1
|
Poli FE, MacLaren RE, Cehajic-Kapetanovic J. Retinal Patterns and the Role of Autofluorescence in Choroideremia. Genes (Basel) 2024; 15:1471. [PMID: 39596671 PMCID: PMC11593989 DOI: 10.3390/genes15111471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 11/05/2024] [Accepted: 11/09/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Choroideremia is a monogenic inherited retinal dystrophy that manifests in males with night blindness, progressive loss of peripheral vision, and ultimately profound sight loss, commonly by middle age. It is caused by genetic defects of the CHM gene, which result in a deficiency in Rab-escort protein-1, a key element for intracellular trafficking of vesicles, including those carrying melanin. As choroideremia primarily affects the retinal pigment epithelium, fundus autofluorescence, which focuses on the fluorescent properties of pigments within the retina, is an established imaging modality used for the assessment and monitoring of affected patients. METHODS AND RESULTS In this manuscript, we demonstrate the use of both short-wavelength blue and near-infrared autofluorescence and how these imaging modalities reveal distinct disease patterns in choroideremia. In addition, we show how these structural measurements relate to retinal functional measures, namely microperimetry, and discuss the potential role of these retinal imaging modalities in clinical practice and research studies. Moreover, we discuss the mechanisms underlying retinal autofluorescence patterns by imaging with a particular focus on melanin pigment. CONCLUSIONS This could be of particular significance given the current progress in therapeutic options, including gene replacement therapy.
Collapse
Affiliation(s)
- Federica E. Poli
- Nuffield Laboratory of Ophthalmology, University of Oxford, Oxford OX3 9DU, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK
- Royal Berkshire NHS Foundation Trust, Reading RG1 5AN, UK
| | - Robert E. MacLaren
- Nuffield Laboratory of Ophthalmology, University of Oxford, Oxford OX3 9DU, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK
| | - Jasmina Cehajic-Kapetanovic
- Nuffield Laboratory of Ophthalmology, University of Oxford, Oxford OX3 9DU, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK
| |
Collapse
|
2
|
MacLaren RE, Audo I, Fischer MD, Huckfeldt RM, Lam BL, Pennesi ME, Sisk R, Gow JA, Li J, Zhu K, Tsang SF. An Open-Label Phase II Study Assessing the Safety of Bilateral, Sequential Administration of Retinal Gene Therapy in Participants with Choroideremia: The GEMINI Study. Hum Gene Ther 2024; 35:564-575. [PMID: 38970425 DOI: 10.1089/hum.2024.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2024] Open
Abstract
Choroideremia, an incurable, progressive retinal degeneration primarily affecting young men, leads to sight loss. GEMINI was a multicenter, open-label, prospective, two-period, interventional Phase II study assessing the safety of bilateral sequential administration of timrepigene emparvovec, a gene therapy, in adult males with genetically confirmed choroideremia (NCT03507686, ClinicalTrials.gov). Timrepigene emparvovec is an adeno-associated virus serotype 2 vector encoding the cDNA of Rab escort protein 1, augmented by a downstream woodchuck hepatitis virus post-transcriptional regulatory element. Up to 0.1 mL of timrepigene emparvovec, containing 1 × 1011 vector genomes, was administered by subretinal injection following vitrectomy and retinal detachment. The second eye was treated after an intrasurgery window of <6, 6-12, or >12 months. Each eye was followed at up to nine visits over 12 months. Overall, 66 participants received timrepigene emparvovec, and 53 completed the study. Visual acuity (VA) was generally maintained in both eyes, independent of intrasurgery window duration, even after bilateral retinal detachment and subretinal injection. Bilateral treatment was well tolerated, with predominantly mild or moderate treatment-emergent adverse events (TEAEs) and a low rate of serious surgical complications (7.6%). Retinal inflammation TEAEs were reported in 45.5% of participants, with similar rates in both eyes; post hoc analyses found that these were not associated with clinically significant vision loss at month 12 versus baseline. Two participants (3.0%) reported serious noninfective retinitis. Prior timrepigene emparvovec exposure did not increase the risk of serious TEAEs or serious ocular TEAEs upon injection of the second eye; furthermore, no systemic immune reaction or inoculation effect was observed. Presence of antivector neutralizing antibodies at baseline was potentially associated with a higher percentage of TEAEs related to ocular inflammation or reduced VA after injection of the first eye. The GEMINI study results may inform decisions regarding bilateral sequential administration of other gene therapies for retinal diseases.
Collapse
Affiliation(s)
- Robert E MacLaren
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
- Oxford NIHR Biomedical Research Centre, Oxford, United Kingdom
| | - Isabelle Audo
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
- Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, Centre de Référence Maladies Rares REFERET and INSERM-DGOS CIC 1423, Paris, France
| | - M Dominik Fischer
- University Eye Hospital, Centre for Ophthalmology, University Hospital Tübingen, Tübingen, Germany
| | - Rachel M Huckfeldt
- MEE Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA
| | - Byron L Lam
- Bascom Palmer Eye Institute, University of Miami, Miami, Florida, USA
| | - Mark E Pennesi
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Robert Sisk
- Cincinnati Eye Institute, Blue Ash, Ohio, USA
| | | | - Jiang Li
- Biogen Inc., Cambridge, Massachusetts, USA
| | - Kan Zhu
- Biogen Inc., Cambridge, Massachusetts, USA
| | | |
Collapse
|
3
|
Ashok S, Ramachandra Rao S. Updates on protein-prenylation and associated inherited retinopathies. FRONTIERS IN OPHTHALMOLOGY 2024; 4:1410874. [PMID: 39026984 PMCID: PMC11254824 DOI: 10.3389/fopht.2024.1410874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 06/13/2024] [Indexed: 07/20/2024]
Abstract
Membrane-anchored proteins play critical roles in cell signaling, cellular architecture, and membrane biology. Hydrophilic proteins are post-translationally modified by a diverse range of lipid molecules such as phospholipids, glycosylphosphatidylinositol, and isoprenes, which allows their partition and anchorage to the cell membrane. In this review article, we discuss the biochemical basis of isoprenoid synthesis, the mechanisms of isoprene conjugation to proteins, and the functions of prenylated proteins in the neural retina. Recent discovery of novel prenyltransferases, prenylated protein chaperones, non-canonical prenylation-target motifs, and reversible prenylation is expected to increase the number of inherited systemic and blinding diseases with aberrant protein prenylation. Recent important investigations have also demonstrated the role of several unexpected regulators (such as protein charge, sequence/protein-chaperone interaction, light exposure history) in the photoreceptor trafficking of prenylated proteins. Technical advances in the investigation of the prenylated proteome and its application in vision research are discussed. Clinical updates and technical insights into known and putative prenylation-associated retinopathies are provided herein. Characterization of non-canonical prenylation mechanisms in the retina and retina-specific prenylated proteome is fundamental to the understanding of the pathogenesis of protein prenylation-associated inherited blinding disorders.
Collapse
Affiliation(s)
- Sudhat Ashok
- Department of Ophthalmology, Jacobs School of Medicine and Biomedical Sciences, State University of New York, University at Buffalo, Buffalo, NY, United States
| | - Sriganesh Ramachandra Rao
- Department of Ophthalmology, Jacobs School of Medicine and Biomedical Sciences, State University of New York, University at Buffalo, Buffalo, NY, United States
- Neuroscience Program, Jacobs School of Medicine and Biomedical Sciences, State University of New York, University at Buffalo, Buffalo, NY, United States
- Research Service, VA Western New York Healthcare System, Buffalo, NY, United States
| |
Collapse
|
4
|
Waldock WJ, Taylor LJ, Sperring S, Staurenghi F, Martinez-Fernandez de la Camara C, Whitfield J, Clouston P, Yusuf IH, MacLaren RE. A hypomorphic variant of choroideremia is associated with a novel intronic mutation that leads to exon skipping. Ophthalmic Genet 2024; 45:210-217. [PMID: 38273808 DOI: 10.1080/13816810.2023.2270554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/09/2023] [Indexed: 01/27/2024]
Abstract
INTRODUCTION Molecular confirmation of pathogenic sequence variants in the CHM gene is required prior to enrolment in retinal gene therapy clinical trials for choroideremia. Individuals with mild choroideremia have been reported. The molecular basis of genotype-phenotype associations is of clinical relevance since it may impact on selection for retinal gene therapy. METHODS AND MATERIALS Genetic testing and RNA analysis were undertaken in a patient with mild choroideremia to confirm the pathogenicity of a novel intronic variant in CHM and to explore the mechanism underlying the mild clinical phenotype. RESULTS A 42-year-old male presented with visual field loss. Fundoscopy and autofluorescence imaging demonstrated mild choroideremia for his age. Genetic analysis revealed a variant at a splice acceptor site in the CHM gene (c.1350-3C > G). RNA analysis demonstrated two out-of-frame transcripts, suggesting pathogenicity, without any detectable wildtype transcripts. One of the two out-of-frame transcripts is present in very low levels in healthy controls. DISCUSSION Mild choroideremia may result from +3 or -3 splice site variants in CHM. It is presumed that the resulting mRNA transcripts may be partly functional, thereby preventing the development of the null phenotype. Choroideremia patients with such variants may present challenges for gene therapy since there may be residual transcript activity which could result in long-lasting visual function which is atypical for this disease.
Collapse
Affiliation(s)
| | - Laura J Taylor
- Oxford Eye Hospital, Oxford University Hospitals NHS Trust, Oxford, UK
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Sian Sperring
- Oxford Eye Hospital, Oxford University Hospitals NHS Trust, Oxford, UK
| | - Federica Staurenghi
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Cristina Martinez-Fernandez de la Camara
- Oxford Eye Hospital, Oxford University Hospitals NHS Trust, Oxford, UK
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | | | - Penny Clouston
- Oxford Regional Genetics Laboratories, Churchill Hospital, Oxford, UK
| | - Imran H Yusuf
- Oxford Eye Hospital, Oxford University Hospitals NHS Trust, Oxford, UK
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Robert E MacLaren
- Oxford Eye Hospital, Oxford University Hospitals NHS Trust, Oxford, UK
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| |
Collapse
|
5
|
Erol ÖD, Şenocak Ş, Aerts-Kaya F. The Role of Rab GTPases in the development of genetic and malignant diseases. Mol Cell Biochem 2024; 479:255-281. [PMID: 37060515 DOI: 10.1007/s11010-023-04727-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 04/01/2023] [Indexed: 04/16/2023]
Abstract
Small GTPases have been shown to play an important role in several cellular functions, including cytoskeletal remodeling, cell polarity, intracellular trafficking, cell-cycle, progression and lipid transformation. The Ras-associated binding (Rab) family of GTPases constitutes the largest family of GTPases and consists of almost 70 known members of small GTPases in humans, which are known to play an important role in the regulation of intracellular membrane trafficking, membrane identity, vesicle budding, uncoating, motility and fusion of membranes. Mutations in Rab genes can cause a wide range of inherited genetic diseases, ranging from neurodegenerative diseases, such as Parkinson's disease (PD) and Alzheimer's disease (AD) to immune dysregulation/deficiency syndromes, like Griscelli Syndrome Type II (GS-II) and hemophagocytic lymphohistiocytosis (HLH), as well as a variety of cancers. Here, we provide an extended overview of human Rabs, discussing their function and diseases related to Rabs and Rab effectors, as well as focusing on effects of (aberrant) Rab expression. We aim to underline their importance in health and the development of genetic and malignant diseases by assessing their role in cellular structure, regulation, function and biology and discuss the possible use of stem cell gene therapy, as well as targeting of Rabs in order to treat malignancies, but also to monitor recurrence of cancer and metastasis through the use of Rabs as biomarkers. Future research should shed further light on the roles of Rabs in the development of multifactorial diseases, such as diabetes and assess Rabs as a possible treatment target.
Collapse
Affiliation(s)
- Özgür Doğuş Erol
- Department of Stem Cell Sciences, Hacettepe University Graduate School of Health Sciences, 06100, Ankara, Turkey
- Hacettepe University Center for Stem Cell Research and Development, 06100, Ankara, Turkey
| | - Şimal Şenocak
- Department of Stem Cell Sciences, Hacettepe University Graduate School of Health Sciences, 06100, Ankara, Turkey
- Hacettepe University Center for Stem Cell Research and Development, 06100, Ankara, Turkey
| | - Fatima Aerts-Kaya
- Department of Stem Cell Sciences, Hacettepe University Graduate School of Health Sciences, 06100, Ankara, Turkey.
- Hacettepe University Center for Stem Cell Research and Development, 06100, Ankara, Turkey.
| |
Collapse
|
6
|
He X, Fu Y, Ma L, Yao Y, Ge S, Yang Z, Fan X. AAV for Gene Therapy in Ocular Diseases: Progress and Prospects. RESEARCH (WASHINGTON, D.C.) 2023; 6:0291. [PMID: 38188726 PMCID: PMC10768554 DOI: 10.34133/research.0291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 11/27/2023] [Indexed: 01/09/2024]
Abstract
Owing to the promising therapeutic effect and one-time treatment advantage, gene therapy may completely change the management of eye diseases, especially retinal diseases. Adeno-associated virus (AAV) is considered one of the most promising viral gene delivery tools because it can infect various types of tissues and is considered as a relatively safe gene delivery vector. The eye is one of the most popular organs for gene therapy, since its limited volume is suitable for small doses of AAV stably transduction. Recently, an increasing number of clinical trials of AAV-mediated gene therapy are underway. This review summarizes the biological functions of AAV and its application in the treatment of various ocular diseases, as well as the characteristics of different AAV delivery routes in clinical applications. Here, the latest research progresses in AAV-mediated gene editing and silencing strategies to modify that the genetic ocular diseases are systematically outlined, especially by base editing and prime editing. We discuss the progress of AAV in ocular optogenetic therapy. We also summarize the application of AAV-mediated gene therapy in animal models and the difficulties in its clinical transformation.
