1
|
Ciaffi M, Paolacci AR, Marcomeni M, Coluccia L, Taviani P, Alicandri E. The Characterization of the Morphological and Molecular Traits of Phaseolus coccineus in the Aniene Valley: Insights into Genetic Diversity and Adaptation. PLANTS (BASEL, SWITZERLAND) 2024; 13:3320. [PMID: 39683113 DOI: 10.3390/plants13233320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 11/21/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024]
Abstract
This study aimed to characterize the genetic diversity and morphological traits of 32 populations of Phaseolus coccineus collected from the Aniene Valley. Quantitative seed trait analyses revealed that Mandolone accessions exhibited significantly higher seed weights and dimensions compared to Fagiolone accessions. Specifically, Mandolone accessions showed an average weight of 189.48 g per 100 seeds, with seed heights and lengths averaging 14.38 mm and 23.84 mm, respectively. In contrast, Fagiolone accessions had an average seed weight of 174.13 g, with seed heights and lengths of 13.95 mm and 22.58 mm, respectively. Molecular analysis, conducted using 9 polymorphic SSR loci, identified 53 alleles across 320 genotypes, with a mean expected heterozygosity (He) of 0.695. This indicated that there was high genetic variability within the Aniene Valley populations. The genetic diversity analysis revealed two genetic clusters corresponding to the Mandolone and Fagiolone landraces. This was supported by UPGMA, PCoA, and STRUCTURE analyses. This study highlights the need to conserve the genetic diversity within these landraces and provides a basis for the development of conservation strategies for P. coccineus germplasms in the singular ecological context of the Aniene Valley.
Collapse
Affiliation(s)
- Mario Ciaffi
- Department for the Innovation in Biological, Agrofood and Forestal Systems, Tuscia University, 01100 Viterbo, Italy
| | - Anna Rita Paolacci
- Department for the Innovation in Biological, Agrofood and Forestal Systems, Tuscia University, 01100 Viterbo, Italy
| | - Martina Marcomeni
- Department for the Innovation in Biological, Agrofood and Forestal Systems, Tuscia University, 01100 Viterbo, Italy
| | - Lorenzo Coluccia
- Department for the Innovation in Biological, Agrofood and Forestal Systems, Tuscia University, 01100 Viterbo, Italy
| | - Paola Taviani
- ARSIAL, Regional Agency for the Development and the Innovation of Agriculture in Lazio, Via Rodolfo Lanciani 38, 00162 Roma, Italy
| | - Enrica Alicandri
- Department for the Innovation in Biological, Agrofood and Forestal Systems, Tuscia University, 01100 Viterbo, Italy
| |
Collapse
|
2
|
Prajapati MR, Kumar P, Pratap Singh R, Shanker R, Singh J, Kumar Bharti M, Singh R, Verma H, Gangwar LK, Singh Gaurav S, Kapoor N, Prakash S, Dixit R. De novo transcriptome assembly, annotation and SSR mining data of Hellula undalis (Fabr.) (Lepidoptera: Pyralidae), the cabbage webworm. J Genet Eng Biotechnol 2024; 22:100393. [PMID: 39179316 PMCID: PMC11179078 DOI: 10.1016/j.jgeb.2024.100393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/08/2024] [Accepted: 05/20/2024] [Indexed: 08/26/2024]
Abstract
BACKGROUND The cabbage webworm, Hellula undalis (Fabricius) (Lepidoptera: Pyralidae), is a significant pest of brassicas and other cruciferous plants in warm regions worldwide. Transcriptome analysis is valuable for investigation of molecular mechanisms underlying the insect development and reproduction. De novo assembly is particularly useful for acquiring complete transcriptome information of insect species when there is no reference genome available. In case of Hellula undalis, only 17 nucleotide records are currently available throughout NCBI nucleotide database. Genes associated with metabolic processes, general development, reproduction, defense and functional genomics were not previously predicted in the Hellula undalis at the genomic level. METHODS & RESULTS To address this issue, we constructed Hellula undalis transcriptome using Illumina NovaSeq6000 technology. Approximately 48 million 150 bp paired-end reads were obtained from sequencing. A total of 30,451 contigs were generated by de novo assembly of sample and were compared with the sequences in the NCBI non-redundant protein database (Nr). In total, 71 % of contigs were matched to known proteins in public databases including Nr, Gene Ontology (GO), and Cluster Orthologous Gene Database (COG), and then, contigs were mapped to 123 via functional annotation against the Kyoto Encyclopedia of Genes and Genomes pathway database (KEGG). In addition, we compared the ortholog gene family of the Hullula undalis, transcriptome to Spodoptera frugiperda, spodotera litura and spodoptera littoralis and found that 391 orthologous gene families are specific to Hullula undalis. A total of 1,913 potential SSRs was discovered in Hullula undalis contigs. CONCLUSIONS This study is the first transcriptome data for Hullula undalis. Additionally, it serves as a valuable resource for identifying target genes and developing effective and environmentally friendly strategies for pest control.
Collapse
Affiliation(s)
- Malyaj R Prajapati
- College of Biotechnology, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut, Uttar Pradesh 250110, India
| | - Pankaj Kumar
- College of Biotechnology, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut, Uttar Pradesh 250110, India.
| | - Reetesh Pratap Singh
- College of Agriculture, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut, Uttar Pradesh 250110, India
| | - Ravi Shanker
- College of Agriculture, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut, Uttar Pradesh 250110, India
| | - Jitender Singh
- Chaudhary Charan Singh University, Meerut, Uttar Pradesh 250001, India.
| | - Mahesh Kumar Bharti
- College of Veterinary and Animal Sciences, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut, Uttar Pradesh 250110, India
| | - Rajendra Singh
- College of Agriculture, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut, Uttar Pradesh 250110, India
| | - Harshit Verma
- College of Veterinary and Animal Sciences, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut, Uttar Pradesh 250110, India
| | - L K Gangwar
- College of Agriculture, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut, Uttar Pradesh 250110, India
| | | | - Neelesh Kapoor
- College of Biotechnology, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut, Uttar Pradesh 250110, India
| | - Satya Prakash
- College of Agriculture, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut, Uttar Pradesh 250110, India
| | - Rekha Dixit
- College of Biotechnology, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut, Uttar Pradesh 250110, India
| |
Collapse
|
3
|
Badiyal A, Dhiman S, Singh A, Rathour R, Pathania A, Katoch S, Padder BA, Sharma PN. Mapping of adult plant recessive resistance to anthracnose in Indian common bean landrace Baspa/KRC 8. Mol Biol Rep 2024; 51:254. [PMID: 38302755 DOI: 10.1007/s11033-023-09160-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 12/14/2023] [Indexed: 02/03/2024]
Abstract
BACKGROUND The common bean (Phaseolus vulgaris) has become the food of choice owing to its wealthy nutritional profile, leading to a considerable increase in its cultivation worldwide. However, anthracnose has been a major impediment to production and productivity, as elite bean cultivars are vulnerable to this disease. To overcome barriers in crop production, scientists worldwide are working towards enhancing the genetic diversity of crops. One way to achieve this is by introducing novel genes from related crops, including landraces like KRC 8. This particular landrace, found in the North Western Himalayan region, has shown adult plant resistance against anthracnose and also possesses a recessive resistance gene. METHODS AND RESULTS In this study, a population of 179 F2:9 RIL individuals (Jawala × KRC 8) was evaluated at both phenotypic and genotypic levels using over 830 diverse molecular markers to map the resistance gene present in KRC 8. We have successfully mapped a resistance gene to chromosome Pv01 using four SSR markers, namely IAC 238, IAC 235, IAC 259, and BM 146. The marker IAC 238 is closely linked to the gene with a distance of 0.29 cM, while the other markers flank the recessive resistance gene at 10.87 cM (IAC 259), 17.80 cM (BM 146), and 25.22 cM (IAC 235). Previously, a single recessive anthracnose resistance gene (co-8) has been reported in the common bean accession AB 136. However, when we performed PCR amplification with our tightly linked marker IAC 238, we got different amplicons in AB 136 and KRC 8. Interestingly, the susceptible cultivar Jawala produced the same amplicon as AB 136. This observation indicated that the recessive gene present in KRC 8 is different from co-8. As the gene is located far away from the Co-1 locus, we suggest naming the recessive gene co-Indb/co-19. Fine mapping of co-Indb in KRC 8 may provide new insights into the cloning and characterization of this recessive gene so that it can be incorporated into future bean improvement programs. Further, the tightly linked marker IAC 238 can be utilized in marker assisted introgression in future bean breeding programs. CONCLUSION The novel co-Indb gene present in Himalayan landrace KRC 8, showing adult plant resistance against common bean anthracnose, is independent from all the resistance genes previously located on chromosome Pv01.
Collapse
Affiliation(s)
- Anila Badiyal
- Molecular Plant Pathology Laboratory, Department of Plant Pathology, CSK HP Agricultural University, Palampur, 176 062, Himachal Pradesh, India
| | - Shiwali Dhiman
- Molecular Plant Pathology Laboratory, Department of Plant Pathology, CSK HP Agricultural University, Palampur, 176 062, Himachal Pradesh, India
| | - Amar Singh
- Molecular Plant Pathology Laboratory, Department of Plant Pathology, CSK HP Agricultural University, Palampur, 176 062, Himachal Pradesh, India
| | - Rajeev Rathour
- Department of Agricultural Biotechnology, CSK HP Agricultural University, Palampur, 176 062, Himachal Pradesh, India
| | - Anju Pathania
- Faculty of Agriculture, DAV University, Jalandhar, 144001, Punjab, India
| | - Shabnam Katoch
- Molecular Plant Pathology Laboratory, Department of Plant Pathology, CSK HP Agricultural University, Palampur, 176 062, Himachal Pradesh, India
| | - Bilal A Padder
- Plant Virology and Molecular Plant Pathology Laboratory, Division of Plant Pathology, SKUAST-K Srinagar, Srinagar, 190025, J&K, India.
| | - Prem N Sharma
- Molecular Plant Pathology Laboratory, Department of Plant Pathology, CSK HP Agricultural University, Palampur, 176 062, Himachal Pradesh, India.
| |
Collapse
|
4
|
Lateef I, Katoch S, Katoch A, Badiyal A, Pathania A, Dhiman S, Nisa Q, Bashir A, Nabi A, Nabi N, Fayaz T, Gulzar G, Shah MD, Shikari AB, Dar ZA, Itoo H, Shah RA, Sofi TA, Sharma V, Sharma MK, Rathour R, Sharma PN, Padder BA. Fine mapping of a new common bean anthracnose resistance gene (Co-18) to the proximal end of Pv10 in Indian landrace KRC-5. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:32. [PMID: 38270625 DOI: 10.1007/s00122-023-04539-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 12/27/2023] [Indexed: 01/26/2024]
Abstract
KEY MESSAGE Mapping and fine mapping of bean anthracnose resistance genes is a continuous process. We report fine mapping of anthracnose resistance gene Co-18 which is the first anthracnose gene mapped to Pv10. The discovery of resistance gene is a major gain in the bean anthracnose pathosystem research. Among the Indian common bean landraces, KRC-5 exhibit high levels of resistance to the bean anthracnose pathogen Colletotrichum lindemuthianum. To precisely map the anthracnose resistance gene, we used a Recombinant Inbred Line (F2:9 RIL) population (KRC-5 × Jawala). The inheritance test revealed that KRC-5 carries a dominant resistance gene temporarily designated as Co-18. We discovered two RAPD markers linked to Co-18 among 287 RAPD markers. These RAPD markers were eventually developed into SCARs (Sc-OPR15 and Sc-OPF6) and flank Co-18 on chromosome Pv10 at a distance of 5.3 and 4.2 cM, respectively. At 4.0-4.1 Mb on Pv10, we detected a SNP (single-nucleotide polymorphism) signal. We synthesized 58 SSRs and 83 InDels from a pool of 135 SSRs and 1134 InDels, respectively. Five SSRs, four InDels, and two SCARs were used to generate the high-density linkage map, which led to the identification of two SSRs (SSR24 and SSR36) that are tightly linked to Co-18. These two SSRs flank the Co-18 to 178 kb genomic region with 13 candidate genes including five NLR (nucleotide-binding and leucine-rich repeat) genes. The closely linked markers SSR24 and SSR36 will be used in cloning and pyramiding of the Co-18 gene with other R genes to develop durable resistant bean varieties.
Collapse
Affiliation(s)
- Irtifa Lateef
- Plant Virology and Molecular Plant Pathology Laboratory, Division of Plant Pathology, SKUAST-Kashmir, Shalimar, Srinagar, 190025, India
| | - Shabnam Katoch
- Department of Plant Pathology, CSK HP Agricultural University, Palampur, HP, 176062, India
| | - Abhishek Katoch
- University Institute of Agricultural Sciences, Chandigarh University, Ajitgarh, India
| | - Anila Badiyal
- Department of Plant Pathology, CSK HP Agricultural University, Palampur, HP, 176062, India
| | - Anju Pathania
- Faculty of Agriculture, DAV University, Jalandhar, Punjab, 144001, India
| | - Shiwali Dhiman
- Department of Plant Pathology, CSK HP Agricultural University, Palampur, HP, 176062, India
| | - Qadrul Nisa
- Plant Virology and Molecular Plant Pathology Laboratory, Division of Plant Pathology, SKUAST-Kashmir, Shalimar, Srinagar, 190025, India
| | - Adfar Bashir
- Plant Virology and Molecular Plant Pathology Laboratory, Division of Plant Pathology, SKUAST-Kashmir, Shalimar, Srinagar, 190025, India
| | - Aasiya Nabi
- Plant Virology and Molecular Plant Pathology Laboratory, Division of Plant Pathology, SKUAST-Kashmir, Shalimar, Srinagar, 190025, India
| | - Naziya Nabi
- Plant Virology and Molecular Plant Pathology Laboratory, Division of Plant Pathology, SKUAST-Kashmir, Shalimar, Srinagar, 190025, India
| | - Tabia Fayaz
- Plant Virology and Molecular Plant Pathology Laboratory, Division of Plant Pathology, SKUAST-Kashmir, Shalimar, Srinagar, 190025, India
| | - Gazala Gulzar
- Plant Virology and Molecular Plant Pathology Laboratory, Division of Plant Pathology, SKUAST-Kashmir, Shalimar, Srinagar, 190025, India
| | - Mehraj D Shah
- Plant Virology and Molecular Plant Pathology Laboratory, Division of Plant Pathology, SKUAST-Kashmir, Shalimar, Srinagar, 190025, India
| | - Asif B Shikari
- Division of Plant Breeding and Genetics, SKUAST-K, FoA, Wadura, Baramulla, Sopore, India
| | | | - Hamidullah Itoo
- Ambri Apple Research Center, Pahanoo, SKUAST-K, Shopian, 192303, India
| | - Rafiq A Shah
- Ambri Apple Research Center, Pahanoo, SKUAST-K, Shopian, 192303, India
| | - Tariq A Sofi
- Plant Virology and Molecular Plant Pathology Laboratory, Division of Plant Pathology, SKUAST-Kashmir, Shalimar, Srinagar, 190025, India
| | - Vivek Sharma
- Department of Plant Pathology, CSK HP Agricultural University, Palampur, HP, 176062, India
| | - M K Sharma
- Division of Fruit Science, SKUAST-Kashmir, Shalimar, Srinagar, 190025, India
| | - Rajeev Rathour
- Department of Agricultural Biotechnology, CSK HP Agricultural University, Palampur, HP, 176062, India
| | - P N Sharma
- Department of Plant Pathology, CSK HP Agricultural University, Palampur, HP, 176062, India
| | - Bilal A Padder
- Plant Virology and Molecular Plant Pathology Laboratory, Division of Plant Pathology, SKUAST-Kashmir, Shalimar, Srinagar, 190025, India.
| |
Collapse
|
5
|
Ogiso-Tanaka E, Chankaew S, Yoshida Y, Isemura T, Marubodee R, Kongjaimun A, Baba-Kasai A, Okuno K, Ehara H, Tomooka N. Unique Salt-Tolerance-Related QTLs, Evolved in Vigna riukiuensis (Na + Includer) and V. nakashimae (Na + Excluder), Shed Light on the Development of Super-Salt-Tolerant Azuki Bean ( V. angularis) Cultivars. PLANTS (BASEL, SWITZERLAND) 2023; 12:1680. [PMID: 37111908 PMCID: PMC10146836 DOI: 10.3390/plants12081680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 06/19/2023]
Abstract
Wild relatives of crops have the potential to improve food crops, especially in terms of improving abiotic stress tolerance. Two closely related wild species of the traditional East Asian legume crops, Azuki bean (Vigna angularis), V. riukiuensis "Tojinbaka" and V. nakashimae "Ukushima" were shown to have much higher levels of salt tolerance than azuki beans. To identify the genomic regions responsible for salt tolerance in "Tojinbaka" and "Ukushima", three interspecific hybrids were developed: (A) azuki bean cultivar "Kyoto Dainagon" × "Tojinbaka", (B) "Kyoto Dainagon" × "Ukushima" and (C) "Ukushima" × "Tojinbaka". Linkage maps were developed using SSR or restriction-site-associated DNA markers. There were three QTLs for "percentage of wilt leaves" in populations A, B and C, while populations A and B had three QTLs and population C had two QTLs for "days to wilt". In population C, four QTLs were detected for Na+ concentration in the primary leaf. Among the F2 individuals in population C, 24% showed higher salt tolerance than both wild parents, suggesting that the salt tolerance of azuki beans can be further improved by combining the QTL alleles of the two wild relatives. The marker information would facilitate the transfer of salt tolerance alleles from "Tojinbaka" and "Ukushima" to azuki beans.
