1
|
Possamai T, Scota L, Velasco R, Migliaro D. A Sustainable Strategy for Marker-Assisted Selection (MAS) Applied in Grapevine ( Vitis spp.) Breeding for Resistance to Downy ( Plasmopara Viticola) and Powdery ( Erysiphe Necator) Mildews. PLANTS (BASEL, SWITZERLAND) 2024; 13:2001. [PMID: 39065527 PMCID: PMC11280485 DOI: 10.3390/plants13142001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/04/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024]
Abstract
Plant breeders utilize marker-assisted selection (MAS) to identify favorable or unfavorable alleles in seedlings early. In this task, they need methods that provide maximum information with minimal input of time and economic resources. Grape breeding aimed at producing cultivars resistant to pathogens employs several resistance loci (Rpv, Ren, and Run) that are ideal for implementing MAS. In this work, a sustainable MAS protocol was developed based on non-purified DNA (crude), multiplex PCR of SSR markers, and capillary electrophoresis, and its application on grapevine seedlings to follow some main resistance loci was described. The optimized protocol was utilized on 8440 samples and showed high efficiency, reasonable throughput (2-3.2 min sample), easy handling, flexibility, and tolerable costs (reduced by at least 3.5 times compared to a standard protocol). The Rpv, Ren, and Run allelic data analysis did not show limitations to loci combination and pyramiding, but segregation distortions were frequent and displayed both low (undesired) and high rates of inheritance. The protocol and results presented are useful tools for grape breeders and beyond, and they can address sustainable changes in MAS. Several progenies generated have valuable pyramided resistance and will be the subject of new studies and implementation in the breeding program.
Collapse
Affiliation(s)
| | | | | | - Daniele Migliaro
- CREA—Research Center for Viticulture and Enology, 31015 Conegliano, Italy; (L.S.); (R.V.)
| |
Collapse
|
2
|
Piarulli L, Pirolo C, Roseti V, Bellin D, Mascio I, La Notte P, Montemurro C, Miazzi MM. Breeding new seedless table grapevines for a more sustainable viticulture in Mediterranean climate. FRONTIERS IN PLANT SCIENCE 2024; 15:1379642. [PMID: 38645394 PMCID: PMC11027070 DOI: 10.3389/fpls.2024.1379642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/14/2024] [Indexed: 04/23/2024]
Abstract
The growing demand for sustainable and environmentally friendly viticulture is leading to a multiplication of breeding programs aimed at obtaining vines that are resistant to powdery mildew (PM) and downy mildew (DM), the two most damaging vine diseases. In Puglia, the most important Italian region for the production of table grapes, an extensive crossing program was launched in 2015 with 113 crosses, including elite table varieties, seedless varieties, and resistant varieties. The main seedling production parameters were measured for each cross. In particular, berries harvested as well as the number of seeds and seedlings obtained were considered. Approximately 103,119 seedlings were obtained and subjected to marker-assisted selection for seedlessness using the marker VvAGL11 and for resistance to PM and DM with appropriate markers. Approximately one third (32,638) of the progenies were selected as putative seedless and seventeen thousand five hundred-nine (17,509) were transferred to the field for phenotypic evaluation, including 527 seedless individuals putatively resistant, of which 208 confirmed to be resistant to DM, 22 resistant to PM, and 20 individuals that combined resistance and seedlessness traits. The work discusses the effects of parental combinations and other variables in obtaining surviving progeny and pyramiding genes in table grapes and provides useful information for selecting genotypes and increasing the efficiency of breeding programs for seedless disease-resistant grapes.
Collapse
Affiliation(s)
- Luciana Piarulli
- SINAGRI S.r.l. – Spin-Off of the University of Bari Aldo Moro, Bari, Italy
- Rete Italian Variety Club (IVC), Locorotondo, Italy
| | - Costantino Pirolo
- SINAGRI S.r.l. – Spin-Off of the University of Bari Aldo Moro, Bari, Italy
- Rete Italian Variety Club (IVC), Locorotondo, Italy
| | | | - Diana Bellin
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Isabella Mascio
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy
| | | | - Cinzia Montemurro
- SINAGRI S.r.l. – Spin-Off of the University of Bari Aldo Moro, Bari, Italy
- Rete Italian Variety Club (IVC), Locorotondo, Italy
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Monica Marilena Miazzi
- Rete Italian Variety Club (IVC), Locorotondo, Italy
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
3
|
Ricciardi V, Crespan M, Maddalena G, Migliaro D, Brancadoro L, Maghradze D, Failla O, Toffolatti SL, De Lorenzis G. Novel loci associated with resistance to downy and powdery mildew in grapevine. FRONTIERS IN PLANT SCIENCE 2024; 15:1386225. [PMID: 38584944 PMCID: PMC10998452 DOI: 10.3389/fpls.2024.1386225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 03/06/2024] [Indexed: 04/09/2024]
Abstract
Among the main challenges in current viticulture, there is the increasing demand for sustainability in the protection from fungal diseases, such as downy mildew (DM) and powdery mildew (PM). Breeding disease-resistant grapevine varieties is a key strategy for better managing fungicide inputs. This study explores the diversity of grapevine germplasm (cultivated and wild) from Caucasus and neighboring areas to identify genotypes resistant to DM and PM, based on 13 Simple Sequence Repeat (SSR) loci and phenotypical (artificial pathogen inoculation) analysis, and to identify loci associated with DM and PM resistance, via Genome-Wide Association Analysis (GWAS) on Single Nucleotide Polymorphism (SNP) profiles. SSR analysis revealed resistant alleles for 16 out of 88 genotypes. Phenotypic data identified seven DM and 31 PM resistant genotypes. GWAS identified two new loci associated with DM resistance, located on chromosome 15 and 16 (designated as Rpv36 and Rpv37), and two with PM resistance, located on chromosome 6 and 17 (designated as Ren14 and Ren15). The four novel loci identified genomic regions rich in genes related to biotic stress response, such as genes involved in pathogen recognition, signal transduction and resistance response. This study highlights potential candidate genes associated with resistance to DM and PM, providing valuable insights for breeding programs for resistant varieties. To optimize their utilization, further functional characterization studies are recommended.
Collapse
Affiliation(s)
- Valentina Ricciardi
- Dipartimento di Scienze Agrarie ed Ambientali, Università degli Studi di Milano, Milano, Italy
| | - Manna Crespan
- Centro di Ricerca per la Viticoltura e l'Enologia, Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria (CREA), Conegliano, Italy
| | - Giuliana Maddalena
- Dipartimento di Scienze Agrarie ed Ambientali, Università degli Studi di Milano, Milano, Italy
| | - Daniele Migliaro
- Centro di Ricerca per la Viticoltura e l'Enologia, Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria (CREA), Conegliano, Italy
| | - Lucio Brancadoro
- Dipartimento di Scienze Agrarie ed Ambientali, Università degli Studi di Milano, Milano, Italy
| | - David Maghradze
- Faculty of Viticulture-Winemaking, Caucasus International University, Tbilisi, Georgia
- Faculty of Agricultural Sciences and Biosystems Engineering, Georgian Technical University, Tbilisi, Georgia
| | - Osvaldo Failla
- Dipartimento di Scienze Agrarie ed Ambientali, Università degli Studi di Milano, Milano, Italy
| | - Silvia Laura Toffolatti
- Dipartimento di Scienze Agrarie ed Ambientali, Università degli Studi di Milano, Milano, Italy
| | - Gabriella De Lorenzis
- Dipartimento di Scienze Agrarie ed Ambientali, Università degli Studi di Milano, Milano, Italy
| |
Collapse
|
4
|
Hernández MDM, Castillo Río C, Blanco González SI, Menéndez CM. Phenolic profile changes of grapevine leaves infected with Erysiphe necator. PEST MANAGEMENT SCIENCE 2024; 80:397-403. [PMID: 37708311 DOI: 10.1002/ps.7769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/09/2023] [Accepted: 09/14/2023] [Indexed: 09/16/2023]
Abstract
BACKGROUND Powdery mildew in grapevine is caused by Erysiphe necator and its control requires many chemical treatments. Numerous efforts are being made to improve disease management to achieve crop sustainability goals. The exogenous induction of plant immune responses is one of the most encouraging strategies currently being developed. The objective of this research was to analyse differences in phenolic compound concentrations in E. necator-infected leaves of two varieties of Vitis vinifera, Tempranillo and Tempranillo Blanco, using ultra performance liquid chromatography coupled with mass spectrometry. To understand the susceptibility of the varieties, in vitro assays using whole leaves were done. RESULTS Differences in susceptibility between varieties were found in the early stage of the disease. In both varieties, total phenolic compounds were higher in infected leaves; however, hydroxycinnamic acid, anthocyanins and stilbenes were higher only in Tempranillo. Twenty-six compounds showed differential responses to the fungal disease in Tempranillo, but only two in Tempranillo Blanco: syringa resinol, which was not detected in diseased leaves; and gallocatechin, which increased at 5 days post inoculation. In Tempranillo, four anthocyanidins, six hydroxycinnamic acids, mainly feruloyl derivates, and epigallocatechin gallate were higher in infected leaves at the beginning of the infection, whereas (-)-epicatechin and protocatechuic hexoside contents were lower. CONCLUSION Disease-induced changes in phenolic compound biosynthesis were found. The increase in anthocyanidin content and flavan-3-ol galloylation could have a role in delaying E. necator growth in Tempranillo. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- María Del Mar Hernández
- Instituto de Ciencias de la Vid y el Vino (UR-ICVV-GR), Logroño, Spain
- Departamento de Agricultura y Alimentación, La Rioja University, Logroño, Spain
| | | | | | | |
Collapse
|
5
|
Ge X, Hetzer B, Tisch C, Kortekamp A, Nick P. Surface wax in the ancestral grapevine Vitis sylvestris correlate with partial resistance to Powdery Mildew. BMC PLANT BIOLOGY 2023; 23:304. [PMID: 37286974 DOI: 10.1186/s12870-023-04311-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/23/2023] [Indexed: 06/09/2023]
Abstract
BACKGROUND Powdery Mildew of Grapevine belongs to the major diseases in viticulture and requires intensive use of fungicides. Genetic introgression of resistance factors from wild grapes from North America and, recently, China, has been successful, but wine made from those varieties is still confronted with low consumer acceptance, due to differences in taste. RESULTS The current work explores the potential of Vitis vinifera sylvestris, the wild ancestor of domesticated Grapevine, with respect to containing Erysiphe necator, the causative agent of Powdery Mildew. Making use of a germplasm collection comprising the entire genetic variability remaining in Germany, we show that there is considerable genetic variation in the formation of leaf surface waxes exceeding wax formation in commercial varieties. CONCLUSIONS High wax formation correlates with reduced susceptibility to controlled infection with E. necator linked with perturbations of appressoria formation. We propose V. vinifera sylvestris as novel source for resistance breeding since it is genetically much closer to domesticated grapevine than the hitherto used sources from beyond the species barrier.
Collapse
Affiliation(s)
- Xinshuang Ge
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology, Fritz-Haber-Weg, 76131, Karlsruhe, Karlsruhe, Germany
| | - Birgit Hetzer
- Max Rubner-Institut (MRI) - Federal Research Institute of Nutrition and Food, Karlsruhe, Germany
| | - Christine Tisch
- DLR Rheinpfalz State Education and Research Center of Viticulture and Horticulture and Rural Development, Neustadt an der Weinstraße, Germany
| | - Andreas Kortekamp
- DLR Rheinpfalz State Education and Research Center of Viticulture and Horticulture and Rural Development, Neustadt an der Weinstraße, Germany
| | - Peter Nick
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology, Fritz-Haber-Weg, 76131, Karlsruhe, Karlsruhe, Germany.
| |
Collapse
|
6
|
Li P, Tan X, Liu R, Rahman FU, Jiang J, Sun L, Fan X, Liu J, Liu C, Zhang Y. QTL detection and candidate gene analysis of grape white rot resistance by interspecific grape ( Vitis vinifera L. × Vitis davidii Foex.) crossing. HORTICULTURE RESEARCH 2023; 10:uhad063. [PMID: 37249950 PMCID: PMC10208900 DOI: 10.1093/hr/uhad063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 04/10/2023] [Indexed: 05/31/2023]
Abstract
Grape white rot, a devastating disease of grapevines caused by Coniella diplodiella (Speg.) Sacc., leads to significant yield losses in grape. Breeding grape cultivars resistant to white rot is essential to reduce the regular use of chemical treatments. In recent years, Chinese grape species have gained more attention for grape breeding due to their high tolerance to various biotic and abiotic factors along with changing climatic conditions. In this study, we employed whole-genome resequencing (WGR) to genotype the parents of 'Manicure Finger' (Vitis vinifera, female) and '0940' (Vitis davidii, male), along with 101 F1 mapping population individuals, thereby constructing a linkage genetic map. The linkage map contained 9337 single-nucleotide polymorphism (SNP) markers with an average marker distance of 0.3 cM. After 3 years of phenotypic evaluation of the progeny for white rot resistance, we confirmed one stable quantitative trait locus (QTL) for white rot resistance on chromosome 3, explaining up to 17.9% of the phenotypic variation. For this locus, we used RNA-seq to detect candidate gene expression and identified PR1 as a candidate gene involved in white rot resistance. Finally, we demonstrated that recombinant PR1 protein could inhibit the growth of C. diplodiella and that overexpression of PR1 in susceptible V. vinifera increased grape resistance to the pathogen.
Collapse
Affiliation(s)
- Peng Li
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450000, China
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430000, China
| | - Xibei Tan
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450000, China
| | - Ruitao Liu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450000, China
| | - Faiz Ur Rahman
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450000, China
| | - Jianfu Jiang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450000, China
| | - Lei Sun
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450000, China
| | - Xiucai Fan
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450000, China
| | | | | | | |
Collapse
|
7
|
Sapkota S, Zou C, Ledbetter C, Underhill A, Sun Q, Gadoury D, Cadle-Davidson L. Discovery and genome-guided mapping of REN12 from Vitis amurensis, conferring strong, rapid resistance to grapevine powdery mildew. HORTICULTURE RESEARCH 2023; 10:uhad052. [PMID: 37213681 PMCID: PMC10194894 DOI: 10.1093/hr/uhad052] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 03/12/2023] [Indexed: 05/23/2023]
Abstract
Powdery mildew resistance genes restrict infection attempts at different stages of pathogenesis. Here, a strong and rapid powdery mildew resistance phenotype was discovered from Vitis amurensis 'PI 588631' that rapidly stopped over 97% of Erysiphe necator conidia, before or immediately after emergence of a secondary hypha from appressoria. This resistance was effective across multiple years of vineyard evaluation on leaves, stems, rachises, and fruit and against a diverse array of E. necator laboratory isolates. Using core genome rhAmpSeq markers, resistance mapped to a single dominant locus (here named REN12) on chromosome 13 near 22.8-27.0 Mb, irrespective of tissue type, explaining up to 86.9% of the phenotypic variation observed on leaves. Shotgun sequencing of recombinant vines using skim-seq technology enabled the locus to be further resolved to a 780 kb region, from 25.15 to 25.93 Mb. RNASeq analysis indicated the allele-specific expression of four resistance genes (NLRs) from the resistant parent. REN12 is one of the strongest powdery mildew resistance loci in grapevine yet documented, and the rhAmpSeq sequences presented here can be directly used for marker-assisted selection or converted to other genotyping platforms. While no virulent isolates were identified among the genetically diverse isolates and wild populations of E. necator tested here, NLR loci like REN12 are often race-specific. Thus, stacking of multiple resistance genes and minimal use of fungicides should enhance the durability of resistance and could enable a 90% reduction in fungicides in low-rainfall climates where few other pathogens attack the foliage or fruit.
