1
|
Mesterhazy A. Food Safety Aspects of Breeding Maize to Multi-Resistance against the Major (Fusarium graminearum, F. verticillioides, Aspergillus flavus) and Minor Toxigenic Fungi ( Fusarium spp.) as Well as to Toxin Accumulation, Trends, and Solutions-A Review. J Fungi (Basel) 2024; 10:40. [PMID: 38248949 PMCID: PMC10817526 DOI: 10.3390/jof10010040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/23/2023] [Accepted: 12/26/2023] [Indexed: 01/23/2024] Open
Abstract
Maize is the crop which is most commonly exposed to toxigenic fungi that produce many toxins that are harmful to humans and animals alike. Preharvest grain yield loss, preharvest toxin contamination (at harvest), and storage loss are estimated to be between 220 and 265 million metric tons. In the past ten years, the preharvest mycotoxin damage was stable or increased mainly in aflatoxin and fumonisins. The presence of multiple toxins is characteristic. The few breeding programs concentrate on one of the three main toxigenic fungi. About 90% of the experiments except AFB1 rarely test toxin contamination. As disease resistance and resistance to toxin contamination often differ in regard to F. graminearum, F. verticillioides, and A. flavus and their toxins, it is not possible to make a food safety evaluation according to symptom severity alone. The inheritance of the resistance is polygenic, often mixed with epistatic and additive effects, but only a minor part of their phenotypic variation can be explained. All tests are made by a single inoculum (pure isolate or mixture). Genotype ranking differs between isolates and according to aggressiveness level; therefore, the reliability of such resistance data is often problematic. Silk channel inoculation often causes lower ear rot severity than we find in kernel resistance tests. These explain the slow progress and raise skepticism towards resistance breeding. On the other hand, during genetic research, several effective putative resistance genes were identified, and some overlapped with known QTLs. QTLs were identified as securing specific or general resistance to different toxicogenic species. Hybrids were identified with good disease and toxin resistance to the three toxigenic species. Resistance and toxin differences were often tenfold or higher, allowing for the introduction of the resistance and resistance to toxin accumulation tests in the variety testing and the evaluation of the food safety risks of the hybrids within 2-3 years. Beyond this, resistance breeding programs and genetic investigations (QTL-analyses, GWAM tests, etc.) can be improved. All other research may use it with success, where artificial inoculation is necessary. The multi-toxin data reveal more toxins than we can treat now. Their control is not solved. As limits for nonregulated toxins can be introduced, or the existing regulations can be made to be stricter, the research should start. We should mention that a higher resistance to F. verticillioides and A. flavus can be very useful to balance the detrimental effect of hotter and dryer seasons on aflatoxin and fumonisin contamination. This is a new aspect to secure food and feed safety under otherwise damaging climatic conditions. The more resistant hybrids are to the three main agents, the more likely we are to reduce the toxin losses mentioned by about 50% or higher.
Collapse
Affiliation(s)
- Akos Mesterhazy
- Cereal Research Non-Profit Ltd., Alsokikotosor 9, 6726 Szeged, Hungary
| |
Collapse
|
2
|
BdGUCD1 and Cyclic GMP Are Required for Responses of Brachypodium distachyon to Fusarium pseudograminearum in the Mechanism Involving Jasmonate. Int J Mol Sci 2022; 23:ijms23052674. [PMID: 35269814 PMCID: PMC8910563 DOI: 10.3390/ijms23052674] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/26/2022] [Accepted: 02/27/2022] [Indexed: 01/25/2023] Open
Abstract
Guanosine 3′,5′-cyclic monophosphate (cGMP) is an important signaling molecule in plants. cGMP and guanylyl cyclases (GCs), enzymes that catalyze the synthesis of cGMP from GTP, are involved in several physiological processes and responses to environmental factors, including pathogen infections. Using in vitro analysis, we demonstrated that recombinant BdGUCD1 is a protein with high guanylyl cyclase activity and lower adenylyl cyclase activity. In Brachypodium distachyon, infection by Fusarium pseudograminearum leads to changes in BdGUCD1 mRNA levels, as well as differences in endogenous cGMP levels. These observed changes may be related to alarm reactions induced by pathogen infection. As fluctuations in stress phytohormones after infection have been previously described, we performed experiments to determine the relationship between cyclic nucleotides and phytohormones. The results revealed that inhibition of cellular cGMP changes disrupts stress phytohormone content and responses to pathogen. The observations made here allow us to conclude that cGMP is an important element involved in the processes triggered as a result of infection and changes in its levels affect jasmonic acid. Therefore, stimuli-induced transient elevation of cGMP in plants may play beneficial roles in priming an optimized response, likely by triggering the mechanisms of feedback control.
