurately predict the prognosis of GC. These results indicated that ferroptosis is associated with TIME, and deserved considerable attention in determining immunotherapy treatment strategy for GC patients.
Collapse
Affiliation(s)
- Siyuan Song
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu Province, China
- Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu Province, China
- Jiangsu Provincial Hospital of Chinese Medicine, Nanjing, 210029, Jiangsu Province, China
| | - Peng Shu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu Province, China.
- Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu Province, China.
- Jiangsu Provincial Hospital of Chinese Medicine, Nanjing, 210029, Jiangsu Province, China.
| |
Collapse
|
5
|
Arai H, Takahashi R, Sakamoto Y, Kitano T, Mashita O, Hara S, Yoshikawa S, Kawasaki K, Ichinose H. Peripheral tetrahydrobiopterin is involved in the pathogenesis of mechanical hypersensitivity in a rodent postsurgical pain model. Pain 2020; 161:2520-2531. [PMID: 32541389 DOI: 10.1097/j.pain.0000000000001946] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Because treatment for postsurgical pain (PSP) remains a major unmet medical need, the emergence of safe and innovative nonopioid drugs has been strongly coveted. Tetrahydrobiopterin (BH4) is an interesting molecule for gaining a better understanding the pathological mechanism of neuropathic pain. However, whether BH4 and its pathway are involved in the pathogenesis of PSP remains unclear. In this study, we found that early in a rat paw incision model, the gene expression of GTP cyclohydrolase 1 (GTPCH) and sepiapterin reductase (SPR), BH4-producing enzymes in the de novo pathway, were significantly increased in incised compared with naive paw skin. Although a significant increase in GTPCH protein levels was observed in incised paw skin until only 1 day after incision, a significant increase in BH4 levels was observed until 7 days after incision. In vivo, Spr-knockout mice showed an antinociceptive phenotype in the hind paw incision compared with the wild-type and Spr heterozygote groups. Furthermore, QM385, the SPR inhibitor, showed a significant dose-dependent, antinociceptive effect, which was supported by a reduction in BH4 levels in incised skin tissues, with no apparent adverse effects. Immunohistochemical analysis demonstrated that macrophages expressing GTPCH protein were increased around the injury site in the rat paw incision model. These results indicate that BH4 is involved in the pathogenesis of PSP, and that inhibition of the BH4 pathway could provide a new strategy for the treatment of acute PSP.
Collapse
Affiliation(s)
- Hirokazu Arai
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
- Laboratory for Pharmacology, Pharmaceuticals Research Center, Asahi Kasei Pharma Corporation, Shizuoka, Japan
| | - Rina Takahashi
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Yoshiaki Sakamoto
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Tatsuya Kitano
- Laboratory for Pharmacology, Pharmaceuticals Research Center, Asahi Kasei Pharma Corporation, Shizuoka, Japan
| | - Okishi Mashita
- Laboratory for Safety Assessment and ADME, Pharmaceuticals Research Center, Asahi Kasei Pharma Corporation, Shizuoka, Japan
| | - Satoshi Hara
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Satoru Yoshikawa
- Laboratory for Pharmacology, Pharmaceuticals Research Center, Asahi Kasei Pharma Corporation, Shizuoka, Japan
| | - Koh Kawasaki
- Laboratory for Pharmacology, Pharmaceuticals Research Center, Asahi Kasei Pharma Corporation, Shizuoka, Japan
| | - Hiroshi Ichinose
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| |
Collapse
|
6
|
The Role of the Kynurenine Signaling Pathway in Different Chronic Pain Conditions and Potential Use of Therapeutic Agents. Int J Mol Sci 2020; 21:ijms21176045. [PMID: 32842609 PMCID: PMC7503462 DOI: 10.3390/ijms21176045] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/11/2020] [Accepted: 08/19/2020] [Indexed: 12/11/2022] Open
Abstract
Tryptophan (TRP) is an essential, aromatic amino acid catabolized by indoleamine 2,3-dioxygenase (IDO) and tryptophan 2,3-dioxygenase (TDO) enzymes into kynurenine. The IDO enzyme is expressed in peripheral tissues and the central nervous system. Another enzyme of interest in the kynurenine signaling pathway is kynurenine 3-monooxygenase (KMO). The purpose of this review is to discuss the role of TRP and the kynurenine signaling pathway in different chronic pain patients. The IDO-1, IDO-2, and KMO enzymes and the kynurenine metabolite have been shown to be involved in the pathogenesis of neuropathic pain and other painful conditions (migraine, cluster headache, etc.) as well as depressive behavior. We highlighted the analgesic potential of novel agents targeting the enzymes of the kynurenine signaling pathway to explore their efficacy in both future basic science and transitional studies. Upcoming studies conducted on animal models will need to take into consideration the differences in TRP metabolism between human and non-human species. Since chronic painful conditions and depression have common pathophysiological patterns, and the kynurenine signaling pathway is involved in both of them, future clinical studies should aim to have outcomes targeting not only pain, but also functionality, mood changes, and quality of life.