Collapse
Affiliation(s)
- Surya Sapkota
- School of Integrative Plant Science, Cornell AgriTech, Cornell University, Geneva, NY, 14456, USA
| | - Cheng Zou
- BRC Bioinformatics Facility, Institute of Biotechnology, Cornell University, Ithaca, NY, 14853, USA
| | - Craig Ledbetter
- United States Department of Agriculture (USDA)-Agricultural Research Service (ARS), Crop Diseases, Pests and Genetics Research Unit, San Joaquin Valley Agricultural Sciences Center, Parlier, CA, 93648, USA
| | - Anna Underhill
- USDA-ARS, Grape Genetics Research Unit, Geneva, NY, 14456, USA
| | - Qi Sun
- BRC Bioinformatics Facility, Institute of Biotechnology, Cornell University, Ithaca, NY, 14853, USA
| | - David Gadoury
- School of Integrative Plant Science, Cornell AgriTech, Cornell University, Geneva, NY, 14456, USA
| | | |
Collapse
|
8
|
Guzmán-Ardiles RE, Pegoraro C, da Maia LC, Costa de Oliveira A. Genetic changes in the genus Vitis and the domestication of vine. FRONTIERS IN PLANT SCIENCE 2023; 13:1019311. [PMID: 36926258 PMCID: PMC10011507 DOI: 10.3389/fpls.2022.1019311] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 11/28/2022] [Indexed: 06/18/2023]
Abstract
The genus Vitis belongs to the Vitaceae family and is divided into two subgenera: Muscadinia and Vitis, the main difference between these subgenera being the number of chromosomes. There are many hypotheses about the origin of the genus, which have been formed with archaeological studies and lately with molecular analyses. Even though there is no consensus on the place of origin, these studies have shown that grapes have been used by man since ancient times, starting later on its domestication. Most studies point to the Near East and Greece as the beginning of domestication, current research suggests it took place in parallel in different sites, but in all cases Vitis vinifera (L.) subsp. sylvestris [Vitis vinifera (L.) subsp. sylvestris (Gmelin) Hagi] seems to be the species chosen by our ancestors to give rise to the now known Vitis vinifera (L.) subsp. vinifera [=sativa (Hegi)= caucasica (Vavilov)]. Its evolution and expansion into other territories followed the formation of new empires and their expansion, and this is where the historical importance of this crop lies. In this process, plants with hermaphrodite flowers were preferentially selected, with firmer, sweeter, larger fruits of different colors, thus favoring the selection of genes associated with these traits, also resulting in a change in seed morphology. Currently, genetic improvement programs have made use of wild species for the introgression of disease resistance genes and tolerance to diverse soil and climate environments. In addition, the mapping of genes of interest, both linked to agronomic and fruit quality traits, has allowed the use of molecular markers for assisted selection. Information on the domestication process and genetic resources help to understand the gene pool available for the development of cultivars that respond to producer and consumer requirements.
Collapse
|
9
|
Semi-Targeted Profiling of the Lipidome Changes Induced by Erysiphe Necator in Disease-Resistant and Vitis vinifera L. Varieties. Int J Mol Sci 2023; 24:ijms24044072. [PMID: 36835477 PMCID: PMC9958630 DOI: 10.3390/ijms24044072] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/13/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
The ascomycete Erysiphe necator is a serious pathogen in viticulture. Despite the fact that some grapevine genotypes exhibit mono-locus or pyramided resistance to this fungus, the lipidomics basis of these genotypes' defense mechanisms remains unknown. Lipid molecules have critical functions in plant defenses, acting as structural barriers in the cell wall that limit pathogen access or as signaling molecules after stress responses that may regulate innate plant immunity. To unravel and better understand their involvement in plant defense, we used a novel approach of ultra-high performance liquid chromatography (UHPLC)-MS/MS to study how E. necator infection changes the lipid profile of genotypes with different sources of resistance, including BC4 (Run1), "Kishmish vatkhana" (Ren1), F26P92 (Ren3; Ren9), and "Teroldego" (a susceptible genotype), at 0, 24, and 48 hpi. The lipidome alterations were most visible at 24 hpi for BC4 and F26P92, and at 48 hpi for "Kishmish vatkhana". Among the most abundant lipids in grapevine leaves were the extra-plastidial lipids: glycerophosphocholine (PCs), glycerophosphoethanolamine (PEs) and the signaling lipids: glycerophosphates (Pas) and glycerophosphoinositols (PIs), followed by the plastid lipids: glycerophosphoglycerols (PGs), monogalactosyldiacylglycerols (MGDGs), and digalactosyldiacylglycerols (DGDGs) and, in lower amounts lyso-glycerophosphocholines (LPCs), lyso-glycerophosphoglycerols (LPGs), lyso-glycerophosphoinositols (LPIs), and lyso-glycerophosphoethanolamine (LPEs). Furthermore, the three resistant genotypes had the most prevalent down-accumulated lipid classes, while the susceptible genotype had the most prevalent up-accumulated lipid classes.
Collapse
|
10
|
Ciubotaru RM, Franceschi P, Vezzulli S, Zulini L, Stefanini M, Oberhuber M, Robatscher P, Chitarrini G, Vrhovsek U. Secondary and primary metabolites reveal putative resistance-associated biomarkers against Erysiphe necator in resistant grapevine genotypes. FRONTIERS IN PLANT SCIENCE 2023; 14:1112157. [PMID: 36798701 PMCID: PMC9927228 DOI: 10.3389/fpls.2023.1112157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/13/2023] [Indexed: 06/18/2023]
Abstract
Numerous fungicide applications are required to control Erysiphe necator, the causative agent of powdery mildew. This increased demand for cultivars with strong and long-lasting field resistance to diseases and pests. In comparison to the susceptible cultivar 'Teroldego', the current study provides information on some promising disease-resistant varieties (mono-locus) carrying one E. necator-resistant locus: BC4 and 'Kishmish vatkana', as well as resistant genotypes carrying several E. necator resistant loci (pyramided): 'Bianca', F26P92, F13P71, and NY42. A clear picture of the metabolites' alterations in response to the pathogen is shown by profiling the main and secondary metabolism: primary compounds and lipids; volatile organic compounds and phenolic compounds at 0, 12, and 48 hours after pathogen inoculation. We identified several compounds whose metabolic modulation indicated that resistant plants initiate defense upon pathogen inoculation, which, while similar to the susceptible genotype in some cases, did not imply that the plants were not resistant, but rather that their resistance was modulated at different percentages of metabolite accumulation and with different effect sizes. As a result, we discovered ten up-accumulated metabolites that distinguished resistant from susceptible varieties in response to powdery mildew inoculation, three of which have already been proposed as resistance biomarkers due to their role in activating the plant defense response.
Collapse
Affiliation(s)
- Ramona Mihaela Ciubotaru
- Department of Agri-Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
- Food Quality and Nutrition Department, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Italy
| | - Pietro Franceschi
- Unit of Computational Biology, Research and Innovation Centre, Fondazione Edmund Mach, San Michelle All'Adige, Italy
| | - Silvia Vezzulli
- Genomics and Biology of Fruit Crops Department, Research and Innovation Centre, Fondazione Edmund Mach, San Michelle All'Adige, Italy
| | - Luca Zulini
- Genomics and Biology of Fruit Crops Department, Research and Innovation Centre, Fondazione Edmund Mach, San Michelle All'Adige, Italy
| | - Marco Stefanini
- Genomics and Biology of Fruit Crops Department, Research and Innovation Centre, Fondazione Edmund Mach, San Michelle All'Adige, Italy
| | - Michael Oberhuber
- Laboratory for Flavours and Metabolites, Laimburg Research Centre, Auer (Ora), Italy
| | - Peter Robatscher
- Laboratory for Flavours and Metabolites, Laimburg Research Centre, Auer (Ora), Italy
| | - Giulia Chitarrini
- Food Quality and Nutrition Department, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Italy
- Laboratory for Flavours and Metabolites, Laimburg Research Centre, Auer (Ora), Italy
| | - Urska Vrhovsek
- Food Quality and Nutrition Department, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Italy
| |
Collapse
|
11
|
Töpfer R, Trapp O. A cool climate perspective on grapevine breeding: climate change and sustainability are driving forces for changing varieties in a traditional market. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:3947-3960. [PMID: 35389053 PMCID: PMC9729149 DOI: 10.1007/s00122-022-04077-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 03/07/2022] [Indexed: 05/04/2023]
Abstract
A multitude of diverse breeding goals need to be combined in a new cultivar, which always forces to compromise. The biggest challenge grapevine breeders face is the extraordinarily complex trait of wine quality, which is the all-pervasive and most debated characteristic. Since the 1920s, Germany runs continuous grapevine breeding programmes. This continuity was the key to success and lead to various new cultivars on the market, so called PIWIs. Initially, introduced pests and diseases such as phylloxera, powdery and downy mildew were the driving forces for breeding. However, preconceptions about the wine quality of new resistant selections impeded the market introduction. These preconceptions are still echoing today and may be the reason in large parts of the viticultural community for: (1) ignoring substantial breeding progress, and (2) sticking to successful markets of well-known varietal wines or blends (e.g. Chardonnay, Cabernet Sauvignon, Riesling). New is the need to improve viticulture´s sustainability and to adapt to changing environmental conditions. Climate change with its extreme weather will impose the need for a change in cultivars in many wine growing regions. Therefore, a paradigm shift is knocking on the door: new varieties (PIWIs) versus traditional varieties for climate adapted and sustainable viticulture. However, it will be slow process and viticulture is politically well advised to pave the way to variety innovation. In contrast to the widely available PIWIs, competitive cultivars created by means of new breeding technologies (NBT, e.g. through CRISPR/Cas) are still decades from introduction to the market.
Collapse
Affiliation(s)
- Reinhard Töpfer
- Julius Kühn-Institut, Federal Research Centre for Cultivated Plants, Institute for Grapevine Breeding Geilweilerhof, Siebeldingen, Germany.
| | - Oliver Trapp
- Julius Kühn-Institut, Federal Research Centre for Cultivated Plants, Institute for Grapevine Breeding Geilweilerhof, Siebeldingen, Germany
| |
Collapse
|
12
|
Sosa-Zuniga V, Martínez-Barradas V, Espinoza C, Tighe-Neira R, Valenzuela ÁV, Inostroza-Blancheteau C, Arce-Johnson P. Characterization of physiological and antioxidant responses in Run1Ren1 Vitis vinifera plants during Erysiphe necator attack. FRONTIERS IN PLANT SCIENCE 2022; 13:964732. [PMID: 36325565 PMCID: PMC9621084 DOI: 10.3389/fpls.2022.964732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
Grapevine is a fruit crop of major significance worldwide. Fungal attacks are one of the most relevant factors affecting grapevine yield and fruit quality, and powdery mildew caused by Erysiphe necator is one of the most harmful fungal diseases for this fruit-bearing species. Incorporating resistance genes such as Run1 and Ren1 in new vine selections offers a sustainable alternative to control the disease. These combined loci produce an immune response that prevents the development of the disease. However, to date studies are lacking concerning whether this response generates alterations in the physiological and antioxidant parameters of resistant plants in the presence of the fungus or if it has an associated energy cost. Therefore, the main goal of our research was to determine if Run1Ren1 plants present alterations in their physiological and biochemical parameters in the presence of the fungus. To achieve this target, a previously characterized resistant Run1Ren1 genotype and the susceptible Carménère cultivar were analyzed. We evaluated photochemical parameters (Fv'/Fm', ΦPSII and ETR), net photosynthesis (Pn), photosynthetic pigments, transpiration (E), stomatal conductance (gs ), oxidative stress parameters (MDA), antioxidant activity, and phenols. Our results show that the physiological parameters of Run1Ren1 plants were not negatively affected by the fungus at 10 days post-inoculation, contrasting with alterations observed in the susceptible plants. Therefore, we propose that the resistance response triggered by Run1Ren1 is physiologically and biochemically advantageous to grapevines by preventing the development of powdery mildew infection.
Collapse
Affiliation(s)
- Viviana Sosa-Zuniga
- Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Santiago, Chile
- Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Vera Martínez-Barradas
- Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Santiago, Chile
- Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Carmen Espinoza
- Facultad de Ciencias de la Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Ricardo Tighe-Neira
- Departamento de Ciencias Agropecuarias y Acuícolas, Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco, Chile
| | - Álvaro Vidal Valenzuela
- Research and Innovation Centre. Biotechnology vegetal Unit, Foundation Edmund Mach, San Michele all'Adige, (TN), Italy
| | - Claudio Inostroza-Blancheteau
- Departamento de Ciencias Agropecuarias y Acuícolas, Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco, Chile
- Núcleo de Investigación en Producción Alimentaria, Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco, Chile
| | - Patricio Arce-Johnson
- Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Santiago, Chile
- Agrijohnson Ltda., Plant Biotechnology Department, Miraflores, Curacavií, Chile
| |
Collapse
|
13
|
Possamai T, Wiedemann-Merdinoglu S. Phenotyping for QTL identification: A case study of resistance to Plasmopara viticola and Erysiphe necator in grapevine. FRONTIERS IN PLANT SCIENCE 2022; 13:930954. [PMID: 36035702 PMCID: PMC9403010 DOI: 10.3389/fpls.2022.930954] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/27/2022] [Indexed: 06/01/2023]
Abstract
Vitis vinifera is the most widely cultivated grapevine species. It is highly susceptible to Plasmopara viticola and Erysiphe necator, the causal agents of downy mildew (DM) and powdery mildew (PM), respectively. Current strategies to control DM and PM mainly rely on agrochemical applications that are potentially harmful to humans and the environment. Breeding for resistance to DM and PM in wine grape cultivars by introgressing resistance loci from wild Vitis spp. is a complementary and more sustainable solution to manage these two diseases. During the last two decades, 33 loci of resistance to P. viticola (Rpv) and 15 loci of resistance to E. necator (Ren and Run) have been identified. Phenotyping is salient for QTL characterization and understanding the genetic basis of resistant traits. However, phenotyping remains a major bottleneck for research on Rpv and Ren/Run loci and disease resistance evaluation. A thorough analysis of the literature on phenotyping methods used for DM and PM resistance evaluation highlighted phenotyping performed in the vineyard, greenhouse or laboratory with major sources of variation, such as environmental conditions, plant material (organ physiology and age), pathogen inoculum (genetic and origin), pathogen inoculation (natural or controlled), and disease assessment method (date, frequency, and method of scoring). All these factors affect resistance assessment and the quality of phenotyping data. We argue that the use of new technologies for disease symptom assessment, and the production and adoption of standardized experimental guidelines should enhance the accuracy and reliability of phenotyping data. This should contribute to a better replicability of resistance evaluation outputs, facilitate QTL identification, and contribute to streamline disease resistance breeding programs.
Collapse
Affiliation(s)
- Tyrone Possamai
- CREA—Research Centre for Viticulture and Enology, Conegliano, Italy
| | | |
Collapse
|
14
|
Sosa-Zuniga V, Vidal Valenzuela Á, Barba P, Espinoza Cancino C, Romero-Romero JL, Arce-Johnson P. Powdery Mildew Resistance Genes in Vines: An Opportunity to Achieve a More Sustainable Viticulture. Pathogens 2022; 11:703. [PMID: 35745557 PMCID: PMC9230758 DOI: 10.3390/pathogens11060703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/11/2022] [Accepted: 06/13/2022] [Indexed: 12/10/2022] Open
Abstract
Grapevine (Vitis vinifera) is one of the main fruit crops worldwide. In 2020, the total surface area planted with vines was estimated at 7.3 million hectares. Diverse pathogens affect grapevine yield, fruit, and wine quality of which powdery mildew is the most important disease prior to harvest. Its causal agent is the biotrophic fungus Erysiphe necator, which generates a decrease in cluster weight, delays fruit ripening, and reduces photosynthetic and transpiration rates. In addition, powdery mildew induces metabolic reprogramming in its host, affecting primary metabolism. Most commercial grapevine cultivars are highly susceptible to powdery mildew; consequently, large quantities of fungicide are applied during the productive season. However, pesticides are associated with health problems, negative environmental impacts, and high costs for farmers. In paralleled, consumers are demanding more sustainable practices during food production. Therefore, new grapevine cultivars with genetic resistance to powdery mildew are needed for sustainable viticulture, while maintaining yield, fruit, and wine quality. Two main gene families confer resistance to powdery mildew in the Vitaceae, Run (Resistance to Uncinula necator) and Ren (Resistance to Erysiphe necator). This article reviews the powdery mildew resistance genes and loci and their use in grapevine breeding programs.