Collapse
Affiliation(s)
- Xiaoyu He
- Department of Ophthalmology, Ninth People’s Hospital,
Shanghai JiaoTong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Yidian Fu
- Department of Ophthalmology, Ninth People’s Hospital,
Shanghai JiaoTong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Liang Ma
- Department of Ophthalmology, Ninth People’s Hospital,
Shanghai JiaoTong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Yizheng Yao
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University; Clinical Research Center of Neurological Disease,
The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Shengfang Ge
- Department of Ophthalmology, Ninth People’s Hospital,
Shanghai JiaoTong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Zhi Yang
- Department of Ophthalmology, Ninth People’s Hospital,
Shanghai JiaoTong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Xianqun Fan
- Department of Ophthalmology, Ninth People’s Hospital,
Shanghai JiaoTong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| |
Collapse
|
7
|
MacLaren RE, Fischer MD, Gow JA, Lam BL, Sankila EMK, Girach A, Panda S, Yoon D, Zhao G, Pennesi ME. Subretinal timrepigene emparvovec in adult men with choroideremia: a randomized phase 3 trial. Nat Med 2023; 29:2464-2472. [PMID: 37814062 PMCID: PMC10579095 DOI: 10.1038/s41591-023-02520-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 07/28/2023] [Indexed: 10/11/2023]
Abstract
Choroideremia is a rare, X-linked retinal degeneration resulting in progressive vision loss. A randomized, masked, phase 3 clinical trial evaluated the safety and efficacy over 12 months of follow-up in adult males with choroideremia randomized to receive a high-dose (1.0 × 1011 vector genomes (vg); n = 69) or low-dose (1.0 × 1010 vg; n = 34) subretinal injection of the AAV2-vector-based gene therapy timrepigene emparvovec versus non-treated control (n = 66). Most treatment-emergent adverse events were mild or moderate. The trial did not meet its primary endpoint of best-corrected visual acuity (BCVA) improvement. In the primary endpoint analysis, three of 65 participants (5%) in the high-dose group, one of 34 (3%) participants in the low-dose group and zero of 62 (0%) participants in the control group had ≥15-letter Early Treatment Diabetic Retinopathy Study (ETDRS) improvement from baseline BCVA at 12 months (high dose, P = 0.245 versus control; low dose, P = 0.354 versus control). As the primary endpoint was not met, key secondary endpoints were not tested for significance. In a key secondary endpoint, nine of 65 (14%), six of 35 (18%) and one of 62 (2%) participants in the high-dose, low-dose and control groups, respectively, experienced ≥10-letter ETDRS improvement from baseline BCVA at 12 months. Potential opportunities to enhance future gene therapy studies for choroideremia include optimization of entry criteria (more preserved retinal area), surgical techniques and clinical endpoints. EudraCT registration: 2015-003958-41 .
Collapse
Affiliation(s)
- Robert E MacLaren
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford, Oxford, UK.
- Oxford University Hospitals NIHR Biomedical Research Centre, Oxford, UK.
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK.
| | - M Dominik Fischer
- University Eye Hospital Tübingen, Center for Ophthalmology, Tübingen, Germany
| | | | - Byron L Lam
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | | | - Aniz Girach
- Formerly of Nightstar Therapeutics, London, UK
| | | | | | | | - Mark E Pennesi
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
8
|
Abdalla Elsayed MEA, Taylor LJ, Josan AS, Fischer MD, MacLaren RE. Choroideremia: The Endpoint Endgame. Int J Mol Sci 2023; 24:14354. [PMID: 37762657 PMCID: PMC10532430 DOI: 10.3390/ijms241814354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/25/2023] [Accepted: 09/09/2023] [Indexed: 09/29/2023] Open
Abstract
Choroideremia is an X-linked retinal degeneration resulting from the progressive, centripetal loss of photoreceptors and choriocapillaris, secondary to the degeneration of the retinal pigment epithelium. Affected individuals present in late childhood or early teenage years with nyctalopia and progressive peripheral visual loss. Typically, by the fourth decade, the macula and fovea also degenerate, resulting in advanced sight loss. Currently, there are no approved treatments for this condition. Gene therapy offers the most promising therapeutic modality for halting or regressing functional loss. The aims of the current review are to highlight the lessons learnt from clinical trials in choroideremia, review endpoints, and propose a future strategy for clinical trials.
Collapse
Affiliation(s)
- Maram E. A. Abdalla Elsayed
- Oxford Eye Hospital, Oxford University Hospitals National Health Service Foundation Trust, Oxford OX3 9DU, UK
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Laura J. Taylor
- Oxford Eye Hospital, Oxford University Hospitals National Health Service Foundation Trust, Oxford OX3 9DU, UK
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Amandeep S. Josan
- Oxford Eye Hospital, Oxford University Hospitals National Health Service Foundation Trust, Oxford OX3 9DU, UK
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - M. Dominik Fischer
- Oxford Eye Hospital, Oxford University Hospitals National Health Service Foundation Trust, Oxford OX3 9DU, UK
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Robert E. MacLaren
- Oxford Eye Hospital, Oxford University Hospitals National Health Service Foundation Trust, Oxford OX3 9DU, UK
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| |
Collapse
|
9
|
Poli FE, Yusuf IH, Jolly JK, Taylor LJ, Adeyoju D, Josan AS, Birtel J, Charbel Issa P, Cehajic-Kapetanovic J, Da Cruz L, MacLaren RE. Correlation Between Fundus Autofluorescence Pattern and Retinal Function on Microperimetry in Choroideremia. Transl Vis Sci Technol 2023; 12:24. [PMID: 37773503 PMCID: PMC10547012 DOI: 10.1167/tvst.12.9.24] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 08/29/2023] [Indexed: 10/01/2023] Open
Abstract
Purpose In patients with choroideremia, it is not known how smooth and mottled patterns on short-wavelength fundus autofluorescence (AF) imaging relate to retinal function. Methods A retrospective case-note review was undertaken on 190 patients with choroideremia at two specialist centers for retinal genetics. Twenty patients with both smooth and mottled zones on short-wavelength AF imaging and concurrent mesopic microperimetry assessments were included. Mean retinal sensitivities within the smooth and mottled zones were compared between choroideremia patients, and identical points on mesopic microperimetry collected from 12 age-matched controls. Longitudinal analyses were undertaken at 2 and 5 years in a subset of patients. Results In patients with choroideremia, mean retinal sensitivities at baseline were significantly greater in the smooth zone (26.1 ± 2.0 dB) versus the mottled zone (20.5 ± 4.2 dB) (P < 0.0001). Mean retinal sensitivities at baseline were similar in the smooth zone between choroideremia patients and controls (P = 0.054) but significantly impaired in the mottled zone in choroideremia compared to controls (P < 0.0001). The rate of decline in total sensitivity over 5 years was not significant in either the smooth or mottled zone in a small subset of choroideremia patients (n = 7; P = 0.344). Conclusions In choroideremia, retinal sensitivity as determined by microperimetry correlates with patterns on AF imaging: retinal function in the smooth zone, where the retinal pigment epithelium is anatomically preserved, is similar to controls, but retinal sensitivity in the mottled zone is impaired. Translational Relevance Patterns on AF imaging may represent a novel, objective outcome measure for clinical trials in choroideremia as a surrogate for retinal function.
Collapse
Affiliation(s)
- Federica E. Poli
- Nuffield Laboratory of Ophthalmology, University of Oxford, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Imran H. Yusuf
- Nuffield Laboratory of Ophthalmology, University of Oxford, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Jasleen K. Jolly
- Nuffield Laboratory of Ophthalmology, University of Oxford, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- Vision and Eye Research Institute, School of Medicine, Anglia Ruskin University, Cambridge, UK
| | - Laura J. Taylor
- Nuffield Laboratory of Ophthalmology, University of Oxford, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Daniel Adeyoju
- Nuffield Laboratory of Ophthalmology, University of Oxford, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Amandeep S. Josan
- Nuffield Laboratory of Ophthalmology, University of Oxford, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Johannes Birtel
- Nuffield Laboratory of Ophthalmology, University of Oxford, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- Department of Ophthalmology, University Hospital of Bonn, Bonn, Germany
- Department of Ophthalmology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Peter Charbel Issa
- Nuffield Laboratory of Ophthalmology, University of Oxford, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Jasmina Cehajic-Kapetanovic
- Nuffield Laboratory of Ophthalmology, University of Oxford, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Lyndon Da Cruz
- Institute of Ophthalmology, University College London, London, UK
- Moorfields Eye Hospital, London, UK
| | - Robert E. MacLaren
- Nuffield Laboratory of Ophthalmology, University of Oxford, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| |
Collapse
|
10
|
Yusuf IH, MacLaren RE. Choroideremia: Toward Regulatory Approval of Retinal Gene Therapy. Cold Spring Harb Perspect Med 2023; 13:a041279. [PMID: 37277205 PMCID: PMC10691480 DOI: 10.1101/cshperspect.a041279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Choroideremia is an X-linked inherited retinal degeneration characterized by primary centripetal degeneration of the retinal pigment epithelium (RPE), with secondary degeneration of the choroid and retina. Affected individuals experience reduced night vision in early adulthood with blindness in late middle age. The underlying CHM gene encodes REP1, a protein involved in the prenylation of Rab GTPases essential for intracellular vesicle trafficking. Adeno-associated viral gene therapy has demonstrated some benefit in clinical trials for choroideremia. However, challenges remain in gaining regulatory approval. Choroideremia is slowly progressive, which presents difficulties in demonstrating benefit over short pivotal clinical trials that usually run for 1-2 years. Improvements in visual acuity are particularly challenging due to the initial negative effects of surgical detachment of the fovea. Despite these challenges, great progress toward a treatment has been made since choroideremia was first described in 1872.
Collapse
Affiliation(s)
- Imran H Yusuf
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, United Kingdom
- Oxford Eye Hospital, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, United Kingdom
| | - Robert E MacLaren
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, United Kingdom
- Oxford Eye Hospital, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, United Kingdom
| |
Collapse
|
11
|
Wu WH, Tso A, Breazzano MP, Jenny LA, Levi SR, Tsang SH, Quinn PMJ. Culture of Human Retinal Explants for Ex Vivo Assessment of AAV Gene Delivery. Methods Mol Biol 2022; 2560:303-311. [PMID: 36481906 DOI: 10.1007/978-1-0716-2651-1_28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Due to the clinically established safety and efficacy profile of recombinant adeno-associated viral (rAAV) vectors, they are considered the "go to" vector for retinal gene therapy. Design of a rAAV-mediated gene therapy focuses on cell tropism, high transduction efficiency, and high transgene expression levels to achieve the lowest therapeutic treatment dosage and avoid toxicity. Human retinal explants are a clinically relevant model system for exploring these aspects of rAAV-mediated gene delivery. In this chapter, we describe an ex vivo human retinal explant culture protocol to evaluate transgene expression in order to determine the selectivity and efficacy of rAAV vectors for human retinal gene therapy.
Collapse
Affiliation(s)
- Wen-Hsuan Wu
- Edward S. Harkness Eye Institute, Department of Ophthalmology, Columbia University Irving Medical Center/New York-Presbyterian Hospital, New York, NY, USA
| | - Amy Tso
- Edward S. Harkness Eye Institute, Department of Ophthalmology, Columbia University Irving Medical Center/New York-Presbyterian Hospital, New York, NY, USA
| | - Mark P Breazzano
- Edward S. Harkness Eye Institute, Department of Ophthalmology, Columbia University Irving Medical Center/New York-Presbyterian Hospital, New York, NY, USA.,Department of Ophthalmology, New York University School of Medicine, New York University Langone Health, New York, NY, USA.,Manhattan Eye, Ear and Throat Hospital, Lenox Hill Hospital, Northwell Health, New York, NY, USA
| | - Laura A Jenny
- Edward S. Harkness Eye Institute, Department of Ophthalmology, Columbia University Irving Medical Center/New York-Presbyterian Hospital, New York, NY, USA.,Department of Ophthalmology, New York University School of Medicine, New York University Langone Health, New York, NY, USA.,Manhattan Eye, Ear and Throat Hospital, Lenox Hill Hospital, Northwell Health, New York, NY, USA
| | - Sarah R Levi
- Edward S. Harkness Eye Institute, Department of Ophthalmology, Columbia University Irving Medical Center/New York-Presbyterian Hospital, New York, NY, USA.,Department of Ophthalmology, New York University School of Medicine, New York University Langone Health, New York, NY, USA.,Manhattan Eye, Ear and Throat Hospital, Lenox Hill Hospital, Northwell Health, New York, NY, USA
| | - Stephen H Tsang
- Departments of Ophthalmology, Pathology & Cell Biology, Graduate Programs in Nutritional & Metabolic Biology and Neurobiology & Behavior, Columbia Stem Cell Initiative, New York, NY, USA
| | - Peter M J Quinn
- Department of Opthalmology, Columbia University Medical Center, New York, NY, USA.
| |
Collapse
|
12
|
Nanegrungsunk O, Au A, Sarraf D, Sadda SR. New frontiers of retinal therapeutic intervention: a critical analysis of novel approaches. Ann Med 2022; 54:1067-1080. [PMID: 35467460 PMCID: PMC9045775 DOI: 10.1080/07853890.2022.2066169] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
A recent wave of pharmacologic and technologic innovations has revolutionized our management of retinal diseases. Many of these advancements have demonstrated efficacy and can increase the quality of life while potentially reducing complications and decreasing the burden of care for patients. Some advances, such as longer-acting anti-vascular endothelial growth factor agents, port delivery systems, gene therapy, and retinal prosthetics have been approved by the US Food and Drug Administration, and are available for clinical use. Countless other therapeutics are in various stages of development, promising a bright future for further improvements in the management of the retinal disease. Herein, we have highlighted several important novel therapies and therapeutic approaches and examine the opportunities and limitations offered by these innovations at the new frontier. KEY MESSAGESNumerous pharmacologic and technologic advancements have been emerging, providing a higher treatment efficacy while decreasing the burden and associated side effects.Anti-vascular endothelial growth factor (anti-VEGF) and its longer-acting agents have dramatically improved visual outcomes and have become a mainstay treatment in various retinal diseases.Gene therapy and retinal prosthesis implantation in the treatment of congenital retinal dystrophy can accomplish the partial restoration of vision and improved daily function in patients with blindness, an unprecedented success in the field of retina.