Collapse
Affiliation(s)
- Eri Ogiso-Tanaka
- Genetic Resources Center, National Institute of Agrobiological Sciences (NIAS), 2-1-2 Kannondai, Tsukuba 305-8602, Ibaraki, Japan
| | - Sompong Chankaew
- Program in Plant Breeding, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen, Nakhon Pathom 73140, Thailand
| | - Yutaro Yoshida
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tennohdai 1-1-1, Tsukuba 305-8571, Ibaraki, Japan
| | - Takehisa Isemura
- Genetic Resources Center, National Institute of Agrobiological Sciences (NIAS), 2-1-2 Kannondai, Tsukuba 305-8602, Ibaraki, Japan
| | - Rusama Marubodee
- Graduate School of Bioresources, Mie University, 1577 Kurimamachiya-cho, Tsu 514-0102, Mie, Japan
| | - Alisa Kongjaimun
- Genetic Resources Center, National Institute of Agrobiological Sciences (NIAS), 2-1-2 Kannondai, Tsukuba 305-8602, Ibaraki, Japan
| | - Akiko Baba-Kasai
- Genetic Resources Center, National Institute of Agrobiological Sciences (NIAS), 2-1-2 Kannondai, Tsukuba 305-8602, Ibaraki, Japan
| | - Kazutoshi Okuno
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tennohdai 1-1-1, Tsukuba 305-8571, Ibaraki, Japan
| | - Hiroshi Ehara
- Graduate School of Bioresources, Mie University, 1577 Kurimamachiya-cho, Tsu 514-0102, Mie, Japan
| | - Norihiko Tomooka
- Genetic Resources Center, National Institute of Agrobiological Sciences (NIAS), 2-1-2 Kannondai, Tsukuba 305-8602, Ibaraki, Japan
| |
Collapse
|
6
|
Li X, Tang Y, Wang L, Chang Y, Wu J, Wang S. QTL mapping and identification of genes associated with the resistance to Acanthoscelides obtectus in cultivated common bean using a high-density genetic linkage map. BMC PLANT BIOLOGY 2022; 22:260. [PMID: 35610573 PMCID: PMC9131570 DOI: 10.1186/s12870-022-03635-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Common bean (Phaseolus vulgaris L.) is an important agricultural product with large nutritional value, and the insect pest Acanthoscelides obtectus (Say) seriously affects its product quality and commodity quality during storage. Few researches on genes of bruchid resistance have investigated in common bean cultivars. RESULTS In this study, a bruchid-resistant cultivar black kidney bean and a highly susceptible accession Longyundou3 from different gene banks were crossed to construct a recombinant inbred line population. The genetic analysis indicated a quantitative inheritance of the bruchid resistance trait controlled by polygenes. A high-density genetic map of a total map distance of 1283.68 cM with an average interval of 0.61 cM between each marker was constructed using an F6 population of 157 recombinant inbred lines. The map has 3106 bin markers, containing 2,234,769 SNPs. Using the high-density genetic map, a new quantitative trait locus for the resistance to Acanthoscelides obtectus was identified on chromosome 6. New molecular markers based on the candidate region were developed, and this locus was further delimited to an interval of 122.3 kb between SSR markers I6-4 and I6-16 using an F2 population. This region comprised five genes. Phvul.006G003700, which encodes a bifunctional inhibitor, may be a potential candidate gene for bruchid resistance. Sequencing analysis of candidate gene identified a 5 bp insertion-deletion in promoter of gene Phvul.006G003700 between two parents. Expression analysis of candidate gene revealed that the expression level of Phvul.006G003700 in bruchid-resistant parent was markedly higher than that in bruchid-susceptible parent both in dry seeds and leaves. CONCLUSIONS A high-density genetic linkage map was constructed utilizing whole-genome resequencing and one new QTL for bruchid resistance was identified on chromosome 6 in common bean cultivar. Phvul.006G003700 (encoding a bifunctional inhibitor) may be a potential candidate gene. These results may form the basis for further research to reveal the bruchid resistance molecular mechanism of common bean.
Collapse
Affiliation(s)
- Xiaoming Li
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yongsheng Tang
- Qujing Academy of Agricultural Sciences, Qujing, 655000, China
| | - Lanfen Wang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yujie Chang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jing Wu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Shumin Wang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
7
|
Gore PG, Gupta V, Singh R, Tripathi K, Kumar R, Kumari G, Madhavan L, Dikshit HK, Venkateswaran K, Pandey A, Singh N, Bhat KV, Nair RM, Pratap A. Insights into the genetic diversity of an underutilized Indian legume, Vigna stipulacea (Lam.) Kuntz., using morphological traits and microsatellite markers. PLoS One 2022; 17:e0262634. [PMID: 35045093 PMCID: PMC8769370 DOI: 10.1371/journal.pone.0262634] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 12/31/2021] [Indexed: 11/26/2022] Open
Abstract
Vigna stipulacea (Lam.) Kuntz., commonly known as Minni payaru is an underutilized legume species and has a great potential to be utilized as food crop. To evaluate and select the best germplasm to be harnessed in the breeding programme, we assessed the genetic diversity of V. stipulacea (94 accessions) conserved in the Indian National Genebank, based on morphological traits and microsatellite markers. Significant variation was recorded for the morphological traits studied. Euclidean distance using UPGMA method grouped all accessions into two major clusters. Accessions were identified for key agronomic traits such as, early flowering (IC331436, IC251436, IC331437); long peduncle length (IC553518, IC550531, IC553557, IC553540, IC550532, IC553564); and more number of seeds per pod (IC553529, IC622865, IC622867, IC553528). To analyse the genetic diversity among the germplasm 33 SSR primers were used anda total of 116 alleles were detected. The number of alleles varied from two to seven, with an average of 3.52 per loci. The polymorphic information content values varied from 0.20 to 0.74, with a mean of 0.40. The high number of alleles per locus and the allelic diversity in the studied germplasm indicated a relatively wider genetic base of V. stipulacea. Phylogenetic analysis clustered accessions into seven clades. Population structure analysis grouped them into five genetic groups, which were partly supported by PCoA and phylogenetic tree. Besides, PCoA and AMOVA also decoded high genetic diversity among the V. stipulacea accessions. Thus, morphological and microsatellite markers distinguished V. stipulacea accessions and assessed their genetic diversity efficiently. The identified promising accessions can be utilized in Vigna improvement programme through introgression breeding and/or can be used for domestication and enhanced utilization of V. stipulacea.
Collapse
Affiliation(s)
- Padmavati G Gore
- Division of Plant Genetic Resources, ICAR - Indian Agricultural Research Institute, New Delhi, India
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Veena Gupta
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Rakesh Singh
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Kuldeep Tripathi
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Ramesh Kumar
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Gita Kumari
- ICAR-Indian Institute of Pulses Research, Kanpur, Uttar Pradesh, India
| | - Latha Madhavan
- ICAR-National Bureau of Plant Genetic Resources, Thrissur, Kerala, India
| | - Harsh Kumar Dikshit
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | | - Anjula Pandey
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Neeta Singh
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Kangila V Bhat
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | | | - Aditya Pratap
- ICAR-Indian Institute of Pulses Research, Kanpur, Uttar Pradesh, India
| |
Collapse
|
8
|
Kumari G, Roopa Lavanya G, Shanmugavadivel PS, Singh Y, Singh P, Patidar B, Madhavan L, Gupta S, Singh NP, Pratap A. Genetic diversity and population genetic structure analysis of an extensive collection of wild and cultivated Vigna accessions. Mol Genet Genomics 2021; 296:1337-1353. [PMID: 34611751 DOI: 10.1007/s00438-021-01825-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 09/26/2021] [Indexed: 10/20/2022]
Abstract
Vigna is a large, pan-tropic and highly variable group of the legumes family which is known for its > 10 cultivated species having significant commercial value for their nutritious grains and multifarious uses. The wild vignas are considered a reservoir of numerous useful traits which can be deployed for introgression of resistance to biotic and abiotic stresses, seed quality and enhanced survival capability in extreme environments. Nonetheless, for their effective utilization through introgression breeding information on their genetic diversity, population structure and crossability is imperative. Keeping this in view, the present experiment was undertaken with 119 accessions including 99 wild Vigna accessions belonging to 19 species and 18 cultivated genotypes of Vigna and 2 of Phaseolus. Total 102 polymorphic SSRs were deployed to characterize the material at molecular level which produced 1758 alleles. The genotypes were grouped into four major clusters which were further sub-divided in nine sub-clusters. Interestingly, all cultivated species shared a single cluster while no such similarities were observed for the wild accessions as these were distributed in different groups of sub-clusters. The co-dominant allelic data of 114 accessions were then utilized for obtaining status of the accessions and their hybrid forms. The model-based population structure analysis categorized 114 accessions of Vigna into 6 genetically distinct sub-populations (K = 6) following admixture-model based simulation with varying levels of admixture. 91 (79.82%) accessions resembled their hierarchy and 23 (20.18%) accessions were observed as the admixture forms. Maximum number of accessions (25) were grouped in sub-population (SP) 6 and the least accessions were grouped in SP3 and SP5 (11 each). The population genetic structure, therefore, supported genetic diversity analysis and provided an insight into the genetic lineage of these species which will help in effective use of germplasm for development of cultivars following selective prebreeding activities.
Collapse
Affiliation(s)
- Gita Kumari
- ICAR-Indian Institute of Pulses Research, Kalyanpur, Kanpur, 208024, India
| | - G Roopa Lavanya
- Sam Higginbottom University of Agricultural Technology and Sciences, Prayagraj, UP, 211 008, India
| | | | - Yogendra Singh
- ICAR-Indian Institute of Pulses Research, Kalyanpur, Kanpur, 208024, India
| | - Parikshit Singh
- ICAR-Indian Institute of Pulses Research, Kalyanpur, Kanpur, 208024, India
| | - Bharat Patidar
- ICAR-Indian Institute of Pulses Research, Kalyanpur, Kanpur, 208024, India
| | - Latha Madhavan
- ICAR-National Bureau of Plant Genetic Resources, Regional Station, Thrissur, Kerala, 680654, India
| | - Sanjeev Gupta
- ICAR-Indian Institute of Pulses Research, Kalyanpur, Kanpur, 208024, India
| | - N P Singh
- ICAR-Indian Institute of Pulses Research, Kalyanpur, Kanpur, 208024, India
| | - Aditya Pratap
- ICAR-Indian Institute of Pulses Research, Kalyanpur, Kanpur, 208024, India.
| |
Collapse
|
9
|
Nadeem MA, Yeken MZ, Shahid MQ, Habyarimana E, Yılmaz H, Alsaleh A, Hatipoğlu R, Çilesiz Y, Khawar KM, Ludidi N, Ercişli S, Aasim M, Karaköy T, Baloch FS. Common bean as a potential crop for future food security: an overview of past, current and future contributions in genomics, transcriptomics, transgenics and proteomics. BIOTECHNOL BIOTEC EQ 2021. [DOI: 10.1080/13102818.2021.1920462] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Affiliation(s)
- Muhammad Azhar Nadeem
- Faculty of Agricultural Sciences and Technologies, Sivas University of Science and Technology, Sivas, Turkey
| | - Mehmet Zahit Yeken
- Department of Field Crops, Faculty of Agriculture, Bolu Abant İzzet Baysal University, Bolu, Turkey
| | - Muhammad Qasim Shahid
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, PR China
| | | | - Hilal Yılmaz
- Department of Plant and Animal Production, Izmit Vocational School, Kocaeli University, Kocaeli, Turkey
| | - Ahmad Alsaleh
- Department of Food and Agriculture, Insitutue of Hemp Research, Yozgat Bozok University, 66200, Yozgat, Turkey
| | - Rüştü Hatipoğlu
- Department of Field Crops, Faculty of Agricultural, University of Cukurova, Adana, Turkey
| | - Yeter Çilesiz
- Faculty of Agricultural Sciences and Technologies, Sivas University of Science and Technology, Sivas, Turkey
| | - Khalid Mahmood Khawar
- Department of Field Crops, Faculty of Agriculture, Ankara University, Ankara, Turkey
| | - Ndiko Ludidi
- Department of Biotechnology and DSI-NRF Center of Excellence in Food Security, University of the Western Cape, Bellville, South Africa
| | - Sezai Ercişli
- Department of Horticulture, Faculty of Agriculture, Ataturk University, Erzurum, Turkey
| | - Muhammad Aasim
- Faculty of Agricultural Sciences and Technologies, Sivas University of Science and Technology, Sivas, Turkey
| | - Tolga Karaköy
- Faculty of Agricultural Sciences and Technologies, Sivas University of Science and Technology, Sivas, Turkey
| | - Faheem Shehzad Baloch
- Faculty of Agricultural Sciences and Technologies, Sivas University of Science and Technology, Sivas, Turkey
| |
Collapse
|
10
|
de Almeida CP, de Carvalho Paulino JF, Bonfante GFJ, Perseguini JMKC, Santos IL, Gonçalves JGR, Patrício FRA, Taniguti CH, Gesteira GDS, Garcia AAF, Song Q, Carbonell SAM, Chiorato AF, Benchimol-Reis LL. Angular Leaf Spot Resistance Loci Associated With Different Plant Growth Stages in Common Bean. FRONTIERS IN PLANT SCIENCE 2021; 12:647043. [PMID: 33927738 PMCID: PMC8078856 DOI: 10.3389/fpls.2021.647043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 03/23/2021] [Indexed: 06/12/2023]
Abstract
Angular leaf spot (ALS) is a disease that causes major yield losses in the common bean crop. Studies based on different isolates and populations have already been carried out to elucidate the genetic mechanisms of resistance to ALS. However, understanding of the interaction of this resistance with the reproductive stages of common bean is lacking. The aim of the present study was to identify ALS resistance loci at different plant growth stages (PGS) by association and linkage mapping approaches. An BC2F3 inter-gene pool cross population (AND 277 × IAC-Milênio - AM population) profiled with 1,091 SNPs from genotyping by sequencing (GBS) was used for linkage mapping, and a carioca diversity panel (CDP) genotyped by 5,398 SNPs from BeadChip assay technology was used for association mapping. Both populations were evaluated for ALS resistance at the V2 and V3 PGSs (controlled conditions) and R8 PGS (field conditions). Different QTL (quantitative trait loci) were detected for the three PGSs and both populations, showing a different quantitative profile of the disease at different plant growth stages. For the three PGS, multiple interval mapping (MIM) identified seven significant QTL, and the Genome-wide association study (GWAS) identified fourteen associate SNPs. Several loci validated regions of previous studies, and Phg-1, Phg-2, Phg-4, and Phg-5, among the 5 loci of greatest effects reported in the literature, were detected in the CDP. The AND 277 cultivar contained both the Phg-1 and the Phg-5 QTL, which is reported for the first time in the descendant cultivar CAL143 as ALS10.1UC. The novel QTL named ALS11.1AM was located at the beginning of chromosome Pv11. Gene annotation revealed several putative resistance genes involved in the ALS response at the three PGSs, and with the markers and loci identified, new specific molecular markers can be developed, representing a powerful tool for common bean crop improvement and for gain in ALS resistance.
