1
|
Jeong H, Vacanti NM. A relative metabolic flux analysis model of glucose anaplerosis. Arch Biochem Biophys 2025; 768:110330. [PMID: 39922407 DOI: 10.1016/j.abb.2025.110330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 12/03/2024] [Accepted: 02/05/2025] [Indexed: 02/10/2025]
Abstract
Glucose provides substrate for the predominant anaplerotic pathway which involves the activity of pyruvate carboxylase (PC). PC-mediated anaplerosis has been extensively studied as a metabolic regulator in glycolytic cells during tumorigenesis and metastasis. Herein, inaccuracies in established methods to measure relative intracellular flux through PC are highlighted and a compartmentalized condensed metabolic network (CCMN) is used to resolve the total malate pool into relative contributions from PC and other sources by metabolic flux analysis (MFA) with [U-13C6]glucose tracing. Performance of the CCMN method is evaluated in breast cancer cell lines that are exposed to small molecules targeting metabolism. Across conditions and cell lines, the CCMN approach yields results nearest to an accepted gold-standard methodology, using [3-13C]glucose, or even exposes the gold standard's limitations. The CCMN method does not require a separate experiment with a much more costly and generally less informative metabolic tracer, such as [3-13C]glucose, and in some cases, may outperform its application.
Collapse
Affiliation(s)
- Heesoo Jeong
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| | | |
Collapse
|
2
|
Huang H, Han Y, Zhang Y, Zeng J, He X, Cheng J, Wang S, Xiong Y, Yin H, Yuan Q, Huang L, Xie Y, Meng J, Tao L, Peng Z. Deletion of Pyruvate Carboxylase in Tubular Epithelial Cell Promotes Renal Fibrosis by Regulating SQOR/cGAS/STING-Mediated Glycolysis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2408753. [PMID: 39836535 PMCID: PMC11967762 DOI: 10.1002/advs.202408753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 12/31/2024] [Indexed: 01/23/2025]
Abstract
Renal fibrosis is a common pathway involved in the progression of various chronic kidney diseases to end-stage renal disease. Recent studies show that mitochondrial injury of renal tubular epithelial cells (RTECs) is a crucial pathological foundation for renal fibrosis. However, the underlying regulatory mechanisms remain unclear. Pyruvate carboxylase (PC) is a catalytic enzyme located within the mitochondria that is intricately linked with mitochondrial damage and metabolism. In the present study, the downregulation of PC in various fibrotic animal and human kidney samples is demonstrated. Renal proximal tubule-specific Pcx gene knockout mice (PcxcKO) has significant interstitial fibrosis compared to control mice, with heightened expression of extracellular matrix molecules. This is further demonstrated in a stable PC knock-out RTEC line. Mechanistically, PC deficiency reduces its interaction with sulfide:quinone oxidoreductase (SQOR), increasing the ubiquitination and degradation of SQOR. This leads to mitochondrial morphological and functional disruption, increased mtDNA release, activation of the cGAS-STING pathway, and elevated glycolysis levels, and ultimately, promotes renal fibrosis. This study investigates the molecular mechanisms through which PC deficiency induces mitochondrial injury and metabolic reprogramming in RTECs. This study provides a novel theoretical foundation and potential therapeutic targets for the pathogenesis and treatment of renal fibrosis.
Collapse
Affiliation(s)
- Hao Huang
- Department of Nephrology, Xiangya HospitalCentral South UniversityChangsha410008China
- Department of Cell biologySchool of Life SciencesCentral South UniversityChangsha410013China
- Hunan Key Laboratory of Organ FibrosisCentral South UniversityChangsha410013China
- FuRong LaboratoryChangsha410008China
- National Clinical Research Center for Geriatric DisordersCentral South UniversityChangsha410008China
| | - Yuanyuan Han
- Department of Nephrology, Xiangya HospitalCentral South UniversityChangsha410008China
- Hunan Key Laboratory of Organ FibrosisCentral South UniversityChangsha410013China
- FuRong LaboratoryChangsha410008China
- National Clinical Research Center for Geriatric DisordersCentral South UniversityChangsha410008China
- National Medical Metabolomics International Collaborative Research CenterCentral South UniversityChangsha410008China
| | - Yan Zhang
- Department of Nephrology, Xiangya HospitalCentral South UniversityChangsha410008China
- Hunan Key Laboratory of Organ FibrosisCentral South UniversityChangsha410013China
- FuRong LaboratoryChangsha410008China
- National Clinical Research Center for Geriatric DisordersCentral South UniversityChangsha410008China
- National Medical Metabolomics International Collaborative Research CenterCentral South UniversityChangsha410008China
| | - Jianhua Zeng
- Department of Nephrology, Xiangya HospitalCentral South UniversityChangsha410008China
- Hunan Key Laboratory of Organ FibrosisCentral South UniversityChangsha410013China
- FuRong LaboratoryChangsha410008China
- National Clinical Research Center for Geriatric DisordersCentral South UniversityChangsha410008China
- National Medical Metabolomics International Collaborative Research CenterCentral South UniversityChangsha410008China
| | - Xin He
- Department of Nephrology, Xiangya HospitalCentral South UniversityChangsha410008China
- Hunan Key Laboratory of Organ FibrosisCentral South UniversityChangsha410013China
- FuRong LaboratoryChangsha410008China
- National Clinical Research Center for Geriatric DisordersCentral South UniversityChangsha410008China
- National Medical Metabolomics International Collaborative Research CenterCentral South UniversityChangsha410008China
| | - Jiawei Cheng
- Department of Nephrology, Xiangya HospitalCentral South UniversityChangsha410008China
- Hunan Key Laboratory of Organ FibrosisCentral South UniversityChangsha410013China
- FuRong LaboratoryChangsha410008China
- National Clinical Research Center for Geriatric DisordersCentral South UniversityChangsha410008China
- National Medical Metabolomics International Collaborative Research CenterCentral South UniversityChangsha410008China
| | - Songkai Wang
- Department of Nephrology, Xiangya HospitalCentral South UniversityChangsha410008China
- Hunan Key Laboratory of Organ FibrosisCentral South UniversityChangsha410013China
- FuRong LaboratoryChangsha410008China
- National Clinical Research Center for Geriatric DisordersCentral South UniversityChangsha410008China
- National Medical Metabolomics International Collaborative Research CenterCentral South UniversityChangsha410008China
| | - Yiwei Xiong
- Department of Nephrology, Xiangya HospitalCentral South UniversityChangsha410008China
- Hunan Key Laboratory of Organ FibrosisCentral South UniversityChangsha410013China
- FuRong LaboratoryChangsha410008China
- National Clinical Research Center for Geriatric DisordersCentral South UniversityChangsha410008China
- National Medical Metabolomics International Collaborative Research CenterCentral South UniversityChangsha410008China
| | - Hongling Yin
- National Clinical Research Center for Geriatric DisordersCentral South UniversityChangsha410008China
- Department of Pathology, Xiangya HospitalCentral South UniversityChangsha410008China
| | - Qiongjing Yuan
- Department of Nephrology, Xiangya HospitalCentral South UniversityChangsha410008China
- Hunan Key Laboratory of Organ FibrosisCentral South UniversityChangsha410013China
- FuRong LaboratoryChangsha410008China
- National Clinical Research Center for Geriatric DisordersCentral South UniversityChangsha410008China
- National Medical Metabolomics International Collaborative Research CenterCentral South UniversityChangsha410008China
| | - Ling Huang
- Department of Nephrology, Xiangya HospitalCentral South UniversityChangsha410008China
- Hunan Key Laboratory of Organ FibrosisCentral South UniversityChangsha410013China
- FuRong LaboratoryChangsha410008China
- National Clinical Research Center for Geriatric DisordersCentral South UniversityChangsha410008China
- National Medical Metabolomics International Collaborative Research CenterCentral South UniversityChangsha410008China
| | - Yanyun Xie
- Department of Nephrology, Xiangya HospitalCentral South UniversityChangsha410008China
- Hunan Key Laboratory of Organ FibrosisCentral South UniversityChangsha410013China
- FuRong LaboratoryChangsha410008China
- National Clinical Research Center for Geriatric DisordersCentral South UniversityChangsha410008China
- National Medical Metabolomics International Collaborative Research CenterCentral South UniversityChangsha410008China
| | - Jie Meng
- Hunan Key Laboratory of Organ FibrosisCentral South UniversityChangsha410013China
- Department of Pulmonary and Critical Care Medicine, Third Xiangya HospitalCentral South UniversityChangsha410013China
| | - Lijian Tao
- Department of Nephrology, Xiangya HospitalCentral South UniversityChangsha410008China
- Hunan Key Laboratory of Organ FibrosisCentral South UniversityChangsha410013China
- FuRong LaboratoryChangsha410008China
- National Clinical Research Center for Geriatric DisordersCentral South UniversityChangsha410008China
- National Medical Metabolomics International Collaborative Research CenterCentral South UniversityChangsha410008China
| | - Zhangzhe Peng
- Department of Nephrology, Xiangya HospitalCentral South UniversityChangsha410008China
- Hunan Key Laboratory of Organ FibrosisCentral South UniversityChangsha410013China
- FuRong LaboratoryChangsha410008China
- National Clinical Research Center for Geriatric DisordersCentral South UniversityChangsha410008China
- National Medical Metabolomics International Collaborative Research CenterCentral South UniversityChangsha410008China
| |
Collapse
|
3
|
Li M, Li X, Chen L, Li X, Liu C. An "off-on" fluorescent probe for imaging pyruvic acid in living systems. Talanta 2025; 284:127225. [PMID: 39550808 DOI: 10.1016/j.talanta.2024.127225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/11/2024] [Accepted: 11/13/2024] [Indexed: 11/19/2024]
Abstract
Pyruvic acid (PA) is an α-keto acid which exert important biological and pathological functions. The current PA profiling assays are mainly based on the ultraviolet spectroscopy and electrochemical biosensor, requiring killing cells and destroying tissues which limit their application in living cells. Optical imaging provides nondestructive powerful and detective tools to better understand the physiological and pathological role of PA in living systems. However, as far as we know, none of"off - on" PA fluorescent sensor has been developed. Herein, we reported a PA recognition reaction that arylhydroxylamine group could be selectively reduced to acetylamide group by PA. With this recognition reaction, a fluorescence probe (FPA) based on the photoinduced electron transfer (PET) pathway was designed, synthesized and could release strong fluorescence at 447 nm. We proved that FPA could detect PA in aqueous solution, living cells, Caenorhabditis elegans and the roots of Arabidopsis thaliana with good selectivity and sensitivity as low as 0.42 μM. In addition, we successfully using probe FPA to study the intracellular PA production pathway in cells and evaluated its physiological level in Arabidopsis roots at different growth stages. The results show that the physiological level of PA in Arabidopsis thaliana roots is closely associated with their growth stages, which indicated that PA might act as a carbon source and related growth signaling molecule to promote plant growth and root elongation. Therefore, we expect probe FPA to be a powerful tool to better understand the physiological and pathological role of PA.
Collapse
Affiliation(s)
- Man Li
- School of Pharmacy, Hubei University of Science and Technology, Xianning, 437100, PR China; Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, School of Chemistry, Central China Normal University, Wuhan, 430079, PR China; Hubei Engineering Research Center of Traditional Chinese Medicine of South Hubei Province, Xianning, 437100, PR China.
| | - Xiang Li
- School of Health Science and Engineering, Hubei University, Wuhan 430062, Hubei, PR China
| | - Linfeng Chen
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, School of Chemistry, Central China Normal University, Wuhan, 430079, PR China
| | - Xiaohong Li
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, School of Chemistry, Central China Normal University, Wuhan, 430079, PR China
| | - Chunrong Liu
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, School of Chemistry, Central China Normal University, Wuhan, 430079, PR China.
| |
Collapse
|
4
|
Huang J, Li H, Huang Q, Wang L, Wu Y, Tan X. In silico and in vivo experiments of Huperzine A modulating the development of obstructive sleep apnea by transcriptionally regulating pyruvate carboxylase expression via retinoid X receptor alpha. Hum Exp Toxicol 2025; 44:9603271251342572. [PMID: 40387850 DOI: 10.1177/09603271251342572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2025]
Abstract
IntroductionThis study investigated the molecular mechanism by which HuA influences the expression of pyruvate carboxylase via retinoid X receptor alpha (RXRA), thereby affecting the progression of obstructive sleep apnea (OSA).MethodsBioinformatics analysis including screening of differentially expressed genes (DEGs) and searching the downstream target genes of RXRA were conducted. Cognitive function, neuronal damage, oxidative stress, and inflammation were evaluated in chronic intermittent hypoxia (CIH) mouse models. The Morris water maze test was used to assess swimming path length, escape latency, and platform crossing times. H&E and Nissl staining was performed to evaluate pathological changes and neuronal counts in brain tissue. ELISA was utilized to measure the oxidative stress levels and inflammatory cytokines. RXRA enrichment in the pyruvate carboxylase promoter region in CIH was assessed using Chromatin Immunoprecipitation (ChIP), and the effect of RXRA on pyruvate carboxylase promoter activity was analyzed using dual-luciferase assay.ResultsRXRA was identified as a potential regulatory target gene of HuA. Pyruvate carboxylase was identified as a RXRA target gene and a significant DEG in OSA. CIH-induced cognitive impairment, neuronal damage, oxidative stress, and inflammation in mice, while such symptoms were alleviated by HuA treatment. In OSA, suppression of RXRA expression led to reduced pyruvate carboxylase expression. HuA treatment enhanced RXRA expression, thereby promoting pyruvate carboxylase expression. HuA alleviated CIH-induced cognitive impairment, neuronal damage, oxidative stress, and inflammation via the RXRA/pyruvate carboxylase axis.ConclusionIn summary, HuA alleviates CIH-induced cognitive impairment, neuronal damage, oxidative stress, and inflammation by promoting the RXRA/pyruvate carboxylase axis.
Collapse
Affiliation(s)
- Juan Huang
- Pediatric Department, The Affiliated Changsha Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Hui Li
- Pediatric Department, The Affiliated Changsha Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Qin Huang
- Pediatric Department, The Affiliated Changsha Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Li Wang
- Pediatric Department, The Affiliated Changsha Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Ying Wu
- Medical laboratory, The Affiliated Changsha Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Xin Tan
- Pediatric Department, The Affiliated Changsha Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| |
Collapse
|
5
|
Su J, Tian X, Cheng H, Liu D, Wang Z, Sun S, Wang HW, Sui SF. Structural insight into synergistic activation of human 3-methylcrotonyl-CoA carboxylase. Nat Struct Mol Biol 2025; 32:73-85. [PMID: 39223421 DOI: 10.1038/s41594-024-01379-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 07/25/2024] [Indexed: 09/04/2024]
Abstract
The enzymes 3-methylcrotonyl-coenzyme A (CoA) carboxylase (MCC), pyruvate carboxylase and propionyl-CoA carboxylase belong to the biotin-dependent carboxylase family located in mitochondria. They participate in various metabolic pathways in human such as amino acid metabolism and tricarboxylic acid cycle. Many human diseases are caused by mutations in those enzymes but their structures have not been fully resolved so far. Here we report an optimized purification strategy to obtain high-resolution structures of intact human endogenous MCC, propionyl-CoA carboxylase and pyruvate carboxylase in different conformational states. We also determine the structures of MCC bound to different substrates. Analysis of MCC structures in different states reveals the mechanism of the substrate-induced, multi-element synergistic activation of MCC. These results provide important insights into the catalytic mechanism of the biotin-dependent carboxylase family and are of great value for the development of new drugs for the treatment of related diseases.
Collapse
Affiliation(s)
- Jiayue Su
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structures, School of Life Sciences, Tsinghua University, Beijing, China
| | - Xuyang Tian
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structures, School of Life Sciences, Tsinghua University, Beijing, China
| | - Hang Cheng
- The California Institute for Quantitative Biosciences (QB3), University of California campuses at Berkeley, Berkeley, CA, USA
| | - Desheng Liu
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structures, School of Life Sciences, Tsinghua University, Beijing, China
| | - Ziyi Wang
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structures, School of Life Sciences, Tsinghua University, Beijing, China
| | - Shan Sun
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structures, School of Life Sciences, Tsinghua University, Beijing, China.
| | - Hong-Wei Wang
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structures, School of Life Sciences, Tsinghua University, Beijing, China.
- Ministry of Education Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, China.
- Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China.
| | - Sen-Fang Sui
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structures, School of Life Sciences, Tsinghua University, Beijing, China.
