1
|
Distribution Patterns of Soil Fauna in Different Forest Habitat Types of North Hebei Mountains, China. SUSTAINABILITY 2022. [DOI: 10.3390/su14105934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The relationship between soil fauna distribution and forest habitat types is an ongoing concern. In this study, the distributions of soil fauna communities were investigated and compared in three forests of Betula platyphylla, Picea asperata, and Pinus sylvestris. A total of 39 groups of soil fauna belonging to four functional groups were found, with Acarina and Collembola being the dominant groups, and omnivorous and saprophagous being the dominant functional groups. An investigation on the temporal and spatial distribution of the soil fauna found similar changes in the three forests: the abundance of soil fauna was higher in August and September and lowest in May; explicit surface aggregation of the soil fauna emerged; and the density and group number decreased with the increase in soil depth. Via comparison, the total abundance of soil fauna in the B. platyphylla forest (16,772 ind m−2) was found to be higher than that in the P. asperata (12,972 ind m−2) and P. sylvestris (14,250 ind m−2) forests, and the indexes of diversity, richness and evenness of the soil fauna community in the B. platyphylla forest were the highest. Redundancy analysis showed that soil organic matter (SOC), total nitrogen (TN), and total phosphorus (TP) were positively correlated with soil fauna density, whereas pH and bulk density (BD) were negatively correlated. Compared with the two coniferous forests, the physicochemical factors positively (negatively) correlated with soil fauna density were the highest (lowest) in the B. platyphylla forest. The combined effect of these multiple factors suggests that the B. platyphylla forest recovered the most favorable conditions for the living and development of the soil fauna. The findings in this research may help us to understand the restoration effect of soil fauna in different forest habitat types, providing support for forest sustainable management in northern Hebei Mountain ecosystems.
Collapse
|
2
|
Potapov AM. Multifunctionality of belowground food webs: resource, size and spatial energy channels. Biol Rev Camb Philos Soc 2022; 97:1691-1711. [PMID: 35393748 DOI: 10.1111/brv.12857] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 01/17/2023]
Abstract
The belowground compartment of terrestrial ecosystems drives nutrient cycling, the decomposition and stabilisation of organic matter, and supports aboveground life. Belowground consumers create complex food webs that regulate functioning, ensure stability and support biodiversity both below and above ground. However, existing soil food-web reconstructions do not match recently accumulated empirical evidence and there is no comprehensive reproducible approach that accounts for the complex resource, size and spatial structure of food webs in soil. Here I build on generic food-web organisation principles and use multifunctional classification of soil protists, invertebrates and vertebrates, to reconstruct a 'multichannel' food web across size classes of soil-associated consumers. I infer weighted trophic interactions among trophic guilds using feeding preferences and prey protection traits (evolutionarily inherited traits), size and spatial distributions (niche overlaps), and biomass-dependent feeding. I then use food-web reconstruction, together with assimilation efficiencies, to calculate energy fluxes assuming a steady-state energetic system. Based on energy fluxes, I propose a number of indicators, related to stability, biodiversity and multiple ecosystem-level functions such as herbivory, top-down control, translocation and transformation of organic matter. I illustrate this approach with an empirical example, comparing it with traditional resource-focused soil food-web reconstruction. The multichannel reconstruction can be used to assess 'trophic multifunctionality' (analogous to ecosystem multifunctionality), i.e. simultaneous support of multiple trophic functions by the food web, and compare it across communities and ecosystems spanning beyond the soil. With further empirical validation of the proposed functional indicators, this multichannel reconstruction approach could provide an effective tool for understanding animal diversity-ecosystem functioning relationships in soil. This tool hopefully will inspire more researchers to describe soil communities and belowground-aboveground interactions comprehensively. Such studies will provide informative indicators for including consumers as active agents in biogeochemical models, not only locally but also on regional and global scales.
Collapse
Affiliation(s)
- Anton M Potapov
- Johann Friedrich Blumenbach Institute of Zoology and Anthropology, Animal Ecology, University of Göttingen, Untere Karspüle 2, 37073, Göttingen, Germany.,A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Leninsky Prospect 33, 119071, Moscow
| |
Collapse
|
3
|
Potapov AM, Beaulieu F, Birkhofer K, Bluhm SL, Degtyarev MI, Devetter M, Goncharov AA, Gongalsky KB, Klarner B, Korobushkin DI, Liebke DF, Maraun M, Mc Donnell RJ, Pollierer MM, Schaefer I, Shrubovych J, Semenyuk II, Sendra A, Tuma J, Tůmová M, Vassilieva AB, Chen T, Geisen S, Schmidt O, Tiunov AV, Scheu S. Feeding habits and multifunctional classification of soil‐associated consumers from protists to vertebrates. Biol Rev Camb Philos Soc 2022; 97:1057-1117. [DOI: 10.1111/brv.12832] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/31/2021] [Accepted: 01/05/2022] [Indexed: 12/17/2022]
Affiliation(s)
- Anton M. Potapov
- J.F. Blumenbach Institute of Zoology and Anthropology University of Göttingen Untere Karspüle 2 37073 Göttingen Germany
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences Leninsky Prospect 33 119071 Moscow Russia
| | - Frédéric Beaulieu
- Canadian National Collection of Insects, Arachnids and Nematodes, Agriculture and Agri‐Food Canada Ottawa ON K1A 0C6 Canada
| | - Klaus Birkhofer
- Department of Ecology Brandenburg University of Technology Karl‐Wachsmann‐Allee 6 03046 Cottbus Germany
| | - Sarah L. Bluhm