Collapse
Affiliation(s)
| | | | | | | | - Isabella Laporte Santos
- Centro de Pesquisa em Recursos Genéticos Vegetais, Instituto Agronômico - IAC, Campinas, Brazil
| | | | | | - Cristiane Hayumi Taniguti
- Departamento de Genética, Escola Superior de Agricultura “Luiz de Queiroz”, Universidade de São Paulo, Piracicaba, Brazil
| | - Gabriel de Siqueira Gesteira
- Departamento de Genética, Escola Superior de Agricultura “Luiz de Queiroz”, Universidade de São Paulo, Piracicaba, Brazil
| | - Antônio Augusto Franco Garcia
- Departamento de Genética, Escola Superior de Agricultura “Luiz de Queiroz”, Universidade de São Paulo, Piracicaba, Brazil
| | - Qijian Song
- USDA-ARS, Soybean Genomics and Improvement Lab, Beltsville, MD, United States
| | | | | | | |
Collapse
|
11
|
Assessment of the Origin and Diversity of Croatian Common Bean Germplasm Using Phaseolin Type, SSR and SNP Markers and Morphological Traits. PLANTS 2021; 10:plants10040665. [PMID: 33808489 PMCID: PMC8066053 DOI: 10.3390/plants10040665] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/25/2021] [Accepted: 03/28/2021] [Indexed: 11/18/2022]
Abstract
Landraces represent valuable genetic resources for breeding programmes to produce high-yielding varieties adapted to stressful environmental conditions. Although the common bean (Phaseolus vulgaris L.) is an economically important food legume for direct human consumption worldwide, common bean production in Croatia is based almost exclusively on landraces and there is no common bean breeding program. Information on phaseolin type and results of population structure and genetic diversity obtained by analysis of SSR and SNP markers, in combination with the morphological characterization of 174 accessions of 10 common bean landraces (morphotypes), enabled thorough classification of accessions. The accessions were classified into phaseolin type H1 (“S”) of Mesoamerican origin and phaseolin types H2 (“H” or “C”) and H3 (“T”) of Andean origin. By applying distance- and model-based clustering methods to SSR markers, the accessions were classified into two clusters at K = 2 separating the accessions according to the centres of origin, while at K = 3, the accessions of Andean origin were further classified into two clusters of accessions that differed in phaseolin type (H2 and H3). Using SNP markers, model-based analysis of population structure was performed, the results of which were consistent with those of SSR markers. In addition, 122 accessions were assigned to 14 newly formed true-type morphogenetic groups derived from three different domestication events: (1) Mesoamerican (H1A) (“Biser”, “Kukuruzar”, “Tetovac”, “Trešnjevac”), (2) Andean—indeterminate type (H2B1) (“Dan noć”, “Sivi”, “Puter”, ”Sivi prošarani”, “Trešnjevac”) and (3) Andean—determinate type (H3B2) (“Bijeli”, “Dan noć”, “Puter”, “Trešnjevac”, “Zelenčec”). The rest of the accessions could represent putative hybrids between morphogenetic groups. The differences between the true-type groups of accessions were further analysed based on nine quantitative traits, and the subsets of traits that best distinguish among centres of origin (A: Mesoamerican, B: Andean) and genetic groups (H1A, H2B1, H3B2) were proposed.
Collapse
|
12
|
Gupta N, Zargar SM, Singh R, Nazir M, Mahajan R, Salgotra RK. Marker association study of yield attributing traits in common bean (Phaseolus vulgaris L.). Mol Biol Rep 2020; 47:6769-6783. [PMID: 32852680 DOI: 10.1007/s11033-020-05735-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 08/20/2020] [Indexed: 01/20/2023]
Abstract
Common bean is gaining acceptance as one of the most valuable major food consumed worldwide owing to innumerable nutritional and therapeutic benefits. Comparatively less productivity in underdeveloped countries encouraged us to proceed for QTL mining of yield traits in common bean. Heretofore, multiple yield associated markers have been detected all over the world; even so, the present work is looked on as the first report on identification of novel/new potent markers by exploiting the germplasm of Northern India. A panel of one hundred and thirty five genotypes was used for morphological studies and based on preliminary molecular evaluation; a set of ninety six diverse common bean genotypes (core set) was selected for association analysis. Molecular data generated by a total of ninety eight microsatellite markers (53 genomic and 45 genic SSRs) revealed high estimation of polymorphism among the genotypes that were observed to be divided into two major sub-populations and varying levels of admixtures based on population structure analyses. By employing both MLM and GLM analysis approaches, we identified 46 and 16 significant marker-trait associations (p ≤ 0.005) respectively, few of which have already been reported and hence validate our results. PVBR213 marker was found to be strongly associated with days to bud initiation trait when analyzed with both the approaches. Phenotypic variation of identified significant markers ranged from 3.1% to 32.7% where PVBR87, PVBR213, X96999 and X57022 explain more than 30% of phenotypic variation for 100 seed weight, days to bud initiation, pods per plant and pod length traits respectively. These findings introduce highly informative markers to aid marker-assisted selection program in common bean for high yield performance along with good agronomic merit.
Collapse
Affiliation(s)
- Nancy Gupta
- School of Biotechnology, Sher-E-Kashmir University of Agricultural Sciences and Technology of Jammu, Chatha, Jammu, Jammu and Kashmir, 180009, India
| | - Sajad Majeed Zargar
- Proteomics Laboratory, Division of Plant Biotechnology, Sher-E-Kashmir University of Agricultural Sciences and Technology of Srinagar, Shalimar, Srinagar, Jammu and Kashmir, 190025, India.
| | - Ravinder Singh
- School of Biotechnology, Sher-E-Kashmir University of Agricultural Sciences and Technology of Jammu, Chatha, Jammu, Jammu and Kashmir, 180009, India
| | - Muslima Nazir
- Proteomics Laboratory, Division of Plant Biotechnology, Sher-E-Kashmir University of Agricultural Sciences and Technology of Srinagar, Shalimar, Srinagar, Jammu and Kashmir, 190025, India
| | - Reetika Mahajan
- Proteomics Laboratory, Division of Plant Biotechnology, Sher-E-Kashmir University of Agricultural Sciences and Technology of Srinagar, Shalimar, Srinagar, Jammu and Kashmir, 190025, India
| | - R K Salgotra
- School of Biotechnology, Sher-E-Kashmir University of Agricultural Sciences and Technology of Jammu, Chatha, Jammu, Jammu and Kashmir, 180009, India
| |
Collapse
|
13
|
Bashir H, Bashir Z, Mahajan R, Nazir M, Mir RA, Nehvi FA, Zargar SM. Molecular characterization and insights into the origin of common bean (Phaseolus vulgaris L.) landraces of north western Himalayas. THE NUCLEUS 2020. [DOI: 10.1007/s13237-020-00323-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
14
|
Pratap A, Das A, Kumar S, Gupta S. Current Perspectives on Introgression Breeding in Food Legumes. FRONTIERS IN PLANT SCIENCE 2020; 11:589189. [PMID: 33552095 PMCID: PMC7858677 DOI: 10.3389/fpls.2020.589189] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 12/03/2020] [Indexed: 05/22/2023]
Abstract
Food legumes are important for defeating malnutrition and sustaining agri-food systems globally. Breeding efforts in legume crops have been largely confined to the exploitation of genetic variation available within the primary genepool, resulting in narrow genetic base. Introgression as a breeding scheme has been remarkably successful for an array of inheritance and molecular studies in food legumes. Crop wild relatives (CWRs), landraces, and exotic germplasm offer great potential for introgression of novel variation not only to widen the genetic base of the elite genepool for continuous incremental gains over breeding cycles but also to discover the cryptic genetic variation hitherto unexpressed. CWRs also harbor positive quantitative trait loci (QTLs) for improving agronomic traits. However, for transferring polygenic traits, "specialized population concept" has been advocated for transferring QTLs from CWR into elite backgrounds. Recently, introgression breeding has been successful in developing improved cultivars in chickpea (Cicer arietinum), pigeonpea (Cajanus cajan), peanut (Arachis hypogaea), lentil (Lens culinaris), mungbean (Vigna radiata), urdbean (Vigna mungo), and common bean (Phaseolus vulgaris). Successful examples indicated that the usable genetic variation could be exploited by unleashing new gene recombination and hidden variability even in late filial generations. In mungbean alone, distant hybridization has been deployed to develop seven improved commercial cultivars, whereas in urdbean, three such cultivars have been reported. Similarly, in chickpea, three superior cultivars have been developed from crosses between C. arietinum and Cicer reticulatum. Pigeonpea has benefited the most where different cytoplasmic male sterility genes have been transferred from CWRs, whereas a number of disease-resistant germplasm have also been developed in Phaseolus. As vertical gene transfer has resulted in most of the useful gene introgressions of practical importance in food legumes, the horizontal gene transfer through transgenic technology, somatic hybridization, and, more recently, intragenesis also offer promise. The gains through introgression breeding are significant and underline the need of bringing it in the purview of mainstream breeding while deploying tools and techniques to increase the recombination rate in wide crosses and reduce the linkage drag. The resurgence of interest in introgression breeding needs to be capitalized for development of commercial food legume cultivars.
Collapse
Affiliation(s)
- Aditya Pratap
- ICAR-Indian Institute of Pulses Research, Kanpur, India
| | - Arpita Das
- Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, India
| | - Shiv Kumar
- International Center for Agricultural Research in the Dry Areas (ICARDA), Rabat Office, Rabat, Morocco
- *Correspondence: Sanjeev Gupta,
| | - Sanjeev Gupta
- ICAR-Indian Institute of Pulses Research, Kanpur, India
- Shiv Kumar,
| |
Collapse
|
15
|
Diaz S, Ariza-Suarez D, Ramdeen R, Aparicio J, Arunachalam N, Hernandez C, Diaz H, Ruiz H, Piepho HP, Raatz B. Genetic Architecture and Genomic Prediction of Cooking Time in Common Bean ( Phaseolus vulgaris L.). FRONTIERS IN PLANT SCIENCE 2020; 11:622213. [PMID: 33643335 PMCID: PMC7905357 DOI: 10.3389/fpls.2020.622213] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 12/21/2020] [Indexed: 05/21/2023]
Abstract
Cooking time of the common bean is an important trait for consumer preference, with implications for nutrition, health, and environment. For efficient germplasm improvement, breeders need more information on the genetics to identify fast cooking sources with good agronomic properties and molecular breeding tools. In this study, we investigated a broad genetic variation among tropical germplasm from both Andean and Mesoamerican genepools. Four populations were evaluated for cooking time (CKT), water absorption capacity (WAC), and seed weight (SdW): a bi-parental RIL population (DxG), an eight-parental Mesoamerican MAGIC population, an Andean (VEF), and a Mesoamerican (MIP) breeding line panel. A total of 922 lines were evaluated in this study. Significant genetic variation was found in all populations with high heritabilities, ranging from 0.64 to 0.89 for CKT. CKT was related to the color of the seed coat, with the white colored seeds being the ones that cooked the fastest. Marker trait associations were investigated by QTL analysis and GWAS, resulting in the identification of 10 QTL. In populations with Andean germplasm, an inverse correlation of CKT and WAC, and also a QTL on Pv03 that inversely controls CKT and WAC (CKT3.2/WAC3.1) were observed. WAC7.1 was found in both Mesoamerican populations. QTL only explained a small part of the variance, and phenotypic distributions support a more quantitative mode of inheritance. For this reason, we evaluated how genomic prediction (GP) models can capture the genetic variation. GP accuracies for CKT varied, ranging from good results for the MAGIC population (0.55) to lower accuracies in the MIP panel (0.22). The phenotypic characterization of parental material will allow for the cooking time trait to be implemented in the active germplasm improvement programs. Molecular breeding tools can be developed to employ marker-assisted selection or genomic selection, which looks to be a promising tool in some populations to increase the efficiency of breeding activities.
Collapse
Affiliation(s)
- Santiago Diaz
- Bean Program, Agrobiodiversity Area, International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | - Daniel Ariza-Suarez
- Bean Program, Agrobiodiversity Area, International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | - Raisa Ramdeen
- Institute of Crop Science, University of Hohenheim, Hohenheim, Germany
| | - Johan Aparicio
- Bean Program, Agrobiodiversity Area, International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | - Nirmala Arunachalam
- Bean Program, Agrobiodiversity Area, International Center for Tropical Agriculture (CIAT), Cali, Colombia
- Departamento de Agronomía, Facultad de Ciencias Agrarias, Universidad Nacional de Colombia, Bogotá, Colombia
| | | | - Harold Diaz
- Bean Program, Agrobiodiversity Area, International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | - Henry Ruiz
- Bean Program, Agrobiodiversity Area, International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | - Hans-Peter Piepho
- Institute of Crop Science, University of Hohenheim, Hohenheim, Germany
| | - Bodo Raatz
- Bean Program, Agrobiodiversity Area, International Center for Tropical Agriculture (CIAT), Cali, Colombia
- *Correspondence: Bodo Raatz,
| |
Collapse
|
16
|
Pipan B, Meglič V. Diversification and genetic structure of the western-to-eastern progression of European Phaseolus vulgaris L. germplasm. BMC PLANT BIOLOGY 2019; 19:442. [PMID: 31646962 PMCID: PMC6813049 DOI: 10.1186/s12870-019-2051-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 09/23/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Common bean (Phaseolus vulgaris L.) is the most important food legume for direct human consumption around the world, as it represents a valuable source of components with nutritional and health benefits. RESULTS We conducted a study to define and explain the genetic relatedness and diversification level of common bean (Phaseolus vulgaris L.) germplasm from Portugal to Ukraine, along a western-to-eastern line of southern European countries, including Poland. This was based on the P. vulgaris genetic structure, and was designed to better describe its distribution and domestication pathways in Europe. Using the multi-crop passport descriptors that include geographic origin and different phaseolin types (corresponding to the Mesoamerican and Andean gene pools), 782 accessions were obtained from nine gene banks and 12 geographic origins. We selected 33 genome/ gene-related/ gene-pool-related nuclear simple sequence repeat markers that covered the genetic diversity across the P. vulgaris genome. The overall polymorphic information content was 0.800. Without specifying geographic origin, global structure cluster analysis generated 10 genetic clusters. Among the PvSHP1 markers, the most informative for gene pool assignment of the European P. vulgaris germplasm was PvSHP1-B. Results of AMOVA show that 89% of the molecular variability is shared within the 782 accessions, with 4% molecular variability among the different geographic origins along this western-to-eastern line of southern Europe (including Poland). CONCLUSIONS This study shows that the diversification line of the European P. vulgaris germplasm followed from the western areas of southern Europe (Portugal, Spain, Italy, Slovenia) to the more eastern areas of southern Europe. This progression defines three geographically separated subgroups, as the northern (Poland, Ukraine, Romania), southern (Albania, Bulgaria), and central (Bosnia and Herzegovina, Serbia, Hungary) areas of eastern Europe.
Collapse
Affiliation(s)
- Barbara Pipan
- Crop Science Department, Agricultural Institute of Slovenia, Hacquetova ulica 17, SI-1000 Ljubljana, Slovenia
| | - Vladimir Meglič
- Crop Science Department, Agricultural Institute of Slovenia, Hacquetova ulica 17, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
17
|
Pattanayak A, Roy S, Sood S, Iangrai B, Banerjee A, Gupta S, Joshi DC. Rice bean: a lesser known pulse with well-recognized potential. PLANTA 2019; 250:873-890. [PMID: 31134340 DOI: 10.1007/s00425-019-03196-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 05/20/2019] [Indexed: 06/09/2023]
Abstract
Required genetic resources for the improvement of agronomic, nutritional and economic value of rice bean are available in the world collection. International cooperative effort is required to utilize and conserve them. Rice bean [Vigna umbellata (Thunb.) Ohwi and Ohashi], a lesser known pulse among the Asiatic Vigna, has long been considered as a food security crop of small and marginal farmers of Southeast Asia. Considered as a nutritionally rich food and fodder, it is also a source of genes for biotic and abiotic stress tolerance including drought, soil acidity and storage pest. Although it spread from its centre of domestication in the Indo-China region to other parts around the world, it never became an important crop anywhere probably because of agronomic disadvantages. Crop improvement for determinate nature, good yield, less variable seed colour, pleasant organoleptic properties and lower antinutrients is required. Scanning of scientific literature indicates that genetic resources with desirable agronomic and nutritional traits exist within the current collection but are spread across countries. Genomic studies in the species indicate that except for insect resistance and aluminium toxicity tolerance, not much attention has been paid to decipher and utilize other stress tolerance and nutritional quality traits. Collaborative efforts towards improving farming, food, trade value and off-farm conservation of rice bean would not only help marginal farmers but will also help to preserve the yet to be explored genomic resources available in this sturdy pulse.