- School of Life Sciences, Cryo-EM Center, Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
6
|
Yang S, Liu R, Xin Z, Zhu Z, Chu J, Zhong P, Zhu Z, Shang X, Huang W, Zhang L, He M, Wang W. Plasma Metabolomics Identifies Key Metabolites and Improves Prediction of Diabetic Retinopathy: Development and Validation across Multinational Cohorts. Ophthalmology 2024; 131:1436-1446. [PMID: 38972358 DOI: 10.1016/j.ophtha.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/13/2024] [Accepted: 07/01/2024] [Indexed: 07/09/2024] Open
Abstract
PURPOSE To identify longitudinal metabolomic fingerprints of diabetic retinopathy (DR) and to evaluate their usefulness in predicting DR development and progression. DESIGN Multicenter, multiethnic cohort study. PARTICIPANTS This study included 17 675 participants from the UK Biobank (UKB) who had baseline prediabetes or diabetes, identified in accordance with the 2021 American Diabetes Association guidelines, and were free of baseline DR and an additional 638 participants with type 2 diabetes mellitus from the Guangzhou Diabetic Eye Study (GDES) for external validation. Diabetic retinopathy was determined by ICD-10 codes in the UKB cohort and revised ETDRS grading criteria in the GDES cohort. METHODS Longitudinal DR metabolomic fingerprints were identified through nuclear magnetic resonance (NMR) assay in UKB participants. The predictive value of these fingerprints for predicting DR development were assessed in a fully withheld test set. External validation and extrapolation analyses of DR progression and microvascular damage were conducted in the GDES cohort using NMR technology. Model assessments included the concordance (C) statistic, net classification improvement (NRI), integrated discrimination improvement (IDI), calibration, and clinical usefulness in both cohorts. MAIN OUTCOME MEASURES DR development and progression and retinal microvascular damage. RESULTS Of 168 metabolites, 118 were identified as candidate metabolomic fingerprints for future DR development. These fingerprints significantly improved the predictability for DR development beyond traditional indicators (C statistic, 0.802 [95% confidence interval (CI), 0.760-0.843] vs. 0.751 [95% CI, 0.706-0.796]; P = 5.56 × 10-4). Glucose, lactate, and citrate were among the fingerprints validated in the GDES cohort. Using these parsimonious and replicable fingerprints yielded similar improvements for predicting DR development (C statistic, 0.807 [95% CI, 0.711-0.903] vs. 0.617 [95% CI, 0.494-0.740]; P = 1.68 × 10-4) and progression (C statistic, 0.797 [95% CI, 0.712-0.882] vs. 0.665 [95% CI, 0.545-0.784]; P = 0.003) in the external GDES cohort. Improvements in NRIs, IDIs, and clinical usefulness also were evident in both cohorts (all P < 0.05). In addition, lactate and citrate were associated with microvascular damage across macular and optic nerve head regions among Chinese GDES (all P < 0.05). CONCLUSIONS Metabolomic profiling may be effective in identifying robust fingerprints for predicting future DR development and progression, providing novel insights into the early and advanced stages of DR pathophysiology. FINANCIAL DISCLOSURE(S) The author(s) have no proprietary or commercial interest in any materials discussed in this article.
Collapse
Affiliation(s)
- Shaopeng Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| | - Riqian Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| | - Zhuoyao Xin
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland; F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland; Department of Biomedical Engineering, Columbia University, New York, New York
| | - Ziyu Zhu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| | - Jiaqing Chu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| | - Pingting Zhong
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| | - Zhuoting Zhu
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Australia
| | - Xianwen Shang
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Australia
| | - Wenyong Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| | - Lei Zhang
- Clinical Medical Research Center, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China; Artificial Intelligence and Modelling in Epidemiology Program, Melbourne Sexual Health Centre, Alfred Health, Melbourne, Australia; Central Clinical School, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Australia
| | - Mingguang He
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China; Experimental Ophthalmology, The Hong Kong Polytechnic University, Hong Kong, China
| | - Wei Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China; Hainan Eye Hospital and Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Haikou, Hainan Province, China.
| |
Collapse
|
7
|
Shin S, Bong S, Moon H, Jeon H, Kim H, Choi GJ, Lee DY, Son H. Oxaloacetate anaplerosis differently contributes to pathogenicity in plant pathogenic fungi Fusarium graminearum and F. oxysporum. PLoS Pathog 2024; 20:e1012544. [PMID: 39250495 PMCID: PMC11412510 DOI: 10.1371/journal.ppat.1012544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 09/19/2024] [Accepted: 08/30/2024] [Indexed: 09/11/2024] Open
Abstract
Anaplerosis refers to enzymatic reactions or pathways replenishing metabolic intermediates in the tricarboxylic acid (TCA) cycle. Pyruvate carboxylase (PYC) plays an important anaplerotic role by catalyzing pyruvate carboxylation, forming oxaloacetate. Although PYC orthologs are well conserved in prokaryotes and eukaryotes, their pathobiological functions in filamentous pathogenic fungi have yet to be fully understood. Here, we delve into the molecular functions of the ortholog gene PYC1 in Fusarium graminearum and F. oxysporum, prominent fungal plant pathogens with distinct pathosystems, demonstrating variations in carbon metabolism for pathogenesis. Surprisingly, the PYC1 deletion mutant of F. oxysporum exhibited pleiotropic defects in hyphal growth, conidiation, and virulence, unlike F. graminearum, where PYC1 deletion did not significantly impact virulence. To further explore the species-specific effects of PYC1 deletion on pathogenicity, we conducted comprehensive metabolic profiling. Despite shared metabolic changes, distinct reprogramming in central carbon and nitrogen metabolism was identified. Specifically, alpha-ketoglutarate, a key link between the TCA cycle and amino acid metabolism, showed significant down-regulation exclusively in the PYC1 deletion mutant of F. oxysporum. The metabolic response associated with pathogenicity was notably characterized by S-methyl-5-thioadenosine and S-adenosyl-L-methionine. This research sheds light on how PYC1-mediated anaplerosis affects fungal metabolism and reveals species-specific variations, exemplified in F. graminearum and F. oxysporum.
Collapse
Affiliation(s)
- Soobin Shin
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Seonghun Bong
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Heeji Moon
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Hosung Jeon
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Hun Kim
- Center for Eco-friendly New Materials, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Gyung Ja Choi
- Center for Eco-friendly New Materials, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Do Yup Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Hokyoung Son
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
8
|
Wang Z, Lan H, Wang Y, Zheng Q, Li C, Wang K, Xiong T, Wu Q, Dong N. Pyruvate Carboxylase Attenuates Myocardial Ischemia-Reperfusion Injury in Heart Transplantation via Wnt/β-Catenin-Mediated Glutamine Metabolism. Biomedicines 2024; 12:1826. [PMID: 39200290 PMCID: PMC11351651 DOI: 10.3390/biomedicines12081826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/02/2024] [Accepted: 08/06/2024] [Indexed: 09/02/2024] Open
Abstract
The ischemia-reperfusion process of a donor heart during heart transplantation leads to severe mitochondrial dysfunction, which may be the main cause of donor heart dysfunction after heart transplantation. Pyruvate carboxylase (PC), an enzyme found in mitochondria, is said to play a role in the control of oxidative stress and the function of mitochondria. This research examined the function of PC and discovered the signaling pathways controlled by PC in myocardial IRI. We induced IRI using a murine heterotopic heart transplantation model in vivo and a hypoxia-reoxygenation cell model in vitro and evaluated inflammatory responses, oxidative stress levels, mitochondrial function, and cardiomyocyte apoptosis. In both in vivo and in vitro settings, we observed a significant decrease in PC expression during myocardial IRI. PC knockdown aggravated IRI by increasing MDA content, LDH activity, TUNEL-positive cells, serum cTnI level, Bax protein expression, and the level of inflammatory cytokines and decreasing SOD activity, GPX activity, and Bcl-2 protein expression. PC overexpression yielded the opposite findings. Additional research indicated that reducing PC levels could block the Wnt/β-catenin pathway and glutamine metabolism by hindering the movement of β-catenin to the nucleus and reducing the activity of complex I and complex II, as well as ATP levels, while elevating the ratios of NADP+/NADPH and GSSG/GSH. Overall, the findings indicated that PC therapy can shield the heart from IRI during heart transplantation by regulating glutamine metabolism through the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Zihao Wang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China; (Z.W.)
| | - Hongwen Lan
- Department of Thoracic Surgery, Wuhan No. 1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China
| | - Yixuan Wang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China; (Z.W.)
| | - Qiang Zheng
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China; (Z.W.)
| | - Chenghao Li
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China; (Z.W.)
| | - Kan Wang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China; (Z.W.)
| | - Tixiusi Xiong
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China; (Z.W.)
| | - Qingping Wu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China
| | - Nianguo Dong
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China; (Z.W.)
| |
Collapse
|
9
|
Liang QH, Li QR, Chen Z, Lv LJ, Lin Y, Jiang HL, Wang KX, Xiao MY, Kang NX, Tu PF, Ji SL, Deng KJ, Gao HW, Zhang L, Li K, Ge F, Xu GQ, Yang SL, Liu YL, Xu QM. Anemoside B4, a new pyruvate carboxylase inhibitor, alleviates colitis by reprogramming macrophage function. Inflamm Res 2024; 73:345-362. [PMID: 38157008 DOI: 10.1007/s00011-023-01840-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 12/08/2023] [Accepted: 12/14/2023] [Indexed: 01/03/2024] Open
Abstract
OBJECTIVES Colitis is a global disease usually accompanied by intestinal epithelial damage and intestinal inflammation, and an increasing number of studies have found natural products to be highly effective in treating colitis. Anemoside B4 (AB4), an abundant saponin isolated from Pulsatilla chinensis (Bunge), which was found to have strong anti-inflammatory activity. However, the exact molecular mechanisms and direct targets of AB4 in the treatment of colitis remain to be discovered. METHODS The anti-inflammatory activities of AB4 were verified in LPS-induced cell models and 2, 4, 6-trinitrobenzene sulfonic (TNBS) or dextran sulfate sodium (DSS)-induced colitis mice and rat models. The molecular target of AB4 was identified by affinity chromatography analysis using chemical probes derived from AB4. Experiments including proteomics, molecular docking, biotin pull-down, surface plasmon resonance (SPR), and cellular thermal shift assay (CETSA) were used to confirm the binding of AB4 to its molecular target. Overexpression of pyruvate carboxylase (PC) and PC agonist were used to study the effects of PC on the anti-inflammatory and metabolic regulation of AB4 in vitro and in vivo. RESULTS AB4 not only significantly inhibited LPS-induced NF-κB activation and increased ROS levels in THP-1 cells, but also suppressed TNBS/DSS-induced colonic inflammation in mice and rats. The molecular target of AB4 was identified as PC, a key enzyme related to fatty acid, amino acid and tricarboxylic acid (TCA) cycle. We next demonstrated that AB4 specifically bound to the His879 site of PC and altered the protein's spatial conformation, thereby affecting the enzymatic activity of PC. LPS activated NF-κB pathway and increased PC activity, which caused metabolic reprogramming, while AB4 reversed this phenomenon by inhibiting the PC activity. In vivo studies showed that diisopropylamine dichloroacetate (DADA), a PC agonist, eliminated the therapeutic effects of AB4 by changing the metabolic rearrangement of intestinal tissues in colitis mice. CONCLUSION We identified PC as a direct cellular target of AB4 in the modulation of inflammation, especially colitis. Moreover, PC/pyruvate metabolism/NF-κB is crucial for LPS-driven inflammation and oxidative stress. These findings shed more light on the possibilities of PC as a potential new target for treating colitis.
Collapse
Affiliation(s)
- Qing-Hua Liang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Qiu-Rong Li
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Zhong Chen
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Li-Juan Lv
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Yu Lin
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Hong-Lv Jiang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Ke-Xin Wang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Ming-Yue Xiao
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Nai-Xin Kang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Peng-Fei Tu
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, China
| | - Shi-Liang Ji
- Department of Pharmacy, Suzhou Science & Technology Town Hospital, Gusu School, Nanjing Medical University, Suzhou, 215163, Jiangsu, China
| | - Ke-Jun Deng
- School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, China
| | - Hong-Wei Gao
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530000, Guangxi, China
- Guangxi Xinhai Pharmaceutical Technology Co.,Ltd, , Liuzhou, 545025, Guangxi, China
| | - Li Zhang
- Instrumental Analysis Center, Shanghai JiaoTong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Kun Li
- Hai'an Traditional Chinese Medicine Hospital, Nantong, 226600, Jiangsu, China
| | - Fei Ge
- Hai'an Traditional Chinese Medicine Hospital, Nantong, 226600, Jiangsu, China
| | - Guo-Qiang Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Shi-Lin Yang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530000, Guangxi, China
- Guangxi Xinhai Pharmaceutical Technology Co.,Ltd, , Liuzhou, 545025, Guangxi, China
| | - Yan-Li Liu
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, Jiangsu, China.
| | - Qiong-Ming Xu
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, Jiangsu, China.
- Guangxi Xinhai Pharmaceutical Technology Co.,Ltd, , Liuzhou, 545025, Guangxi, China.
| |
Collapse
|
10
|
Nematollahi Z, Karimian S, Taghavirashidizadeh A, Darvishi M, Pakmehr S, Erfan A, Teimoury MJ, Mansouri N, Alipourfard I. Hub genes, key miRNAs and interaction analyses in type 2 diabetes mellitus: an integrative in silico approach. Integr Biol (Camb) 2024; 16:zyae002. [PMID: 38366952 DOI: 10.1093/intbio/zyae002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 10/20/2023] [Accepted: 12/18/2023] [Indexed: 02/19/2024]
Abstract
Diabetes is a rising global metabolic disorder and leads to long-term consequences. As a multifactorial disease, the gene-associated mechanisms are important to know. This study applied a bioinformatics approach to explore the molecular underpinning of type 2 diabetes mellitus through differential gene expression analysis. We used microarray datasets GSE16415 and GSE29226 to identify differentially expressed genes between type 2 diabetes and normal samples using R software. Following that, using the STRING database, the protein-protein interaction network was constructed and further analyzed by Cytoscape software. The EnrichR database was used for Gene Ontology and pathway enrichment analysis to explore key pathways and functional annotations of hub genes. We also used miRTarBase and TargetScan databases to predict miRNAs targeting hub genes. We identified 21 hub genes in type 2 diabetes, some showing more significant changes in the PPI network. Our results revealed that GLUL, SLC32A1, PC, MAPK10, MAPT, and POSTN genes are more important in the PPI network and can be experimentally investigated as therapeutic targets. Hsa-miR-492 and hsa-miR-16-5p are suggested for diagnosis and prognosis by targeting GLUL, SLC32A1, PC, MAPK10, and MAPT genes involved in the insulin signaling pathway. Insight: Type 2 diabetes, as a rising global and multifactorial disorder, is important to know the gene-associated mechanisms. In an integrative bioinformatics analysis, we integrated different finding datasets to put together and find valuable diagnostic and prognostic hub genes and miRNAs. In contrast, genes, RNAs, and enzymes interact systematically in pathways. Using multiple databases and software, we identified differential expression between hub genes of diabetes and normal samples. We explored different protein-protein interaction networks, gene ontology, key pathway analysis, and predicted miRNAs that target hub genes. This study reported 21 significant hub genes and some miRNAs in the insulin signaling pathway for innovative and potential diagnostic and therapeutic purposes.