- J.F. Blumenbach Institute of Zoology and Anthropology University of Göttingen Untere Karspüle 2 37073 Göttingen Germany
| | - Maxim I. Degtyarev
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences Leninsky Prospect 33 119071 Moscow Russia
| | - Miloslav Devetter
- Biology Centre of the Czech Academy of Sciences, Institute of Soil Biology Na Sádkách 702/7 37005 České Budějovice Czech Republic
| | - Anton A. Goncharov
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences Leninsky Prospect 33 119071 Moscow Russia
| | - Konstantin B. Gongalsky
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences Leninsky Prospect 33 119071 Moscow Russia
| | - Bernhard Klarner
- J.F. Blumenbach Institute of Zoology and Anthropology University of Göttingen Untere Karspüle 2 37073 Göttingen Germany
| | - Daniil I. Korobushkin
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences Leninsky Prospect 33 119071 Moscow Russia
| | - Dana F. Liebke
- J.F. Blumenbach Institute of Zoology and Anthropology University of Göttingen Untere Karspüle 2 37073 Göttingen Germany
| | - Mark Maraun
- J.F. Blumenbach Institute of Zoology and Anthropology University of Göttingen Untere Karspüle 2 37073 Göttingen Germany
| | - Rory J. Mc Donnell
- Department of Crop and Soil Science Oregon State University Corvallis OR 97331 U.S.A
| | - Melanie M. Pollierer
- J.F. Blumenbach Institute of Zoology and Anthropology University of Göttingen Untere Karspüle 2 37073 Göttingen Germany
| | - Ina Schaefer
- J.F. Blumenbach Institute of Zoology and Anthropology University of Göttingen Untere Karspüle 2 37073 Göttingen Germany
| | - Julia Shrubovych
- Biology Centre of the Czech Academy of Sciences, Institute of Soil Biology Na Sádkách 702/7 37005 České Budějovice Czech Republic
- Institute of Systematics and Evolution of Animals PAS Slawkowska 17 Pl 31‐016 Krakow Poland
- State Museum Natural History of NAS of Ukraine Teatralna 18 79008 Lviv Ukraine
| | - Irina I. Semenyuk
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences Leninsky Prospect 33 119071 Moscow Russia
- Joint Russian‐Vietnamese Tropical Center №3 Street 3 Thang 2, Q10 Ho Chi Minh City Vietnam
| | - Alberto Sendra
- Colecciones Entomológicas Torres‐Sala, Servei de Patrimoni Històric, Ajuntament de València València Spain
- Departament de Didàctica de les Cièncias Experimentals i Socials, Facultat de Magisteri Universitat de València València Spain
| | - Jiri Tuma
- Biology Centre of the Czech Academy of Sciences, Institute of Soil Biology Na Sádkách 702/7 37005 České Budějovice Czech Republic
- Biology Centre CAS, Institute of Entomology Branisovska 1160/31 370 05 Ceske Budejovice Czech Republic
| | - Michala Tůmová
- Biology Centre of the Czech Academy of Sciences, Institute of Soil Biology Na Sádkách 702/7 37005 České Budějovice Czech Republic
| | - Anna B. Vassilieva
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences Leninsky Prospect 33 119071 Moscow Russia
| | - Ting‐Wen Chen
- Biology Centre of the Czech Academy of Sciences, Institute of Soil Biology Na Sádkách 702/7 37005 České Budějovice Czech Republic
| | - Stefan Geisen
- Department of Nematology Wageningen University & Research 6700ES Wageningen The Netherlands
| | - Olaf Schmidt
- UCD School of Agriculture and Food Science University College Dublin Belfield Dublin 4 Ireland
| | - Alexei V. Tiunov
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences Leninsky Prospect 33 119071 Moscow Russia
| | - Stefan Scheu
- J.F. Blumenbach Institute of Zoology and Anthropology University of Göttingen Untere Karspüle 2 37073 Göttingen Germany
- Centre of Biodiversity and Sustainable Land Use Büsgenweg 1 37077 Göttingen Germany
| |
Collapse
|
4
|
Fardell LL, Nano CEM, Pavey CR, Dickman CR. Small Prey Animal Habitat Use in Landscapes of Fear: Effects of Predator Presence and Human Activity Along an Urban Disturbance Gradient. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.750094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Human activity can impose additional stressors to wildlife, both directly and indirectly, including through the introduction of predators and influences on native predators. As urban and adjacent environments are becoming increasingly valuable habitat for wildlife, it is important to understand how susceptible taxa, like small prey animals, persist in urban environments under such additional stressors. Here, in order to determine how small prey animals’ foraging patterns change in response to habitat components and distances to predators and human disturbances, we used filmed giving-up density (GUD) trials under natural conditions along an urban disturbance gradient. We then ran further GUD trials with the addition of experimentally introduced stressors of: the odors of domestic cat (Felis catus)/red fox (Vulpes vulpes) as predator cues, light and sound as human disturbance cues, and their combinations. Small mammals were mostly observed foraging in the GUD trials, and to a lesser degree birds. Animals responded to proximity to predators and human disturbances when foraging under natural conditions, and used habitat components differently based on these distances. Along the urban disturbance gradient situation-specific responses were evident and differed under natural conditions compared to additional stressor conditions. The combined predator with human disturbance treatments resulted in responses of higher perceived risk at environments further from houses. Animals at the urban-edge environment foraged more across the whole site under the additional stressor conditions, but under natural conditions perceived less risk when foraging near predators and further from human disturbance (houses). Contrastingly, at the environments further from houses, foraging near human disturbance (paths/roads) when close to a predator was perceived as lower risk, but when foraging under introduced stressor conditions these disturbances were perceived as high risk. We propose that sensory and behavioral mechanisms, and stress exposure best explain our findings. Our results indicate that habitat components could be managed to reduce the impacts of high predation pressure and human activity in disturbed environments.
