1
|
Śmiga M, Roszkiewicz E, Ślęzak P, Tracz M, Olczak T. cAMP-independent Crp homolog adds to the multi-layer regulatory network in Porphyromonas gingivalis. Front Cell Infect Microbiol 2025; 15:1535009. [PMID: 40308968 PMCID: PMC12040651 DOI: 10.3389/fcimb.2025.1535009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 03/21/2025] [Indexed: 05/02/2025] Open
Abstract
Introduction Porphyromonas gingivalis encodes three CRP/FNR superfamily proteins: HcpR, PgRsp, and CrpPg, with CrpPg similar to cAMP-sensing proteins but not classified into known families. This study investigates the role of CrpPg in regulating the expression of factors essential for P. gingivalis virulence in A7436 and ATCC 33277 strains. Methods The role of CrpPg protein in P. gingivalis was determined using the ΔcrpPg mutant strains to characterize their phenotype and to assess the impact of crpPg inactivation on gene expression using RNA-seq and RT-qPCR. Additionally, the CrpPg protein was purified and characterized. Results Key findings in the ΔcrpPg mutant strain include up-regulated mfa1-5 and rgpA genes and down-regulated trxA, soxR, and ustA genes. While crpPg inactivation does not affect growth in liquid culture media, it impairs biofilm formation and enhances adhesion to and invasion of gingival keratinocytes. CrpPg binds directly to its own and mfa promoters without interacting with cyclic nucleotides or di-nucleotides. Its three-dimensional structure, resembling E. coli Crp in complex with cAMP and DNA, suggests that CrpPg functions as a global regulator independently of cAMP binding. The highest crpPg expression in the early exponential growth phase declines as cell density and metabolic conditions change over time, suggesting a regulatory function depending on the CrpPg protein amount. Conclusions By controlling the shift from planktonic to biofilm lifestyle, CrpPg may play a role in pathogenicity. Regulating the expression of virulence factors required for host cell invasion and intracellular replication, CrpPg may help P. gingivalis evade immune responses.
Collapse
Affiliation(s)
- Michał Śmiga
- Laboratory of Medical Biology, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | - Ewa Roszkiewicz
- Laboratory of Medical Biology, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | - Paulina Ślęzak
- Laboratory of Medical Biology, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | - Michał Tracz
- Laboratory of Protein Mass Spectrometry, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | - Teresa Olczak
- Laboratory of Medical Biology, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| |
Collapse
|
2
|
Schmidt J, Brandenburg V, Elders H, Shahzad S, Schäkermann S, Fiedler R, Knoke L, Pfänder Y, Dietze P, Bille H, Gärtner B, Albin L, Leichert L, Bandow J, Hofmann E, Narberhaus F. Two redox-responsive LysR-type transcription factors control the oxidative stress response of Agrobacterium tumefaciens. Nucleic Acids Res 2025; 53:gkaf267. [PMID: 40193708 PMCID: PMC11975290 DOI: 10.1093/nar/gkaf267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 03/10/2025] [Accepted: 03/24/2025] [Indexed: 04/09/2025] Open
Abstract
Pathogenic bacteria often encounter fluctuating reactive oxygen species (ROS) levels, particularly during host infection, necessitating robust redox-sensing mechanisms for survival. The LysR-type transcriptional regulator (LTTR) OxyR is a widely conserved bacterial thiol-based redox sensor. However, members of the Rhizobiales also encode LsrB, a second LTTR with potential redox-sensing function. This study explores the roles of OxyR and LsrB in the plant-pathogen Agrobacterium tumefaciens. Through single and combined deletions, we observed increased H2O2 sensitivity, underscoring their function in oxidative defense. Genome-wide transcriptome profiling under H2O2 exposure revealed that OxyR and LsrB co-regulate key antioxidant genes, including katG, encoding a bifunctional catalase/peroxidase. Agrobacterium tumefaciens LsrB possesses four cysteine residues potentially involved in redox sensing. To elucidate the structural basis for redox-sensing, we applied single-particle cryo-EM (cryogenic electron microscopy) to experimentally confirm an AlphaFold model of LsrB, identifying two proximal cysteine pairs. In vitro thiol-trapping coupled with mass spectrometry confirmed reversible thiol modifications of all four residues, suggesting a functional role in redox regulation. Collectively, these findings reveal that A. tumefaciens employs two cysteine-based redox sensing transcription factors, OxyR and LsrB, to withstand oxidative stress encountered in host and soil environments.
Collapse
Affiliation(s)
- Janka J Schmidt
- Microbial Biology, Ruhr University Bochum, 44801 Bochum, Germany
| | | | - Hannah Elders
- Protein Crystallography, Ruhr University Bochum, 44801 Bochum, Germany
| | - Saba Shahzad
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons (ER-C-3): Structural Biology, Institute of Biological Information Processing (IBI-6): Structural Cell Biology, Forschungszentrum Jülich, 52428 Jülich, Germany
| | - Sina Schäkermann
- Applied Microbiology, Ruhr University Bochum, 44801 Bochum, Germany
- Center for System-based Antibiotic Research, Ruhr University Bochum, 44801 Bochum, Germany
| | - Ronja Fiedler
- Microbial Biology, Ruhr University Bochum, 44801 Bochum, Germany
| | - Lisa R Knoke
- Microbial Biochemistry, Ruhr University Bochum, 44801 Bochum, Germany
| | - Yvonne Pfänder
- Microbial Biology, Ruhr University Bochum, 44801 Bochum, Germany
| | - Pascal Dietze
- Applied Microbiology, Ruhr University Bochum, 44801 Bochum, Germany
| | - Hannah Bille
- Microbial Biology, Ruhr University Bochum, 44801 Bochum, Germany
| | - Bela Gärtner
- Microbial Biology, Ruhr University Bochum, 44801 Bochum, Germany
| | - Lennart J Albin
- Microbial Biology, Ruhr University Bochum, 44801 Bochum, Germany
| | - Lars I Leichert
- Microbial Biochemistry, Ruhr University Bochum, 44801 Bochum, Germany
| | - Julia E Bandow
- Applied Microbiology, Ruhr University Bochum, 44801 Bochum, Germany
- Center for System-based Antibiotic Research, Ruhr University Bochum, 44801 Bochum, Germany
| | - Eckhard Hofmann
- Protein Crystallography, Ruhr University Bochum, 44801 Bochum, Germany
| | - Franz Narberhaus
- Microbial Biology, Ruhr University Bochum, 44801 Bochum, Germany
| |
Collapse
|
3
|
He Y, Mok K, Chumnanpuen P, Nakphaichit M, Vongsangnak W. Dissecting Metabolic Functions and Sugar Transporters Using Genome and Transportome of Probiotic Limosilactobacillus fermentum KUB-D18. Genes (Basel) 2025; 16:348. [PMID: 40149499 PMCID: PMC11942490 DOI: 10.3390/genes16030348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 03/04/2025] [Accepted: 03/13/2025] [Indexed: 03/29/2025] Open
Abstract
Background/Objectives:Limosilactobacillus fermentum KUB-D18, a heterofermentative lactic acid bacterium with promising probiotic properties, is known for promoting gut health and nutrient absorption. Originally isolated from chicken intestines, this strain demonstrates versatile metabolic capabilities in diverse gastrointestinal environments. However, the metabolic functions and sugar transport-related genes remain largely unexplored. This study thus aimed to dissect metabolic functions and sugar transports of L. fermentum KUB-D18. Methods: Next-generation and third-generation sequencing techniques using integrative genomic platform towards transportome analysis were performed. Results: The complete genome, sized at 2.12 Mbps with a GC content of 51.36%, revealed 2079 protein-encoding genes, of which 1876 protein functions were annotated and identified in top categories involved in amino acids, nucleotide, energy, and carbohydrate transports and metabolisms. Comparative genes analysis identified 50 core and 12 strain-specific genes linked to probiotic properties, e.g., acid resistances and bile tolerances, antioxidant functions, or anti-inflammatory properties. Further, sugar transportome analysis uncovered 57 transporter genes, demonstrating diverse carbon utilization and phosphotransferase (PTS) systems, corroborated by API 50 CHL test results for carbohydrate metabolism profile. Conclusions: These findings enhance the comprehensive metabolic understanding of L. fermentum KUB-D18, supporting its industrial potential and applications in engineered probiotics.
Collapse
Affiliation(s)
- Yuke He
- Interdisciplinary Graduate Program in Bioscience, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand;
| | - Kevin Mok
- Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Bangkok 10900, Thailand;
- Center of Excellence for Microbiota Innovation, Faculty of Agro-Industry, Kasetsart University, Bangkok 10900, Thailand
| | - Pramote Chumnanpuen
- Department of Zoology, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand;
- Omics Center for Agriculture, Bioresources, Food and Health, Kasetsart University (OmiKU), Bangkok 10900, Thailand
| | - Massalin Nakphaichit
- Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Bangkok 10900, Thailand;
- Center of Excellence for Microbiota Innovation, Faculty of Agro-Industry, Kasetsart University, Bangkok 10900, Thailand
| | - Wanwipa Vongsangnak
- Department of Zoology, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand;
- Omics Center for Agriculture, Bioresources, Food and Health, Kasetsart University (OmiKU), Bangkok 10900, Thailand
| |
Collapse
|
4
|
Liu Y, Zhang J, Zhao H, Zhong F, Li J, Zhao L. VBNC Cronobacter sakazakii survives in macrophages by resisting oxidative stress and evading recognition by macrophages. BMC Microbiol 2024; 24:458. [PMID: 39506633 PMCID: PMC11539806 DOI: 10.1186/s12866-024-03595-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 10/21/2024] [Indexed: 11/08/2024] Open
Abstract
Survival in host macrophages is an effective strategy for pathogenic bacterial transmission and pathogenesis. Our previous study found that viable but non-culturable (VBNC) Cronobacter Sakazakii (C. sakazakii) can survive in macrophages, but its survival mechanism is not clear. In this study, we investigated the possible mechanisms of VBNC C. sakazakii survival in macrophages in terms of environmental tolerance within macrophages and evasion of macrophages recognition. The results revealed that VBNC C. sakazakii survived under oxidative conditions at a higher rate than the culturable C. sakazakii. Moreover, the stringent response gene (relA and spoT) and the antioxidant-related genes (sodA, katG, and trxA) were up-regulated, indicating that VBNC C. sakazakii may regulate antioxidation through stringent response. On the other hand, compared with culturable C. sakazakii, VBNC C. sakazakii caused reduced response (Toll-like receptor 4) in macrophages, which was attributed to the suppression of biosynthesis of the lipopolysaccharides (LPS). Furthermore, we found that ellagic acid can reduce the survival rate of bacteria in macrophages by improving the immune TLR4 recognition ability of macrophages. In conclusion, VBNC C. sakazakii may survive in macrophages by regulating oxidative tolerance through stringent response and altering LPS synthesis to evade TLR4 recognition by macrophages, which suggests the pathogenic risk of VBNC C. sakazakii.
Collapse
Affiliation(s)
- Yuanyuan Liu
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou, Guangdong Province, 510642, China
| | - Jingfeng Zhang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou, Guangdong Province, 510642, China
| | - Haoqing Zhao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou, Guangdong Province, 510642, China
| | - Feifeng Zhong
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou, Guangdong Province, 510642, China
| | - Jianyu Li
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou, Guangdong Province, 510642, China
| | - Lichao Zhao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou, Guangdong Province, 510642, China.
| |
Collapse
|
5
|
Guesmi S, Ghedira K, Pujic P, Najjari A, Miotello G, Cherif A, Narumi I, Armengaud J, Normand P, Sghaier H. Effect of gamma irradiation on the proteogenome of cold-acclimated Kocuria rhizophila PT10. Res Microbiol 2024; 175:104230. [PMID: 39089347 DOI: 10.1016/j.resmic.2024.104230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 07/03/2024] [Accepted: 07/25/2024] [Indexed: 08/03/2024]
Abstract
The effects of ionizing radiation (IR) on the protein dynamics of cold-stressed cells of a radioresistant actinobacterium, Kocuria rhizophila PT10, isolated from the rhizosphere of the desert plant Panicum turgidum were investigated using a shotgun methodology based on nanoflow liquid chromatography coupled to tandem mass spectrometry. Overall, 1487 proteins were certified, and their abundances were compared between the irradiated condition and control. IR of cold-acclimated PT10 triggered the over-abundance of proteins involved in (1) a strong transcriptional regulation, (2) amidation of peptidoglycan and preservation of cell envelope integrity, (3) detoxification of reactive electrophiles and regulation of the redox status of proteins, (4) base excision repair and prevention of mutagenesis and (5) the tricarboxylic acid (TCA) cycle and production of fatty acids. Also, one of the more significant findings to emerge from this study is the SOS response of stressed PT10. Moreover, a comparison of top hits radio-modulated proteins of cold-acclimated PT10 with proteomics data from gamma-irradiated Deinococcus deserti showed that stressed PT10 has a specific response characterised by a high over-abundance of NemA, GatD, and UdgB.
Collapse
Affiliation(s)
- Sihem Guesmi
- National Agronomy Institute (INAT), Avenue Charles Nicolle, 1082, Tunis, Mahrajène, Tunisia; Laboratory "Energy and Matter for Development of Nuclear Sciences" (LR16CNSTN02), National Center for Nuclear Sciences and Technology (CNSTN), Sidi Thabet Technopark, 2020, Tunisia.
| | - Kais Ghedira
- Laboratory of Bioinformatics, Biomathematics and Biostatistics - LR16IPT09, Institut Pasteur de Tunis, 13, Place Pasteur, Tunis, 1002, Tunisia.
| | - Petar Pujic
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, F-69622, Villeurbanne, France; CNRS, UMR 5557, Ecologie Microbienne, 69622 Villeurbanne, Cedex, INRA, UMR1418, Villeurbanne, France.
| | - Afef Najjari
- Université de Tunis El Manar, Faculté des Sciences de Tunis, LR03ES03 Microorganismes et Biomolécules Actives, 2092, Tunis, Tunisia.
| | - Guylaine Miotello
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, F-30200, Bagnols sur Cèze, France.
| | - Ameur Cherif
- Univ. Manouba, ISBST, BVBGR-LR11ES31, Biotechpole Sidi Thabet, 2020, Ariana, Tunisia.
| | - Issay Narumi
- Radiation Microbiology Laboratory, Department of Life Sciences, Faculty of Life Sciences, Toyo University, 48-1 Oka, Asaka, Saitama, 351-8510, Japan.
| | - Jean Armengaud
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, F-30200, Bagnols sur Cèze, France.
| | - Philippe Normand
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, F-69622, Villeurbanne, France; CNRS, UMR 5557, Ecologie Microbienne, 69622 Villeurbanne, Cedex, INRA, UMR1418, Villeurbanne, France.
| | - Haïtham Sghaier
- Laboratory "Energy and Matter for Development of Nuclear Sciences" (LR16CNSTN02), National Center for Nuclear Sciences and Technology (CNSTN), Sidi Thabet Technopark, 2020, Tunisia; Univ. Manouba, ISBST, BVBGR-LR11ES31, Biotechpole Sidi Thabet, 2020, Ariana, Tunisia.
| |
Collapse
|
6
|
Silva JCA, Marques-Neto LM, Carvalho E, Del Carpio AMG, Henrique C, Leite LCC, Mitsunari T, Elias WP, Munhoz DD, Piazza RMF. Chromosomal Type II Toxin-Antitoxin Systems May Enhance Bacterial Fitness of a Hybrid Pathogenic Escherichia coli Strain Under Stress Conditions. Toxins (Basel) 2024; 16:469. [PMID: 39591224 PMCID: PMC11598369 DOI: 10.3390/toxins16110469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/25/2024] [Accepted: 10/29/2024] [Indexed: 11/28/2024] Open
Abstract
The functions of bacterial plasmid-encoded toxin-antitoxin (TA) systems are unambiguous in the sense of controlling cells that fail to inherit a plasmid copy. However, its role in chromosomal copies is contradictory, including stress-response-promoting fitness and antibiotic treatment survival. A hybrid pathogenic Escherichia coli strain may have the ability to colonize distinct host niches, facing contrasting stress environments. Herein, we determined the influence of multiple environmental stress factors on the bacterial growth dynamic and expression profile of previously described TA systems present in the chromosome of a hybrid atypical enteropathogenic and extraintestinal E. coli strain. Genomic analysis revealed 26 TA loci and the presence of five type II TA systems in the chromosome. Among the tested stress conditions, osmotic and acid stress significantly altered the growth dynamics of the hybrid strain, enhancing the necessary time to reach the stationary phase. Using qPCR analyses, 80% of the studied TA systems were differentially expressed in at least one of the tested conditions, either in the log or in the stationary phase. These data indicate that type II TA systems may contribute to the physiology of pathogenic hybrid strains, enabling their adaptation to different milieus.