Collapse
|
7
|
Staats Pires A, Tan VX, Heng B, Guillemin GJ, Latini A. Kynurenine and Tetrahydrobiopterin Pathways Crosstalk in Pain Hypersensitivity. Front Neurosci 2020; 14:620. [PMID: 32694973 PMCID: PMC7338796 DOI: 10.3389/fnins.2020.00620] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 05/19/2020] [Indexed: 12/19/2022] Open
Abstract
Despite the identification of molecular mechanisms associated with pain persistence, no significant therapeutic improvements have been made. Advances in the understanding of the molecular mechanisms that induce pain hypersensitivity will allow the development of novel, effective, and safe therapies for chronic pain. Various pro-inflammatory cytokines are known to be increased during chronic pain, leading to sustained inflammation in the peripheral and central nervous systems. The pro-inflammatory environment activates additional metabolic routes, including the kynurenine (KYN) and tetrahydrobiopterin (BH4) pathways, which generate bioactive soluble metabolites with the potential to modulate neuropathic and inflammatory pain sensitivity. Inflammation-induced upregulation of indoleamine 2,3-dioxygenase 1 (IDO1) and guanosine triphosphate cyclohydrolase I (GTPCH), both rate-limiting enzymes of KYN and BH4 biosynthesis, respectively, have been identified in experimental chronic pain models as well in biological samples from patients affected by chronic pain. Inflammatory inducible KYN and BH4 pathways upregulation is characterized by increase in pronociceptive compounds, such as quinolinic acid (QUIN) and BH4, in addition to inflammatory mediators such as interferon gamma (IFN-γ) and tumor necrosis factor alpha (TNF-α). As expected, the pharmacologic and genetic experimental manipulation of both pathways confers analgesia. Many metabolic intermediates of these two pathways such as BH4, are known to sustain pain, while others, like xanthurenic acid (XA; a KYN pathway metabolite) have been recently shown to be an inhibitor of BH4 synthesis, opening a new avenue to treat chronic pain. This review will focus on the KYN/BH4 crosstalk in chronic pain and the potential modulation of these metabolic pathways that could induce analgesia without dependence or abuse liability.
Collapse
Affiliation(s)
- Ananda Staats Pires
- Neuroinflammation Group, Department of Biomedical Sciences, Centre for Motor Neuron Disease Research, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
- Laboratório de Bioenergética e Estresse Oxidativo, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Vanessa X. Tan
- Neuroinflammation Group, Department of Biomedical Sciences, Centre for Motor Neuron Disease Research, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Benjamin Heng
- Neuroinflammation Group, Department of Biomedical Sciences, Centre for Motor Neuron Disease Research, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Gilles J. Guillemin
- Neuroinflammation Group, Department of Biomedical Sciences, Centre for Motor Neuron Disease Research, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Alexandra Latini
- Laboratório de Bioenergética e Estresse Oxidativo, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| |
Collapse
|
8
|
Zschiebsch K, Fischer C, Wilken‐Schmitz A, Geisslinger G, Channon K, Watschinger K, Tegeder I. Mast cell tetrahydrobiopterin contributes to itch in mice. J Cell Mol Med 2019; 23:985-1000. [PMID: 30450838 PMCID: PMC6349351 DOI: 10.1111/jcmm.13999] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 09/25/2018] [Accepted: 10/13/2018] [Indexed: 12/28/2022] Open
Abstract
GTP cyclohydrolase (GCH1) governs de novo synthesis of the enzyme cofactor, tetrahydrobiopterin (BH4), which is essential for biogenic amine production, bioactive lipid metabolism and redox coupling of nitric oxide synthases. Overproduction of BH4 via upregulation of GCH1 in sensory neurons is associated with nociceptive hypersensitivity in rodents, and neuron-specific GCH1 deletion normalizes nociception. The translational relevance is revealed by protective polymorphisms of GCH1 in humans, which are associated with a reduced chronic pain. Because myeloid cells constitute a major non-neuronal source of BH4 that may contribute to BH4-dependent phenotypes, we studied here the contribution of myeloid-derived BH4 to pain and itch in lysozyme M Cre-mediated GCH1 knockout (LysM-GCH1-/- ) and overexpressing mice (LysM-GCH1-HA). Unexpectedly, knockout or overexpression in myeloid cells had no effect on nociceptive behaviour, but LysM-driven GCH1 knockout reduced, and its overexpression increased the scratching response in Compound 48/80 and hydroxychloroquine-evoked itch models, which involve histamine and non-histamine dependent signalling pathways. Mechanistically, GCH1 overexpression increased BH4, nitric oxide and hydrogen peroxide, and these changes were associated with increased release of histamine and serotonin and degranulation of mast cells. LysM-driven GCH1 knockout had opposite effects, and pharmacologic inhibition of GCH1 provided even stronger itch suppression. Inversely, intradermal BH4 provoked scratching behaviour in vivo and BH4 evoked an influx of calcium in sensory neurons. Together, these loss- and gain-of-function experiments suggest that itch in mice is contributed by BH4 release plus BH4-driven mediator release from myeloid immune cells, which leads to activation of itch-responsive sensory neurons.