Collapse
Affiliation(s)
| | - Shiva Karimian
- Electrical and Computer Research Center, Islamic Azad University Sanandaj Branch, Sanandaj, Iran
| | - Ali Taghavirashidizadeh
- Department of Electrical and Electronics Engineering, Islamic Azad University Central Tehran Branch, Tehran, Iran
| | - Mohammad Darvishi
- Infectious Diseases and Tropical Medicine Research Center(IDTMC), School of Aerospace and Subaquatic Medicine, AJA University of Medical Sciences, Tehran, Iran
| | | | - Amin Erfan
- Department of Electrical and Computer Engineering, Technical and Vocational University, Tehran, Iran
| | | | - Neda Mansouri
- Instituto de Biología Molecular y Celular del Cáncer (CSIC-Universidad de Salamanca) IBSAL and CIBERONC, Salamanca, Spain
| | - Iraj Alipourfard
- Institute of Physical Chemistry, Polish Academy of Science, Warsaw, Poland
| |
Collapse
|
11
|
Ma L, Li M, Zhang Y, Liu K. Recent advances of antitumor leading compound Erianin: Mechanisms of action and structural modification. Eur J Med Chem 2023; 261:115844. [PMID: 37804769 DOI: 10.1016/j.ejmech.2023.115844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 09/17/2023] [Accepted: 09/27/2023] [Indexed: 10/09/2023]
Abstract
Erianin, a bioactive compound extracted from Dendrobium, a traditional Chinese medicine, exhibits remarkable anti-cancer properties through diverse molecular mechanisms and has attracted the attention of medicinal chemists. However, the low solubility in water, rapid metabolism and elimination from the body lead to poor bioavailability of Erianin, and greatly hinder its clinical application. The development of new Erianin derivatives is continuously proceed to improve its anticancer effects. In recent years, although important progress in the development of Erianin and the publication of some reviews in this aspect, the mechanism against various cancers, pharmacokinetic study, structural modification as well as structure-activity relationships have not been thoroughly considered. This review is aimed at providing complete picture regarding the above aspects by reviewing studies from 2000 to 2023.06. This review also supplies some important viewpoints on the design and future directions for the development of Erianin derivatives as possible clinically effective anticancer agents.
Collapse
Affiliation(s)
- Lu Ma
- Basic Medical Research Center, Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Menglong Li
- Basic Medical Research Center, Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Yueteng Zhang
- Basic Medical Research Center, Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, 450001, China.
| | - Kangdong Liu
- Basic Medical Research Center, Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, 450001, China; Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China.
| |
Collapse
|
12
|
Pang R, Xiao X, Mao T, Yu J, Huang L, Xu W, Li Y, Zhu W. The molecular mechanism of propionate-regulating gluconeogenesis in bovine hepatocytes. Anim Biosci 2023; 36:1693-1699. [PMID: 37402451 PMCID: PMC10623044 DOI: 10.5713/ab.23.0061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/02/2023] [Accepted: 06/12/2023] [Indexed: 07/06/2023] Open
Abstract
OBJECTIVE Cows that are nursing get around 80% of their glucose from liver gluconeogenesis. Propionate, a significant precursor of liver gluconeogenesis, can regulate the key genes involved in hepatic gluconeogenesis expression, but its precise effects on the activity of enzymes have not yet been fully elucidated. Therefore, the aim of this study was to investigate the effects of propionate on the activity, gene expression, and protein abundance of the key enzymes involved in the gluconeogenesis of dairy cow hepatocytes. METHODS The hepatocytes were cultured and treated with various concentrations of sodium propionate (0, 1.25, 2.50, 3.75, and 5.00 mM) for 12 h. Glucose content in the culture media was determined by an enzymatic coloring method. The activities of gluconeogenesis related enzymes were determined by enzyme linked immunosorbent assay kits, and the levels of gene expression and protein abundance of the enzymes were detected by real-time quantitative polymerase chain reaction and Western blot, respectively. RESULTS Propionate supplementation considerably increased the amount of glucose in the culture medium compared to the control (p<0.05); while there was no discernible difference among the various treatment concentrations (p>0.05). The activities of cytoplasmic phosphoenolpyruvate carboxylase (PEPCK1), mitochondrial phosphoenolpyruvate carboxylase (PEPCK2), pyruvate carboxylase (PC), and glucose-6-phosphatase (G6PC) were increased with the addition of 2.50 and 3.75 mM propionate; the gene expressions and protein abundances of PEPCK1, PEPCK2, PC, and G6PC were increased by 3.75 mM propionate addition. CONCLUSION Propionate encouraged glucose synthesis in bovine hepatocytes, and 3.75 mM propionate directly increased the activities, gene expressions and protein abundances of PC, PEPCK1, PEPCK2, and G6PC in bovine hepatocytes, providing a theoretical basis of propionate-regulating gluconeogenesis in bovine hepatocytes.
Collapse
Affiliation(s)
- Rui Pang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036,
China
| | - Xiao Xiao
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036,
China
| | - Tiantian Mao
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036,
China
| | - Jiajia Yu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036,
China
| | - Li Huang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036,
China
| | - Wei Xu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036,
China
| | - Yu Li
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036,
China
| | - Wen Zhu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036,
China
| |
Collapse
|
13
|
Laseke AJ, Boram TJ, Schneider NO, Lohman JR, Maurice MS. Allosteric Site at the Biotin Carboxylase Dimer Interface Mediates Activation and Inhibition in Staphylococcus aureus Pyruvate Carboxylase. Biochemistry 2023; 62:2632-2644. [PMID: 37603581 PMCID: PMC10693930 DOI: 10.1021/acs.biochem.3c00280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
Allosteric regulation of the essential anaplerotic enzyme, pyruvate carboxylase (PC), is vital for metabolic homeostasis. PC catalyzes the bicarbonate- and ATP-dependent carboxylation of pyruvate to form oxaloacetate. Dysregulation of PC activity can impact glucose and redox metabolism, which contributes to the pathogenicity of many diseases. To maintain homeostasis, PC is allosterically activated by acetyl-CoA and allosterically inhibited by l-aspartate. In this study, we further characterize the molecular basis of allosteric regulation in Staphylococcus aureus PC (SaPC) using slowly/nonhydrolyzable dethia analogues of acetyl-CoA and site-directed mutagenesis of residues at the biotin carboxylase homodimer interface. The dethia analogues fully activate SaPC but demonstrate significantly reduced binding affinities relative to acetyl-CoA. Residues Arg21, Lys46, and Glu418 of SaPC are located at the biotin carboxylase dimer interface and play a critical role in both allosteric activation and inhibition. A structure of R21A SaPC in complex with acetyl-CoA reveals an intact molecule of acetyl-CoA bound at the allosteric site, offering new molecular insights into the acetyl-CoA binding site. This study demonstrates that the biotin carboxylase domain dimer interface is a critical allosteric site in PC, serving as a convergence point for allosteric activation by acetyl-CoA and inhibition by l-aspartate.
Collapse
Affiliation(s)
- Amanda J. Laseke
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53201-1881, USA
| | - Trevor J. Boram
- Department of Biochemistry, Purdue University, 175 S. University St., West Lafayette, IN 47907, United States
| | - Nicholas O. Schneider
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53201-1881, USA
| | - Jeremy R. Lohman
- Department of Biochemistry, Purdue University, 175 S. University St., West Lafayette, IN 47907, United States
- Current Address: Department of Biochemistry and Molecular Biology, Michigan State University, 603 Wilson Road, East Lansing, MI 48824
| | - Martin St. Maurice
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53201-1881, USA
| |
Collapse
|
14
|
Rönkkö J, Rodriguez Y, Rasila T, Torregrosa-Muñumer R, Pennonen J, Kvist J, Kuuluvainen E, Bosch LVD, Hietakangas V, Bultynck G, Tyynismaa H, Ylikallio E. Human IP 3 receptor triple knockout stem cells remain pluripotent despite altered mitochondrial metabolism. Cell Calcium 2023; 114:102782. [PMID: 37481871 DOI: 10.1016/j.ceca.2023.102782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/14/2023] [Accepted: 07/13/2023] [Indexed: 07/25/2023]
Abstract
Inositol 1,4,5-trisphosphate receptors (IP3Rs) are ER Ca2+-release channels that control a broad set of cellular processes. Animal models lacking IP3Rs in different combinations display severe developmental phenotypes. Given the importance of IP3Rs in human diseases, we investigated their role in human induced pluripotent stem cells (hiPSC) by developing single IP3R and triple IP3R knockouts (TKO). Genome edited TKO-hiPSC lacking all three IP3R isoforms, IP3R1, IP3R2, IP3R3, failed to generate Ca2+ signals in response to agonists activating GPCRs, but retained stemness and pluripotency. Steady state metabolite profiling and flux analysis of TKO-hiPSC indicated distinct alterations in tricarboxylic acid cycle metabolites consistent with a deficiency in their pyruvate utilization via pyruvate dehydrogenase, shifting towards pyruvate carboxylase pathway. These results demonstrate that IP3Rs are not essential for hiPSC identity and pluripotency but regulate mitochondrial metabolism. This set of knockout hiPSC is a valuable resource for investigating IP3Rs in human cell types of interest.
Collapse
Affiliation(s)
- Julius Rönkkö
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, 00290, Finland
| | - Yago Rodriguez
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, 00290, Finland
| | - Tiina Rasila
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, 00290, Finland
| | - Rubén Torregrosa-Muñumer
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, 00290, Finland
| | - Jana Pennonen
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, 00290, Finland
| | - Jouni Kvist
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, 00290, Finland
| | - Emilia Kuuluvainen
- Molecular and Integrative Bioscience Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, 00790, Finland; Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, 00790, Finland
| | - Ludo Van Den Bosch
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute, KU Leuven - University of Leuven, 3000, Leuven, Belgium; VIB Center for Brain & Disease Research, Laboratory of Neurobiology, 3000, Leuven, Belgium
| | - Ville Hietakangas
- Molecular and Integrative Bioscience Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, 00790, Finland; Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, 00790, Finland
| | - Geert Bultynck
- KU Leuven, Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine & Leuven Kanker Instituut, Leuven, 3000, Belgium
| | - Henna Tyynismaa
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, 00290, Finland
| | - Emil Ylikallio
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, 00290, Finland; Clinical Neurosciences, Neurology, University of Helsinki and Helsinki University Hospital, Helsinki, 00290, Finland.
| |
Collapse
|
15
|
Huang Y, Wan X, Zhao Z, Liu H, Wen Y, Wu W, Ge X, Zhao C. Metabolomic analysis and pathway profiling of paramylon production in Euglena gracilis grown on different carbon sources. Int J Biol Macromol 2023; 246:125661. [PMID: 37399871 DOI: 10.1016/j.ijbiomac.2023.125661] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 05/18/2023] [Accepted: 06/30/2023] [Indexed: 07/05/2023]
Abstract
Paramylon (β-1,3-glucan) produced by Euglena gracilis displays antioxidant, antitumor, and hypolipidaemic functions. The biological properties of paramylon production by E. gracilis can be understood by elucidating the metabolic changes within the algae. In this study, the carbon sources in AF-6 medium were replaced with glucose, sodium acetate, glycerol, or ethanol, and the paramylon yield was measured. Adding 0.1260 g/L glucose to the culture medium resulted in the highest paramylon yield of 70.48 %. The changes in metabolic pathways in E. gracilis grown on glucose were assessed via non-targeted metabolomics analysis using ultra-high-performance liquid chromatography coupled to high-resolution quadrupole-Orbitrap mass spectrometry. We found that glucose, as a carbon source, regulated some differentially expressed metabolites, including l-glutamic acid, γ-aminobutyric acid (GABA), and l-aspartic acid. Pathway analysis using the Kyoto Encyclopedia of Genes and Genomes further showed that glucose regulated the carbon and nitrogen balance through the GABA shunt, which enhanced photosynthesis, regulated the flux of carbon and nitrogen into the tricarboxylic acid cycle, promoted glucose uptake, and increased the accumulation of paramylon. This study provides new insights into E. gracilis metabolism during paramylon synthesis.
Collapse
Affiliation(s)
- Yajun Huang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xuzhi Wan
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Zexu Zhao
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hanqi Liu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuxi Wen
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Sciences, 32004 Ourense, Spain
| | - Weihao Wu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaodong Ge
- College of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Chao Zhao
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
16
|
Pauli JR, Muñoz VR, Vieira RFL, Nakandakari SCBR, Macêdo APA, de Lima RD, Antunes GC, Simabuco FM, da Silva ASR, de Moura LP, Ropelle ER, Cintra DE, Mekary RA, Zaghloul I. Exercise training restores weight gain and attenuates hepatic inflammation in a rat model of non-celiac gluten sensitivity. J Cell Biochem 2023; 124:520-532. [PMID: 36791261 DOI: 10.1002/jcb.30387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 12/02/2022] [Accepted: 02/03/2023] [Indexed: 02/17/2023]
Abstract
Gluten intolerance is associated with several disorders in the body. Although research has grown in recent years, the understanding of its impact on different tissues and the effects of physical exercise in mitigating health problems in the condition of gluten intolerance are still limited. Therefore, our objective was to test whether gliadin would affect metabolism and inflammation in liver tissue and whether aerobic physical exercise would mitigate the negative impacts of gliadin administration in rodents. Wistar rats were divided into exercised gliadin, gliadin, and control groups. Gliadin was administered by gavage from birth to 60 days of age. The rats in the exercised gliadin group performed an aerobic running exercise training protocol for 15 days. At the end of the experiments, physiological, histological, and molecular analyzes were performed in the study. Compared to the control group, the gliadin group had impaired weight gain and increased gluconeogenesis, lipogenesis, and inflammatory biomarkers in the liver. On the other hand, compared to the gliadin group, animals in the exercise-gliadin group had a recovery in body weight, improved insulin sensitivity, and a reduction in some gluconeogenesis, lipogenesis, and inflammatory biomarkers in the liver. In conclusion, our results revealed that the administration of gliadin from birth impaired weight gain and induced an increase in hepatic inflammatory cytokines, which was associated with an impairment of glycemic homeostasis in the liver, all of which were attenuated by adding aerobic exercise training in the gliadin group.
Collapse
Affiliation(s)
- José R Pauli
- Laboratory of Molecular Biology of Exercise, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil.,OCRC-Obesity and Comorbidities Research Center, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Vitor R Muñoz
- Laboratory of Molecular Biology of Exercise, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Renan Fudoli Lins Vieira
- Laboratory of Molecular Biology of Exercise, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Susana C B R Nakandakari
- Laboratory of Nutritional Genomics, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Ana Paula Azevêdo Macêdo
- Laboratory of Molecular Biology of Exercise, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Robson Damasceno de Lima
- Laboratory of Molecular Biology of Exercise, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Gabriel Calheiros Antunes
- Laboratory of Molecular Biology of Exercise, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Fernando M Simabuco
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Adelino Sanchez Ramos da Silva
- Postgraduate Program in Rehabilitation and Functional Performance, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil.,School of Physical Education and Sport of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - Leandro P de Moura
- Laboratory of Molecular Biology of Exercise, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil.,OCRC-Obesity and Comorbidities Research Center, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Eduardo R Ropelle
- Laboratory of Molecular Biology of Exercise, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil.,OCRC-Obesity and Comorbidities Research Center, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Dennys E Cintra
- OCRC-Obesity and Comorbidities Research Center, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil.,Laboratory of Nutritional Genomics, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Rania A Mekary
- Massachusetts College of Pharmacy and Health Sciences (MCPHS), Boston, Massachusetts, USA.,Department of Neurosurgery, Harvard Medical School, Computational Outcomes Research Center, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Iman Zaghloul
- Massachusetts College of Pharmacy and Health Sciences (MCPHS), Boston, Massachusetts, USA
| |
Collapse
|
17
|
AMPK inhibits liver gluconeogenesis: fact or fiction? Biochem J 2023; 480:105-125. [PMID: 36637190 DOI: 10.1042/bcj20220582] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/21/2022] [Accepted: 01/04/2023] [Indexed: 01/14/2023]
Abstract
Is there a role for AMPK in the control of hepatic gluconeogenesis and could targeting AMPK in liver be a viable strategy for treating type 2 diabetes? These are frequently asked questions this review tries to answer. After describing properties of AMPK and different small-molecule AMPK activators, we briefly review the various mechanisms for controlling hepatic glucose production, mainly via gluconeogenesis. The different experimental and genetic models that have been used to draw conclusions about the role of AMPK in the control of liver gluconeogenesis are critically discussed. The effects of several anti-diabetic drugs, particularly metformin, on hepatic gluconeogenesis are also considered. We conclude that the main effect of AMPK activation pertinent to the control of hepatic gluconeogenesis is to antagonize glucagon signalling in the short-term and, in the long-term, to improve insulin sensitivity by reducing hepatic lipid content.