Collapse
Affiliation(s)
- Jessika C. A. Silva
- Laboratório de Bacteriologia, Instituto Butantan, Avenida Vital Brazil, 1500, São Paulo 05503-900, SP, Brazil; (J.C.A.S.); (E.C.); (A.M.G.D.C.); (C.H.); (T.M.); (W.P.E.)
| | - Lazaro M. Marques-Neto
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, Avenida Vital Brazil, 1500, São Paulo 05503-900, SP, Brazil; (L.M.M.-N.); (L.C.C.L.)
| | - Eneas Carvalho
- Laboratório de Bacteriologia, Instituto Butantan, Avenida Vital Brazil, 1500, São Paulo 05503-900, SP, Brazil; (J.C.A.S.); (E.C.); (A.M.G.D.C.); (C.H.); (T.M.); (W.P.E.)
| | - Alejandra M. G. Del Carpio
- Laboratório de Bacteriologia, Instituto Butantan, Avenida Vital Brazil, 1500, São Paulo 05503-900, SP, Brazil; (J.C.A.S.); (E.C.); (A.M.G.D.C.); (C.H.); (T.M.); (W.P.E.)
| | - Camila Henrique
- Laboratório de Bacteriologia, Instituto Butantan, Avenida Vital Brazil, 1500, São Paulo 05503-900, SP, Brazil; (J.C.A.S.); (E.C.); (A.M.G.D.C.); (C.H.); (T.M.); (W.P.E.)
| | - Luciana C. C. Leite
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, Avenida Vital Brazil, 1500, São Paulo 05503-900, SP, Brazil; (L.M.M.-N.); (L.C.C.L.)
| | - Thais Mitsunari
- Laboratório de Bacteriologia, Instituto Butantan, Avenida Vital Brazil, 1500, São Paulo 05503-900, SP, Brazil; (J.C.A.S.); (E.C.); (A.M.G.D.C.); (C.H.); (T.M.); (W.P.E.)
| | - Waldir P. Elias
- Laboratório de Bacteriologia, Instituto Butantan, Avenida Vital Brazil, 1500, São Paulo 05503-900, SP, Brazil; (J.C.A.S.); (E.C.); (A.M.G.D.C.); (C.H.); (T.M.); (W.P.E.)
| | - Danielle D. Munhoz
- Laboratório de Bacteriologia, Instituto Butantan, Avenida Vital Brazil, 1500, São Paulo 05503-900, SP, Brazil; (J.C.A.S.); (E.C.); (A.M.G.D.C.); (C.H.); (T.M.); (W.P.E.)
- Instituto de Ensino e Pesquisa Albert Einstein, Rua Comendador Elias Jaffet, 755, São Paulo 05653-000, SP, Brazil
| | - Roxane M. F. Piazza
- Laboratório de Bacteriologia, Instituto Butantan, Avenida Vital Brazil, 1500, São Paulo 05503-900, SP, Brazil; (J.C.A.S.); (E.C.); (A.M.G.D.C.); (C.H.); (T.M.); (W.P.E.)
| |
Collapse
|
7
|
Jeong S, Schütz V, Demir F, Preusche M, Huesgen P, Bigler L, Kovacic F, Gutbrod K, Dörmann P, Schulz M. Cyclic Isothiocyanate Goitrin Impairs Lotus japonicus Nodulation, Affects the Proteomes of Nodules and Free Mesorhizobium loti, and Induces the Formation of Caffeic Acid Derivatives in Bacterial Cultures. PLANTS (BASEL, SWITZERLAND) 2024; 13:2897. [PMID: 39458844 PMCID: PMC11511026 DOI: 10.3390/plants13202897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/04/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024]
Abstract
The continuous release of glucosinolates into the soil by Brassicaceae root exudation is a prerequisite to maintaining toxic levels of breakdown products such as isothiocyanates (ITCs). ITCs influence plant and microbial diversity in ecosystems, while fungi and Rhizobiaceae are particularly injured. Studies explaining the molecular mechanisms of the negative effects are presently limited. Therefore, we investigated the early effects of cyclic ITC goitrin on proteomes of the host and symbiotic Mesorhizobium loti in the nodules of Lotus japonicus and of free-living bacteria. In the nodules, many host proteins had a higher abundance, among them, peroxidases and pathogenesis-related PR-10 proteins functioning in the abscisic-acid-activated signaling pathway. In the microsymbiont, transporter proteins as a prominent group are enhanced; some proteins involved in N-fixation decreased. The proteomes give a report about the loss of immunity suppression resulting in the termination of symbiosis, which initiates nodule senescence. Free-living M. loti are severely damaged, indicated, i.a., by a decrease in transporter proteins, the assumed candidates for goitrin protein complex formation, and high proteolysis. The production of chicoric acid by the accompanying bacteria is inhibitory for M. loti but connected to goitrin elimination, as confirmed by mass spectrometric (MS) analysis. In summary, the nodulation process is severely affected by goitrin, causing nodule dysfunction and failed nodule development. N deficiency conditions leads to yellowish leaves and leaf abscission.
Collapse
Affiliation(s)
- Seungwoo Jeong
- IMBIO Institute of Molecular Biotechnology, University of Bonn, 53115 Bonn, Germany; (S.J.); (V.S.); (M.P.); (K.G.); (P.D.)
| | - Vadim Schütz
- IMBIO Institute of Molecular Biotechnology, University of Bonn, 53115 Bonn, Germany; (S.J.); (V.S.); (M.P.); (K.G.); (P.D.)
| | - Fatih Demir
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark;
| | - Matthias Preusche
- IMBIO Institute of Molecular Biotechnology, University of Bonn, 53115 Bonn, Germany; (S.J.); (V.S.); (M.P.); (K.G.); (P.D.)
- Faculty of Agricultural Sciences and Landscape Architecture, University of Applied Sciences Osnabrueck, 49090 Osnabrueck, Germany
| | - Pitter Huesgen
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany;
| | - Laurent Bigler
- Department of Chemistry, University of Zurich, CH-8057 Zurich, Switzerland;
| | - Filip Kovacic
- Institute of Molecular Enzyme Technology, Heinrich-Heine-University of Düsseldorf, Forschungszentrum Jülich, 52428 Jülich, Germany;
| | - Katharina Gutbrod
- IMBIO Institute of Molecular Biotechnology, University of Bonn, 53115 Bonn, Germany; (S.J.); (V.S.); (M.P.); (K.G.); (P.D.)
| | - Peter Dörmann
- IMBIO Institute of Molecular Biotechnology, University of Bonn, 53115 Bonn, Germany; (S.J.); (V.S.); (M.P.); (K.G.); (P.D.)
| | - Margot Schulz
- IMBIO Institute of Molecular Biotechnology, University of Bonn, 53115 Bonn, Germany; (S.J.); (V.S.); (M.P.); (K.G.); (P.D.)
| |
Collapse
|
8
|
Dyksma S, Pester M. Growth of sulfate-reducing Desulfobacterota and Bacillota at periodic oxygen stress of 50% air-O 2 saturation. MICROBIOME 2024; 12:191. [PMID: 39367500 PMCID: PMC11451228 DOI: 10.1186/s40168-024-01909-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 08/16/2024] [Indexed: 10/06/2024]
Abstract
BACKGROUND Sulfate-reducing bacteria (SRB) are frequently encountered in anoxic-to-oxic transition zones, where they are transiently exposed to microoxic or even oxic conditions on a regular basis. This can be marine tidal sediments, microbial mats, and freshwater wetlands like peatlands. In the latter, a cryptic but highly active sulfur cycle supports their anaerobic activity. Here, we aimed for a better understanding of how SRB responds to periodically fluctuating redox regimes. RESULTS To mimic these fluctuating redox conditions, a bioreactor was inoculated with peat soil supporting cryptic sulfur cycling and consecutively exposed to oxic (one week) and anoxic (four weeks) phases over a period of > 200 days. SRB affiliated to the genus Desulfosporosinus (Bacillota) and the families Syntrophobacteraceae, Desulfomonilaceae, Desulfocapsaceae, and Desulfovibrionaceae (Desulfobacterota) successively established growing populations (up to 2.9% relative abundance) despite weekly periods of oxygen exposures at 133 µM (50% air saturation). Adaptation mechanisms were analyzed by genome-centric metatranscriptomics. Despite a global drop in gene expression during oxic phases, the perpetuation of gene expression for energy metabolism was observed for all SRBs. The transcriptional response pattern for oxygen resistance was differentiated across individual SRBs, indicating different adaptation strategies. Most SRB transcribed differing sets of genes for oxygen consumption, reactive oxygen species detoxification, and repair of oxidized proteins as a response to the periodical redox switch from anoxic to oxic conditions. Noteworthy, a Desulfosporosinus, a Desulfovibrionaceaea, and a Desulfocapsaceaea representative maintained high transcript levels of genes encoding oxygen defense proteins even under anoxic conditions, while representing dominant SRB populations after half a year of bioreactor operation. CONCLUSIONS In situ-relevant peatland SRB established large populations despite periodic one-week oxygen levels that are one order of magnitude higher than known to be tolerated by pure cultures of SRB. The observed decrease in gene expression regulation may be key to withstand periodically occurring changes in redox regimes in these otherwise strictly anaerobic microorganisms. Our study provides important insights into the stress response of SRB that drives sulfur cycling at oxic-anoxic interphases. Video Abstract.
Collapse
Affiliation(s)
- Stefan Dyksma
- Department of Microorganisms, Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany.
| | - Michael Pester
- Department of Microorganisms, Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany.
- Technical University of Braunschweig, Institute of Microbiology, Braunschweig, Germany.
| |
Collapse
|
9
|
Kuronen J, Horsfield ST, Pöntinen AK, Mallawaarachchi S, Arredondo-Alonso S, Thorpe H, Gladstone RA, Willems RJL, Bentley SD, Croucher NJ, Pensar J, Lees JA, Tonkin-Hill G, Corander J. Pangenome-spanning epistasis and coselection analysis via de Bruijn graphs. Genome Res 2024; 34:1081-1088. [PMID: 39134411 PMCID: PMC11368177 DOI: 10.1101/gr.278485.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 07/25/2024] [Indexed: 08/22/2024]
Abstract
Studies of bacterial adaptation and evolution are hampered by the difficulty of measuring traits such as virulence, drug resistance, and transmissibility in large populations. In contrast, it is now feasible to obtain high-quality complete assemblies of many bacterial genomes thanks to scalable high-accuracy long-read sequencing technologies. To exploit this opportunity, we introduce a phenotype- and alignment-free method for discovering coselected and epistatically interacting genomic variation from genome assemblies covering both core and accessory parts of genomes. Our approach uses a compact colored de Bruijn graph to approximate the intragenome distances between pairs of loci for a collection of bacterial genomes to account for the impacts of linkage disequilibrium (LD). We demonstrate the versatility of our approach to efficiently identify associations between loci linked with drug resistance and adaptation to the hospital niche in the major human bacterial pathogens Streptococcus pneumoniae and Enterococcus faecalis.
Collapse
Affiliation(s)
- Juri Kuronen
- Department of Biostatistics, University of Oslo, 0372 Blindern, Norway
| | - Samuel T Horsfield
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London W12 0BZ, United Kingdom
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton CB10 1SD, United Kingdom
| | - Anna K Pöntinen
- Department of Biostatistics, University of Oslo, 0372 Blindern, Norway
- Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, 9019 Tromsø, Norway
| | - Sudaraka Mallawaarachchi
- Department of Biostatistics, University of Oslo, 0372 Blindern, Norway
- Peter MacCallum Cancer Centre, Melbourne, Victoria 3052, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria 3052, Australia
| | | | - Harry Thorpe
- Department of Biostatistics, University of Oslo, 0372 Blindern, Norway
| | | | - Rob J L Willems
- Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, Netherlands
| | - Stephen D Bentley
- Parasites and Microbes, Wellcome Sanger Institute, Cambridge CB10 1RQ, United Kingdom
| | - Nicholas J Croucher
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London W12 0BZ, United Kingdom
| | - Johan Pensar
- Department of Mathematics, University of Oslo, 0372 Blindern, Norway
| | - John A Lees
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton CB10 1SD, United Kingdom;
| | - Gerry Tonkin-Hill
- Department of Biostatistics, University of Oslo, 0372 Blindern, Norway;
- Peter MacCallum Cancer Centre, Melbourne, Victoria 3052, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria 3052, Australia
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3052, Australia
| | - Jukka Corander
- Department of Biostatistics, University of Oslo, 0372 Blindern, Norway
- Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, Netherlands
- Helsinki Institute of Information Technology, Department of Mathematics and Statistics, University of Helsinki, 00014 Helsinki, Finland
| |
Collapse
|
10
|
Tripathi J, Gautam S. Unravelling the key steps impairing the metabolic state of Xanthomonas cells undergoing programmed cell death. Int Microbiol 2024; 27:1285-1296. [PMID: 38190087 DOI: 10.1007/s10123-023-00471-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 11/23/2023] [Accepted: 12/15/2023] [Indexed: 01/09/2024]
Abstract
Programmed cell death (PCD) has been reported in Xanthomonas axonopodis pv. glycines (Xag) wild type earlier and was indirectly shown to be induced by metabolic stress; however, deciphering the key proteins regulating the metabolic stress remained unrevealed. In this study, transcriptomic and proteomic analyses were performed to investigate the prominent pathways, having a role in the induction of metabolic stress in Xag cells undergoing PCD. A comprehensive analysis of transcriptome and proteome data revealed the major involvement of metabolic pathways related to branched chain amino acid degradation, such as acyl-CoA dehydrogenase and energy-yielding, ubiquinol:cytochrome c oxidoreductase complex, in Xag cells undergoing PCD. Consequently, oxidative stress response genes showed major upregulation in Xag cells in PCD-inducing medium; however, no such upregulation was observed at the protein level, indicative of depleted protein levels under excessive stress conditions. Activation of stress response and DNA repair proteins was also observed in Xag cells grown in PCD-inducing medium, which is indicative of excessive cellular damage. Thus, the findings indicate that programmed cell death in Xag is an outcome of metabolic stress in nutrient condition not suitable for a plant pathogen like Xanthomonas, which is more acclimatised with altogether a different nutritional requirement predominantly having an enriched carbohydrate source.