Collapse
Affiliation(s)
- Onnisa Nanegrungsunk
- Doheny Eye Institute, Pasadena, CA, USA.,Department of Ophthalmology, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA, USA.,Retina Division, Department of Ophthalmology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Adrian Au
- Stein Eye Institute, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA, USA
| | - David Sarraf
- Stein Eye Institute, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA, USA
| | - Srinivas R Sadda
- Doheny Eye Institute, Pasadena, CA, USA.,Department of Ophthalmology, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
13
|
AAV2-hCHM Subretinal Delivery to the Macula in Choroideremia: Two Year Interim Results of an Ongoing Phase I/II Gene Therapy Trial. Ophthalmology 2022; 129:1177-1191. [PMID: 35714735 DOI: 10.1016/j.ophtha.2022.06.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 11/22/2022] Open
Abstract
PURPOSE To assess the safety of the subretinal delivery of a recombinant adeno-associated virus serotype 2 (AAV2) vector carrying a human CHM-encoding cDNA in choroideremia (CHM). DESIGN Prospective, open-label, non-randomized, dose-escalation, phase 1/2 clinical trial. SUBJECTS, PARTICIPANTS, AND/OR CONTROLS Fifteen CHM patients (ages 20-57 years at dosing). METHODS, INTERVENTION, OR TESTING Patients received uniocular subfoveal injections of low dose (up to 5x1010 vector genome (vg) per eye, n=5) or high dose (up to 1x1011 vg per eye, n=10) AAV2-hCHM. Patients were evaluated pre- and post-operatively for two years with ophthalmic examinations, multimodal retinal imaging and psychophysical testing. MAIN OUTCOME Measures: visual acuity (VA), perimetry (10-2 protocol), spectral-domain optical coherence tomography (SD-OCT) and short-wavelength fundus autofluorescence (SW-FAF). RESULTS We detected no vector-related or systemic toxicities. VA returned to within 15 letters of baseline in all but two patients (one developed acute foveal thinning, another patient, a macular hole); the rest showed no gross changes in foveal structure at two years. There were no significant differences between intervention and control eyes in mean light-adapted sensitivity by perimetry, or in the lateral extent of retinal pigment epithelium (RPE) relative preservation by SD-OCT and SW-FAF. Microperimetry showed non-significant (<3SD of the intervisit variability) gains in sensitivity in some locations and participants in the intervention eye. There were no obvious dose-dependent relationships. CONCLUSIONS VA was within 15 letters of baseline after the subfoveal AAV2-hCHM injections in 13/15 (87%) of the patients. Acute foveal thinning with unchanged perifoveal function in one patient and macular hole in a second suggests foveal vulnerability to the subretinal injections. Longer observation intervals will help establish the significance of the minor differences in sensitivities and rate of disease progression observed between intervention and control eyes.
Collapse
|
14
|
Huang P, Narendran S, Pereira F, Fukuda S, Nagasaka Y, Apicella I, Yerramothu P, Marion KM, Cai X, Sadda SR, Gelfand BD, Ambati J. The Learning Curve of Murine Subretinal Injection Among Clinically Trained Ophthalmic Surgeons. Transl Vis Sci Technol 2022; 11:13. [PMID: 35275207 PMCID: PMC8934552 DOI: 10.1167/tvst.11.3.13] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 02/16/2022] [Indexed: 01/02/2023] Open
Abstract
Purpose Subretinal injection (SRI) in mice is widely used in retinal research, yet the learning curve (LC) of this surgically challenging technique is unknown. Methods To evaluate the LC for SRI in a murine model, we analyzed training data from three clinically trained ophthalmic surgeons from 2018 to 2020. Successful SRI was defined as either the absence of retinal pigment epithelium (RPE) degeneration after phosphate buffered saline injection or the presence of RPE degeneration after Alu RNA injection. Multivariable survival-time regression models were used to evaluate the association between surgeon experience and success rate, with adjustment for injection agents, and to calculate an approximate case number to achieve a 95% success rate. Cumulative sum (CUSUM) analyses were performed and plotted individually to monitor each surgeon's simultaneous performance. Results Despite prior microsurgery experience, the combined average success rate of the first 50 cases in mice was only 27%. The predicted SRI success rate did not reach a plateau above 95% until approximately 364 prior cases. Using the 364 training cases as a cutoff point, the predicted probability of success for cases 1 to 364 was 65.38%, and for cases 365 to 455 it was 99.32% (P < 0.0001). CUSUM analysis showed an initial upward slope and then remained within the decision intervals with an acceptable success rate set at 95% in the late stage. Conclusions This study demonstrates the complexity and substantial LC for successful SRI in mice with high confidence. A systematic training system could improve the reliability and reproducibility of SRI-related experiments and improve the interpretation of experimental results using this technique. Translational Relevance Our prediction model and monitor system allow objective quantification of technical proficiency in the field of subretinal drug delivery and gene therapy for the first time, to the best of our knowledge.
Collapse
Affiliation(s)
- Peirong Huang
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Siddharth Narendran
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA, USA
- Aravind Eye Care System, Madurai, India
| | - Felipe Pereira
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA, USA
- Departamento de Oftalmologia e Ciências Visuais, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Shinichi Fukuda
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Ophthalmology, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yosuke Nagasaka
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Ivana Apicella
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Praveen Yerramothu
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | | | - Xiaoyu Cai
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Srinivas R. Sadda
- Doheny Eye Institute, Los Angeles, CA, USA
- Department of Ophthalmology, David Geffen School of Medicine, University of California–Los Angeles, Los Angeles, CA, USA
| | - Bradley D. Gelfand
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Biomedical Engineering, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Jayakrishna Ambati
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA, USA
| |
Collapse
|
15
|
Bonilla-Pons SÀ, Nakagawa S, Bahima EG, Fernández-Blanco Á, Pesaresi M, D'Antin JC, Sebastian-Perez R, Greco D, Domínguez-Sala E, Gómez-Riera R, Compte RIB, Dierssen M, Pulido NM, Cosma MP. Müller glia fused with adult stem cells undergo neural differentiation in human retinal models. EBioMedicine 2022; 77:103914. [PMID: 35278743 PMCID: PMC8917309 DOI: 10.1016/j.ebiom.2022.103914] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 02/09/2022] [Accepted: 02/18/2022] [Indexed: 12/15/2022] Open
Abstract
Background Visual impairments are a critical medical hurdle to be addressed in modern society. Müller glia (MG) have regenerative potential in the retina in lower vertebrates, but not in mammals. However, in mice, in vivo cell fusion between MG and adult stem cells forms hybrids that can partially regenerate ablated neurons. Methods We used organotypic cultures of human retina and preparations of dissociated cells to test the hypothesis that cell fusion between human MG and adult stem cells can induce neuronal regeneration in human systems. Moreover, we established a microinjection system for transplanting human retinal organoids to demonstrate hybrid differentiation. Findings We first found that cell fusion occurs between MG and adult stem cells, in organotypic cultures of human retina as well as in cell cultures. Next, we showed that the resulting hybrids can differentiate and acquire a proto-neural electrophysiology profile when the Wnt/beta-catenin pathway is activated in the adult stem cells prior fusion. Finally, we demonstrated the engraftment and differentiation of these hybrids into human retinal organoids. Interpretation We show fusion between human MG and adult stem cells, and demonstrate that the resulting hybrid cells can differentiate towards neural fate in human model systems. Our results suggest that cell fusion-mediated therapy is a potential regenerative approach for treating human retinal dystrophies. Funding This work was supported by La Caixa Health (HR17-00231), Velux Stiftung (976a) and the Ministerio de Ciencia e Innovación, (BFU2017-86760-P) (AEI/FEDER, UE), AGAUR (2017 SGR 689, 2017 SGR 926).
Collapse
Affiliation(s)
- Sergi Àngel Bonilla-Pons
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, C/Dr. Aiguader 88, Barcelona 08003, Spain; Universitat de Barcelona (UB), Barcelona, Spain
| | - Shoma Nakagawa
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, C/Dr. Aiguader 88, Barcelona 08003, Spain
| | - Elena Garreta Bahima
- Pluripotency for Organ Regeneration, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Álvaro Fernández-Blanco
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, C/Dr. Aiguader 88, Barcelona 08003, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Martina Pesaresi
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, C/Dr. Aiguader 88, Barcelona 08003, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Justin Christopher D'Antin
- Centro de Oftalmología Barraquer, Barcelona, Spain; Institut Universitari Barraquer, Universitat Autónoma de Barcelona, Barcelona, Spain
| | - Ruben Sebastian-Perez
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, C/Dr. Aiguader 88, Barcelona 08003, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Daniela Greco
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, C/Dr. Aiguader 88, Barcelona 08003, Spain
| | - Eduardo Domínguez-Sala
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, C/Dr. Aiguader 88, Barcelona 08003, Spain
| | - Raúl Gómez-Riera
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, C/Dr. Aiguader 88, Barcelona 08003, Spain
| | - Rafael Ignacio Barraquer Compte
- Centro de Oftalmología Barraquer, Barcelona, Spain; Institut Universitari Barraquer, Universitat Autónoma de Barcelona, Barcelona, Spain
| | - Mara Dierssen
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, C/Dr. Aiguader 88, Barcelona 08003, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Biomedical Research Networking Centre On Rare Diseases (CIBERER), Institute of Health Carlos III, Madrid, Spain
| | - Nuria Montserrat Pulido
- Pluripotency for Organ Regeneration, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; ICREA, Pg. Lluis Companys 23, Barcelona 08010, Spain
| | - Maria Pia Cosma
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, C/Dr. Aiguader 88, Barcelona 08003, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; ICREA, Pg. Lluis Companys 23, Barcelona 08010, Spain; Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510005, China; CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell an Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Science, Guangzhou 510530, China.
| |
Collapse
|
16
|
Guo J, Ma X, Skidmore JM, Cimerman J, Prieskorn DM, Beyer LA, Swiderski DL, Dolan DF, Martin DM, Raphael Y. GJB2 gene therapy and conditional deletion reveal developmental stage-dependent effects on inner ear structure and function. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2021; 23:319-333. [PMID: 34729379 PMCID: PMC8531464 DOI: 10.1016/j.omtm.2021.09.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/24/2021] [Indexed: 11/15/2022]
Abstract
Pathogenic variants in GJB2, the gene encoding connexin 26, are the most common cause of autosomal-recessive hereditary deafness. Despite this high prevalence, pathogenic mechanisms leading to GJB2-related deafness are not well understood, and cures are absent. Humans with GJB2-related deafness retain at least some auditory hair cells and neurons, and their deafness is usually stable. In contrast, mice with conditional loss of Gjb2 in supporting cells exhibit extensive loss of hair cells and neurons and rapidly progress to profound deafness, precluding the application of therapies that require intact cochlear cells. In an attempt to design a less severe Gjb2 animal model, we generated mice with inducible Sox10iCre ERT2 -mediated loss of Gjb2. Tamoxifen injection led to reduced connexin 26 expression and impaired function, but cochlear hair cells and neurons survived for 2 months, allowing phenotypic rescue attempts within this time. AAV-mediated gene transfer of GJB2 in mature mutant ears did not demonstrate threshold improvement and in some animals exacerbated hearing loss and resulted in hair cell loss. We conclude that Sox10iCre ERT2 ;Gjb2 flox/flox mice are valuable for studying the biology of connexin 26 in the cochlea. In particular, these mice may be useful for evaluating gene therapy vectors and development of therapies for GJB2-related deafness.