Collapse
Affiliation(s)
- Arunava Pattanayak
- ICAR-Vivekananda Parvatiya Krishi Anusandhan Sansthan, Mall Road, Almora, Uttarakhand, 263601, India.
| | - Somnath Roy
- Central Rainfed Upland Rice Research Station, ICAR-National Rice Research Institute, Hazaribagh, Jharkhand, 825301, India
| | - Salej Sood
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, 171001, India
| | - Banshanlang Iangrai
- ICAR Research Complex for North Eastern Hill Region, Umiam, Meghalaya, 793103, India
| | - Amrita Banerjee
- Central Rainfed Upland Rice Research Station, ICAR-National Rice Research Institute, Hazaribagh, Jharkhand, 825301, India
| | - Sanjay Gupta
- ICAR-Indian Institute of Soybean Research, Khandwa Road, Indore, Madhya Pradesh, 452001, India
| | - Dinesh C Joshi
- ICAR-Vivekananda Parvatiya Krishi Anusandhan Sansthan, Mall Road, Almora, Uttarakhand, 263601, India
| |
Collapse
|
18
|
Yundaeng C, Somta P, Amkul K, Kongjaimun A, Kaga A, Tomooka N. Construction of genetic linkage map and genome dissection of domestication-related traits of moth bean (Vigna aconitifolia), a legume crop of arid areas. Mol Genet Genomics 2019; 294:621-635. [PMID: 30739203 DOI: 10.1007/s00438-019-01536-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Accepted: 01/31/2019] [Indexed: 10/27/2022]
Abstract
The moth bean (Vigna aconitifolia), possibly the most primitive crop of the genus Vigna, is a highly drought- and heat-resistant legume grown in arid areas. Moth bean domestication involved phenotypic changes, including reduction of seed dormancy and pod shattering, increased organ size, and earlier flowering and maturity. However, the genetics of the domestication process in moth bean is not known. In this study, we constructed a genetic linkage map for moth bean and used the map to identify quantitative trait loci (QTL) for domestication-related traits of an F2 population of 188 individuals produced from a cross of wild moth bean (TN67) and cultivated moth bean (ICPMO056). The genetic linkage map comprised 11 linkage groups (LG) of 172 simple sequence repeat markers and spanned a total length of 1016.8 centiMorgan (cM), with an average marker distance of 7.34 cM. A comparative genome analysis showed high genome synteny between moth bean and mungbean (Vigna radiata), adzuki bean (Vigna angularis), rice bean (Vigna umbellata), and yardlong bean (Vigna unguiculata). In total, 50 QTLs and 3 genes associated with 20 domestication-related traits were identified. Most of the QTLs belonged to five LGs (1, 2, 4, 7, and 10). Key traits related to domestication such as seed dormancy and pod shattering were controlled by large-effect QTLs (PVE > 20%) with one or two minor QTLs, whereas all other traits were controlled by one-seven minor QTLs, apart from seed weight, which was controlled by one major and seven minor QTLs. These results suggest that a small number of mutations with large phenotypic effects have contributed to the domestication of the moth bean. Comparative analysis of QTLs with related Vigna crops revealed that there are several domestication-related large-effect QTLs that had not been used in moth bean domestication. This study provides a basic genetic map and identified genome regions associated with domestication-related traits, which will be useful for the genetic improvement of the moth bean and related Vigna species.
Collapse
Affiliation(s)
- Chutintorn Yundaeng
- Department of Agronomy, Faculty of Agriculture at Kampaheng Saen, Kasetsart University, Kamphaeng Saen Campus, Kamphaeng Saen, Nakhon Pathom, 73140, Thailand
| | - Prakit Somta
- Department of Agronomy, Faculty of Agriculture at Kampaheng Saen, Kasetsart University, Kamphaeng Saen Campus, Kamphaeng Saen, Nakhon Pathom, 73140, Thailand. .,Center for Agricultural Biotechnology (AG-BIO/PEDRO-CHE), Kasetsart University, Kamphaeng Saen Campus, Kamphaeng Saen, Nakhon Pathom, 73140, Thailand. .,Center of Advanced Studies for Agriculture and Food (CASAF), Kasetsart University Institute for Advanced Studies, Kasetsart University (NRU-KU), Bangkok, 10900, Thailand.
| | - Kitiya Amkul
- Department of Agronomy, Faculty of Agriculture at Kampaheng Saen, Kasetsart University, Kamphaeng Saen Campus, Kamphaeng Saen, Nakhon Pathom, 73140, Thailand.,Center of Advanced Studies for Agriculture and Food (CASAF), Kasetsart University Institute for Advanced Studies, Kasetsart University (NRU-KU), Bangkok, 10900, Thailand
| | - Alisa Kongjaimun
- Faculty of Animal Sciences and Agricultural Technology, Silpakorn University, Cha-Am, Phetchaburi, 76120, Thailand
| | - Akito Kaga
- Soybean and Field Crop Applied Genomics Research Unit, National Agriculture and Food Research Organization, 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8602, Japan
| | - Norihiko Tomooka
- Genetic Resources Center, National Agriculture and Food Research Organization, 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8602, Japan.
| |
Collapse
|
19
|
Gioia T, Logozzo G, Marzario S, Spagnoletti Zeuli P, Gepts P. Evolution of SSR diversity from wild types to U.S. advanced cultivars in the Andean and Mesoamerican domestications of common bean (Phaseolus vulgaris). PLoS One 2019; 14:e0211342. [PMID: 30703134 PMCID: PMC6354994 DOI: 10.1371/journal.pone.0211342] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 01/13/2019] [Indexed: 01/31/2023] Open
Abstract
Progress in common bean breeding requires the exploitation of genetic variation among market classes, races and gene pools. The present study was conducted to determine the amount of genetic variation and the degree of relatedness among 192 selected common bean advanced cultivars using 58 simple-sequence-repeat markers (SSR) evenly distributed along the 11 linkage groups of the Phaseolus reference map. All the lines belonged to commercial seed type classes that are widely grown in the USA and include both dry bean and snap beans for the fresh and processing markets. Through population structure, principal components analyses, cluster analysis, and discriminant analysis of principal components (DAPC), Andean and Mesoamerican genotypes as well as most American commercial type classes could be distinguished. The genetic relationship among the commercial cultivars revealed by the SSR markers was generally in agreement with known pedigree data. The Mesoamerican cultivars were separated into three major groups-black, small white, and navy accessions clustered together in a distinct group, while great northern and pinto clustered in another group, showing mixed origin. The Andean cultivars were distributed in two different groups. The kidney market classes formed a single group, while the green bean accessions were distributed between the Andean and Mesoamerican groups, showing inter-gene pool genetic admixture. For a subset of 24 SSR markers, we compared and contrasted the genetic diversity of the commercial cultivars with those of wild and domesticated landrace accessions of common bean. An overall reduction in genetic diversity was observed in both gene pools, Andean and Mesoamerican, from wild to landraces to advanced cultivars. The limited diversity in the commercial cultivars suggests that an important goal of bean breeding programs should be to broaden the cultivated gene pool, particularly the genetic diversity of specific commercial classes, using the genetic variability present in common bean landraces.
Collapse
Affiliation(s)
- Tania Gioia
- Department of Plant Sciences/MS1, Section of Crop & Ecosystem Sciences, University of California, Davis, CA, United States of America
| | - Giuseppina Logozzo
- Scuola di Scienze Agrarie, Forestali, Alimentari ed Ambientali, Università degli Studi della Basilicata, Potenza, Italy
| | - Stefania Marzario
- Scuola di Scienze Agrarie, Forestali, Alimentari ed Ambientali, Università degli Studi della Basilicata, Potenza, Italy
| | - Pierluigi Spagnoletti Zeuli
- Scuola di Scienze Agrarie, Forestali, Alimentari ed Ambientali, Università degli Studi della Basilicata, Potenza, Italy
| | - Paul Gepts
- Department of Plant Sciences/MS1, Section of Crop & Ecosystem Sciences, University of California, Davis, CA, United States of America
- * E-mail:
| |
Collapse
|
20
|
Diniz AL, Giordani W, Costa ZP, Margarido GRA, Perseguini JMKC, Benchimol-Reis LL, Chiorato AF, Garcia AAF, Vieira MLC. Evidence for Strong Kinship Influence on the Extent of Linkage Disequilibrium in Cultivated Common Beans. Genes (Basel) 2018; 10:E5. [PMID: 30583474 PMCID: PMC6356217 DOI: 10.3390/genes10010005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 12/15/2018] [Accepted: 12/18/2018] [Indexed: 01/05/2023] Open
Abstract
Phaseolus vulgaris is an important grain legume for human consumption. Recently, association mapping studies have been performed for the species aiming to identify loci underlying quantitative variation of traits. It is now imperative to know whether the linkage disequilibrium (LD) reflects the true association between a marker and causative loci. The aim of this study was to estimate and analyze LD on a diversity panel of common beans using ordinary r² and r2 extensions which correct bias due to population structure (rS²), kinship (rV²), and both (rVS²). A total of 10,362 single nucleotide polymorphisms (SNPs) were identified by genotyping by sequencing (GBS), and polymorphisms were found to be widely distributed along the 11 chromosomes. In terms of r2, high values of LD (over 0.8) were identified between SNPs located at opposite chromosomal ends. Estimates for rV² were lower than those for rS². Results for rV² and rVS² were similar, suggesting that kinship may also include information on population structure. Over genetic distance, LD decayed to 0.1 at a distance of 1 Mb for rVS². Inter-chromosomal LD was also evidenced. This study showed that LD estimates decay dramatically according to the population structure, and especially the degree of kinship. Importantly, the LD estimates reported herein may influence our ability to perform association mapping studies on P. vulgaris.
Collapse
Affiliation(s)
- Augusto Lima Diniz
- Departamento de Genética, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Piracicaba, São Paulo 13418-900, Brazil.
| | - Willian Giordani
- Departamento de Genética, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Piracicaba, São Paulo 13418-900, Brazil.
| | - Zirlane Portugal Costa
- Departamento de Genética, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Piracicaba, São Paulo 13418-900, Brazil.
| | - Gabriel R A Margarido
- Departamento de Genética, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Piracicaba, São Paulo 13418-900, Brazil.
| | - Juliana Morini K C Perseguini
- Universidade Tecnológica Federal do Paraná, Dois Vizinhos, Paraná 85660-000, Brazil.
- Centro de Recursos Genéticos, Instituto Agronômico de Campinas, Campinas, São Paulo 13075-630, Brazil.
| | - Luciana L Benchimol-Reis
- Centro de Recursos Genéticos, Instituto Agronômico de Campinas, Campinas, São Paulo 13075-630, Brazil.
| | - Alisson F Chiorato
- Centro de Grãos e Fibras, Instituto Agronômico de Campinas, Campinas, São Paulo 13075-630, Brazil.
| | - Antônio Augusto F Garcia
- Departamento de Genética, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Piracicaba, São Paulo 13418-900, Brazil.
| | - Maria Lucia Carneiro Vieira
- Departamento de Genética, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Piracicaba, São Paulo 13418-900, Brazil.
| |
Collapse
|
21
|
Dachapak S, Tomooka N, Somta P, Naito K, Kaga A, Srinives P. QTL analysis of domestication syndrome in zombi pea (Vigna vexillata), an underutilized legume crop. PLoS One 2018; 13:e0200116. [PMID: 30562342 PMCID: PMC6298662 DOI: 10.1371/journal.pone.0200116] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Accepted: 10/11/2018] [Indexed: 11/24/2022] Open
Abstract
Zombi pea (Vigna vexillata (L.) A. Rich) is an underutilized crop belonging to the genus Vigna. Two domesticated forms of zombi pea are cultivated as crop plants; seed and tuber forms. The cultivated seed form is present in Africa, while the cultivated tuber form is present in a very limited part of Asia. Genetics of domestication have been investigated in most of cultivated Vigna crops by means of quantitative trait locus (QTL) mapping. In this study, we investigated genetics of domestication in zombi pea by QTL analysis using an F2 population of 139 plants derived from a cross between cultivated tuber form of V. vexillata (JP235863) and wild V. vexillata (AusTRCF66514). A linkage map with 11 linkage groups (LGs) was constructed from this F2 population using 145 SSR, 117 RAD-seq and 2 morphological markers. Many highly segregation distorted markers were found on LGs 5, 6, 7, 8, 10 and 11. Most of the distorted markers were clustered together and all the markers on LG8 were highly distorted markers. Comparing this V. vexillata linkage map with linkage maps of other four Vigna species demonstrated several genome rearrangements in V. vexillata. QTL analysis for 22 domestication-related traits was investigated by inclusive composite interval mapping in which 37 QTLs were identified for 18 traits; no QTL was detected for 4 traits. Number of QTLs detected in each trait ranged from 1 to 5 with an average of only 2.3. Five QTLs for tuber width and three QTLs for tuber weight. Interestingly, 2 QTLs each for tuber width and tuber weight detected on LG2 and LG4 were located at similar position and wild allele increased tuber width and weight. This indicated wild germplasm having small tuber have potential to increase yield of large tuber cultivated type. Large-effect QTLs (PVE > 20%) were on LG4 (pod length), LG5 (leaf size and seed thickness), and LG7 (for seed-related traits). Comparison of domestication-related QTLs of the zombi pea with those of cowpea (Vigna unguiculata), azuki bean (Vigna angularis), mungbean (Vigna radiata) and rice bean (Vigna umbellata) revealed that there was conservation of some QTLs for seed size, pod size and leaf size between zombi pea and cowpea and that QTLs associated with seed size (weight, length, width and thickness) in each species were clustered on same linkage.
Collapse
Affiliation(s)
- Sujinna Dachapak
- Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Nakhon Pathom, Thailand
| | - Norihiko Tomooka
- Genetic Resources Center, Gene bank, National Agriculture and Food Research Organization, Kanondai, Tsukuba, Ibaraki, Japan
| | - Prakit Somta
- Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Nakhon Pathom, Thailand
| | - Ken Naito
- Genetic Resources Center, Gene bank, National Agriculture and Food Research Organization, Kanondai, Tsukuba, Ibaraki, Japan
| | - Akito Kaga
- Soybean and Field Crop Applied Genomics Research Unit, Institute of Crop Science, National Agriculture and Food Research Organization, Kanondai, Tsukuba, Ibaraki, Japan
| | - Peerasak Srinives
- Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Nakhon Pathom, Thailand
| |
Collapse
|
22
|
Diaz LM, Ricaurte J, Tovar E, Cajiao C, Terán H, Grajales M, Polanía J, Rao I, Beebe S, Raatz B. QTL analyses for tolerance to abiotic stresses in a common bean (Phaseolus vulgaris L.) population. PLoS One 2018; 13:e0202342. [PMID: 30157265 PMCID: PMC6114847 DOI: 10.1371/journal.pone.0202342] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 08/01/2018] [Indexed: 11/18/2022] Open
Abstract
Common bean productivity is reduced by several abiotic stress factors like drought and low soil fertility, leading to yield losses particularly in low input smallholder farming systems in the tropics. To understand the genetics of stress tolerance, and to improve adaptation of common bean to adverse environments, the BAT 881 x G21212 population of 95 recombinant inbred lines (RILs) was evaluated under different abiotic stress conditions in 15 trials across four locations in Colombia, representing two higher altitude (Darién, Popayán) and two lower altitude (Palmira, Quilichao) locations. Stress vs non-stress treatments showed that yields were reduced in drought trials in Palmira by 13 and 31%, respectively, and observed yield reductions in low phosphorus stress were 39% in Quilichao, 16% in Popayán, and 71% in Darién, respectively. Yield components and biomass traits were also reduced. Traits linked to dry matter redistribution from stems, leaves and pods to seed, such as pod harvest index and total non-structural carbohydrates, were found to be important factors contributing to yield in all conditions. In contrast, early maturity was correlated with improved yield only in lower altitude locations, whereas in higher altitudes delayed maturity promoted yield. Superior RILs that combine stress tolerance and high cross-location productivity were identified. Lines that showed good yield under strong stress conditions also performed well under non-stress conditions, indicating that breeder's selection can be applied for both conditions at the same time. Quantitative trait loci (QTL) analyses revealed a stable yield QTL on chromosome Pv04, detected individually in all locations, several stress treatments and in best linear unbiased predictions (BLUPs) across all trials. Furthermore, two QTL hotspots for maturity traits were identified on Pv01 and Pv08, which are the most stable QTL. The constitutive yield QTL could serve as a good candidate for marker development and could be used in marker assisted selection. Increased understanding of the physiology of abiotic stress tolerance, combined with the availability of superior germplasm and molecular tools, will aid breeding efforts for further improvement of these plant traits.