Collapse
Affiliation(s)
- Jyoti Tripathi
- Food Technology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, Maharashtra, 400085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094, India
| | - Satyendra Gautam
- Food Technology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, Maharashtra, 400085, India.
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094, India.
| |
Collapse
|
11
|
Zhu Z, Hu Z, Ojima S, Yu X, Sugiyama M, Ono HK, Hu DL. Critical Involvement of the Thioredoxin Reductase Gene ( trxB) in Salmonella Gallinarum-Induced Systemic Infection in Chickens. Microorganisms 2024; 12:1180. [PMID: 38930562 PMCID: PMC11205728 DOI: 10.3390/microorganisms12061180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/07/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Salmonella enterica serovar Gallinarum biovar Gallinarum (SG) causes fowl typhoid, a notifiable infectious disease in poultry. However, the pathogenic mechanism of SG-induced systemic infection in chickens remains unclear. Thioredoxin reductase (TrxB) is a redox protein crucial for regulating various enzyme activities in Salmonella serovar, but the role in SG-induced chicken systemic infection has yet to be determined. Here, we constructed a mutant SG strain lacking the trxB gene (trxB::Cm) and used chicken embryo inoculation and chicken oral infection to investigate the role of trxB gene in the pathogenicity of SG. Our results showed that trxB::Cm exhibited no apparent differences in colony morphology and growth conditions but exhibited reduced tolerance to H2O2 and increased resistance to bile acids. In the chicken embryo inoculation model, there was no significant difference in the pathogenicity of trxB::Cm and wild-type (WT) strains. In the chicken oral infection, the WT-infected group exhibited typical clinical symptoms of fowl typhoid, with complete mortality between days 6 and 9 post infection. In contrast, the trxB::Cm group showed a 100% survival rate, with no apparent clinical symptoms or pathological changes observed. The viable bacterial counts in the liver and spleen of the trxB::Cm-infected group were significantly reduced, accompanied by decreased expression of cytokines and chemokines (IL-1β, IL-6, IL-12, CXCLi1, TNF-α, and IFN-γ), which were significantly lower than those in the WT group. These results show that the pathogenicity of the trxB-deficient strain was significantly attenuated, indicating that the trxB gene is a crucial virulence factor in SG-induced systemic infection in chickens, suggesting that trxB may become a potentially effective target for controlling and preventing SG infection in chickens.
Collapse
Affiliation(s)
- Zhihao Zhu
- Department of Zoonoses, Kitasato University School of Veterinary Medicine, Towada 034-8628, Japan; (Z.Z.); (Z.H.); (S.O.); (X.Y.); (H.K.O.)
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Zuo Hu
- Department of Zoonoses, Kitasato University School of Veterinary Medicine, Towada 034-8628, Japan; (Z.Z.); (Z.H.); (S.O.); (X.Y.); (H.K.O.)
| | - Shinjiro Ojima
- Department of Zoonoses, Kitasato University School of Veterinary Medicine, Towada 034-8628, Japan; (Z.Z.); (Z.H.); (S.O.); (X.Y.); (H.K.O.)
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Xiaoying Yu
- Department of Zoonoses, Kitasato University School of Veterinary Medicine, Towada 034-8628, Japan; (Z.Z.); (Z.H.); (S.O.); (X.Y.); (H.K.O.)
- College of Veterinary Medicine, Southwest University, Chongqing 400715, China
| | - Makoto Sugiyama
- Laboratory of Veterinary Anatomy, Kitasato University School of Veterinary Medicine, Towada 034-8628, Japan;
| | - Hisaya K. Ono
- Department of Zoonoses, Kitasato University School of Veterinary Medicine, Towada 034-8628, Japan; (Z.Z.); (Z.H.); (S.O.); (X.Y.); (H.K.O.)
| | - Dong-Liang Hu
- Department of Zoonoses, Kitasato University School of Veterinary Medicine, Towada 034-8628, Japan; (Z.Z.); (Z.H.); (S.O.); (X.Y.); (H.K.O.)
| |
Collapse
|
12
|
Pal S, Yuvaraj R, Krishnan H, Venkatraman B, Abraham J, Gopinathan A. Unraveling radiation resistance strategies in two bacterial strains from the high background radiation area of Chavara-Neendakara: A comprehensive whole genome analysis. PLoS One 2024; 19:e0304810. [PMID: 38857267 PMCID: PMC11164402 DOI: 10.1371/journal.pone.0304810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 05/18/2024] [Indexed: 06/12/2024] Open
Abstract
This paper reports the results of gamma irradiation experiments and whole genome sequencing (WGS) performed on vegetative cells of two radiation resistant bacterial strains, Metabacillus halosaccharovorans (VITHBRA001) and Bacillus paralicheniformis (VITHBRA024) (D10 values 2.32 kGy and 1.42 kGy, respectively), inhabiting the top-ranking high background radiation area (HBRA) of Chavara-Neendakara placer deposit (Kerala, India). The present investigation has been carried out in the context that information on strategies of bacteria having mid-range resistance for gamma radiation is inadequate. WGS, annotation, COG and KEGG analyses and manual curation of genes helped us address the possible pathways involved in the major domains of radiation resistance, involving recombination repair, base excision repair, nucleotide excision repair and mismatch repair, and the antioxidant genes, which the candidate could activate to survive under ionizing radiation. Additionally, with the help of these data, we could compare the candidate strains with that of the extremely radiation resistant model bacterium Deinococccus radiodurans, so as to find the commonalities existing in their strategies of resistance on the one hand, and also the rationale behind the difference in D10, on the other. Genomic analysis of VITHBRA001 and VITHBRA024 has further helped us ascertain the difference in capability of radiation resistance between the two strains. Significantly, the genes such as uvsE (NER), frnE (protein protection), ppk1 and ppx (non-enzymatic metabolite production) and those for carotenoid biosynthesis, are endogenous to VITHBRA001, but absent in VITHBRA024, which could explain the former's better radiation resistance. Further, this is the first-time study performed on any bacterial population inhabiting an HBRA. This study also brings forward the two species whose radiation resistance has not been reported thus far, and add to the knowledge on radiation resistant capabilities of the phylum Firmicutes which are abundantly observed in extreme environment.
Collapse
Affiliation(s)
- Sowptika Pal
- Molecular Endocrinology Laboratory, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Ramani Yuvaraj
- Radiological and Environmental Safety Division, Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamil Nadu, India
| | - Hari Krishnan
- Radiological and Environmental Safety Division, Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamil Nadu, India
| | - Balasubramanian Venkatraman
- Radiological and Environmental Safety Division, Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamil Nadu, India
| | - Jayanthi Abraham
- Microbial Biotechnology Laboratory, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Anilkumar Gopinathan
- Molecular Endocrinology Laboratory, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| |
Collapse
|
13
|
Melfi F, Carradori S, Mencarelli N, Campestre C, Granese A, Mori M. Recent developments of agents targeting Vibrio cholerae: patents and literature data. Expert Opin Ther Pat 2024; 34:415-432. [PMID: 38446009 DOI: 10.1080/13543776.2024.2327305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 03/04/2024] [Indexed: 03/07/2024]
Abstract
INTRODUCTION Vibrio cholerae bacteria cause an infection characterized by acute diarrheal illness in the intestine. Cholera is sustained by people swallowing contaminated food or water. Even though symptoms can be mild, if untreated disease becomes severe and life-threatening, especially in low-income countries. AREAS COVERED After a description of the most recent literature on the pathophysiology of this infection, we searched for patents and literature articles following the PRISMA guidelines, filtering the results disclosed from 2020 to present. Moreover, some innovative molecular targets (e.g., carbonic anhydrases) and pathways to counteract this rising problem were also discussed in terms of design, structure-activity relationships and structural analyses. EXPERT OPINION This review aims to cover and analyze the most recent advances on the new druggable targets and bioactive compounds against this fastidious pathogen, overcoming the use of old antibiotics which currently suffer from high resistance rate.
Collapse
Affiliation(s)
- Francesco Melfi
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Simone Carradori
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Noemi Mencarelli
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Cristina Campestre
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Arianna Granese
- Department of Drug Chemistry and Technology, "Sapienza" University of Rome, Rome, Italy
| | - Mattia Mori
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| |
Collapse
|
14
|
Sun Y, Gao R, Liao X, Shen M, Chen X, Feng J, Ding T. Stress response of Salmonella Newport with various sequence types toward plasma-activated water: Viable but nonculturable state formation and outer membrane vesicle production. Curr Res Food Sci 2024; 8:100764. [PMID: 38779345 PMCID: PMC11109322 DOI: 10.1016/j.crfs.2024.100764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/29/2024] [Accepted: 05/06/2024] [Indexed: 05/25/2024] Open
Abstract
This study aims to investigate the response of Salmonella Newport to plasma-activated water (PAW), a novel disinfectant that attracts attention due to its broad-spectrum antimicrobial efficacy and eco-friendliness. In this work, we demonstrated that S. Newport of different sequence types (STs) could be induced into the viable but nonculturable (VBNC) state by PAW treatment. Notably, a remarkable 99.96% of S. Newport ST45 strain entered the VBNC state after a 12-min PAW treatment, which was the fastest observed among the five S. Newport STs (ST31, ST45, ST46, ST166, ST2364). Secretion of outer membrane vesicles was observed in ST45, suggesting a potential strategy against PAW treatment. Genes related to oxidative stress (sodA, katE, trxA), outer membrane proteins (ompA, ompC, ompD, ompF) and virulence (pagC, sipC, sopE2) were upregulated in the PAW-treated S. Newport, especially in ST45. A reduction of 38-65% in intracellular ATP level after PAW treatment was observed, indicating a contributor to the formation of the VBNC state. In addition, a rapid method for detecting the proportion of VBNC cells in food products based on pagC was established. This study contributes to understanding the formation mechanism of the VBNC state in S. Newport under PAW stress and offers insights for controlling microbial risks in the food industry.
Collapse
Affiliation(s)
- Yuhao Sun
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
- Future Food Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, 314100, China
| | - Rui Gao
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Xinyu Liao
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
- Future Food Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, 314100, China
| | - Mofei Shen
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Xiuqin Chen
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Jinsong Feng
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Tian Ding
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
- Future Food Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, 314100, China
| |
Collapse
|
15
|
Tomasch J, Kopejtka K, Bílý T, Gardiner AT, Gardian Z, Shivaramu S, Koblížek M, Kaftan D. A photoheterotrophic bacterium from Iceland has adapted its photosynthetic machinery to the long days of polar summer. mSystems 2024; 9:e0131123. [PMID: 38376261 PMCID: PMC10949492 DOI: 10.1128/msystems.01311-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/26/2024] [Indexed: 02/21/2024] Open
Abstract
During their long evolution, anoxygenic phototrophic bacteria have inhabited a wide variety of natural habitats and developed specific strategies to cope with the challenges of any particular environment. Expression, assembly, and safe operation of the photosynthetic apparatus must be regulated to prevent reactive oxygen species generation under illumination in the presence of oxygen. Here, we report on the photoheterotrophic Sediminicoccus sp. strain KRV36, which was isolated from a cold stream in north-western Iceland, 30 km south of the Arctic Circle. In contrast to most aerobic anoxygenic phototrophs, which stop pigment synthesis when illuminated, strain KRV36 maintained its bacteriochlorophyll synthesis even under continuous light. Its cells also contained between 100 and 180 chromatophores, each accommodating photosynthetic complexes that exhibit an unusually large carotenoid absorption spectrum. The expression of photosynthesis genes in dark-adapted cells was transiently downregulated in the first 2 hours exposed to light but recovered to the initial level within 24 hours. An excess of membrane-bound carotenoids as well as high, constitutive expression of oxidative stress response genes provided the required potential for scavenging reactive oxygen species, safeguarding bacteriochlorophyll synthesis and photosystem assembly. The unique cellular architecture and an unusual gene expression pattern represent a specific adaptation that allows the maintenance of anoxygenic phototrophy under arctic conditions characterized by long summer days with relatively low irradiance.IMPORTANCEThe photoheterotrophic bacterium Sediminicoccus sp. KRV36 was isolated from a cold stream in Iceland. It expresses its photosynthesis genes, synthesizes bacteriochlorophyll, and assembles functional photosynthetic complexes under continuous light in the presence of oxygen. Unraveling the molecular basis of this ability, which is exceptional among aerobic anoxygenic phototrophic species, will help to understand the evolution of bacterial photosynthesis in response to changing environmental conditions. It might also open new possibilities for genetic engineering of biotechnologically relevant phototrophs, with the aim of increasing photosynthetic activity and their tolerance to reactive oxygen species.
Collapse
Affiliation(s)
- Jürgen Tomasch
- Laboratory of Anoxygenic Phototrophs, Institute of Microbiology of the Czech Academy of Sciences, Třeboň, Czechia
| | - Karel Kopejtka
- Laboratory of Anoxygenic Phototrophs, Institute of Microbiology of the Czech Academy of Sciences, Třeboň, Czechia
| | - Tomáš Bílý
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czechia
| | - Alastair T. Gardiner
- Laboratory of Anoxygenic Phototrophs, Institute of Microbiology of the Czech Academy of Sciences, Třeboň, Czechia
| | - Zdenko Gardian
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czechia
| | - Sahana Shivaramu
- Laboratory of Anoxygenic Phototrophs, Institute of Microbiology of the Czech Academy of Sciences, Třeboň, Czechia
| | - Michal Koblížek
- Laboratory of Anoxygenic Phototrophs, Institute of Microbiology of the Czech Academy of Sciences, Třeboň, Czechia
| | - David Kaftan
- Laboratory of Anoxygenic Phototrophs, Institute of Microbiology of the Czech Academy of Sciences, Třeboň, Czechia
- Department Chemistry, Faculty of Science, University of South Bohemia, České Budějovice, Czechia
| |
Collapse
|
16
|
Anjou C, Lotoux A, Zhukova A, Royer M, Caulat LC, Capuzzo E, Morvan C, Martin-Verstraete I. The multiplicity of thioredoxin systems meets the specific lifestyles of Clostridia. PLoS Pathog 2024; 20:e1012001. [PMID: 38330058 PMCID: PMC10880999 DOI: 10.1371/journal.ppat.1012001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 02/21/2024] [Accepted: 01/26/2024] [Indexed: 02/10/2024] Open
Abstract
Cells are unceasingly confronted by oxidative stresses that oxidize proteins on their cysteines. The thioredoxin (Trx) system, which is a ubiquitous system for thiol and protein repair, is composed of a thioredoxin (TrxA) and a thioredoxin reductase (TrxB). TrxAs reduce disulfide bonds of oxidized proteins and are then usually recycled by a single pleiotropic NAD(P)H-dependent TrxB (NTR). In this work, we first analyzed the composition of Trx systems across Bacteria. Most bacteria have only one NTR, but organisms in some Phyla have several TrxBs. In Firmicutes, multiple TrxBs are observed only in Clostridia, with another peculiarity being the existence of ferredoxin-dependent TrxBs. We used Clostridioides difficile, a pathogenic sporulating anaerobic Firmicutes, as a model to investigate the biological relevance of TrxB multiplicity. Three TrxAs and three TrxBs are present in the 630Δerm strain. We showed that two systems are involved in the response to infection-related stresses, allowing the survival of vegetative cells exposed to oxygen, inflammation-related molecules and bile salts. A fourth TrxB copy present in some strains also contributes to the stress-response arsenal. One of the conserved stress-response Trx system was found to be present both in vegetative cells and in the spores and is under a dual transcriptional control by vegetative cell and sporulation sigma factors. This Trx system contributes to spore survival to hypochlorite and ensure proper germination in the presence of oxygen. Finally, we found that the third Trx system contributes to sporulation through the recycling of the glycine-reductase, a Stickland pathway enzyme that allows the consumption of glycine and contributes to sporulation. Altogether, we showed that Trx systems are produced under the control of various regulatory signals and respond to different regulatory networks. The multiplicity of Trx systems and the diversity of TrxBs most likely meet specific needs of Clostridia in adaptation to strong stress exposure, sporulation and Stickland pathways.
