1
|
Bruschi M, Bozzoli M, Ratti C, Sciara G, Goudemand E, Devaux P, Ormanbekova D, Forestan C, Corneti S, Stefanelli S, Castelletti S, Fusari E, Novi JB, Frascaroli E, Salvi S, Perovic D, Gadaleta A, Rubies-Autonell C, Sanguineti MC, Tuberosa R, Maccaferri M. Dissecting the genetic basis of resistance to Soil-borne cereal mosaic virus (SBCMV) in durum wheat by bi-parental mapping and GWAS. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:213. [PMID: 39222129 PMCID: PMC11369050 DOI: 10.1007/s00122-024-04709-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 08/04/2024] [Indexed: 09/04/2024]
Abstract
Soil-borne cereal mosaic virus (SBCMV), the causative agent of wheat mosaic, is a Furovirus challenging wheat production all over Europe. Differently from bread wheat, durum wheat shows greater susceptibility and stronger yield penalties, so identification and genetic characterization of resistance sources are major targets for durum genetics and breeding. The Sbm1 locus providing high level of resistance to SBCMV was mapped in bread wheat to the 5DL chromosome arm (Bass in Genome 49:1140-1148, 2006). This excluded the direct use of Sbm1 for durum wheat improvement. Only one major QTL has been mapped in durum wheat, namely QSbm.ubo-2B, on the 2BS chromosome region coincident with Sbm2, already known in bread wheat as reported (Bayles in HGCA Project Report, 2007). Therefore, QSbm.ubo-2B = Sbm2 is considered a pillar for growing durum in SBCMV-affected areas. Herein, we report the fine mapping of Sbm2 based on bi-parental mapping and GWAS, using the Infinium 90 K SNP array and high-throughput KASP®. Fine mapping pointed out a critical haploblock of 3.2 Mb defined by concatenated SNPs successfully converted to high-throughput KASP® markers coded as KUBO. The combination of KUBO-27, wPt-2106-ASO/HRM, KUBO-29, and KUBO-1 allows unequivocal tracing of the Sbm2-resistant haplotype. The interval harbors 52 high- and 41 low-confidence genes, encoding 17 cytochrome p450, three receptor kinases, two defensins, and three NBS-LRR genes. These results pave the way for Sbm2 positional cloning. Importantly, the development of Sbm2 haplotype tagging KASP® provides a valuable case study for improving efficacy of the European variety testing system and, ultimately, the decision-making process related to varietal characterization and choice.
Collapse
Affiliation(s)
- Martina Bruschi
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum - Università di Bologna, 40127, Bologna, Italy
| | - Matteo Bozzoli
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum - Università di Bologna, 40127, Bologna, Italy
| | - Claudio Ratti
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum - Università di Bologna, 40127, Bologna, Italy
| | - Giuseppe Sciara
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum - Università di Bologna, 40127, Bologna, Italy
| | - Ellen Goudemand
- S.A.S. Florimond-Desprez Veuve and Fils, BP41, 59242, Cappelle-en-Pévèle, France
| | - Pierre Devaux
- S.A.S. Florimond-Desprez Veuve and Fils, BP41, 59242, Cappelle-en-Pévèle, France
| | - Danara Ormanbekova
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum - Università di Bologna, 40127, Bologna, Italy
| | - Cristian Forestan
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum - Università di Bologna, 40127, Bologna, Italy
| | - Simona Corneti
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum - Università di Bologna, 40127, Bologna, Italy
| | - Sandra Stefanelli
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum - Università di Bologna, 40127, Bologna, Italy
| | - Sara Castelletti
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum - Università di Bologna, 40127, Bologna, Italy
| | - Elena Fusari
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum - Università di Bologna, 40127, Bologna, Italy
| | - Jad B Novi
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum - Università di Bologna, 40127, Bologna, Italy
| | - Elisabetta Frascaroli
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum - Università di Bologna, 40127, Bologna, Italy
| | - Silvio Salvi
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum - Università di Bologna, 40127, Bologna, Italy
| | - Dragan Perovic
- Federal Research Centre for Cultivated Plants, Institute for Resistance Research and Stress Tolerance, Julius Kühn-Institut (JKI), Erwin-Baur-Str. 27, 06484, Quedlinburg, Germany
| | - Agata Gadaleta
- Department of Soil, Plant and Food Science (Di.S.S.P.A.), University of Bari 'Aldo Moro', 70126, Bari, Italy
| | - Concepcion Rubies-Autonell
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum - Università di Bologna, 40127, Bologna, Italy
| | - Maria Corinna Sanguineti
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum - Università di Bologna, 40127, Bologna, Italy
| | - Roberto Tuberosa
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum - Università di Bologna, 40127, Bologna, Italy
| | - Marco Maccaferri
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum - Università di Bologna, 40127, Bologna, Italy.