Collapse
|
5
|
Potapov AM, Rozanova OL, Semenina EE, Leonov VD, Belyakova OI, Bogatyreva VY, Degtyarev MI, Esaulov AS, Korotkevich AY, Kudrin AA, Malysheva EA, Mazei YA, Tsurikov SM, Zuev AG, Tiunov AV. Size compartmentalization of energy channeling in terrestrial belowground food webs. Ecology 2021; 102:e03421. [PMID: 34086977 DOI: 10.1002/ecy.3421] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 03/11/2021] [Accepted: 03/21/2021] [Indexed: 11/05/2022]
Abstract
Size-structured food webs form integrated trophic systems where energy is channeled from small to large consumers. Empirical evidence suggests that size structure prevails in aquatic ecosystems, whereas in terrestrial food webs trophic position is largely independent of body size. Compartmentalization of energy channeling according to size classes of consumers was suggested as a mechanism that underpins functioning and stability of terrestrial food webs including those belowground, but their structure has not been empirically assessed across the whole size spectrum. Here we used stable isotope analysis and metabolic regressions to describe size structure and energy use in eight belowground communities with consumers spanning 12 orders of magnitude in living body mass, from protists to earthworms. We showed a negative correlation between trophic position and body mass in invertebrate communities and a remarkable nonlinearity in community metabolism and trophic positions across all size classes. Specifically, we found that the correlation between body mass and trophic level is positive in the small-sized (protists, nematodes, arthropods below 1 μg in body mass), neutral in the medium-sized (arthropods of 1 μg to 1 mg), and negative in the large-sized consumers (large arthropods, earthworms), suggesting that these groups form compartments with different trophic organization. Based on this pattern, we propose a concept of belowground food webs being composed of (1) size-structured micro-food web driving fast energy channeling and nutrient release, for example in microbial loop; (2) arthropod macro-food web with no clear correlation between body size and trophic level, hosting soil arthropod diversity and subsidizing aboveground predators; and (3) "trophic whales," sequestering energy in their large bodies and restricting its propagation to higher trophic levels in belowground food webs. The three size compartments are based on a similar set of basal resources, but contribute to different ecosystem-level functions and respond differently to variations in climate, soil characteristics and land use. We suggest that the widely used vision of resource-based energy channeling in belowground food webs can be complemented with size-based energy channeling, where ecosystem multifunctionality, biodiversity, and stability are supported by a balance across individual size compartments.
Collapse
Affiliation(s)
- Anton M Potapov
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Leninsky Prospect 33, 119071, Moscow, Russia.,J. F. Blumenbach Institute of Zoology and Anthropology, University of Goettingen, Untere Karspüle 2, 37073, Goettingen, Germany
| | - Oksana L Rozanova
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Leninsky Prospect 33, 119071, Moscow, Russia
| | - Eugenia E Semenina
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Leninsky Prospect 33, 119071, Moscow, Russia
| | - Vladislav D Leonov
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Leninsky Prospect 33, 119071, Moscow, Russia
| | - Olga I Belyakova
- Penza State University, Krasnaya Street 40, Penza, 440068, Russia
| | - Varvara Yu Bogatyreva
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Leninsky Prospect 33, 119071, Moscow, Russia
| | - Maxim I Degtyarev
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Leninsky Prospect 33, 119071, Moscow, Russia.,Lomonosov Moscow State University, Leninskie Gory 1, 119991, Moscow, Russia
| | - Anton S Esaulov
- Penza State University, Krasnaya Street 40, Penza, 440068, Russia
| | - Anastasiya Yu Korotkevich
- Institute of Biology and Chemistry, Moscow State Pedagogical University, Kibalchicha Street 6k3, 129164, Moscow, Russia
| | - Alexey A Kudrin
- Institute of Biology of Komi Scientific Centre, Ural Branch of the Russian Academy of Sciences, Kommunisticheskaja 28, 167000, Syktyvkar, Russia
| | | | - Yuri A Mazei
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Leninsky Prospect 33, 119071, Moscow, Russia.,Lomonosov Moscow State University, Leninskie Gory 1, 119991, Moscow, Russia.,Faculty of Biology, Shenzhen MSU-BIT University, 1 International University Park Road, Dayun New Town, Longgang District, Shenzhen, 517182, China
| | - Sergey M Tsurikov
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Leninsky Prospect 33, 119071, Moscow, Russia
| | - Andrey G Zuev
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Leninsky Prospect 33, 119071, Moscow, Russia
| | - Alexei V Tiunov
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Leninsky Prospect 33, 119071, Moscow, Russia
| |
Collapse
|
6
|
McGee KM, Porter TM, Wright M, Hajibabaei M. Drivers of tropical soil invertebrate community composition and richness across tropical secondary forests using DNA metasystematics. Sci Rep 2020; 10:18429. [PMID: 33116157 PMCID: PMC7595130 DOI: 10.1038/s41598-020-75452-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 10/15/2020] [Indexed: 11/09/2022] Open
Abstract
Tropical forests are fundamental ecosystems, essential for providing terrestrial primary productivity, global nutrient cycling, and biodiversity. Despite their importance, tropical forests are currently threatened by deforestation and associated activities. Moreover, tropical regions are now mostly represented by secondary forest regrowth, with half of the remaining tropical forests as secondary forest. Soil invertebrates are an important component to the functioning and biodiversity of these soil ecosystems. However, it remains unclear how these past land-use activities and subsequent secondary forest developments have altered the soil invertebrate communities and any potential ecological consequences associated with this. DNA metabarcoding offers an effective approach to rapidly monitor soil invertebrate communities under different land-use practices and within secondary forests. In this study, we used DNA metabarcoding to detect community-based patterns of soil invertebrate composition across a primary forest, a 23-year-old secondary forest, and a 33-year-old secondary forest and the associated soil environmental drivers of the soil invertebrate community structure in the Maquenque National Wildlife Refuge of Costa Rica (MNWR). We also used a species contribution analysis (SIMPER) to determine which soil invertebrate groups may be an indication of these soils reaching a pre-disturbed state such as a primary forest. We found that the soil invertebrate community composition at class, order, family, and ESV level were mostly significantly different across that habitats. We also found that the primary forest had a greater richness of soil invertebrates compared to the 23-year-old and 33-year-old secondary forest. Moreover, a redundancy analysis indicated that soil moisture influenced soil invertebrate community structure and explained up to 22% of the total variation observed in the community composition across the habitats; whereas soil invertebrate richness was structured by soil microbial biomass carbon (C) (Cmic) and explained up to 52% of the invertebrate richness across the primary and secondary forests. Lastly, the SIMPER analysis revealed that Naididae, Entomobryidae, and Elateridae could be important indicators of soil and forest recuperation in the MNWR. This study adds to the increasing evidence that soil invertebrates are intimately linked with the soil microbial biomass carbon (Cmic) and that even after 33 years of natural regrowth of a forest, these land use activities can still have persisting effects on the overall composition and richness of the soil invertebrate communities.