Collapse
Affiliation(s)
- Cyril Anjou
- Institut Pasteur, Université Paris Cité, UMR CNRS 6047, Laboratoire Pathogenèse des Bactéries Anaérobies, Paris, France
| | - Aurélie Lotoux
- Institut Pasteur, Université Paris Cité, UMR CNRS 6047, Laboratoire Pathogenèse des Bactéries Anaérobies, Paris, France
| | - Anna Zhukova
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, Paris, France
| | - Marie Royer
- Institut Pasteur, Université Paris Cité, UMR CNRS 6047, Laboratoire Pathogenèse des Bactéries Anaérobies, Paris, France
| | - Léo C. Caulat
- Institut Pasteur, Université Paris Cité, UMR CNRS 6047, Laboratoire Pathogenèse des Bactéries Anaérobies, Paris, France
| | - Elena Capuzzo
- Institut Pasteur, Université Paris Cité, UMR CNRS 6047, Laboratoire Pathogenèse des Bactéries Anaérobies, Paris, France
| | - Claire Morvan
- Institut Pasteur, Université Paris Cité, UMR CNRS 6047, Laboratoire Pathogenèse des Bactéries Anaérobies, Paris, France
| | - Isabelle Martin-Verstraete
- Institut Pasteur, Université Paris Cité, UMR CNRS 6047, Laboratoire Pathogenèse des Bactéries Anaérobies, Paris, France
- Institut Universitaire de France, Paris, France
| |
Collapse
|
17
|
Richardson-Sanchez T, Chan ACK, Sabatino B, Lin H, Gaynor EC, Murphy MEP. Dissecting components of the Campylobacter jejuni fetMP-fetABCDEF gene cluster under iron limitation. Microbiol Spectr 2024; 12:e0314823. [PMID: 38096459 PMCID: PMC10783030 DOI: 10.1128/spectrum.03148-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 11/14/2023] [Indexed: 12/26/2023] Open
Abstract
IMPORTANCE Campylobacter jejuni is a bacterium that is prevalent in the ceca of farmed poultry such as chickens. Consumption of ill-prepared poultry is thus the most common route by which C. jejuni infects the human gut to cause a typically self-limiting but severe gastrointestinal illness that can be fatal to very young, old, or immunocompromised people. The lack of a vaccine and an increasing resistance to current antibiotics highlight a need to better understand the mechanisms that make C. jejuni a successful human pathogen. This study focused on the functional components of one such mechanism-a molecular system that helps C. jejuni thrive despite the restriction on growth-available iron by the human body, which typically defends against pathogens. In providing a deeper understanding of how this system functions, this study contributes toward the goal of reducing the enormous global socioeconomic burden caused by C. jejuni.
Collapse
Affiliation(s)
- Tomas Richardson-Sanchez
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Anson C. K. Chan
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Brendil Sabatino
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Helen Lin
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Erin C. Gaynor
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Michael E. P. Murphy
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
18
|
Xia J, Luo Y, Chen M, Liu Y, Wang Z, Deng S, Xu J, Han Y, Sun J, Jiang L, Song H, Cheng C. Characterization of a DsbA family protein reveals its crucial role in oxidative stress tolerance of Listeria monocytogenes. Microbiol Spectr 2023; 11:e0306023. [PMID: 37823664 PMCID: PMC10715225 DOI: 10.1128/spectrum.03060-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/05/2023] [Indexed: 10/13/2023] Open
Abstract
IMPORTANCE The adaption and tolerance to various environmental stresses are the fundamental factors for the widespread existence of Listeria monocytogenes. Anti-oxidative stress is the critical mechanism for the survival and pathogenesis of L. monocytogenes. The thioredoxin (Trx) and glutaredoxin (Grx) systems are known to contribute to the anti-oxidative stress of L. monocytogenes, but whether the Dsb system has similar roles remains unknown. This study demonstrated that the DsbA family protein Lmo1059 of L. monocytogenes participates in bacterial oxidative stress tolerance, with Cys36 as the key amino acid of its catalytic activity and anti-oxidative stress ability. It is worth noting that Lmo1059 was involved in the invading and cell-to-cell spread of L. monocytogenes. This study lays a foundation for further understanding the specific mechanisms of oxidative cysteine repair and antioxidant stress regulation of L. monocytogenes, which contributes to an in-depth understanding of the environmental adaptation mechanisms for foodborne bacterial pathogens.
Collapse
Affiliation(s)
- Jing Xia
- College of Animal Science and Technology &College of Veterinary Medicine, Zhejiang A&F University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, Hangzhou, Zhejiang, China
| | - Yaru Luo
- College of Animal Science and Technology &College of Veterinary Medicine, Zhejiang A&F University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, Hangzhou, Zhejiang, China
| | - Mianmian Chen
- College of Animal Science and Technology &College of Veterinary Medicine, Zhejiang A&F University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, Hangzhou, Zhejiang, China
| | - Yuqing Liu
- College of Animal Science and Technology &College of Veterinary Medicine, Zhejiang A&F University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, Hangzhou, Zhejiang, China
| | - Zhe Wang
- College of Animal Science and Technology &College of Veterinary Medicine, Zhejiang A&F University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, Hangzhou, Zhejiang, China
| | - Simin Deng
- College of Animal Science and Technology &College of Veterinary Medicine, Zhejiang A&F University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, Hangzhou, Zhejiang, China
| | - Jiali Xu
- College of Animal Science and Technology &College of Veterinary Medicine, Zhejiang A&F University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, Hangzhou, Zhejiang, China
| | - Yue Han
- College of Animal Science and Technology &College of Veterinary Medicine, Zhejiang A&F University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, Hangzhou, Zhejiang, China
| | - Jing Sun
- College of Animal Science and Technology &College of Veterinary Medicine, Zhejiang A&F University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, Hangzhou, Zhejiang, China
| | - Lingli Jiang
- Ningbo College of Health Sciences, Ningbo, Zhejiang, China
| | - Houhui Song
- College of Animal Science and Technology &College of Veterinary Medicine, Zhejiang A&F University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, Hangzhou, Zhejiang, China
| | - Changyong Cheng
- College of Animal Science and Technology &College of Veterinary Medicine, Zhejiang A&F University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, Hangzhou, Zhejiang, China
| |
Collapse
|
19
|
Zanghaei A, Ameri A, Hashemi A, Soheili V, Ghanbarian H. Rapid identification of bacteria by the pattern of redox reactions rate using 2',7'-dichlorodihydrofluorescein diacetate. Biochem Biophys Res Commun 2023; 678:78-83. [PMID: 37619314 DOI: 10.1016/j.bbrc.2023.08.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 08/12/2023] [Indexed: 08/26/2023]
Abstract
Bacterial infection is a life-threatening situation, and its rapid diagnosis is essential for treatment. Apart from medical applications, rapid identification of bacteria is vital in the food industry or the public health system. There are various bacterial identification techniques, including molecular-based methods, immunological approaches, and biosensor-based procedures. The most commonly used methods are culture-based methods, which are time-consuming. The objective of this study is to find a fingerprint of bacteria to identify them. Three strains of bacteria were selected, and seven different concentrations of each bacterium were prepared. The bacteria were then treated with two different molar concentrations of the fluorescent fluorophore, dichlorodihydrofluorescein diacetate for 30 minutes. Then, using the fluorescence mode of a multimode reader, the fluorescence emission of each bacterium is scanned twice during 60 minutes. Plotting the difference between two scans versus the bacteria concentration results in a unique fluorescence pattern for each bacterium. Observation of the redox state of bacteria, during 90 minutes, results in a fluorescence pattern that is clearly a fingerprint of different bacteria. This pattern is independent of fluorophore concentration. Mean Squares Errors (MSE) between the fluorescence patterns of similar bacteria is less than that of different bacteria, which shows the method can properly identify the bacteria. In this study, a new label-free method is developed to detect and identify different species of bacteria by measuring the redox activity and using the fluorescence fluorophore, dichlorodihydrofluorescein diacetate. This robust and low-cost method can properly identify the bacteria, uses only one excitation and emission wavelength, and can be simply implemented with current multimode plate readers.
Collapse
Affiliation(s)
- Abolfazl Zanghaei
- Department of Biomedical Engineering and Biophysics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Ali Ameri
- Department of Biomedical Engineering and Biophysics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Ali Hashemi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Vahid Soheili
- Department of Pharmaceutical Control, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Ghanbarian
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
20
|
Drouin P, da Silva ÉB, Tremblay J, Chevaux E, Apper E, Castex M. Inoculation with Lentilactobacillus buchneri alone or in combination with Lentilactobacillus hilgardii modifies gene expression, fermentation profile, and starch digestibility in high-moisture corn. Front Microbiol 2023; 14:1253588. [PMID: 37901805 PMCID: PMC10602787 DOI: 10.3389/fmicb.2023.1253588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/25/2023] [Indexed: 10/31/2023] Open
Abstract
Inoculants combining Lentilactobacillus buchneri and Lentilactobacillus hilgardii have been shown to improve the aerobic stability of high-moisture corn (HMC) and whole-plant corn silage, but the mode of action of this co-inoculation remains to be elucidated. This study used metatranscriptomics to evaluate the effects of inoculation with L. buchneri alone or combined with L. hilgardii on the bacterial community, gene expression, fermentation profile, and starch digestibility in HMC. High-moisture corn not inoculated (Control) or inoculated with L. buchneri NCIMB 40788 (LB) or L. buchneri NCIMB 40788 combined with L. hilgardii CNCM-I-4785 (Combo) was ensiled in mini silo bags for 30, 60, 120, and 180 days. The fermentation profile was evaluated at all time points. Metatranscriptomics was performed on samples collected on day 120. Combo had a greater alpha diversity richness index of contigs than LB and Control, and inoculation with Combo and LB modified the beta-diversity of contigs compared to Control. Out of 69 genes of interest, 20 were differentially expressed in LB compared to Control and 25 in Combo compared to Control. Of those differently expressed genes, 16 (10 of which were associated with carbohydrate metabolism and six with amino acid metabolism) were differently expressed in both LB and Combo compared to Control, and all those genes were upregulated in the inoculated silages. When we compared Combo and LB, we found seven genes expressed differently, four associated with carbohydrate metabolism and downregulated in Combo, and three associated with amino acid metabolism and upregulated in Combo. At day 120, the inoculated silages had more culturable lactic acid bacteria, higher Lactobacillus relative abundance, and lower Leuconostoc relative abundance than Control. The concentration of acetic acid remained low throughout ensiling in Control, but in LB and Combo, it increased up to day 60 and remained stable from day 60 to 180. The 1,2-propanediol was only detected in LB and Combo. Inoculation did not affect the concentration of starch, but starch digestibility was greater in Combo than in Control. Inoculation of HMC with Combo modified the gene expression and fermentation profile compared to Control and LB, improving starch digestibility compared to uninoculated HMC.
Collapse
Affiliation(s)
- Pascal Drouin
- Independent Researcher, Saint-Jean-sur-Richelieu, QC, Canada
| | | | - Julien Tremblay
- Energy, Mining, and Environment, National Research Council of Canada, Montréal, QC, Canada
| | | | | | | |
Collapse
|
21
|
Averina OV, Kovtun AS, Mavletova DA, Ziganshin RH, Danilenko VN, Mihaylova D, Blazheva D, Slavchev A, Brazkova M, Ibrahim SA, Krastanov A. Oxidative Stress Response of Probiotic Strain Bifidobacterium longum subsp. longum GT15. Foods 2023; 12:3356. [PMID: 37761064 PMCID: PMC10530004 DOI: 10.3390/foods12183356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/01/2023] [Accepted: 09/02/2023] [Indexed: 09/29/2023] Open
Abstract
Bifidobacterium is a predominant and important genus in the bacterial population of the human gut microbiota. Despite the increasing number of studies on the beneficial functionality of bifidobacteria for human health, knowledge about their antioxidant potential is still insufficient. Several in vivo and in vitro studies of Bifidobacterium strains and their cellular components have shown good antioxidant capacity that provided a certain protection of their own and the host's cells. Our work presents the data of transcriptomic, proteomic, and metabolomic analyses of the growing and stationary culture of the probiotic strain B. longum subsp. longum GT15 after exposure to hydrogen peroxide for 2 h and oxygen for 2 and 4 h. The results of the analysis of the sequenced genome of B. longum GT15 showed the presence of 16 gene-encoding proteins with known antioxidant functions. The results of the full transcriptomic analysis demonstrated a more than two-fold increase of levels of transcripts for eleven genes, encoding proteins with antioxidant functions. Proteomic data analysis showed an increased level of more than two times for glutaredoxin and thioredoxin after the exposure to oxygen, which indicates that the thioredoxin-dependent antioxidant system may be the major redox homeostasis system in B. longum bacteria. We also found that the levels of proteins presumably involved in global stress, amino acid metabolism, nucleotide and carbohydrate metabolism, and transport had significantly increased in response to oxidative stress. The metabolic fingerprint analysis also showed good discrimination between cells responding to oxidative stress and the untreated controls. Our results provide a greater understanding of the mechanism of oxidative stress response in B. longum and the factors that contribute to its survival in functional food products.
Collapse
Affiliation(s)
- Olga V. Averina
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991 Moscow, Russia; (A.S.K.); (D.A.M.); (V.N.D.)
| | - Aleksey S. Kovtun
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991 Moscow, Russia; (A.S.K.); (D.A.M.); (V.N.D.)
| | - Dilara A. Mavletova
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991 Moscow, Russia; (A.S.K.); (D.A.M.); (V.N.D.)
| | - Rustam H. Ziganshin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia;
| | - Valery N. Danilenko
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991 Moscow, Russia; (A.S.K.); (D.A.M.); (V.N.D.)
| | - Dasha Mihaylova
- Department of Biotechnology, University of Food Technologies, 4002 Plovdiv, Bulgaria; (D.M.); (A.K.)
| | - Denica Blazheva
- Department of Microbiology, University of Food Technologies, 4002 Plovdiv, Bulgaria; (D.B.); (A.S.)
| | - Aleksandar Slavchev
- Department of Microbiology, University of Food Technologies, 4002 Plovdiv, Bulgaria; (D.B.); (A.S.)
| | - Mariya Brazkova
- Department of Biotechnology, University of Food Technologies, 4002 Plovdiv, Bulgaria; (D.M.); (A.K.)
| | - Salam A. Ibrahim
- Food Microbiology and Biotechnology Laboratory, Food and Nutritional Science Program, North Carolina A&T State University, Greensboro, NC 27411-1064, USA;
| | - Albert Krastanov
- Department of Biotechnology, University of Food Technologies, 4002 Plovdiv, Bulgaria; (D.M.); (A.K.)
| |
Collapse
|
22
|
Naamala J, Subramanian S, Msimbira LA, Smith DL. Effect of NaCl stress on exoproteome profiles of Bacillus amyloliquefaciens EB2003A and Lactobacillus helveticus EL2006H. Front Microbiol 2023; 14:1206152. [PMID: 37700863 PMCID: PMC10493332 DOI: 10.3389/fmicb.2023.1206152] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/31/2023] [Indexed: 09/14/2023] Open
Abstract
Salt stress can affect survival, multiplication and ability of plant growth promoting microorganisms to enhance plant growth. Changes in a microbe's proteome profile is one of the mechanisms employed by PGPM to enhance tolerance of salt stress. This study was focused on understanding changes in the exoproteome profile of Bacillus amyloliquefaciens EB2003A and Lactobacillus helveticus EL2006H when exposed to salt stress. The strains were cultured in 100 mL M13 (B. amyloliquefaciens) and 100 mL De man, Rogosa and Sharpe (MRS) (L. helveticus) media, supplemented with 200 and 0 mM NaCl (control), at pH 7.0. The strains were then incubated for 48 h (late exponential growth phase), at 120 rpm and 30 (B. amyloliquefaciens) and 37 (L. helveticus) °C. The microbial cultures were then centrifuged and filtered sterilized, to obtain cell free supernatants whose proteome profiles were studied using LC-MS/MS analysis and quantified using scaffold. Results of the study revealed that treatment with 200 mM NaCl negatively affected the quantity of identified proteins in comparison to the control, for both strains. There was upregulation and downregulation of some proteins, even up to 100%, which resulted in identification of proteins significantly unique between the control or 200 mM NaCl (p ≤ 0.05), for both microbial species. Proteins unique to 200 mM NaCl were mostly those involved in cell wall metabolism, substrate transport, oxidative stress tolerance, gene expression and DNA replication and repair. Some of the identified unique proteins have also been reported to enhance plant growth. In conclusion, based on the results of the work described here, PGPM alter their exoproteome profile when exposed to salt stress, potentially upregulating proteins that enhance their tolerance to this stress.