| |
Collapse
|
2
|
Giancaspro A, Giove SL, Marcotuli I, Ferrara G, Gadaleta A. Datasets for genetic diversity assessment in a collection of wild and cultivated pomegranates ( Punica granatum L.) by microsatellite markers. Data Brief 2023; 49:109346. [PMID: 37456114 PMCID: PMC10344663 DOI: 10.1016/j.dib.2023.109346] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/15/2023] [Accepted: 06/22/2023] [Indexed: 07/18/2023] Open
Abstract
Data described in this article refer to molecular characterization and assessment of genetic diversity within a wide collection of pomegranate genotypes including both selections and cultivars from different geographical origin/disseminations by using microsatellite (SSR, Simple Sequence Repeats) markers. Supplied datasets refer to a set of 63 genotypes including 55 accessions (landraces) from Italy, Turkmenistan, Japan, and USA and 8 cultivars from Israel, established at the pomegranate repository of the Fruit Tree Unit of the Department of Soil, Plant and Food Science at University of Bari "Aldo Moro", Italy. Pomegranate accessions differed for end-use purpose (edible, ornamental) and some morpho-pomological traits including juice taste, inner tegmen hardness, and skin/seed color. Molecular data were opportunely employed to build a similarity matrix to establish phylogenetic relationships (genetic similarity and distances) among pomegranate accessions and compare genetic clustering to morpho-pomological classification. The present data article provides detailed information and methodological protocols on SSR markers, PCR amplification and banding profiling aimed to molecular characterization of pomegranate collection. This latter was conducted by amplifying a set of informative polymorphic SSR markers on the genomic DNA of each pomegranate accession, and then comparing the different molecular profiles by capillary electrophoresis. The banding patterns obtained from microsatellite markers were used to build a binary matrix containing the scores for each individual SSR fragment, which was transformed into a similarity matrix and finally used for cluster analysis and dendrogram building based on the UPGMA algorithm. This paper supplies data potentially useful for the identification of polymorphic markers suitable for varietal identification and traceability, or discrimination between tightly related pomegranate accessions with very high morphological similarity and/or geographical identity. Data described in this paper support the published original research article titled "Exploiting DNA-based molecular tools to assess genetic diversity in pomegranate (Punica granatum L.) selections and cultivars" [1].