Collapse
Affiliation(s)
- Viviana Sosa-Zuniga
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Avenida Libertador Bernardo O’Higgins 340, Santiago 8331150, Chile;
- Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4560, Santiago 7820436, Chile
| | - Álvaro Vidal Valenzuela
- Foundazione Edmund Mach, Via Edmund Mach 1, San Michele all’Adige (TN), 38010 Trento, Italy;
| | - Paola Barba
- Instituto de Investigaciones Agropecuarias, Avenida Santa Rosa 11610, Santiago 8831314, Chile;
| | - Carmen Espinoza Cancino
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Avenida El Llano Subercaseaux 2801, Santiago 8900000, Chile;
| | - Jesus L. Romero-Romero
- Departamento de Biotecnología Agrícola, Instituto Politécnico Nacional, Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional, Unidad Sinaloa, Bvd. Juan de Dios Bátiz Paredes 250, Culiacan Rosales 81101, Mexico;
| | - Patricio Arce-Johnson
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Avenida Libertador Bernardo O’Higgins 340, Santiago 8331150, Chile;
- Agrijohnson Ltda., Parcela 16b, Miraflores, Curacavi 9630000, Chile
| |
Collapse
|
15
|
Identification of powdery mildew resistance in wild grapevine (Vitis vinifera subsp. sylvestris Gmel Hegi) from Croatia and Bosnia and Herzegovina. Sci Rep 2022; 12:2128. [PMID: 35136153 PMCID: PMC8826913 DOI: 10.1038/s41598-022-06037-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 01/20/2022] [Indexed: 12/23/2022] Open
Abstract
Wild grapevine (Vitis vinifera subsp. sylvestris) is widely recognized as an important source of resistance or tolerance genes for diseases and environmental stresses. Recent studies revealed partial resistance to powdery mildew (Erysiphe necator, PM) in V. sylvestris from Central Asia. Here, we report resistance to PM of V. sylvestris collected from different regions of Croatia and in seedling populations established from in situ V. sylvestris accessions. Ninety-one in situ individuals and 67 V. sylvestris seedlings were evaluated for PM resistance according to OIV 455 descriptor. Three SSR markers (SC47-18, SC8-071-0014, and UDV-124) linked to PM resistance locus Ren1 were used to decipher allelic structure. Nine seedlings showed resistance in in vivo evaluations while leaf disk assays revealed three PM-resistant accessions. One V. vinifera cultivar used as a control for PM evaluations also showed high phenotypic resistance. Based on the presence of one or two resistance alleles that are linked to the Ren1 locus, 32 resistant seedlings and 41 resistant in situ genotypes were identified in the investigated set. Eight seedlings showed consistent phenotypic PM resistance, of which seven carried one or two alleles at the tested markers. This study provides the first evidence of PM resistance present within the eastern Adriatic V. sylvestris germplasm.
Collapse
|
16
|
Possamai T, Wiedemann-Merdinoglu S. Phenotyping for grapevine QTL identification. The case of resistance to Plasmopara viticola and Erysiphe necator. A review. BIO WEB OF CONFERENCES 2022. [DOI: 10.1051/bioconf/20225002009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
17
|
Ilnitskaya E, Makarkina M, Kozhevnikov E. Analysis of the SC8-0071-014 and sc47-18 loci co-segregated with Ren1 gene in the genotypes of seedless grape varieties. BIO WEB OF CONFERENCES 2022. [DOI: 10.1051/bioconf/20225302003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Powdery mildew (Erysiphe necator) is one of the most common and economically significant diseases of grapes. The main method of controlling the disease is pesticide treatment. To reduce chemical treatments, it is necessary to select and introduce resistant varieties into production. DNA markers are currently actively used in the study of grape genetic resources. Seedless grape varieties are highly demanded by consumers. Ren1 is one of the known and mapped vine resistance genes to powdery mildew, inherited from V. vinifera; linked DNA markers for this resistance locus are known. A study of 34 seedless grape genotypes was carried out using DNA markers SC8-0071-014 and sc47-18 co-segregated with Ren1. In the studied sample of varieties, 12 types of alleles were identified in the sc47-18 locus and 9 types of alleles in the SC8-0071-014 locus. Target fragments, according to linked marker loci, indicating the presence of the Ren1 resistance gene, were identified in grape variety Lotus (Kriulyanskiy x Yangi Er).
Collapse
|
18
|
Possamai T, Wiedemann-Merdinoglu S, Lacombe MC, Dorne MA, Merdinoglu D, De Nardi B, Migliaro D, Velasco R, De Mori G, Cipriani G, Testolin R. Phenotyping and genetic analysis of the Caucasian grape resistance to Erysiphe necator. BIO WEB OF CONFERENCES 2022. [DOI: 10.1051/bioconf/20225002010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
19
|
Possamai T, Wiedemann-Merdinoglu S, Merdinoglu D, Migliaro D, De Mori G, Cipriani G, Velasco R, Testolin R. Construction of a high-density genetic map and detection of a major QTL of resistance to powdery mildew (Erysiphe necator Sch.) in Caucasian grapes (Vitis vinifera L.). BMC PLANT BIOLOGY 2021; 21:528. [PMID: 34763660 PMCID: PMC8582213 DOI: 10.1186/s12870-021-03174-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 08/09/2021] [Indexed: 05/30/2023]
Abstract
BACKGROUND Vitis vinifera L. is the most cultivated grapevine species worldwide. Erysiphe necator Sch., the causal agent of grape powdery mildew, is one of the main pathogens affecting viticulture. V. vinifera has little or no genetic resistances against E. necator and the grape industry is highly dependent on agrochemicals. Some Caucasian V. vinifera accessions have been reported to be resistant to E. necator and to have no genetic relationships to known sources of resistance to powdery mildew. The main purpose of this work was the study and mapping of the resistance to E. necator in the Caucasian grapes 'Shavtsitska' and 'Tskhvedianis tetra'. RESULTS The Caucasian varieties 'Shavtsitska' and 'Tskhvedianis tetra' showed a strong partial resistance to E. necator which segregated in two cross populations: the resistant genotypes delayed and limited the pathogen mycelium growth, sporulation intensity and number of conidia generated. A total of 184 seedlings of 'Shavtsitska' x 'Glera' population were genotyped through the Genotyping by Sequencing (GBS) technology and two high-density linkage maps were developed for the cross parents. The QTL analysis revealed a major resistance locus, explaining up to 80.15% of the phenotypic variance, on 'Shavtsitska' linkage group 13, which was associated with a reduced pathogen infection as well as an enhanced plant necrotic response. The genotyping of 105 Caucasian accessions with SSR markers flanking the QTL revealed that the resistant haplotype of 'Shavtsitska' was shared by 'Tskhvedianis tetra' and a total of 25 Caucasian grape varieties, suggesting a widespread presence of this resistance in the surveyed germplasm. The uncovered QTL was mapped in the region where the Ren1 locus of resistance to E. necator, identified in the V. vinifera 'Kishmish vatkana' and related grapes of Central Asia, is located. The genetic analysis conducted revealed that the Caucasian grapes in this study exhibit a resistant haplotype different from that of Central Asian grape accessions. CONCLUSIONS The QTL isolated in 'Shavtsitska' and present in the Caucasian V. vinifera varieties could be a new candidate gene of resistance to E. necator to use in breeding programmes. It co-localizes with the Ren1 locus but shows a different haplotype from that of grapevines of Central Asia. We therefore consider that the Caucasian resistance locus, named Ren1.2, contains a member of a cluster of R-genes, of which the region is rich, and to be linked with, or possibly allelic, to Ren1.
Collapse
Affiliation(s)
- Tyrone Possamai
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, via delle Scienze 206, 33100, Udine, Italy.
- CREA - Research Centre for Viticulture and Enology, viale XXVIII Aprile 26, 31015, Conegliano, TV, Italy.
| | | | - Didier Merdinoglu
- INRAE, Université de Strasbourg, SVQV UMR-A 1131, 28 rue de Herrlisheim, 68000, Colmar, France
| | - Daniele Migliaro
- CREA - Research Centre for Viticulture and Enology, viale XXVIII Aprile 26, 31015, Conegliano, TV, Italy
| | - Gloria De Mori
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, via delle Scienze 206, 33100, Udine, Italy
| | - Guido Cipriani
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, via delle Scienze 206, 33100, Udine, Italy
| | - Riccardo Velasco
- CREA - Research Centre for Viticulture and Enology, viale XXVIII Aprile 26, 31015, Conegliano, TV, Italy
| | - Raffaele Testolin
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, via delle Scienze 206, 33100, Udine, Italy
- Institute of Applied Genomics, Science & Technology Park "Luigi Danieli", via Jacopo Linussio 51, 33100, Udine, Italy
| |
Collapse
|
20
|
Pimentel D, Amaro R, Erban A, Mauri N, Soares F, Rego C, Martínez-Zapater JM, Mithöfer A, Kopka J, Fortes AM. Transcriptional, hormonal, and metabolic changes in susceptible grape berries under powdery mildew infection. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:6544-6569. [PMID: 34106234 DOI: 10.1093/jxb/erab258] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 06/08/2021] [Indexed: 06/12/2023]
Abstract
Grapevine (Vitis vinifera) berries are extremely sensitive to infection by the biotrophic pathogen Erysiphe necator, causing powdery mildew disease with deleterious effects on grape and wine quality. The combined analysis of the transcriptome and metabolome associated with this common fungal infection has not been previously carried out in any fruit. In order to identify the molecular, hormonal, and metabolic mechanisms associated with infection, healthy and naturally infected V. vinifera cv. Carignan berries were collected at two developmental stages: late green (EL33) and early véraison (EL35). RNA sequencing combined with GC-electron impact ionization time-of-flight MS, GC-electron impact ionization/quadrupole MS, and LC-tandem MS analyses revealed that powdery mildew-susceptible grape berries were able to activate defensive mechanisms with the involvement of salicylic acid and jasmonates and to accumulate defense-associated metabolites (e.g. phenylpropanoids, fatty acids). The defensive strategies also indicated organ-specific responses, namely the activation of fatty acid biosynthesis. However, defense responses were not enough to restrict fungal growth. The fungal metabolic program during infection involves secretion of effectors related to effector-triggered susceptibility, carbohydrate-active enzymes and activation of sugar, fatty acid, and nitrogen uptake, and could be under epigenetic regulation. This study also identified potential metabolic biomarkers such as gallic, eicosanoic, and docosanoic acids and resveratrol, which can be used to monitor early stages of infection.
Collapse
Affiliation(s)
- Diana Pimentel
- BioISI - Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Campo Grande, 1749-016 Lisboa, Portugal
| | - Rute Amaro
- BioISI - Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Campo Grande, 1749-016 Lisboa, Portugal
| | - Alexander Erban
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Potsdam-Golm, Germany
| | - Nuria Mauri
- Instituto de Ciencias de la Vid y del Vino, CSIC-UR-Gobierno de La Rioja, Ctra. de Burgos km 6, 26007 Logroño, Spain
| | - Flávio Soares
- BioISI - Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Campo Grande, 1749-016 Lisboa, Portugal
| | - Cecília Rego
- Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - José M Martínez-Zapater
- Instituto de Ciencias de la Vid y del Vino, CSIC-UR-Gobierno de La Rioja, Ctra. de Burgos km 6, 26007 Logroño, Spain
| | - Axel Mithöfer
- Research Group Plant Defense Physiology, Max-Planck-Institute for Chemical Ecology, 07745 Jena, Germany
| | - Joachim Kopka
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Potsdam-Golm, Germany
| | - Ana Margarida Fortes
- BioISI - Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Campo Grande, 1749-016 Lisboa, Portugal
| |
Collapse
|
21
|
Štambuk P, Šikuten I, Preiner D, Nimac A, Lazarević B, Marković Z, Maletić E, Kontić JK, Tomaz I. Screening of Croatian Native Grapevine Varieties for Susceptibility to Plasmopara viticola Using Leaf Disc Bioassay, Chlorophyll Fluorescence, and Multispectral Imaging. PLANTS 2021; 10:plants10040661. [PMID: 33808401 PMCID: PMC8067117 DOI: 10.3390/plants10040661] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/17/2021] [Accepted: 03/25/2021] [Indexed: 12/31/2022]
Abstract
In the era of sustainable grapevine production, there is a growing demand to define differences between Vitis vinifera varieties in susceptibility to downy mildew. Croatia, as a country with a long tradition of grapevine cultivation, preserves a large number of native grapevine varieties. A leaf disc bioassay has been conducted on 25 of them to define their response to downy mildew, according to the International Organisation of Vine and Wine (OIV) descriptor 452-1, together with the stress response of the leaf discs using chlorophyll fluorescence and multispectral imaging with 11 parameters included. Time points of measurement were as follows: before treatment (T0), one day post-inoculation (dpi) (T1), two dpi (T2), three dpi (T3), four dpi (T4), six dpi (T5), and eight dpi (T6). Visible changes in form of developed Plasmopara viticola (P. viticola) sporulation were evaluated on the seventh day upon inoculation. Results show that methods applied here distinguish varieties of different responses to downy mildew. Based on the results obtained, a phenotyping model in the absence of the pathogen is proposed, which is required to confirm by conducting more extensive research.
Collapse
Affiliation(s)
- Petra Štambuk
- Department of Viticulture and Enology, Faculty of Agriculture, University of Zagreb, Svetošimunska cesta 25, 10000 Zagreb, Croatia; (P.Š.); (I.Š.); (Z.M.); (E.M.); (J.K.K.); (I.T.)
- Centre of Excellence for Biodiversity and Molecular Plant Breeding, Svetošimunska cesta 25, 10000 Zagreb, Croatia; (A.N.); (B.L.)
| | - Iva Šikuten
- Department of Viticulture and Enology, Faculty of Agriculture, University of Zagreb, Svetošimunska cesta 25, 10000 Zagreb, Croatia; (P.Š.); (I.Š.); (Z.M.); (E.M.); (J.K.K.); (I.T.)
- Centre of Excellence for Biodiversity and Molecular Plant Breeding, Svetošimunska cesta 25, 10000 Zagreb, Croatia; (A.N.); (B.L.)
| | - Darko Preiner
- Department of Viticulture and Enology, Faculty of Agriculture, University of Zagreb, Svetošimunska cesta 25, 10000 Zagreb, Croatia; (P.Š.); (I.Š.); (Z.M.); (E.M.); (J.K.K.); (I.T.)
- Centre of Excellence for Biodiversity and Molecular Plant Breeding, Svetošimunska cesta 25, 10000 Zagreb, Croatia; (A.N.); (B.L.)
- Correspondence:
| | - Ana Nimac
- Centre of Excellence for Biodiversity and Molecular Plant Breeding, Svetošimunska cesta 25, 10000 Zagreb, Croatia; (A.N.); (B.L.)
- Department of Seed Science and Technology, Faculty of Agriculture, University of Zagreb, Svetošimunska cesta 25, 10000 Zagreb, Croatia
| | - Boris Lazarević
- Centre of Excellence for Biodiversity and Molecular Plant Breeding, Svetošimunska cesta 25, 10000 Zagreb, Croatia; (A.N.); (B.L.)
- Department of Plant Nutrition, Faculty of Agriculture, University of Zagreb, Svetošimunska cesta 25, 10000 Zagreb, Croatia
| | - Zvjezdana Marković
- Department of Viticulture and Enology, Faculty of Agriculture, University of Zagreb, Svetošimunska cesta 25, 10000 Zagreb, Croatia; (P.Š.); (I.Š.); (Z.M.); (E.M.); (J.K.K.); (I.T.)
- Centre of Excellence for Biodiversity and Molecular Plant Breeding, Svetošimunska cesta 25, 10000 Zagreb, Croatia; (A.N.); (B.L.)
| | - Edi Maletić
- Department of Viticulture and Enology, Faculty of Agriculture, University of Zagreb, Svetošimunska cesta 25, 10000 Zagreb, Croatia; (P.Š.); (I.Š.); (Z.M.); (E.M.); (J.K.K.); (I.T.)
- Centre of Excellence for Biodiversity and Molecular Plant Breeding, Svetošimunska cesta 25, 10000 Zagreb, Croatia; (A.N.); (B.L.)
| | - Jasminka Karoglan Kontić
- Department of Viticulture and Enology, Faculty of Agriculture, University of Zagreb, Svetošimunska cesta 25, 10000 Zagreb, Croatia; (P.Š.); (I.Š.); (Z.M.); (E.M.); (J.K.K.); (I.T.)
- Centre of Excellence for Biodiversity and Molecular Plant Breeding, Svetošimunska cesta 25, 10000 Zagreb, Croatia; (A.N.); (B.L.)
| | - Ivana Tomaz
- Department of Viticulture and Enology, Faculty of Agriculture, University of Zagreb, Svetošimunska cesta 25, 10000 Zagreb, Croatia; (P.Š.); (I.Š.); (Z.M.); (E.M.); (J.K.K.); (I.T.)