Collapse
Affiliation(s)
| | | | | | - Donald L. Smith
- Department of Plant Science, McGill University, Montreal, QC, Canada
| |
Collapse
|
23
|
Richardson-Sanchez T, Chan ACK, Sabatino B, Lin H, Gaynor EC, Murphy MEP. Dissecting components of the Campylobacter jejuni fetMP-fetABCDEF gene cluster in iron scavenging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.05.547857. [PMID: 37461706 PMCID: PMC10350000 DOI: 10.1101/2023.07.05.547857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2023]
Abstract
Campylobacter jejuni is a leading cause of bacterial gastroenteritis worldwide. Acute infection can be antecedent to highly debilitating long-term sequelae. Expression of iron acquisition systems is vital for C. jejuni to survive the low iron availability within the human gut. The C. jejuni fetMP-fetABCDEF gene cluster is known to be upregulated during human infection and under iron limitation. While FetM and FetP have been functionally linked to iron transport in prior work, here we assess the contribution by each of the downstream genes ( fetABCDEF ) to C. jejuni growth during both iron-depleted and iron-replete conditions. Significant growth impairment was observed upon disruption of fetA , fetB, fetC , and fetD , suggesting a role in iron acquisition for each encoded protein. FetA expression was modulated by iron-availability but not dependent on the presence of FetB, FetC, FetD, FetE or FetF. Functions of the putative thioredoxins FetE and FetF were redundant in iron scavenging, requiring a double deletion (Δ fetEF ) to exhibit a growth defect. C. jejuni FetE was expressed and the structure solved to 1.50 Å, revealing structural similarity to thiol-disulfide oxidases. Functional characterization in biochemical assays showed that FetE reduced insulin at a slower rate than E. coli Trx and that together, FetEF promoted substrate oxidation in cell extracts, suggesting that FetE (and presumably FetF) are oxidoreductases that can mediate oxidation in vivo . This study advances our understanding of the contributions by the fetMP-fetABCDEF gene cluster to virulence at a genetic and functional level, providing foundational knowledge towards mitigating C. jejuni -related morbidity and mortality.
Collapse
|
24
|
Elbehiry A, Marzouk E, Moussa I, Mushayt Y, Algarni AA, Alrashed OA, Alghamdi KS, Almutairi NA, Anagreyyah SA, Alzahrani A, Almuzaini AM, Alzaben F, Alotaibi MA, Anjiria SA, Abu-Okail A, Abalkhail A. The Prevalence of Multidrug-Resistant Acinetobacter baumannii and Its Vaccination Status among Healthcare Providers. Vaccines (Basel) 2023; 11:1171. [PMID: 37514987 PMCID: PMC10384490 DOI: 10.3390/vaccines11071171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 07/30/2023] Open
Abstract
There is growing concern among healthcare providers worldwide regarding the prevalence of multidrug-resistant Acinetobacter baumannii (A. baumannii). Some of the worst hospital-acquired infections, often in intensive care units (ICUs), are caused by this bacterial pathogen. In recent years, the rise in multidrug-resistant A. baumannii has been linked to the overuse of antimicrobial drugs and the lack of adequate infection control measures. Infections caused by this bacterial pathogen are the result of prolonged hospitalization and ICU stays, and they are associated with increased morbidity and mortality. This review outlines the epidemiology, risk factors, and antimicrobial resistance associated with A. baumannii in various countries, with a special focus on the Kingdom of Saudi Arabia. In response to the growing concern regarding this drug-resistant bacteria, fundamental information about its pathology has been incorporated into the development of vaccines. Although these vaccines have been successful in animal models, their effectiveness in humans remains unproven. The review will discuss the development of A. baumannii vaccines, potential related obstacles, and efforts to find an effective strategy against this pathogen.
Collapse
Affiliation(s)
- Ayman Elbehiry
- Department of Public Health, College of Public Health and Health Informatics, Qassim University, Al Bukayriyah 52741, Saudi Arabia
- Department of Bacteriology, Mycology and Immunology, Faculty of Veterinary Medicine, University of Sadat City, Sadat City 32511, Egypt
| | - Eman Marzouk
- Department of Public Health, College of Public Health and Health Informatics, Qassim University, Al Bukayriyah 52741, Saudi Arabia
| | - Ihab Moussa
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Yazeed Mushayt
- Department of Support Service, King Fahad Armed Hospital, Jeddah 23311, Saudi Arabia
| | | | - Osama Ali Alrashed
- Family Medicine Department, King Fahad Armed Hospital, Jeddah 23311, Saudi Arabia
| | - Khalid Saad Alghamdi
- Family Medicine Department, King Fahad Armed Hospital, Jeddah 23311, Saudi Arabia
| | - Naif Ahmed Almutairi
- Family Medicine Department, King Fahad Armed Hospital, Jeddah 23311, Saudi Arabia
| | | | - Anwar Alzahrani
- Cardiac Center, King Fahad Armed Forces Hospital, Jeddah 23311, Saudi Arabia
| | - Abdulaziz M Almuzaini
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 52571, Saudi Arabia
| | - Feras Alzaben
- Department of Food Service, King Fahad Armed Hospital, Jeddah 23311, Saudi Arabia
| | | | | | - Akram Abu-Okail
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 52571, Saudi Arabia
| | - Adil Abalkhail
- Department of Public Health, College of Public Health and Health Informatics, Qassim University, Al Bukayriyah 52741, Saudi Arabia
| |
Collapse
|
25
|
Saikat ASM. Computational approaches for molecular characterization and structure-based functional elucidation of a hypothetical protein from Mycobacterium tuberculosis. Genomics Inform 2023; 21:e25. [PMID: 37415455 PMCID: PMC10326535 DOI: 10.5808/gi.23001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 05/04/2023] [Accepted: 05/04/2023] [Indexed: 07/08/2023] Open
Abstract
Adaptation of infections and hosts has resulted in several metabolic mechanisms adopted by intracellular pathogens to combat the defense responses and the lack of fuel during infection. Human tuberculosis caused by Mycobacterium tuberculosis (MTB) is the world's first cause of mortality tied to a single disease. This study aims to characterize and anticipate potential antigen characteristics for promising vaccine candidates for the hypothetical protein of MTB through computational strategies. The protein is associated with the catalyzation of dithiol oxidation and/or disulfide reduction because of the protein's anticipated disulfide oxidoreductase properties. This investigation analyzed the protein's physicochemical characteristics, protein-protein interactions, subcellular locations, anticipated active sites, secondary and tertiary structures, allergenicity, antigenicity, and toxicity properties. The protein has significant active amino acid residues with no allergenicity, elevated antigenicity, and no toxicity.
Collapse
Affiliation(s)
- Abu Saim Mohammad Saikat
- Department of Biochemistry and Molecular Biology, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| |
Collapse
|
26
|
Rauthan K, Joshi S, Kumar L, Goel D, Kumar S. Functional annotation of uncharacterized proteins from Fusobacterium nucleatum: identification of virulence factors. Genomics Inform 2023; 21:e21. [PMID: 37415454 PMCID: PMC10326533 DOI: 10.5808/gi.22065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 05/12/2023] [Accepted: 05/23/2023] [Indexed: 07/08/2023] Open
Abstract
Fusobacterium nucleatum is a gram-negative bacteria associated with diverse infections like appendicitis and colorectal cancer. It mainly attacks the epithelial cells in the oral cavity and throat of the infected individual. It has a single circular genome of 2.7 Mb. Many proteins in F. nucleatum genome are listed as "Uncharacterized." Annotation of these proteins is crucial for obtaining new facts about the pathogen and deciphering the gene regulation, functions, and pathways along with discovery of novel target proteins. In the light of new genomic information, an armoury of bioinformatic tools were used for predicting the physicochemical parameters, domain and motif search, pattern search, and localization of the uncharacterized proteins. The programs such as receiver operating characteristics determine the efficacy of the databases that have been employed for prediction of different parameters at 83.6%. Functions were successfully assigned to 46 uncharacterized proteins which included enzymes, transporter proteins, membrane proteins, binding proteins, etc. Apart from the function prediction, the proteins were also subjected to string analysis to reveal the interacting partners. The annotated proteins were also put through homology-based structure prediction and modeling using Swiss PDB and Phyre2 servers. Two probable virulent factors were also identified which could be investigated further for potential drug-related studies. The assigning of functions to uncharacterized proteins has shown that some of these proteins are important for cell survival inside the host and can act as effective drug targets.
Collapse
Affiliation(s)
- Kanchan Rauthan
- Department of Biotechnology, H.N.B. Garhwal University, Srinagar Garhwal, Uttarakhnd 246174, India
| | - Saranya Joshi
- Department of Biotechnology, H.N.B. Garhwal University, Srinagar Garhwal, Uttarakhnd 246174, India
| | - Lokesh Kumar
- Department of Biotechnology, H.N.B. Garhwal University, Srinagar Garhwal, Uttarakhnd 246174, India
| | - Divya Goel
- Department of Biotechnology, H.N.B. Garhwal University, Srinagar Garhwal, Uttarakhnd 246174, India
| | - Sudhir Kumar
- Department of Biotechnology, H.N.B. Garhwal University, Srinagar Garhwal, Uttarakhnd 246174, India
| |
Collapse
|
27
|
Behera S, Das S. Potential and prospects of Actinobacteria in the bioremediation of environmental pollutants: Cellular mechanisms and genetic regulations. Microbiol Res 2023; 273:127399. [PMID: 37150049 DOI: 10.1016/j.micres.2023.127399] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/22/2023] [Accepted: 04/30/2023] [Indexed: 05/09/2023]
Abstract
Increasing industrialization and anthropogenic activities have resulted in the release of a wide variety of pollutants into the environment including pesticides, polycyclic aromatic hydrocarbons (PAHs), and heavy metals. These pollutants pose a serious threat to human health as well as to the ecosystem. Thus, the removal of these compounds from the environment is highly important. Mitigation of the environmental pollution caused by these pollutants via bioremediation has become a promising approach nowadays. Actinobacteria are a group of eubacteria mostly known for their ability to produce secondary metabolites. The morphological features such as spore formation, filamentous growth, higher surface area to volume ratio, and cellular mechanisms like EPS secretion, and siderophore production in Actinobacteria render higher resistance and biodegradation ability. In addition, these bacteria possess several oxidoreductase systems (oxyR, catR, furA, etc.) which help in bioremediation. Actinobacteria genera including Arthrobacter, Rhodococcus, Streptomyces, Nocardia, Microbacterium, etc. have shown great potential for the bioremediation of various pollutants. In this review, the bioremediation ability of these bacteria has been discussed in detail. The utilization of various genera of Actinobacteria for the biodegradation of organic pollutants, including pesticides and PAHs, and inorganic pollutants like heavy metals has been described. In addition, the cellular mechanisms in these microbes which help to withstand oxidative stress have been discussed. Finally, this review explores the Actinobacteria mediated strategies and recent technologies such as the utilization of mixed cultures, cell immobilization, plant-microbe interaction, utilization of biosurfactants and nanoparticles, etc., to enhance the bioremediation of various environmental pollutants.
Collapse
Affiliation(s)
- Shivananda Behera
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela 769 008, Odisha, India
| | - Surajit Das
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela 769 008, Odisha, India.
| |
Collapse
|
28
|
Zhao C, Jia X, Pan Y, Liao S, Zhang S, Ji C, Kuang G, Wu X, Liu Q, Tang Y, Fang L. Thioredoxin A of Streptococcus suis Serotype 2 Contributes to Virulence by Inhibiting the Expression of Pentraxin 3 to Promote Survival Within Macrophages. J Microbiol 2023; 61:433-448. [PMID: 37010796 DOI: 10.1007/s12275-023-00038-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/27/2023] [Accepted: 03/06/2023] [Indexed: 04/04/2023]
Abstract
Streptococcus suis serotype 2 (SS2) is an important zoonotic pathogen that can infect humans in contact with infected pigs or their byproducts. It can employ different types of genes to defend against oxidative stress and ensure its survival. The thioredoxin (Trx) system is a key antioxidant system that contributes adversity adaptation and pathogenicity. SS2 has been shown to encode putative thioredoxin genes, but the biological roles, coding sequence, and underlying mechanisms remains uncharacterized. Here, we demonstrated that SSU05_0237-ORF, from a clinical SS2 strain, ZJ081101, encodes a protein of 104 amino acids with a canonical CGPC active motif and an identity 70-85% similar to the thioredoxin A (TrxA) in other microorganisms. Recombinant TrxA efficiently catalyzed the thiol-disulfide oxidoreduction of insulin. The deletion of TrxA led to a significantly slow growth and markedly compromised tolerance of the pathogen to temperature stress, as well as impaired adhesion ability to pig intestinal epithelial cells (IPEC-J2). However, it was not involved in H2O2 and paraquat-induced oxidative stress. Compared with the wild-type strain, the ΔTrxA strain was more susceptible to killing by macrophages through increasing NO production. Treatment with TrxA mutant strain also significantly attenuated cytotoxic effects on RAW 264.7 cells by inhibiting inflammatory response and apoptosis. Knockdown of pentraxin 3 in RAW 264.7 cells was more vulnerable to phagocytic activity, and TrxA promoted SS2 survival in phagocytic cells depending on pentraxin 3 activity compared with the wild-type strain. Moreover, a co-inoculation experiment in mice revealed that TrxA mutant strain is far more easily cleared from the body than the wild type strain in the period from 8-24 h, and exhibits significantly attenuated oxidative stress and liver injury. In summary, we reveal the important role of TrxA in the pathogenesis of SS2.
Collapse
Affiliation(s)
- Chijun Zhao
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410125, China
| | - Xinglin Jia
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410125, China
| | - Yanying Pan
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410125, China
| | - Simeng Liao
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
| | - Shuo Zhang
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
- South Southwest Agriculture and Animal Husbandry Group, Ltd, Kunming, 650217, China
| | - Chunxiao Ji
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410125, China
| | - Guangwei Kuang
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
| | - Xin Wu
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
| | - Quan Liu
- School of Life Science and Engineering, Foshan University, Foshan, 528225, Guangdong, China
| | - Yulong Tang
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China.