Collapse
|
18
|
Liu N, Qin L, Hu L, Miao S. Formation mechanisms of ethyl acetate and organic acids in Kluyveromyces marxianus L1-1 in Chinese acid rice soup. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2022.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
19
|
Ngamkham J, Siritutsoontorn S, Saisomboon S, Vaeteewoottacharn K, Jitrapakdee S. CRISPR Cas9-mediated ablation of pyruvate carboxylase gene in colon cancer cell line HT-29 inhibits growth and migration, induces apoptosis and increases sensitivity to 5-fluorouracil and glutaminase inhibitor. Front Oncol 2022; 12:966089. [DOI: 10.3389/fonc.2022.966089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 10/13/2022] [Indexed: 11/11/2022] Open
Abstract
Pyruvate carboxylase (PC) is an important anaplerotic enzyme that replenishes the tricarboxylic acid cycle (TCA) intermediates. It prevents the collapse of the TCA cycle upon its intermediates are removed during high anabolic demand. We have recently shown that overexpression of PC protein was associated with staging, metastasis and poor survival of colorectal cancer patients. Herein, we generated the PC knockout (PC KO) colon cancer cell lines, HT-29, by CRISPR-Cas9 technique, as a model to understand the role of this enzyme in colorectal cancer. The PC KO HT-29 cell lines had no detectable PC protein and did not show abnormal cellular or nuclear structures. However, PC KO HT-29 cells showed a 50-60% reduction in their growth rate and a 60-70% reduction in migration. The deficient growth phenotype of PC KO HT-29 cells was associated with apoptotic induction with no apparent cell cycle disruption following five days of growth. Down-regulation of key lipogenic enzymes, including acetyl-CoA carboxylase-1 and fatty acid synthase, was also associated with growth inhibition, suggesting that the de novo lipogenesis is impaired. Furthermore, PC KO HT-29 cells were 50% and 60% more sensitive to 5-fluorouracil and glutaminase inhibitor, CB-839, at their IC50 concentrations, respectively, following 48 h exposure. The increased cytotoxicity of CB-839 to PC KO HT-29 cells was associated with increased poly (ADP-ribose) polymerase cleavage. However, this was not observed with PC KO cells exposed to 5-fluorouracil, suggesting that PC KO HT-29 cells were prone to CB-839-induced apoptosis. Collectively, these findings indicate that ablation of PC expression in HT-29 cells disrupts the metabolic homeostasis of cells and inhibits proliferation and migration, accompanied by apoptotic induction. This study highlights the crucial role of PC in supporting the survival of HT-29 cells during exposure to chemotherapeutic drugs.
Collapse
|
20
|
Chai P, Lan P, Li S, Yao D, Chang C, Cao M, Shen Y, Ge S, Wu J, Lei M, Fan X. Mechanistic insight into allosteric activation of human pyruvate carboxylase by acetyl-CoA. Mol Cell 2022; 82:4116-4130.e6. [DOI: 10.1016/j.molcel.2022.09.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 07/08/2022] [Accepted: 09/26/2022] [Indexed: 11/06/2022]
|
21
|
Selen ES, Rodriguez S, Cavagnini KS, Kim HB, Na CH, Wolfgang MJ. Requirement of hepatic pyruvate carboxylase during fasting, high fat, and ketogenic diet. J Biol Chem 2022; 298:102648. [PMID: 36441025 PMCID: PMC9694104 DOI: 10.1016/j.jbc.2022.102648] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022] Open
Abstract
Pyruvate has two major fates upon entry into mitochondria, the oxidative decarboxylation to acetyl-CoA via the pyruvate decarboxylase complex or the biotin-dependent carboxylation to oxaloacetate via pyruvate carboxylase (Pcx). Here, we have generated mice with a liver-specific KO of pyruvate carboxylase (PcxL-/-) to understand the role of Pcx in hepatic mitochondrial metabolism under disparate physiological states. PcxL-/- mice exhibited a deficit in hepatic gluconeogenesis and enhanced ketogenesis as expected but were able to maintain systemic euglycemia following a 24 h fast. Feeding a high-fat diet to PcxL-/- mice resulted in animals that were resistant to glucose intolerance without affecting body weight. However, we found that PcxL-/- mice fed a ketogenic diet for 1 week became severely hypoglycemic, demonstrating a requirement for hepatic Pcx for long-term glycemia under carbohydrate-limited diets. Additionally, we determined that loss of Pcx was associated with an induction in the abundance of lysine-acetylated proteins in PcxL-/- mice regardless of physiologic state. Furthermore, liver acetyl-proteomics revealed a biased induction in mitochondrial lysine-acetylated proteins. These data show that Pcx is important for maintaining the proper balance of pyruvate metabolism between oxidative and anaplerotic pathways.
Collapse
Affiliation(s)
- Ebru S. Selen
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Susana Rodriguez
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kyle S. Cavagnini
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Han-Byeol Kim
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Chan Hyun Na
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michael J. Wolfgang
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD, USA,For correspondence: Michael J. Wolfgang
| |
Collapse
|
22
|
Pyruvate carboxylase promotes malignant transformation of papillary thyroid carcinoma and reduces iodine uptake. Cell Death Dis 2022; 8:423. [PMID: 36266265 PMCID: PMC9585021 DOI: 10.1038/s41420-022-01214-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 10/09/2022] [Accepted: 10/10/2022] [Indexed: 11/16/2022]
Abstract
Previous studies have shown that pyruvate carboxylase (PC) plays a key role in the occurrence and progression of thyroid cancer (TC); however, the relationship between PC and iodine-refractory TC is unclear. Therefore, the present study aimed to investigate the molecular mechanism of PC in the malignant progression and loss of iodine uptake in papillary TC (PTC) and to explore the potential therapeutic effect of PC inhibitors in iodine-refractory PTC. PC increased cell proliferation, invasion, and metastasis, inhibited expression of the iodine metabolism-related genes TSHR, NIS, TPO, and TG, and decreased the iodine-uptake capacity by activating the mitogen-activated protein kinase/extracellular signal-regulated kinase pathway in PTC cell lines. Furthermore, the PC inhibitor ZY-444 effectively inhibited the activation of PC, reduced the malignant invasiveness, and restored the expression of iodine metabolism-related genes and the iodine-uptake capacity in PTC cells. These findings suggest that PC activation is involved in the progression of iodine-refractory TC and that PC inhibitors may represent a potentially novel targeted therapy for iodine-refractory TC.
Collapse
|
23
|
Bhar A, Gierse LC, Meene A, Wang H, Karte C, Schwaiger T, Schröder C, Mettenleiter TC, Urich T, Riedel K, Kaderali L. Application of a maximal-clique based community detection algorithm to gut microbiome data reveals driver microbes during influenza A virus infection. Front Microbiol 2022; 13:979320. [PMID: 36338082 PMCID: PMC9630851 DOI: 10.3389/fmicb.2022.979320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/21/2022] [Indexed: 11/20/2022] Open
Abstract
Influenza A Virus (IAV) infection followed by bacterial pneumonia often leads to hospitalization and death in individuals from high risk groups. Following infection, IAV triggers the process of viral RNA replication which in turn disrupts healthy gut microbial community, while the gut microbiota plays an instrumental role in protecting the host by evolving colonization resistance. Although the underlying mechanisms of IAV infection have been unraveled, the underlying complex mechanisms evolved by gut microbiota in order to induce host immune response following IAV infection remain evasive. In this work, we developed a novel Maximal-Clique based Community Detection algorithm for Weighted undirected Networks (MCCD-WN) and compared its performance with other existing algorithms using three sets of benchmark networks. Moreover, we applied our algorithm to gut microbiome data derived from fecal samples of both healthy and IAV-infected pigs over a sequence of time-points. The results we obtained from the real-life IAV dataset unveil the role of the microbial families Ruminococcaceae, Lachnospiraceae, Spirochaetaceae and Prevotellaceae in the gut microbiome of the IAV-infected cohort. Furthermore, the additional integration of metaproteomic data enabled not only the identification of microbial biomarkers, but also the elucidation of their functional roles in protecting the host following IAV infection. Our network analysis reveals a fast recovery of the infected cohort after the second IAV infection and provides insights into crucial roles of Desulfovibrionaceae and Lactobacillaceae families in combating Influenza A Virus infection. Source code of the community detection algorithm can be downloaded from https://github.com/AniBhar84/MCCD-WN.
Collapse
Affiliation(s)
- Anirban Bhar
- Institute of Bioinformatics, University Medicine Greifswald, Greifswald, Germany
| | | | - Alexander Meene
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Haitao Wang
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Claudia Karte
- Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Greifswald, Germany
| | - Theresa Schwaiger
- Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Greifswald, Germany
| | - Charlotte Schröder
- Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Greifswald, Germany
| | | | - Tim Urich
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Katharina Riedel
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Lars Kaderali
- Institute of Bioinformatics, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
24
|
Chen W, Liu Y, Kang S, Lv X, Fu W, Zhang J, Song C. LINC00092 Modulates Oxidative Stress and Glycolysis of Breast Cancer Cells via Pyruvate Carboxylase-Mediated AKT/mTOR Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5215748. [PMID: 35799892 PMCID: PMC9256459 DOI: 10.1155/2022/5215748] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/16/2022] [Accepted: 05/24/2022] [Indexed: 11/23/2022]
Abstract
Background The discovery of noncoding RNAs (ncRNAs) offers new options for cancer-targeted therapy. This study is aimed at exploring the regulatory function of LINC00092 on breast cancer (BC) oxidative stress and glycolysis, along with internal mechanism concerning pyruvate carboxylase (PC). Methods Bioinformatics analysis was used to explore LINC00092 (or friend leukemia virus integration 1 (FLI1)) expression on BC progression, as well as oxidative stress and glycolysis in BC. After LINC00092 overexpression or silence, BC cell viability, proliferation, migration, invasion, oxidative stress, glycolysis, and AKT/mTOR pathway were detected. Following 2-DG, SC79, or MK2206 treatment, effects of LINC00092 on BC cells were measured. Moreover, regulatory activity of LINC00092 in PC expression was analyzed. Whether PC participated in the modulation of LINC00092 on BC cell functions was explored. Results LINC00092 was lowly expressed in BC and negatively related to BC progression. FLI1 bound to LINC00092 promoter to positively modulate LINC00092. LINC00092 overexpression inhibited BC cell proliferation, migration, invasion, oxidative stress, glycolysis, and AKT/mTOR pathway and likewise suppressed BC growth in vivo. Silence of LINC00092 had opposite influences. 2-DG partially reversed the LINC00092 silence-resulted increase of BC cell proliferation. SC79 alleviated the function of LINC00092 overexpression on BC cell functions. MK2206 had the contrary influence of SC79. Besides, LINC00092 bound to PC to modulate ubiquitination degradation of PC protein. PC took part in the influences of LINC00092 on BC cell functions. Conclusions LINC0092 modulates oxidative stress and glycolysis of BC cells via the PC-mediated AKT/mTOR pathway, which is possibly a target for BC diagnosis and therapy.
Collapse
Affiliation(s)
- Wei Chen
- Department of Breast Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province 350001, China
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province 350001, China
| | - Yushan Liu
- Department of Breast Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province 350001, China
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province 350001, China
| | - Shaohong Kang
- Department of Breast Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province 350001, China
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province 350001, China
| | - Xinying Lv
- Department of Breast Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province 350001, China
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province 350001, China
| | - Wenfen Fu
- Department of Breast Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province 350001, China
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province 350001, China
| | - Jie Zhang
- Department of Breast Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province 350001, China
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province 350001, China
- Breast Cancer Institute, Fujian Medical University, Fuzhou, Fujian Province 350001, China
| | - Chuangui Song
- Department of Breast Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province 350001, China
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province 350001, China
- Breast Cancer Institute, Fujian Medical University, Fuzhou, Fujian Province 350001, China
| |
Collapse
|
25
|
Li Y, Jiang L, Wang Z, Wang Y, Cao X, Meng L, Fan J, Xiong C, Nie Z. Profiling of Urine Carbonyl Metabolic Fingerprints in Bladder Cancer Based on Ambient Ionization Mass Spectrometry. Anal Chem 2022; 94:9894-9902. [PMID: 35762528 DOI: 10.1021/acs.analchem.2c01890] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The diagnosis of bladder cancer (BC) is currently based on cystoscopy, which is invasive and expensive. Here, we describe a noninvasive profiling method for carbonyl metabolic fingerprints in BC, which is based on a desorption, separation, and ionization mass spectrometry (DSI-MS) platform with N,N-dimethylethylenediamine (DMED) as a differential labeling reagent. The DSI-MS platform avoids the interferences from intra- and/or intersamples. Additionally, the DMED derivatization increases detection sensitivity and distinguishes carboxyl, aldehyde, and ketone groups in untreated urine samples. Carbonyl metabolic fingerprints of urine from 41 BC patients and 41 controls were portrayed and 9 potential biomarkers were identified. The mechanisms of the regulations of these biomarkers have been tentatively discussed. A logistic regression (LR) machine learning algorithm was applied to discriminate BC from controls, and an accuracy of 85% was achieved. We believe that the method proposed here may pave the way toward the point-of-care diagnosis of BC in a patient-friendly manner.
Collapse
Affiliation(s)
- Yuze Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lixia Jiang
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi 341000, China
| | - Zhenpeng Wang
- National Center for Mass Spectrometry in Beijing, Beijing 100190, China
| | - Yiran Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaohua Cao
- College of Chemical Engineering, Jiujiang University, Jiujiang, Jiangxi 332005, China
| | - Lingwei Meng
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinghan Fan
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Caiqiao Xiong
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zongxiu Nie
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
26
|
Molinari M, Cremaschi A, De Iorio M, Chaturvedi N, Hughes AD, Tillin T. Bayesian nonparametric modelling of multiple graphs with an application to ethnic metabolic differences. J R Stat Soc Ser C Appl Stat 2022. [DOI: 10.1111/rssc.12570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Andrea Cremaschi
- Singapore Institute of Clinical SciencesAgency for Science, Technology and Research SingaporeSingapore
| | - Maria De Iorio
- Department of Statistical ScienceUCL LondonUK
- Singapore Institute of Clinical SciencesAgency for Science, Technology and Research SingaporeSingapore
- Yong Loo Lin School of MedicineNational University of Singapore SingaporeSingapore
- Yale‐NUS College SingaporeSingapore
| | - Nishi Chaturvedi
- Department of Population Science & Experimental MedicineInstitute of Cardiovascular ScienceUCL LondonUK
| | - Alun D. Hughes
- Department of Population Science & Experimental MedicineInstitute of Cardiovascular ScienceUCL LondonUK
| | - Therese Tillin
- Department of Population Science & Experimental MedicineInstitute of Cardiovascular ScienceUCL LondonUK
| |
Collapse
|
27
|
Mascaraque-Checa M, Gallego-Rentero M, Nicolás-Morala J, Portillo-Esnaola M, Cuezva JM, González S, Gilaberte Y, Juarranz Á. Metformin overcomes metabolic reprogramming-induced resistance of skin squamous cell carcinoma to photodynamic therapy. Mol Metab 2022; 60:101496. [PMID: 35405370 PMCID: PMC9048115 DOI: 10.1016/j.molmet.2022.101496] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 04/04/2022] [Accepted: 04/05/2022] [Indexed: 11/25/2022] Open
Abstract
Objective Cancer metabolic reprogramming promotes resistance to therapies. In this study, we addressed the role of the Warburg effect in the resistance to photodynamic therapy (PDT) in skin squamous cell carcinoma (sSCC). Furthermore, we assessed the effect of metformin treatment, an antidiabetic type II drug that modulates metabolism, as adjuvant to PDT. Methods For that, we have used two human SCC cell lines: SCC13 and A431, called parental (P) and from these cell lines we have generated the corresponding PDT resistant cells (10GT). Results Here, we show that 10GT cells induced metabolic reprogramming to an enhanced aerobic glycolysis and reduced activity of oxidative phosphorylation, which could influence the response to PDT. This result was also confirmed in P and 10GT SCC13 tumors developed in mice. The treatment with metformin caused a reduction in aerobic glycolysis and an increase in oxidative phosphorylation in 10GT sSCC cells. Finally, the combination of metformin with PDT improved the cytotoxic effects on P and 10GT cells. The combined treatment induced an increase in the protoporphyrin IX production, in the reactive oxygen species generation and in the AMPK expression and produced the inhibition of AKT/mTOR pathway. The greater efficacy of combined treatments was also seen in vivo, in xenografts of P and 10GT SCC13 cells. Conclusions Altogether, our results reveal that PDT resistance implies, at least partially, a metabolic reprogramming towards aerobic glycolysis that is prevented by metformin treatment. Therefore, metformin may constitute an excellent adjuvant for PDT in sSCC. Cell resistant to Photodynamic therapy (PDT) is due to the metabolic reprogramming. Metformin modulates energetic metabolism in PDT-resistant cells, sensitizing to PDT. Metformin increases protoporphyrin IX and reactive oxygen species generation. Metformin+PDT is proposed as potential therapy against skin squamous cell carcinoma.