Collapse
Affiliation(s)
- Lucy Milena Diaz
- Biotechnology Unit and Bean Program, International Center for Tropical Agriculture (CIAT), Cali, Valle, Colombia
| | - Jaumer Ricaurte
- Biotechnology Unit and Bean Program, International Center for Tropical Agriculture (CIAT), Cali, Valle, Colombia
| | - Eduardo Tovar
- Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Bogotá, Colombia
| | - Cesar Cajiao
- Biotechnology Unit and Bean Program, International Center for Tropical Agriculture (CIAT), Cali, Valle, Colombia
| | - Henry Terán
- DuPont Pioneer, Salinas, Puerto Rico, United States of America
| | - Miguel Grajales
- Biotechnology Unit and Bean Program, International Center for Tropical Agriculture (CIAT), Cali, Valle, Colombia
| | - Jose Polanía
- Biotechnology Unit and Bean Program, International Center for Tropical Agriculture (CIAT), Cali, Valle, Colombia
| | - Idupulapati Rao
- Biotechnology Unit and Bean Program, International Center for Tropical Agriculture (CIAT), Cali, Valle, Colombia
| | - Stephen Beebe
- Biotechnology Unit and Bean Program, International Center for Tropical Agriculture (CIAT), Cali, Valle, Colombia
| | - Bodo Raatz
- Biotechnology Unit and Bean Program, International Center for Tropical Agriculture (CIAT), Cali, Valle, Colombia
| |
Collapse
|
23
|
Multi-Environment Evaluation and Genetic Characterisation of Common Bean Breeding Lines for Organic Farming Systems. SUSTAINABILITY 2018. [DOI: 10.3390/su10030777] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
24
|
Blair MW, Cortés AJ, Farmer AD, Huang W, Ambachew D, Penmetsa RV, Carrasquilla-Garcia N, Assefa T, Cannon SB. Uneven recombination rate and linkage disequilibrium across a reference SNP map for common bean (Phaseolus vulgaris L.). PLoS One 2018; 13:e0189597. [PMID: 29522524 PMCID: PMC5844515 DOI: 10.1371/journal.pone.0189597] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 11/28/2017] [Indexed: 12/20/2022] Open
Abstract
Recombination (R) rate and linkage disequilibrium (LD) analyses are the basis for plant breeding. These vary by breeding system, by generation of inbreeding or outcrossing and by region in the chromosome. Common bean (Phaseolus vulgaris L.) is a favored food legume with a small sequenced genome (514 Mb) and n = 11 chromosomes. The goal of this study was to describe R and LD in the common bean genome using a 768-marker array of single nucleotide polymorphisms (SNP) based on Trans-legume Orthologous Group (TOG) genes along with an advanced-generation Recombinant Inbred Line reference mapping population (BAT93 x Jalo EEP558) and an internationally available diversity panel. A whole genome genetic map was created that covered all eleven linkage groups (LG). The LGs were linked to the physical map by sequence data of the TOGs compared to each chromosome sequence of common bean. The genetic map length in total was smaller than for previous maps reflecting the precision of allele calling and mapping with SNP technology as well as the use of gene-based markers. A total of 91.4% of TOG markers had singleton hits with annotated Pv genes and all mapped outside of regions of resistance gene clusters. LD levels were found to be stronger within the Mesoamerican genepool and decay more rapidly within the Andean genepool. The recombination rate across the genome was 2.13 cM / Mb but R was found to be highly repressed around centromeres and frequent outside peri-centromeric regions. These results have important implications for association and genetic mapping or crop improvement in common bean.
Collapse
Affiliation(s)
- Matthew W. Blair
- Department of Agricultural & Environmental Science, Tennessee State University (TSU), Nashville, Tennessee, United States of America
| | - Andrés J. Cortés
- Colombian Corporation for Agricultural Research (CORPOICA), C.I. La Selva, Rionegro, Department of Antioquia, Colombia
| | - Andrew D. Farmer
- National Center for Genome Resources (NCGR), Santa Fe, New Mexico, United States of America
| | - Wei Huang
- Iowa State University (ISU), Ames, Iowa, United States of America
| | - Daniel Ambachew
- Department of Agricultural & Environmental Science, Tennessee State University (TSU), Nashville, Tennessee, United States of America
| | - R. Varma Penmetsa
- University of California, Davis (US-D), California, United States of America
| | | | - Teshale Assefa
- Iowa State University (ISU), Ames, Iowa, United States of America
- United States Department of Agriculture - Agricultural Research Service (USDA-ARS), Corn Insects and Crop Genetics Research Unit, Ames, Iowa, United States of America
| | - Steven B. Cannon
- Iowa State University (ISU), Ames, Iowa, United States of America
- United States Department of Agriculture - Agricultural Research Service (USDA-ARS), Corn Insects and Crop Genetics Research Unit, Ames, Iowa, United States of America
| |
Collapse
|
25
|
Choudhary N, Bawa V, Paliwal R, Singh B, Bhat MA, Mir JI, Gupta M, Sofi PA, Thudi M, Varshney RK, Mir RR. Gene/QTL discovery for Anthracnose in common bean (Phaseolus vulgaris L.) from North-western Himalayas. PLoS One 2018; 13:e0191700. [PMID: 29389971 PMCID: PMC5794095 DOI: 10.1371/journal.pone.0191700] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 01/09/2018] [Indexed: 02/01/2023] Open
Abstract
Common bean (Phaseolus vulgaris L.) is one of the most important grain legume crops in the world. The beans grown in north-western Himalayas possess huge diversity for seed color, shape and size but are mostly susceptible to Anthracnose disease caused by seed born fungus Colletotrichum lindemuthianum. Dozens of QTLs/genes have been already identified for this disease in common bean world-wide. However, this is the first report of gene/QTL discovery for Anthracnose using bean germplasm from north-western Himalayas of state Jammu & Kashmir, India. A core set of 96 bean lines comprising 54 indigenous local landraces from 11 hot-spots and 42 exotic lines from 10 different countries were phenotyped at two locations (SKUAST-Jammu and Bhaderwah, Jammu) for Anthracnose resistance. The core set was also genotyped with genome-wide (91) random and trait linked SSR markers. The study of marker-trait associations (MTAs) led to the identification of 10 QTLs/genes for Anthracnose resistance. Among the 10 QTLs/genes identified, two MTAs are stable (BM45 & BM211), two MTAs (PVctt1 & BM211) are major explaining more than 20% phenotypic variation for Anthracnose and one MTA (BM211) is both stable and major. Six (06) genomic regions are reported for the first time, while as four (04) genomic regions validated the already known QTL/gene regions/clusters for Anthracnose. The major, stable and validated markers reported during the present study associated with Anthracnose resistance will prove useful in common bean molecular breeding programs aimed at enhancing Anthracnose resistance of local bean landraces grown in north-western Himalayas of state Jammu and Kashmir.
Collapse
Affiliation(s)
- Neeraj Choudhary
- Division of Plant Breeding and Genetics, Sher-e-Kashmir University of Agricultural Sciences & Technology of Jammu (SKUAST-J), Chatha, Jammu, Jammu & Kashmir, India
| | - Vanya Bawa
- Division of Plant Breeding and Genetics, Sher-e-Kashmir University of Agricultural Sciences & Technology of Jammu (SKUAST-J), Chatha, Jammu, Jammu & Kashmir, India
| | - Rajneesh Paliwal
- The International Institute of Tropical Agriculture (IITA), Ibadan, Oyo State, Nigeria
| | - Bikram Singh
- Division of Plant Breeding and Genetics, Sher-e-Kashmir University of Agricultural Sciences & Technology of Jammu (SKUAST-J), Chatha, Jammu, Jammu & Kashmir, India
| | - Mohd. Ashraf Bhat
- Division of Genetics & Plant Breeding, Faculty of Agriculture (FoA), Sher-e-Kashmir University of Agricultural Sciences & Technology of Kashmir (SKUAST-K), Wadoora Campus, Sopore, Jammu & Kashmir, India
| | - Javid Iqbal Mir
- Plant Biotechnology Center, Central Institute of Temperate Horticulture (CITH), Rangreth, Srinagar, Jammu & Kashmir, India
| | - Moni Gupta
- Division of Plant Breeding and Genetics, Sher-e-Kashmir University of Agricultural Sciences & Technology of Jammu (SKUAST-J), Chatha, Jammu, Jammu & Kashmir, India
| | - Parvaze A. Sofi
- Division of Genetics & Plant Breeding, Faculty of Agriculture (FoA), Sher-e-Kashmir University of Agricultural Sciences & Technology of Kashmir (SKUAST-K), Wadoora Campus, Sopore, Jammu & Kashmir, India
| | - Mahendar Thudi
- Research Program Grain Legumes, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, Telangana State, India
| | - Rajeev K. Varshney
- Research Program Grain Legumes, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, Telangana State, India
| | - Reyazul Rouf Mir
- Division of Genetics & Plant Breeding, Faculty of Agriculture (FoA), Sher-e-Kashmir University of Agricultural Sciences & Technology of Kashmir (SKUAST-K), Wadoora Campus, Sopore, Jammu & Kashmir, India
| |
Collapse
|
26
|
Delfini J, Moda-Cirino V, Ruas CDF, dos Santos Neto J, Ruas PM, Buratto JS, Ruas EA, Azeredo Gonçalves LS. Distinctness of Brazilian common bean cultivars with carioca and black grain by means of morphoagronomic and molecular descriptors. PLoS One 2017; 12:e0188798. [PMID: 29190665 PMCID: PMC5708700 DOI: 10.1371/journal.pone.0188798] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Accepted: 11/13/2017] [Indexed: 11/24/2022] Open
Abstract
Common bean (Phaseolus vulgaris L.) is one of the most important legumes for human consumption and is a staple food in the diet of the population of some countries of Latin America, Africa and Asia. The distinction between cultivars is based predominantly on morphological descriptors, which proved inefficient for the differentiation of some cultivars. This study had the objective of describing, distinguishing and evaluating the agronomic potential of 39 common bean cultivars of the carioca and black grain groups registered for cultivation in Brazil, based on 49 morphoagronomic descriptors and microsatellite (simple sequence repeat -SSR) markers. The morphoagronomic traits of each commercial group were characterized in four environments. Thirty-seven SSR markers were used for the molecular description. The morphological data, analyzed by the Shanonon-Weaver index, detected low variability among cultivars for qualitative data. On the other hand, the estimates of variance analysis, relative importance of the traits and hierarchical grouping analysis applied to the quantitative variables showed that the descriptors related to plant morphology were the most important for the carioca group, and those related to seed morphology were determining for the black group. The genetic parameters estimated for SSR markers by hierarchical and Bayesian cluster analysis identified 116 alleles, with 33 and 30 polymorphic loci and 24 and 22 private alleles for the carioca and black groups, respectively. The combined use of morphoagronomic and molecular descriptors improves the distinguishability of cultivars, contributing in a more efficient way to breeding and to the protection of cultivars.
Collapse
Affiliation(s)
- Jessica Delfini
- Agronomy Department, Universidade Estadual de Londrina (UEL), Rodovia Celso Garcia Cid, Londrina, Brazil
- Instituto Agronômico do Paraná (IAPAR), Rodovia Celso Garcia Cid, Londrina, Brazil
| | - Vânia Moda-Cirino
- Instituto Agronômico do Paraná (IAPAR), Rodovia Celso Garcia Cid, Londrina, Brazil
- * E-mail: (VMC); (AG)
| | - Claudete de Fátima Ruas
- Biology Department, Universidade Estadual de Londrina (UEL), Rodovia Celso Garcia Cid, Londrina, Brazil
| | - José dos Santos Neto
- Agronomy Department, Universidade Estadual de Londrina (UEL), Rodovia Celso Garcia Cid, Londrina, Brazil
- Instituto Agronômico do Paraná (IAPAR), Rodovia Celso Garcia Cid, Londrina, Brazil
| | - Paulo Maurício Ruas
- Biology Department, Universidade Estadual de Londrina (UEL), Rodovia Celso Garcia Cid, Londrina, Brazil
| | | | - Eduardo Augusto Ruas
- Biology Department, Universidade Estadual de Londrina (UEL), Rodovia Celso Garcia Cid, Londrina, Brazil
| | | |
Collapse
|
27
|
González AM, Godoy L, Santalla M. Dissection of Resistance Genes to Pseudomonas syringae pv. phaseolicola in UI3 Common Bean Cultivar. Int J Mol Sci 2017; 18:E2503. [PMID: 29168746 PMCID: PMC5751106 DOI: 10.3390/ijms18122503] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 11/14/2017] [Accepted: 11/17/2017] [Indexed: 11/25/2022] Open
Abstract
Few quantitative trait loci have been mapped for resistance to Pseudomonas syringae pv. phaseolicola in common bean. Two F₂ populations were developed from the host differential UI3 cultivar. The objective of this study was to further characterize the resistance to races 1, 5, 7 and 9 of Psp included in UI3. Using a QTL mapping approach, 16 and 11 main-effect QTLs for pod and primary leaf resistance were located on LG10, explaining up to 90% and 26% of the phenotypic variation, respectively. The homologous genomic region corresponding to primary leaf resistance QTLs detected tested positive for the presence of resistance-associated gene cluster encoding nucleotide-binding and leucine-rich repeat (NL), Natural Resistance Associated Macrophage (NRAMP) and Pentatricopeptide Repeat family (PPR) proteins. It is worth noting that the main effect QTLs for resistance in pod were located inside a 3.5 Mb genomic region that included the Phvul.010G021200 gene, which encodes a protein that has the highest sequence similarity to the RIN4 gene of Arabidopsis, and can be considered an important candidate gene for the organ-specific QTLs identified here. These results support that resistance to Psp from UI3 might result from the immune response activated by combinations of R proteins, and suggest the guard model as an important mechanism in pod resistance to halo blight. The candidate genes identified here warrant functional studies that will help in characterizing the actual defense gene(s) in UI3 genotype.
Collapse
Affiliation(s)
- Ana M González
- Grupo de Biología de Agrosistemas (BAS, www.bas-group.es), Misión Biológica de Galicia-CSIC, P.O. Box 28, 36080 Pontevedra, Spain.
| | - Luís Godoy
- Grupo de Biología de Agrosistemas (BAS, www.bas-group.es), Misión Biológica de Galicia-CSIC, P.O. Box 28, 36080 Pontevedra, Spain.
| | - Marta Santalla
- Grupo de Biología de Agrosistemas (BAS, www.bas-group.es), Misión Biológica de Galicia-CSIC, P.O. Box 28, 36080 Pontevedra, Spain.
| |
Collapse
|
28
|
Leitão ST, Dinis M, Veloso MM, Šatović Z, Vaz Patto MC. Establishing the Bases for Introducing the Unexplored Portuguese Common Bean Germplasm into the Breeding World. FRONTIERS IN PLANT SCIENCE 2017; 8:1296. [PMID: 28798757 PMCID: PMC5526916 DOI: 10.3389/fpls.2017.01296] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 07/10/2017] [Indexed: 05/28/2023]
Abstract
Common bean (Phaseolus vulgaris L.) is among the most important grain legumes for human consumption worldwide. Portugal has a potentially promising common bean germplasm, resulting from more than five centuries of natural adaptation and farmers' selection. Nevertheless, limited characterization of this resource hampers its exploitation by breeding programs. To support a more efficient conservation of the national bean germplasm and promote its use in crop improvement, we performed, for the first time, a simultaneous molecular marker (21 microsatellites and a DNA marker for phaseolin-type diversity analysis) and seed and plant morphological characterization (14 traits) of 175 accessions from Portuguese mainland and islands traditional bean-growing regions. A total of 188 different alleles were identified and an average pairwise Cavalli-Sforza and Edwards' chord genetic distance of 0.193 was estimated among accessions. To relate the Portuguese germplasm with the global common bean diversity, 17 wild relatives and representative accessions from the Andean and Mesoamerican gene pools were evaluated at the molecular level. No correlation was detected between the variability found and the geographic origin of accessions. Structure analysis divided the collection into three main clusters. Most of the Portuguese accessions grouped with the race representatives and wild relatives from the Andean region. One third of the national germplasm had admixed genetic origin and might represent putative hybrids among gene pools from the two original centers of domestication in the Andes and Mesoamerica. The molecular marker-based classification was largely congruent with the three most frequent phaseolin haplotype patterns observed in the accessions analyzed. Seed and plant morphological characterization of 150 Portuguese common bean accessions revealed a clear separation among genetic structure and phaseolin haplotype groups of accessions, with seed size and shape and the number of locules per pod the most discriminant traits. Additionally, we used molecular and morphological data to develop a series of smaller core collections that, by maximizing the genetic and morphological diversity of the original collection, represents the Portuguese common bean germplasm with minimum repetitiveness. A core collection with 37 accessions contained 100% of the genetic variation found in the entire collection. This core collection is appropriate for a more detailed characterization and should be explored, as a priority, in national and international common bean breeding efforts. Furthermore, the identified intermediate accessions (with admixed genetic origin) may have novel genetic combinations useful in future bean breeding.