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Hefei, 230001, China.
| | - Lihua Fang
- School of Life Science and Engineering, Foshan University, Foshan, 528225, Guangdong, China.
| |
Collapse
|
29
|
Severino R, Moreno-Paz M, Puente-Sánchez F, Sánchez-García L, Risso VA, Sanchez-Ruiz JM, Cabrol N, Parro V. Immunoanalytical Approach for Detecting and Identifying Ancestral Peptide Biomarkers in Early Earth Analogue Environments. Anal Chem 2023; 95:5323-5330. [PMID: 36926836 PMCID: PMC10061368 DOI: 10.1021/acs.analchem.2c05386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/13/2023] [Indexed: 03/18/2023]
Abstract
Several mass spectrometry and spectroscopic techniques have been used in the search for molecular biomarkers on Mars. A major constraint is their capability to detect and identify large and complex compounds such as peptides or other biopolymers. Multiplex immunoassays can detect these compounds, but antibodies must be produced for a large number of sequence-dependent molecular targets. Ancestral Sequence Reconstruction (ASR) followed by protein "resurrection" in the lab can help to narrow the selection of targets. Herein, we propose an immunoanalytical method to identify ancient and universally conserved protein/peptide sequences as targets for identifying ancestral biomarkers in nature. We have developed, tested, and validated this approach by producing antibodies to eight previously described ancestral resurrected proteins (three β-lactamases, three thioredoxins, one Elongation Factor Tu, and one RuBisCO, all of them theoretically dated as Precambrian), and used them as a proxy to search for any potential feature of them that could be present in current natural environments. By fluorescent sandwich microarray immunoassays (FSMI), we have detected positive immunoreactions with antibodies to the oldest β-lactamase and thioredoxin proteins (ca. 4 Ga) in samples from a hydrothermal environment. Fine epitope mapping and inhibitory immunoassays allowed the identification of well-conserved epitope peptide sequences that resulted from ASR and were present in the sample. We corroborated these results by metagenomic sequencing and found several genes encoding analogue proteins with significant matches to the peptide epitopes identified with the antibodies. The results demonstrated that peptides inferred from ASR studies have true counterpart analogues in Nature, which validates and strengthens the well-known ASR/protein resurrection technique and our immunoanalytical approach for investigating ancient environments and metabolisms on Earth and elsewhere.
Collapse
Affiliation(s)
- Rita Severino
- Centro
de Astrobiología (CAB), CSIC-INTA, 28850 Torrejón de Ardoz, Madrid, Spain
- PhD
Program in Space Research and Astrobiology, University of Alcalá (UAH), 28805 Alcalá de Henares, Madrid, Spain
| | - Mercedes Moreno-Paz
- Centro
de Astrobiología (CAB), CSIC-INTA, 28850 Torrejón de Ardoz, Madrid, Spain
| | - Fernando Puente-Sánchez
- Department
of Aquatic Sciences and Assessment, Swedish
University of Agricultural Sciences (SLU), 75651 Uppsala, Sweden
| | - Laura Sánchez-García
- Centro
de Astrobiología (CAB), CSIC-INTA, 28850 Torrejón de Ardoz, Madrid, Spain
| | - Valeria A. Risso
- Departamento
de Química Física, Facultad de Ciencias, Unidad de Excelencia
de Química Aplicada a Biomedicina y Medioambiente (UEQ), Universidad de Granada, 18071 Granada, Spain
| | - Jose M. Sanchez-Ruiz
- Departamento
de Química Física, Facultad de Ciencias, Unidad de Excelencia
de Química Aplicada a Biomedicina y Medioambiente (UEQ), Universidad de Granada, 18071 Granada, Spain
| | - Nathalie Cabrol
- Carl
Sagan Center for the Study of Life in the Universe, SETI Institute, Mountain
View, California 94043, United States
| | - Victor Parro
- Centro
de Astrobiología (CAB), CSIC-INTA, 28850 Torrejón de Ardoz, Madrid, Spain
| |
Collapse
|
30
|
He J, Liu S, Fang Q, Gu H, Hu Y. The Thioredoxin System in Edwardsiella piscicida Contributes to Oxidative Stress Tolerance, Motility, and Virulence. Microorganisms 2023; 11:827. [PMID: 37110252 PMCID: PMC10145099 DOI: 10.3390/microorganisms11040827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/19/2023] [Accepted: 03/20/2023] [Indexed: 04/29/2023] Open
Abstract
Edwardsiella piscicida is an important fish pathogen that causes substantial economic losses. In order to understand its pathogenic mechanism, additional new virulence factors need to be identified. The bacterial thioredoxin system is a major disulfide reductase system, but its function is largely unknown in E. piscicida. In this study, we investigated the roles of the thioredoxin system in E. piscicida (named TrxBEp, TrxAEp, and TrxCEp, respectively) by constructing a correspondingly markerless in-frame mutant strain: ΔtrxB, ΔtrxA, and ΔtrxC, respectively. We found that (i) TrxBEp is confirmed as an intracellular protein, which is different from the prediction made by the Protter illustration; (ii) compared to the wild-type strain, ΔtrxB exhibits resistance against H2O2 stress but high sensitivity to thiol-specific diamide stress, while ΔtrxA and ΔtrxC are moderately sensitive to both H2O2 and diamide conditions; (iii) the deletions of trxBEp, trxAEp, and trxCEp damage E. piscicida's flagella formation and motility, and trxBEp plays a decisive role; (iv) deletions of trxBEp, trxAEp, and trxCEp substantially abate bacterial resistance against host serum, especially trxBEp deletion; (v) trxAEp and trxCEp, but not trxBEp, are involved in bacterial survival and replication in phagocytes; (vi) the thioredoxin system participates in bacterial dissemination in host immune tissues. These findings indicate that the thioredoxin system of E. piscicida plays an important role in stress resistance and virulence, which provides insight into the pathogenic mechanism of E. piscicida.
Collapse
Affiliation(s)
- Jiaojiao He
- School of Life Sciences, Hainan University, Haikou 570228, China
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Su Liu
- School of Life Sciences, Hainan University, Haikou 570228, China
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Qingjian Fang
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Hanjie Gu
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-Resources, Haikou 571101, China
| | - Yonghua Hu
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-Resources, Haikou 571101, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266071, China
| |
Collapse
|
31
|
Marcos-Fernández R, Blanco-Míguez A, Ruiz L, Margolles A, Ruas-Madiedo P, Sánchez B. Towards the isolation of more robust next generation probiotics: The first aerotolerant Bifidobacterium bifidum strain. Food Res Int 2023; 165:112481. [PMID: 36869494 DOI: 10.1016/j.foodres.2023.112481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 11/20/2022] [Accepted: 01/11/2023] [Indexed: 01/19/2023]
Abstract
This work reports on the first described aerotolerant Bifidobacterium bifidum strain, Bifidobacterium bifidum IPLA60003, which has the ability to form colonies on the surface of agar plates under aerobic conditions, a weird phenotype that to our knowledge has never been observed in B. bifidum. The strain IPLA60003 was generated after random UV mutagenesis from an intestinal isolate. It incorporates 26 single nucleotide polymorphisms that activate the expression of native oxidative-defense mechanisms such as the alkyl hydroxyperoxide reductase, the glycolytic pathway and several genes coding for enzymes involved in redox reactions. In the present work, we discuss the molecular mechanisms underlying the aerotolerance phenotype of B. bifidum IPLA60003, which will open new strategies for the selection and inclusion of probiotic gut strains and next generation probiotics into functional foods.
Collapse
Affiliation(s)
- Raquel Marcos-Fernández
- Functionality and Ecology of Beneficial Microbes (MicroHealth) Group, Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias - Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Villaviciosa, Asturias, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Asturias, Spain
| | - Aitor Blanco-Míguez
- Functionality and Ecology of Beneficial Microbes (MicroHealth) Group, Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias - Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Villaviciosa, Asturias, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Asturias, Spain
| | - Lorena Ruiz
- Functionality and Ecology of Beneficial Microbes (MicroHealth) Group, Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias - Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Villaviciosa, Asturias, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Asturias, Spain
| | - Abelardo Margolles
- Functionality and Ecology of Beneficial Microbes (MicroHealth) Group, Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias - Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Villaviciosa, Asturias, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Asturias, Spain
| | - Patricia Ruas-Madiedo
- Functionality and Ecology of Beneficial Microbes (MicroHealth) Group, Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias - Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Villaviciosa, Asturias, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Asturias, Spain.
| | - Borja Sánchez
- Functionality and Ecology of Beneficial Microbes (MicroHealth) Group, Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias - Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Villaviciosa, Asturias, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Asturias, Spain.
| |
Collapse
|
32
|
Geng B, Liu S, Chen Y, Wu Y, Wang Y, Zhou X, Li H, Li M, Yang S. A plasmid-free Zymomonas mobilis mutant strain reducing reactive oxygen species for efficient bioethanol production using industrial effluent of xylose mother liquor. Front Bioeng Biotechnol 2022; 10:1110513. [PMID: 36619397 PMCID: PMC9816438 DOI: 10.3389/fbioe.2022.1110513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
Genome minimization is an effective way for industrial chassis development. In this study, Zymomonas mobilis ZMNP, a plasmid-free mutant strain of Z. mobilis ZM4 with four native plasmids deleted, was constructed using native type I-F CRISPR-Cas system. Cell growth of ZMNP under different temperatures and industrial effluent of xylose mother liquor were examined to investigate the impact of native plasmid removal. Despite ZMNP grew similarly as ZM4 under different temperatures, ZMNP had better xylose mother liquor utilization than ZM4. In addition, genomic, transcriptomic, and proteomic analyses were applied to unravel the molecular changes between ZM4 and ZMNP. Whole-genome resequencing result indicated that an S267P mutation in the C-terminal of OxyR, a peroxide-sensing transcriptional regulator, probably alters the transcription initiation of antioxidant genes for stress responses. Transcriptomic and proteomic studies illustrated that the reason that ZMNP utilized the toxic xylose mother liquor better than ZM4 was probably due to the upregulation of genes in ZMNP involving in stress responses as well as cysteine biosynthesis to accelerate the intracellular ROS detoxification and nucleic acid damage repair. This was further confirmed by lower ROS levels in ZMNP compared to ZM4 in different media supplemented with furfural or ethanol. The upregulation of stress response genes due to the OxyR mutation to accelerate ROS detoxification and DNA/RNA repair not only illustrates the underlying mechanism of the robustness of ZMNP in the toxic xylose mother liquor, but also provides an idea for the rational design of synthetic inhibitor-tolerant microorganisms for economic lignocellulosic biochemical production.
Collapse
Affiliation(s)
- Binan Geng
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, School of Life Sciences, Hubei University, Wuhan, China
| | - Shuyi Liu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, School of Life Sciences, Hubei University, Wuhan, China
| | - Yunhao Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, School of Life Sciences, Hubei University, Wuhan, China
| | - Yalun Wu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, School of Life Sciences, Hubei University, Wuhan, China
| | - Yi Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, School of Life Sciences, Hubei University, Wuhan, China
| | - Xuan Zhou
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, School of Life Sciences, Hubei University, Wuhan, China
| | - Han Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, School of Life Sciences, Hubei University, Wuhan, China
| | - Mian Li
- Zhejiang Huakang Pharmaceutical Co., Ltd., Quzhou, Zhejiang, China
| | - Shihui Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, School of Life Sciences, Hubei University, Wuhan, China,*Correspondence: Shihui Yang,
| |
Collapse
|
33
|
Huo Y, Mo J, He Y, Twagirayezu G, Xue L. Transcriptome analysis reveals manganese tolerance mechanisms in a novel native bacterium of Bacillus altitudinis strain HM-12. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 846:157394. [PMID: 35850333 DOI: 10.1016/j.scitotenv.2022.157394] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 07/11/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Bacillus altitudinis HM-12, isolated from ferromanganese ore tailings, can resist up to 1200 mM Mn(II) when exposed to concentrations from 50 mM to 1400 mM. HM-12 exhibited high Mn(II) removal efficiency (90.6 %). We report the transcriptional profile of HM-12 using RNA-Seq and found 423 upregulated and 536 downregulated differentially expressed genes (DEGs) compared to the control. Gene Ontology analysis showed that DEGs were mainly linked with transporter activity, binding, catalytic activity in molecular function, cellular anatomical entity in cellular component, cellular process, and metabolic process. Kyoto Encyclopedia of Genes and Genomes analysis showed that DEGs were mostly mapped to membrane transport, signal transduction, carbohydrate and amino acid metabolism, energy metabolism, and cellular community pathways. Transport analysis showed that two manganese importer systems, mntH and mntABC, were significantly downregulated. The manganese efflux genes (mneS, yceF and ykoY) exhibited significant upregulation. Manganese homeostasis seems to be subtly regulated by manganese uptake and efflux genes. Moreover, it was found that copA as a Mn(II) oxidase gene and a copper chaperone gene copZ were considerably upregulated by signal transduction analysis. csoR encoding a transcriptional repressor which can regulate the copZA operon was upregulated. The strong Mn(II) oxidizing activity of HM-12 was also confirmed by physicochemical characterization. In metabolism and environmental information processing, yjqC encoding manganese catalase was significantly upregulated, while katE and katX encoding heme catalases were significantly downregulated. The antioxidant gene pcaC was significantly upregulated, but ykuU encoding alkyl hydroperoxide reductase, yojM encoding superoxide dismutase, and perR encoding redox-sensing transcriptional repressor were downregulated. These results highlight the oxidative activity of HM-12 by regulating the transcription of oxidase, catalase, peroxidase, and superoxide dismutase to sense the cellular redox status and prevent Mn(II) intoxication. This study provides relevant information on the biological tolerance and oxidation mechanisms in response to Mn(II) stress.
Collapse
Affiliation(s)
- Yanli Huo
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China; Key Laboratory of Extreme Environmental Microbial Resources and Engineering of Gansu Province, Lanzhou 730070, China
| | - Jiarun Mo
- School of Life Sciences, Lanzhou University, Lanzhou 730070, China
| | - Yuanyuan He
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China; Key Laboratory of Extreme Environmental Microbial Resources and Engineering of Gansu Province, Lanzhou 730070, China
| | - Gratien Twagirayezu
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Lingui Xue
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China; Key Laboratory of Extreme Environmental Microbial Resources and Engineering of Gansu Province, Lanzhou 730070, China.
| |
Collapse
|
34
|
Mandal M, Mandal S. Cross-biome metagenomic analyses of the impact of pollutants on taxonomic and functional diversity of bacterial communities from different geographical regions. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
35
|
A Two-Component-System-Governed Regulon That Includes a β-Lactamase Gene is Responsive to Cell Envelope Disturbance. mBio 2022; 13:e0174922. [PMID: 35968954 PMCID: PMC9426598 DOI: 10.1128/mbio.01749-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
β-Lactamase production facilitates bacterial survival in nature and affects many infection therapies. However, much of its regulation remains unexplored. We used a genetics-based approach to identify a two-component system (TCS) present in a strain of Burkholderia thailandensis essential for the regulated expression of a class A β-lactamase gene, penL, by sensing subtle envelope disturbance caused by β-lactams, polymyxin B, or other chemical agents. The genes encoding stress responses and resistance to various antibiotics were coregulated, as were the catabolic genes that enabled the B. thailandensis strain to grow on penicillin G or phenylacetate, a degradation product of penicillin G. This regulon has likely evolved to facilitate bacterial survival in the soil microbiome that contains a multitude of antibiotic producers. Practically, this regulatory system makes this TCS, which we named BesRS, an excellent drug target for the purpose of increasing antibiotic efficacy in combination therapies for Burkholderia infections.