Collapse
Affiliation(s)
- Katie M McGee
- Department of Integrative Biology, Centre for Biodiversity Genomics, Biodiversity Institute of Ontario, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada.
| | - Teresita M Porter
- Department of Integrative Biology, Centre for Biodiversity Genomics, Biodiversity Institute of Ontario, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| | - Michael Wright
- Department of Integrative Biology, Centre for Biodiversity Genomics, Biodiversity Institute of Ontario, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| | - Mehrdad Hajibabaei
- Department of Integrative Biology, Centre for Biodiversity Genomics, Biodiversity Institute of Ontario, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| |
Collapse
|
7
|
Belowground thermoregulation in Namibian desert spiders that burrow their own chemostats. ACTA OECOLOGICA 2019. [DOI: 10.1016/j.actao.2019.02.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
8
|
More SJ, Bampidis V, Benford D, Bennekou SH, Bragard C, Halldorsson TI, Hernández-Jerez AF, Koutsoumanis K, Naegeli H, Schlatter JR, Silano V, Nielsen SS, Schrenk D, Turck D, Younes M, Benfenati E, Castle L, Cedergreen N, Hardy A, Laskowski R, Leblanc JC, Kortenkamp A, Ragas A, Posthuma L, Svendsen C, Solecki R, Testai E, Dujardin B, Kass GE, Manini P, Jeddi MZ, Dorne JLC, Hogstrand C. Guidance on harmonised methodologies for human health, animal health and ecological risk assessment of combined exposure to multiple chemicals. EFSA J 2019; 17:e05634. [PMID: 32626259 PMCID: PMC7009070 DOI: 10.2903/j.efsa.2019.5634] [Citation(s) in RCA: 186] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
This Guidance document describes harmonised risk assessment methodologies for combined exposure to multiple chemicals for all relevant areas within EFSA's remit, i.e. human health, animal health and ecological areas. First, a short review of the key terms, scientific basis for combined exposure risk assessment and approaches to assessing (eco)toxicology is given, including existing frameworks for these risk assessments. This background was evaluated, resulting in a harmonised framework for risk assessment of combined exposure to multiple chemicals. The framework is based on the risk assessment steps (problem formulation, exposure assessment, hazard identification and characterisation, and risk characterisation including uncertainty analysis), with tiered and stepwise approaches for both whole mixture approaches and component‐based approaches. Specific considerations are given to component‐based approaches including the grouping of chemicals into common assessment groups, the use of dose addition as a default assumption, approaches to integrate evidence of interactions and the refinement of assessment groups. Case studies are annexed in this guidance document to explore the feasibility and spectrum of applications of the proposed methods and approaches for human and animal health and ecological risk assessment. The Scientific Committee considers that this Guidance is fit for purpose for risk assessments of combined exposure to multiple chemicals and should be applied in all relevant areas of EFSA's work. Future work and research are recommended. This publication is linked to the following EFSA Supporting Publications article: http://onlinelibrary.wiley.com/doi/10.2903/sp.efsa.2019.EN-1589/full, http://onlinelibrary.wiley.com/doi/10.2903/sp.efsa.2019.EN-1602/full
Collapse
|
9
|
Frimpong JO, Ofori ESK, Yeboah S, Marri D, Offei BK, Apaatah F, Sintim JO, Ofori-Ayeh E, Osae M. Evaluating the impact of synthetic herbicides on soil dwelling macrobes and the physical state of soil in an agro-ecosystem. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 156:205-215. [PMID: 29550438 DOI: 10.1016/j.ecoenv.2018.03.034] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 03/05/2018] [Accepted: 03/09/2018] [Indexed: 06/08/2023]
Abstract
This study evaluated three herbicides active ingredients: Paraquat, Glyphosate and 2,4-D Amine in commercial formulations as Frankoquat, Roundup and Agriherb respectively under field conditions to determine their influence on soil dwelling macrobes and the physical state of soil. Herbicides were serially diluted to three treatment concentrations for each plus three controls. Herbicide concentrations were applied to the demarcated field on three consecutive occasions in splits. Macrobes extraction from soil was done under a stereo microscope at 20 × magnification. The Simpson's diversity index was used to calculate the soil macrobes diversity. Soil water content, bulk density and total porosity of sampled soils were determined. The study revealed that both herbicides and non-herbicides treatment had no statistical significance (p > 0.05) on the soil dwelling macrobes. Also, a Simpson's index of diversity, estimated as 53.46%, showed how the experimental area is lowly diverse in the specific soil dwelling macrobes identified. Significant correlations existed between the soil water content, bulk density, total porosity and number of soil macrobes at p < 0.05. This level of significance showed in most instances for Frankoquat herbicide concentration treatments as well as Roundup. For Agriherb and control treatments the correlations were present but majority was not significant. In most situations, the soil dwelling macrobes decreased with increasing soil physical conditions. Thus, the dynamics in soil physical properties affected macrobes abundance in soil, with the slightest influence coming from the herbicides concentrations used in the experiment. The study recommended that Frankoquat and Roundup herbicides could be used to control weeds on farmer's field because, their influence were slightly felt on the soil macrobes and also, quite a number soil dwelling macrobes recovered after application.