Collapse
Affiliation(s)
- Jingying Guo
- Kresge Hearing Research Institute, Otolaryngology, Head and Neck Surgery, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA.,Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xiaobo Ma
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Jennifer M Skidmore
- Department of Pediatrics, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Jelka Cimerman
- Department of Pediatrics, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Diane M Prieskorn
- Kresge Hearing Research Institute, Otolaryngology, Head and Neck Surgery, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Lisa A Beyer
- Kresge Hearing Research Institute, Otolaryngology, Head and Neck Surgery, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Donald L Swiderski
- Kresge Hearing Research Institute, Otolaryngology, Head and Neck Surgery, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - David F Dolan
- Kresge Hearing Research Institute, Otolaryngology, Head and Neck Surgery, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Donna M Martin
- Department of Pediatrics, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA.,Department of Human Genetics, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Yehoash Raphael
- Kresge Hearing Research Institute, Otolaryngology, Head and Neck Surgery, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
17
|
Kalatzis V, Roux AF, Meunier I. Molecular Therapy for Choroideremia: Pre-clinical and Clinical Progress to Date. Mol Diagn Ther 2021; 25:661-675. [PMID: 34661884 DOI: 10.1007/s40291-021-00558-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2021] [Indexed: 12/01/2022]
Abstract
Choroideremia is an inherited retinal disease characterised by a degeneration of the light-sensing photoreceptors, supporting retinal pigment epithelium and underlying choroid. Patients present with the same symptoms as those with classic rod-cone dystrophy: (1) night blindness early in life; (2) progressive peripheral visual field loss, and (3) central vision decline with a slow progression to legal blindness. Choroideremia is monogenic and caused by mutations in CHM. Eight clinical trials (three phase 1/2, four phase 2, and one phase 3) have started (four of which are already finished) to evaluate the therapeutic efficacy of gene supplementation mediated by subretinal delivery of an adeno-associated virus serotype 2 (AAV2/2) vector expressing CHM. Furthermore, one phase 1 clinical trial has been initiated to evaluate the efficiency of a novel AAV variant to deliver CHM to the outer retina following intravitreal delivery. Lastly, a non-viral-mediated CHM replacement strategy is currently under development, which could lead to a future clinical trial. Here, we summarise the rationale behind these various studies, as well as any results published to date. The diversity of these trials currently places choroideremia at the forefront of the retinal gene therapy field. As a consequence, the trial outcomes, regardless of the results, have the potential to change the landscape of gene supplementation for inherited retinal diseases.
Collapse
Affiliation(s)
- Vasiliki Kalatzis
- Institute for Neurosciences of Montpellier, Univ Montpellier, Inserm U1298, Hôpital St Eloi, 80 Avenue Augustin Fliche, 34091, Montpellier, France.
| | - Anne-Françoise Roux
- Institute for Neurosciences of Montpellier, Univ Montpellier, Inserm U1298, Hôpital St Eloi, 80 Avenue Augustin Fliche, 34091, Montpellier, France.,Molecular Genetics Laboratory, Univ Montpellier, CHU Montpellier, Montpellier, France
| | - Isabelle Meunier
- Institute for Neurosciences of Montpellier, Univ Montpellier, Inserm U1298, Hôpital St Eloi, 80 Avenue Augustin Fliche, 34091, Montpellier, France.,National Reference Centre for Inherited Sensory Diseases, University of Montpellier, CHU Montpellier, Montpellier, France
| |
Collapse
|
18
|
Shughoury A, Ciulla TA, Bakall B, Pennesi ME, Kiss S, Cunningham ET. Genes and Gene Therapy in Inherited Retinal Disease. Int Ophthalmol Clin 2021; 61:3-45. [PMID: 34584043 DOI: 10.1097/iio.0000000000000377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
19
|
Chandler LC, McClements ME, Yusuf IH, Martinez-Fernandez de la Camara C, MacLaren RE, Xue K. Characterizing the cellular immune response to subretinal AAV gene therapy in the murine retina. Mol Ther Methods Clin Dev 2021; 22:52-65. [PMID: 34485594 PMCID: PMC8390455 DOI: 10.1016/j.omtm.2021.05.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 05/19/2021] [Indexed: 12/12/2022]
Abstract
Although adeno-associated viral (AAV) vector-mediated retinal gene therapies have demonstrated efficacy, the mechanisms underlying dose-dependent retinal inflammation remain poorly understood. Here, we present a quantitative analysis of cellular immune response to subretinal AAV gene therapy in mice using multicolor flow cytometry with a panel of key immune cell markers. A significant increase in CD45+ retinal leukocytes was detected from day 14 post-subretinal injection of an AAV8 vector (1 × 109 genome copies) encoding green fluorescent protein (GFP) driven by a ubiquitous promoter. These predominantly consisted of infiltrating peripheral leukocytes including macrophages, natural killer cells, CD4 and CD8 T cells, and natural killer T cells; no significant change in resident microglia population was detected. This cellular response was persistent at 28 days and suggestive of type 1 cell-mediated effector immunity. High levels (80%) of GFP fluorescence were found in the microglia, implicating their role in viral antigen presentation and peripheral leukocyte recruitment. When compared against AAV.GFP in paired eyes, an equivalent dose of an otherwise identical vector encoding the human therapeutic transgene Rab-escort protein 1 (REP1) elicited a significantly diminished cellular immune response (4.2-fold; p = 0.0221). However, the distribution of immune cell populations remained similar, indicating a common mechanism of AAV-induced immune activation.
Collapse
Affiliation(s)
- Laurel C. Chandler
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences & NIHR Oxford Biomedical Research Centre, Level 6, West Wing, John Radcliffe Hospital, Headley Way, University of Oxford, Oxford OX3 9DU, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK
| | - Michelle E. McClements
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences & NIHR Oxford Biomedical Research Centre, Level 6, West Wing, John Radcliffe Hospital, Headley Way, University of Oxford, Oxford OX3 9DU, UK
| | - Imran H. Yusuf
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences & NIHR Oxford Biomedical Research Centre, Level 6, West Wing, John Radcliffe Hospital, Headley Way, University of Oxford, Oxford OX3 9DU, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK
| | - Cristina Martinez-Fernandez de la Camara
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences & NIHR Oxford Biomedical Research Centre, Level 6, West Wing, John Radcliffe Hospital, Headley Way, University of Oxford, Oxford OX3 9DU, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK
| | - Robert E. MacLaren
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences & NIHR Oxford Biomedical Research Centre, Level 6, West Wing, John Radcliffe Hospital, Headley Way, University of Oxford, Oxford OX3 9DU, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK
| | - Kanmin Xue
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences & NIHR Oxford Biomedical Research Centre, Level 6, West Wing, John Radcliffe Hospital, Headley Way, University of Oxford, Oxford OX3 9DU, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK
| |
Collapse
|
20
|
Lejoyeux R, Benillouche J, Ong J, Errera MH, Rossi EA, Singh SR, Dansingani KK, da Silva S, Sinha D, Sahel JA, Freund KB, Sadda SR, Lutty GA, Chhablani J. Choriocapillaris: Fundamentals and advancements. Prog Retin Eye Res 2021; 87:100997. [PMID: 34293477 DOI: 10.1016/j.preteyeres.2021.100997] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 07/02/2021] [Accepted: 07/13/2021] [Indexed: 12/19/2022]
Abstract
The choriocapillaris is the innermost structure of the choroid that directly nourishes the retinal pigment epithelium and photoreceptors. This article provides an overview of its hemovasculogenesis development to achieve its final architecture as a lobular vasculature, and also summarizes the current histological and molecular knowledge about choriocapillaris and its dysfunction. After describing the existing state-of-the-art tools to image the choriocapillaris, we report the findings in the choriocapillaris encountered in the most frequent retinochoroidal diseases including vascular diseases, inflammatory diseases, myopia, pachychoroid disease spectrum disorders, and glaucoma. The final section focuses on the development of imaging technology to optimize visualization of the choriocapillaris as well as current treatments of retinochoroidal disorders that specifically target the choriocapillaris. We conclude the article with pertinent unanswered questions and future directions in research for the choriocapillaris.
Collapse
Affiliation(s)
| | | | - Joshua Ong
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Marie-Hélène Errera
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Ethan A Rossi
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, Pittsburgh, PA 15213, USA
| | - Sumit R Singh
- Jacobs Retina Center, Shiley Eye Institute, University of California San Diego, San Diego, CA, USA
| | - Kunal K Dansingani
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Susana da Silva
- Department of Ophthalmology and Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Debasish Sinha
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Department of Cell Biology and Center for Biologic Imaging, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - José-Alain Sahel
- Rothschild Foundation, 75019, Paris, France; Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France; CHNO des Quinze-Vingts, INSERM-DGOS CIC 1423, Paris, France
| | - K Bailey Freund
- LuEsther T. Mertz Retinal Research Center, Manhattan Eye, Ear, and Throat Hospital, New York, NY, USA; Vitreous Retina Macula Consultants of New York, New York, NY, USA; Department of Ophthalmology, New York University of Medicine, New York, NY, USA; Edward S. Harkness Eye Institute, Columbia University Medical Center, New York, NY, USA
| | - SriniVas R Sadda
- Doheny Image Reading Center, Doheny Eye Institute, Los Angeles, CA, 90033, USA; Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Gerard A Lutty
- Wilmer Ophthalmological Institute, Johns Hopkins Hospital, Baltimore, MD, 21287, USA
| | - Jay Chhablani
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.
| |
Collapse
|
21
|
Han RC, Fry LE, Kantor A, McClements ME, Xue K, MacLaren RE. Is subretinal AAV gene replacement still the only viable treatment option for choroideremia? Expert Opin Orphan Drugs 2021; 9:13-24. [PMID: 34040899 PMCID: PMC7610829 DOI: 10.1080/21678707.2021.1882300] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/25/2021] [Indexed: 12/26/2022]
Abstract
INTRODUCTION Choroideremia is an X-linked inherited retinal degeneration resulting from mutations in the CHM gene, encoding Rab escort protein-1 (REP1), a protein regulating intracellular vesicular transport. Loss-of-function mutations in CHM lead to progressive loss of retinal pigment epithelium (RPE) with photoreceptor and choriocapillaris degeneration, leading to progressive visual field constriction and loss of visual acuity. Three hundred and fifty-four unique mutations have been reported in CHM. While gene augmentation remains an ideal therapeutic option for choroideremia, other potential future clinical strategies may exist. AREAS COVERED The authors examine the pathophysiology and genetic basis of choroideremia. They summarize the status of ongoing gene therapy trials and discuss CHM mutations amenable to other therapeutic approaches including CRISPR/Cas-based DNA and RNA editing, nonsense suppression of premature termination codons, and antisense oligonucleotides for splice modification. The authors undertook a literature search in PubMed and NIH Clinical Trials in October 2020. EXPERT OPINION The authors conclude that AAV-mediated gene augmentation remains the most effective approach for choroideremia. Given the heterogeneity of CHM mutations and potential risks and benefits, genome-editing approaches currently do not offer significant advantages. Nonsense suppression strategies and antisense oligonucleotides are exciting novel therapeutic options; however, their clinical viability remains to be determined.
Collapse
Affiliation(s)
- Ruofan Connie Han
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Trust, Oxford, UK
| | - Lewis E. Fry
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Ariel Kantor
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | | | - Kanmin Xue
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Trust, Oxford, UK
| | - Robert E. MacLaren
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Trust, Oxford, UK
| |
Collapse
|
22
|
Zeitz C, Nassisi M, Laurent-Coriat C, Andrieu C, Boyard F, Condroyer C, Démontant V, Antonio A, Lancelot ME, Frederiksen H, Kloeckener-Gruissem B, El-Shamieh S, Zanlonghi X, Meunier I, Roux AF, Mohand-Saïd S, Sahel JA, Audo I. CHM mutation spectrum and disease: An update at the time of human therapeutic trials. Hum Mutat 2021; 42:323-341. [PMID: 33538369 DOI: 10.1002/humu.24174] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 12/21/2020] [Accepted: 01/20/2021] [Indexed: 12/15/2022]
Abstract
Choroideremia is an X-linked inherited retinal disorder (IRD) characterized by the degeneration of retinal pigment epithelium, photoreceptors, choriocapillaris and choroid affecting males with variable phenotypes in female carriers. Unlike other IRD, characterized by a large clinical and genetic heterogeneity, choroideremia shows a specific phenotype with causative mutations in only one gene, CHM. Ongoing gene replacement trials raise further interests in this disorder. We describe here the clinical and genetic data from a French cohort of 45 families, 25 of which carry novel variants, in the context of 822 previously reported choroideremia families. Most of the variants represent loss-of-function mutations with eleven families having large (i.e. ≥6 kb) genomic deletions, 18 small insertions, deletions or insertion deletions, six showing nonsense variants, eight splice site variants and two missense variants likely to affect splicing. Similarly, 822 previously published families carry mostly loss-of-function variants. Recurrent variants are observed worldwide, some of which linked to a common ancestor, others arisen independently in specific CHM regions prone to mutations. Since all exons of CHM may harbor variants, Sanger sequencing combined with quantitative polymerase chain reaction or multiplex ligation-dependent probe amplification experiments are efficient to achieve the molecular diagnosis in patients with typical choroideremia features.