Collapse
|
28
|
Zhang D, Li Y, Yang S, Wang M, Yao J, Zheng Y, Deng Y, Li N, Wei B, Wu Y, Zhai Z, Dai Z, Kang H. Identification of a glycolysis-related gene signature for survival prediction of ovarian cancer patients. Cancer Med 2021; 10:8222-8237. [PMID: 34609082 PMCID: PMC8607265 DOI: 10.1002/cam4.4317] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 08/22/2021] [Accepted: 08/31/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Ovarian cancer (OV) is deemed the most lethal gynecological cancer in women. The aim of this study was to construct an effective gene prognostic model for predicting overall survival (OS) in patients with OV. METHODS The expression profiles of glycolysis-related genes (GRGs) and clinical data of patients with OV were extracted from The Cancer Genome Atlas (TCGA) database. Univariate, multivariate, and least absolute shrinkage and selection operator Cox regression analyses were conducted, and a prognostic signature based on GRGs was constructed. The predictive ability of the signature was analyzed using training and test sets. RESULTS A gene risk signature based on nine GRGs (ISG20, CITED2, PYGB, IRS2, ANGPTL4, TGFBI, LHX9, PC, and DDIT4) was identified to predict the survival outcome of patients with OV. The signature showed a good prognostic ability for OV, particularly high-grade OV, in the TCGA dataset, with areas under the curve (AUC) of 0.709 and 0.762 for 3- and 5-year survival, respectively. Similar results were found in the test sets, and the AUCs of 3-, 5-year OS were 0.714 and 0.772 in the combined test set. And our signature was an independent prognostic factor. Moreover, a nomogram combining the prediction model and clinical factors was developed. CONCLUSION Our study established a nine-GRG risk model and nomogram to better predict OS in patients with OV. The risk model represents a promising and independent prognostic predictor for patients with OV. Moreover, our study on GRGs could offer guidance for the elucidation of underlying mechanisms in future studies.
Collapse
Affiliation(s)
- Dai Zhang
- Department of OncologyThe Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
- Department of Thyroid, Breast and Vascular SurgeryXijing HospitalThe Air Force Medical UniversityXi'anChina
| | - Yiche Li
- Department of Tumor SurgeryShaanxi Provincial People's HospitalXi'anChina
| | - Si Yang
- Department of OncologyThe Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Meng Wang
- Department of OncologyThe Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Jia Yao
- Department of Breast SurgeryThe First Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhouChina
| | - Yi Zheng
- Department of OncologyThe Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Yujiao Deng
- Department of OncologyThe Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Na Li
- Department of OncologyThe Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Bajin Wei
- Department of Breast SurgeryThe First Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhouChina
| | - Ying Wu
- Department of OncologyThe Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
- Department of Breast SurgeryThe First Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhouChina
| | - Zhen Zhai
- Department of OncologyThe Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Zhijun Dai
- Department of Breast SurgeryThe First Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhouChina
| | - Huafeng Kang
- Department of OncologyThe Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| |
Collapse
|
29
|
Sobotka L, Sobotka O. The predominant role of glucose as a building block and precursor of reducing equivalents. Curr Opin Clin Nutr Metab Care 2021; 24:555-562. [PMID: 34456247 DOI: 10.1097/mco.0000000000000786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE OF REVIEW Stores of glucose (Glc) in our body are small compared with protein and lipid. Therefore, at times of famines or trauma/disease-related starvation, glucose utilization must be limited only to pathways that can only run with glucose carbon as substrate. We will try to outline how insulin resistance drives these pathways and inhibits glucose oxidation in the stressed organism. RECENT FINDINGS Glc is a basic substrate for a variety of other biomolecules like nucleic acids, amino acids, proteoglycans, mucopolysaccharides and lipids. It is essential for the formation of reducing equivalents, indispensable for anabolic, antioxidative, regulatory and immune processes. As a result, a continuous Glc turnover/cycle is essential to secure at all times the Glc requirements for nonoxidative pathways mentioned above but then requires introduction of extra glucose or other intermediates into the cycle. The production of ATP through complete Glc oxidation occurs only when Glc intake is higher than required for its nonoxidative metabolism. Insulin resistance and decreased Glc oxidation indicate that requirements of Glc for anabolic pathways are high. SUMMARY Glc is an important building block for anabolic reactions and substrate for reducing equivalents formation. Insulin resistance prevents irreversible Glc oxidation and stimulates Glc production during stress or growth. Glc is only oxidized when intake is in excess of its anabolic requirements.
Collapse
Affiliation(s)
- Lubos Sobotka
- 3rd Department of Medicine, Gerontology and Metabolism, University Hospital and Faculty of Medicine in Hradec Kralove, Charles University, Czech Republic
| | | |
Collapse
|
30
|
Rattanapornsompong K, Sirithanakorn C, Jitrapakdee S, Attwood PV. The role of the phosphate groups of trinitrophenyl adenosine 5'-triphosphate (TNP-ATP) in allosteric activation of pyruvate carboxylase and the inhibition of acetyl CoA-dependent activation. Arch Biochem Biophys 2021; 711:109017. [PMID: 34411580 DOI: 10.1016/j.abb.2021.109017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/26/2021] [Accepted: 08/14/2021] [Indexed: 10/20/2022]
Abstract
A previous study showed that 2'-3'-O-(2,4,6-trinitrophenyl) adenosine 5'-triphosphate (TNP-ATP) was a weak allosteric activator of Rhizobium etli pyruvate carboxylase (RePC) in the absence of acetyl-CoA. On the other hand, TNP-ATP inhibited the allosteric activation of RePC by acetyl-CoA. Here, we aimed to study the role of triphosphate group of TNP-ATP on its allosteric activation of the enzyme and inhibition of acetyl-CoA-dependent activation of RePC using TNP-ATP and its derivatives, including TNP-ADP, TNP-AMP and TNP-adenosine. The pyruvate carboxylation activity was assayed to determine the effect of reducing the number of phosphate groups in TNP-ATP derivatives on allosteric activation and inhibition of acetyl-CoA activation of RePC and chicken liver pyruvate carboxylase (CLPC). Reducing the number of phosphate groups in TNP-ATP derivatives decreased the activation efficacy for both RePC and CLPC compared to TNP-ATP. The apparent binding affinity and inhibition of activation of the enzymes by acetyl-CoA were also diminished when the number of phosphate groups in the TNP-ATP derivatives was reduced. Whilst TNP-AMP activated RePC, it did not activate CLPC, but it did inhibit acetyl-CoA activation of both RePC and CLPC. Similarly, TNP-adenosine did not activate RePC; however, it did inhibit acetyl-CoA activation using a different mechanism compared to phosphorylated TNP-derivatives. These findings indicate that mechanisms of PC activation and inhibition of acetyl-CoA activation by TNP-ATP and its derivatives are different. This study provides the basis for possible drug development for treatment of metabolic diseases and cancers with aberrant expression of PC.
Collapse
Affiliation(s)
| | - Chaiyos Sirithanakorn
- Faculty of Medicine, King Mongkut's Institute of Technology Ladkrabang, Bangkok, 10520, Thailand; Department of Microbiology, University of Illinois, Urbana, IL, 61801, USA
| | - Sarawut Jitrapakdee
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand.
| | - Paul V Attwood
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia.
| |
Collapse
|
31
|
Igelmann S, Lessard F, Uchenunu O, Bouchard J, Fernandez-Ruiz A, Rowell MC, Lopes-Paciencia S, Papadopoli D, Fouillen A, Ponce KJ, Huot G, Mignacca L, Benfdil M, Kalegari P, Wahba HM, Pencik J, Vuong N, Quenneville J, Guillon J, Bourdeau V, Hulea L, Gagnon E, Kenner L, Moriggl R, Nanci A, Pollak MN, Omichinski JG, Topisirovic I, Ferbeyre G. A hydride transfer complex reprograms NAD metabolism and bypasses senescence. Mol Cell 2021; 81:3848-3865.e19. [PMID: 34547241 DOI: 10.1016/j.molcel.2021.08.028] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 06/25/2021] [Accepted: 08/20/2021] [Indexed: 01/23/2023]
Abstract
Metabolic rewiring and redox balance play pivotal roles in cancer. Cellular senescence is a barrier for tumorigenesis circumvented in cancer cells by poorly understood mechanisms. We report a multi-enzymatic complex that reprograms NAD metabolism by transferring reducing equivalents from NADH to NADP+. This hydride transfer complex (HTC) is assembled by malate dehydrogenase 1, malic enzyme 1, and cytosolic pyruvate carboxylase. HTC is found in phase-separated bodies in the cytosol of cancer or hypoxic cells and can be assembled in vitro with recombinant proteins. HTC is repressed in senescent cells but induced by p53 inactivation. HTC enzymes are highly expressed in mouse and human prostate cancer models, and their inactivation triggers senescence. Exogenous expression of HTC is sufficient to bypass senescence, rescue cells from complex I inhibitors, and cooperate with oncogenic RAS to transform primary cells. Altogether, we provide evidence for a new multi-enzymatic complex that reprograms metabolism and overcomes cellular senescence.
Collapse
Affiliation(s)
- Sebastian Igelmann
- CRCHUM, 900 Saint-Denis St, Montréal, QC H2X 0A9, Canada; Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Frédéric Lessard
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Oro Uchenunu
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC H3T1E2, Canada; Department of Experimental Medicine, McGill University, Montreal, QC H4A3T2, Canada
| | - Jacob Bouchard
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | | | | | | | - David Papadopoli
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC H3T1E2, Canada; Gerald Bronfman Department of Oncology, McGill University, Montreal, QC H4A3T2, Canada
| | - Aurélien Fouillen
- Faculté de médecine dentaire, Université de Montréal, Montréal, QC H3C 3J7, Canada; Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Katia Julissa Ponce
- Faculté de médecine dentaire, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Geneviève Huot
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Lian Mignacca
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Mehdi Benfdil
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Paloma Kalegari
- CRCHUM, 900 Saint-Denis St, Montréal, QC H2X 0A9, Canada; Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Haytham M Wahba
- Department of Biochemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62521, Egypt; Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Jan Pencik
- Department of Pathology, Medical University of Vienna, Vienna, Austria; Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA; Center for Biomarker Research in Medicine, 8010 Graz, Austria
| | - Nhung Vuong
- CRCHUM, 900 Saint-Denis St, Montréal, QC H2X 0A9, Canada
| | - Jordan Quenneville
- Institut de recherche en immunologie et en cancérologie (IRIC), Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Jordan Guillon
- CRCHUM, 900 Saint-Denis St, Montréal, QC H2X 0A9, Canada
| | - Véronique Bourdeau
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Laura Hulea
- Maisonneuve-Rosemont Hospital Research Centre, Montréal, QC H1T 2M4, Canada, Département de Médecine, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Etienne Gagnon
- Institut de recherche en immunologie et en cancérologie (IRIC), Université de Montréal, Montréal, QC H3C 3J7, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Lukas Kenner
- Department of Pathology, Medical University of Vienna, Vienna, Austria; Unit of Laboratory Animal Pathology, University of Veterinary Medicine Vienna, Vienna, Austria; Christian Doppler Laboratory for Applied Metabolomics, Vienna, Austria; CBmed GmbH - Center for Biomarker Research in Medicine, Graz, Styria, Austria
| | - Richard Moriggl
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Antonio Nanci
- Faculté de médecine dentaire, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Michael N Pollak
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC H3T1E2, Canada
| | - James G Omichinski
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Ivan Topisirovic
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC H3T1E2, Canada; Department of Experimental Medicine, McGill University, Montreal, QC H4A3T2, Canada; Department of Biochemistry, McGill University, Montreal, QC H4A 3T2, Canada; Gerald Bronfman Department of Oncology, McGill University, Montreal, QC H4A3T2, Canada.
| | - Gerardo Ferbeyre
- CRCHUM, 900 Saint-Denis St, Montréal, QC H2X 0A9, Canada; Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montréal, QC H3C 3J7, Canada.
| |
Collapse
|
32
|
Liu C, Zhou X, Pan Y, Liu Y, Zhang Y. Pyruvate carboxylase promotes thyroid cancer aggressiveness through fatty acid synthesis. BMC Cancer 2021; 21:722. [PMID: 34158007 PMCID: PMC8220755 DOI: 10.1186/s12885-021-08499-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 06/11/2021] [Indexed: 12/24/2022] Open
Abstract
Background Pyruvate carboxylase (PC) is an important anaplerotic enzyme in the tricarboxylic acid cycle (TCA) in cancer cells. Although PC overexpression has been observed in thyroid cancer (TC), the mechanisms involved in the carcinogenic effects of PC are still unclear. Methods Bioinformatics analysis and clinical specimens were used to analyze the relationship of PC expression with clinicopathological variables in TC. Fatty acid synthesis was monitored by LC/MS, Nile red staining, and triglyceride analysis. Mitochondrial oxygen consumption was evaluated by the Seahorse XF Mito Cell Stress Test. The correlation of PC with FASN and SREBP1c was assessed by qRT-PCR and IHC in 38 human TC tissues. Western blotting was used to evaluate the protein expression of PC, FASN, and SREBP1c and members of the AKT/mTOR and EMT pathways in TC cell lines. Wound-healing, CCK-8, and Transwell assays and a nude mouse xenograft model were used to verify the regulatory effects of PC and SREBP1c on thyroid tumor cell proliferation, migration and invasion. Results We demonstrated that PC increased fatty acid synthesis, which then promoted TC progression and metastasis. Analysis of GEO data showed that the overexpression of PC in papillary thyroid cancer (PTC) was associated with PTC invasion and the fatty acid synthesis pathway. Analysis of clinical tissue specimens from PTC patients revealed that PC was more highly expressed in specimens from PTC patients with lymph node metastasis than in those from patients without metastasis. Multiple genes in the fatty acid synthesis signaling pathway, including FASN and SREBP1c, were downregulated in PC-knockdown TC cells compared to control cells. Lipid levels were also decreased in the PC-knockdown TC cells. Moreover, the ability of cells to grow, invade, and metastasize was also suppressed upon PC knockdown, suggesting that PC-mediated lipogenesis activation increases the aggressiveness of TC cells. In addition, PC was found to activate the AKT/mTOR pathway, thus improving FASN-mediated de novo lipogenesis in TC cells by upregulating SREBP1c expression. Studies in a nude mouse xenograft model showed that PC knockdown decreased tumor weight, but this effect was attenuated by forced expression of SREBP1c. Conclusions Our results demonstrate that PC is strongly involved in the tumor aggressiveness of TC via its stimulation of fatty acid synthesis. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-08499-9.
Collapse
Affiliation(s)
- Chang Liu
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Ruijin 2nd Road, Shanghai, 200025, China
| | - Xiang Zhou
- Department of Nuclear Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Pan
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Ruijin 2nd Road, Shanghai, 200025, China
| | - Yang Liu
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Ruijin 2nd Road, Shanghai, 200025, China
| | - Yifan Zhang
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Ruijin 2nd Road, Shanghai, 200025, China.
| |
Collapse
|
33
|
Chilunga FP, Henneman P, Venema A, Meeks KAC, Requena-Méndez A, Beune E, Mockenhaupt FP, Smeeth L, Bahendeka S, Danquah I, Klipstein-Grobusch K, Adeyemo A, Mannens MMAM, Agyemang C. Genome-wide DNA methylation analysis on C-reactive protein among Ghanaians suggests molecular links to the emerging risk of cardiovascular diseases. NPJ Genom Med 2021; 6:46. [PMID: 34117263 PMCID: PMC8196035 DOI: 10.1038/s41525-021-00213-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 05/20/2021] [Indexed: 12/28/2022] Open
Abstract
Molecular mechanisms at the intersection of inflammation and cardiovascular diseases (CVD) among Africans are still unknown. We performed an epigenome-wide association study to identify loci associated with serum C-reactive protein (marker of inflammation) among Ghanaians and further assessed whether differentially methylated positions (DMPs) were linked to CVD in previous reports, or to estimated CVD risk in the same population. We used the Illumina Infinium® HumanMethylation450 BeadChip to obtain DNAm profiles of blood samples in 589 Ghanaians from the RODAM study (without acute infections, not taking anti-inflammatory medications, CRP levels < 40 mg/L). We then used linear models to identify DMPs associated with CRP concentrations. Post-hoc, we evaluated associations of identified DMPs with elevated CVD risk estimated via ASCVD risk score. We also performed subset analyses at CRP levels ≤10 mg/L and replication analyses on candidate probes. Finally, we assessed for biological relevance of our findings in public databases. We subsequently identified 14 novel DMPs associated with CRP. In post-hoc evaluations, we found that DMPs in PC, BTG4 and PADI1 showed trends of associations with estimated CVD risk, we identified a separate DMP in MORC2 that was associated with CRP levels ≤10 mg/L, and we successfully replicated 65 (24%) of previously reported DMPs. All DMPs with gene annotations (13) were biologically linked to inflammation or CVD traits. We have identified epigenetic loci that may play a role in the intersection between inflammation and CVD among Ghanaians. Further studies among other Africans are needed to confirm our findings.