Collapse
Affiliation(s)
- Katja Zschiebsch
- Institute of Clinical PharmacologyGoethe‐University HospitalFrankfurtGermany
| | - Caroline Fischer
- Institute of Clinical PharmacologyGoethe‐University HospitalFrankfurtGermany
| | | | - Gerd Geisslinger
- Institute of Clinical PharmacologyGoethe‐University HospitalFrankfurtGermany
| | - Keith Channon
- Division of Cardiovascular MedicineUniversity of OxfordOxfordUK
| | - Katrin Watschinger
- Division of Biological ChemistryBiocenterMedical University of InnsbruckInnsbruckAustria
| | - Irmgard Tegeder
- Institute of Clinical PharmacologyGoethe‐University HospitalFrankfurtGermany
| |
Collapse
|
9
|
Tran AN, Walker K, Harrison DG, Chen W, Mobley J, Hocevar L, Hackney JR, Sedaka RS, Pollock JS, Goldberg MS, Hambardzumyan D, Cooper SJ, Gillespie Y, Hjelmeland AB. Reactive species balance via GTP cyclohydrolase I regulates glioblastoma growth and tumor initiating cell maintenance. Neuro Oncol 2018; 20:1055-1067. [PMID: 29409010 PMCID: PMC6280150 DOI: 10.1093/neuonc/noy012] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background Depending on the level, differentiation state, and tumor stage, reactive nitrogen and oxygen species inhibit or increase cancer growth and tumor initiating cell maintenance. The rate-limiting enzyme in a pathway that can regulate reactive species production but has not been thoroughly investigated in glioblastoma (GBM; grade IV astrocytoma) is guanosine triphosphate (GTP) cyclohydrolase 1 (GCH1). We sought to define the role of GCH1 in the regulation of GBM growth and brain tumor initiating cell (BTIC) maintenance. Methods We examined GCH1 mRNA and protein expression in patient-derived xenografts, clinical samples, and glioma gene expression datasets. GCH1 levels were modulated using lentiviral expression systems, and effects on cell growth, self-renewal, reactive species production, and survival in orthotopic patient-derived xenograft models were determined. Results GCH1 was expressed in GBMs with elevated but not exclusive RNA and protein levels in BTICs in comparison to non-BTICs. Overexpression of GCH1 in GBM cells increased cell growth in vitro and decreased survival in an intracranial GBM mouse model. In converse experiments, GCH1 knockdown with short hairpin RNA led to GBM cell growth inhibition and reduced self-renewal in association with decreased CD44 expression. GCH1 was critical for controlling reactive species balance, including suppressing reactive oxygen species production, which mediated GCH1 cell growth effects. In silico analyses demonstrated that higher GCH1 levels in glioma patients correlate with higher glioma grade, recurrence, and worse survival. Conclusions GCH1 expression in established GBMs is pro-tumorigenic, causing increased growth due, in part, to promotion of BTIC maintenance and suppression of reactive oxygen species.