Collapse
Affiliation(s)
- Susana T. Leitão
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de LisboaOeiras, Portugal
| | - Marco Dinis
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de LisboaOeiras, Portugal
| | - Maria M. Veloso
- Unidade de Investigação de Biotecnologia e Recursos Genéticos, Instituto Nacional de Investigação Agrária e VeterináriaOeiras, Portugal
| | - Zlatko Šatović
- Faculty of Agriculture, University of ZagrebZagreb, Croatia
- Centre of Excellence for Biodiversity and Molecular Plant BreedingZagreb, Croatia
| | - Maria C. Vaz Patto
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de LisboaOeiras, Portugal
| |
Collapse
|
29
|
Short-Term Local Adaptation of Historical Common Bean (Phaseolus vulgaris L.) Varieties and Implications for In Situ Management of Bean Diversity. Int J Mol Sci 2017; 18:ijms18030493. [PMID: 28264476 PMCID: PMC5372509 DOI: 10.3390/ijms18030493] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 02/03/2017] [Accepted: 02/20/2017] [Indexed: 11/21/2022] Open
Abstract
Recognizing both the stakes of traditional European common bean diversity and the role farmers’ and gardeners’ networks play in maintaining this diversity, the present study examines the role that local adaptation plays for the management of common bean diversity in situ. To the purpose, four historical bean varieties and one modern control were multiplied on two organic farms for three growing seasons. The fifteen resulting populations, the initial ones and two populations of each variety obtained after the three years of multiplication, were then grown in a common garden. Twenty-two Simple Sequence Repeat (SSR) markers and 13 phenotypic traits were assessed. In total, 68.2% of tested markers were polymorphic and a total of 66 different alleles were identified. FST analysis showed that the genetic composition of two varieties multiplied in different environments changed. At the phenotypic level, differences were observed in flowering date and leaf length. Results indicate that three years of multiplication suffice for local adaptation to occur. The spatial dynamics of genetic and phenotypic bean diversity imply that the maintenance of diversity should be considered at the scale of the network, rather than individual farms and gardens. The microevolution of bean populations within networks of gardens and farms emerges as a research perspective.
Collapse
|
30
|
Duan X, Wang K, Su S, Tian R, Li Y, Chen M. De novo transcriptome analysis and microsatellite marker development for population genetic study of a serious insect pest, Rhopalosiphum padi (L.) (Hemiptera: Aphididae). PLoS One 2017; 12:e0172513. [PMID: 28212394 PMCID: PMC5315398 DOI: 10.1371/journal.pone.0172513] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 02/05/2017] [Indexed: 11/21/2022] Open
Abstract
The bird cherry-oat aphid, Rhopalosiphum padi (L.), is one of the most abundant aphid pests of cereals and has a global distribution. Next-generation sequencing (NGS) is a rapid and efficient method for developing molecular markers. However, transcriptomic and genomic resources of R. padi have not been investigated. In this study, we used transcriptome information obtained by RNA-Seq to develop polymorphic microsatellites for investigating population genetics in this species. The transcriptome of R. padi was sequenced on an Illumina HiSeq 2000 platform. A total of 114.4 million raw reads with a GC content of 40.03% was generated. The raw reads were cleaned and assembled into 29,467 unigenes with an N50 length of 1,580 bp. Using several public databases, 82.47% of these unigenes were annotated. Of the annotated unigenes, 8,022 were assigned to COG pathways, 9,895 were assigned to GO pathways, and 14,586 were mapped to 257 KEGG pathways. A total of 7,936 potential microsatellites were identified in 5,564 unigenes, 60 of which were selected randomly and amplified using specific primer pairs. Fourteen loci were found to be polymorphic in the four R. padi populations. The transcriptomic data presented herein will facilitate gene discovery, gene analyses, and development of molecular markers for future studies of R. padi and other closely related aphid species.
Collapse
Affiliation(s)
- Xinle Duan
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Crop Pest Integrated Pest Management on the Loess Plateau of Ministry of Agriculture College of Plant Protection, Northwest A&F University, Yangling, China.,College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Kang Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Crop Pest Integrated Pest Management on the Loess Plateau of Ministry of Agriculture College of Plant Protection, Northwest A&F University, Yangling, China
| | - Sha Su
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Crop Pest Integrated Pest Management on the Loess Plateau of Ministry of Agriculture College of Plant Protection, Northwest A&F University, Yangling, China
| | - Ruizheng Tian
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Crop Pest Integrated Pest Management on the Loess Plateau of Ministry of Agriculture College of Plant Protection, Northwest A&F University, Yangling, China
| | - Yuting Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Crop Pest Integrated Pest Management on the Loess Plateau of Ministry of Agriculture College of Plant Protection, Northwest A&F University, Yangling, China
| | - Maohua Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Crop Pest Integrated Pest Management on the Loess Plateau of Ministry of Agriculture College of Plant Protection, Northwest A&F University, Yangling, China
| |
Collapse
|
31
|
Djedatin G, Ndjiondjop MN, Sanni A, Lorieux M, Verdier V, Ghesquiere A. Identification of novel major and minor QTLs associated with Xanthomonas oryzae pv. oryzae (African strains) resistance in rice (Oryza sativa L.). RICE (NEW YORK, N.Y.) 2016; 9:18. [PMID: 27107993 PMCID: PMC4842194 DOI: 10.1186/s12284-016-0090-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Accepted: 03/20/2016] [Indexed: 05/03/2023]
Abstract
BACKGROUND Xanthomonas oryzae pv. oryzae (Xoo) is the causal agent of Bacterial Leaf Blight (BB), an emerging disease in rice in West-Africa which can induce up to 50 % of yield losses. So far, no specific resistance gene or QTL to African Xoo were mapped. The objectives of this study were to identify and map novels and specific resistance QTLs to African Xoo strains. RESULTS The reference recombinant inbred lines (RIL) mapping population derived from the cross between IR64 and Azucena was used to investigate Xoo resistance. Resistance to African and Philippine Xoo strains representing different races was assessed on the RIL population under greenhouse conditions. Five major quantitative trait loci (QTL) for resistance against African Xoo were located on different chromosomes. Loci on chromosomes 1, 7, 9, 10 and 11 explained as much as 13 %, 37 %, 13 %, 11 % and 15 % of resistance variation, respectively. A major novel QTL located on chromosome 7 explained 37 % of the phenotypic variance to the African Xoo corresponding to race A3 whereas that on chromosome 11 is effective to all African races tested. Together with genes and QTLs for resistance to bacterial blight previously described, the QTLs described here were mapped onto the reference O. sativa subs japonica (var. Nipponbare) physical map. CONCLUSION We characterized new resistance QTLs. While some co-localize with known resistance genes/QTLs to Asian strains, others are specific to African strains. We result with new information on genes and QTLs for resistance to bacterial blight that will be useful for controlling the disease.
Collapse
Affiliation(s)
| | | | | | - Mathias Lorieux
- UMR Diversité, Adaptation et Développement des plantes (DIADE), Institut de Recherche pour le Développement, 911 Avenue Agropolis BP 64501, 34394, Montpellier Cedex 5, France
| | - Valérie Verdier
- IPME Interactions Plantes Microorganismes, Environnement, IRD - Cirad - University Montpellier, 34394, Montpellier, France
| | - Alain Ghesquiere
- UMR Diversité, Adaptation et Développement des plantes (DIADE), Institut de Recherche pour le Développement, 911 Avenue Agropolis BP 64501, 34394, Montpellier Cedex 5, France
| |
Collapse
|
32
|
Genetic Characterization of Green Bean (Phaseolus vulgaris L.) Accessions from Turkey with SCAR and SSR Markers. Biochem Genet 2016; 54:495-505. [PMID: 27156082 DOI: 10.1007/s10528-016-9737-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 04/27/2016] [Indexed: 10/21/2022]
Abstract
Characterization, conservation, and utilization of genetic resources is essential for the sustainability in agriculture. Plant genetic resources are important for breeding efforts designed for the generation of new cultivars or for the improvement of existing ones. Green bean has been cultivated extensively in Turkey giving rise to local accessions through selection over time and adaptation to various environmental conditions. The objective of the present study was to determine the genetic relationships of green bean accessions collected from Kırşehir Province of Turkey, located at the central Anatolia. Within a population of 275 green bean accessions, 50 accessions were selected on the basis of morphological observations for further evaluation with SSR and STS/SCAR markers together with 4 reference cultivars of Andean and Mesoamerican origin. SSR markers selected on the basis of high polymorphism information content revealed the genetic relatedness of selected green bean accessions. STS/SCAR markers associated with bean anthracnose, common bacterial blight, white mold, halo blight, and phaseolin protein demonstrated the inheritance of resistance traits of local accessions at the selected loci. These findings may help better utilize genetic resources and furthermore are expected to facilitate forthcoming breeding studies for the generation of novel cultivars well adapted to the region.
Collapse
|
33
|
Gujaria-Verma N, Ramsay L, Sharpe AG, Sanderson LA, Debouck DG, Tar'an B, Bett KE. Gene-based SNP discovery in tepary bean (Phaseolus acutifolius) and common bean (P. vulgaris) for diversity analysis and comparative mapping. BMC Genomics 2016; 17:239. [PMID: 26979462 PMCID: PMC4793507 DOI: 10.1186/s12864-016-2499-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 02/18/2016] [Indexed: 11/10/2022] Open
Abstract
Background Common bean (Phaseolus vulgaris) is an important grain legume and there has been a recent resurgence in interest in its relative, tepary bean (P. acutifolius), owing to this species’ ability to better withstand abiotic stresses. Genomic resources are scarce for this minor crop species and a better knowledge of the genome-level relationship between these two species would facilitate improvement in both. High-throughput genotyping has facilitated large-scale single nucleotide polymorphism (SNP) identification leading to the development of molecular markers with associated sequence information that can be used to place them in the context of a full genome assembly. Results Transcript-based SNPs were identified from six common bean and two tepary bean accessions and a subset were used to generate a 768-SNP Illumina GoldenGate assay for each species. The tepary bean assay was used to assess diversity in wild and cultivated tepary bean and to generate the first gene-based map of the tepary bean genome. Genotypic analyses of the diversity panel showed a clear separation between domesticated and cultivated tepary beans, two distinct groups within the domesticated types, and P. parvifolius was confirmed to be distinct. The genetic map of tepary bean was compared to the common bean genome assembly to demonstrate high levels of collinearity between the two species with differences limited to a few intra-chromosomal rearrangements. Conclusions The development of the first set of genomic resources specifically for tepary bean has allowed for greater insight into the structure of this species and its relationship to its agriculturally more prominent relative, common bean. These resources will be helpful in the development of efficient breeding strategies for both species and will facilitate the introgression of agriculturally important traits from one crop into the other. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2499-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Neha Gujaria-Verma
- Department of Plant Sciences, University of Saskatchewan, 51 Campus Dr., Saskatoon, SK, S7N 5A8, Canada
| | - Larissa Ramsay
- Department of Plant Sciences, University of Saskatchewan, 51 Campus Dr., Saskatoon, SK, S7N 5A8, Canada
| | - Andrew G Sharpe
- National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK, S7N 0W9, Canada
| | - Lacey-Anne Sanderson
- Department of Plant Sciences, University of Saskatchewan, 51 Campus Dr., Saskatoon, SK, S7N 5A8, Canada
| | - Daniel G Debouck
- Genetic Resources Program, International Center for Tropical Agriculture, Km 17 recta a Palmira, AA6713, Cali, Colombia
| | - Bunyamin Tar'an
- Department of Plant Sciences, University of Saskatchewan, 51 Campus Dr., Saskatoon, SK, S7N 5A8, Canada
| | - Kirstin E Bett
- Department of Plant Sciences, University of Saskatchewan, 51 Campus Dr., Saskatoon, SK, S7N 5A8, Canada.
| |
Collapse
|
34
|
González AM, Yuste-Lisbona FJ, Saburido S, Bretones S, De Ron AM, Lozano R, Santalla M. Major Contribution of Flowering Time and Vegetative Growth to Plant Production in Common Bean As Deduced from a Comparative Genetic Mapping. FRONTIERS IN PLANT SCIENCE 2016; 7:1940. [PMID: 28082996 PMCID: PMC5183638 DOI: 10.3389/fpls.2016.01940] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 12/07/2016] [Indexed: 05/02/2023]
Abstract
Determinacy growth habit and accelerated flowering traits were selected during or after domestication in common bean. Both processes affect several presumed adaptive traits such as the rate of plant production. There is a close association between flowering initiation and vegetative growth; however, interactions among these two crucial developmental processes and their genetic bases remain unexplored. In this study, with the aim to establish the genetic relationships between these complex processes, a multi-environment quantitative trait locus (QTL) mapping approach was performed in two recombinant inbred line populations derived from inter-gene pool crosses between determinate and indeterminate genotypes. Additive and epistatic QTLs were found to regulate flowering time, vegetative growth, and rate of plant production. Moreover, the pleiotropic patterns of the identified QTLs evidenced that regions controlling time to flowering traits, directly or indirectly, are also involved in the regulation of plant production traits. Further QTL analysis highlighted one QTL, on the lower arm of the linkage group Pv01, harboring the Phvul.001G189200 gene, homologous to the Arabidopsis thaliana TERMINAL FLOWER1 (TFL1) gene, which explained up to 32% of phenotypic variation for time to flowering, 66% for vegetative growth, and 19% for rate of plant production. This finding was consistent with previous results, which have also suggested Phvul.001G189200 (PvTFL1y) as a candidate gene for determinacy locus. The information here reported can also be applied in breeding programs seeking to optimize key agronomic traits, such as time to flowering, plant height and an improved reproductive biomass, pods, and seed size, as well as yield.
Collapse
Affiliation(s)
- Ana M. González
- Grupo de Biología de Agrosistemas, Misión Biológica de Galicia-Consejo Superior de Investigaciones CientificasPontevedra, Spain
| | - Fernando J. Yuste-Lisbona
- Departamento de Biología y Geología (Genética), Centro de Investigación en Biotecnología Agroalimentaria, Universidad de AlmeríaAlmería, Spain
| | | | - Sandra Bretones
- Departamento de Biología y Geología (Genética), Centro de Investigación en Biotecnología Agroalimentaria, Universidad de AlmeríaAlmería, Spain
| | - Antonio M. De Ron
- Grupo de Biología de Agrosistemas, Misión Biológica de Galicia-Consejo Superior de Investigaciones CientificasPontevedra, Spain
| | - Rafael Lozano
- Departamento de Biología y Geología (Genética), Centro de Investigación en Biotecnología Agroalimentaria, Universidad de AlmeríaAlmería, Spain
| | - Marta Santalla
- Grupo de Biología de Agrosistemas, Misión Biológica de Galicia-Consejo Superior de Investigaciones CientificasPontevedra, Spain
- *Correspondence: Marta Santalla
| |
Collapse
|
35
|
Blair MW, Wu X, Bhandari D, Astudillo C. Genetic Dissection of ICP-Detected Nutrient Accumulation in the Whole Seed of Common Bean (Phaseolus vulgaris L.). FRONTIERS IN PLANT SCIENCE 2016; 7:219. [PMID: 27014282 PMCID: PMC4782139 DOI: 10.3389/fpls.2016.00219] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 02/08/2016] [Indexed: 05/19/2023]
Abstract
Nutrient transport to grain legume seeds is not well studied and can benefit from modern methods of elemental analysis including spectroscopic techniques. Some cations such as potassium (K) and magnesium (Mg) are needed for plant physiological purposes. Meanwhile, some minerals such as copper (Cu), iron (Fe), molybdenum (Mo), and zinc (Zn) are important micronutrients. Phosphorus (P) is rich in legumes, while sulfur (S) concentration is related to essential amino acids. In this research, the goal was to analyze a genetic mapping population of common bean (Phaseolus vulgaris L.) with inductively coupled plasma (ICP) spectrophotometry to determine concentrations of and to discover quantitative trait loci (QTL) for 15 elements in ground flour of whole seeds. The population was grown in randomized complete block design experiments that had been used before to analyze Fe and Zn. A total of 21 QTL were identified for nine additional elements, of which four QTL were found for Cu followed by three each for Mg, Mn, and P. Fewer QTL were found for K, Na and S. Boron (B) and calcium (Ca) had only one QTL each. The utility of the QTL for breeding adaptation to element deficient soils and association with previously discovered nutritional loci are discussed.