Collapse
Affiliation(s)
- Felix P Chilunga
- Department of Public Health, Amsterdam Public Health Research Institute, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands.
| | - Peter Henneman
- Department of Clinical Genetics, Amsterdam Reproduction & Development research institute, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Andrea Venema
- Department of Clinical Genetics, Amsterdam Reproduction & Development research institute, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Karlijn A C Meeks
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ana Requena-Méndez
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Department of Global Public Health, Karolinska Institutet, Solna, Sweden
| | - Erik Beune
- Department of Public Health, Amsterdam Public Health Research Institute, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Frank P Mockenhaupt
- Institute of Tropical Medicine and International Health, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Liam Smeeth
- Department of Non-communicable Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, UK
| | - Silver Bahendeka
- Department of Medicine, MKPGMS-Uganda Martyrs University, Kampala, Uganda
| | - Ina Danquah
- Heidelberg Institute of Global Health (HIGH), Universitätsklinikum Heidelberg, Heidelberg, Germany
| | - Kerstin Klipstein-Grobusch
- Julius Global Health, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Division of Epidemiology and Biostatistics, School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Adebowale Adeyemo
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Marcel M A M Mannens
- Department of Clinical Genetics, Amsterdam Reproduction & Development research institute, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Charles Agyemang
- Department of Public Health, Amsterdam Public Health Research Institute, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
34
|
Wu K, Hu L, Lv X, Chen J, Yan Z, Jiang J, Cheng Y, Hou J. Long non-coding RNA MIR4435-1HG promotes cancer growth in clear cell renal cell carcinoma. Cancer Biomark 2021; 29:39-50. [PMID: 32538823 DOI: 10.3233/cbm-201451] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs) play important roles in cancer development, yet their roles in renal carcinoma remain unclear. OBJECTIVE We performed this study in order to investigate the expression and roles of lncRNAs in renal cell carcinoma. METHODS In this study, we investigated the expression of lncRNAs in renal cell carcinoma through microarray analysis. Quantitative real-time PCR was performed to measure the expression of lncRNAs. Gain- or loss-of-function experiments were performed to investigate the roles of lncRNAs in cell proliferation and apoptosis. RNA pull-down and western blotting were performed to explore the underlying mechanism. RESULTS The microarray analysis identified an upregulated lncRNA MIR4435-1HG in renal carcinoma. The expression level of MIR4435-1HG was correlated with TNM stage, tumor size, and Fuhrman grade. High expression of MIR4435-1HG indicated poor prognosis. MIR4435-1HG knockdown inhibited cell proliferation, and suppressed the migrating and invasive capacity of renal carcinoma cells. RNA pull-down followed by mass spectrometry revealed an interaction between MIR4435-1HG and pyruvate carboxylase, which was later corroborated by western blotting. CONCLUSIONS MIR4435-1HG plays a critical role in the oncogenesis of renal cell carcinoma and may serve as a potential biomarker for renal cell carcinoma.
Collapse
Affiliation(s)
- Kerong Wu
- Translational Research Laboratory for Urology, Department of Urology, Ningbo Clinical Research Center for Urological Disease, Ningbo First Hospital, Ningbo, Zhejiang, China.,Department of Urology, First Affiliated Hospital, Soochow University, Suzhou, Jiangsu, China.,Translational Research Laboratory for Urology, Department of Urology, Ningbo Clinical Research Center for Urological Disease, Ningbo First Hospital, Ningbo, Zhejiang, China
| | - Linkun Hu
- Department of Urology, First Affiliated Hospital, Soochow University, Suzhou, Jiangsu, China.,Translational Research Laboratory for Urology, Department of Urology, Ningbo Clinical Research Center for Urological Disease, Ningbo First Hospital, Ningbo, Zhejiang, China
| | - Xiuyi Lv
- Translational Research Laboratory for Urology, Department of Urology, Ningbo Clinical Research Center for Urological Disease, Ningbo First Hospital, Ningbo, Zhejiang, China
| | - Junfeng Chen
- Translational Research Laboratory for Urology, Department of Urology, Ningbo Clinical Research Center for Urological Disease, Ningbo First Hospital, Ningbo, Zhejiang, China
| | - Zejun Yan
- Translational Research Laboratory for Urology, Department of Urology, Ningbo Clinical Research Center for Urological Disease, Ningbo First Hospital, Ningbo, Zhejiang, China
| | - Junhui Jiang
- Translational Research Laboratory for Urology, Department of Urology, Ningbo Clinical Research Center for Urological Disease, Ningbo First Hospital, Ningbo, Zhejiang, China
| | - Yue Cheng
- Translational Research Laboratory for Urology, Department of Urology, Ningbo Clinical Research Center for Urological Disease, Ningbo First Hospital, Ningbo, Zhejiang, China
| | - Jianquan Hou
- Department of Urology, First Affiliated Hospital, Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
35
|
Prochownik EV, Wang H. The Metabolic Fates of Pyruvate in Normal and Neoplastic Cells. Cells 2021; 10:cells10040762. [PMID: 33808495 PMCID: PMC8066905 DOI: 10.3390/cells10040762] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/23/2021] [Accepted: 03/28/2021] [Indexed: 02/06/2023] Open
Abstract
Pyruvate occupies a central metabolic node by virtue of its position at the crossroads of glycolysis and the tricarboxylic acid (TCA) cycle and its production and fate being governed by numerous cell-intrinsic and extrinsic factors. The former includes the cell’s type, redox state, ATP content, metabolic requirements and the activities of other metabolic pathways. The latter include the extracellular oxygen concentration, pH and nutrient levels, which are in turn governed by the vascular supply. Within this context, we discuss the six pathways that influence pyruvate content and utilization: 1. The lactate dehydrogenase pathway that either converts excess pyruvate to lactate or that regenerates pyruvate from lactate for use as a fuel or biosynthetic substrate; 2. The alanine pathway that generates alanine and other amino acids; 3. The pyruvate dehydrogenase complex pathway that provides acetyl-CoA, the TCA cycle’s initial substrate; 4. The pyruvate carboxylase reaction that anaplerotically supplies oxaloacetate; 5. The malic enzyme pathway that also links glycolysis and the TCA cycle and generates NADPH to support lipid bio-synthesis; and 6. The acetate bio-synthetic pathway that converts pyruvate directly to acetate. The review discusses the mechanisms controlling these pathways, how they cross-talk and how they cooperate and are regulated to maximize growth and achieve metabolic and energetic harmony.
Collapse
Affiliation(s)
- Edward V. Prochownik
- Division of Hematology/Oncology, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA 15224, USA;
- The Department of Microbiology and Molecular Genetics, UPMC, Pittsburgh, PA 15213, USA
- The Hillman Cancer Center, UPMC, Pittsburgh, PA 15213, USA
- The Pittsburgh Liver Research Center, Pittsburgh, PA 15260, USA
- Correspondence: ; Tel.: +1-(412)-692-6795
| | - Huabo Wang
- Division of Hematology/Oncology, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA 15224, USA;
| |
Collapse
|
36
|
Woitek R, Gallagher FA. The use of hyperpolarised 13C-MRI in clinical body imaging to probe cancer metabolism. Br J Cancer 2021; 124:1187-1198. [PMID: 33504974 PMCID: PMC8007617 DOI: 10.1038/s41416-020-01224-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 11/19/2020] [Accepted: 12/02/2020] [Indexed: 01/30/2023] Open
Abstract
Metabolic reprogramming is one of the hallmarks of cancer and includes the Warburg effect, which is exhibited by many tumours. This can be exploited by positron emission tomography (PET) as part of routine clinical cancer imaging. However, an emerging and alternative method to detect altered metabolism is carbon-13 magnetic resonance imaging (MRI) following injection of hyperpolarised [1-13C]pyruvate. The technique increases the signal-to-noise ratio for the detection of hyperpolarised 13C-labelled metabolites by several orders of magnitude and facilitates the dynamic, noninvasive imaging of the exchange of 13C-pyruvate to 13C-lactate over time. The method has produced promising preclinical results in the area of oncology and is currently being explored in human imaging studies. The first translational studies have demonstrated the safety and feasibility of the technique in patients with prostate, renal, breast and pancreatic cancer, as well as revealing a successful response to treatment in breast and prostate cancer patients at an earlier stage than multiparametric MRI. This review will focus on the strengths of the technique and its applications in the area of oncological body MRI including noninvasive characterisation of disease aggressiveness, mapping of tumour heterogeneity, and early response assessment. A comparison of hyperpolarised 13C-MRI with state-of-the-art multiparametric MRI is likely to reveal the unique additional information and applications offered by the technique.
Collapse
Affiliation(s)
- Ramona Woitek
- Department of Radiology, University of Cambridge, Cambridge, UK.
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria.
- Cancer Research UK Cambridge Centre, Cambridge, UK.
| | - Ferdia A Gallagher
- Department of Radiology, University of Cambridge, Cambridge, UK
- Cancer Research UK Cambridge Centre, Cambridge, UK
| |
Collapse
|
37
|
James J, Zemskova M, Eccles CA, Varghese MV, Niihori M, Barker NK, Luo M, Mandarino LJ, Langlais PR, Rafikova O, Rafikov R. Single Mutation in the NFU1 Gene Metabolically Reprograms Pulmonary Artery Smooth Muscle Cells. Arterioscler Thromb Vasc Biol 2021; 41:734-754. [PMID: 33297749 PMCID: PMC7837686 DOI: 10.1161/atvbaha.120.314655] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 11/30/2020] [Indexed: 02/06/2023]
Abstract
OBJECTIVE NFU1 is a mitochondrial iron-sulfur scaffold protein, involved in iron-sulfur assembly and transfer to complex II and LAS (lipoic acid synthase). Patients with the point mutation NFU1G208C and CRISPR/CAS9 (clustered regularly interspaced short palindromic repeats/clustered regularly interspaced short palindromic repeat-associated 9)-generated rats develop mitochondrial dysfunction leading to pulmonary arterial hypertension. However, the mechanistic understanding of pulmonary vascular proliferation due to a single mutation in NFU1 remains unresolved. Approach and Results: Quantitative proteomics of isolated mitochondria showed the entire phenotypic transformation of NFU1G206C rats with a disturbed mitochondrial proteomic landscape, involving significant changes in the expression of 208 mitochondrial proteins. The NFU1 mutation deranged the expression pattern of electron transport proteins, resulting in a significant decrease in mitochondrial respiration. Reduced reliance on mitochondrial respiration amplified glycolysis in pulmonary artery smooth muscle cell (PASMC) and activated GPD (glycerol-3-phosphate dehydrogenase), linking glycolysis to oxidative phosphorylation and lipid metabolism. Decreased PDH (pyruvate dehydrogenase) activity due to the lipoic acid shortage is compensated by increased fatty acid metabolism and oxidation. PASMC became dependent on extracellular fatty acid sources due to upregulated transporters such as CD36 (cluster of differentiation 36) and CPT (carnitine palmitoyltransferase)-1. Finally, the NFU1 mutation produced a dysregulated antioxidant system in the mitochondria, leading to increased reactive oxygen species levels. PASMC from NFU1 rats showed apoptosis resistance, increased anaplerosis, and attained a highly proliferative phenotype. Attenuation of mitochondrial reactive oxygen species by mitochondrial-targeted antioxidant significantly decreased PASMC proliferation. CONCLUSIONS The alteration in iron-sulfur metabolism completely transforms the proteomic landscape of the mitochondria, leading toward metabolic plasticity and redistribution of energy sources to the acquisition of a proliferative phenotype by the PASMC.
Collapse
MESH Headings
- Animals
- Apoptosis
- Cell Proliferation
- Cells, Cultured
- Cellular Reprogramming
- Energy Metabolism
- Fatty Acids/metabolism
- Female
- Mitochondria, Liver/genetics
- Mitochondria, Liver/metabolism
- Mitochondria, Liver/pathology
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Phenotype
- Point Mutation
- Proteome
- Pulmonary Artery/metabolism
- Pulmonary Artery/pathology
- Rats, Sprague-Dawley
- Reactive Oxygen Species/metabolism
- Signal Transduction
- Rats
Collapse
Affiliation(s)
- Joel James
- Department of Medicine, Division of Endocrinology, University of Arizona College of Medicine, Tucson
| | - Marina Zemskova
- Department of Medicine, Division of Endocrinology, University of Arizona College of Medicine, Tucson
| | - Cody A. Eccles
- Department of Medicine, Division of Endocrinology, University of Arizona College of Medicine, Tucson
| | - Mathews V. Varghese
- Department of Medicine, Division of Endocrinology, University of Arizona College of Medicine, Tucson
| | - Maki Niihori
- Department of Medicine, Division of Endocrinology, University of Arizona College of Medicine, Tucson
| | - Natalie K. Barker
- Department of Medicine, Division of Endocrinology, University of Arizona College of Medicine, Tucson
| | - Moulun Luo
- Department of Medicine, Division of Endocrinology, University of Arizona College of Medicine, Tucson
| | - Lawrence J. Mandarino
- Department of Medicine, Division of Endocrinology, University of Arizona College of Medicine, Tucson
| | - Paul R. Langlais
- Department of Medicine, Division of Endocrinology, University of Arizona College of Medicine, Tucson
| | - Olga Rafikova
- Department of Medicine, Division of Endocrinology, University of Arizona College of Medicine, Tucson
| | - Ruslan Rafikov
- Department of Medicine, Division of Endocrinology, University of Arizona College of Medicine, Tucson
| |
Collapse
|
38
|
Rattanapornsompong K, Khattiya J, Phannasil P, Phaonakrop N, Roytrakul S, Jitrapakdee S, Akekawatchai C. Impaired G2/M cell cycle arrest induces apoptosis in pyruvate carboxylase knockdown MDA-MB-231 cells. Biochem Biophys Rep 2021; 25:100903. [PMID: 33490650 PMCID: PMC7806519 DOI: 10.1016/j.bbrep.2020.100903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/24/2020] [Accepted: 12/25/2020] [Indexed: 11/02/2022] Open
Abstract
Background Previous studies showed that suppression of pyruvate carboxylase (PC) expression in highly invasive breast cancer cell line, MDA-MB-231 inhibits cell growth as a consequence of the impaired cellular biosynthesis. However, the precise cellular mechanism underlying this growth restriction is unknown. Methods We generated the PC knockdown (PCKD) MDA-MB-231 cells and assessed their phenotypic changes by fluorescence microscopy, proliferation, apoptotic, cell cycle assays and proteomics. Results PC knockdown MDA-MB-231 cells had a low percentage of cell viability in association with accumulation of abnormal cells with large or multi-nuclei. Flow cytometric analysis of annexin V-7-AAD positive cells showed that depletion of PC expression triggers apoptosis with the highest rate at day 4. The increased rate of apoptosis is consistent with increased cleavage of procaspase 3 and poly (ADP-Ribose) polymerase. Cell cycle analysis showed that the apoptotic cell death was associated with G2/M arrest, in parallel with marked reduction of cyclin B levels. Proteomic analysis of PCKD cells identified 9 proteins whose expression changes were correlated with the degree of apoptosis and G2/M cell cycle arrest in the PCKD cells. STITCH analysis indicated 3 of 9 candidate proteins, CCT3, CABIN1 and HECTD3, that form interactions with apoptotic and cell cycle signaling networks linking to PC via MgATP. Conclusions Suppression of PC in MDA-MB-231 cells induces G2/M arrest, leading to apoptosis. Proteomic analysis supports the potential involvement of PC expression in the aberrant cell cycle and apoptosis, and identifies candidate proteins responsible for the PC-mediated cell cycle arrest and apoptosis in breast cancer cells. General significance Our results highlight the possibility of the use of PC as an anti-cancer drug target.