Collapse
Affiliation(s)
- Anh Nhat Tran
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Kiera Walker
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - David G Harrison
- Division of Clinical Pharmacology, Vanderbilt University, Nashville, Tennessee
| | - Wei Chen
- Division of Clinical Pharmacology, Vanderbilt University, Nashville, Tennessee
| | - James Mobley
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama
| | - Lauren Hocevar
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - James R Hackney
- Division of Neuropathology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Randee S Sedaka
- Division of Nephrology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Jennifer S Pollock
- Division of Nephrology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Matthew S Goldberg
- Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama
| | | | - Sara J Cooper
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama
| | - Yancey Gillespie
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, Alabama
| | - Anita B Hjelmeland
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
10
|
Wu HE, Baumgardt SL, Fang J, Paterson M, Liu Y, Du J, Shi Y, Qiao S, Bosnjak ZJ, Warltier DC, Kersten JR, Ge ZD. Cardiomyocyte GTP Cyclohydrolase 1 Protects the Heart Against Diabetic Cardiomyopathy. Sci Rep 2016; 6:27925. [PMID: 27295516 PMCID: PMC4904741 DOI: 10.1038/srep27925] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 05/26/2016] [Indexed: 02/06/2023] Open
Abstract
Diabetic cardiomyopathy increases the risk of heart failure and death. At present, there are no effective approaches to preventing its development in the clinic. Here we report that reduction of cardiac GTP cyclohydrolase 1 (GCH1) degradation by genetic and pharmacological approaches protects the heart against diabetic cardiomyopathy. Diabetic cardiomyopathy was induced in C57BL/6 wild-type mice and transgenic mice with cardiomyocyte-specific overexpression of GCH1 with streptozotocin, and control animals were given citrate buffer. We found that diabetes-induced degradation of cardiac GCH1 proteins contributed to adverse cardiac remodeling and dysfunction in C57BL/6 mice, concomitant with decreases in tetrahydrobiopterin, dimeric and phosphorylated neuronal nitric oxide synthase, sarcoplasmic reticulum Ca(2+) handling proteins, intracellular [Ca(2+)]i, and sarcoplasmic reticulum Ca(2+) content and increases in phosphorylated p-38 mitogen-activated protein kinase and superoxide production. Interestingly, GCH-1 overexpression abrogated these detrimental effects of diabetes. Furthermore, we found that MG 132, an inhibitor for 26S proteasome, preserved cardiac GCH1 proteins and ameliorated cardiac remodeling and dysfunction during diabetes. This study deepens our understanding of impaired cardiac function in diabetes, identifies GCH1 as a modulator of cardiac remodeling and function, and reveals a new therapeutic target for diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Hsiang-En Wu
- Department of Anesthesiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
- National Institute on Drug Abuse, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MA 21224, USA
| | - Shelley L. Baumgardt
- Department of Anesthesiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Juan Fang
- Department of Pediatrics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Mark Paterson
- Department of Anesthesiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Yanan Liu
- Department of Medicine, Columbia University, 630 W. 168th Street, New York, NY 10032, USA
| | - Jianhai Du
- Department of Biochemistry, University of Washington, 1705 NE Pacific Street, Seattle, WA 98195, USA
| | - Yang Shi
- Aurora Research Institute, Aurora Health Care, 750 W. Virginia Street, Milwaukee, WI 53234, USA
| | - Shigang Qiao
- Department of Anesthesiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Zeljko J. Bosnjak
- Department of Anesthesiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
- Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - David C. Warltier
- Department of Anesthesiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Judy R. Kersten
- Department of Anesthesiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Zhi-Dong Ge
- Department of Anesthesiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| |
Collapse
|
11
|
Latremoliere A, Latini A, Andrews N, Cronin SJ, Fujita M, Gorska K, Hovius R, Romero C, Chuaiphichai S, Painter M, Miracca G, Babaniyi O, Remor AP, Duong K, Riva P, Barrett LB, Ferreirós N, Naylor A, Penninger JM, Tegeder I, Zhong J, Blagg J, Channon KM, Johnsson K, Costigan M, Woolf CJ. Reduction of Neuropathic and Inflammatory Pain through Inhibition of the Tetrahydrobiopterin Pathway. Neuron 2015; 86:1393-406. [PMID: 26087165 PMCID: PMC4485422 DOI: 10.1016/j.neuron.2015.05.033] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 04/22/2015] [Accepted: 05/13/2015] [Indexed: 12/18/2022]
Abstract
Human genetic studies have revealed an association between GTP cyclohydrolase 1 polymorphisms, which decrease tetrahydrobiopterin (BH4) levels, and reduced pain in patients. We now show that excessive BH4 is produced in mice by both axotomized sensory neurons and macrophages infiltrating damaged nerves and inflamed tissue. Constitutive BH4 overproduction in sensory neurons increases pain sensitivity, whereas blocking BH4 production only in these cells reduces nerve injury-induced hypersensitivity without affecting nociceptive pain. To minimize risk of side effects, we targeted sepiapterin reductase (SPR), whose blockade allows minimal BH4 production through the BH4 salvage pathways. Using a structure-based design, we developed a potent SPR inhibitor and show that it reduces pain hypersensitivity effectively with a concomitant decrease in BH4 levels in target tissues, acting both on sensory neurons and macrophages, with no development of tolerance or adverse effects. Finally, we demonstrate that sepiapterin accumulation is a sensitive biomarker for SPR inhibition in vivo.