Collapse
|
3
|
Anuradha C, Chandrasekar A, Backiyarani S, Uma S. MusaRgeneDB: an online comprehensive database for disease resistance genes in Musa spp. 3 Biotech 2022; 12:222. [PMID: 35971335 PMCID: PMC9374869 DOI: 10.1007/s13205-022-03285-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 07/28/2022] [Indexed: 02/05/2023] Open
Abstract
Banana is one of the major food crops and its production is subject to many pests and diseases. Banana breeding exploits wild relatives and progenitor species for the introgression of resistant genes (R) into cultivated varieties to overcome these hurdles. With advances in sequencing technologies, whole-genome sequences are available for many Musa spp. and many of them are potential donors of disease resistance genes. Considering their potential role, R genes from these species were explored to develop an user-friendly open-access database that will be useful for studying and implementing disease resistance in bananas. MusaRgene database is complemented with complete details of 3598 R genes identified from eight Musa spp. and rice, Arabidopsis, sorghum along with its classification and separate modules on its expression under various stresses in resistant and susceptible cultivars and corresponding SSRs are also provided. This database can be regarded as the primary resource of information on R genes from bananas and their relatives. R genes from other allele mining studies are also incorporated which will enable the identification of its homolog in related Musa spp. MusaRgene database will aid in the identification of genes and markers associated, cloning of full-length R genes, and genetic transformation or gene editing of the R genes in susceptible cultivars. Multiple R genes can also be identified for pyramiding the genes to increase the level of resistance and durability. Overall, this database will facilitate the understanding of defense mechanisms in bananas against biotic or abiotic stresses leading to the development of promising disease-resistant varieties.
Collapse
Affiliation(s)
- Chelliah Anuradha
- ICAR-National Research Centre for Banana, Thogamalai Road, Thayanur Post, Tiruchirappalli, Tamil Nadu 620 102 India
| | - Arumugam Chandrasekar
- ICAR-National Research Centre for Banana, Thogamalai Road, Thayanur Post, Tiruchirappalli, Tamil Nadu 620 102 India
| | - Suthanthiram Backiyarani
- ICAR-National Research Centre for Banana, Thogamalai Road, Thayanur Post, Tiruchirappalli, Tamil Nadu 620 102 India
| | - Subbaraya Uma
- ICAR-National Research Centre for Banana, Thogamalai Road, Thayanur Post, Tiruchirappalli, Tamil Nadu 620 102 India
| |
Collapse
|
4
|
Li L, Chai L, Xu H, Zhai H, Wang T, Zhang M, You M, Peng H, Yao Y, Hu Z, Xin M, Guo W, Sun Q, Chen X, Ni Z. Phenotypic characterization of the glossy1 mutant and fine mapping of GLOSSY1 in common wheat (Triticum aestivum L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:835-847. [PMID: 33404673 DOI: 10.1007/s00122-020-03734-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 11/18/2020] [Indexed: 05/14/2023]
Abstract
A novel wax locus GLOSSY1 was finely mapped to an approximately 308.1-kbp genomic interval on chromosome 2DS of wheat. The epicuticular wax, the outermost layer of aerial organs, gives plants their bluish-white (glaucous) appearance. Epicuticular wax is ubiquitous and provides an essential protective function against environmental stresses. In this study, we identified the glossy1 mutant on the basis of its glossy glume from an EMS population in the elite wheat (Triticum aestivum L.) cultivar Jimai22. The mutant had a dramatically different profile in total wax load and composition of individual wax constituents relative to the wild type, resulting in the increased cuticle permeability of glumes. The glossy glume phenotype was controlled by a single, semidominant locus mapping to the short arm of chromosome 2D, within a 308.1-kbp genomic interval that contained ten annotated protein-coding genes. These results pave the way for an in-depth analysis of the underlying genetic basis of wax formation patterns and enrich our understanding of mechanisms regulating wax metabolism.