Collapse
Affiliation(s)
- J O Frimpong
- Biotechnology and Nuclear Agriculture Research Institute, Ghana Atomic Energy Commission, Post Office Box L.G. 80, Legon, Accra, Ghana; Soil and Environmental Sciences Research Centre, Ghana
| | - E S K Ofori
- Biotechnology and Nuclear Agriculture Research Institute, Ghana Atomic Energy Commission, Post Office Box L.G. 80, Legon, Accra, Ghana; Radiation, Entomology and Pest Management Centre, Ghana
| | - S Yeboah
- Biotechnology and Nuclear Agriculture Research Institute, Ghana Atomic Energy Commission, Post Office Box L.G. 80, Legon, Accra, Ghana; Radiation, Entomology and Pest Management Centre, Ghana
| | - D Marri
- Biotechnology and Nuclear Agriculture Research Institute, Ghana Atomic Energy Commission, Post Office Box L.G. 80, Legon, Accra, Ghana; Radiation, Entomology and Pest Management Centre, Ghana
| | - B K Offei
- Biotechnology and Nuclear Agriculture Research Institute, Ghana Atomic Energy Commission, Post Office Box L.G. 80, Legon, Accra, Ghana; Soil and Environmental Sciences Research Centre, Ghana
| | - F Apaatah
- Biotechnology and Nuclear Agriculture Research Institute, Ghana Atomic Energy Commission, Post Office Box L.G. 80, Legon, Accra, Ghana; Radiation, Entomology and Pest Management Centre, Ghana
| | - J O Sintim
- Biotechnology and Nuclear Agriculture Research Institute, Ghana Atomic Energy Commission, Post Office Box L.G. 80, Legon, Accra, Ghana; Soil and Environmental Sciences Research Centre, Ghana
| | - E Ofori-Ayeh
- Biotechnology and Nuclear Agriculture Research Institute, Ghana Atomic Energy Commission, Post Office Box L.G. 80, Legon, Accra, Ghana; Soil and Environmental Sciences Research Centre, Ghana
| | - M Osae
- Biotechnology and Nuclear Agriculture Research Institute, Ghana Atomic Energy Commission, Post Office Box L.G. 80, Legon, Accra, Ghana; Radiation, Entomology and Pest Management Centre, Ghana.
| |
Collapse
|
10
|
Mulder C, Maas R. Unifying the functional diversity in natural and cultivated soils using the overall body-mass distribution of nematodes. BMC Ecol 2017; 17:36. [PMID: 29183362 PMCID: PMC5706308 DOI: 10.1186/s12898-017-0145-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 11/02/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Sustainable use of our soils is a key goal for environmental protection. As many ecosystem services are supported belowground at different trophic levels by nematodes, soil nematodes are expected to provide objective metrics for biological quality to integrate physical and chemical soil variables. Trait measurements of body mass carried out at the individual level can in this way be correlated with environmental properties that influence the performance of soil biota. RESULTS Soil samples were collected across 200 sites (4 soil types and 5 land-use types resulting in 9 combinations) during a long-term monitoring programme in the Netherlands and the functional diversity of nematode communities was investigated. Using three commonly used functional diversity indices applicable to single traits (Divergence, Evenness and Richness), a unified index of overall body-mass distribution is proposed to better illustrate the application of functional metrics as a descriptor of land use. Effects of land use and soil chemistry on the functional diversity of nematodes were demonstrated and a combination of environmental factors accounts for the low functional value of Scots Pine forest soils in comparison to the high functional value of heathland soils, whereas human factors account for the low functional and chemical values of arable fields. CONCLUSIONS These findings show an unexpected high functional vulnerability of nematodes inhabiting clay-rich soils in comparison to sandy soils and support the notion that soil C:N ratio is a major driver of biodiversity. The higher the C:N ratio, the higher the overall diversity, as soil nematodes cope better with nutrient-poor agroecosystems under less intense fertilization. A trait-based way focusing on size distribution of nematodes is proposed to maintain environmental health by monitoring the overall diversity in soil biota, keeping agriculture and forestry sustainable.
Collapse
Affiliation(s)
- Christian Mulder
- National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands.
| | - Rob Maas
- National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| |
Collapse
|
11
|
Cárdenas RE, Donoso DA, Argoti A, Dangles O. Functional consequences of realistic extinction scenarios in Amazonian soil food webs. Ecosphere 2017. [DOI: 10.1002/ecs2.1692] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Affiliation(s)
- Rafael E. Cárdenas
- Pontificia Universidad Católica del Ecuador; Escuela de Ciencias Biológicas; Museo de Zoología QCAZ; Laboratorio de Entomología; Av. 12 de octubre 1076 y Roca, Apdo. 17-01-2184 Quito Ecuador
- Institut de Recherche pour le Développement (IRD); UR 072; LEGS-CNRS; UPR 9034; CNRS; Gif-sur-Yvette Cedex 91198 France
- Université Paris-Sud 11; Orsay Cedex 91405 France
| | - David A. Donoso
- Escuela Politécnica Nacional; Instituto de Ciencias Biológicas; Av. Ladrón de Guevara E11-253 Quito Ecuador
| | - Adriana Argoti
- Pontificia Universidad Católica del Ecuador; Escuela de Ciencias Biológicas; Museo de Zoología QCAZ; Laboratorio de Entomología; Av. 12 de octubre 1076 y Roca, Apdo. 17-01-2184 Quito Ecuador