- Centre of Excellence for Biodiversity and Molecular Plant Breeding, Svetošimunska cesta 25, 10000 Zagreb, Croatia; (A.N.); (B.L.)
| |
Collapse
|
22
|
Gur L, Reuveni M, Cohen Y, Cadle-Davidson L, Kisselstein B, Ovadia S, Frenkel O. Population structure of Erysiphe necator on domesticated and wild vines in the Middle East raises questions on the origin of the grapevine powdery mildew pathogen. Environ Microbiol 2021; 23:6019-6037. [PMID: 33459475 DOI: 10.1111/1462-2920.15401] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 11/28/2022]
Abstract
Plant pathogens usually originate and diversify in geographical regions where hosts and pathogens co-evolve. Erysiphe necator, the causal agent of grape powdery mildew, is a destructive pathogen of grapevines worldwide. Although Eastern US is considered the centre of origin and diversity of E. necator, previous reports on resistant native wild and domesticated Asian grapevines suggest Asia as another possible origin of the pathogen. By using multi-locus sequencing, microsatellites and a novel application of amplicon sequencing (AmpSeq), we show that the population of E. necator in Israel is composed of three genetic groups: Groups A and B that are common worldwide, and a new group IL, which is genetically differentiated from any known group in Europe and Eastern US. Group IL showed distinguished ecological characteristics: it was dominant on wild and traditional vines (95%); its abundance increased along the season; and was more aggressive than A and B isolates on both wild and domesticated vines. The low genetic diversity within group IL suggests that it has invaded Israel from another origin. Therefore, we suggest that the Israeli E. necator population was founded by at least two invasions, of which one could be from a non-East American source, possibly from Asian origin.
Collapse
Affiliation(s)
- Lior Gur
- Shamir Research Institute, University of Haifa, Katzrin, Israel.,Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel.,Department of Plant Pathology and Weed Research, Agricultural Research Organization (ARO), The Volcani Center, Rishon Lezion, Israel
| | - Moshe Reuveni
- Shamir Research Institute, University of Haifa, Katzrin, Israel
| | - Yigal Cohen
- Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Lance Cadle-Davidson
- USDA Agricultural Research Service, Geneva, NY, USA.,School of Integrative Plant Sciences, Cornell AgriTech, Geneva, NY, USA
| | - Breanne Kisselstein
- USDA Agricultural Research Service, Geneva, NY, USA.,School of Integrative Plant Sciences, Cornell AgriTech, Geneva, NY, USA
| | | | - Omer Frenkel
- Department of Plant Pathology and Weed Research, Agricultural Research Organization (ARO), The Volcani Center, Rishon Lezion, Israel
| |
Collapse
|
23
|
Makarkina M, Ilnitskaya E, Kozina T. Search for donors of powdery mildew resistance genes among seedless and table grape varieties. BIO WEB OF CONFERENCES 2021. [DOI: 10.1051/bioconf/20213902005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Powdery mildew (Erysiphe necator) is one of the most common and economically significant diseases of grapes. Currently, the main method of controlling the disease is pesticide treatment. Breeding of resistant varieties is necessary to reduce chemical treatments. Currently, a number of grape resistance genes to powdery mildew and DNA markers for identification the allelic status of these genes are known. In a study to determine the presence of resistance loci Ren3 and Ren9, 25 genotypes of table grape varieties were analyzed, including 18 seedless varieties. DNA markers GF15-42, ScORGF15-02 were used to identify Ren3 gene, and CenGen6 – to identify Ren9 gene. DNA of cultivars Regent and Seyve Villard 12-375, which have resistance alleles, were used as positive controls. As a result of DNA marker analysis, it was determined that genotypes of table varieties Viking, Kodryanka, Moldova, Nadezhda AZOS, Original and seedless varieties Pamyati Smirnova, Kishmish Zaporozhskiy and Kishmish 342 carry loci of resistance to powdery mildew Ren3 and Ren9.
Collapse
|
24
|
Ruiz-García L, Gago P, Martínez-Mora C, Santiago JL, Fernádez-López DJ, Martínez MDC, Boso S. Evaluation and Pre-selection of New Grapevine Genotypes Resistant to Downy and Powdery Mildew, Obtained by Cross-Breeding Programs in Spain. FRONTIERS IN PLANT SCIENCE 2021; 12:674510. [PMID: 34956246 PMCID: PMC8703198 DOI: 10.3389/fpls.2021.674510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 11/22/2021] [Indexed: 05/08/2023]
Abstract
The need to develop an environmentally friendly, sustainable viticulture model has led to numerous grapevine improvement programmes aiming to increase resistance to downy and powdery mildew. The success of such programmes relies on the availability of protocols that can quantify the resistance/susceptibility of new genotypes, and on the existence of molecular markers of resistance loci that can aid in the selection process. The present work assesses the degree of phenotypic resistance/susceptibility to downy and powdery mildew of 28 new genotypes obtained from crosses between "Monastrell" and "Regent." Three genotypes showed strong combined resistance, making them good candidates for future crosses with other sources of resistance to these diseases (pyramiding). In general, laboratory and glasshouse assessments of resistance at the phenotype level agreed with the resistance expected from the presence of resistance-associated alleles of simple sequence repeat (SSR) markers for the loci Rpv3 and Ren3 (inherited from "Regent"), confirming their usefulness as indicators of likely resistance to downy and powdery mildew, respectively, particularly so for downy mildew.
Collapse
Affiliation(s)
- Leonor Ruiz-García
- Department of Biotechnology, Genomics and Plant Breeding, Instituto Murciano de Investigación y Desarrollo Agrario y Alimentario, Murcia, Spain
| | - Pilar Gago
- Department of Viticulture and Forestry, Misión Biológica de Galicia (Consejo Superior de Investigaciones Científicas, CSIC), Salcedo, Spain
| | - Celia Martínez-Mora
- Department of Biotechnology, Genomics and Plant Breeding, Instituto Murciano de Investigación y Desarrollo Agrario y Alimentario, Murcia, Spain
| | - José Luis Santiago
- Department of Viticulture and Forestry, Misión Biológica de Galicia (Consejo Superior de Investigaciones Científicas, CSIC), Salcedo, Spain
| | - Diego J. Fernádez-López
- Department of Biotechnology, Genomics and Plant Breeding, Instituto Murciano de Investigación y Desarrollo Agrario y Alimentario, Murcia, Spain
| | - María del Carmen Martínez
- Department of Viticulture and Forestry, Misión Biológica de Galicia (Consejo Superior de Investigaciones Científicas, CSIC), Salcedo, Spain
| | - Susana Boso
- Department of Viticulture and Forestry, Misión Biológica de Galicia (Consejo Superior de Investigaciones Científicas, CSIC), Salcedo, Spain
- *Correspondence: Susana Boso,
| |
Collapse
|
25
|
Riaz S, Menéndez CM, Tenscher A, Pap D, Walker MA. Genetic mapping and survey of powdery mildew resistance in the wild Central Asian ancestor of cultivated grapevines in Central Asia. HORTICULTURE RESEARCH 2020; 7:104. [PMID: 32637132 PMCID: PMC7326912 DOI: 10.1038/s41438-020-0335-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 04/01/2020] [Accepted: 05/01/2020] [Indexed: 05/21/2023]
Abstract
Cultivated grapevines (Vitis vinifera) lack resistance to powdery mildew (PM) with few exceptions. Resistance to this pathogen within V. vinifera has been reported in earlier studies and identified as the Ren1 locus in two Central Asian table grape accessions. Other PM-resistant cultivated varieties and accessions of the wild ancestor V. vinifera subsp. sylvestris were soon identified raising questions regarding the origin of the resistance. In this study, F1 breeding populations were developed with a PM susceptible V. vinifera subsp. vinifera breeding line and a PM-resistant subsp. sylvestris accession. Genotyping was carried out with five Ren1 locus linked SSR markers. A PM resistance locus explaining up to 96% of the phenotypic variation was identified in the same genomic position, where the Ren1 locus was previously reported. New SSR marker alleles linked with the resistance locus were identified. We report results of PM resistance in multiple accessions of subsp. sylvestris collected as seed lots or cuttings from five countries in the Caucasus and Central Asia. A total of 20 females from 11 seed lots and 19 males from nine seed lots collected from Georgia, Armenia, and Azerbaijan were resistant to PM. Three male and one female plant collected as cuttings from Afghanistan and Iran were also resistant to PM. Allelic analysis of markers linked with the Ren1 locus in conjunction with disease evaluation data found a high diversity of allelic haplotypes, which are only possible via recombination events occurring over a long time period. Sequence analysis of two alleles of the SSR marker that cosegregates with the resistance found SNPs that were present in the wild progenitor and in cultivated forms. Variable levels of PM resistance among the tested accessions were also observed. These lines of evidence suggest that the powdery mildew fungus may have been present in Asia for a longer time than currently thought, giving the wild progenitor V. vinifera subsp. sylvestris time to coevolve with and develop resistance to this pathogen.
Collapse
Affiliation(s)
- Summaira Riaz
- Department of Viticulture and Enology, University of California, Davis, CA 95616 USA
| | - Cristina M. Menéndez
- Instituto de Ciencias de la Vid y del Vino (ICVV), Universidad de La Rioja-CSIC-Gobierno de La Rioja, Carretera de Burgos Km, 6, Finca La Grajera, Logroño, La Rioja 26007 Spain
| | - Alan Tenscher
- Department of Viticulture and Enology, University of California, Davis, CA 95616 USA
| | - Daniel Pap
- Department of Viticulture and Enology, University of California, Davis, CA 95616 USA
| | - M. Andrew Walker
- Department of Viticulture and Enology, University of California, Davis, CA 95616 USA
| |
Collapse
|
26
|
Daldoul S, Boubakri H, Gargouri M, Mliki A. Recent advances in biotechnological studies on wild grapevines as valuable resistance sources for smart viticulture. Mol Biol Rep 2020; 47:3141-3153. [PMID: 32130616 DOI: 10.1007/s11033-020-05363-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 02/28/2020] [Indexed: 12/11/2022]
Abstract
Cultivated grapevines, Vitis vinifera subsp. sativa, are thought to have been domesticated from wild populations of Vitis vinifera subsp. sylvestris in Central Asia. V. vinifera subsp. sativa is one of the most economically important fruit crops worldwide. Since cultivated grapevines are susceptible to multiple biotic and abiotic soil factors, they also need to be grafted on resistant rootstocks that are mostly developed though hybridization between American wild grapevine species (V. berlandieri, V. riparia, and V. rupestris). Therefore, wild grapevine species are essential genetic materials for viticulture to face biotic and abiotic stresses in both cultivar and rootstock parts. Actually, viticulture faces several environmental constraints that are further intensified by climate change. Recently, several reports on biotic and abiotic stresses-response in wild grapevines revealed accessions tolerant to different constraints. The emergence of advanced techniques such as omics technologies, marker-assisted selection (MAS), and functional analysis tools allowed a more detailed characterization of resistance mechanisms in these wild grapevines and suggest a number of species (V. rotundifolia, V. rupestris, V. riparia, V. berlandieri and V. amurensis) have untapped potential for new resistance traits including disease resistance loci and key tolerance genes. The present review reports on the importance of different biotechnological tools in exploring and examining wild grapevines tolerance mechanisms that can be employed to promote elite cultivated grapevines under climate change conditions.
Collapse
Affiliation(s)
- Samia Daldoul
- Laboratory of Plant Molecular Physiology, Centre of Biotechnology of Borj-Cedria, BP 901, 2050, Hammam-lif, Tunisia.
| | - Hatem Boubakri
- Laboratory of Legumes, Centre of Biotechnology of Borj-Cedria, 2050, BP 901, Hammam-lif, Tunisia
| | - Mahmoud Gargouri
- Laboratory of Plant Molecular Physiology, Centre of Biotechnology of Borj-Cedria, BP 901, 2050, Hammam-lif, Tunisia
| | - Ahmed Mliki
- Laboratory of Plant Molecular Physiology, Centre of Biotechnology of Borj-Cedria, BP 901, 2050, Hammam-lif, Tunisia
| |
Collapse
|
27
|
Goyal N, Bhatia G, Sharma S, Garewal N, Upadhyay A, Upadhyay SK, Singh K. Genome-wide characterization revealed role of NBS-LRR genes during powdery mildew infection in Vitis vinifera. Genomics 2020; 112:312-322. [PMID: 30802599 DOI: 10.1016/j.ygeno.2019.02.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/11/2019] [Accepted: 02/14/2019] [Indexed: 11/23/2022]
Abstract
NBS-LRR comprises a large class of disease resistance (R) proteins that play a widespread role in plant protection against pathogens. In grapevine, powdery mildew cause significant losses in its productivity and efforts are being directed towards finding of resistance loci or genes imparting resistance/tolerance against such fungal diseases. In the present study, we performed genome-wide analysis of NBS-LRR genes during PM infection in grapevine. We identified 18, 23, 12, 16, 10, 10, 9, 20 and 14 differentially expressed NBS-LRR genes in response to PM infection in seven partially PM-resistant (DVIT3351.27, Husseine, Karadzhandal, Khalchili, Late vavilov, O34-16, Sochal) and 2 PM-susceptible (Carignan and Thompson seedless) V. vinifera accessions. Further, the identified sequences were characterized based on chromosomal locations, physicochemical properties, gene structure and motif analysis, and functional annotation by Gene Ontology (GO) mapping. The NBS-LRR genes responsive to powdery mildew could potentially be exploited to improve resistance in grapes.
Collapse
Affiliation(s)
- Neetu Goyal
- Department of Biotechnology, Panjab University, Chandigarh 160014, India
| | - Garima Bhatia
- Department of Biotechnology, Panjab University, Chandigarh 160014, India
| | - Shailesh Sharma
- National Institute of Animal Biotechnology (NIAB), D. No. 1-121/1, 4th and 5th Floors, Axis Clinicals Building, Opp. to Talkie Town, Miyapur, Hyderabad, Telangana 500 049, India
| | - Naina Garewal
- Department of Biotechnology, Panjab University, Chandigarh 160014, India
| | - Anuradha Upadhyay
- National Research Centre for Grapes, P.B. No. 3, Manjri Farm P.O., Solapur Road, Pune, Maharashtra 412 307, India
| | | | - Kashmir Singh
- Department of Biotechnology, Panjab University, Chandigarh 160014, India.
| |
Collapse
|
28
|
Pirrello C, Mizzotti C, Tomazetti TC, Colombo M, Bettinelli P, Prodorutti D, Peressotti E, Zulini L, Stefanini M, Angeli G, Masiero S, Welter LJ, Hausmann L, Vezzulli S. Emergent Ascomycetes in Viticulture: An Interdisciplinary Overview. FRONTIERS IN PLANT SCIENCE 2019; 10:1394. [PMID: 31824521 PMCID: PMC6883492 DOI: 10.3389/fpls.2019.01394] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 10/09/2019] [Indexed: 05/23/2023]
Abstract
The reduction of pesticide usage is a current imperative and the implementation of sustainable viticulture is an urgent necessity. A potential solution, which is being increasingly adopted, is offered by the use of grapevine cultivars resistant to its main pathogenic threats. This, however, has contributed to changes in defense strategies resulting in the occurrence of secondary diseases, which were previously controlled. Concomitantly, the ongoing climate crisis is contributing to destabilizing the increasingly dynamic viticultural context. In this review, we explore the available knowledge on three Ascomycetes which are considered emergent and causal agents of powdery mildew, black rot and anthracnose. We also aim to provide a survey on methods for phenotyping disease symptoms in fields, greenhouse and lab conditions, and for disease control underlying the insurgence of pathogen resistance to fungicide. Thus, we discuss fungal genetic variability, highlighting the usage and development of molecular markers and barcoding, coupled with genome sequencing. Moreover, we extensively report on the current knowledge available on grapevine-ascomycete interactions, as well as the mechanisms developed by the host to counteract the attack. Indeed, to better understand these resistance mechanisms, it is relevant to identify pathogen effectors which are involved in the infection process and how grapevine resistance genes function and impact the downstream cascade. Dealing with such a wealth of information on both pathogens and the host, the horizon is now represented by multidisciplinary approaches, combining traditional and innovative methods of cultivation. This will support the translation from theory to practice, in an attempt to understand biology very deeply and manage the spread of these Ascomycetes.