Collapse
Affiliation(s)
| | - Janya Khattiya
- Department of Medical Technology, Faculty of Allied Health Sciences, Thammasat University, Pathumthani, Thailand.,Graduate Program in Biomedical Sciences, Faculty of Allied Health Sciences, Thammasat University, Pathumthani, Thailand
| | - Phatchariya Phannasil
- Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, Nakhon-Pathom, Thailand
| | - Narumon Phaonakrop
- Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathumthani, Thailand
| | - Sittiruk Roytrakul
- Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathumthani, Thailand
| | - Sarawut Jitrapakdee
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Chareeporn Akekawatchai
- Department of Medical Technology, Faculty of Allied Health Sciences, Thammasat University, Pathumthani, Thailand
| |
Collapse
|
39
|
Shang H, Zheng J, Tong J. Integrated analysis of transcriptomic and metabolomic data demonstrates the significant role of pyruvate carboxylase in the progression of ovarian cancer. Aging (Albany NY) 2020; 12:21874-21889. [PMID: 33177242 PMCID: PMC7695408 DOI: 10.18632/aging.104004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 08/14/2020] [Indexed: 12/11/2022]
Abstract
The aim of this study was to explore prognosis-related biomarkers and underlying mechanisms during ovarian carcinoma progression and development. mRNA expression profiles and GSE49997 dataset were downloaded. Survival analyses were performed for genes with high expression levels. Expression level of candidate genes was explored in four ovarian cancer cells lines. Pyruvate carboxylase (PC) was found to be one of significantly differentially expressed gene (DEG). The role of PC knockdown was analyzed in SKOV cells using cell proliferation, flow cytometric, and Transwell migration and invasion assays. DEGs and metabolites in PC-shRNA (shPC)-treated samples vs. control groups were identified. PC was a prognosis-related gene and related to metabolic pathway. Knockdown of PC regulated cell proliferation, cell cycle progression, and migration and invasion of SKOV-3 cells. Transcriptome sequencing analyses showed STAT1 and TP53 gained higher degrees in PPI network. A total of 44 metabolites were identified. These DEGs and metabolites in PC samples were related with neuroactive ligands receptor interaction, glycine, serine and threonine metabolism, and ABC transporter pathways. PC may affect the tumor biology of ovarian cancer through the dysregulation of glycine, serine, and threonine metabolism, and ABC transporter pathways, as well as STAT1 and TP53 expression.
Collapse
Affiliation(s)
- Hongkai Shang
- Department of Gynecology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, Zhejiang Province, China
| | - Jianfeng Zheng
- Department of Gynecology, Affiliated Hangzhou First People's Hospital, Nanjing Medical University, Hangzhou 310006, Zhejiang Province, China
| | - Jinyi Tong
- Department of Gynecology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, Zhejiang Province, China.,Department of Gynecology, Affiliated Hangzhou First People's Hospital, Nanjing Medical University, Hangzhou 310006, Zhejiang Province, China
| |
Collapse
|
40
|
Shi Y, Yu K, Liang A, Huang Y, Ou F, Wei H, Wan X, Yang Y, Zhang W, Jiang Z. Identification and Analysis of the Tegument Protein and Excretory-Secretory Products of the Carcinogenic Liver Fluke Clonorchis sinensis. Front Microbiol 2020; 11:555730. [PMID: 33072014 PMCID: PMC7538622 DOI: 10.3389/fmicb.2020.555730] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 08/26/2020] [Indexed: 12/14/2022] Open
Abstract
Liver fluke proteins, including excretory-secretory products (ESPs) and tegument proteins, are critical for the pathogenesis, nutrient metabolism, etiology and immune response of liver cancer. To understand the functions of various proteins in Clonorchis sinensis physiology and human clonorchiasis, the ESPs and tegument proteins of C. sinensis were identified. Supernatants containing ESPs from adult C. sinensis after culture for 6 h were harvested and concentrated. The tegument was detached using a freeze/thaw method and successively extracted using various extraction buffers. The outer surface proteins of C. sinensis were labeled with biotin, and the biotinylated proteins were purified. The ESP, tegument and labeled outer surface proteins were identified and analyzed by high-resolution LC-MS/MS. The identified proteins were compared with those of other flukes, and the protein functions associated with pathogenesis, carcinogenesis and potential vaccine antigens and drug targets were predicted and analyzed. A total of 175 proteins were identified after the 6-h culture of C. sinensis ESPs. A total of 352 tegument proteins were identified through sequential solubilization of the isolated teguments, and a subset of these proteins were localized to the surface membrane of the tegument by labeling with biotin. Thirty identified proteins, including annexins, actin and tetraspanins, were identified as potential immunomodulators and promising vaccine antigens. Interestingly, among the 352 tegument proteins, as many as 155 were enzymes, and most were oxidoreductases, hydrolases or transferases. A comparison of the outer surface proteins of C. sinensis with those of other flukes indicated that flukes have some common outer surface proteins, such as actin, tetraspanin, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and annexin. Granulin, thioredoxin peroxiredoxin, carbonyl reductase 1 and cystatin were identified in the C. sinensis proteome and predicted to be related to liver disease and cancer. The analysis of the C. sinensis proteome could contribute to a more in-depth understanding of complex parasite-host relationships, improve the diagnosis of clonorchiasis and benefit research on the pathogenesis and development of novel interventions, drugs and vaccines to control C. sinensis infection.
Collapse
Affiliation(s)
- Yunliang Shi
- Institute of Parasitic Disease Control and Prevention, Guangxi Zhuang Autonomous Region Center for Disease Control and Prevention, Nanning, China
- Guangxi Key Laboratory for the Prevention and Control of Viral Hepatitis, Guangxi Zhuang Autonomous Region Center for Disease Control and Prevention, Nanning, China
| | - Kai Yu
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Anli Liang
- Xiangsihu College of Guangxi University for Nationalities, Nanning, China
| | - Yan Huang
- Institute of Parasitic Disease Control and Prevention, Guangxi Zhuang Autonomous Region Center for Disease Control and Prevention, Nanning, China
| | - Fangqi Ou
- Institute of Parasitic Disease Control and Prevention, Guangxi Zhuang Autonomous Region Center for Disease Control and Prevention, Nanning, China
| | - Haiyan Wei
- Institute of Parasitic Disease Control and Prevention, Guangxi Zhuang Autonomous Region Center for Disease Control and Prevention, Nanning, China
| | - Xiaoling Wan
- Institute of Parasitic Disease Control and Prevention, Guangxi Zhuang Autonomous Region Center for Disease Control and Prevention, Nanning, China
| | - Yichao Yang
- Institute of Parasitic Disease Control and Prevention, Guangxi Zhuang Autonomous Region Center for Disease Control and Prevention, Nanning, China
| | - Weiyu Zhang
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Zhihua Jiang
- Institute of Parasitic Disease Control and Prevention, Guangxi Zhuang Autonomous Region Center for Disease Control and Prevention, Nanning, China
| |
Collapse
|
41
|
Chen J, Hackett EP, Kovacs Z, Malloy CR, Park JM. Assessment of hepatic pyruvate carboxylase activity using hyperpolarized [1- 13 C]-l-lactate. Magn Reson Med 2020; 85:1175-1182. [PMID: 32936474 DOI: 10.1002/mrm.28489] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 07/06/2020] [Accepted: 08/03/2020] [Indexed: 01/24/2023]
Abstract
PURPOSE To evaluate the utility of hyperpolarized [1-13 C]-l-lactate to detect hepatic pyruvate carboxylase activity in vivo under fed and fasted conditions. METHODS [1-13 C]-labeled sodium L-lactate was polarized using a dynamic nuclear polarizer. Polarization level and the T1 were measured in vitro in a 3 Telsa MR scanner. Two groups of healthy rats (fasted vs. fed) were prepared for in vivo studies. Each rat was anesthetized and intravenously injected with 60-mM hyperpolarized [1-13 C]-l-lactate, immediately followed by dynamic acquisition of 13 C (carbon-13) MR spectra from the liver at 3 Tesla. The dosage-dependence of the 13 C-products was also investigated by performing another injection of an equal volume of 30-mM hyperpolarized [1-13 C]-l-lactate. RESULTS T1 and liquid polarization level of [1-13 C]-l-lactate were estimated as 67.8 s and 40.0%, respectively. [1-13 C]pyruvate and [1-13 C]alanine, [13 C]bicarbonate ( HCO 3 - ) and [1-13 C]aspartate were produced from hyperpolarized [1-13 C]-l-lactate in rat liver. Smaller HCO 3 - and larger aspartate were measured in the fed group compared to the fasted group. Pyruvate and alanine production were increased in proportion to the lactate concentration, whereas the amount of HCO 3 - and aspartate production was consistent between 30-mM and 60-mM lactate injections. CONCLUSION This study demonstrates that a unique biomarker of pyruvate carboxylase flux, the appearance of [1-13 C]aspartate from [1-13 C]-l-lactate, is sensitive to nutritional state and may be monitored in vivo at 3 Tesla. Because [13 C] HCO 3 - is largely produced by pyruvate dehydrogenase flux, these results suggest that the ratio of [1-13 C]aspartate and [13 C] HCO 3 - (aspartate/ HCO 3 - ) reflects the saturable pyruvate carboxylase/pyruvate dehydrogenase enzyme activities.
Collapse
Affiliation(s)
- Jun Chen
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Edward P Hackett
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Zoltan Kovacs
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Craig R Malloy
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Jae Mo Park
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Electrical and Computer Engineering, The University of Texas at Dallas, Richardson, Texas, USA
| |
Collapse
|
42
|
Stable Isotope Tracing Metabolomics to Investigate the Metabolic Activity of Bioactive Compounds for Cancer Prevention and Treatment. Cancers (Basel) 2020; 12:cancers12082147. [PMID: 32756373 PMCID: PMC7463803 DOI: 10.3390/cancers12082147] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 12/11/2022] Open
Abstract
A major hallmark of cancer is the metabolic reprogramming of cancer cells to fuel tumor growth and proliferation. Various plant-derived bioactive compounds efficiently target the metabolic vulnerabilities of cancer cells and exhibit potential as emerging therapeutic agents. Due to their safety and common use as dietary components, they are also ideal for cancer prevention. However, to render their use as efficient as possible, the mechanism of action of these phytochemicals needs to be well characterized. Stable isotope tracing is an essential technology to study the molecular mechanisms by which nutraceuticals modulate and target cancer metabolism. The use of positionally labeled tracers as exogenous nutrients and the monitoring of their downstream metabolites labeling patterns enable the analysis of the specific metabolic pathway activity, via the relative production and consumption of the labeled metabolites. Although stable isotope tracing metabolomics is a powerful tool to investigate the molecular activity of bioactive compounds as well as to design synergistic nutraceutical combinations, this methodology is still underutilized. This review aims to investigate the research efforts and potentials surrounding the use of stable isotope tracing metabolomics to examine the metabolic alterations mediated by bioactive compounds in cancer.
Collapse
|
43
|
Cleveland BM, Gao G, Leeds TD. Transcriptomic Response to Selective Breeding for Fast Growth in Rainbow Trout (Oncorhynchus mykiss). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2020; 22:539-550. [PMID: 32451652 DOI: 10.1007/s10126-020-09974-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 04/28/2020] [Indexed: 06/11/2023]
Abstract
Genetic improvement for faster growth is a conventional approach to increase growth rates in aquaculture species; however, the genetic and physiological factors regulating growth performance in fish are not fully characterized. The objective of this study was to identify physiological mechanisms associated with faster growth rates by comparing the liver and muscle transcriptome of a rainbow trout line selectively bred for fast growth (growth line, GL) and a contemporary randomly mated control line (synthetic control, SC) from the same selective breeding program. A third genetic line from a commercial egg supplier (commercial A, CA) was also included to characterize differences in gene expression profiles between populations. Body weight of the GL at harvest was approximately 20% and 8% heavier (p < 0.05) than SC and CA, respectively. There were 145 and 36 differentially expressed genes (DEG) in liver and white muscle, respectively, between the GL and SC that were enriched for the growth hormone/insulin-like growth factor axis (GH/IGF) and PI3K-Akt, JAK-STAT, MAPK, and cAMP signal transduction pathways. A greater concentration of plasma IGF-I was detected in the GL compared with SC (p < 0.05). A unique gene profile was detected in CA, with 11 and 210 DEG in liver and white muscle; these genes associated with innate immunity, complement systems, and metabolic pathways. Collectively, these findings provide a more extensive characterization of the fast-growth phenotype in fish that furthers knowledge of the physiological basis for genetic variation in growth performance in selectively bred rainbow trout.
Collapse
Affiliation(s)
- Beth M Cleveland
- National Center for Cool and Cold Water Aquaculture, USDA/ARS, 11861 Leetown Rd, Kearneysville, WV, 25430, USA.
| | - Guangtu Gao
- National Center for Cool and Cold Water Aquaculture, USDA/ARS, 11861 Leetown Rd, Kearneysville, WV, 25430, USA
| | - Timothy D Leeds
- National Center for Cool and Cold Water Aquaculture, USDA/ARS, 11861 Leetown Rd, Kearneysville, WV, 25430, USA
| |
Collapse
|
44
|
Serpa J. Cysteine as a Carbon Source, a Hot Spot in Cancer Cells Survival. Front Oncol 2020; 10:947. [PMID: 32714858 PMCID: PMC7344258 DOI: 10.3389/fonc.2020.00947] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 05/14/2020] [Indexed: 12/23/2022] Open
Abstract
Cancer cells undergo a metabolic rewiring in order to fulfill the energy and biomass requirements. Cysteine is a pivotal organic compound that contributes for cancer metabolic remodeling at three different levels: (1) in redox control, free or as a component of glutathione; (2) in ATP production, via hydrogen sulfide (H2S) production, serving as a donor to electron transport chain (ETC), and (3) as a carbon source for biomass and energy production. In the present review, emphasis will be given to the role of cysteine as a carbon source, focusing on the metabolic reliance on cysteine, benefiting the metabolic fitness and survival of cancer cells. Therefore, the interplay between cysteine metabolism and other metabolic pathways, as well as the regulation of cysteine metabolism related enzymes and transporters, will be also addressed. Finally, the usefulness of cysteine metabolic route as a target in cancer treatment will be highlighted.
Collapse
Affiliation(s)
- Jacinta Serpa
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School - Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal.,Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Lisbon, Portugal
| |
Collapse
|
45
|
Lin Q, He Y, Wang X, Zhang Y, Hu M, Guo W, He Y, Zhang T, Lai L, Sun Z, Yi Z, Liu M, Chen Y. Targeting Pyruvate Carboxylase by a Small Molecule Suppresses Breast Cancer Progression. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1903483. [PMID: 32382484 PMCID: PMC7201266 DOI: 10.1002/advs.201903483] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/14/2020] [Accepted: 02/24/2020] [Indexed: 05/29/2023]
Abstract
Rapid metabolism differentiates cancer cells from normal cells and relies on anaplerotic pathways. However, the mechanisms of anaplerosis-associated enzymes are rarely understood. The lack of potent and selective antimetabolism drugs restrains further clinical investigations. A small molecule ZY-444 ((N 4-((5-(4-(benzyloxy)phenyl)-2-thiophenyl)methyl)-N 2-isobutyl-2,4-pyrimidinediamine) is discovered to inhibit cancer cell proliferation specifically, having potent efficacies against tumor growth, metastasis, and recurrence. ZY-444 binds to cellular pyruvate carboxylase (PC), a key anaplerotic enzyme of the tricarboxylic acid cycle, and inactivates its catalytic activity. PC inhibition suppresses breast cancer growth and metastasis through inhibiting the Wnt/β-catenin/Snail signaling pathway. Lower PC expression in patient tumors is correlated with significant survival benefits. Comparative profiles of PC expression in cancer versus normal tissues implicate the tumor selectivity of ZY-444. Overall, ZY-444 holds promise therapeutically as an anti-cancer metabolism agent.