Collapse
Affiliation(s)
- Alban Latremoliere
- Kirby Neurobiology Center, Boston Children's Hospital and Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Alexandra Latini
- Kirby Neurobiology Center, Boston Children's Hospital and Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA; LABOX, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, Brazil
| | - Nick Andrews
- Kirby Neurobiology Center, Boston Children's Hospital and Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Shane J Cronin
- Kirby Neurobiology Center, Boston Children's Hospital and Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA; Institute of Molecular Biotechnology of the Austrian Academy of Sciences, 1030 Vienna, Austria
| | - Masahide Fujita
- Kirby Neurobiology Center, Boston Children's Hospital and Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Katarzyna Gorska
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Ruud Hovius
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Carla Romero
- Kirby Neurobiology Center, Boston Children's Hospital and Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Surawee Chuaiphichai
- Department of Cardiovascular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Michio Painter
- Kirby Neurobiology Center, Boston Children's Hospital and Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Giulia Miracca
- Kirby Neurobiology Center, Boston Children's Hospital and Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Olusegun Babaniyi
- Kirby Neurobiology Center, Boston Children's Hospital and Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Aline Pertile Remor
- Kirby Neurobiology Center, Boston Children's Hospital and Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA; LABOX, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, Brazil
| | - Kelly Duong
- Kirby Neurobiology Center, Boston Children's Hospital and Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Priscilla Riva
- Department of Anesthesia, Boston Children's Hospital and Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Lee B Barrett
- Kirby Neurobiology Center, Boston Children's Hospital and Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Nerea Ferreirós
- Pharmazentrum Frankfurt, Institut für Klinische Pharmakologie, Klinikum der Goethe-Universität, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany
| | - Alasdair Naylor
- The Canterbury Consulting Group, Unit 43 Canterbury Innovation Centre, University Road, Canterbury, Kent CT2 7FG, UK
| | - Josef M Penninger
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, 1030 Vienna, Austria
| | - Irmgard Tegeder
- Pharmazentrum Frankfurt, Institut für Klinische Pharmakologie, Klinikum der Goethe-Universität, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany
| | - Jian Zhong
- Burke Medical Research Institute and Brain and Mind Research Institute, Weill Medical College of Cornell University, White Plains, NY 10605, USA
| | - Julian Blagg
- The Institute of Cancer Research, London SW7 3RP, UK
| | - Keith M Channon
- Department of Cardiovascular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Kai Johnsson
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Michael Costigan
- Department of Anesthesia, Boston Children's Hospital and Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA.
| | - Clifford J Woolf
- Kirby Neurobiology Center, Boston Children's Hospital and Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
12
|
Nasser A, Ali S, Wilsbech S, Bjerrum OJ, Møller LB. Intraplantar injection of tetrahydrobiopterin induces nociception in mice. Neurosci Lett 2015; 584:247-52. [PMID: 25450138 DOI: 10.1016/j.neulet.2014.10.050] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 10/26/2014] [Accepted: 10/29/2014] [Indexed: 11/21/2022]
Abstract
Tetrahydrobiopterin (BH4) is implicated in the development and maintenance of chronic pain. After injury/inflammation, the biosynthesis of BH4 is markedly increased in sensory neurons, and the pharmacological and genetic inhibition of BH4 shows analgesic effects in pre-clinical animal pain models. Intrathecal injections of BH4 have been shown to induce and enhance pain-like behaviours in rats, suggesting that under chronic pain conditions BH4 may act by facilitating central sensitisation. So far it is unknown whether BH4 acts on peripheral sites of the somatosensory system or whether BH4 per se provokes nociceptive pain behaviours. The purpose of this study was therefore to investigate the acute nociceptive effects of intraplantar injection of BH4. BH4 was found to induce dose-dependent licking/biting of the paw lasting 5 min, which was not observed following an injection of biopterin (inactive BH4 metabolite). Paw swelling, measured as paw thickness and weight, was not observed after BH4 injection. To explore possible mechanisms of action of BH4, the effect of local pre-treatment with indomethacin, Nω-nitro-L-arginine methyl ester, Nω-nitro-L-arginine, capsazepine and ruthenium red was tested. Morphine served as a positive control. Intraplantar pre-injection of morphine dose-dependently inhibited BH4-induced nociception, while none of the other compounds showed any statistical significant antinociception. These results suggest that BH4 exhibits nociceptive properties at peripheral sites of the somatosensory system, proposing an as yet unexplored involvement of BH4 in peripheral nociceptive processes. However, this appears not to be mediated through nitric oxide and prostaglandin release or by activation of the transient receptor potential vanilloid 1.
Collapse
Affiliation(s)
- Arafat Nasser
- Applied Human Molecular Genetics, Kennedy Center, Copenhagen University Hospital, Rigshospitalet, Gl. Landevej 7, 2600 Glostrup, Denmark; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, Copenhagen University, Universitetsparken 2, 2300 Copenhagen, Denmark.
| | - Sawsan Ali
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, Copenhagen University, Universitetsparken 2, 2300 Copenhagen, Denmark.
| | - Signe Wilsbech
- Applied Human Molecular Genetics, Kennedy Center, Copenhagen University Hospital, Rigshospitalet, Gl. Landevej 7, 2600 Glostrup, Denmark; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, Copenhagen University, Universitetsparken 2, 2300 Copenhagen, Denmark.