Collapse
Affiliation(s)
- Carlotta Pirrello
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Italy
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| | - Chiara Mizzotti
- Department of Biosciences, University of Milan, Milan, Italy
| | - Tiago C. Tomazetti
- Center of Agricultural Sciences, Federal University of Santa Catarina, Rodovia Admar Gonzaga, Florianópolis, Brazil
| | - Monica Colombo
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Italy
| | - Paola Bettinelli
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Italy
| | - Daniele Prodorutti
- Technology Transfer Centre, Fondazione Edmund Mach, San Michele all’Adige, Italy
| | - Elisa Peressotti
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Italy
| | - Luca Zulini
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Italy
| | - Marco Stefanini
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Italy
| | - Gino Angeli
- Technology Transfer Centre, Fondazione Edmund Mach, San Michele all’Adige, Italy
| | - Simona Masiero
- Department of Biosciences, University of Milan, Milan, Italy
| | - Leocir J. Welter
- Department of Natural and Social Sciences, Federal University of Santa Catarina, Campus of Curitibanos, Rodovia Ulysses Gaboardi, Curitibanos, Brazil
| | - Ludger Hausmann
- Julius Kühn Institute (JKI), Institute for Grapevine Breeding Geilweilerhof, Siebeldingen, Germany
| | - Silvia Vezzulli
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Italy
| |
Collapse
|
29
|
Yıldırım Z, Atak A, Akkurt M. Determination of downy and powdery mildew resistance of some Vitis spp. CIÊNCIA E TÉCNICA VITIVINÍCOLA 2019. [DOI: 10.1051/ctv/20193401015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
The Black Sea region of Turkey receives an annual rainfall of 2000-2500 mm and viticulture in the region depends on the rainfall limits significantly. In this study, the resistance of eighty different Vitis species and cultivars/genotypes to downy and powdery mildew was assessed using Marker Assisted Selection coupled with inoculation observations. Six Simple Sequence Repeats (SSR) and one Sequence Characterized Amplified Region (SCAR) markers were developed for different resistance loci (Run1, Rpv1, Ren1, Rpv3, Ren3) from different Vitis genetic resources. Eight of the cultivars/genotypes were characterised as resistant to downy mildew, seven were resistant to powdery mildew, and four were resistant to both diseases. These results, taken together with the disease inoculation observations, revealed ‘Köfteci Üzümü’ (Vitis labrusca) and ‘Giresun 3’ (Vitis labrusca) were the most resistant cultivars/genotypes.
Collapse
|
30
|
Prazzoli ML, Lorenzi S, Perazzolli M, Toffolatti S, Failla O, Grando MS. Identification of disease resistance-linked alleles in Vitis vinifera germplasm. BIO WEB OF CONFERENCES 2019. [DOI: 10.1051/bioconf/20191301004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Introgression of genetic resistance to fungal diseases from American and Asian Vitis species traditionally pursued in grape breeding programs, although facilitated by molecular tools, has an impact on wine quality that still slows down development of competitive varieties. A contribution to the genetic improvement of grapevines for resistance to pathogens may come from unexplored genetic resources of the Eurasian Vitis vinifera L. In the present study, a hundred grapevine accessions from Georgia, Armenia and Azerbaijan were genotyped with SSR markers linked to QTLs for resistance to downy and powdery mildew, and with 21 SSR markers widely used for genetic diversity and relationship analysis. Looking at population genetic structure, Armenian and Azerbaijani accessions fell within the same cluster and were included among the Central Asian grape varieties of a homogeneous dataset, while Georgian accessions formed a separate group. Pattern of SSR alleles flanking the locus Ren1 and associated with resistance to Erysiphe necator in 'Kishmish vatkana', 'Dzhandzhal kara' and other Central Asian cultivars were found in three varieties from the Azerbaijani population that reached very high scores when assessed for PM resistance.
Collapse
|
31
|
Künstler A, Bacsó R, Albert R, Barna B, Király Z, Hafez YM, Fodor J, Schwarczinger I, Király L. Superoxide (O 2.-) accumulation contributes to symptomless (type I) nonhost resistance of plants to biotrophic pathogens. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 128:115-125. [PMID: 29775863 DOI: 10.1016/j.plaphy.2018.05.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 05/04/2018] [Accepted: 05/06/2018] [Indexed: 06/08/2023]
Abstract
Nonhost resistance is the most common form of disease resistance exhibited by plants against most pathogenic microorganisms. Type I nonhost resistance is symptomless (i.e. no macroscopically visible cell/tissue death), implying an early halt of pathogen growth. The timing/speed of defences is much more rapid during type I nonhost resistance than during type II nonhost and host ("gene-for-gene") resistance associated with a hypersensitive response (localized necrosis, HR). However, the mechanism(s) underlying symptomless (type I) nonhost resistance is not entirely understood. Here we assessed accumulation dynamics of the reactive oxygen species superoxide (O2.-) during interactions of plants with a range of biotrophic and hemibiotrophic pathogens resulting in susceptibility, symptomless nonhost resistance or host resistance with HR. Our results show that the timing of macroscopically detectable superoxide accumulation (1-4 days after inoculation, DAI) is always associated with the speed of the defense response (symptomless nonhost resistance vs. host resistance with HR) in inoculated leaves. The relatively early (1 DAI) superoxide accumulation during symptomless nonhost resistance of barley to wheat powdery mildew (Blumeria graminis f. sp. tritici) is localized to mesophyll chloroplasts of inoculated leaves and coupled to enhanced NADPH oxidase (EC 1.6.3.1) activity and transient increases in expression of genes regulating superoxide levels and cell death (superoxide dismutase, HvSOD1 and BAX inhibitor-1, HvBI-1). Importantly, the partial suppression of symptomless nonhost resistance of barley to wheat powdery mildew by heat shock (49 °C, 45 s) and antioxidant (SOD and catalase) treatments points to a functional role of superoxide in symptomless (type I) nonhost resistance.
Collapse
Affiliation(s)
- András Künstler
- Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, H-1022 Budapest, Herman Ottó str. 15, Hungary
| | - Renáta Bacsó
- Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, H-1022 Budapest, Herman Ottó str. 15, Hungary
| | - Réka Albert
- Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, H-1022 Budapest, Herman Ottó str. 15, Hungary
| | - Balázs Barna
- Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, H-1022 Budapest, Herman Ottó str. 15, Hungary
| | - Zoltán Király
- Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, H-1022 Budapest, Herman Ottó str. 15, Hungary
| | - Yaser Mohamed Hafez
- Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, H-1022 Budapest, Herman Ottó str. 15, Hungary
| | - József Fodor
- Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, H-1022 Budapest, Herman Ottó str. 15, Hungary
| | - Ildikó Schwarczinger
- Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, H-1022 Budapest, Herman Ottó str. 15, Hungary
| | - Lóránt Király
- Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, H-1022 Budapest, Herman Ottó str. 15, Hungary.
| |
Collapse
|
32
|
Agurto M, Schlechter RO, Armijo G, Solano E, Serrano C, Contreras RA, Zúñiga GE, Arce-Johnson P. RUN1 and REN1 Pyramiding in Grapevine ( Vitis vinifera cv. Crimson Seedless) Displays an Improved Defense Response Leading to Enhanced Resistance to Powdery Mildew ( Erysiphe necator). FRONTIERS IN PLANT SCIENCE 2017; 8:758. [PMID: 28553300 PMCID: PMC5427124 DOI: 10.3389/fpls.2017.00758] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 04/24/2017] [Indexed: 05/12/2023]
Abstract
Fungal pathogens are the cause of the most common diseases in grapevine and among them powdery mildew represents a major focus for disease management. Different strategies for introgression of resistance in grapevine are currently undertaken in breeding programs. For example, introgression of several resistance genes (R) from different sources for making it more durable and also strengthening the plant defense response. Taking this into account, we cross-pollinated P09-105/34, a grapevine plant carrying both RUN1 and REN1 pyramided loci of resistance to Erysiphe necator inherited from a pseudo-backcrossing scheme with Muscadinia rotundifolia and Vitis vinifera 'Dzhandzhal Kara,' respectively, with the susceptible commercial table grape cv. 'Crimson Seedless.' We developed RUN1REN1 resistant genotypes through conventional breeding and identified them by marker assisted selection. The characterization of defense response showed a highly effective defense mechanism against powdery mildew in these plants. Our results reveal that RUN1REN1 grapevine plants display a robust defense response against E. necator, leading to unsuccessful fungal establishment with low penetration rate and poor hypha development. This resistance mechanism includes reactive oxygen species production, callose accumulation, programmed cell death induction and mainly VvSTS36 and VvPEN1 gene activation. RUN1REN1 plants have a great potential as new table grape cultivars with durable complete resistance to E. necator, and are valuable germplasm to be included in grape breeding programs to continue pyramiding with other sources of resistance to grapevine diseases.
Collapse
Affiliation(s)
- Mario Agurto
- Laboratorio de Biología Molecular y Biotecnología Vegetal, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de ChileSantiago, Chile
| | - Rudolf O. Schlechter
- Laboratorio de Biología Molecular y Biotecnología Vegetal, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de ChileSantiago, Chile
| | - Grace Armijo
- Laboratorio de Biología Molecular y Biotecnología Vegetal, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de ChileSantiago, Chile
| | - Esteban Solano
- Laboratorio de Biología Molecular y Biotecnología Vegetal, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de ChileSantiago, Chile
| | - Carolina Serrano
- Laboratorio de Biología Molecular y Biotecnología Vegetal, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de ChileSantiago, Chile
| | - Rodrigo A. Contreras
- Laboratorio de Fisiología y Biotecnología Vegetal, Departamento de Biología, Facultad de Química y Biología y CEDENNA, Universidad de Santiago de ChileSantiago, Chile
| | - Gustavo E. Zúñiga
- Laboratorio de Fisiología y Biotecnología Vegetal, Departamento de Biología, Facultad de Química y Biología y CEDENNA, Universidad de Santiago de ChileSantiago, Chile
| | - Patricio Arce-Johnson
- Laboratorio de Biología Molecular y Biotecnología Vegetal, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de ChileSantiago, Chile
| |
Collapse
|
33
|
Wen Z, Yao L, Singer SD, Muhammad H, Li Z, Wang X. Constitutive heterologous overexpression of a TIR-NB-ARC-LRR gene encoding a putative disease resistance protein from wild Chinese Vitis pseudoreticulata in Arabidopsis and tobacco enhances resistance to phytopathogenic fungi and bacteria. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 112:346-361. [PMID: 28131063 DOI: 10.1016/j.plaphy.2017.01.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 01/13/2017] [Accepted: 01/14/2017] [Indexed: 05/27/2023]
Abstract
Plants use resistance (R) proteins to detect pathogen effector proteins and activate their innate immune response against the pathogen. The majority of these proteins contain an NB-ARC (nucleotide-binding adaptor shared by APAF-1, R proteins, and CED-4) domain along with a leucine-rich repeat (LRR), and some also bear a toll interleukin 1 receptor (TIR) domain. In this study, we characterized a gene encoding a TIR-NB-ARC-LRR R protein (VpTNL1) (GenBank accession number KX649890) from wild Chinese grapevine Vitis pseudoreticulata accession "Baihe-35-1", which was identified previously from a transcriptomic analysis of leaves inoculated with powdery mildew (PM; Erysiphe necator (Schw.)). The VpTNL1 transcript was found to be highly induced in V. pseudoreticulata following inoculation with E. necator, as well as treatment with salicylic acid (SA). Sequence analysis demonstrated that the deduced amino acid sequence contained a TIR domain at the N-terminus, along with an NB-ARC and four LRRs domains within the C-terminus. Constitutive expression of VpTNL1 in Arabidopsis thaliana resulted in either a wild-type or dwarf phenotype. Intriguingly, the phenotypically normal transgenic lines displayed enhanced resistance to Arabidopsis PM, Golovinomyces cichoracearum, as well as to the virulent bacterial pathogen Pseudomonas syringae pv. tomato DC3000. Similarly, constitutive expression of VpTNL1 in Nicotiana tabacum was found to confer enhanced resistance to tobacco PM, Erysiphe cichoacearum DC. Subsequent isolation of the VpTNL1 promoter and deletion analysis indicated that TC-rich repeats and TCA elements likely play an important role in its response to E. necator and SA treatment, respectively. Taken together, these results indicate that VpTNL1 contributes to PM resistance in grapevine and provide an interesting gene target for the future amelioration of grape via breeding and/or biotechnology.
Collapse
Affiliation(s)
- Zhifeng Wen
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China; College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| | - Liping Yao
- Horticultural Plant Biology and Metabolomics Center, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Stacy D Singer
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada.
| | - Hanif Muhammad
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Zhi Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Xiping Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
34
|
Teh SL, Fresnedo-Ramírez J, Clark MD, Gadoury DM, Sun Q, Cadle-Davidson L, Luby JJ. Genetic dissection of powdery mildew resistance in interspecific half-sib grapevine families using SNP-based maps. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2017; 37:1. [PMID: 28127252 PMCID: PMC5226326 DOI: 10.1007/s11032-016-0586-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 11/01/2016] [Indexed: 05/22/2023]
Abstract
Quantitative trait locus (QTL) identification in perennial fruit crops is impeded largely by their lengthy generation time, resulting in costly and labor-intensive maintenance of breeding programs. In a grapevine (genus Vitis) breeding program, although experimental families are typically unreplicated, the genetic backgrounds may contain similar progenitors previously selected due to their contribution of favorable alleles. In this study, we investigated the utility of joint QTL identification provided by analyzing half-sib families. The genetic control of powdery mildew was studied using two half-sib F1 families, namely GE0711/1009 (MN1264 × MN1214; N = 147) and GE1025 (MN1264 × MN1246; N = 125) with multiple species in their ancestry. Maternal genetic maps consisting of 1077 and 1641 single nucleotide polymorphism (SNP) markers, respectively, were constructed using a pseudo-testcross strategy. Ratings of field resistance to powdery mildew were obtained based on whole-plant evaluation of disease severity. This 2-year analysis uncovered two QTLs that were validated on a consensus map in these half-sib families with improved precision relative to the parental maps. Examination of haplotype combinations based on the two QTL regions identified strong association of haplotypes inherited from 'Seyval blanc', through MN1264, with powdery mildew resistance. This investigation also encompassed the use of microsatellite markers to establish a correlation between 206-bp (UDV-015b) and 357-bp (VViv67) fragment sizes with resistance-carrying haplotypes. Our work is one of the first reports in grapevine demonstrating the use of SNP-based maps and haplotypes for QTL identification and tagging of powdery mildew resistance in half-sib families.
Collapse
Affiliation(s)
- Soon Li Teh
- Department of Horticultural Science, University of Minnesota, Saint Paul, MN 55108 USA
| | | | - Matthew D. Clark
- Department of Horticultural Science, University of Minnesota, Saint Paul, MN 55108 USA
| | - David M. Gadoury
- School of Integrative Plant Science, Cornell University, New York State Agricultural Experiment Station, Geneva, NY 14456 USA
| | - Qi Sun
- BRC Bioinformatics Facility, Institute of Biotechnology, Cornell University, Ithaca, NY 14853 USA
| | | | - James J. Luby
- Department of Horticultural Science, University of Minnesota, Saint Paul, MN 55108 USA
| |
Collapse
|
35
|
Cadle-Davidson L, Gadoury D, Fresnedo-Ramírez J, Yang S, Barba P, Sun Q, Demmings EM, Seem R, Schaub M, Nowogrodzki A, Kasinathan H, Ledbetter C, Reisch BI. Lessons from a Phenotyping Center Revealed by the Genome-Guided Mapping of Powdery Mildew Resistance Loci. PHYTOPATHOLOGY 2016; 106:1159-1169. [PMID: 27135675 DOI: 10.1094/phyto-02-16-0080-fi] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The genomics era brought unprecedented opportunities for genetic analysis of host resistance, but it came with the challenge that accurate and reproducible phenotypes are needed so that genomic results appropriately reflect biology. Phenotyping host resistance by natural infection in the field can produce variable results due to the uncontrolled environment, uneven distribution and genetics of the pathogen, and developmentally regulated resistance among other factors. To address these challenges, we developed highly controlled, standardized methodologies for phenotyping powdery mildew resistance in the context of a phenotyping center, receiving samples of up to 140 grapevine progeny per F1 family. We applied these methodologies to F1 families segregating for REN1- or REN2-mediated resistance and validated that some but not all bioassays identified the REN1 or REN2 locus. A point-intercept method (hyphal transects) to quantify colony density objectively at 8 or 9 days postinoculation proved to be the phenotypic response most reproducibly predicted by these resistance loci. Quantitative trait locus (QTL) mapping with genotyping-by-sequencing maps defined the REN1 and REN2 loci at relatively high resolution. In the reference PN40024 genome under each QTL, nucleotide-binding site-leucine-rich repeat candidate resistance genes were identified-one gene for REN1 and two genes for REN2. The methods described here for centralized resistance phenotyping and high-resolution genetic mapping can inform strategies for breeding resistance to powdery mildews and other pathogens on diverse, highly heterozygous hosts.