Collapse
|
3
|
Turek I, Irving H. Moonlighting Proteins Shine New Light on Molecular Signaling Niches. Int J Mol Sci 2021; 22:1367. [PMID: 33573037 PMCID: PMC7866414 DOI: 10.3390/ijms22031367] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 02/06/2023] Open
Abstract
Plants as sessile organisms face daily environmental challenges and have developed highly nuanced signaling systems to enable suitable growth, development, defense, or stalling responses. Moonlighting proteins have multiple tasks and contribute to cellular signaling cascades where they produce additional variables adding to the complexity or fuzziness of biological systems. Here we examine roles of moonlighting kinases that also generate 3',5'-cyclic guanosine monophosphate (cGMP) in plants. These proteins include receptor like kinases and lipid kinases. Their guanylate cyclase activity potentiates the development of localized cGMP-enriched nanodomains or niches surrounding the kinase and its interactome. These nanodomains contribute to allosteric regulation of kinase and other molecules in the immediate complex directly or indirectly modulating signal cascades. Effects include downregulation of kinase activity, modulation of other members of the protein complexes such as cyclic nucleotide gated channels and potential triggering of cGMP-dependent degradation cascades terminating signaling. The additional layers of information provided by the moonlighting kinases are discussed in terms of how they may be used to provide a layer of fuzziness to effectively modulate cellular signaling cascades.
Collapse
Affiliation(s)
| | - Helen Irving
- Department of Pharmacy and Biomedical Sciences, La Trobe Institute for Molecular Science, La Trobe University, Bendigo, VIC 3550, Australia;
| |
Collapse
|
4
|
Wong A, Tian X, Gehring C, Marondedze C. Discovery of Novel Functional Centers With Rationally Designed Amino Acid Motifs. Comput Struct Biotechnol J 2018; 16:70-76. [PMID: 29977479 PMCID: PMC6026216 DOI: 10.1016/j.csbj.2018.02.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 01/23/2018] [Accepted: 02/25/2018] [Indexed: 12/14/2022] Open
Abstract
Plants are constantly exposed to environmental stresses and in part due to their sessile nature, they have evolved signal perception and adaptive strategies that are distinct from those of other eukaryotes. This is reflected at the cellular level where receptors and signalling molecules cannot be identified using standard homology-based searches querying with proteins from prokaryotes and other eukaryotes. One of the reasons for this is the complex domain architecture of receptor molecules. In order to discover hidden plant signalling molecules, we have developed a motif-based approach designed specifically for the identification of functional centers in plant molecules. This has made possible the discovery of novel components involved in signalling and stimulus-response pathways; the molecules include cyclic nucleotide cyclases, a nitric oxide sensor and a novel target for the hormone abscisic acid. Here, we describe the major steps of the method and illustrate it with recent and experimentally confirmed molecules as examples. We foresee that carefully curated search motifs supported by structural and bioinformatic assessments will uncover many more structural and functional aspects, particularly of signalling molecules.
Collapse
Affiliation(s)
- Aloysius Wong
- Department of Biology, Wenzhou-Kean University, 88 Daxue Road, Ouhai, Wenzhou, Zhejiang Province 325060, China
| | - Xuechen Tian
- Department of Biology, Wenzhou-Kean University, 88 Daxue Road, Ouhai, Wenzhou, Zhejiang Province 325060, China
| | - Chris Gehring
- Department of Chemistry, Biology & Biotechnology, University of Perugia, Borgo XX giugno, 74, 06121 Perugia, Italy
| | - Claudius Marondedze
- Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble Alpes, CEA/DRF/BIG, INRA UMR1417, CNRS UMR5168, 38054 Grenoble Cedex 9, France
| |
Collapse
|
5
|
Lanubile A, Maschietto V, Borrelli VM, Stagnati L, Logrieco AF, Marocco A. Molecular Basis of Resistance to Fusarium Ear Rot in Maize. FRONTIERS IN PLANT SCIENCE 2017; 8:1774. [PMID: 29075283 PMCID: PMC5644281 DOI: 10.3389/fpls.2017.01774] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 09/28/2017] [Indexed: 05/30/2023]
Abstract
The impact of climate change has been identified as an emerging issue for food security and safety, and the increased incidence of mycotoxin contamination in maize over the last two decades is considered a potential emerging hazard. Disease control by chemical and agronomic approaches is often ineffective and increases the cost of production; for this reason the exploitation of genetic resistance is the most sustainable method for reducing contamination. The review focuses on the significant advances that have been made in the development of transcriptomic, genetic and genomic information for maize, Fusarium verticillioides molds, and their interactions, over recent years. Findings from transcriptomic studies have been used to outline a specific model for the intracellular signaling cascade occurring in maize cells against F. verticillioides infection. Several recognition receptors, such as receptor-like kinases and R genes, are involved in pathogen perception, and trigger down-stream signaling networks mediated by mitogen-associated protein kinases. These signals could be orchestrated primarily by hormones, including salicylic acid, auxin, abscisic acid, ethylene, and jasmonic acid, in association with calcium signaling, targeting multiple transcription factors that in turn promote the down-stream activation of defensive response genes, such as those related to detoxification processes, phenylpropanoid, and oxylipin metabolic pathways. At the genetic and genomic levels, several quantitative trait loci (QTL) and single-nucleotide polymorphism markers for resistance to Fusarium ear rot deriving from QTL mapping and genome-wide association studies are described, indicating the complexity of this polygenic trait. All these findings will contribute to identifying candidate genes for resistance and to applying genomic technologies for selecting resistant maize genotypes and speeding up a strategy of breeding to contrast disease, through plants resistant to mycotoxin-producing pathogens.