| | - Ole J Bjerrum
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, Copenhagen University, Universitetsparken 2, 2300 Copenhagen, Denmark.
| | - Lisbeth B Møller
- Applied Human Molecular Genetics, Kennedy Center, Copenhagen University Hospital, Rigshospitalet, Gl. Landevej 7, 2600 Glostrup, Denmark.
| |
Collapse
|
13
|
Abstract
This paper is the thirty-sixth consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2013 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior, and the roles of these opioid peptides and receptors in pain and analgesia; stress and social status; tolerance and dependence; learning and memory; eating and drinking; alcohol and drugs of abuse; sexual activity and hormones, pregnancy, development and endocrinology; mental illness and mood; seizures and neurologic disorders; electrical-related activity and neurophysiology; general activity and locomotion; gastrointestinal, renal and hepatic functions; cardiovascular responses; respiration and thermoregulation; and immunological responses.
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY 11367, United States.
| |
Collapse
|
14
|
Chuaiphichai S, McNeill E, Douglas G, Crabtree MJ, Bendall JK, Hale AB, Alp NJ, Channon KM. Cell-autonomous role of endothelial GTP cyclohydrolase 1 and tetrahydrobiopterin in blood pressure regulation. Hypertension 2014; 64:530-40. [PMID: 24777984 PMCID: PMC5238938 DOI: 10.1161/hypertensionaha.114.03089] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Tetrahydrobiopterin (BH4) is an essential cofactor for endothelial nitric oxide synthase (eNOS) function and NO generation. Augmentation of BH4 levels can prevent eNOS uncoupling and can improve endothelial dysfunction in vascular disease states. However, the physiological requirement for de novo endothelial cell BH4 biosynthesis in eNOS function remains unclear. We generated a novel mouse model with endothelial cell-specific deletion of GCH1, encoding GTP cyclohydrolase 1, an essential enzyme for BH4 biosynthesis, to test the cell-autonomous requirement for endothelial BH4 biosynthesis in vivo. Mice with a floxed GCH1 allele (GCH1(fl/fl)) were crossed with Tie2cre mice to delete GCH1 in endothelial cells. GCH1(fl/fl)Tie2cre mice demonstrated virtually absent endothelial NO bioactivity and significantly greater O2 (•-) production. GCH1(fl/fl)Tie2cre aortas and mesenteric arteries had enhanced vasoconstriction to phenylephrine and impaired endothelium-dependent vasodilatations to acetylcholine and SLIGRL. Endothelium-dependent vasodilatations in GCH1(fl/fl)Tie2cre aortas were, in part, mediated by eNOS-derived hydrogen peroxide (H2O2), which mediated vasodilatation through soluble guanylate cyclase. Ex vivo supplementation of aortic rings with the BH4 analogue sepiapterin restored normal endothelial function and abolished eNOS-derived H2O2 production in GCH1(fl/fl)Tie2cre aortas. GCH1(fl/fl)Tie2cre mice had higher systemic blood pressure than wild-type littermates, which was normalized by NOS inhibitor, NG-nitro-L-arginine methyl ester. Taken together, these studies reveal an endothelial cell-autonomous requirement for GCH1 and BH4 in regulation of vascular tone and blood pressure and identify endothelial cell BH4 as a pivotal regulator of NO versus H2O2 as alternative eNOS-derived endothelial-derived relaxing factors.
Collapse
Affiliation(s)
- Surawee Chuaiphichai
- From the British Heart Foundation Centre of Research Excellence, Division of Cardiovascular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Eileen McNeill
- From the British Heart Foundation Centre of Research Excellence, Division of Cardiovascular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Gillian Douglas
- From the British Heart Foundation Centre of Research Excellence, Division of Cardiovascular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Mark J Crabtree
- From the British Heart Foundation Centre of Research Excellence, Division of Cardiovascular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Jennifer K Bendall
- From the British Heart Foundation Centre of Research Excellence, Division of Cardiovascular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Ashley B Hale
- From the British Heart Foundation Centre of Research Excellence, Division of Cardiovascular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Nicholas J Alp
- From the British Heart Foundation Centre of Research Excellence, Division of Cardiovascular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Keith M Channon
- From the British Heart Foundation Centre of Research Excellence, Division of Cardiovascular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom.