Collapse
|
36
|
Aragaw TA, Bogale FM, Gessesse A. Adaptive Response of Thermophiles to Redox Stress and Their Role in the Process of dye Degradation From Textile Industry Wastewater. Front Physiol 2022; 13:908370. [PMID: 35795652 PMCID: PMC9251311 DOI: 10.3389/fphys.2022.908370] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/30/2022] [Indexed: 01/28/2023] Open
Abstract
Release of dye-containing textile wastewater into the environment causes severe pollution with serious consequences on aquatic life. Bioremediation of dyes using thermophilic microorganisms has recently attracted attention over conventional treatment techniques. Thermophiles have the natural ability to survive under extreme environmental conditions, including high dye concentration, because they possess stress response adaptation and regulation mechanisms. Therefore, dye detoxification by thermophiles could offer enormous opportunities for bioremediation at elevated temperatures. In addition, the processes of degradation generate reactive oxygen species (ROS) and subject cells to oxidative stress. However, thermophiles exhibit better adaptation to resist the effects of oxidative stress. Some of the major adaptation mechanisms of thermophiles include macromolecule repair system; enzymes such as superoxide dismutase, catalase, and glutathione peroxidase; and non-enzymatic antioxidants like extracellular polymeric substance (EPSs), polyhydroxyalkanoates (PHAs), etc. In addition, different bacteria also possess enzymes that are directly involved in dye degradation such as azoreductase, laccase, and peroxidase. Therefore, through these processes, dyes are first degraded into smaller intermediate products finally releasing products that are non-toxic or of low toxicity. In this review, we discuss the sources of oxidative stress in thermophiles, the adaptive response of thermophiles to redox stress and their roles in dye removal, and the regulation and crosstalk between responses to oxidative stress.
Collapse
Affiliation(s)
- Tadele Assefa Aragaw
- Faculty of Chemical and Food Engineering, Bahir Dar Institute of Technology, Bahir Dar University, Bahir Dar, Ethiopia
- Institute of Biotechnology, Addis Ababa University, Addis Ababa, Ethiopia
- *Correspondence: Tadele Assefa Aragaw,
| | - Fekadu Mazengiaw Bogale
- Faculty of Chemical and Food Engineering, Bahir Dar Institute of Technology, Bahir Dar University, Bahir Dar, Ethiopia
| | - Amare Gessesse
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, Palapye, Botswana
| |
Collapse
|
37
|
Thiol Reductases in Deinococcus Bacteria and Roles in Stress Tolerance. Antioxidants (Basel) 2022; 11:antiox11030561. [PMID: 35326211 PMCID: PMC8945050 DOI: 10.3390/antiox11030561] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/11/2022] [Accepted: 03/13/2022] [Indexed: 12/10/2022] Open
Abstract
Deinococcus species possess remarkable tolerance to extreme environmental conditions that generate oxidative damage to macromolecules. Among enzymes fulfilling key functions in metabolism regulation and stress responses, thiol reductases (TRs) harbour catalytic cysteines modulating the redox status of Cys and Met in partner proteins. We present here a detailed description of Deinococcus TRs regarding gene occurrence, sequence features, and physiological functions that remain poorly characterised in this genus. Two NADPH-dependent thiol-based systems are present in Deinococcus. One involves thioredoxins, disulfide reductases providing electrons to protein partners involved notably in peroxide scavenging or in preserving protein redox status. The other is based on bacillithiol, a low-molecular-weight redox molecule, and bacilliredoxin, which together protect Cys residues against overoxidation. Deinococcus species possess various types of thiol peroxidases whose electron supply depends either on NADPH via thioredoxins or on NADH via lipoylated proteins. Recent data gained on deletion mutants confirmed the importance of TRs in Deinococcus tolerance to oxidative treatments, but additional investigations are needed to delineate the redox network in which they operate, and their precise physiological roles. The large palette of Deinococcus TR representatives very likely constitutes an asset for the maintenance of redox homeostasis in harsh stress conditions.
Collapse
|
38
|
Ijaq J, Chandra D, Ray MK, Jagannadham MV. Investigating the Functional Role of Hypothetical Proteins From an Antarctic Bacterium Pseudomonas sp. Lz4W: Emphasis on Identifying Proteins Involved in Cold Adaptation. Front Genet 2022; 13:825269. [PMID: 35360867 PMCID: PMC8963723 DOI: 10.3389/fgene.2022.825269] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/07/2022] [Indexed: 11/28/2022] Open
Abstract
Exploring the molecular mechanisms behind bacterial adaptation to extreme temperatures has potential biotechnological applications. In the present study, Pseudomonas sp. Lz4W, a Gram-negative psychrophilic bacterium adapted to survive in Antarctica, was selected to decipher the molecular mechanism underlying the cold adaptation. Proteome analysis of the isolates grown at 4°C was performed to identify the proteins and pathways that are responsible for the adaptation. However, many proteins from the expressed proteome were found to be hypothetical proteins (HPs), whose function is unknown. Investigating the functional roles of these proteins may provide additional information in the biological understanding of the bacterial cold adaptation. Thus, our study aimed to assign functions to these HPs and understand their role at the molecular level. We used a structured insilico workflow combining different bioinformatics tools and databases for functional annotation. Pseudomonas sp. Lz4W genome (CP017432, version 1) contains 4493 genes and 4412 coding sequences (CDS), of which 743 CDS were annotated as HPs. Of these, from the proteome analysis, 61 HPs were found to be expressed consistently at the protein level. The amino acid sequences of these 61 HPs were submitted to our workflow and we could successfully assign a function to 18 HPs. Most of these proteins were predicted to be involved in biological mechanisms of cold adaptations such as peptidoglycan metabolism, cell wall organization, ATP hydrolysis, outer membrane fluidity, catalysis, and others. This study provided a better understanding of the functional significance of HPs in cold adaptation of Pseudomonas sp. Lz4W. Our approach emphasizes the importance of addressing the “hypothetical protein problem” for a thorough understanding of mechanisms at the cellular level, as well as, provided the assessment of integrating proteomics methods with various annotation and curation approaches to characterize hypothetical or uncharacterized protein data. The MS proteomics data generated from this study has been deposited to the ProteomeXchange through PRIDE with the dataset identifier–PXD029741.
Collapse
Affiliation(s)
- Johny Ijaq
- Metabolomics Facility, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Deepika Chandra
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| | - Malay Kumar Ray
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| | - M. V. Jagannadham
- Metabolomics Facility, School of Life Sciences, University of Hyderabad, Hyderabad, India
- *Correspondence: M. V. Jagannadham,
| |
Collapse
|
39
|
Cheng C, Han X, Xu J, Sun J, Li K, Han Y, Chen M, Song H. YjbH mediates the oxidative stress response and infection by regulating SpxA1 and the phosphoenolpyruvate-carbohydrate phosphotransferase system (PTS) in Listeria monocytogenes. Gut Microbes 2022; 13:1-19. [PMID: 33573432 PMCID: PMC7889195 DOI: 10.1080/19490976.2021.1884517] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The foodborne pathogen Listeria monocytogenes relies on its ability to fine-tune the expression of virulence factors and stress regulators in response to rapidly changing environments. Here, we reveal that YjbH, a putative thioredoxin family oxidoreductase, plays a pivotal role in bacterial adaption to oxidative stress and host infection. YjbH directly interacts with SpxA1, an ArsC family oxidative stress response regulator, and the deletion of YjbH compromised the oxidative stress tolerance of L. monocytogenes. Also, YjbH is required for the bacterial spread in host cells and proliferation in mouse organs, thereby contributing to virulence. Transcriptomic analysis of strains treated with Cd2+ revealed that most virulence genes and phosphoenolpyruvate-carbohydrate phosphotransferase system (PTS) genes were significantly downregulated in the absence of YjbH. However, YjbH inhibits PrfA expression when bacteria were grown in the media, suggesting that YjbH participates in regulating the virulence genes via a complicated regulatory network involving PrfA and PTS. Collectively, these findings provide a valuable model for clarifying the roles of thioredoxins from foodborne pathogens regarding improving survival in the external environment and, more importantly, successfully establishing infection within the host.
Collapse
Affiliation(s)
- Changyong Cheng
- College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, China-Australia Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Hangzhou, Zhejiang, P. R. China
| | - Xiao Han
- College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, China-Australia Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Hangzhou, Zhejiang, P. R. China
| | - Jiali Xu
- College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, China-Australia Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Hangzhou, Zhejiang, P. R. China
| | - Jing Sun
- College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, China-Australia Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Hangzhou, Zhejiang, P. R. China
| | - Kang Li
- College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, China-Australia Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Hangzhou, Zhejiang, P. R. China
| | - Yue Han
- College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, China-Australia Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Hangzhou, Zhejiang, P. R. China
| | - Mianmian Chen
- College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, China-Australia Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Hangzhou, Zhejiang, P. R. China
| | - Houhui Song
- College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, China-Australia Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Hangzhou, Zhejiang, P. R. China,CONTACT Houhui Song College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, China-Australia Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Hangzhou, Zhejiang311300, P. R. China
| |
Collapse
|
40
|
Proteomic response strategies of Pediococcus pentosaceus R1 isolated from Harbin dry sausages to oxidative stress. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101364] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
41
|
Structural and Biochemical Characterization of Thioredoxin-2 from Deinococcus radiodurans. Antioxidants (Basel) 2021; 10:antiox10111843. [PMID: 34829714 PMCID: PMC8615215 DOI: 10.3390/antiox10111843] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 12/19/2022] Open
Abstract
Thioredoxin (Trx), a ubiquitous protein showing disulfide reductase activity, plays critical roles in cellular redox control and oxidative stress response. Trx is a member of the Trx system, comprising Trx, Trx reductase (TrxR), and a cognate reductant (generally reduced nicotinamide adenine dinucleotide phosphate, NADPH). Bacterial Trx1 contains only the Trx-fold domain, in which the active site CXXC motif that is critical for the disulfide reduction activity is located. Bacterial Trx2 contains an N-terminal extension, which forms a zinc-finger domain, including two additional CXXC motifs. The multi-stress resistant bacterium Deinococcus radiodurans encodes both Trx1 (DrTrx1) and Trx2 (DrTrx2), which act as members of the enzymatic antioxidant systems. In this study, we constructed Δdrtrx1 and Δdrtrx2 mutants and examined their survival rates under H2O2 treated conditions. Both drtrx1 and drtrx2 genes were induced following H2O2 treatment, and the Δdrtrx1 and Δdrtrx2 mutants showed a decrease in resistance toward H2O2, compared to the wild-type. Native DrTrx1 and DrTrx2 clearly displayed insulin and DTNB reduction activity, whereas mutant DrTrx1 and DrTrx2, which harbors the substitution of conserved cysteine to serine in its active site CXXC motif, showed almost no reduction activity. Mutations in the zinc binding cysteines did not fully eliminate the reduction activities of DrTrx2. Furthermore, we solved the crystal structure of full-length DrTrx2 at 1.96 Å resolution. The N-terminal zinc-finger domain of Trx2 is thought to be involved in Trx-target interaction and, from our DrTrx2 structure, the orientation of the zinc-finger domain of DrTrx2 and its interdomain interaction, between the Trx-fold domain and the zinc-finger domain, is clearly distinguished from those of the other Trx2 structures.
Collapse
|
42
|
Bifidobacterium Longum: Protection against Inflammatory Bowel Disease. J Immunol Res 2021; 2021:8030297. [PMID: 34337079 PMCID: PMC8324359 DOI: 10.1155/2021/8030297] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 07/10/2021] [Indexed: 02/06/2023] Open
Abstract
The prevalence of inflammatory bowel disease (IBD), which includes ulcerative colitis (UC) and Crohn's disease (CD), increases gradually worldwide in the past decades. IBD is generally associated with the change of the immune system and gut microbiota, and the conventional treatments usually result in some side effects. Bifidobacterium longum, as colonizing bacteria in the intestine, has been demonstrated to be capable of relieving colitis in mice and can be employed as an alternative or auxiliary way for treating IBD. Here, the mechanisms of the Bifidobacterium longum in the treatment of IBD were summarized based on previous cell and animal studies and clinical trials testing bacterial therapies. This review will be served as a basis for future research on IBD treatment.
Collapse
|
43
|
Fassler R, Zuily L, Lahrach N, Ilbert M, Reichmann D. The Central Role of Redox-Regulated Switch Proteins in Bacteria. Front Mol Biosci 2021; 8:706039. [PMID: 34277710 PMCID: PMC8282892 DOI: 10.3389/fmolb.2021.706039] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 06/18/2021] [Indexed: 01/11/2023] Open
Abstract
Bacteria possess the ability to adapt to changing environments. To enable this, cells use reversible post-translational modifications on key proteins to modulate their behavior, metabolism, defense mechanisms and adaptation of bacteria to stress. In this review, we focus on bacterial protein switches that are activated during exposure to oxidative stress. Such protein switches are triggered by either exogenous reactive oxygen species (ROS) or endogenous ROS generated as by-products of the aerobic lifestyle. Both thiol switches and metal centers have been shown to be the primary targets of ROS. Cells take advantage of such reactivity to use these reactive sites as redox sensors to detect and combat oxidative stress conditions. This in turn may induce expression of genes involved in antioxidant strategies and thus protect the proteome against stress conditions. We further describe the well-characterized mechanism of selected proteins that are regulated by redox switches. We highlight the diversity of mechanisms and functions (as well as common features) across different switches, while also presenting integrative methodologies used in discovering new members of this family. Finally, we point to future challenges in this field, both in uncovering new types of switches, as well as defining novel additional functions.
Collapse
Affiliation(s)
- Rosi Fassler
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Safra Campus Givat Ram, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Lisa Zuily
- Aix-Marseille University, CNRS, BIP, UMR 7281, IMM, Marseille, France
| | - Nora Lahrach
- Aix-Marseille University, CNRS, BIP, UMR 7281, IMM, Marseille, France
| | - Marianne Ilbert
- Aix-Marseille University, CNRS, BIP, UMR 7281, IMM, Marseille, France
| | - Dana Reichmann
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Safra Campus Givat Ram, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
44
|
Rauch J, Barton J, Kwiatkowski M, Wunderlich M, Steffen P, Moderzynski K, Papp S, Höhn K, Schwanke H, Witt S, Richardt U, Mehlhoop U, Schlüter H, Pianka V, Fleischer B, Tappe D, Osterloh A. GroEL is an immunodominant surface-exposed antigen of Rickettsia typhi. PLoS One 2021; 16:e0253084. [PMID: 34111210 PMCID: PMC8191997 DOI: 10.1371/journal.pone.0253084] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 05/28/2021] [Indexed: 11/26/2022] Open
Abstract
Rickettsioses are neglected and emerging potentially fatal febrile diseases that are caused by obligate intracellular bacteria, rickettsiae. Rickettsia (R.) typhi and R. prowazekii constitute the typhus group (TG) of rickettsiae and are the causative agents of endemic and epidemic typhus, respectively. We recently generated a monoclonal antibody (BNI52) against R. typhi. Characterization of BNI52 revealed that it specifically recognizes TG rickettsiae but not the members of the spotted fever group (SFG) rickettsiae. We further show that BNI52 binds to protein fragments of ±30 kDa that are exposed on the bacterial surface and also present in the periplasmic space. These protein fragments apparently derive from the cytosolic GroEL protein of R. typhi and are also recognized by antibodies in the sera from patients and infected mice. Furthermore, BNI52 opsonizes the bacteria for the uptake by antigen presenting cells (APC), indicating a contribution of GroEL-specific antibodies to protective immunity. Finally, it is interesting that the GroEL protein belongs to 32 proteins that are differentially downregulated by R. typhi after passage through immunodeficient BALB/c CB17 SCID mice. This could be a hint that the rickettsia GroEL protein may have immunomodulatory properties as shown for the homologous protein from several other bacteria, too. Overall, the results of this study provide evidence that GroEL represents an immunodominant antigen of TG rickettsiae that is recognized by the humoral immune response against these pathogens and that may be interesting as a vaccine candidate. Apart from that, the BNI52 antibody represents a new tool for specific detection of TG rickettsiae in various diagnostic and experimental setups.