Collapse
Affiliation(s)
- Qingxiang Lin
- East China Normal University and Shanghai Fengxian District Central Hospital Joint Center for Translational MedicineShanghai Key Laboratory of Regulatory BiologyInstitute of Biomedical Sciences and School of Life SciencesEast China Normal UniversityShanghai200241P. R. China
| | - Yuan He
- East China Normal University and Shanghai Fengxian District Central Hospital Joint Center for Translational MedicineShanghai Key Laboratory of Regulatory BiologyInstitute of Biomedical Sciences and School of Life SciencesEast China Normal UniversityShanghai200241P. R. China
- Joint Center for Translational MedicineSouthern Medical University Affiliated Fengxian HospitalShanghai201499P. R. China
| | - Xue Wang
- East China Normal University and Shanghai Fengxian District Central Hospital Joint Center for Translational MedicineShanghai Key Laboratory of Regulatory BiologyInstitute of Biomedical Sciences and School of Life SciencesEast China Normal UniversityShanghai200241P. R. China
| | - Yong Zhang
- East China Normal University and Shanghai Fengxian District Central Hospital Joint Center for Translational MedicineShanghai Key Laboratory of Regulatory BiologyInstitute of Biomedical Sciences and School of Life SciencesEast China Normal UniversityShanghai200241P. R. China
| | - Meichun Hu
- East China Normal University and Shanghai Fengxian District Central Hospital Joint Center for Translational MedicineShanghai Key Laboratory of Regulatory BiologyInstitute of Biomedical Sciences and School of Life SciencesEast China Normal UniversityShanghai200241P. R. China
| | - Weikai Guo
- East China Normal University and Shanghai Fengxian District Central Hospital Joint Center for Translational MedicineShanghai Key Laboratory of Regulatory BiologyInstitute of Biomedical Sciences and School of Life SciencesEast China Normal UniversityShanghai200241P. R. China
| | - Yundong He
- East China Normal University and Shanghai Fengxian District Central Hospital Joint Center for Translational MedicineShanghai Key Laboratory of Regulatory BiologyInstitute of Biomedical Sciences and School of Life SciencesEast China Normal UniversityShanghai200241P. R. China
| | - Tao Zhang
- East China Normal University and Shanghai Fengxian District Central Hospital Joint Center for Translational MedicineShanghai Key Laboratory of Regulatory BiologyInstitute of Biomedical Sciences and School of Life SciencesEast China Normal UniversityShanghai200241P. R. China
| | - Li Lai
- East China Normal University and Shanghai Fengxian District Central Hospital Joint Center for Translational MedicineShanghai Key Laboratory of Regulatory BiologyInstitute of Biomedical Sciences and School of Life SciencesEast China Normal UniversityShanghai200241P. R. China
| | - Zhenliang Sun
- Joint Center for Translational MedicineSouthern Medical University Affiliated Fengxian HospitalShanghai201499P. R. China
| | - Zhengfang Yi
- East China Normal University and Shanghai Fengxian District Central Hospital Joint Center for Translational MedicineShanghai Key Laboratory of Regulatory BiologyInstitute of Biomedical Sciences and School of Life SciencesEast China Normal UniversityShanghai200241P. R. China
- Joint Center for Translational MedicineSouthern Medical University Affiliated Fengxian HospitalShanghai201499P. R. China
| | - Mingyao Liu
- East China Normal University and Shanghai Fengxian District Central Hospital Joint Center for Translational MedicineShanghai Key Laboratory of Regulatory BiologyInstitute of Biomedical Sciences and School of Life SciencesEast China Normal UniversityShanghai200241P. R. China
| | - Yihua Chen
- East China Normal University and Shanghai Fengxian District Central Hospital Joint Center for Translational MedicineShanghai Key Laboratory of Regulatory BiologyInstitute of Biomedical Sciences and School of Life SciencesEast China Normal UniversityShanghai200241P. R. China
| |
Collapse
|
46
|
Fu A, Alvarez-Perez JC, Avizonis D, Kin T, Ficarro SB, Choi DW, Karakose E, Badur MG, Evans L, Rosselot C, Bridon G, Bird GH, Seo HS, Dhe-Paganon S, Kamphorst JJ, Stewart AF, James Shapiro AM, Marto JA, Walensky LD, Jones RG, Garcia-Ocana A, Danial NN. Glucose-dependent partitioning of arginine to the urea cycle protects β-cells from inflammation. Nat Metab 2020; 2:432-446. [PMID: 32694660 PMCID: PMC7568475 DOI: 10.1038/s42255-020-0199-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 03/26/2020] [Indexed: 02/07/2023]
Abstract
Chronic inflammation is linked to diverse disease processes, but the intrinsic mechanisms that determine cellular sensitivity to inflammation are incompletely understood. Here, we show the contribution of glucose metabolism to inflammation-induced changes in the survival of pancreatic islet β-cells. Using metabolomic, biochemical and functional analyses, we investigate the protective versus non-protective effects of glucose in the presence of pro-inflammatory cytokines. When protective, glucose metabolism augments anaplerotic input into the TCA cycle via pyruvate carboxylase (PC) activity, leading to increased aspartate levels. This metabolic mechanism supports the argininosuccinate shunt, which fuels ureagenesis from arginine and conversely diminishes arginine utilization for production of nitric oxide (NO), a chief mediator of inflammatory cytotoxicity. Activation of the PC-urea cycle axis is sufficient to suppress NO synthesis and shield cells from death in the context of inflammation and other stress paradigms. Overall, these studies uncover a previously unappreciated link between glucose metabolism and arginine-utilizing pathways via PC-directed ureagenesis as a protective mechanism.
Collapse
Affiliation(s)
- Accalia Fu
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Juan Carlos Alvarez-Perez
- Diabetes, Obesity and Metabolism Institute, Department of Medicine, Division of Endocrinology, Diabetes and Bone Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Daina Avizonis
- Rosalind and Morris Goodman Cancer Center Metabolomics Core, Montreal, Canada
| | - Tatsuya Kin
- Clinical Islet Transplant Program, Department of Surgery, University of Alberta, Edmonton, Canada
| | - Scott B Ficarro
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Blais Proteomics Center, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Dong Wook Choi
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Esra Karakose
- Diabetes, Obesity and Metabolism Institute, Department of Medicine, Division of Endocrinology, Diabetes and Bone Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Lindsay Evans
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Carolina Rosselot
- Diabetes, Obesity and Metabolism Institute, Department of Medicine, Division of Endocrinology, Diabetes and Bone Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Gaelle Bridon
- Rosalind and Morris Goodman Cancer Center Metabolomics Core, Montreal, Canada
| | - Gregory H Bird
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Hyuk-Soo Seo
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Sirano Dhe-Paganon
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | | | - Andrew F Stewart
- Diabetes, Obesity and Metabolism Institute, Department of Medicine, Division of Endocrinology, Diabetes and Bone Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - A M James Shapiro
- Clinical Islet Transplant Program, Department of Surgery, University of Alberta, Edmonton, Canada
| | - Jarrod A Marto
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Blais Proteomics Center, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Loren D Walensky
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Russell G Jones
- Metabolic and Nutritional Programming, Center for Cancer and Cell Biology, Van Andel Institute, Grand Rapids, MI, USA
| | - Adolfo Garcia-Ocana
- Diabetes, Obesity and Metabolism Institute, Department of Medicine, Division of Endocrinology, Diabetes and Bone Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nika N Danial
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
47
|
Crosstalk of lncRNA and Cellular Metabolism and Their Regulatory Mechanism in Cancer. Int J Mol Sci 2020; 21:ijms21082947. [PMID: 32331347 PMCID: PMC7215767 DOI: 10.3390/ijms21082947] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/18/2020] [Accepted: 04/20/2020] [Indexed: 01/17/2023] Open
Abstract
The imbalanced regulation of metabolic homeostasis and energy production is highly associated with inflammation, tumor growth, metastasis and cancer progression. Both glycolysis and oxidative phosphorylation maintain metabolic homeostasis and energy production in cells. Long noncoding RNAs (lncRNAs) are a class of non-protein-coding transcripts longer than 200 nucleotides. Furthermore, lncRNAs can function as either tumor suppressors or oncogenes in cancer. Dysregulated lncRNAs reportedly regulate cancer hallmarks such as tumor growth, metabolism and metastasis. Accordingly, uncovering the interaction between lncRNAs and cellular metabolism has become a necessity when attempting to identify effective therapeutic and preventive strategies in cancer progression. This review summarizes important knowledge of the actions of known lncRNAs-mediated cancer metabolism.
Collapse
|
48
|
Serpa J. Metabolic Remodeling as a Way of Adapting to Tumor Microenvironment (TME), a Job of Several Holders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1219:1-34. [PMID: 32130691 DOI: 10.1007/978-3-030-34025-4_1] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The microenvironment depends and generates dependence on all the cells and structures that share the same niche, the biotope. The contemporaneous view of the tumor microenvironment (TME) agrees with this idea. The cells that make up the tumor, whether malignant or not, behave similarly to classes of elements within a living community. These elements inhabit, modify and benefit from all the facilities the microenvironment has to offer and that will contribute to the survival and growth of the tumor and the progression of the disease.The metabolic adaptation to microenvironment is a crucial process conducting to an established tumor able to grow locally, invade and metastasized. The metastatic cancer cells are reasonable more plastic than non-metastatic cancer cells, because the previous ones must survive in the microenvironment where the primary tumor develops and in addition, they must prosper in the microenvironment in the metastasized organ.The metabolic remodeling requires not only the adjustment of metabolic pathways per se but also the readjustment of signaling pathways that will receive and obey to the extracellular instructions, commanding the metabolic adaptation. Many diverse players are pivotal in cancer metabolic fitness from the initial signaling stimuli, going through the activation or repression of genes, until the phenotype display. The new phenotype will permit the import and consumption of organic compounds, useful for energy and biomass production, and the export of metabolic products that are useless or must be secreted for a further recycling or controlled uptake. In the metabolic network, three subsets of players are pivotal: (1) the organic compounds; (2) the transmembrane transporters, and (3) the enzymes.This chapter will present the "Pharaonic" intent of diagraming the interplay between these three elements in an attempt of simplifying and, at the same time, of showing the complex sight of cancer metabolism, addressing the orchestrating role of microenvironment and highlighting the influence of non-cancerous cells.
Collapse
Affiliation(s)
- Jacinta Serpa
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School | Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal.
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Lisbon, Portugal.
| |
Collapse
|
49
|
Lao-On U, Rojvirat P, Chansongkrow P, Phannasil P, Siritutsoontorn S, Charoensawan V, Jitrapakdee S. c-Myc directly targets an over-expression of pyruvate carboxylase in highly invasive breast cancer. Biochim Biophys Acta Mol Basis Dis 2019; 1866:165656. [PMID: 31874204 DOI: 10.1016/j.bbadis.2019.165656] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 12/17/2019] [Accepted: 12/19/2019] [Indexed: 01/17/2023]
Abstract
Here we showed that the c-Myc oncogene is responsible for overexpression of pyruvate carboxylase (PC) in highly invasive MDA-MB-231 cells. Pharmacological inhibition of c-Myc activity with 10074-G5 compound, resulted in a marked reduction of PC mRNA and protein, concomitant with reduced cell growth, migration and invasion. This growth inhibition but not migration and invasion can be partly restored by overexpression of PC, indicating that PC is a c-Myc-regulated pro-proliferating enzyme. Analysis of chromatin immunoprecipitation sequencing of c-Myc bound promoters revealed that c-Myc binds to two canonical c-Myc binding sites, locating at nucleotides -417 to -407 and -301 to -291 in the P2 promoter of human PC gene. Mutation of either c-Myc binding site in the P2 promoter-luciferase construct resulted in 50-60% decrease in luciferase activity while double mutation of c-Myc binding sites further decreased the luciferase activity in MDA-MB-231 cells. Overexpression of c-Myc in HEK293T cells that have no endogenous c-Myc resulted in 250-fold increase in luciferase activity. Mutation of either E-boxes lowered luciferase activity by 50% and 25%, respectively while double mutation of both sites abolished the c-Myc transactivation response. An electrophoretic mobility shift assay using nuclear proteins from MDA-MB-231 confirmed binding of c-Myc to both c-Myc binding sites in the P2 promoter. Bioinformatic analysis of publicly available transcriptomes from the cancer genome atlas (TCGA) dataset revealed an association between expression of c-Myc and PC in primary breast, as well as in lung and colon cancer tissues, suggesting that overexpression of PC is deregulated by c-Myc in these cancers.
Collapse
Affiliation(s)
- Udom Lao-On
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Pinnara Rojvirat
- Division of Interdisciplinary, Mahidol University at Kanjanaburi campus, Thailand
| | - Pakkanan Chansongkrow
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Phatchariya Phannasil
- Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| | | | - Varodom Charoensawan
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Systems Biology of Diseases Research Unit, Faculty of Science, Mahidol University, Bangkok, Thailand; Integrative Computational BioScience (ICBS) Center, Mahidol University, Nakhon Pathom, Thailand
| | - Sarawut Jitrapakdee
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand.
| |
Collapse
|
50
|
Prieto I, Alarcón CR, García-Gómez R, Berdún R, Urgel T, Portero M, Pamplona R, Martínez-Ruiz A, Ruiz-Sanz JI, Ruiz-Larrea MB, Jove M, Cerdán S, Monsalve M. Metabolic adaptations in spontaneously immortalized PGC-1α knock-out mouse embryonic fibroblasts increase their oncogenic potential. Redox Biol 2019; 29:101396. [PMID: 31926622 PMCID: PMC6921228 DOI: 10.1016/j.redox.2019.101396] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 11/20/2019] [Accepted: 11/26/2019] [Indexed: 12/14/2022] Open
Abstract
PGC-1α controls, to a large extent, the capacity of cells to respond to changing nutritional requirements and energetic demands. The key role of metabolic reprogramming in tumor development has highlighted the potential role of PGC-1α in cancer. To investigate how loss of PGC-1α activity in primary cells impacts the oncogenic characteristics of spontaneously immortalized cells, and the mechanisms involved, we used the classic 3T3 protocol to generate spontaneously immortalized mouse embryonic fibroblasts (iMEFs) from wild-type (WT) and PGC-1α knockout (KO) mice and analyzed their oncogenic potential in vivo and in vitro. We found that PGC-1α KO iMEFs formed larger and more proliferative primary tumors than WT counterparts, and fostered the formation of lung metastasis by B16 melanoma cells. These characteristics were associated with the reduced capacity of KO iMEFs to respond to cell contact inhibition, in addition to an increased ability to form colonies in soft agar, an enhanced migratory capacity, and a reduced growth factor dependence. The mechanistic basis of this phenotype is likely associated with the observed higher levels of nuclear β-catenin and c-myc in KO iMEFs. Evaluation of the metabolic adaptations of the immortalized cell lines identified a decrease in oxidative metabolism and an increase in glycolytic flux in KO iMEFs, which were also more dependent on glutamine for their survival. Furthermore, glucose oxidation and tricarboxylic acid cycle forward flux were reduced in KO iMEF, resulting in the induction of compensatory anaplerotic pathways. Indeed, analysis of amino acid and lipid patterns supported the efficient use of tricarboxylic acid cycle intermediates to synthesize lipids and proteins to support elevated cell growth rates. All these characteristics have been observed in aggressive tumors and support a tumor suppressor role for PGC-1α, restraining metabolic adaptations in cancer.
Collapse
Affiliation(s)
- Ignacio Prieto
- Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM), Arturo Duperier 4, 28029, Madrid, Spain.
| | - Carmen Rubio Alarcón
- Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM), Arturo Duperier 4, 28029, Madrid, Spain.
| | - Raquel García-Gómez
- Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM), Arturo Duperier 4, 28029, Madrid, Spain.
| | - Rebeca Berdún
- Institut de Recerca Biomédica Lleida, Avda, Alcalde Rovira Roure 80, 25198, Lleida, Spain.
| | - Tamara Urgel
- Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM), Arturo Duperier 4, 28029, Madrid, Spain.
| | - Manuel Portero
- Institut de Recerca Biomédica Lleida, Avda, Alcalde Rovira Roure 80, 25198, Lleida, Spain.
| | - Reinald Pamplona
- Institut de Recerca Biomédica Lleida, Avda, Alcalde Rovira Roure 80, 25198, Lleida, Spain.
| | - Antonio Martínez-Ruiz
- Unidad de Ivestigación, Hospital Universitario Santa Cristina, Instituto de Investigación Sanitaria Princesa (IIS-IP). Maestro Vives 3, 28009, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Spain.
| | - José Ignacio Ruiz-Sanz
- Departamento de Fisiología, Facultad de Medicina y Enfermería, Universidad del País Vasco, Euskal Herriko Unibertsitea, Barrio Sarriena s/n, 48940, Leioa, Spain.
| | - M Begoña Ruiz-Larrea
- Departamento de Fisiología, Facultad de Medicina y Enfermería, Universidad del País Vasco, Euskal Herriko Unibertsitea, Barrio Sarriena s/n, 48940, Leioa, Spain.
| | - Mariona Jove
- Institut de Recerca Biomédica Lleida, Avda, Alcalde Rovira Roure 80, 25198, Lleida, Spain.
| | - Sebastián Cerdán
- Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM), Arturo Duperier 4, 28029, Madrid, Spain.
| | - María Monsalve
- Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM), Arturo Duperier 4, 28029, Madrid, Spain.
| |
Collapse
|