| |
Collapse
|
15
|
Kanngiesser M, Mair N, Lim HY, Zschiebsch K, Blees J, Häussler A, Brüne B, Ferreiròs N, Kress M, Tegeder I. Hypoxia-inducible factor 1 regulates heat and cold pain sensitivity and persistence. Antioxid Redox Signal 2014; 20:2555-71. [PMID: 24144405 DOI: 10.1089/ars.2013.5494] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
AIMS The present study assessed the functions of the transcription factor hypoxia-inducible factor (HIF) in sensory neurons in models of acute, inflammatory, ischemic, and neuropathic pain. The alpha subunit, HIF1α, was specifically deleted in neurons of the dorsal root ganglia by mating HIF1α(fl/fl) mice with SNScre mice. RESULTS SNS-HIF1α(-/-) mice were more sensitive to noxious heat and cold pain stimulation than were HIF1α(fl/fl) control mice. They also showed heightened first-phase nociceptive responses in the formalin and capsaicin tests with increased numbers of cFos-positive neurons in the dorsal horn, and intensified hyperalgesia in early phases after paw inflammation and hind limb ischemia/reperfusion. The behavioral cold and heat pain hypersensitivity was explained by increased calcium fluxes after transient receptor potential channel activation in primary sensory neurons of SNS-HIF1α(-/-) mice and lowered electrical activation thresholds of sensory fibers. SNS-HIF1α(-/-) mice however, developed less neuropathic pain after sciatic nerve injury, which was associated with an abrogation of HIF1-mediated gene up-regulation. INNOVATION The results suggest that HIF1α is protective in terms of acute heat and cold pain but in case of ongoing activation in injured neurons, it may promote the development of neuropathic pain. CONCLUSION The duality of HIF1 in pain regulation may have an impact on the side effects of drugs targeting HIF1, which are being developed, for example, as anticancer agents. Specifically, in patients with cancer neuropathy, however, temporary HIF1 inhibition might provide a welcome combination of growth and pain reduction.
Collapse
Affiliation(s)
- Maike Kanngiesser
- 1 Pharmazentrum Frankfurt/ZAFES, Institute of Clinical Pharmacology, Goethe-University Hospital Frankfurt , Frankfurt, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Currie GL, Sena ES, Fallon MT, Macleod MR, Colvin LA. Using Animal Models to Understand Cancer Pain in Humans. Curr Pain Headache Rep 2014; 18:423. [DOI: 10.1007/s11916-014-0423-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
17
|
Nasser A, Møller LB. GCH1 variants, tetrahydrobiopterin and their effects on pain sensitivity. Scand J Pain 2014; 5:121-128. [PMID: 29913682 DOI: 10.1016/j.sjpain.2013.12.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2013] [Accepted: 12/26/2013] [Indexed: 01/03/2023]
Abstract
Background A great proportion of the variation in pain experience and chronicity is caused by heritable factors. Within the last decades several candidate genes have been discovered either increasing or decreasing pain sensitivity or the risk of chronic pain in humans. One of the most studied genes is the GCH1 gene coding for the enzyme GTP cyclohydrolase 1 (GCH1). GCH1 catalyses the initial and rate-limiting step in the biosynthesis of tetrahydrobiopterin (BH4). The main function of BH4 is regulation of monoamine and nitric oxide biosynthesis, all involved in nociceptive signalling. Methods In this topical review we focus on the implication of the GCH1 gene and BH4 in painful conditions. We discuss experimental evidence from our group in relation to relevant research publications evaluating the BH4 pathway in pain. Studies assessing the role of GCH1 and BH4 in pain consist of human and animal studies, including DOPA-responsive dystonia (DRD) patients and hph-1 mice (a genetic mouse model of DRD) having mutations in the GCH1 gene as well as preclinical studies with the GCH1 inhibitor 2,4-diamino-6-hydroxypyrimidine (DAHP). The hypothesis is that genetic and pharmacological reduction of GCH1 would result in lower pain sensitivity. Results Previous studies have demonstrated that a particular "pain protective" GCH1 haplotype, found in 15% of the general human population, is linked to decreased pain sensitivity. We further support these findings in DRD patients, showing normal thresholds to mechanical and thermal stimuli, whereas a trend towards lower pain sensitivity is seen following chemical pain sensitisation. Consistent with these observations, non-injured hph-1 mice displayed normal mechano- and thermosensation compared to wild-type mice. After peripheral inflammation with Complete Freund' Adjuvant or sensitisation with capsaicin the mutant mice exhibited lower sensitivity to mechanical and heat stimuli. Moreover, hph-1 mice showed decreased nociception in the first phase of the formalin test. Several studies report analgesic effects of GCH1 inhibition with 90-270 mg/kg DAHP in rat models of inflammatory and neuropathic pain. However, we could not completely replicate these findings in mice. Fairly higher doses of DAHP (≥270 mg/kg) were needed to reduce inflammatory pain in mice, but the window between antinociception and toxic effects was small, since 400 mg/kg DAHP affected motor performance and general appearance. Also, the analgesic effects were marginal in mice compared to that observed in rats. Conclusions Variations in the GCH1 gene in both humans and mice appear to regulate pain sensitivity and pain behaviours, particularly after pain sensitisation, whereas pain sensitivity to phasic mechanical and thermal stimuli is normal. Moreover, pharmacological inhibition of GCH1 shows antinociceptive effects in preclinical pain studies, though our studies imply that GCH1 inhibition may have a small therapeutic index. Implications The implication of the GCH1 gene in pain may increase our understanding of the risk factors of chronic pain development and improve current pain therapy by personalised medicine. In addition, inhibition of GCH1 provides a potential target for analgesic drug development, though GCH1 inhibitors should possess local or partial effects to avoid serious side-effects to the central nervous system and cardiovascular system.