Collapse
Affiliation(s)
- Christina Zeitz
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Marco Nassisi
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | | | - Camille Andrieu
- CHNO des Quinze-Vingts, DHU Sight Restore, INSERM-DHOS CIC1423, Paris, France
| | - Fiona Boyard
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | | | - Vanessa Démontant
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Aline Antonio
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | | | - Helen Frederiksen
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Barbara Kloeckener-Gruissem
- Institute of Medical Molecular Genetics, University of Zurich, Schlieren, Switzerland.,Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Said El-Shamieh
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France.,Department of Medical Laboratory Technology, Faculty of Health Sciences, Beirut Arab University, Beirut, Lebanon
| | - Xavier Zanlonghi
- Clinique Pluridisciplinaire Jules Verne, Institut Ophtalmologique de l'Ouest, Nantes, France
| | - Isabelle Meunier
- National Reference Centre for Inherited Sensory Diseases, University of Montpellier, Montpellier University Hospital, Montpellier, France.,Institute for Neurosciences of Montpellier (INM), University of Montpellier, INSERM, Montpellier, France
| | - Anne-Françoise Roux
- Laboratoire de Génétique Moléculaire, CHU de Montpellier, Université de Montpellier, Montpellier, France
| | - Saddek Mohand-Saïd
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France.,CHNO des Quinze-Vingts, DHU Sight Restore, INSERM-DHOS CIC1423, Paris, France
| | - José-Alain Sahel
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France.,CHNO des Quinze-Vingts, DHU Sight Restore, INSERM-DHOS CIC1423, Paris, France.,Fondation Ophtalmologique Adolphe de Rothschild, Paris, France.,Académie des Sciences-Institut de France, Paris, France.,Department of Ophthalmology, The University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Isabelle Audo
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France.,CHNO des Quinze-Vingts, DHU Sight Restore, INSERM-DHOS CIC1423, Paris, France.,Department of Genetics, UCL-Institute of Ophthalmology, London, UK
| |
Collapse
|
23
|
Abstract
PURPOSE Choroideremia (CHM) is a rare inherited retinal degeneration resulting from mutation of the CHM gene, which results in absence of functional Rab escort protein 1 (REP1). We evaluated retinal gene therapy with an adeno-associated virus vector that used to deliver a functional version of the CHM gene (AAV2-REP1). METHODS THOR (NCT02671539) is a Phase 2, open-label, single-center, randomized study. Six male patients (51-60 years) with CHM received AAV2-REP1, by a single 0.1-mL subretinal injection of 10 genome particles during vitrectomy. Twelve-month data are reported. RESULTS In study eyes, 4 patients experienced minor changes in best-corrected visual acuity (-4 to +1 Early Treatment Diabetic Retinopathy Study [ETDRS] letters); one gained 17 letters and another lost 14 letters. Control eyes had changes of -2 to +4 letters. In 5/6 patients, improvements in mean (95% confidence intervals) retinal sensitivity (2.3 [4.0] dB), peak retinal sensitivity (2.8 [3.5] dB), and gaze fixation area (-36.1 [66.9] deg) were recorded. Changes in anatomical endpoints were similar between study and control eyes. Adverse events were consistent with the surgical procedure. CONCLUSION Gene therapy with AAV2-REP1 can maintain, and in some cases, improve, visual acuity in CHM. Longer term follow-up is required to establish whether these benefits are maintained.
Collapse
|
24
|
Abbouda A, Avogaro F, Moosajee M, Vingolo EM. Update on Gene Therapy Clinical Trials for Choroideremia and Potential Experimental Therapies. MEDICINA (KAUNAS, LITHUANIA) 2021; 57:64. [PMID: 33445564 PMCID: PMC7826687 DOI: 10.3390/medicina57010064] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/26/2020] [Accepted: 01/07/2021] [Indexed: 12/27/2022]
Abstract
Background and objectives: Choroideremia (CHM) is an X-linked recessive chorioretinal dystrophy caused by mutations involving the CHM gene. Gene therapy has entered late-phase clinical trials, although there have been variable results. This review gives a summary on the outcomes of phase I/II CHM gene therapy trials and describes other potential experimental therapies. Materials and Methods: A Medline (National Library of Medicine, Bethesda, MD, USA) search was performed to identify all articles describing gene therapy treatments available for CHM. Results: Five phase I/II clinical trials that reported subretinal injection of adeno-associated virus Rab escort protein 1 (AAV2.REP1) vector in CHM patients were included. The Oxford study (NCT01461213) included 14 patients; a median gain of 5.5 ± 6.8 SD (-6 min, 18 max) early treatment diabetic retinopathy study (ETDRS) letters was reported. The Tubingen study (NCT02671539) included six patients; only one patient had an improvement of 17 ETDRS letters. The Alberta study (NCT02077361) enrolled six patients, and it reported a minimal vision change, except for one patient who gained 15 ETDRS letters. Six patients were enrolled in the Miami trial (NCT02553135), which reported a median gain of 2 ± 4 SD (-1 min, 10 max) ETDRS letters. The Philadelphia study (NCT02341807) included 10 patients; best corrected visual acuity (BCVA) returned to baseline in all by one-year follow-up, but one patient had -17 ETDRS letters from baseline. Overall, 40 patients were enrolled in trials, and 34 had 2 years of follow-up, with a median gain of 1.5 ± 7.2 SD (-14 min, 18 max) in ETDRS letters. Conclusions: The primary endpoint, BCVA following gene therapy in CHM, showed a marginal improvement with variability between trials. Optimizing surgical technique and pre-, peri-, and post-operative management with immunosuppressants to minimize any adverse ocular inflammatory events could lead to reduced incidence of complications. The ideal therapeutic window needs to be addressed to ensure that the necessary cell types are adequately transduced, minimizing viral toxicity, to prolong long-term transgenic potential. Long-term efficacy will be addressed by ongoing studies.
Collapse
Affiliation(s)
| | - Filippo Avogaro
- Department of Sense Organs, Faculty of Medicine and Odontology, Sapienza University of Rome, p.le A. Moro 5, 00185 Rome, Italy;
| | - Mariya Moosajee
- UCL Institute of Ophthalmology, London EC1V 9EL, UK;
- Moorfields Eye Hospital NHS Foundation Trust, London EC1V 2PD, UK
- Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK
- The Francis Crick Institute, London NW1 1AT, UK
| | - Enzo Maria Vingolo
- Fiorini Hospital Terracina AUSL, 04019 Terracina, Latina, Italy;
- Department of Sense Organs, Faculty of Medicine and Odontology, Sapienza University of Rome, p.le A. Moro 5, 00185 Rome, Italy;
| |
Collapse
|
25
|
Abstract
PURPOSE Choroideremia is an incurable, X-linked, recessive retinal dystrophy caused by loss of function mutations in the CHM gene. It is estimated to affect approximately 1 in 50,000 male patients. It is characterized by progressive degeneration of the retinal pigment epithelium, choroid, and photoreceptors, resulting in visual impairment and blindness. There is an unmet need in choroideremia, because currently, there are no approved treatments available for patients with the disease. METHODS We review the patient journey, societal impact, and emerging treatments for patients with choroideremia. RESULTS Its relative rarity and similarities with other retinal diseases in early years mean that diagnosis of choroideremia can often be delayed. Furthermore, its impact on affected individuals, and wider society, is also likely underestimated. AAV2-mediated gene therapy is an investigational treatment that aims to replace the faulty CHM gene. Early-phase studies reported potentially important visual acuity gains and maintenance of vision in some patients, and a large Phase 3 program is now underway. CONCLUSION Choroideremia is a disease with a significant unmet need. Interventions that can treat progression of the disease and improve visual and functional outcomes have the potential to reduce health care costs and enhance patient quality of life.
Collapse
|
26
|
Fry LE, Patrício MI, Williams J, Aylward JW, Hewitt H, Clouston P, Xue K, Barnard AR, MacLaren RE. Association of Messenger RNA Level With Phenotype in Patients With Choroideremia: Potential Implications for Gene Therapy Dose. JAMA Ophthalmol 2020; 138:128-135. [PMID: 31855248 DOI: 10.1001/jamaophthalmol.2019.5071] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Importance Gene therapy is a promising treatment for choroideremia, an X-linked retinal degeneration. The required minimum level of gene expression to ameliorate degeneration rate is unknown. This can be interrogated by exploring the association between messenger RNA (mRNA) levels and phenotype in mildly affected patients with choroideremia. Objective To analyze CHM mRNA splicing outcomes in 2 unrelated patients with the same c.940+3delA CHM splice site variant identified as mildly affected from a previous study of patients with choroideremia. Design, Setting, and Participants In this retrospective observational case series, 2 patients with c.940+3delA CHM variants treated at a single tertiary referral center were studied. In addition, a third patient with a c.940+2T>A variant that disrupts the canonical dinucleotide sequence at the same donor site served as a positive control. Data were collected from October 2013 to July 2018. Main Outcomes and Measures Central area of residual fundus autofluorescence was used as a biomarker for disease progression. CHM transcript splicing was assessed by both end point and quantitative polymerase chain reaction. Rab escort protein 1 (REP1) expression was assessed by immunoblot. Results The 2 mildly affected patients with c.940+3delA variants had large areas of residual autofluorescence for their age and longer degeneration half-lives compared with the previous cohort of patients with choroideremia. The control patient with a c.940+2T>A variant had a residual autofluorescence area within the range expected for his age. Both patients with the c.940+3delA variant expressed residual levels of full-length CHM mRNA transcripts relative to the predominant truncated transcript (mean [SEM] residual level: patient 1, 2.3% [0.3]; patient 2, 4.7% [0.2]), equivalent to approximately less than 1% of the level of full-length CHM expressed in nonaffected individuals. Full-length CHM expression was undetectable in the control patient. REP1 expression was less than the threshold for detection both in patients 1 and 2 and the control patient compared with wild-type controls. Conclusions and Relevance These results demonstrate the first genotype-phenotype association in choroideremia. A +3 deletion in intron 7 is sufficient to cause choroideremia in a milder form. If replicated with gene therapy, these findings would suggest that relatively low expression (less than 1%) of the wild-type levels of mRNA would be sufficient to slow disease progression.
Collapse
Affiliation(s)
- Lewis E Fry
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom.,Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom.,NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Maria I Patrício
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom.,Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom.,NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Jonathan Williams
- Oxford Medical Genetics Laboratories, The Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - James W Aylward
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom.,Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom.,NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Harriet Hewitt
- Oxford Medical Genetics Laboratories, The Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Penny Clouston
- Oxford Medical Genetics Laboratories, The Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Kanmin Xue
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom.,Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom.,NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Alun R Barnard
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom.,Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom.,Oxford Medical Genetics Laboratories, The Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Robert E MacLaren
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom.,Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom.,NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
27
|
Garafalo AV, Cideciyan AV, Héon E, Sheplock R, Pearson A, WeiYang Yu C, Sumaroka A, Aguirre GD, Jacobson SG. Progress in treating inherited retinal diseases: Early subretinal gene therapy clinical trials and candidates for future initiatives. Prog Retin Eye Res 2020; 77:100827. [PMID: 31899291 PMCID: PMC8714059 DOI: 10.1016/j.preteyeres.2019.100827] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 12/21/2019] [Accepted: 12/26/2019] [Indexed: 12/15/2022]
Abstract
Due to improved phenotyping and genetic characterization, the field of 'incurable' and 'blinding' inherited retinal diseases (IRDs) has moved substantially forward. Decades of ascertainment of IRD patient data from Philadelphia and Toronto centers illustrate the progress from Mendelian genetic types to molecular diagnoses. Molecular genetics have been used not only to clarify diagnoses and to direct counseling but also to enable the first clinical trials of gene-based treatment in these diseases. An overview of the recent reports of gene augmentation clinical trials by subretinal injections is used to reflect on the reasons why there has been limited success in this early venture into therapy. These first-in human experiences have taught that there is a need for advancing the techniques of delivery of the gene products - not only for refining further subretinal trials, but also for evaluating intravitreal delivery. Candidate IRDs for intravitreal gene delivery are then suggested to illustrate some of the disorders that may be amenable to improvement of remaining central vision with the least photoreceptor trauma. A more detailed understanding of the human IRDs to be considered for therapy and the calculated potential for efficacy should be among the routine prerequisites for initiating a clinical trial.
Collapse
Affiliation(s)
- Alexandra V Garafalo
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Artur V Cideciyan
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Elise Héon
- Department of Ophthalmology and Vision Sciences, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Rebecca Sheplock
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Alexander Pearson
- Department of Ophthalmology and Vision Sciences, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Caberry WeiYang Yu
- Department of Ophthalmology and Vision Sciences, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Alexander Sumaroka
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Gustavo D Aguirre
- Division of Experimental Retinal Therapies, Department of Clinical Sciences & Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Samuel G Jacobson
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
28
|
Cehajic Kapetanovic J, Barnard AR, MacLaren RE. Molecular Therapies for Choroideremia. Genes (Basel) 2019; 10:genes10100738. [PMID: 31548516 PMCID: PMC6826983 DOI: 10.3390/genes10100738] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/14/2019] [Accepted: 09/20/2019] [Indexed: 01/03/2023] Open
Abstract
Advances in molecular research have culminated in the development of novel gene-based therapies for inherited retinal diseases. We have recently witnessed several groundbreaking clinical studies that ultimately led to approval of Luxturna, the first gene therapy for an inherited retinal disease. In parallel, international research community has been engaged in conducting gene therapy trials for another more common inherited retinal disease known as choroideremia and with phase III clinical trials now underway, approval of this therapy is poised to follow suit. This chapter discusses new insights into clinical phenotyping and molecular genetic testing in choroideremia with review of molecular mechanisms implicated in its pathogenesis. We provide an update on current gene therapy trials and discuss potential inclusion of female carries in future clinical studies. Alternative molecular therapies are discussed including suitability of CRISPR gene editing, small molecule nonsense suppression therapy and vision restoration strategies in late stage choroideremia.
Collapse
Affiliation(s)
- Jasmina Cehajic Kapetanovic
- Nuffield Laboratory of Ophthalmology, University of Oxford, Oxford OX3 9DU, UK; (A.R.B.); (R.E.M.)
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK
- Correspondence:
| | - Alun R. Barnard
- Nuffield Laboratory of Ophthalmology, University of Oxford, Oxford OX3 9DU, UK; (A.R.B.); (R.E.M.)