Collapse
Affiliation(s)
- Lance Cadle-Davidson
- First and ninth authors: U.S. Department of Agriculture-Agricultural Research Service (USDA-ARS), Grape Genetics Research Unit, Geneva, NY 14456; second, fourth, fifth, seventh, eighth, tenth, eleventh, and thirteenth authors: School of Integrative Plant Science, Cornell University, New York State Agricultural Experiment Station, Geneva 14456; third and sixth authors: Bioinformatics Facility, Cornell University, Ithaca, NY 14853; and twelfth author: USDA-ARS, Crop Disease, Pests and Genetics Unit, Parlier, CA 93648
| | - David Gadoury
- First and ninth authors: U.S. Department of Agriculture-Agricultural Research Service (USDA-ARS), Grape Genetics Research Unit, Geneva, NY 14456; second, fourth, fifth, seventh, eighth, tenth, eleventh, and thirteenth authors: School of Integrative Plant Science, Cornell University, New York State Agricultural Experiment Station, Geneva 14456; third and sixth authors: Bioinformatics Facility, Cornell University, Ithaca, NY 14853; and twelfth author: USDA-ARS, Crop Disease, Pests and Genetics Unit, Parlier, CA 93648
| | - Jonathan Fresnedo-Ramírez
- First and ninth authors: U.S. Department of Agriculture-Agricultural Research Service (USDA-ARS), Grape Genetics Research Unit, Geneva, NY 14456; second, fourth, fifth, seventh, eighth, tenth, eleventh, and thirteenth authors: School of Integrative Plant Science, Cornell University, New York State Agricultural Experiment Station, Geneva 14456; third and sixth authors: Bioinformatics Facility, Cornell University, Ithaca, NY 14853; and twelfth author: USDA-ARS, Crop Disease, Pests and Genetics Unit, Parlier, CA 93648
| | - Shanshan Yang
- First and ninth authors: U.S. Department of Agriculture-Agricultural Research Service (USDA-ARS), Grape Genetics Research Unit, Geneva, NY 14456; second, fourth, fifth, seventh, eighth, tenth, eleventh, and thirteenth authors: School of Integrative Plant Science, Cornell University, New York State Agricultural Experiment Station, Geneva 14456; third and sixth authors: Bioinformatics Facility, Cornell University, Ithaca, NY 14853; and twelfth author: USDA-ARS, Crop Disease, Pests and Genetics Unit, Parlier, CA 93648
| | - Paola Barba
- First and ninth authors: U.S. Department of Agriculture-Agricultural Research Service (USDA-ARS), Grape Genetics Research Unit, Geneva, NY 14456; second, fourth, fifth, seventh, eighth, tenth, eleventh, and thirteenth authors: School of Integrative Plant Science, Cornell University, New York State Agricultural Experiment Station, Geneva 14456; third and sixth authors: Bioinformatics Facility, Cornell University, Ithaca, NY 14853; and twelfth author: USDA-ARS, Crop Disease, Pests and Genetics Unit, Parlier, CA 93648
| | - Qi Sun
- First and ninth authors: U.S. Department of Agriculture-Agricultural Research Service (USDA-ARS), Grape Genetics Research Unit, Geneva, NY 14456; second, fourth, fifth, seventh, eighth, tenth, eleventh, and thirteenth authors: School of Integrative Plant Science, Cornell University, New York State Agricultural Experiment Station, Geneva 14456; third and sixth authors: Bioinformatics Facility, Cornell University, Ithaca, NY 14853; and twelfth author: USDA-ARS, Crop Disease, Pests and Genetics Unit, Parlier, CA 93648
| | - Elizabeth M Demmings
- First and ninth authors: U.S. Department of Agriculture-Agricultural Research Service (USDA-ARS), Grape Genetics Research Unit, Geneva, NY 14456; second, fourth, fifth, seventh, eighth, tenth, eleventh, and thirteenth authors: School of Integrative Plant Science, Cornell University, New York State Agricultural Experiment Station, Geneva 14456; third and sixth authors: Bioinformatics Facility, Cornell University, Ithaca, NY 14853; and twelfth author: USDA-ARS, Crop Disease, Pests and Genetics Unit, Parlier, CA 93648
| | - Robert Seem
- First and ninth authors: U.S. Department of Agriculture-Agricultural Research Service (USDA-ARS), Grape Genetics Research Unit, Geneva, NY 14456; second, fourth, fifth, seventh, eighth, tenth, eleventh, and thirteenth authors: School of Integrative Plant Science, Cornell University, New York State Agricultural Experiment Station, Geneva 14456; third and sixth authors: Bioinformatics Facility, Cornell University, Ithaca, NY 14853; and twelfth author: USDA-ARS, Crop Disease, Pests and Genetics Unit, Parlier, CA 93648
| | - Michelle Schaub
- First and ninth authors: U.S. Department of Agriculture-Agricultural Research Service (USDA-ARS), Grape Genetics Research Unit, Geneva, NY 14456; second, fourth, fifth, seventh, eighth, tenth, eleventh, and thirteenth authors: School of Integrative Plant Science, Cornell University, New York State Agricultural Experiment Station, Geneva 14456; third and sixth authors: Bioinformatics Facility, Cornell University, Ithaca, NY 14853; and twelfth author: USDA-ARS, Crop Disease, Pests and Genetics Unit, Parlier, CA 93648
| | - Anna Nowogrodzki
- First and ninth authors: U.S. Department of Agriculture-Agricultural Research Service (USDA-ARS), Grape Genetics Research Unit, Geneva, NY 14456; second, fourth, fifth, seventh, eighth, tenth, eleventh, and thirteenth authors: School of Integrative Plant Science, Cornell University, New York State Agricultural Experiment Station, Geneva 14456; third and sixth authors: Bioinformatics Facility, Cornell University, Ithaca, NY 14853; and twelfth author: USDA-ARS, Crop Disease, Pests and Genetics Unit, Parlier, CA 93648
| | - Hema Kasinathan
- First and ninth authors: U.S. Department of Agriculture-Agricultural Research Service (USDA-ARS), Grape Genetics Research Unit, Geneva, NY 14456; second, fourth, fifth, seventh, eighth, tenth, eleventh, and thirteenth authors: School of Integrative Plant Science, Cornell University, New York State Agricultural Experiment Station, Geneva 14456; third and sixth authors: Bioinformatics Facility, Cornell University, Ithaca, NY 14853; and twelfth author: USDA-ARS, Crop Disease, Pests and Genetics Unit, Parlier, CA 93648
| | - Craig Ledbetter
- First and ninth authors: U.S. Department of Agriculture-Agricultural Research Service (USDA-ARS), Grape Genetics Research Unit, Geneva, NY 14456; second, fourth, fifth, seventh, eighth, tenth, eleventh, and thirteenth authors: School of Integrative Plant Science, Cornell University, New York State Agricultural Experiment Station, Geneva 14456; third and sixth authors: Bioinformatics Facility, Cornell University, Ithaca, NY 14853; and twelfth author: USDA-ARS, Crop Disease, Pests and Genetics Unit, Parlier, CA 93648
| | - Bruce I Reisch
- First and ninth authors: U.S. Department of Agriculture-Agricultural Research Service (USDA-ARS), Grape Genetics Research Unit, Geneva, NY 14456; second, fourth, fifth, seventh, eighth, tenth, eleventh, and thirteenth authors: School of Integrative Plant Science, Cornell University, New York State Agricultural Experiment Station, Geneva 14456; third and sixth authors: Bioinformatics Facility, Cornell University, Ithaca, NY 14853; and twelfth author: USDA-ARS, Crop Disease, Pests and Genetics Unit, Parlier, CA 93648
| |
Collapse
|
36
|
Jiao Y, Xu W, Duan D, Wang Y, Nick P. A stilbene synthase allele from a Chinese wild grapevine confers resistance to powdery mildew by recruiting salicylic acid signalling for efficient defence. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:5841-5856. [PMID: 27702992 PMCID: PMC5066501 DOI: 10.1093/jxb/erw351] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Stilbenes are central phytoalexins in Vitis, and induction of the key enzyme stilbene synthase (STS) is pivotal for disease resistance. Here, we address the potential for breeding resistance using an STS allele isolated from Chinese wild grapevine Vitis pseudoreticulata (VpSTS) by comparison with its homologue from Vitis vinifera cv. 'Carigane' (VvSTS). Although the coding regions of both alleles are very similar (>99% identity on the amino acid level), the promoter regions are significantly different. By expression in Arabidopsis as a heterologous system, we show that the allele from the wild Chinese grapevine can confer accumulation of stilbenes and resistance against the powdery mildew Golovinomyces cichoracearum, whereas the allele from the vinifera cultivar cannot. To dissect the upstream signalling driving the activation of this promoter, we used a dual-luciferase reporter system in a grapevine cell culture. We show elevated responsiveness of the promoter from the wild grape to salicylic acid (SA) and to the pathogen-associated molecular pattern (PAMP) flg22, equal induction of both alleles by jasmonic acid (JA), and a lack of response to the cell death-inducing elicitor Harpin. This elevated SA response of the VpSTS promoter depends on calcium influx, oxidative burst by RboH, mitogen-activated protein kinase (MAPK) signalling, and JA synthesis. We integrate the data in the context of a model where the resistance of V. pseudoreticulata is linked to a more efficient recruitment of SA signalling for phytoalexin synthesis.
Collapse
Affiliation(s)
- Yuntong Jiao
- College of Horticulture, Northwest A & F University, Yangling 712100, Shaanxi, People's Republic of China Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling 712100, Shaanxi, People's Republic of China State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A & F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Weirong Xu
- College of Horticulture, Northwest A & F University, Yangling 712100, Shaanxi, People's Republic of China Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling 712100, Shaanxi, People's Republic of China State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A & F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Dong Duan
- Molecular Cell Biology, Botanical Institute 1, Karlsruhe Institute of Technology, Kaiserstr. 2, D-78133 Karlsruhe, Germany
| | - Yuejin Wang
- College of Horticulture, Northwest A & F University, Yangling 712100, Shaanxi, People's Republic of China Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling 712100, Shaanxi, People's Republic of China State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A & F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Peter Nick
- Molecular Cell Biology, Botanical Institute 1, Karlsruhe Institute of Technology, Kaiserstr. 2, D-78133 Karlsruhe, Germany
| |
Collapse
|
37
|
Pap D, Riaz S, Dry IB, Jermakow A, Tenscher AC, Cantu D, Oláh R, Walker MA. Identification of two novel powdery mildew resistance loci, Ren6 and Ren7, from the wild Chinese grape species Vitis piasezkii. BMC PLANT BIOLOGY 2016; 16:170. [PMID: 27473850 PMCID: PMC4966781 DOI: 10.1186/s12870-016-0855-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 07/14/2016] [Indexed: 05/20/2023]
Abstract
BACKGROUND Grapevine powdery mildew Erysiphe necator is a major fungal disease in all grape growing countries worldwide. Breeding for resistance to this disease is crucial to avoid extensive fungicide applications that are costly, labor intensive and may have detrimental effects on the environment. In the past decade, Chinese Vitis species have attracted attention from grape breeders because of their strong resistance to powdery mildew and their lack of negative fruit quality attributes that are often present in resistant North American species. In this study, we investigated powdery mildew resistance in multiple accessions of the Chinese species Vitis piasezkii that were collected during the 1980 Sino-American botanical expedition to the western Hubei province of China. RESULTS A framework genetic map was developed using simple sequence repeat markers in 277 seedlings of an F1 mapping population arising from a cross of the powdery mildew susceptible Vitis vinifera selection F2-35 and a resistant accession of V. piasezkii DVIT2027. Quantitative trait locus analyses identified two major powdery mildew resistance loci on chromosome 9 (Ren6) and chromosome 19 (Ren7) explaining 74.8 % of the cumulative phenotypic variation. The quantitative trait locus analysis for each locus, in the absence of the other, explained 95.4 % phenotypic variation for Ren6, while Ren7 accounted for 71.9 % of the phenotypic variation. Screening of an additional 259 seedlings of the F1 population and 910 seedlings from four pseudo-backcross populations with SSR markers defined regions of 22 kb and 330 kb for Ren6 and Ren7 in the V. vinifera PN40024 (12X) genome sequence, respectively. Both R loci operate post-penetration through the induction of programmed cell death, but vary significantly in the speed of response and degree of resistance; Ren6 confers complete resistance whereas Ren7 confers partial resistance to the disease with reduced colony size. A comparison of the kinetics of induction of powdery mildew resistance mediated by Ren6, Ren7 and the Run1 locus from Muscadinia rotundifolia, indicated that the speed and strength of resistance conferred by Ren6 is greater than that of Run1 which, in turn, is superior to that conferred by Ren7. CONCLUSIONS This is the first report of mapping powdery mildew resistance in the Chinese species V. piasezkii. Two distinct powdery mildew R loci designated Ren6 and Ren7 were found in multiple accessions of this Chinese grape species. Their location on different chromosomes to previously reported powdery mildew resistance R loci offers the potential for grape breeders to combine these R genes with existing powdery mildew R loci to produce grape germplasm with more durable resistance against this rapidly evolving fungal pathogen.
Collapse
Affiliation(s)
- Dániel Pap
- Department of Viticulture and Enology, University of California, Davis, CA 95616 USA
- Department of Genetics and Plant Breeding, Corvinus University of Budapest, Villányi út 29-34, 1118 Budapest, Hungary
| | - Summaira Riaz
- Department of Viticulture and Enology, University of California, Davis, CA 95616 USA
| | - Ian B. Dry
- CSIRO Agriculture, Glen Osmond, SA Australia
| | | | - Alan C. Tenscher
- Department of Viticulture and Enology, University of California, Davis, CA 95616 USA
| | - Dario Cantu
- Department of Viticulture and Enology, University of California, Davis, CA 95616 USA
| | - Róbert Oláh
- Department of Genetics and Plant Breeding, Corvinus University of Budapest, Villányi út 29-34, 1118 Budapest, Hungary
| | - M. Andrew Walker
- Department of Viticulture and Enology, University of California, Davis, CA 95616 USA
| |
Collapse
|
38
|
Armijo G, Schlechter R, Agurto M, Muñoz D, Nuñez C, Arce-Johnson P. Grapevine Pathogenic Microorganisms: Understanding Infection Strategies and Host Response Scenarios. FRONTIERS IN PLANT SCIENCE 2016; 7:382. [PMID: 27066032 PMCID: PMC4811896 DOI: 10.3389/fpls.2016.00382] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 03/13/2016] [Indexed: 05/18/2023]
Abstract
Grapevine (Vitis vinifera L.) is one of the most important fruit crop worldwide. Commercial cultivars are greatly affected by a large number of pathogenic microorganisms that cause diseases during pre- and/or post-harvest periods, affecting production, processing and export, along with fruit quality. Among the potential threats, we can find bacteria, fungi, oomycete, or viruses with different life cycles, infection mechanisms and evasion strategies. While plant-pathogen interactions are cycles of resistance and susceptibility, resistance traits from natural resources are selected and may be used for breeding purposes and for a sustainable agriculture. In this context, here we summarize some of the most important diseases affecting V. vinifera together with their causal agents. The aim of this work is to bring a comprehensive review of the infection strategies deployed by significant types of pathogens while understanding the host response in both resistance and susceptibility scenarios. New approaches being used to uncover grapevine status during biotic stresses and scientific-based procedures needed to control plant diseases and crop protection are also addressed.
Collapse
Affiliation(s)
| | | | | | | | | | - Patricio Arce-Johnson
- Laboratorio de Biología Molecular y Biotecnología Vegetal, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de ChileSantiago, Chile
| |
Collapse
|
39
|
Identification of Powdery Mildew Responsive Genes in Hevea brasiliensis through mRNA Differential Display. Int J Mol Sci 2016; 17:ijms17020181. [PMID: 26840302 PMCID: PMC4783915 DOI: 10.3390/ijms17020181] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Revised: 01/21/2016] [Accepted: 01/22/2016] [Indexed: 12/05/2022] Open
Abstract
Powdery mildew is an important disease of rubber trees caused by Oidium heveae B. A. Steinmann. As far as we know, none of the resistance genes related to powdery mildew have been isolated from the rubber tree. There is little information available at the molecular level regarding how a rubber tree develops defense mechanisms against this pathogen. We have studied rubber tree mRNA transcripts from the resistant RRIC52 cultivar by differential display analysis. Leaves inoculated with the spores of O. heveae were collected from 0 to 120 hpi in order to identify pathogen-regulated genes at different infection stages. We identified 78 rubber tree genes that were differentially expressed during the plant–pathogen interaction. BLAST analysis for these 78 ESTs classified them into seven functional groups: cell wall and membrane pathways, transcription factor and regulatory proteins, transporters, signal transduction, phytoalexin biosynthesis, other metabolism functions, and unknown functions. The gene expression for eight of these genes was validated by qRT-PCR in both RRIC52 and the partially susceptible Reyan 7-33-97 cultivars, revealing the similar or differential changes of gene expressions between these two cultivars. This study has improved our overall understanding of the molecular mechanisms of rubber tree resistance to powdery mildew.