Collapse
Affiliation(s)
- Alessandra Lanubile
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Valentina Maschietto
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Virginia M. Borrelli
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Lorenzo Stagnati
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Antonio F. Logrieco
- Institute of Sciences of Food Production, National Research Council, Bari, Italy
| | - Adriano Marocco
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Piacenza, Italy
| |
Collapse
|
6
|
Świeżawska B, Jaworski K, Szewczuk P, Pawełek A, Szmidt-Jaworska A. Identification of a Hippeastrum hybridum guanylyl cyclase responsive to wounding and pathogen infection. JOURNAL OF PLANT PHYSIOLOGY 2015; 189:77-86. [PMID: 26523507 DOI: 10.1016/j.jplph.2015.09.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 09/08/2015] [Accepted: 09/09/2015] [Indexed: 05/21/2023]
Abstract
Guanosine 3',5'-cyclic monophosphate (cGMP) is a critical component of many (patho)physiological processes in plants whilst guanylyl cyclases (GCs) which catalyse the formation of cGMP from GTP have remained somewhat elusive. Consequently, the two major aims are the discovery of novel guanylyl cyclases and the identification of GC/cGMP mediated processes. To identify a novel GC from Hippeastrum hybridum plant and facilitate the preparation of guanylyl cyclase in an amount sufficient for further crystallographic studies, we have constructed an overproduction system for this enzyme. This gene encodes a protein of 256 amino acids, with a calculated molecular mass of 28kD. The predicted amino acid sequence contains all the typical features and shows a high identity to other plant GCs. The GST-HpGC1 was catalytically active in Escherichia coli cells and the purified, recombinant HpGC1 was able to convert GTP to cGMP in the presence of divalent cations. The used overexpression system yields a guanylyl cyclase as 6% of the bacterial cytosolic protein. Besides the identification of HpGC1 as a guanylyl cyclase, the study has shown that the level of HpCG1 mRNA changed during stress conditions. Both mechanical damage and a Peyronellaea curtisii (=Phoma narcissi) fungi infection led to an initial decrease in the HpGC1 transcript level, followed by a substantial increase during the remainder of the 48-h test cycle. Moreover, significant changes in cyclic GMP level were observed, taking the form of oscillations. In conclusion, our data unequivocally identified the product of the HpGC1 gene as a guanylyl cyclase and demonstrates that such an overproduction system can be successfully used in enzyme synthesis. Furthermore, they indicate a link between the causing stimulus (wounding, infection) and guanylyl cyclase expression and the increase in cGMP amplitude. Therefore, it is concluded that appearance of cyclic GMP as a mediator in defense and wound-healing mechanisms provides a clue to the regulation of these processes.
Collapse
|
7
|
Foroud NA, Chatterton S, Reid LM, Turkington TK, Tittlemier SA, Gräfenhan T. Fusarium Diseases of Canadian Grain Crops: Impact and Disease Management Strategies. Fungal Biol 2014. [DOI: 10.1007/978-1-4939-1188-2_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
8
|
Dietrich P, Anschütz U, Kugler A, Becker D. Physiology and biophysics of plant ligand-gated ion channels. PLANT BIOLOGY (STUTTGART, GERMANY) 2010; 12 Suppl 1:80-93. [PMID: 20712623 DOI: 10.1111/j.1438-8677.2010.00362.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Small molecules and metabolites often act as intra- or extracellular messengers in signal transduction pathways. Ligand-gated ion channels provide a mean to transduce those biochemical signals at the membrane into electrical events and ion fluxes. In plants, cyclic nucleotides and glutamate represent intra- and extracellular signalling ligands, respectively. While the former have been shown to regulate voltage-dependent ion channels and are supposed to activate cyclic nucleotide gated (CNG) channels, the latter are perceived by ionotropic glutamate receptors (GLRs). This review summarises our current knowledge about CNG channels and glutamate receptors in plants and their proposed roles in plant development and adaptation to biotic and abiotic stresses.