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK
| | - Robert E. MacLaren
- Nuffield Laboratory of Ophthalmology, University of Oxford, Oxford OX3 9DU, UK; (A.R.B.); (R.E.M.)
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK
| |
Collapse
|
29
|
Ong T, Pennesi ME, Birch DG, Lam BL, Tsang SH. Adeno-Associated Viral Gene Therapy for Inherited Retinal Disease. Pharm Res 2019; 36:34. [PMID: 30617669 PMCID: PMC6534121 DOI: 10.1007/s11095-018-2564-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 12/13/2018] [Indexed: 01/17/2023]
Abstract
Inherited retinal diseases (IRDs) are a group of rare, heterogenous eye disorders caused by gene mutations that result in degeneration of the retina. There are currently limited treatment options for IRDs; however, retinal gene therapy holds great promise for the treatment of different forms of inherited blindness. One such IRD for which gene therapy has shown positive initial results is choroideremia, a rare, X-linked degenerative disorder of the retina and choroid. Mutation of the CHM gene leads to an absence of functional Rab escort protein 1 (REP1), which causes retinal pigment epithelium cell death and photoreceptor degeneration. The condition presents in childhood as night blindness, followed by progressive constriction of visual fields, generally leading to vision loss in early adulthood and total blindness thereafter. A recently developed adeno-associated virus-2 (AAV2) vector construct encoding REP1 (AAV2-REP1) has been shown to deliver a functional version of the CHM gene into the retinal pigment epithelium and photoreceptor cells. Phase 1 and 2 studies of AAV2-REP1 in patients with choroideremia have produced encouraging results, suggesting that it is possible not only to slow or stop the decline in vision following treatment with AAV2-REP1, but also to improve visual acuity in some patients.
Collapse
Affiliation(s)
- Tuyen Ong
- Nightstar Therapeutics, 203 Crescent Street, Suite 303, Waltham, Massachusetts, 02453, USA.
| | - Mark E Pennesi
- Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - David G Birch
- Retina Foundation of the Southwest, Dallas, Texas, USA
| | - Byron L Lam
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Stephen H Tsang
- Department of Ophthalmology and of Pathology and Cell Biology, Columbia University, New York, New York, USA
| |
Collapse
|
30
|
Lam BL, Davis JL, Gregori NZ, MacLaren RE, Girach A, Verriotto JD, Rodriguez B, Rosa PR, Zhang X, Feuer WJ. Choroideremia Gene Therapy Phase 2 Clinical Trial: 24-Month Results. Am J Ophthalmol 2019; 197:65-73. [PMID: 30240725 DOI: 10.1016/j.ajo.2018.09.012] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 09/09/2018] [Accepted: 09/11/2018] [Indexed: 11/26/2022]
Abstract
PURPOSE To report the final results of a phase 2 high-dose gene therapy clinical trial in choroideremia. METHODS Design: Phase 2 clinical trial. PARTICIPANTS Six men (aged 32-72 years) with genetically-confirmed advanced choroideremia. Patients received subfoveal injection of AAV2-REP1 (1011 genome particles in 0.1 mL) in the worse-sighted eye. OUTCOME MEASURES Primary measure was best-corrected visual acuity (BCVA) change from baseline in the treated eye compared to the untreated eye. Secondary endpoints included change from baseline in microperimetry, fundus autofluorescence, and spectral-domain optical coherence tomography (OCT). Safety evaluations included adverse events, viral shedding in body fluids, and vector antibody responses. RESULTS Baseline mean ETDRS BCVA was 65.3 ± 8.8 (SD, range 56-77, 20/32-20/80) letters in the treated eyes and 77.0 ± 4.2 (69-81, 20/25-20/40) letters in the untreated eyes. At 2 years, 1 treated eye improved by 10 letters and another by 5 letters, while 1 untreated eye improved by 4 letters. All other eyes were within 2 letters of baseline. Baseline microperimetry sensitivities in the treated eyes were poor (1.2 ± 2.1 (0, 5.1) dB) and showed no significant change. No serious adverse event occurred. Two patients developed an atrophic retinal hole in a nonfunctioning macular area where baseline OCT showed preexisting thinning. Intraoperative microscope-integrated OCT allowed proper subretinal injection with avoidance of excessive foveal stretching and macular hole formation. CONCLUSIONS Sustained improvement or maintenance of BCVA is achievable in choroideremia with high-dose AAV2-REP1, indicating BCVA is a viable primary outcome in advanced choroideremia. Choroideremia gene therapy delivered with intraoperative OCT has a good safety profile.
Collapse
|
31
|
Cehajic Kapetanovic J, Patrício MI, MacLaren RE. Progress in the development of novel therapies for choroideremia. EXPERT REVIEW OF OPHTHALMOLOGY 2019; 14:277-285. [PMID: 32002021 PMCID: PMC6992425 DOI: 10.1080/17469899.2019.1699406] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
INTRODUCTION There are no currently approved treatments for choroideremia, an X-linked progressive inherited retinal degeneration that leads to blindness by middle age. Several treatment options are being explored, but with major advances in adeno-associated vector (AAV) gene replacement therapy that has reached phase III clinical trials. AREAS COVERED In this review we discuss new insights into the clinical phenotyping and genetic testing of choroideremia patients, that aid disease characterisation, progression and patient inclusion into clinical trials. Recent advances in in-vitro studies have resulted in the development of functional assays that can be used to confirm the diagnosis in challenging cases and to quantify vector potency for use in clinical trials. We review the progress in current gene therapy trials and some considerations towards gene therapy approval for the treatment of choroideremia. Lastly, we discuss developments in alternative therapies including optogenetics. EXPERT COMMENTARY AAV gene replacement therapy is the most promising treatment strategy for choroideremia, that has developed exponentially over the last few years with a phase III clinical trial now underway. Optogenetics is a promising alternative strategy that might be applicable in late stages of degeneration.
Collapse
Affiliation(s)
- Jasmina Cehajic Kapetanovic
- Nuffield Laboratory of Ophthalmology, University of Oxford, Oxford, UK
- Nuffield Laboratory of Ophthalmology, Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Maria I Patrício
- Nuffield Laboratory of Ophthalmology, University of Oxford, Oxford, UK
| | - Robert E MacLaren
- Nuffield Laboratory of Ophthalmology, University of Oxford, Oxford, UK
- Nuffield Laboratory of Ophthalmology, Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| |
Collapse
|
32
|
Mitsios A, Dubis AM, Moosajee M. Choroideremia: from genetic and clinical phenotyping to gene therapy and future treatments. Ther Adv Ophthalmol 2018; 10:2515841418817490. [PMID: 30627697 PMCID: PMC6311551 DOI: 10.1177/2515841418817490] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 11/05/2018] [Indexed: 11/15/2022] Open
Abstract
Choroideremia is an X-linked inherited chorioretinal dystrophy leading to blindness by late adulthood. Choroideremia is caused by mutations in the CHM gene which encodes Rab escort protein 1 (REP1), an ubiquitously expressed protein involved in intracellular trafficking and prenylation activity. The exact site of pathogenesis remains unclear but results in degeneration of the photoreceptors, retinal pigment epithelium and choroid. Animal and stem cell models have been used to study the molecular defects in choroideremia and test effectiveness of treatment interventions. Natural history studies of choroideremia have provided additional insight into the clinical phenotype of the condition and prepared the way for clinical trials aiming to investigate the safety and efficacy of suitable therapies. In this review, we provide a summary of the current knowledge on the genetics, pathophysiology, clinical features and therapeutic strategies that might become available for choroideremia in the future, including gene therapy, stem cell treatment and small-molecule drugs with nonsense suppression action.
Collapse
Affiliation(s)
- Andreas Mitsios
- Institute of Ophthalmology, University College London, London, UK
| | - Adam M Dubis
- Institute of Ophthalmology, University College London, London, UK
| | - Mariya Moosajee
- Institute of Ophthalmology, University College London, London, UK
| |
Collapse
|
33
|
Dimopoulos IS, Hoang SC, Radziwon A, Binczyk NM, Seabra MC, MacLaren RE, Somani R, Tennant MT, MacDonald IM. Two-Year Results After AAV2-Mediated Gene Therapy for Choroideremia: The Alberta Experience. Am J Ophthalmol 2018; 193:130-142. [PMID: 29940166 DOI: 10.1016/j.ajo.2018.06.011] [Citation(s) in RCA: 133] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 06/12/2018] [Accepted: 06/13/2018] [Indexed: 10/28/2022]
Abstract
PURPOSE To assess the safety of a recombinant adeno-associated viral vector expressing REP1 (rAAV2.REP1) in choroideremia subjects. METHODS Design: Phase I clinical trial. PARTICIPANTS Six adult male subjects, 30-42 years of age, with genetically confirmed choroideremia (CHM) were enrolled. The eye with the worse vision, for all subjects, received a single subfoveal injection of 0.1 mL rAAV2.REP1 containing 1011 genome particles. Subjects were followed up for 2 years thereafter. OUTCOME MEASURES The primary outcome measure was safety, determined by the number of ocular and systemic adverse events assessed by ophthalmic examination, spectral-domain optical coherence tomography (SD-OCT), and short-wavelength autofluorescence (FAF). Secondary outcome measures were the change from baseline in best-corrected visual acuity (BCVA) in the treated eye compared to the untreated eye, changes in visual function using microperimetry, and the area of retinal pigment epithelium (RPE) preservation by FAF. RESULTS One subject had an 8-ETDRS-letter BCVA loss from baseline measured at 24 months, while 1 subject had a ≥15-letter BCVA gain. A similar improvement was noted in the untreated eye of another subject throughout the follow-up period. Microperimetry sensitivity showed no improvement or significant change up to 2 years after vector administration. The area of preserved RPE as measured by FAF was noted to decline at a similar rate between the treated and untreated eyes. One subject experienced a serious adverse event: a localized intraretinal immune response, resulting in marked decline in visual function and loss of SD-OCT outer retinal structures. CONCLUSIONS One serious adverse event was experienced in 6 subjects treated with a subfoveal injection of AAV2.REP1. The area of remaining functional RPE in the treated eye and untreated eye declined at the same rate over a 2-year period. Fundus autofluorescence area is a remarkably predictive biomarker and objective outcome measure for future studies of ocular gene therapy in CHM subjects.
Collapse
|
34
|
Takahashi VKL, Takiuti JT, Jauregui R, Tsang SH. Gene therapy in inherited retinal degenerative diseases, a review. Ophthalmic Genet 2018; 39:560-568. [PMID: 30040511 DOI: 10.1080/13816810.2018.1495745] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Hereditary diseases of the retina represent a group of diseases with several heterogeneous mutations that have the common end result of progressive photoreceptor death leading to blindness. Retinal degenerations encompass multifactorial diseases such as age-related macular degeneration, Leber congenital amaurosis, Stargardt disease, and retinitis pigmentosa. Although there is currently no cure for degenerative retinal diseases, ophthalmology has been at the forefront of the development of gene therapy, which offers hope for the treatment of these conditions. This article will explore an overview of the clinical trials of gene supplementation therapy for retinal diseases that are underway or planned for the near future.
Collapse
Affiliation(s)
- Vitor K L Takahashi
- a Department of Ophthalmology , Columbia University , New York , NY , USA.,b Departments of Ophthalmology, Pathology & Cell Biology,Columbia Stem Cell Initiative, Institute of Human Nutrition , Jonas Children's Vision Care and Bernard & Shirlee Brown Glaucoma Laboratory, Columbia University , New York , NY , USA.,c Department of Ophthalmology , Federal University of São Paulo , São Paulo , Brazil
| | - Júlia T Takiuti
- a Department of Ophthalmology , Columbia University , New York , NY , USA.,b Departments of Ophthalmology, Pathology & Cell Biology,Columbia Stem Cell Initiative, Institute of Human Nutrition , Jonas Children's Vision Care and Bernard & Shirlee Brown Glaucoma Laboratory, Columbia University , New York , NY , USA.,d Division of Ophthalmology , University of São Paulo Medical School , São Paulo , Brazil
| | - Ruben Jauregui
- a Department of Ophthalmology , Columbia University , New York , NY , USA.,b Departments of Ophthalmology, Pathology & Cell Biology,Columbia Stem Cell Initiative, Institute of Human Nutrition , Jonas Children's Vision Care and Bernard & Shirlee Brown Glaucoma Laboratory, Columbia University , New York , NY , USA.,e Weill Cornell Medical College , New York , NY , USA
| | - Stephen H Tsang
- a Department of Ophthalmology , Columbia University , New York , NY , USA.,b Departments of Ophthalmology, Pathology & Cell Biology,Columbia Stem Cell Initiative, Institute of Human Nutrition , Jonas Children's Vision Care and Bernard & Shirlee Brown Glaucoma Laboratory, Columbia University , New York , NY , USA.,f Department of Pathology & Cell Biology, Stem Cell Initiative (CSCI), Institute of Human Nutrition, College of Physicians and Surgeons , Columbia University , New York , NY , USA
| |
Collapse
|
35
|
Patrício MI, Barnard AR, Xue K, MacLaren RE. Choroideremia: molecular mechanisms and development of AAV gene therapy. Expert Opin Biol Ther 2018; 18:807-820. [DOI: 10.1080/14712598.2018.1484448] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Maria I Patrício
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- National Institute for Health Research (NIHR) Oxford Biomedical Research Centre (BRC), Oxford, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Alun R Barnard
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- National Institute for Health Research (NIHR) Oxford Biomedical Research Centre (BRC), Oxford, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Kanmin Xue
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- National Institute for Health Research (NIHR) Oxford Biomedical Research Centre (BRC), Oxford, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Robert E MacLaren
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- National Institute for Health Research (NIHR) Oxford Biomedical Research Centre (BRC), Oxford, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| |
Collapse
|
36
|
Fu X, Huu VAN, Duan Y, Kermany DS, Valentim CCS, Zhang R, Zhu J, Zhang CL, Sun X, Zhang K. Clinical applications of retinal gene therapies. PRECISION CLINICAL MEDICINE 2018; 1:5-20. [PMID: 35694125 PMCID: PMC8982485 DOI: 10.1093/pcmedi/pby004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 03/27/2018] [Accepted: 04/03/2018] [Indexed: 02/05/2023] Open
Abstract
Retinal degenerative diseases are a major cause of blindness. Retinal gene therapy is a
trail-blazer in the human gene therapy field, leading to the first FDA approved gene
therapy product for a human genetic disease. The application of Clustered Regularly
Interspaced Short Palindromic Repeat/Cas9 (CRISPR/Cas9)-mediated gene editing technology
is transforming the delivery of gene therapy. We review the history, present, and future
prospects of retinal gene therapy.