Collapse
|
40
|
Regner F, Hack R, Nauer S, Zöch B. Breeding of fungal resistant varieties derived from Grüner Veltliner by chromosomal selection. BIO WEB OF CONFERENCES 2016. [DOI: 10.1051/bioconf/20160701014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
41
|
Amrine KCH, Blanco-Ulate B, Riaz S, Pap D, Jones L, Figueroa-Balderas R, Walker MA, Cantu D. Comparative transcriptomics of Central Asian Vitis vinifera accessions reveals distinct defense strategies against powdery mildew. HORTICULTURE RESEARCH 2015; 2:15037. [PMID: 26504579 PMCID: PMC4591678 DOI: 10.1038/hortres.2015.37] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 07/17/2015] [Accepted: 07/20/2015] [Indexed: 05/24/2023]
Abstract
Grape powdery mildew (PM), caused by the biotrophic ascomycete Erysiphe necator, is a devastating fungal disease that affects most Vitis vinifera cultivars. We have previously identified a panel of V. vinifera accessions from Central Asia with partial resistance to PM that possess a Ren1-like local haplotype. In this study, we show that in addition to the typical Ren1-associated late post-penetration resistance, these accessions display a range of different levels of disease development suggesting that alternative alleles or additional genes contribute to determining the outcome of the interaction with the pathogen. To identify potential Ren1-dependent transcriptional responses and functions associated with the different levels of resistance, we sequenced and analyzed the transcriptomes of these Central Asian accessions at two time points of PM infection. Transcriptomes were compared to identify constitutive differences and PM-inducible responses that may underlie their disease resistant phenotype. Responses to E. necator in all resistant accessions were characterized by an early up-regulation of 13 genes, most encoding putative defense functions, and a late down-regulation of 32 genes, enriched in transcriptional regulators and protein kinases. Potential Ren1-dependent responses included a hotspot of co-regulated genes on chromosome 18. We also identified 81 genes whose expression levels and dynamics correlated with the phenotypic differences between the most resistant accessions 'Karadzhandahal', DVIT3351.27, and O34-16 and the other genotypes. This study provides a first exploration of the functions associated with varying levels of partial resistance to PM in V. vinifera accessions that can be exploited as sources of genetic resistance in grape breeding programs.
Collapse
Affiliation(s)
- Katherine C H Amrine
- Department of Viticulture and Enology, University of California, Davis, Davis, CA 95616, USA
| | - Barbara Blanco-Ulate
- Department of Viticulture and Enology, University of California, Davis, Davis, CA 95616, USA
| | - Summaira Riaz
- Department of Viticulture and Enology, University of California, Davis, Davis, CA 95616, USA
| | - Dániel Pap
- Department of Viticulture and Enology, University of California, Davis, Davis, CA 95616, USA
- Department of Genetics and Plant Breeding, Corvinus University of Budapest, Villányi út 29-34, 1118 Budapest, Hungary
| | - Laura Jones
- Department of Viticulture and Enology, University of California, Davis, Davis, CA 95616, USA
| | - Rosa Figueroa-Balderas
- Department of Viticulture and Enology, University of California, Davis, Davis, CA 95616, USA
| | - M Andrew Walker
- Department of Viticulture and Enology, University of California, Davis, Davis, CA 95616, USA
| | - Dario Cantu
- Department of Viticulture and Enology, University of California, Davis, Davis, CA 95616, USA
| |
Collapse
|
42
|
Barba P, Cadle-Davidson L, Galarneau E, Reisch B. Vitis rupestris B38 Confers Isolate-Specific Quantitative Resistance to Penetration by Erysiphe necator. PHYTOPATHOLOGY 2015; 105:1097-103. [PMID: 26039640 DOI: 10.1094/phyto-09-14-0260-r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Vitis rupestris B38 is a North American grapevine resistant to the major pathogen of cultivated grapevines, Erysiphe necator. Sources of powdery mildew resistance, like V. rotundifolia, are widely used in grape breeding but are already threatened, even before commercialization, by isolates that can reproduce on Run1 and other rotundifolia-derived breeding lines. Thus, complementary sources of resistance are needed to improve resistance durability. The segregation of foliar powdery mildew severity in an F1 family, derived from a cross of V. rupestris B38×V. vinifera 'Chardonnay', was observed in the field over three growing seasons and in potted vines following single-isolate inoculation. A pattern of continuous variation was observed in every instance. Mechanisms of resistance were analyzed on the resistant and susceptible parent by using microscopy to quantify the ability of the pathogen to penetrate and to form a colony on detached leaves. While 'Chardonnay' was susceptible in all tested conditions, V. rupestris B38 resistance was characterized by a reduction in pathogen penetration, with an effect of leaf position and significant differences among powdery mildew isolates. Segregation of the ability of the pathogen to penetrate and form a colony in F1 individuals showed a pattern of quantitative penetration resistance with no delay or restriction on colony formation once penetration has been achieved. Moreover, V. rupestris B38 showed an enhanced penetration resistance to a powdery mildew isolate with the ability to overcome the Run1 gene, making it an interesting resistance source to prolong the durability of this gene.
Collapse
Affiliation(s)
- Paola Barba
- First author: Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853; second and third authors: U.S. Department of Agriculture-Agricultural Research Service (USDA-ARS), Grape Genetics Research Unit, Geneva, NY 14456; and fourth author: Horticulture Section, School of Integrative Plant Science, Cornell University, New York State Agricultural Experiment Station, Geneva, NY 14456
| | - Lance Cadle-Davidson
- First author: Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853; second and third authors: U.S. Department of Agriculture-Agricultural Research Service (USDA-ARS), Grape Genetics Research Unit, Geneva, NY 14456; and fourth author: Horticulture Section, School of Integrative Plant Science, Cornell University, New York State Agricultural Experiment Station, Geneva, NY 14456
| | - Erin Galarneau
- First author: Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853; second and third authors: U.S. Department of Agriculture-Agricultural Research Service (USDA-ARS), Grape Genetics Research Unit, Geneva, NY 14456; and fourth author: Horticulture Section, School of Integrative Plant Science, Cornell University, New York State Agricultural Experiment Station, Geneva, NY 14456
| | - Bruce Reisch
- First author: Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853; second and third authors: U.S. Department of Agriculture-Agricultural Research Service (USDA-ARS), Grape Genetics Research Unit, Geneva, NY 14456; and fourth author: Horticulture Section, School of Integrative Plant Science, Cornell University, New York State Agricultural Experiment Station, Geneva, NY 14456
| |
Collapse
|
43
|
Feechan A, Kocsis M, Riaz S, Zhang W, Gadoury DM, Walker MA, Dry IB, Reisch B, Cadle-Davidson L. Strategies for RUN1 Deployment Using RUN2 and REN2 to Manage Grapevine Powdery Mildew Informed by Studies of Race Specificity. PHYTOPATHOLOGY 2015; 105:1104-13. [PMID: 26039639 DOI: 10.1094/phyto-09-14-0244-r] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The Toll/interleukin-1 receptor nucleotide-binding site leucine-rich repeat gene, "resistance to Uncinula necator 1" (RUN1), from Vitis rotundifolia was recently identified and confirmed to confer resistance to the grapevine powdery mildew fungus Erysiphe necator (syn. U. necator) in transgenic V. vinifera cultivars. However, sporulating powdery mildew colonies and cleistothecia of the heterothallic pathogen have been found on introgression lines containing the RUN1 locus growing in New York (NY). Two E. necator isolates collected from RUN1 vines were designated NY1-131 and NY1-137 and were used in this study to inform a strategy for durable RUN1 deployment. In order to achieve this, fitness parameters of NY1-131 and NY1-137 were quantified relative to powdery mildew isolates collected from V. rotundifolia and V. vinifera on vines containing alleles of the powdery mildew resistance genes RUN1, RUN2, or REN2. The results clearly demonstrate the race specificity of RUN1, RUN2, and REN2 resistance alleles, all of which exhibit programmed cell death (PCD)-mediated resistance. The NY1 isolates investigated were found to have an intermediate virulence on RUN1 vines, although this may be allele specific, while the Musc4 isolate collected from V. rotundifolia was virulent on all RUN1 vines. Another powdery mildew resistance locus, RUN2, was previously mapped in different V. rotundifolia genotypes, and two alleles (RUN2.1 and RUN2.2) were identified. The RUN2.1 allele was found to provide PCD-mediated resistance to both an NY1 isolate and Musc4. Importantly, REN2 vines were resistant to the NY1 isolates and RUN1REN2 vines combining both genes displayed additional resistance. Based on these results, RUN1-mediated resistance in grapevine may be enhanced by pyramiding with RUN2.1 or REN2; however, naturally occurring isolates in North America display some virulence on vines with these resistance genes. The characterization of additional resistance sources is needed to identify resistance gene combinations that will further enhance durability. For the resistance gene combinations currently available, we recommend using complementary management strategies, including fungicide application, to reduce populations of virulent isolates.
Collapse
Affiliation(s)
- Angela Feechan
- First and seventh authors: CSIRO Agriculture Flagship, Urrbrae, South Australia 5064, Australia; second author: Department of Plant Biology, University of Pécs, Pécs 7624, Hungary; third and sixth authors: Department of Viticulture and Enology, University of California, Davis 95616; fourth author: Institute of Plant and Environment Protection, Beijing Academy of Agriculture & Forestry Sciences, Beijing 100097; fifth author: Plant Pathology and Plant-Microbe Biology Section, Cornell University, New York State Agricultural Experiment Station, Geneva 14456; eighth author: Horticulture Section, Cornell University, New York State Agricultural Experiment Station, Geneva; and ninth author: United States Department of Agriculture-Agricultural Research Service, Grape Genetics Research Unit, Geneva, NY 14456
| | - Marianna Kocsis
- First and seventh authors: CSIRO Agriculture Flagship, Urrbrae, South Australia 5064, Australia; second author: Department of Plant Biology, University of Pécs, Pécs 7624, Hungary; third and sixth authors: Department of Viticulture and Enology, University of California, Davis 95616; fourth author: Institute of Plant and Environment Protection, Beijing Academy of Agriculture & Forestry Sciences, Beijing 100097; fifth author: Plant Pathology and Plant-Microbe Biology Section, Cornell University, New York State Agricultural Experiment Station, Geneva 14456; eighth author: Horticulture Section, Cornell University, New York State Agricultural Experiment Station, Geneva; and ninth author: United States Department of Agriculture-Agricultural Research Service, Grape Genetics Research Unit, Geneva, NY 14456
| | - Summaira Riaz
- First and seventh authors: CSIRO Agriculture Flagship, Urrbrae, South Australia 5064, Australia; second author: Department of Plant Biology, University of Pécs, Pécs 7624, Hungary; third and sixth authors: Department of Viticulture and Enology, University of California, Davis 95616; fourth author: Institute of Plant and Environment Protection, Beijing Academy of Agriculture & Forestry Sciences, Beijing 100097; fifth author: Plant Pathology and Plant-Microbe Biology Section, Cornell University, New York State Agricultural Experiment Station, Geneva 14456; eighth author: Horticulture Section, Cornell University, New York State Agricultural Experiment Station, Geneva; and ninth author: United States Department of Agriculture-Agricultural Research Service, Grape Genetics Research Unit, Geneva, NY 14456
| | - Wei Zhang
- First and seventh authors: CSIRO Agriculture Flagship, Urrbrae, South Australia 5064, Australia; second author: Department of Plant Biology, University of Pécs, Pécs 7624, Hungary; third and sixth authors: Department of Viticulture and Enology, University of California, Davis 95616; fourth author: Institute of Plant and Environment Protection, Beijing Academy of Agriculture & Forestry Sciences, Beijing 100097; fifth author: Plant Pathology and Plant-Microbe Biology Section, Cornell University, New York State Agricultural Experiment Station, Geneva 14456; eighth author: Horticulture Section, Cornell University, New York State Agricultural Experiment Station, Geneva; and ninth author: United States Department of Agriculture-Agricultural Research Service, Grape Genetics Research Unit, Geneva, NY 14456
| | - David M Gadoury
- First and seventh authors: CSIRO Agriculture Flagship, Urrbrae, South Australia 5064, Australia; second author: Department of Plant Biology, University of Pécs, Pécs 7624, Hungary; third and sixth authors: Department of Viticulture and Enology, University of California, Davis 95616; fourth author: Institute of Plant and Environment Protection, Beijing Academy of Agriculture & Forestry Sciences, Beijing 100097; fifth author: Plant Pathology and Plant-Microbe Biology Section, Cornell University, New York State Agricultural Experiment Station, Geneva 14456; eighth author: Horticulture Section, Cornell University, New York State Agricultural Experiment Station, Geneva; and ninth author: United States Department of Agriculture-Agricultural Research Service, Grape Genetics Research Unit, Geneva, NY 14456
| | - M Andrew Walker
- First and seventh authors: CSIRO Agriculture Flagship, Urrbrae, South Australia 5064, Australia; second author: Department of Plant Biology, University of Pécs, Pécs 7624, Hungary; third and sixth authors: Department of Viticulture and Enology, University of California, Davis 95616; fourth author: Institute of Plant and Environment Protection, Beijing Academy of Agriculture & Forestry Sciences, Beijing 100097; fifth author: Plant Pathology and Plant-Microbe Biology Section, Cornell University, New York State Agricultural Experiment Station, Geneva 14456; eighth author: Horticulture Section, Cornell University, New York State Agricultural Experiment Station, Geneva; and ninth author: United States Department of Agriculture-Agricultural Research Service, Grape Genetics Research Unit, Geneva, NY 14456
| | - Ian B Dry
- First and seventh authors: CSIRO Agriculture Flagship, Urrbrae, South Australia 5064, Australia; second author: Department of Plant Biology, University of Pécs, Pécs 7624, Hungary; third and sixth authors: Department of Viticulture and Enology, University of California, Davis 95616; fourth author: Institute of Plant and Environment Protection, Beijing Academy of Agriculture & Forestry Sciences, Beijing 100097; fifth author: Plant Pathology and Plant-Microbe Biology Section, Cornell University, New York State Agricultural Experiment Station, Geneva 14456; eighth author: Horticulture Section, Cornell University, New York State Agricultural Experiment Station, Geneva; and ninth author: United States Department of Agriculture-Agricultural Research Service, Grape Genetics Research Unit, Geneva, NY 14456
| | - Bruce Reisch
- First and seventh authors: CSIRO Agriculture Flagship, Urrbrae, South Australia 5064, Australia; second author: Department of Plant Biology, University of Pécs, Pécs 7624, Hungary; third and sixth authors: Department of Viticulture and Enology, University of California, Davis 95616; fourth author: Institute of Plant and Environment Protection, Beijing Academy of Agriculture & Forestry Sciences, Beijing 100097; fifth author: Plant Pathology and Plant-Microbe Biology Section, Cornell University, New York State Agricultural Experiment Station, Geneva 14456; eighth author: Horticulture Section, Cornell University, New York State Agricultural Experiment Station, Geneva; and ninth author: United States Department of Agriculture-Agricultural Research Service, Grape Genetics Research Unit, Geneva, NY 14456
| | - Lance Cadle-Davidson
- First and seventh authors: CSIRO Agriculture Flagship, Urrbrae, South Australia 5064, Australia; second author: Department of Plant Biology, University of Pécs, Pécs 7624, Hungary; third and sixth authors: Department of Viticulture and Enology, University of California, Davis 95616; fourth author: Institute of Plant and Environment Protection, Beijing Academy of Agriculture & Forestry Sciences, Beijing 100097; fifth author: Plant Pathology and Plant-Microbe Biology Section, Cornell University, New York State Agricultural Experiment Station, Geneva 14456; eighth author: Horticulture Section, Cornell University, New York State Agricultural Experiment Station, Geneva; and ninth author: United States Department of Agriculture-Agricultural Research Service, Grape Genetics Research Unit, Geneva, NY 14456
| |
Collapse
|
44
|
Qiu W, Feechan A, Dry I. Current understanding of grapevine defense mechanisms against the biotrophic fungus (Erysiphe necator), the causal agent of powdery mildew disease. HORTICULTURE RESEARCH 2015; 2:15020. [PMID: 26504571 PMCID: PMC4595975 DOI: 10.1038/hortres.2015.20] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 04/19/2015] [Accepted: 04/19/2015] [Indexed: 05/02/2023]
Abstract
The most economically important disease of cultivated grapevines worldwide is powdery mildew (PM) caused by the ascomycete fungus Erysiphe necator. The majority of grapevine cultivars used for wine, table grape, and dried fruit production are derived from the Eurasian grape species Vitis vinifera because of its superior aroma and flavor characteristics. However, this species has little genetic resistance against E. necator meaning that grape production is highly dependent on the frequent use of fungicides. The integration of effective genetic resistance into cultivated grapevines would lead to significant financial and environmental benefits and represents a major challenge for viticultural industries and researchers worldwide. This review will outline the strategies being used to increase our understanding of the molecular basis of V. vinifera susceptibility to this fungal pathogen. It will summarize our current knowledge of different resistance loci/genes that have evolved in wild grapevine species to restrict PM infection and assess the potential application of these defense genes in the generation of PM-resistant grapevine germplasm. Finally, it addresses future research priorities which will be important in the rapid identification, evaluation, and deployment of new PM resistance genes which are capable of conferring effective and durable resistance in the vineyard.