| | - Olivier Dangles
- Pontificia Universidad Católica del Ecuador; Escuela de Ciencias Biológicas; Museo de Zoología QCAZ; Laboratorio de Entomología; Av. 12 de octubre 1076 y Roca, Apdo. 17-01-2184 Quito Ecuador
- Institut de Recherche pour le Développement (IRD); UR 072; LEGS-CNRS; UPR 9034; CNRS; Gif-sur-Yvette Cedex 91198 France
- Université Paris-Sud 11; Orsay Cedex 91405 France
| |
Collapse
|
12
|
Romul_Hum—A model of soil organic matter formation coupling with soil biota activity. II. Parameterisation of the soil food web biota activity. Ecol Modell 2017. [DOI: 10.1016/j.ecolmodel.2016.10.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
13
|
Romul_Hum model of soil organic matter formation coupled with soil biota activity. I. Problem formulation, model description, and testing. Ecol Modell 2017. [DOI: 10.1016/j.ecolmodel.2016.08.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
14
|
Dombos M, Kosztolányi A, Szlávecz K, Gedeon C, Flórián N, Groó Z, Dudás P, Bánszegi O. EDAPHOLOG
monitoring system: automatic, real‐time detection of soil microarthropods. Methods Ecol Evol 2016. [DOI: 10.1111/2041-210x.12662] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Miklós Dombos
- Institute for Soil Sciences and Agricultural Chemistry Centre for Agricultural Research Hungarian Academy of Sciences Herman Ottó út 15. Budapest H‐1022 Hungary
| | - András Kosztolányi
- Department of Ecology University of Veterinary Medicine Budapest Rottenbiller u. 50 Budapest H‐1077 Hungary
- MTA‐DE ‘Lendület’ Behavioural Ecology Research Group Department of Evolutionary Zoology and Human Biology University of Debrecen Egyetem tér 1 Debrecen H‐4032 Hungary
| | - Katalin Szlávecz
- Department of Earth and Planetary Sciences Johns Hopkins University 3400 N. Charles St. Baltimore MD 21218 USA
| | - Csongor Gedeon
- Institute for Soil Sciences and Agricultural Chemistry Centre for Agricultural Research Hungarian Academy of Sciences Herman Ottó út 15. Budapest H‐1022 Hungary
| | - Norbert Flórián
- Institute for Soil Sciences and Agricultural Chemistry Centre for Agricultural Research Hungarian Academy of Sciences Herman Ottó út 15. Budapest H‐1022 Hungary
| | - Zita Groó
- Institute for Soil Sciences and Agricultural Chemistry Centre for Agricultural Research Hungarian Academy of Sciences Herman Ottó út 15. Budapest H‐1022 Hungary
| | - Péter Dudás
- Institute for Soil Sciences and Agricultural Chemistry Centre for Agricultural Research Hungarian Academy of Sciences Herman Ottó út 15. Budapest H‐1022 Hungary
| | - Oxána Bánszegi
- Instituto de Investigaciones Biomédicas Universidad Nacional Autónoma de México AP 70228 Ciudad Universitaria CP 04510 Mexico City Mexico
| |
Collapse
|
15
|
Mancinelli G, Mulder C. Detrital Dynamics and Cascading Effects on Supporting Ecosystem Services. ADV ECOL RES 2015. [DOI: 10.1016/bs.aecr.2015.10.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
16
|
Calizza E, Rossi L, Costantini ML. Predators and resources influence phosphorus transfer along an invertebrate food web through changes in prey behaviour. PLoS One 2013; 8:e65186. [PMID: 23750242 PMCID: PMC3672138 DOI: 10.1371/journal.pone.0065186] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2012] [Accepted: 04/23/2013] [Indexed: 11/18/2022] Open
Abstract
Predators play a fundamental role in prey trophic behaviour, with indirect consequences for species coexistence and ecosystem functioning. Resource quality and availability also influence prey trophic behaviour, with potential effects on predator-prey dynamics. Although many studies have addressed these topics, little attention has been paid to the combined effects of predators and resources on prey species coexistence and nutrient transfer along food chains, especially in detritus-based systems. To determine the influence of predators and resource quality on the movement and P uptake of detritivores, we carried out a field experiment on the River Kelvin (Scotland) using (32)P to test the hypothesis of reduced prey vagility among resource patches as a strategy to avoid predation. Thirty leaf sacks containing alder leaves and two detritivore prey populations (Asellus aquaticus and Lymnaea peregra) were placed in cages, half of them with two predator species (Dendrocoelum lacteum and Erpobdella octoculata) and the other half without predators. Five alder leaf bags, each individually inoculated with a different fungus strain to simulate a patchy habitat, were placed inside each leaf sack. One bag in each sack was labelled with (32)P, in order to assess the proportion of detritivores using it as food and thus their movement among the five resource patches. Three replicates for each labelled fungus and each predation treatment (i.e. with and without predators) were left on the riverbed for 7 days. The presence of predators had negligible effects on the number of detritivores in the leaf bags, but it did reduce the proportion of (32)P-labelled detritivores and their P uptake. The most strongly affected species was A. aquaticus, whose vagility, trophic overlap with L. peregra and P uptake were all reduced. The results confirm the importance of bottom-up and top-down forces acting simultaneously to regulate nutrient transfer along food chains in patchy habitats.