Collapse
Affiliation(s)
- Xin Fu
- Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
- Shiley Eye Institute, Institute for Engineering in Medicine, Institute for Genomic Medicine, University of California, San Diego, La Jolla, California, USA
| | - Viet Anh Nguyen Huu
- Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
- Shiley Eye Institute, Institute for Engineering in Medicine, Institute for Genomic Medicine, University of California, San Diego, La Jolla, California, USA
| | - Yaou Duan
- Shiley Eye Institute, Institute for Engineering in Medicine, Institute for Genomic Medicine, University of California, San Diego, La Jolla, California, USA
| | - Daniel S Kermany
- Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
- Shiley Eye Institute, Institute for Engineering in Medicine, Institute for Genomic Medicine, University of California, San Diego, La Jolla, California, USA
| | - Carolina C S Valentim
- Shiley Eye Institute, Institute for Engineering in Medicine, Institute for Genomic Medicine, University of California, San Diego, La Jolla, California, USA
| | - Runze Zhang
- Shiley Eye Institute, Institute for Engineering in Medicine, Institute for Genomic Medicine, University of California, San Diego, La Jolla, California, USA
| | - Jie Zhu
- Shiley Eye Institute, Institute for Engineering in Medicine, Institute for Genomic Medicine, University of California, San Diego, La Jolla, California, USA
| | - Charlotte L Zhang
- Shiley Eye Institute, Institute for Engineering in Medicine, Institute for Genomic Medicine, University of California, San Diego, La Jolla, California, USA
| | - Xiaodong Sun
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai General Hospital, Shanghai Jiaodong University, Shanghai, China
| | - Kang Zhang
- Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
- Shiley Eye Institute, Institute for Engineering in Medicine, Institute for Genomic Medicine, University of California, San Diego, La Jolla, California, USA
- Molecular Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
37
|
Xue K, MacLaren RE. Ocular gene therapy for choroideremia: clinical trials and future perspectives. EXPERT REVIEW OF OPHTHALMOLOGY 2018; 13:129-138. [PMID: 31105764 DOI: 10.1080/17469899.2018.1475232] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Introduction Gene therapy offers the potential for targeted replacement of single gene defects in inherited retinal degenerations. Areas covered Choroideremia is an X-linked blinding retinal disease resulting from deficiency of the CHM gene product, REP1. The disease represents an ideal target for retinal gene therapy, as it is readily diagnosed in the clinic, relatively homogenous in phenotype and slow progressing, thereby providing a wide therapeutic window for intervention. Ongoing clinical trials of retinal gene therapy for choroideremia using an adeno-associated viral vector have demonstrated safety and early efficacy. We review the clinical characteristics of the disease with a view to interpreting the findings of gene therapy clinical trials and discuss future directions. Expert commentary Choroideremia gene therapy has so far demonstrated good safety profile and early functional visual acuity gains in a proportion of trial participants, which appear to be sustained.
Collapse
Affiliation(s)
- Kanmin Xue
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford & Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Robert E MacLaren
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford & Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| |
Collapse
|
38
|
Guiding Lights in Genome Editing for Inherited Retinal Disorders: Implications for Gene and Cell Therapy. Neural Plast 2018; 2018:5056279. [PMID: 29853845 PMCID: PMC5964415 DOI: 10.1155/2018/5056279] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 04/18/2018] [Indexed: 12/26/2022] Open
Abstract
Inherited retinal dystrophies (IRDs) are a leading cause of visual impairment in the developing world. These conditions present an irreversible dysfunction or loss of neural retinal cells, which significantly impacts quality of life. Due to the anatomical accessibility and immunoprivileged status of the eye, ophthalmological research has been at the forefront of innovative and advanced gene- and cell-based therapies, both of which represent great potential as therapeutic treatments for IRD patients. However, due to a genetic and clinical heterogeneity, certain IRDs are not candidates for these approaches. New advances in the field of genome editing using Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and CRISPR-associated protein (Cas) have provided an accurate and efficient way to edit the human genome and represent an appealing alternative for treating IRDs. We provide a brief update on current gene augmentation therapies for retinal dystrophies. Furthermore, we discuss recent advances in the field of genome editing and stem cell technologies, which together enable precise and personalized therapies for patients. Lastly, we highlight current technological limitations and barriers that need to be overcome before this technology can become a viable treatment option for patients.
Collapse
|
39
|
Patrício MI, Barnard AR, Cox CI, Blue C, MacLaren RE. The Biological Activity of AAV Vectors for Choroideremia Gene Therapy Can Be Measured by In Vitro Prenylation of RAB6A. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2018; 9:288-295. [PMID: 29707603 PMCID: PMC5918179 DOI: 10.1016/j.omtm.2018.03.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 03/25/2018] [Indexed: 11/23/2022]
Abstract
Choroideremia (CHM) is a rare, X-linked recessive retinal dystrophy caused by mutations in the CHM gene. CHM is ubiquitously expressed in human cells and encodes Rab escort protein 1 (REP1). REP1 plays a key role in intracellular trafficking through the prenylation of Rab GTPases, a reaction that can be reproduced in vitro. With recent advances in adeno-associated virus (AAV) gene therapy for CHM showing gene replacement to be a promising approach, an assay to assess the biological activity of the vectors is of the uttermost importance. Here we sought to compare the response of two Rab proteins, RAB27A and RAB6A, to the incorporation of a biotinylated lipid donor in a prenylation reaction in vitro. First, we found the expression of REP1 to be proportional to the amount of recombinant AAV (rAAV)2/2-REP1 used to transduce the cells. Second, prenylation of RAB6A appeared to be more sensitive to REP1 protein expression than prenylation of RAB27A. Moreover, the method was reproducible in other cell lines. These results support the further development of a prenylation reaction using a biotinylated lipid donor and RAB6A to assess the biological activity of AAV vectors for CHM gene therapy.
Collapse
Affiliation(s)
- Maria I Patrício
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.,National Institute for Health Research (NIHR) Oxford Biomedical Research Centre (BRC), Oxford, UK.,Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Alun R Barnard
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.,National Institute for Health Research (NIHR) Oxford Biomedical Research Centre (BRC), Oxford, UK.,Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Christopher I Cox
- Nightstar Therapeutics, Wellcome Gibbs Building, 215 Euston Road, London, UK
| | - Clare Blue
- Nightstar Therapeutics, Wellcome Gibbs Building, 215 Euston Road, London, UK
| | - Robert E MacLaren
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.,National Institute for Health Research (NIHR) Oxford Biomedical Research Centre (BRC), Oxford, UK.,Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| |
Collapse
|
40
|
Duong TT, Vasireddy V, Ramachandran P, Herrera PS, Leo L, Merkel C, Bennett J, Mills JA. Use of induced pluripotent stem cell models to probe the pathogenesis of Choroideremia and to develop a potential treatment. Stem Cell Res 2018; 27:140-150. [PMID: 29414605 DOI: 10.1016/j.scr.2018.01.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 01/04/2018] [Accepted: 01/06/2018] [Indexed: 12/17/2022] Open
Abstract
Choroideremia (CHM) is a rare monogenic, X-linked recessive inherited retinal degeneration resulting from mutations in the Rab Escort Protein-1 (REP1) encoding CHM gene. The primary retinal cell type leading to CHM is unknown. In this study, we explored the utility of induced pluripotent stem cell-derived models of retinal pigmented epithelium (iPSC-RPE) to study disease pathogenesis and a potential gene-based intervention in four different genetically distinct forms of CHM. A number of abnormal cell biologic, biochemical, and physiologic functions were identified in the CHM mutant cells. We then identified a recombinant adeno-associated virus (AAV) serotype, AAV7m8, that is optimal for both delivering transgenes to iPSC-RPEs as well as to appropriate target cells (RPE cells and rod photoreceptors) in the primate retina. To establish the proof of concept of AAV7m8 mediated CHM gene therapy, we developed AAV7m8.hCHM, which delivers the human CHM cDNA under control of CMV-enhanced chicken β-actin promoter (CßA). Delivery of AAV7m8.hCHM to CHM iPSC-RPEs restored protein prenylation, trafficking and phagocytosis. The results confirm that AAV-mediated delivery of the REP1-encoding gene can rescue defects in CHM iPSC-RPE regardless of the type of disease-causing mutation. The results also extend our understanding of mechanisms involved in the pathophysiology of choroideremia.
Collapse
Affiliation(s)
- Thu T Duong
- F.M. Kirby Center for Molecular Ophthalmology and Center for Advanced Retinal and Ocular Therapeutics (CAROT), Scheie Eye Institute, University of Pennsylvania Perelman School of Medicine, PA 19104, USA
| | - Vidyullatha Vasireddy
- F.M. Kirby Center for Molecular Ophthalmology and Center for Advanced Retinal and Ocular Therapeutics (CAROT), Scheie Eye Institute, University of Pennsylvania Perelman School of Medicine, PA 19104, USA
| | - Pavitra Ramachandran
- F.M. Kirby Center for Molecular Ophthalmology and Center for Advanced Retinal and Ocular Therapeutics (CAROT), Scheie Eye Institute, University of Pennsylvania Perelman School of Medicine, PA 19104, USA
| | - Pamela S Herrera
- F.M. Kirby Center for Molecular Ophthalmology and Center for Advanced Retinal and Ocular Therapeutics (CAROT), Scheie Eye Institute, University of Pennsylvania Perelman School of Medicine, PA 19104, USA
| | - Lanfranco Leo
- F.M. Kirby Center for Molecular Ophthalmology and Center for Advanced Retinal and Ocular Therapeutics (CAROT), Scheie Eye Institute, University of Pennsylvania Perelman School of Medicine, PA 19104, USA
| | - Carrie Merkel
- F.M. Kirby Center for Molecular Ophthalmology and Center for Advanced Retinal and Ocular Therapeutics (CAROT), Scheie Eye Institute, University of Pennsylvania Perelman School of Medicine, PA 19104, USA
| | - Jean Bennett
- F.M. Kirby Center for Molecular Ophthalmology and Center for Advanced Retinal and Ocular Therapeutics (CAROT), Scheie Eye Institute, University of Pennsylvania Perelman School of Medicine, PA 19104, USA
| | - Jason A Mills
- F.M. Kirby Center for Molecular Ophthalmology and Center for Advanced Retinal and Ocular Therapeutics (CAROT), Scheie Eye Institute, University of Pennsylvania Perelman School of Medicine, PA 19104, USA.
| |
Collapse
|
41
|
Orlans HO, Edwards TL, De Silva SR, Patrício MI, MacLaren RE. Human Retinal Explant Culture for Ex Vivo Validation of AAV Gene Therapy. Methods Mol Biol 2018; 1715:289-303. [PMID: 29188522 DOI: 10.1007/978-1-4939-7522-8_21] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Recombinant adeno-associated viral (AAV) vectors have been successfully employed as the mode of gene delivery in several clinical trials for the treatment of inherited retinal diseases to date. The design of such vectors is critical in determining cellular tropism and level of subsequent gene expression that may be achieved following viral delivery. Here we describe a system for living retinal tissue extraction, ex vivo culture, viral transduction and assessment of transgene expression that may be used to assess viral constructs for gene therapy in the human retina at a preclinical stage.
Collapse
Affiliation(s)
- Harry O Orlans
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK.
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK.
- Moorfields Eye Hospital, London, UK.
| | - Thomas L Edwards
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Samantha R De Silva
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Maria I Patrício
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Robert E MacLaren
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- Moorfields Eye Hospital, London, UK
| |
Collapse
|
42
|
Retinal Gene Therapy for Choroideremia: In Vitro Testing for Gene Augmentation Using an Adeno-Associated Viral (AAV) Vector. Methods Mol Biol 2017. [PMID: 29188508 DOI: 10.1007/978-1-4939-7522-8_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
As gene therapy of choroideremia is becoming a clinical reality, there is a need for reliable and sensitive assays to determine the expression of exogenously delivered Rab Escort Protein-1 (REP1), in particular to test new gene therapy vectors and as a quality control screen for clinical vector stocks. Here we describe an in vitro protocol to test transgene expression following AAV2/2-REP1 transduction of a human cell line. Gene augmentation can be confirmed by western blot and quantification of the fold-increase of human REP1 levels over untransduced controls.