Collapse
Affiliation(s)
- Arafat Nasser
- Applied Human Molecular Genetics, Kennedy Center, Copenhagen University Hospital, Rigshospitalet, Glostrup, Denmark.,Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, Copenhagen University, Copenhagen, Denmark
| | - Lisbeth Birk Møller
- Applied Human Molecular Genetics, Kennedy Center, Copenhagen University Hospital, Rigshospitalet, Glostrup, Denmark
| |
Collapse
|
18
|
Kapoor S. Evolving role of GTP cyclohydrolase 1 inhibition in mitigating cancer pain besides its role in attenuating tumor growth. Int J Cancer 2013; 132:1969. [PMID: 23011804 DOI: 10.1002/ijc.27867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Accepted: 08/23/2012] [Indexed: 11/06/2022]
|
19
|
Nasser A, Bjerrum OJ, Heegaard AM, Møller AT, Larsen M, Dalbøge LS, Dupont E, Jensen TS, Møller LB. Impaired behavioural pain responses in hph-1 mice with inherited deficiency in GTP cyclohydrolase 1 in models of inflammatory pain. Mol Pain 2013; 9:5. [PMID: 23421753 PMCID: PMC3626862 DOI: 10.1186/1744-8069-9-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 02/14/2013] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND GTP cyclohydrolase 1 (GTP-CH1), the rate-limiting enzyme in the synthesis of tetrahydrobiopterin (BH4), encoded by the GCH1 gene, has been implicated in the development and maintenance of inflammatory pain in rats. In humans, homozygous carriers of a "pain-protective" (PP) haplotype of the GCH1 gene have been identified exhibiting lower pain sensitivity, but only following pain sensitisation. Ex vivo, the PP GCH1 haplotype is associated with decreased induction of GCH1 after stimulation, whereas the baseline BH4 production is not affected. Contrary, loss of function mutations in the GCH1 gene results in decreased basal GCH1 expression, and is associated with DOPA-responsive dystonia (DRD). So far it is unknown if such mutations affect acute and inflammatory pain. RESULTS In the current study, we examined the involvement of the GCH1 gene in pain models using the hyperphenylalaninemia 1 (hph-1) mouse, a genetic model for DRD, with only 10% basal GTP-CH1 activity compared to wild type mice. The study included assays for determination of acute nociception as well as models for pain after sensitisation. Pain behavioural analysis of the hph-1 mice showed reduced pain-like responses following intraplantar injection of CFA, formalin and capsaicin; whereas decreased basal level of GTP-CH1 activity had no influence in naïve hph-1 mice on acute mechanical and heat pain thresholds. Moreover, the hph-1 mice showed no signs of motor impairment or dystonia-like symptoms. CONCLUSIONS In this study, we demonstrate novel evidence that genetic mutations in the GCH1 gene modulate pain-like hypersensitivity. Together, the present data suggest that BH4 is not important for basal heat and mechanical pain, but they support the hypothesis that BH4 plays a role in inflammation-induced hypersensitivity. Our studies suggest that the BH4 pathway could be a therapeutic target for the treatment of inflammatory pain conditions. Moreover, the hph-1 mice provide a valid model to study the consequence of congenital deficiency of GCH1 in painful conditions.
Collapse
Affiliation(s)
- Arafat Nasser
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, Copenhagen University, Copenhagen, Denmark
- Applied Human Molecular Genetics, Kennedy Center, Copenhagen University Hospital, Rigshospitalet, Glostrup, Denmark
| | - Ole J Bjerrum
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, Copenhagen University, Copenhagen, Denmark
| | - Anne-Marie Heegaard
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, Copenhagen University, Copenhagen, Denmark
| | - Anette T Møller
- The Danish Pain Research Center, Århus University Hospital, Århus, Denmark
| | - Majbritt Larsen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, Copenhagen University, Copenhagen, Denmark
| | - Louise S Dalbøge
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, Copenhagen University, Copenhagen, Denmark
| | - Erik Dupont
- Department of Neurology, Århus University Hospital, Århus, Denmark
| | - Troels S Jensen
- The Danish Pain Research Center, Århus University Hospital, Århus, Denmark
| | - Lisbeth B Møller
- Applied Human Molecular Genetics, Kennedy Center, Copenhagen University Hospital, Rigshospitalet, Glostrup, Denmark
| |
Collapse
|