Collapse
Affiliation(s)
- Edoardo Calizza
- Department of Environmental Biology, ‘Sapienza’ University of Rome, Rome, Italy
| | - Loreto Rossi
- Department of Environmental Biology, ‘Sapienza’ University of Rome, Rome, Italy
- * E-mail:
| | | |
Collapse
|
17
|
Bohan DA, Raybould A, Mulder C, Woodward G, Tamaddoni-Nezhad A, Bluthgen N, Pocock MJ, Muggleton S, Evans DM, Astegiano J, Massol F, Loeuille N, Petit S, Macfadyen S. Networking Agroecology. ADV ECOL RES 2013. [DOI: 10.1016/b978-0-12-420002-9.00001-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
18
|
Mulder C, Ahrestani FS, Bahn M, Bohan DA, Bonkowski M, Griffiths BS, Guicharnaud RA, Kattge J, Krogh PH, Lavorel S, Lewis OT, Mancinelli G, Naeem S, Peñuelas J, Poorter H, Reich PB, Rossi L, Rusch GM, Sardans J, Wright IJ. Connecting the Green and Brown Worlds. ADV ECOL RES 2013. [DOI: 10.1016/b978-0-12-420002-9.00002-0] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
19
|
Romeis J, Raybould A, Bigler F, Candolfi MP, Hellmich RL, Huesing JE, Shelton AM. Deriving criteria to select arthropod species for laboratory tests to assess the ecological risks from cultivating arthropod-resistant genetically engineered crops. CHEMOSPHERE 2013; 90:901-9. [PMID: 23062830 DOI: 10.1016/j.chemosphere.2012.09.035] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Revised: 07/18/2012] [Accepted: 09/08/2012] [Indexed: 05/06/2023]
Abstract
UNLABELLED Arthropods form a major part of the biodiversity in agricultural landscapes. Many species are valued because they provide ecosystem services, including biological control, pollination and decomposition, or because they are of conservation interest. Some arthropods reduce crop yield and quality, and conventional chemical pesticides, biological control agents and genetically engineered (GE) crops are used to control them. A common concern addressed in the ecological risk assessment (ERA) that precedes regulatory approval of these pest control methods is their potential to adversely affect valued non-target arthropods (NTAs). A key concept of ERA is early-tier testing using worst-case exposure conditions in the laboratory and surrogate test species that are most likely to reveal an adverse effect. If no adverse effects are observed in those species at high exposures, confidence of negligible ecological risk from the use of the pest control method is increased. From experience with chemical pesticides and biological control agents, an approach is proposed for selecting test species for early-tier ERA of GE arthropod-resistant crops. Surrogate species should be selected that most closely meet three criteria: (i) Potential sensitivity: species should be the most likely to be sensitive to the arthropod-active compound based on the known spectrum of activity of the active ingredient, its mode of action, and the phylogenetic relatedness of the test and target species; (ii) RELEVANCE species should be representative of valued taxa or functional groups that are most likely to be exposed to the arthropod-active compound in the field; and (iii) Availability and reliability: suitable life-stages of the test species must be obtainable in sufficient quantity and quality, and validated test protocols must be available that allow consistent detection of adverse effects on ecologically relevant parameters. Our proposed approach ensures that the most suitable species are selected for testing and that the resulting data provide the most rigorous test of the risk hypothesis of no adverse effect in order to increase the quality and efficiency of ERAs for cultivation of GE crops.
Collapse
Affiliation(s)
- Jörg Romeis
- Agroscope Reckenholz-Tänikon Research Station ART, Reckenholzstr. 191, 8046 Zurich, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
20
|
Santorufo L, Van Gestel CAM, Rocco A, Maisto G. Soil invertebrates as bioindicators of urban soil quality. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2012; 161:57-63. [PMID: 22230068 DOI: 10.1016/j.envpol.2011.09.042] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Revised: 09/15/2011] [Accepted: 09/25/2011] [Indexed: 05/31/2023]
Abstract
This study aimed at relating the abundance and diversity of invertebrate communities of urban soils to chemical and physical soil characteristics and to identify the taxa most sensitive or tolerant to soil stressors. The invertebrate community of five urban soils in Naples, Italy, was sampled. To assess soil quality invertebrate community indices (Shannon, Simpson, Menhinick and Pielou indices), Acarina/Collembola ratios, and the soil biological quality index (QBS) were calculated. The chemical and physical characteristics of the soils strongly differed. Abundance rather than taxa richness of invertebrates were more affected by soil characteristics. The community was more abundant and diverse in the soils with high organic matter and water content and low metal (Cu, Pb, Zn) concentrations. The taxa more resistant to the urban environment included Acarina, Enchytraeids, Collembola and Nematoda. Collembolans appeared particularly sensitive to changing soil properties. Among the investigated indices, QBS seems most appropriate for soil quality assessment.
Collapse
Affiliation(s)
- Lucia Santorufo
- Department of Structural and Functional Biology, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cinthia, 80126 Naples, Italy.
| | | | | | | |
Collapse
|
21
|
Mulder C, Boit A, Bonkowski M, De Ruiter PC, Mancinelli G, Van der Heijden MG, Van Wijnen HJ, Vonk JA, Rutgers M. A Belowground Perspective on Dutch Agroecosystems: How Soil Organisms Interact to Support Ecosystem Services. ADV ECOL RES 2011. [DOI: 10.1016/b978-0-12-374794-5.00005-5] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
22
|
Mulder C. Soil fertility controls the size-specific distribution of eukaryotes. Ann N Y Acad Sci 2010; 1195 Suppl 1:E74-81. [DOI: 10.1111/j.1749-6632.2009.05404.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
23
|
Abstract
The factors regulating the structure of food webs are a central focus of community and ecosystem ecology, as trophic interactions among species have important impacts on nutrient storage and cycling in many ecosystems. For soil invertebrates in grassland ecosystems in the Netherlands, the site-specific slopes of the faunal biomass to organism body mass relationships reflected basic biochemical and biogeochemical processes associated with soil acidity and soil C : N : P stoichiometry. That is, the higher the phosphorus availability in the soil, the higher, on average, the slope of the faunal biomass size spectrum (i.e., the higher the biomass of large-bodied invertebrates relative to the biomass of small invertebrates). While other factors may also be involved, these results are consistent with the growth rate hypothesis from biological stoichiometry that relates phosphorus demands to ribosomal RNA and protein production. Thus our data represent the first time that ecosystem phosphorus availability has been associated with allometry in soil food webs (supporting information available online). Our results have broad implications, as soil invertebrates of different size have different effects on soil processes.
Collapse
|
24
|
Mulder C, Den Hollander HA, Vonk JA, Rossberg AG, op Akkerhuis GAJMJ, Yeates GW. Soil resource supply influences faunal size-specific distributions in natural food webs. THE SCIENCE OF NATURE - NATURWISSENSCHAFTEN 2009; 96:813-26. [PMID: 19440684 PMCID: PMC2705724 DOI: 10.1007/s00114-009-0539-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2009] [Revised: 04/06/2009] [Accepted: 04/06/2009] [Indexed: 11/27/2022]
Abstract
The large range of body-mass values of soil organisms provides a tool to assess the ecological organization of soil communities. The goal of this paper is to identify graphical and quantitative indicators of soil community composition and ecosystem functioning, and to illustrate their application to real soil food webs. The relationships between log-transformed mass and abundance of soil organisms in 20 Dutch meadows and heathlands were investigated. Using principles of allometry, maximal use can be made of ecological theory to build and explain food webs. The aggregate contribution of small invertebrates such as nematodes to the entire community is high under low soil phosphorus content and causes shifts in the mass-abundance relationships and in the trophic structures. We show for the first time that the average of the trophic link lengths is a reliable predictor for assessing soil fertility responses. Ordered trophic link pairs suggest a self-organizing structure of food webs according to resource availability and can predict environmental shifts in ecologically meaningful ways.