Collapse
|
43
|
Moore NA, Morral N, Ciulla TA, Bracha P. Gene therapy for inherited retinal and optic nerve degenerations. Expert Opin Biol Ther 2017; 18:37-49. [DOI: 10.1080/14712598.2018.1389886] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Nicholas A. Moore
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Nuria Morral
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Thomas A. Ciulla
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN, USA
- Retina Service, Midwest Eye Institute, Indianapolis, IN, USA
| | - Peter Bracha
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
44
|
Gupta PR, Huckfeldt RM. Gene therapy for inherited retinal degenerations: initial successes and future challenges. J Neural Eng 2017; 14:051002. [DOI: 10.1088/1741-2552/aa7a27] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
45
|
Battu R, Jeyabalan N, Murthy P, Reddy KS, Schouten JS, Webers CA. Genetic analysis and clinical phenotype of two Indian families with X-linked choroideremia. Indian J Ophthalmol 2017; 64:924-929. [PMID: 28112135 PMCID: PMC5322709 DOI: 10.4103/0301-4738.198866] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Purpose: This study aims to describe the phenotype and genotype of two Indian families affected with X-linked choroideremia (CHM). Materials and Methods: In these two families, the affected individuals and unaffected family members underwent a comprehensive ophthalmic examination including an optical coherence tomography (OCT) and electroretinogram. Blood samples were collected from the families for genetic analysis. Next generation sequencing (NGS) was done using a panel of 184 genes, which covered previously associated genes with retinal dystrophies. Sequencing data were analyzed for the CHM, RPGR, and RP2 genes that have been implicated in CHM and X-linked retinitis pigmentosa (XLRP), respectively. The identified variants were confirmed by Sanger sequencing in available individuals and unrelated controls. Results: In two unrelated male patients, NGS analysis revealed a previously reported 3’-splice site change c.820-1G>C in the CHM gene in the first family and hemizygous mutation c.653G>C (p.Ser218X) in the second family. The asymptomatic family members were carriers for these mutations. Spectral domain-OCT showed loss of outer retina, preservation of the inner retina, and choroidal thinning in the affected males and retinal pigment epithelial changes in the asymptomatic carriers. The identified mutations were not present in 100 controls of Indian origin. There were no potential mutations found in XLRP-associated (RPGR and RP2) genes. Conclusion: This report describes the genotype and phenotype findings in patients with CHM from India. The identified genetic mutation leads to lack of Rab escort protein-1 (REP-1) or affects the production of a REP-1 protein that is likely to cause retinal abnormalities in patients.
Collapse
Affiliation(s)
- Rajani Battu
- Department of Vitreoretina, Narayana Nethralaya, Bengaluru, Karnataka, India
| | - Nallathambi Jeyabalan
- Department of Molecular Signaling and Gene Therapy, Grow Research Laboratory, Narayana Nethralaya Foundation, Narayana Nethralaya, Bengaluru, Karnataka, India
| | - Praveen Murthy
- Department of Vitreoretina, Vittala International Institute of Ophthalmology, Bengaluru, Karnataka, India
| | - Kavita S Reddy
- Department of Genetics, Strand Life Sciences Pvt. Limited, Bengaluru, Karnataka, India
| | - Jan Sag Schouten
- Department of Ophthalmology, Maastricht University, Maastricht, The Netherlands
| | - Caroll A Webers
- Department of Ophthalmology, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
46
|
Combes RD, Shah AB. The use of in vivo, ex vivo, in vitro, computational models and volunteer studies in vision research and therapy, and their contribution to the Three Rs. Altern Lab Anim 2017; 44:187-238. [PMID: 27494623 DOI: 10.1177/026119291604400302] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Much is known about mammalian vision, and considerable progress has been achieved in treating many vision disorders, especially those due to changes in the eye, by using various therapeutic methods, including stem cell and gene therapy. While cells and tissues from the main parts of the eye and the visual cortex (VC) can be maintained in culture, and many computer models exist, the current non-animal approaches are severely limiting in the study of visual perception and retinotopic imaging. Some of the early studies with cats and non-human primates (NHPs) are controversial for animal welfare reasons and are of questionable clinical relevance, particularly with respect to the treatment of amblyopia. More recently, the UK Home Office records have shown that attention is now more focused on rodents, especially the mouse. This is likely to be due to the perceived need for genetically-altered animals, rather than to knowledge of the similarities and differences of vision in cats, NHPs and rodents, and the fact that the same techniques can be used for all of the species. We discuss the advantages and limitations of animal and non-animal methods for vision research, and assess their relative contributions to basic knowledge and clinical practice, as well as outlining the opportunities they offer for implementing the principles of the Three Rs (Replacement, Reduction and Refinement).
Collapse
Affiliation(s)
| | - Atul B Shah
- Ophthalmic Surgeon, National Eye Registry Ltd, Leicester, UK
| |
Collapse
|
47
|
Patrício MI, Barnard AR, Orlans HO, McClements ME, MacLaren RE. Inclusion of the Woodchuck Hepatitis Virus Posttranscriptional Regulatory Element Enhances AAV2-Driven Transduction of Mouse and Human Retina. MOLECULAR THERAPY. NUCLEIC ACIDS 2016; 6:198-208. [PMID: 28325286 PMCID: PMC5363497 DOI: 10.1016/j.omtn.2016.12.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 12/13/2016] [Accepted: 12/13/2016] [Indexed: 11/26/2022]
Abstract
The woodchuck hepatitis virus posttranscriptional regulatory element (WPRE) has been included in the transgene cassette of adeno-associated virus (AAV) in several gene therapy clinical trials, including those for inherited retinal diseases. However, the extent to which WPRE increases transgene expression in the retina is still unclear. To address this question, AAV2 vectors containing a reporter gene with and without WPRE were initially compared in vitro and subsequently in vivo by subretinal delivery in mice. In both instances, the presence of WPRE led to significantly higher levels of transgene expression as measured by fundus fluorescence, western blot, and immunohistochemistry. The two vectors were further compared in human retinal explants derived from patients undergoing clinically indicated retinectomy, where again the presence of WPRE resulted in an enhancement of reporter gene expression. Finally, an analogous approach using a transgene currently employed in a clinical trial for choroideremia delivered similar results both in vitro and in vivo, confirming that the WPRE effect is transgene independent. Our data fully support the inclusion of WPRE in ongoing and future AAV retinal gene therapy trials, where it may allow a therapeutic effect to be achieved at an overall lower dose of vector.
Collapse
Affiliation(s)
- Maria I Patrício
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK; NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford OX3 9DU, UK; Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK
| | - Alun R Barnard
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK; NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford OX3 9DU, UK; Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK
| | - Harry O Orlans
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK; NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford OX3 9DU, UK; Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK; Moorfields Eye Hospital, NHS Foundation Trust, London EC1V 2PD, UK
| | - Michelle E McClements
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK; NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford OX3 9DU, UK
| | - Robert E MacLaren
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK; NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford OX3 9DU, UK; Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK; Moorfields Eye Hospital, NHS Foundation Trust, London EC1V 2PD, UK.
| |
Collapse
|
48
|
Parikh S, Le A, Davenport J, Gorin MB, Nusinowitz S, Matynia A. An Alternative and Validated Injection Method for Accessing the Subretinal Space via a Transcleral Posterior Approach. J Vis Exp 2016. [PMID: 28060316 DOI: 10.3791/54808] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Subretinal injections have been successfully used in both humans and rodents to deliver therapeutic interventions of proteins, viral agents, and cells to the interphotoreceptor/subretinal compartment that has direct exposure to photoreceptors and the retinal pigment epithelium (RPE). Subretinal injections of plasminogen as well as recent preclinical and clinical trials have demonstrated safety and/or efficacy of delivering viral vectors and stem cells to individuals with advanced retinal disease. Mouse models of retinal disease, particularly hereditary retinal dystrophies, are essential for testing these therapies. The most common injection procedure in rodents is to use small transcorneal or transcleral incisions with an anterior approach to the retina. With this approach, the injection needle penetrates the neurosensory retina disrupting the underlying RPE and on insertion can easily nick the lens, causing lens opacification and impairment of noninvasive imaging. Accessing the subretinal space via a transcleral, posterior approach avoids these problems: the needle crosses the sclera approximately 0.5 mm from the optic nerve, without retinal penetration and avoids disrupting the vitreous. Collateral damage is limited to that associated with the focal sclerotomy and the effects of a transient, serous retinal detachment. The simplicity of the method minimizes ocular injury, ensures rapid retinal reattachment and recovery, and has a low failure rate. The minimal damage to the retina and RPE allows for clear assessment of the efficacy and direct effects of the therapeutic agents themselves. This manuscript describes a novel subretinal injection technique that can be used to target viral vectors, pharmacological agents, stem cells or induced pluripotent stem (iPS) cells to the subretinal space in mice with high efficacy, minimal damage, and fast recovery.
Collapse
Affiliation(s)
- Sachin Parikh
- Jules Stein Eye Institute, University of California, Los Angeles
| | - Andrew Le
- Jules Stein Eye Institute, University of California, Los Angeles
| | - Julian Davenport
- Jules Stein Eye Institute, University of California, Los Angeles
| | - Michael B Gorin
- Jules Stein Eye Institute, University of California, Los Angeles
| | | | - Anna Matynia
- Jules Stein Eye Institute, University of California, Los Angeles;
| |
Collapse
|
49
|
Sengillo JD, Justus S, Tsai YT, Cabral T, Tsang SH. Gene and cell-based therapies for inherited retinal disorders: An update. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2016; 172:349-366. [PMID: 27862925 DOI: 10.1002/ajmg.c.31534] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Retinal degenerations present a unique challenge as disease progression is irreversible and the retina has little regenerative potential. No current treatments for inherited retinal disease have the ability to reverse blindness, and current dietary supplement recommendations only delay disease progression with varied results. However, the retina is anatomically accessible and capable of being monitored at high resolution in vivo. This, in addition to the immune-privileged status of the eye, has put ocular disease at the forefront of advances in gene- and cell-based therapies. This review provides an update on gene therapies and randomized control trials for inherited retinal disease, including Leber congenital amaurosis, choroideremia, retinitis pigmentosa, Usher syndrome, X-linked retinoschisis, Leber hereditary optic neuropathy, and achromatopsia. New gene-modifying and cell-based strategies are also discussed. © 2016 Wiley Periodicals, Inc.
Collapse
|
50
|
De Silva SR, Charbel Issa P, Singh MS, Lipinski DM, Barnea-Cramer AO, Walker NJ, Barnard AR, Hankins MW, MacLaren RE. Single residue AAV capsid mutation improves transduction of photoreceptors in the Abca4 -/- mouse and bipolar cells in the rd1 mouse and human retina ex vivo. Gene Ther 2016; 23:767-774. [PMID: 27416076 PMCID: PMC5097463 DOI: 10.1038/gt.2016.54] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 04/12/2016] [Accepted: 04/20/2016] [Indexed: 02/08/2023]
Abstract
Gene therapy using adeno-associated viral (AAV) vectors for the treatment of retinal degenerations has shown safety and efficacy in clinical trials. However, very high levels of vector expression may be necessary for the treatment of conditions such as Stargardt disease where a dual vector approach is potentially needed, or in optogenetic strategies for end-stage degeneration in order to achieve maximal light sensitivity. In this study, we assessed two vectors with single capsid mutations, rAAV2/2(Y444F) and rAAV2/8(Y733F) in their ability to transduce retina in the Abca4-/- and rd1 mouse models of retinal degeneration. We noted significantly increased photoreceptor transduction using rAAV2/8(Y733F) in the Abca4-/- mouse, in contrast to previous work where vectors tested in this model have shown low levels of photoreceptor transduction. Bipolar cell transduction was achieved following subretinal delivery of both vectors in the rd1 mouse, and via intravitreal delivery of rAAV2/2(Y444F). The successful use of rAAV2/8(Y733F) to target bipolar cells was further validated on human tissue using an ex vivo culture system of retinal explants. Capsid mutant AAV vectors transduce human retinal cells and may be particularly suited to treat retinal degenerations in which high levels of transgene expression are required.
Collapse
Affiliation(s)
- Samantha R De Silva
- Nuffield Laboratory of Ophthalmology, University of Oxford, NIHR Biomedical Research Centre, UK
| | - Peter Charbel Issa
- Nuffield Laboratory of Ophthalmology, University of Oxford, NIHR Biomedical Research Centre, UK
- Department of Ophthalmology, University of Bonn, Bonn, Germany
| | - Mandeep S Singh
- Nuffield Laboratory of Ophthalmology, University of Oxford, NIHR Biomedical Research Centre, UK
| | - Daniel M Lipinski
- Nuffield Laboratory of Ophthalmology, University of Oxford, NIHR Biomedical Research Centre, UK
| | - Alona O Barnea-Cramer
- Nuffield Laboratory of Ophthalmology, University of Oxford, NIHR Biomedical Research Centre, UK
| | - Nathan J Walker
- Nuffield Laboratory of Ophthalmology, University of Oxford, NIHR Biomedical Research Centre, UK
| | - Alun R Barnard
- Nuffield Laboratory of Ophthalmology, University of Oxford, NIHR Biomedical Research Centre, UK
| | - Mark W Hankins
- Nuffield Laboratory of Ophthalmology, University of Oxford, NIHR Biomedical Research Centre, UK
| | - Robert E MacLaren
- Nuffield Laboratory of Ophthalmology, University of Oxford, NIHR Biomedical Research Centre, UK
- Moorfields Eye Hospital, NIHR Biomedical Research Centre, UK
| |
Collapse
|