Collapse
Affiliation(s)
- Matthew Wohlgemuth Blair
- Department of Agricultural and Environmental Sciences, Tennessee State University, NashvilleTN, USA
- *Correspondence: Matthew Wohlgemuth Blair,
| | - Xingbo Wu
- Department of Agricultural and Environmental Sciences, Tennessee State University, NashvilleTN, USA
| | - Devendra Bhandari
- Department of Agricultural and Environmental Sciences, Tennessee State University, NashvilleTN, USA
| | | |
Collapse
|
36
|
Chen X, Li J, Xiao S, Liu X. De novo assembly and characterization of foot transcriptome and microsatellite marker development for Paphia textile. Gene 2015; 576:537-43. [PMID: 26546834 DOI: 10.1016/j.gene.2015.11.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 10/18/2015] [Accepted: 11/01/2015] [Indexed: 11/27/2022]
Abstract
Paphia textile is an important, aquaculture bivalve clam species distributed mainly in China, Philippines, and Malaysia. Recent studies of P. textile have focused mainly on artificial breeding and nutrition analysis, and the transcriptome and genome of P. textile have rarely been reported. In this work, the transcriptome of P. textile foot tissue was sequenced on an Illumina HiSeq™ 2000 platform. A total of 20,219,795 reads were generated, resulting in 4.08 Gb of raw data. The raw reads were cleaned and assembled into 54,852 unigenes with an N50 length of 829 bp. Of these unigenes, 38.92% were successfully annotated based on their matches to sequences in seven public databases. Among the annotated unigenes, 14,571 were assigned Gene Ontology terms, 5448 were classified to Clusters of Orthologous Groups categories, and 6738 were mapped to 228 pathways in the Kyoto Encyclopedia of Genes and Genomes database. For functional marker development, 5605 candidate simple sequence repeats were identified in the transcriptome and 80 primer pairs were selected randomly and amplified in a wild population of P. textile. A total of 36 loci that exhibited obvious repeat length polymorphisms were detected. The transcriptomic data and microsatellite markers will provide valuable resources for future functional gene analyses, genetic map construction, and quantitative trait loci mapping in P. textile.
Collapse
Affiliation(s)
- Xiaoming Chen
- Key Laboratory of Mariculture in the East China Sea, Ministry of Agriculture of China, Fisheries College, Jimei University, Xiamen 361021, China
| | - Jiakai Li
- Key Laboratory of Mariculture in the East China Sea, Ministry of Agriculture of China, Fisheries College, Jimei University, Xiamen 361021, China
| | - Shijun Xiao
- Key Laboratory of Mariculture in the East China Sea, Ministry of Agriculture of China, Fisheries College, Jimei University, Xiamen 361021, China
| | - Xiande Liu
- Key Laboratory of Mariculture in the East China Sea, Ministry of Agriculture of China, Fisheries College, Jimei University, Xiamen 361021, China.
| |
Collapse
|
37
|
Construction of an SSR and RAD-Marker Based Molecular Linkage Map of Vigna vexillata (L.) A. Rich. PLoS One 2015; 10:e0138942. [PMID: 26398819 PMCID: PMC4580594 DOI: 10.1371/journal.pone.0138942] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 09/04/2015] [Indexed: 11/19/2022] Open
Abstract
Vigna vexillata (L.) A. Rich. (tuber cowpea) is an underutilized crop for consuming its tuber and mature seeds. Wild form of V. vexillata is a pan-tropical perennial herbaceous plant which has been used by local people as a food. Wild V. vexillata has also been considered as useful gene(s) source for V. unguiculata (cowpea), since it was reported to have various resistance gene(s) for insects and diseases of cowpea. To exploit the potential of V. vexillata, an SSR-based linkage map of V. vexillata was developed. A total of 874 SSR markers successfully amplified single DNA fragment in V. vexillata among 1,336 SSR markers developed from Vigna angularis (azuki bean), V. unguiculata and Phaseolus vulgaris (common bean). An F2 population of 300 plants derived from a cross between salt resistant (V1) and susceptible (V5) accessions was used for mapping. A genetic linkage map was constructed using 82 polymorphic SSR markers loci, which could be assigned to 11 linkage groups spanning 511.5 cM in length with a mean distance of 7.2 cM between adjacent markers. To develop higher density molecular linkage map and to confirm SSR markers position in a linkage map, RAD markers were developed and a combined SSR and RAD markers linkage map of V. vexillata was constructed. A total of 559 (84 SSR and 475 RAD) markers loci could be assigned to 11 linkage groups spanning 973.9 cM in length with a mean distance of 1.8 cM between adjacent markers. Linkage and genetic position of all SSR markers in an SSR linkage map were confirmed. When an SSR genetic linkage map of V. vexillata was compared with those of V. radiata and V. unguiculata, it was suggested that the structure of V. vexillata chromosome was considerably differentiated. This map is the first SSR and RAD marker-based V. vexillata linkage map which can be used for the mapping of useful traits.
Collapse
|
38
|
Thyssen GN, Fang DD, Turley RB, Florane C, Li P, Naoumkina M. Mapping-by-sequencing of Ligon-lintless-1 (Li 1 ) reveals a cluster of neighboring genes with correlated expression in developing fibers of Upland cotton (Gossypium hirsutum L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2015; 128:1703-1712. [PMID: 26021293 DOI: 10.1007/s00122-015-2539-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 04/11/2015] [Indexed: 06/04/2023]
Abstract
Mapping-by-sequencing and SNP marker analysis were used to fine map the Ligon-lintless-1 ( Li 1 ) short fiber mutation in tetraploid cotton to a 255-kb region that contains 16 annotated proteins. The Ligon-lintless-1 (Li 1 ) mutant of cotton (Gossypium hirsutum L.) has been studied as a model for cotton fiber development since its identification in 1929; however, the causative mutation has not been identified yet. Here we report the fine genetic mapping of the mutation to a 255-kb region that contains only 16 annotated genes in the reference Gossypium raimondii genome. We took advantage of the incompletely dominant dwarf vegetative phenotype to identify 100 mutants (Li 1 /Li 1 ) and 100 wild-type (li 1 /li 1 ) homozygotes from a mapping population of 2567 F2 plants, which we bulked and deep sequenced. Since only homozygotes were sequenced, we were able to use a high stringency in SNP calling to rapidly narrow down the region harboring the Li 1 locus, and designed subgenome-specific SNP markers to test the population. We characterized the expression of all sixteen genes in the region by RNA sequencing of elongating fibers and by RT-qPCR at seven time points spanning fiber development. One of the most highly expressed genes found in this interval in wild-type fiber cells is 40-fold under-expressed at the day of anthesis (DOA) in the mutant fiber cells. This gene is a major facilitator superfamily protein, part of the large family of proteins that includes auxin and sugar transporters. Interestingly, nearly all genes in this region were most highly expressed at DOA and showed a high degree of co-expression. Further characterization is required to determine if transport of hormones or carbohydrates is involved in both the dwarf and lintless phenotypes of Li 1 plants.
Collapse
Affiliation(s)
- Gregory N Thyssen
- Cotton Fiber Bioscience Research Unit, USDA-ARS-SRRC, 1100 Robert E. Lee Blvd, New Orleans, LA, 70124, USA,
| | | | | | | | | | | |
Collapse
|
39
|
Song Q, Jia G, Hyten DL, Jenkins J, Hwang EY, Schroeder SG, Osorno JM, Schmutz J, Jackson SA, McClean PE, Cregan PB. SNP Assay Development for Linkage Map Construction, Anchoring Whole-Genome Sequence, and Other Genetic and Genomic Applications in Common Bean. G3 (BETHESDA, MD.) 2015; 5:2285-90. [PMID: 26318155 PMCID: PMC4632048 DOI: 10.1534/g3.115.020594] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 08/27/2015] [Indexed: 11/28/2022]
Abstract
A total of 992,682 single-nucleotide polymorphisms (SNPs) was identified as ideal for Illumina Infinium II BeadChip design after sequencing a diverse set of 17 common bean (Phaseolus vulgaris L) varieties with the aid of next-generation sequencing technology. From these, two BeadChips each with >5000 SNPs were designed. The BARCBean6K_1 BeadChip was selected for the purpose of optimizing polymorphism among market classes and, when possible, SNPs were targeted to sequence scaffolds in the Phaseolus vulgaris 14× genome assembly with sequence lengths >10 kb. The BARCBean6K_2 BeadChip was designed with the objective of anchoring additional scaffolds and to facilitate orientation of large scaffolds. Analysis of 267 F2 plants from a cross of varieties Stampede × Red Hawk with the two BeadChips resulted in linkage maps with a total of 7040 markers including 7015 SNPs. With the linkage map, a total of 432.3 Mb of sequence from 2766 scaffolds was anchored to create the Phaseolus vulgaris v1.0 assembly, which accounted for approximately 89% of the 487 Mb of available sequence scaffolds of the Phaseolus vulgaris v0.9 assembly. A core set of 6000 SNPs (BARCBean6K_3 BeadChip) with high genotyping quality and polymorphism was selected based on the genotyping of 365 dry bean and 134 snap bean accessions with the BARCBean6K_1 and BARCBean6K_2 BeadChips. The BARCBean6K_3 BeadChip is a useful tool for genetics and genomics research and it is widely used by breeders and geneticists in the United States and abroad.
Collapse
Affiliation(s)
- Qijian Song
- USDA-ARS, Soybean Genomics and Improvement Lab, Beltsville, Maryland 20705
| | - Gaofeng Jia
- USDA-ARS, Soybean Genomics and Improvement Lab, Beltsville, Maryland 20705
| | - David L Hyten
- USDA-ARS, Soybean Genomics and Improvement Lab, Beltsville, Maryland 20705
| | - Jerry Jenkins
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806
| | - Eun-Young Hwang
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, Maryland 20742
| | - Steven G Schroeder
- USDA-ARS, Bovine Functional Genomics Laboratory, Animal and Natural Resources Institute, Beltsville, Maryland 20705
| | - Juan M Osorno
- Department of Plant Sciences, North Dakota State University, Fargo, North Dakota 58102
| | - Jeremy Schmutz
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806 Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, California 94598
| | - Scott A Jackson
- Center for Applied Genetic Technologies, University of Georgia, Athens, Georgia 30602
| | - Phillip E McClean
- Department of Plant Sciences, North Dakota State University, Fargo, North Dakota 58102
| | - Perry B Cregan
- USDA-ARS, Soybean Genomics and Improvement Lab, Beltsville, Maryland 20705
| |
Collapse
|
40
|
Fahad S, Nie L, Khan FA, Chen Y, Hussain S, Wu C, Xiong D, Jing W, Saud S, Khan FA, Li Y, Wu W, Khan F, Hassan S, Manan A, Jan A, Huang J. Disease resistance in rice and the role of molecular breeding in protecting rice crops against diseases. Biotechnol Lett 2015; 36:1407-20. [PMID: 24658743 DOI: 10.1007/s10529-014-1510-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Accepted: 03/03/2014] [Indexed: 01/24/2023]
Abstract
Rice diseases (bacterial, fungal, or viral) threaten food productivity. Host resistance is the most efficient, environmentally friendly method to cope with such diverse pathogens. Quantitative resistance conferred by quantitative trait loci (QTLs) is a valuable resource for rice disease resistance improvement. Although QTLs confer partial but durable resistance to many pathogen species in different crop plants, the molecular mechanisms of quantitative disease resistance remain mostly unknown. Quantitative resistance and non-host resistance are types of broad-spectrum resistance, which are mediated by resistance (R) genes. Because R genes activate different resistance pathways, investigating the genetic spectrum of resistance may lead to minimal losses from harmful diseases. Genome studies can reveal interactions between different genes and their pathways and provide insight into gene functions. Protein–protein interaction (proteomics) studies using molecular and bioinformatics tools may further enlighten our understanding of resistance phenomena.
Collapse
|
41
|
Mercati F, Catarcione G, Paolacci AR, Abenavoli MR, Sunseri F, Ciaffi M. Genetic diversity and population structure of an Italian landrace of runner bean (Phaseolus coccineus L.): inferences for its safeguard and on-farm conservation. Genetica 2015; 143:473-85. [PMID: 26036320 DOI: 10.1007/s10709-015-9846-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 05/25/2015] [Indexed: 11/29/2022]
Abstract
The landraces are considered important sources of valuable germplasm for breeding activities to face climatic changes as well as to satisfy the requirement of new varieties for marginal areas. Runner bean (Phaseolus coccineus L.) is one of the most cultivated Phaseolus species worldwide, but few studies have been addressed to assess the genetic diversity and structure within and among landrace populations. In the present study, 20 different populations of a runner bean landrace from Central Italy named "Fagiolone," together with 41 accessions from Italy and Mesoamerica, were evaluated by using 14 nuclear SSRs to establish its genetic structure and distinctiveness. Results indicated that "Fagiolone" landrace can be considered as a dynamic evolving open-pollinated population that shows a significant level of genetic variation, mostly detected within populations, and the presence of two main genetic groups, of which one distinguished from other Italian runner bean landraces. Results highlighted also a relevant importance of farmers' management practices able to influence the genetic structure of this landrace, in particular the seed exchanges and selection, and the past introduction in cultivation of landraces/cultivars similar to seed morphology, but genetically rather far from "Fagiolone." The most suitable on-farm strategies for seed collection, conservation and multiplication will be defined based on our results, as a model for threatened populations of other allogamous crop species. STRUCTURE and phylogenetic analyses indicated that Mesoamerican accessions and Italian landraces belong to two distinct gene pools confirming the hypothesis that Europe could be considered a secondary diversification center for P. coccineus.
Collapse
Affiliation(s)
- F Mercati
- Dipartimento AGRARIA, Università Mediterranea di Reggio Calabria, 89124, Reggio Calabria, Italy
| | | | | | | | | | | |
Collapse
|
42
|
Bhakta MS, Jones VA, Vallejos CE. Punctuated distribution of recombination hotspots and demarcation of pericentromeric regions in Phaseolus vulgaris L. PLoS One 2015; 10:e0116822. [PMID: 25629314 PMCID: PMC4309454 DOI: 10.1371/journal.pone.0116822] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 12/15/2014] [Indexed: 11/18/2022] Open
Abstract
High density genetic maps are a reliable tool for genetic dissection of complex plant traits. Mapping resolution is often hampered by the variable crossover and non-crossover events occurring across the genome, with pericentromeric regions (pCENR) showing highly suppressed recombination rates. The efficiency of linkage mapping can further be improved by characterizing and understanding the distribution of recombinational activity along individual chromosomes. In order to evaluate the genome wide recombination rate in common beans (Phaseolus vulgaris L.) we developed a SNP-based linkage map using the genotype-by-sequencing approach with a 188 recombinant inbred line family generated from an inter gene pool cross (Andean x Mesoamerican). We identified 1,112 SNPs that were subsequently used to construct a robust linkage map with 11 groups, comprising 513 recombinationally unique marker loci spanning 943 cM (LOD 3.0). Comparative analysis showed that the linkage map spanned >95% of the physical map, indicating that the map is almost saturated. Evaluation of genome-wide recombination rate indicated that at least 45% of the genome is highly recombinationally suppressed, and allowed us to estimate locations of pCENRs. We observed an average recombination rate of 0.25 cM/Mb in pCENRs as compared to the rest of genome that showed 3.72 cM/Mb. However, several hot spots of recombination were also detected with recombination rates reaching as high as 34 cM/Mb. Hotspots were mostly found towards the end of chromosomes, which also happened to be gene-rich regions. Analyzing relationships between linkage and physical map indicated a punctuated distribution of recombinational hot spots across the genome.