Collapse
Affiliation(s)
- Jessica Rauch
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Jessica Barton
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | | | - Malte Wunderlich
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Pascal Steffen
- University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Stefanie Papp
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Katharina Höhn
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Hella Schwanke
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Susanne Witt
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Ulricke Richardt
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Ute Mehlhoop
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | | | - Verena Pianka
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | | | - Dennis Tappe
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Anke Osterloh
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| |
Collapse
|
45
|
Phylogenomic Characterization of a Novel Corynebacterium Species Associated with Fatal Diphtheritic Stomatitis in Endangered Yellow-Eyed Penguins. mSystems 2021; 6:e0032021. [PMID: 34100641 PMCID: PMC8269222 DOI: 10.1128/msystems.00320-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Yellow-eyed penguins, Megadyptes antipodes, are an endangered species that are endemic to New Zealand. Outbreaks of diphtheritic stomatitis have caused significant mortality for this species, especially among young chicks. In this study, we isolated 16 Corynebacterium sp. isolates from the oral cavities of 2- to 14-day-old chicks at a range of infection stages and sequenced the genomes to understand their virulence mechanisms. Phylogenomic and matrix-assisted laser desorption ionization–time of flight (MALDI-TOF) characterization indicate that these strains belong to a novel Corynebacterium species. A simple multiplex PCR-based diagnostic assay has been developed to identify these strains rapidly and reliably. Similar to other corynebacteria, genomic islands and prophages introduced significant diversity among these strains that has potentially led to minor functional variations between the two lineages. Despite the presence of multiple corynebacterial virulence genes and a spaDEF-type pilus gene cluster among these strains, the survival rate was much higher in Galleria mellonella larvae than in those inoculated with Corynebacterium ulcerans NZRM 818 and Corynebacterium pseudotuberculosis NZRM 3004. Therefore, these strains are opportunistic pathogens causing high mortality among young penguin chicks due to a less-developed immune system. IMPORTANCE Yellow-eyed penguins, Megadyptes antipodes, are endangered species with a sharp decline in the numbers of breeding pairs over the last 2 decades. Diphtheritic stomatitis, characterized by a thick fibrinopurulent exudate in the oral cavities and symptoms, including inanition and significant weight loss, is responsible for significant mortality among the young chicks. These chicks are treated with antibiotics, amoxicillin-clavulanic acid or enrofloxacin, but do not always recover from the infection. The pathogen causing these infections and the mechanism of pathogenesis are unclear. This study has identified a novel Corynebacterium species to be associated with diphtheritic stomatitis in yellow-eyed penguins with potential virulence genes that are likely involved in pathogenesis. Importantly, a gene encoding an exotoxin, phospholipase D, is present among these strains. The inactivated form of this enzyme could potentially be used as an effective vaccine to protect these penguins from infection.
Collapse
|
46
|
Nordstedt NP, Jones ML. Genomic Analysis of Serratia plymuthica MBSA-MJ1: A Plant Growth Promoting Rhizobacteria That Improves Water Stress Tolerance in Greenhouse Ornamentals. Front Microbiol 2021; 12:653556. [PMID: 34046022 PMCID: PMC8144289 DOI: 10.3389/fmicb.2021.653556] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 04/14/2021] [Indexed: 12/26/2022] Open
Abstract
Water stress decreases the health and quality of horticulture crops by inhibiting photosynthesis, transpiration, and nutrient uptake. Application of plant growth promoting rhizobacteria (PGPR) can increase the growth, stress tolerance, and overall quality of field and greenhouse grown crops subjected to water stress. Here, we evaluated Serratia plymuthica MBSA-MJ1 for its ability to increase plant growth and quality of Petunia × hybrida (petunia), Impatiens walleriana (impatiens), and Viola × wittrockiana (pansy) plants recovering from severe water stress. Plants were treated weekly with inoculum of MBSA-MJ1, and plant growth and quality were evaluated 2 weeks after recovery from water stress. Application of S. plymuthica MBSA-MJ1 increased the visual quality and shoot biomass of petunia and impatiens and increased the flower number of petunia after recovery from water stress. In addition, in vitro characterizations showed that MBSA-MJ1 is a motile bacterium with moderate levels of antibiotic resistance that can withstand osmotic stress. Further, comprehensive genomic analyses identified genes putatively involved in bacterial osmotic and oxidative stress responses and the synthesis of osmoprotectants and vitamins that could potentially be involved in increasing plant water stress tolerance. This work provides a better understanding of potential mechanisms involved in beneficial plant-microbe interactions under abiotic stress using a novel S. plymuthica strain as a model.
Collapse
Affiliation(s)
- Nathan P Nordstedt
- Department of Horticulture and Crop Science, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH, United States
| | - Michelle L Jones
- Department of Horticulture and Crop Science, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH, United States
| |
Collapse
|
47
|
Bai H, Zhou D, Zhang X, Cao Y, Xiao X, Zhang Y, Yu Y. The responses of Salmonella enterica serovar Typhimurium to vanillin in apple juice through global transcriptomics. Int J Food Microbiol 2021; 347:109189. [PMID: 33838479 DOI: 10.1016/j.ijfoodmicro.2021.109189] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/09/2021] [Accepted: 03/24/2021] [Indexed: 11/29/2022]
Abstract
Salmonella enterica serovar Typhimurium can survive some extreme environment in food processing, and vanillin generally recognized as safe is bactericidal to pathogens. Thus, we need to explore the responses of S. Typhimurium to vanillin in order to apply this antimicrobial agent in food processing. In this study, we exposed S. Typhimurium to commercial apple juice with/without vanillin (3.2 mg/mL) at 45 °C for 75 min to determine the survival rate. Subsequently, the 10-min cultures were selected for transcriptomic analysis. Using high-throughput RNA sequencing, genes related to vanillin resistance and their expression changes of S. Typhimurium were identified. The survival curve showed that S. Typhimurium treated with vanillin were inactivated by 5.5 log after 75 min, while the control group only decreased by 2.3 log. Such a discrepancy showed the significant antibacterial effect of vanillin on S. Typhimurium. As a result, 265 differentially expressed genes (DEGs) were found when coping with vanillin, among which, 225 showed up-regulation and 40 DEGs were down-regulated. Treated with vanillin, S. Typhimurium significantly up-regulated genes involved in cell membrane, acid tolerance response (ATR) and oxidative stress response, cold shock cross-protection, DNA repair, virulence factors and some key regulators. Firstly, membrane-related genes, including outer membrane (bamE, mepS, ygdI, lolB), inner membrane (yaiY, yicS) and other proteins (yciC, yjcH), were significantly up-regulated because of the damaged cell membrane. Then, up-regulated proteins associated with arginine synthesis (ArgABCDIG) and inward transportation (ArtI, ArtJ, ArtP and HisP), participated in ATR to pump out the protons inside the cell in this scenario. Next, superoxide stress response triggered by vanillin was found to have a significant up-regulation as well, which was controlled by SoxRS regulon. Besides, NADH-associated (nuoA, nuoB, nuoK, nadE, fre and STM3021), thioredoxin (trxA, trxC, tpx and bcp) and glutaredoxin (grxC and grxD) DEGs led to the increase of the oxidative stress response. Cold shock proteins such as CspA and CspC showed an up-regulation, suggesting it might play a role in cross-protecting S. Typhimurium from vanillin stress. Furthermore, DEGs in DNA repair and virulence factors, including flagellar assembly, adhesins and type III secretion system were up-regulated. Some regulators like fur, rpoE and csrA played a pivotal role in response to the stress caused by vanillin. Therefore, this study sounds an alarm for the risks caused by stress tolerance of S. Typhimurium in food industry.
Collapse
Affiliation(s)
- Hong Bai
- School of Food Science and Engineering, South China University of Technology, Guangzhou City, Guangdong Province 510640, China
| | - Donggen Zhou
- Ningbo International Travel Healthcare Center, No.336 LiutingStreet, Haishu District, Ningbo City, Zhejiang Province 315012, China
| | - Xiaowei Zhang
- School of Food Science and Engineering, South China University of Technology, Guangzhou City, Guangdong Province 510640, China
| | - Yifang Cao
- School of Food Science and Engineering, South China University of Technology, Guangzhou City, Guangdong Province 510640, China
| | - Xinglong Xiao
- School of Food Science and Engineering, South China University of Technology, Guangzhou City, Guangdong Province 510640, China.
| | - Yan Zhang
- School of Food Science and Engineering, South China University of Technology, Guangzhou City, Guangdong Province 510640, China
| | - Yigang Yu
- School of Food Science and Engineering, South China University of Technology, Guangzhou City, Guangdong Province 510640, China.
| |
Collapse
|
48
|
Newsome L, Bacon CGD, Song H, Luo Y, Sherman DM, Lloyd JR. Natural attenuation of lead by microbial manganese oxides in a karst aquifer. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 754:142312. [PMID: 33254903 DOI: 10.1016/j.scitotenv.2020.142312] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/07/2020] [Accepted: 09/07/2020] [Indexed: 05/27/2023]
Abstract
Lead is a toxic environmental contaminant associated with current and historic mine sites. Here we studied the natural attenuation of Pb in a limestone cave system that receives drainage from the ancient Priddy Mineries, UK. Extensive deposits of manganese oxides were observed to be forming on the cave walls and as coatings in the stream beds. Analysis of these deposits identified them as birnessite (δ-MnO2), with some extremely high concentrations of sorbed Pb (up to 56 wt%) also present. We hypothesised that these cave crusts were actively being formed by microbial Mn(II)-oxidation, and to investigate this the microbial communities were characterised by DNA sequencing, enrichment and isolation experiments. The birnessite deposits contained abundant and diverse prokaryotes and fungi, with ~5% of prokaryotes and ~ 10% of fungi closely related to known heterotrophic Mn(II)-oxidisers. A substantial proportion (up to 17%) of prokaryote sequences were assigned to groups known as autotrophic ammonia and nitrite oxidisers, suggesting that nitrogen cycling may play an important role in contributing energy and carbon to the cave crust microbial communities and consequently the formation of Mn(IV) oxides and Pb attenuation. Enrichment and isolation experiments showed that the birnessite deposits contained Mn(II)-oxidising microorganisms, and two isolates (Streptomyces sp. and Phyllobacterium sp.) could oxidise Mn(II) in the presence of 0.1 mM Pb. Supplying the enrichment cultures with acetate as a source of energy and carbon stimulated Mn(II)-oxidation, but excess organics in the form of glucose generated aqueous Mn(II), likely via microbial Mn(IV)-reduction. In this karst cave, microbial Mn(II)-oxidation contributes to the active sequestration and natural attenuation of Pb from contaminated waters, and therefore may be considered a natural analogue for the design of wastewater remediation systems and for understanding the geochemical controls on karst groundwater quality, a resource relied upon by billions of people across the globe.
Collapse
Affiliation(s)
- Laura Newsome
- Williamson Research Centre, Department of Earth and Environmental Sciences, University of Manchester, Manchester M13 9PL, United Kingdom.
| | - Charles G D Bacon
- School of Earth Sciences, University of Bristol, Wills Memorial Building, Queens Road, Bristol BS8 1RJ, United Kingdom
| | - Hokyung Song
- Williamson Research Centre, Department of Earth and Environmental Sciences, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Yunyao Luo
- Williamson Research Centre, Department of Earth and Environmental Sciences, University of Manchester, Manchester M13 9PL, United Kingdom
| | - David M Sherman
- School of Earth Sciences, University of Bristol, Wills Memorial Building, Queens Road, Bristol BS8 1RJ, United Kingdom
| | - Jonathan R Lloyd
- Williamson Research Centre, Department of Earth and Environmental Sciences, University of Manchester, Manchester M13 9PL, United Kingdom
| |
Collapse
|
49
|
Recent Advances in the Pursuit of an Effective Acinetobacter baumannii Vaccine. Pathogens 2020; 9:pathogens9121066. [PMID: 33352688 PMCID: PMC7766458 DOI: 10.3390/pathogens9121066] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/15/2020] [Accepted: 12/17/2020] [Indexed: 12/22/2022] Open
Abstract
Acinetobacter baumannii has been a major cause of nosocomial infections for decades. The absence of an available vaccine coupled with emerging multidrug resistance has prevented the medical community from effectively controlling this human pathogen. Furthermore, the ongoing pandemic caused by SARS-CoV-2 has increased the risk of hospitalized patients developing ventilator-associated pneumonia caused by bacterial opportunists including A. baumannii. The shortage of antibiotics in the development pipeline prompted the World Health Organization to designate A. baumannii a top priority for the development of new medical countermeasures, such as a vaccine. There are a number of important considerations associated with the development of an A. baumannii vaccine, including strain characteristics, diverse disease manifestations, and target population. In the past decade, research efforts have revealed a number of promising new immunization strategies that could culminate in a safe and protective vaccine against A. baumannii. In this review, we highlight the recent progress in the development of A. baumannii vaccines, discuss potential challenges, and propose future directions to achieve an effective intervention against this human pathogen.
Collapse
|
50
|
Zhang Y, Yang Y, Hu X, Wang Z, Li L, Chen P. PADs in cancer: Current and future. Biochim Biophys Acta Rev Cancer 2020; 1875:188492. [PMID: 33321174 DOI: 10.1016/j.bbcan.2020.188492] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 12/08/2020] [Accepted: 12/08/2020] [Indexed: 02/06/2023]
Abstract
Protein arginine deiminases (PADs), is a group of calcium-dependent enzymes, which play crucial roles in citrullination, and can catalyze arginine residues into citrulline. This chemical reaction induces citrullinated proteins formation with altered structure and function, leading to numerous pathological diseases, including inflammation and autoimmune diseases. To date, multiple studies have provided solid evidence that PADs are implicated in cancer progression. Nevertheless, the findings on PADs functions in tumors are too complex to understand due to its involvements in variable signaling pathways. The increasing interest in PADs has heightened the need for a comprehensive description for its role in cancer. The present study aims to identify the gaps in present knowledge, including its structures, biological substrates and tissue distribution. Since several irreversible inhibitors for PADs with good potency and selectivity have been explored, the mechanisms on the dysregulation in tumors remain poorly understood. The present study discusses the relationship between PADs and tumor apoptosis, EMT formation and metastasis as well as the implication of neutrophil extracellular traps (NETs) in tumorigenesis. In addition, the potential uses of citrullinated antigens for immunotherapy were proposed.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Pathology and Pathophysiology, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, PR China
| | - Yiqiong Yang
- Department of Pathology and Pathophysiology, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, PR China
| | - Xiuxiu Hu
- Department of Pathology and Pathophysiology, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, PR China
| | - Zhi Wang
- Department of Pathology and Pathophysiology, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, PR China
| | - Li Li
- Department of Pathology and Pathophysiology, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, PR China
| | - Pingsheng Chen
- Department of Pathology and Pathophysiology, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, PR China.
| |
Collapse
|