Collapse
Affiliation(s)
- P Dietrich
- Department of Biology, Erlangen University, Erlangen, Germany.
| | | | | | | |
Collapse
|
9
|
Teng Y, Xu W, Ma M. cGMP is required for seed germination in Arabidopsis thaliana. JOURNAL OF PLANT PHYSIOLOGY 2010; 167:885-9. [PMID: 20170981 DOI: 10.1016/j.jplph.2010.01.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2009] [Revised: 01/29/2010] [Accepted: 01/29/2010] [Indexed: 05/05/2023]
Abstract
Cyclic guanosine 3',5'-monophosphate (cGMP) is an important second messenger in animals, and is emerging as a player in regulatory functions in plants. In this study, we investigated the role of cGMP in seed germination in Arabidopsis thaliana (Col-0). We demonstrated that both, a membrane-permeant analogue of cGMP (8-Br-cGMP) and the cyclic nucleotide phosphodiesterase (PDE) inhibitor Tadalafil promoted A. thaliana seed germination, whereas the guanylate cyclase inhibitor LY 83583 (6-anilino-5,8-quinolinedione; LY) inhibited it. LY blocked gibberellic acid (GA)-induced seed germination, whereas GA and 8-Br-cGMP co-treatment increased the germination rate and more effectively overcame LY-inhibition than 8-Br-cGMP alone. The gibberellin biosynthesis inhibitor paclobutrazol (PAC) also blocked 8-Br-cGMP and Tadalafil promotion of seed germination. Furthermore, 8-Br-cGMP and Tadalafil decreased abscisic acid (ABA) sensitivity during seed germination. These findings highlight that cGMP is a positive regulator and plays a crucial role in Arabidopsis seed germination. Furthermore, both GA and cGMP are required for seed germination.
Collapse
Affiliation(s)
- Yao Teng
- Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, PR China
| | | | | |
Collapse
|
10
|
de Montaigu A, Sanz-Luque E, Galván A, Fernández E. A soluble guanylate cyclase mediates negative signaling by ammonium on expression of nitrate reductase in Chlamydomonas. THE PLANT CELL 2010; 22:1532-48. [PMID: 20442374 PMCID: PMC2899865 DOI: 10.1105/tpc.108.062380] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2008] [Revised: 03/17/2010] [Accepted: 04/19/2010] [Indexed: 05/18/2023]
Abstract
Nitrate assimilation in plants and related organisms is a highly regulated and conserved pathway in which the enzyme nitrate reductase (NR) occupies a central position. Although some progress has been made in understanding the regulation of the protein, transcriptional regulation of the NR gene (NIA1) is poorly understood. This work describes a mechanism for the ammonium-mediated repression of NIA1. We report the characterization of a mutant defective in the repression of NIA1 and NR in response to ammonium and show that a gene (CYG56) coding for a nitric oxide (NO)-dependent guanylate cyclase (GC) was interrupted in this mutant. NO donors, cGMP analogs, a phosphodiesterase inhibitor isobutylmethylxanthine (IBMX), and a calcium ionophore (A23187) repress the expression of NIA1 in Chlamydomonas reinhardtii wild-type cells and also repress the expression of other ammonium-sensitive genes. In addition, the GC inhibitors LY83,583 (6-anilino-5,8-quinolinedione) and ODQ (1H-[1,2,4]oxadiazolo-[4,3-a]quinoxalin-1-one) release cells from ammonium repression. Intracellular NO and cGMP levels were increased in the presence of ammonium in wild-type cells. In the cyg56 mutant, NIA1 transcription was less sensitive to NO donors and A23187, but responded like the wild type to IBMX. Results presented here suggest that CYG56 participates in ammonium-mediated NIA1 repression through a pathway that involves NO, cGMP, and calcium and that similar mechanisms might be occurring in plants.
Collapse
Affiliation(s)
| | | | | | - Emilio Fernández
- Departamento de Bioquímica y Biología Molecular, Universidad de Córdoba, Córdoba 14071, Spain
| |
Collapse
|
11
|
Eller MS, Holland JB, Payne GA. BREEDING FOR IMPROVED RESISTANCE TO FUMONISIN CONTAMINATION IN MAIZE. TOXIN REV 2008. [DOI: 10.1080/15569540802450326] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|