Collapse
Affiliation(s)
- Mehul S. Bhakta
- Horticultural Sciences Department, University of Florida, Gainesville, Florida, United States of America
| | - Valerie A. Jones
- Horticultural Sciences Department, University of Florida, Gainesville, Florida, United States of America
| | - C. Eduardo Vallejos
- Horticultural Sciences Department, University of Florida, Gainesville, Florida, United States of America
- Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, Florida, United States of America
- * E-mail:
| |
Collapse
|
43
|
Nemli S, Asciogul TK, Kaya HB, Kahraman A, Eşiyok D, Tanyolac B. Association mapping for five agronomic traits in the common bean (Phaseolus vulgaris L.). JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2014; 94:3141-51. [PMID: 24659306 DOI: 10.1002/jsfa.6664] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2013] [Revised: 03/16/2014] [Accepted: 03/17/2014] [Indexed: 05/28/2023]
Abstract
BACKGROUND The common bean is the most important grain legume and a major source of protein in many developing countries. We analysed the following traits: pod fibre (PF), seeds per pod (SPP), plant type (PT), growth habit (GH), and days to flowering (DF) for a set of diverse common bean accessions and determined whether such traits were associated with amplified fragment length polymorphism (AFLP), simple sequence repeat (SSR) and single nucleotide polymorphism (SNP) markers. RESULTS In this study, 66 common bean genotypes were used and genotyped with 233 AFLP, 105 SNP and 80 SSR markers. The association analysis between markers and five traits was performed using a General Linear Model (GLM) in Trait Analysis by aSSociation, Evolution and Linkage (TASSEL). The population structure was determined using the STRUCTURE software, and seven groups (K = 7) were identified among genotypes. The associations for such traits were identified and quantified; 62 markers were associated with the five traits. CONCLUSION This study demonstrated that association mapping using a reasonable number of markers, distributed across the genome and with the appropriate number of individuals harboured to detect DNA markers linked to the traits of PF, SPP, PT, GH and DF in common bean.
Collapse
Affiliation(s)
- Seda Nemli
- Ege University -, Department of Bioengineering, Bornova-Izmir, 35100, Turkey
| | | | | | | | | | | |
Collapse
|
44
|
Zargar SM, Farhat S, Mahajan R, Bhakhri A, Sharma A. Unraveling the efficiency of RAPD and SSR markers in diversity analysis and population structure estimation in common bean. Saudi J Biol Sci 2014; 23:139-49. [PMID: 26858551 PMCID: PMC4705283 DOI: 10.1016/j.sjbs.2014.11.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 11/08/2014] [Accepted: 11/09/2014] [Indexed: 02/01/2023] Open
Abstract
Increase in food production viz-a-viz quality of food is important to feed the growing human population to attain food as well as nutritional security. The availability of diverse germplasm of any crop is an important genetic resource to mine the genes that may assist in attaining food as well as nutritional security. Here we used 15 RAPD and 23 SSR markers to elucidate diversity among 51 common bean genotypes mostly landraces collected from the Himalayan region of Jammu and Kashmir, India. We observed that both the markers are highly polymorphic. The discriminatory power of these markers was determined using various parameters like; percent polymorphism, PIC, resolving power and marker index. 15 RAPDs produced 171 polymorphic bands, while 23 SSRs produced 268 polymorphic bands. SSRs showed a higher PIC value (0.300) compared to RAPDs (0.243). Further the resolving power of SSRs was 5.241 compared to 3.86 for RAPDs. However, RAPDs showed a higher marker index (2.69) compared to SSRs (1.279) that may be attributed to their higher multiplex ratio. The dendrograms generated with hierarchical UPGMA cluster analysis grouped genotypes into two main clusters with various degrees of sub clustering within the cluster. Here we observed that both the marker systems showed comparable accuracy in grouping genotypes of common bean according to their area of cultivation. The model based STRUCTURE analysis using 15 RAPD and 23 SSR markers identified a population with 3 sub-populations which corresponds to distance based groupings. High level of genetic diversity was observed within the population. These findings have further implications in common bean breeding as well as conservation programs.
Collapse
Key Words
- Common bean
- Dendrogram
- MI, marker index
- PAGE, polyacrylamide gel electrophoresis
- PCA
- PCA, principle component analysis
- PIC, polymorphic information content
- Population structure
- QTL, quantitative trait loci
- RAPD
- RAPD, random amplified polymorphic DNA
- RFLP, restriction fragment length polymorphism
- Rp, resolving power
- SSR
- SSR, simple sequence repeat
- UPGMA, unweighted pair group method with arithmetic averages
Collapse
Affiliation(s)
- Sajad Majeed Zargar
- School of Biotechnology, S K University of Agricultural Sciences and Technology of Jammu, Chatha, Jammu, Jammu & Kashmir 180009, India
| | - Sufia Farhat
- School of Biotechnology, S K University of Agricultural Sciences and Technology of Jammu, Chatha, Jammu, Jammu & Kashmir 180009, India
| | - Reetika Mahajan
- School of Biotechnology, S K University of Agricultural Sciences and Technology of Jammu, Chatha, Jammu, Jammu & Kashmir 180009, India
| | - Ayushi Bhakhri
- School of Biotechnology, S K University of Agricultural Sciences and Technology of Jammu, Chatha, Jammu, Jammu & Kashmir 180009, India
| | - Arjun Sharma
- School of Biotechnology, S K University of Agricultural Sciences and Technology of Jammu, Chatha, Jammu, Jammu & Kashmir 180009, India
| |
Collapse
|
45
|
Müller BSDF, Sakamoto T, de Menezes IPP, Prado GS, Martins WS, Brondani C, de Barros EG, Vianello RP. Analysis of BAC-end sequences in common bean (Phaseolus vulgaris L.) towards the development and characterization of long motifs SSRs. PLANT MOLECULAR BIOLOGY 2014; 86:455-470. [PMID: 25164100 DOI: 10.1007/s11103-014-0240-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 08/14/2014] [Indexed: 06/03/2023]
Abstract
The increasing volume of genomic data on the Phaseolus vulgaris species have contributed to its importance as a model genetic species and positively affected the investigation of other legumes of scientific and economic value. To expand and gain a more in-depth knowledge of the common bean genome, the ends of a number of bacterial artificial chromosome (BAC) were sequenced, annotated and the presence of repetitive sequences was determined. In total, 52,270 BESs (BAC-end sequences), equivalent to 32 Mbp (~6 %) of the genome, were processed. In total, 3,789 BES-SSRs were identified, with a distribution of one SSR (simple sequence repeat) per 8.36 kbp and 2,000 were suitable for the development of SSRs, of which 194 were evaluated in low-resolution screening. From 40 BES-SSRs based on long motifs SSRs (≥ trinucleotides) analyzed in high-resolution genotyping, 34 showed an equally good amplification for the Andean and for the Mesoamerican genepools, exhibiting an average gene diversity (H E) of 0.490 and 5.59 alleles/locus, of which six classified as Class I showed a H E ≥ 0.7. The PCoA and structure analysis allowed to discriminate the gene pools (K = 2, FST = 0.733). From the 52,270 BESs, 2 % corresponded to transcription factors and 3 % to transposable elements. Putative functions for 24,321 BESs were identified and for 19,363 were assigned functional categories (gene ontology). This study identified highly polymorphic BES-SSRs containing tri- to hexanucleotides motifs and bringing together relevant genetic characteristics useful for breeding programs. Additionally, the BESs were incorporated into the international genome-sequencing project for the common bean.
Collapse
Affiliation(s)
- Bárbara Salomão de Faria Müller
- Laboratório de Genética Molecular de Plantas, Instituto de Biotecnologia Aplicada à Agropecuária (BIOAGRO), Universidade Federal de Viçosa (UFV), Viçosa, MG, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Characterization of 11 novel polymorphic microsatellite loci in the threatened Korean loach, Iksookimia koreensis, isolated using a next-generation sequencing method. BIOCHEM SYST ECOL 2014. [DOI: 10.1016/j.bse.2014.05.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
47
|
Blair MW, Córdoba JM, Muñóz C, Yuyó DK. BAC-end microsatellites from intra and inter-genic regions of the common bean genome and their correlation with cytogenetic features. PLoS One 2014; 9:e101873. [PMID: 25254501 PMCID: PMC4177843 DOI: 10.1371/journal.pone.0101873] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 06/12/2014] [Indexed: 11/19/2022] Open
Abstract
Highly polymorphic markers such as simple sequence repeats (SSRs) or microsatellites are very useful for genetic mapping. In this study novel SSRs were identified in BAC-end sequences (BES) from non-contigged, non-overlapping bacterial artificial clones (BACs) in common bean (Phaseolus vulgaris L.). These so called "singleton" BACs were from the G19833 Andean gene pool physical map and the new BES-SSR markers were used for the saturation of the inter-gene pool, DOR364×G19833 genetic map. A total of 899 SSR loci were found among the singleton BES, but only 346 loci corresponded to the single di- or tri-nucleotide motifs that were likely to be polymorphic (ATT or AG motifs, principally) and useful for primer design and individual marker mapping. When these novel SSR markers were evaluated in the DOR364×G19833 population parents, 136 markers revealed polymorphism and 106 were mapped. Genetic mapping resulted in a map length of 2291 cM with an average distance between markers of 5.2 cM. The new genetic map was compared to the most recent cytogenetic analysis of common bean chromosomes. We found that the new singleton BES-SSR were helpful in filling peri-centromeric spaces on the cytogenetic map. Short genetic distances between some new singleton-derived BES-SSR markers was common showing suppressed recombination in these regions compared to other parts of the genome. The correlation of singleton-derived SSR marker distribution with other cytogenetic features of the bean genome is discussed.
Collapse
Affiliation(s)
- Matthew Wohlgemuth Blair
- Departamento de Agronomía y Ciencias Agricolas, Universidad Nacional de Colombia, Km 12 via Chapinero, Palmira, Colombia
- Department of Agriculture and Natural Sciences, Tennessee State University, Nashville, Tennessee, United States of America
| | | | - Claritza Muñóz
- Generation Challenge Program, Tropical Legumes I, c/o CIAT, Cali, Colombia
| | - Deissy K. Yuyó
- Departamento de Agronomía Universidad Nacional de Colombia, Facultad de Agronomía, Bogotá, Colombia
| |
Collapse
|
48
|
Zeng X, Li W, Wu Y, Liu F, Luo J, Cao Y, Zhu L, Li Y, Li J, You Q, Wu G. Fine mapping of a dominant thermo-sensitive genic male sterility gene (BntsMs) in rapeseed (Brassica napus) with AFLP- and Brassica rapa-derived PCR markers. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2014; 127:1733-40. [PMID: 24913363 DOI: 10.1007/s00122-014-2335-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 05/20/2014] [Indexed: 05/26/2023]
Abstract
A new thermo-sensitive dominant genic male sterility (TSDGMS) line of Brassica napus was found and mapped in this paper. Our result will greatly accelerate the map-based cloning of the BntsMs gene. TE5A is a thermo-sensitive dominant genic male sterility line originating from spontaneous mutation of the inbred line TE5 in Brassica napus and provides a promising system for the development of hybrid cultivars. Genetic analysis has revealed that the BntsMs mutant is controlled by a single, dominant gene. Here, we describe the fine mapping of BntsMs using amplified fragment length polymorphism (AFLP) and intron polymorphism (IP) methodologies. We screened 1,024 primer combinations and then identified five AFLP markers linked to the BntsMs gene, two of which were successfully converted into sequence-characterised amplified region (SCAR) markers. The linkage of the markers was identified by analysing a large BC2 population of 700 recessive-fertility individuals. Two SCAR markers were found in the flanking region of the BntsMs gene at distance of 3.5 and 4.8 cm. Based on sequence information from the previously screened AFLP markers and on genome organisation comparisons of the A genome of Brassica rapa and Arabidopsis, seven IP markers linked to the BntsMs gene were developed. By analysing the 700 recessive-fertility individuals, two IP markers, IP004 and IP470, were localised to the flanking region of the BntsMs gene at a distance of 0.3 and 0.2 cm, respectively. A comparison of the B. rapa and Arabidopsis genomes revealed 27 genes of B. rapa in the flanking region of these two IP markers. It is likely that the molecular markers developed from these investigations will greatly accelerate the positional cloning of the BntsMs gene.
Collapse
Affiliation(s)
- Xinhua Zeng
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, No. 2 Xudong Second Road, Wuhan, 430062, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Nemli S, Kaya HB, Tanyolac B. Genetic assessment of common bean (Phaseolus vulgaris L.) accessions by peroxidase gene-based markers. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2014; 94:1672-80. [PMID: 24214852 DOI: 10.1002/jsfa.6477] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 10/27/2013] [Accepted: 11/09/2013] [Indexed: 05/26/2023]
Abstract
BACKGROUND Peroxidase, a plant-specific oxidoreductase, is a heme-containing glycoprotein encoded by a large multigenic family in plants. Plant peroxidases (POXs, EC 1.11.1.7) play important roles in many self-defense interactions in plants. Here, 67 common bean (Phaseolus vulgaris L.) genotypes were studied using a POX gene-based marker method. Comparison of POX genes could resolve evolutionary relationships in common bean. RESULTS Eighty fragments were obtained with 20 primer pairs that amplified one (POX8c) to eight (ATP29) bands, with a mean of four bands per primer pair. The average (polymorphic information content) PIC value for the POX products was 0.40. The maximum variation (93%) was found between Turkey (#33) and India (#52) and between Antalya (#33) and India (#53). The minimum variation (0%) was found among four pairs: Bozdag (#2) and Karadeniz (#38), Kirklareli (#11) and Turkey (#15, 16, 43), Bandirma (#13) and Turkey (#15, 16, 43), and Kirklareli (#10) and Bandirma (#22). UPGMA was used to discriminate the common bean genotypes into five clusters, while STRUCTURE software was used to investigate the genetic population structure. CONCLUSION The results showed that POX gene family markers can be used to study genotypic diversity and provide new information for breeding programs and common bean improvement practices.
Collapse
Affiliation(s)
- Seda Nemli
- Department of Bioengineering, Ege University, 35100, Bornova-Izmir, Turkey
| | | | | |
Collapse
|
50
|
Moghaddam SM, Song Q, Mamidi S, Schmutz J, Lee R, Cregan P, Osorno JM, McClean PE. Developing market class specific InDel markers from next generation sequence data in Phaseolus vulgaris L. FRONTIERS IN PLANT SCIENCE 2014; 5:185. [PMID: 24860578 PMCID: PMC4026720 DOI: 10.3389/fpls.2014.00185] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Accepted: 04/19/2014] [Indexed: 05/09/2023]
Abstract
Next generation sequence data provides valuable information and tools for genetic and genomic research and offers new insights useful for marker development. This data is useful for the design of accurate and user-friendly molecular tools. Common bean (Phaseolus vulgaris L.) is a diverse crop in which separate domestication events happened in each gene pool followed by race and market class diversification that has resulted in different morphological characteristics in each commercial market class. This has led to essentially independent breeding programs within each market class which in turn has resulted in limited within market class sequence variation. Sequence data from selected genotypes of five bean market classes (pinto, black, navy, and light and dark red kidney) were used to develop InDel-based markers specific to each market class. Design of the InDel markers was conducted through a combination of assembly, alignment and primer design software using 1.6× to 5.1× coverage of Illumina GAII sequence data for each of the selected genotypes. The procedure we developed for primer design is fast, accurate, less error prone, and higher throughput than when they are designed manually. All InDel markers are easy to run and score with no need for PCR optimization. A total of 2687 InDel markers distributed across the genome were developed. To highlight their usefulness, they were employed to construct a phylogenetic tree and a genetic map, showing that InDel markers are reliable, simple, and accurate.
Collapse
Affiliation(s)
- Samira Mafi Moghaddam
- Genomics and Bioinformatics Program, North Dakota State UniversityFargo, ND, USA
- Department of Plant Sciences, North Dakota State UniversityFargo, ND, USA
| | - Qijian Song
- Soybean Genomics and Improvement Laboratory, United States Department of Agriculture, Agricultural Research ServiceBeltsville, MD, USA
| | - Sujan Mamidi
- Genomics and Bioinformatics Program, North Dakota State UniversityFargo, ND, USA
- Department of Plant Sciences, North Dakota State UniversityFargo, ND, USA
| | | | - Rian Lee
- Department of Plant Sciences, North Dakota State UniversityFargo, ND, USA
| | - Perry Cregan
- Soybean Genomics and Improvement Laboratory, United States Department of Agriculture, Agricultural Research ServiceBeltsville, MD, USA
| | - Juan M. Osorno
- Department of Plant Sciences, North Dakota State UniversityFargo, ND, USA
| | - Phillip E. McClean
- Genomics and Bioinformatics Program, North Dakota State UniversityFargo, ND, USA
- Department of Plant Sciences, North Dakota State UniversityFargo, ND, USA
| |
Collapse
|