Collapse
Affiliation(s)
- Wenping Qiu
- Center for Grapevine Biotechnology, W. H. Darr School of Agriculture, Missouri State University, Mountain Grove, MO 65711, USA
| | - Angela Feechan
- School of Agriculture & Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Ian Dry
- CSIRO Agriculture, Wine Innovation West Building, Waite Campus, Hartley Grove, Urrbrae, SA 5064, Australia
| |
Collapse
|
45
|
Jiao C, Gao M, Wang X, Fei Z. Transcriptome characterization of three wild Chinese Vitis uncovers a large number of distinct disease related genes. BMC Genomics 2015; 16:223. [PMID: 25888081 PMCID: PMC4373064 DOI: 10.1186/s12864-015-1442-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 03/06/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Grape is one of the most valuable fruit crops and can serve for both fresh consumption and wine production. Grape cultivars have been selected and evolved to produce high-quality fruits during their domestication over thousands of years. However, current widely planted grape cultivars suffer extensive loss to many diseases while most wild species show resistance to various pathogens. Therefore, a comprehensive evaluation of wild grapes would contribute to the improvement of disease resistance in grape breeding programs. RESULTS We performed deep transcriptome sequencing of three Chinese wild grapes using the Illumina strand-specific RNA-Seq technology. High quality transcriptomes were assembled de novo and more than 93% transcripts were shared with the reference PN40024 genome. Over 1,600 distinct transcripts, which were absent or highly divergent from sequences in the reference PN40024 genome, were identified in each of the three wild grapes, among which more than 1,000 were potential protein-coding genes. Gene Ontology (GO) and pathway annotations of these distinct genes showed those involved in defense responses and plant secondary metabolisms were highly enriched. More than 87,000 single nucleotide polymorphisms (SNPs) and 2,000 small insertions or deletions (indels) were identified between each genotype and PN40024, and approximately 20% of the SNPs caused nonsynonymous mutations. Finally, we discovered 100 to 200 highly confident cis-natural antisense transcript (cis-NAT) pairs in each genotype. These transcripts were significantly enriched with genes involved in secondary metabolisms and plant responses to abiotic stresses. CONCLUSION The three de novo assembled transcriptomes provide a comprehensive sequence resource for molecular genetic research in grape. The newly discovered genes from wild Vitis, as well as SNPs and small indels we identified, may facilitate future studies on the molecular mechanisms related to valuable traits possessed by these wild Vitis and contribute to the grape breeding programs. Furthermore, we identified hundreds of cis-NAT pairs which showed their potential regulatory roles in secondary metabolism and abiotic stress responses.
Collapse
Affiliation(s)
- Chen Jiao
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China. .,Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China. .,Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, NY, 14853, USA.
| | - Min Gao
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China. .,Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Xiping Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China. .,Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Zhangjun Fei
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, NY, 14853, USA. .,USDA Robert W. Holley Center for Agriculture and Health, Tower Road, Ithaca, NY, 14853, USA.
| |
Collapse
|
46
|
Gao F, Dai R, Pike SM, Qiu W, Gassmann W. Functions of EDS1-like and PAD4 genes in grapevine defenses against powdery mildew. PLANT MOLECULAR BIOLOGY 2014; 86:381-93. [PMID: 25107649 DOI: 10.1007/s11103-014-0235-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 08/01/2014] [Indexed: 05/20/2023]
Abstract
The molecular interactions between grapevine and the obligate biotrophic fungus Erysiphe necator are not understood in depth. One reason for this is the recalcitrance of grapevine to genetic modifications. Using defense-related Arabidopsis mutants that are susceptible to pathogens, we were able to analyze key components in grapevine defense responses. We have examined the functions of defense genes associated with the salicylic acid (SA) pathway, including ENHANCED DISEASE SUSCEPTIBILITY 1 (EDS1), EDS1-LIKE 2 (EDL2), EDL5 and PHYTOALEXIN DEFICIENT 4 (PAD4) of two grapevine species, Vitis vinifera cv. Cabernet Sauvignon, which is susceptible to E. necator, and V. aestivalis cv. Norton, which is resistant. Both VaEDS1 and VvEDS1 were previously found to functionally complement the Arabidopsis eds1-1 mutant. Here we show that the promoters of both VaEDS1 and VvEDS1 were induced by SA, indicating that the heightened defense of Norton is related to its high SA level. Other than Va/VvEDS1, only VaEDL2 complemented Arabidopsis eds1-1, whereas Va/VvPAD4 did not complement Arabidopsis pad4-1. Bimolecular fluorescence complementation results indicated that Vitis EDS1 and EDL2 proteins interact with Vitis PAD4 and AtPAD4, suggesting that Vitis EDS1/EDL2 forms a complex with PAD4 to confer resistance, as is known from Arabidopsis. However, Vitis EDL5 and PAD4 did not interact with Arabidopsis EDS1 or PAD4, correlating with their inability to function in Arabidopsis. Together, our study suggests a more complicated EDS1/PAD4 module in grapevine and provides insight into molecular mechanisms that determine disease resistance levels in Vitis species native to the North American continent.
Collapse
Affiliation(s)
- Fei Gao
- Division of Plant Sciences, C.S. Bond Life Sciences Center and Interdisciplinary Plant Group, University of Missouri, 371C Life Sciences Center, Columbia, MO, 65211-7310, USA
| | | | | | | | | |
Collapse
|
47
|
Rex F, Fechter I, Hausmann L, Töpfer R. QTL mapping of black rot (Guignardia bidwellii) resistance in the grapevine rootstock 'Börner' (V. riparia Gm183 × V. cinerea Arnold). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2014; 127:1667-77. [PMID: 24865508 DOI: 10.1007/s00122-014-2329-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 05/05/2014] [Indexed: 05/08/2023]
Abstract
In the grapevine cultivar 'Börner' QTLs for black rot resistance were detected consistently in several independent experiments. For one QTL on chromosome 14 closely linked markers were developed and a detailed map provided. Black rot is a serious grapevine disease that causes substantial yield loss under unfavourable conditions. All traditional European grapevine cultivars are susceptible to the causative fungus Guignardia bidwellii which is native to North America. The cultivar 'Börner', an interspecific hybrid of V. riparia and V. cinerea, shows a high resistance to black rot. Therefore, a mapping population derived from the cross of the susceptible breeding line V3125 ('Schiava grossa' × 'Riesling') with 'Börner' was used to carry out QTL analysis. A resistance test was established based on potted plants which were artificially inoculated in a climate chamber with in vitro produced G. bidwellii spores. Several rating systems were developed and tested. Finally, a five class scheme was applied for scoring the level of resistance. A major QTL was detected based on a previously constructed genetic map and data from six independent resistance tests in the climate chamber and one rating of natural infections in the field. The QTL is located on linkage group 14 (Rgb1) and explained up to 21.8 % of the phenotypic variation (LOD 10.5). A second stable QTL mapped on linkage group 16 (Rgb2; LOD 4.2) and explained 8.5 % of the phenotypic variation. These two QTLs together with several minor QTLs observed on the integrated map indicate a polygenic nature of the black rot resistance in 'Börner'. A detailed genetic map is presented for the locus Rgb1 with tightly linked markers valuable for the development for marker-assisted selection for black rot resistance in grapevine breeding.
Collapse
Affiliation(s)
- Friederike Rex
- Julius Kühn Institute (JKI), Federal Research Centre for Cultivated Plants, Institute for Grapevine Breeding Geilweilerhof, 76833, Siebeldingen, Germany
| | | | | | | |
Collapse
|
48
|
Riaz S, Boursiquot JM, Dangl GS, Lacombe T, Laucou V, Tenscher AC, Walker MA. Identification of mildew resistance in wild and cultivated Central Asian grape germplasm. BMC PLANT BIOLOGY 2013; 13:149. [PMID: 24093598 PMCID: PMC3851849 DOI: 10.1186/1471-2229-13-149] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 09/30/2013] [Indexed: 05/18/2023]
Abstract
BACKGROUND Cultivated grapevines, Vitis vinifera subsp. sativa, evolved from their wild relative, V. vinifera subsp. sylvestris. They were domesticated in Central Asia in the absence of the powdery mildew fungus, Erysiphe necator, which is thought to have originated in North America. However, powdery mildew resistance has previously been discovered in two Central Asian cultivars and in Chinese Vitis species. RESULTS A set of 380 unique genotypes were evaluated with data generated from 34 simple sequence repeat (SSR) markers. The set included 306 V. vinifera cultivars, 40 accessions of V. vinifera subsp. sylvestris, and 34 accessions of Vitis species from northern Pakistan, Afghanistan and China. Based on the presence of four SSR alleles previously identified as linked to the powdery mildew resistance locus, Ren1, 10 new mildew resistant genotypes were identified in the test set: eight were V. vinifera cultivars and two were V. vinifera subsp. sylvestris based on flower and seed morphology. Sequence comparison of a 620 bp region that includes the Ren1-linked allele (143 bp) of the co-segregating SSR marker SC8-0071-014, revealed that the ten newly identified genotypes have sequences that are essentially identical to the previously identified mildew resistant V. vinifera cultivars: 'Kishmish vatkana' and 'Karadzhandal'. Kinship analysis determined that three of the newly identified powdery mildew resistant accessions had a relationship with 'Kishmish vatkana' and 'Karadzhandal', and that six were not related to any other accession in this study set. Clustering procedures assigned accessions into three groups: 1) Chinese species; 2) a mixed group of cultivated and wild V. vinifera; and 3) table grape cultivars, including nine of the powdery mildew resistant accessions. Gene flow was detected among the groups. CONCLUSIONS This study provides evidence that powdery mildew resistance is present in V. vinifera subsp. sylvestris, the dioecious wild progenitor of the cultivated grape. Four first-degree parent progeny relationships were discovered among the hermaphroditic powdery mildew resistant cultivars, supporting the existence of intentional grape breeding efforts. Although several Chinese grape species are resistant to powdery mildew, no direct genetic link to the resistance found in V. vinifera could be established.
Collapse
Affiliation(s)
- Summaira Riaz
- Department of Viticulture and Enology, University of California, Davis, CA 95616, USA
| | - Jean-Michel Boursiquot
- UMR AGAP, Equipe Diversité et Adaptation de la Vigne et des Espèces Méditerranéennes, Montpellier SupAgro, 2 Place Viala, Montpellier 34060, France
| | - Gerald S Dangl
- Foundation Plant Services, University of California, Davis, CA 95616, USA
| | - Thierry Lacombe
- UMR AGAP, Equipe Diversité et Adaptation de la Vigne et des Espèces Méditerranéennes, INRA, 2 Place Viala, Montpellier 34060, France
| | - Valerie Laucou
- UMR AGAP, Equipe Diversité et Adaptation de la Vigne et des Espèces Méditerranéennes, INRA, 2 Place Viala, Montpellier 34060, France
| | - Alan C Tenscher
- Department of Viticulture and Enology, University of California, Davis, CA 95616, USA
| | - M Andrew Walker
- Department of Viticulture and Enology, University of California, Davis, CA 95616, USA
| |
Collapse
|
49
|
Zhao H, Guan X, Xu Y, Wang Y. Characterization of novel gene expression related to glyoxal oxidase by agro-infiltration of the leaves of accession Baihe-35-1 of Vitis pseudoreticulata involved in production of H2O2 for resistance to Erysiphe necator. PROTOPLASMA 2013; 250:765-777. [PMID: 23090239 DOI: 10.1007/s00709-012-0462-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2012] [Accepted: 10/02/2012] [Indexed: 06/01/2023]
Abstract
Glyoxal oxidase (GLOX), an extracellular H(2)O(2)-producing enzyme, has been reported in Phanerochaete chrysosporium and Ustilago maydis. We previously isolated a grapevine GLOX gene from the highly resistant to Erysiphe necator Chinese wild Vitis pseudoreticulata accession Baihe-35-1 and designated it as VpGLOX (GenBank accession no. DQ201181). Transient expression of VpGLOX can suppress Powdery Mildew in susceptible genotype were studied. To further investigate the function of the VpGLOX gene, real-time PCR and Western blot analysis were performed to examine expression patterns at transcriptional and translational levels, respectively. The results showed that VpGLOX expression at the transcriptional level increased significantly in the disease-resistant accession Baihe-35-1 after Erysiphe necator inoculation, but no significant changes in the susceptible accession, V. pseudoreticulata accession Guangxi-2 could be observed. As evident from a Western blot analysis, VpGLOX protein increased slightly in Baihe-35-1 after E. necator inoculation, but not statistical significant difference changes in Guangxi-2. The immunolocalization via immunogold electron microscopy showed that VpGLOX was mainly located in the adaxial epidermal cell wall of E. necator-inoculated leaves of both Baihe-35-1 and Guangxi-2. Agrobacterium-mediated transient expression assays revealed that VpGLOX expression could produce H(2)O(2), which may directly play a role in defense mechanism during plant-pathogen interactions. Our results could provide further insight into the biological role of VpGLOX in the defense response against E. necator in V. pseudoreticulata.
Collapse
Affiliation(s)
- Heqing Zhao
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | | | | | | |
Collapse
|
50
|
Kuczmog A, Galambos A, Horváth S, Mátai A, Kozma P, Szegedi E, Putnoky P. Mapping of crown gall resistance locus Rcg1 in grapevine. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2012; 125:1565-74. [PMID: 22801874 DOI: 10.1007/s00122-012-1935-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 06/28/2012] [Indexed: 05/22/2023]
Abstract
Agrobacteria are efficient plant pathogens. They are able to transform plant cells genetically resulting in abnormal cell proliferation. Cultivars of Vitis vinifera are highly susceptible to many virulent Agrobacterium strains but certain wild Vitis species, including Vitis amurensis have resistant genotypes. Studies of the molecular background of such natural resistance are of special importance, not only for practical benefits in agricultural practice but also for understanding the role of plant genes in the transformation process. Earlier, crown gall resistance from V. amurensis was introgressed into V. vinifera through interspecific breeding and it was shown to be inherited as a single and dominant Mendelian trait. To develop this research further, towards understanding underlying molecular mechanisms, a mapping population was established, and resistance-coupled molecular DNA markers were identified by three different approaches. First, RAPD makers linked to the resistance locus (Rcg1) were identified, and on the basis of their DNA sequences, we developed resistance-coupled SCAR markers. However, localization of these markers in the grapevine genome sequence failed due to their similarity to many repetitive regions. Next, using SSR markers of the grapevine reference linkage map, location of the resistance locus was established on linkage group 15 (LG15). Finally, this position was supported further by developing new chromosome-specific markers and by the construction of the genetic map of the region including nine loci in 29.1 cM. Our results show that the closest marker is located 3.3 cM from the Rcg1 locus that may correspond to 576 kb.
Collapse
Affiliation(s)
- Anett Kuczmog
- Faculty of Sciences, Institute of Biology, University of Pécs, Ifjúság u. 6., 7635, Pécs, Hungary
| | | | | | | | | | | | | |
Collapse
|