Collapse
Affiliation(s)
- Christian Mulder
- Department of Ecology, National Institute for Public Health and the Environment, Box 1, Bilthoven, 3720 BA, The Netherlands.
| | | | | | | | | | | |
Collapse
|
25
|
|
26
|
Rutgers M. Field effects of pollutants at the community level--experimental challenges and significance of community shifts for ecosystem functioning. THE SCIENCE OF THE TOTAL ENVIRONMENT 2008; 406:469-478. [PMID: 18640706 DOI: 10.1016/j.scitotenv.2008.05.055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2008] [Accepted: 05/30/2008] [Indexed: 05/26/2023]
Abstract
In the Stimulation Program System-oriented Ecotoxicological Research (SSEO) three sites in The Netherlands were investigated for field effects of the grey veil of pollutants. At each site several studies were performed in order to arrive at an adequate weight of evidence and to improve causal inference of pollutant effects. This paper contains a synthesis of results of the studies, performed at one of the sites, the Demmerikse polder. This site is characterized by an anthropogenic layer of soil (in old Dutch: 'toemaakdek') on top of the natural peat. Lead, copper and zinc concentrations were elevated, with lead concentrations above a Netherlands environmental quality criterion (Intervention Value) in 66% of the samples. Issues discussed in the paper are: the sampling strategy, selection of maximum gradient and suitable community end-points, both in space and in time. Specific emphasis was given to causal inference of ecological effects of pollutants, related to direct versus indirect effects, functioning of ecosystems, normal operation range and risk assessment. The plausibility of metal effects could be demonstrated on a number of occasions. In the Demmerikse polder changes in the bacterial and nematode communities could be related significantly to metal concentrations and separated from other environmental variables, such as organic matter content and pH.
Collapse
Affiliation(s)
- Michiel Rutgers
- Laboratory for Ecological Risk Assessment, National Institute for Public Health and the Environment, Antonie van Leeuwenhoeklaan 9, 3621 MA Bilthoven, The Netherlands.
| |
Collapse
|
27
|
Mulder C, Den Hollander HA, Hendriks AJ. Aboveground herbivory shapes the biomass distribution and flux of soil invertebrates. PLoS One 2008; 3:e3573. [PMID: 18974874 PMCID: PMC2570614 DOI: 10.1371/journal.pone.0003573] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2008] [Accepted: 10/09/2008] [Indexed: 11/18/2022] Open
Abstract
Background Living soil invertebrates provide a universal currency for quality that integrates physical and chemical variables with biogeography as the invertebrates reflect their habitat and most ecological changes occurring therein. The specific goal was the identification of “reference” states for soil sustainability and ecosystem functioning in grazed vs. ungrazed sites. Methodology/Principal Findings Bacterial cells were counted by fluorescent staining and combined direct microscopy and automatic image analysis; invertebrates (nematodes, mites, insects, oligochaetes) were sampled and their body size measured individually to allow allometric scaling. Numerical allometry analyses food webs by a direct comparison of weight averages of components and thus might characterize the detrital soil food webs of our 135 sites regardless of taxonomy. Sharp differences in the frequency distributions are shown. Overall higher biomasses of invertebrates occur in grasslands, and all larger soil organisms differed remarkably. Conclusions/Significance Strong statistical evidence supports a hypothesis explaining from an allometric perspective how the faunal biomass distribution and the energetic flux are affected by livestock, nutrient availability and land use. Our aim is to propose faunal biomass flux and biomass distribution as quantitative descriptors of soil community composition and function, and to illustrate the application of these allometric indicators to soil systems.
Collapse
Affiliation(s)
- Christian Mulder
- Department of Ecology, National Institute for Public Health and the Environment, RIVM-LER, Bilthoven, The Netherlands.
| | | | | |
Collapse
|
28
|
Reuman DC, Mulder C, Raffaelli D, Cohen JE. Three allometric relations of population density to body mass: theoretical integration and empirical tests in 149 food webs. Ecol Lett 2008; 11:1216-1228. [DOI: 10.1111/j.1461-0248.2008.01236.x] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
29
|
Mulder C, Baerselman R, Posthuma L. Empirical maximum lifespan of earthworms is twice that of mice. AGE (DORDRECHT, NETHERLANDS) 2007; 29:229-231. [PMID: 19424841 PMCID: PMC2267032 DOI: 10.1007/s11357-007-9037-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2007] [Accepted: 07/03/2007] [Indexed: 05/27/2023]
Abstract
We considered a Gompertzian model for the population dynamics of Eisenia andrei case-cohorts in artificial OECD soil under strictly controlled conditions. The earthworm culture was kept between 18 and 22 degrees C at a constant pH of 5.0. In all, 77 lumbricids were carefully followed for almost 9 years, until the oldest died. The Eisenia median longevity is 4.25 years and the oldest specimen was 8.73 years. Eisenia cocoons were hand-sorted every 3 weeks, washed in distilled water, placed in Petri dishes, and counted. Regular removal did not reduce breeding. Each fertile cocoon contained on average two or three embryos. The failure rates (mortality and infertility percentages) are smooth power functions where the rate at time (n + 1) captured most of the phenomenology of the previous rate at time n, as expected by the considered law, but not at both the beginning and the end of this long-term laboratory study.
Collapse
Affiliation(s)
- Christian Mulder
- National Institute for Public Health and the Environment, P.O. Box 1, 3720BA, Bilthoven, The Netherlands.
| | | | | |
Collapse
|