Collapse
Affiliation(s)
- Linghong Li
- State Key Laboratory for Agrobiotechnology/Key Laboratory of Crop Heterosis and Utilization, the Ministry of Education/Key Laboratory of Crop Genetic Improvement, Beijing Municipality/China Agricultural University, Beijing, 100193, China
- National Plant Gene Research Centre, Beijing, 100193, China
| | - Lingling Chai
- State Key Laboratory for Agrobiotechnology/Key Laboratory of Crop Heterosis and Utilization, the Ministry of Education/Key Laboratory of Crop Genetic Improvement, Beijing Municipality/China Agricultural University, Beijing, 100193, China
- National Plant Gene Research Centre, Beijing, 100193, China
| | - Huanwen Xu
- State Key Laboratory for Agrobiotechnology/Key Laboratory of Crop Heterosis and Utilization, the Ministry of Education/Key Laboratory of Crop Genetic Improvement, Beijing Municipality/China Agricultural University, Beijing, 100193, China
- National Plant Gene Research Centre, Beijing, 100193, China
| | - Huijie Zhai
- School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Tianya Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Mingyi Zhang
- Dryland Agricultural Research Centre, Shanxi Academy of Agricultural Sciences, Taiyuan, 030031, China
| | - Mingshan You
- State Key Laboratory for Agrobiotechnology/Key Laboratory of Crop Heterosis and Utilization, the Ministry of Education/Key Laboratory of Crop Genetic Improvement, Beijing Municipality/China Agricultural University, Beijing, 100193, China
- National Plant Gene Research Centre, Beijing, 100193, China
| | - Huiru Peng
- State Key Laboratory for Agrobiotechnology/Key Laboratory of Crop Heterosis and Utilization, the Ministry of Education/Key Laboratory of Crop Genetic Improvement, Beijing Municipality/China Agricultural University, Beijing, 100193, China
- National Plant Gene Research Centre, Beijing, 100193, China
| | - Yingyin Yao
- State Key Laboratory for Agrobiotechnology/Key Laboratory of Crop Heterosis and Utilization, the Ministry of Education/Key Laboratory of Crop Genetic Improvement, Beijing Municipality/China Agricultural University, Beijing, 100193, China
- National Plant Gene Research Centre, Beijing, 100193, China
| | - Zhaorong Hu
- State Key Laboratory for Agrobiotechnology/Key Laboratory of Crop Heterosis and Utilization, the Ministry of Education/Key Laboratory of Crop Genetic Improvement, Beijing Municipality/China Agricultural University, Beijing, 100193, China
- National Plant Gene Research Centre, Beijing, 100193, China
| | - Mingming Xin
- State Key Laboratory for Agrobiotechnology/Key Laboratory of Crop Heterosis and Utilization, the Ministry of Education/Key Laboratory of Crop Genetic Improvement, Beijing Municipality/China Agricultural University, Beijing, 100193, China
- National Plant Gene Research Centre, Beijing, 100193, China
| | - Weilong Guo
- State Key Laboratory for Agrobiotechnology/Key Laboratory of Crop Heterosis and Utilization, the Ministry of Education/Key Laboratory of Crop Genetic Improvement, Beijing Municipality/China Agricultural University, Beijing, 100193, China
- National Plant Gene Research Centre, Beijing, 100193, China
| | - Qixin Sun
- State Key Laboratory for Agrobiotechnology/Key Laboratory of Crop Heterosis and Utilization, the Ministry of Education/Key Laboratory of Crop Genetic Improvement, Beijing Municipality/China Agricultural University, Beijing, 100193, China
- National Plant Gene Research Centre, Beijing, 100193, China
| | - Xiyong Chen
- Hebei Crop Genetic Breeding Laboratory, Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, 050035, China.
| | - Zhongfu Ni
- State Key Laboratory for Agrobiotechnology/Key Laboratory of Crop Heterosis and Utilization, the Ministry of Education/Key Laboratory of Crop Genetic Improvement, Beijing Municipality/China Agricultural University, Beijing, 100193, China.
- National Plant Gene Research Centre, Beijing, 100193, China.
| |
Collapse
|
5
|
Colasuonno P, Marcotuli I, Gadaleta A, Soriano JM. From Genetic Maps to QTL Cloning: An Overview for Durum Wheat. PLANTS (BASEL, SWITZERLAND) 2021; 10:315. [PMID: 33562160 PMCID: PMC7914919 DOI: 10.3390/plants10020315] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 01/26/2021] [Accepted: 02/02/2021] [Indexed: 12/17/2022]
Abstract
Durum wheat is one of the most important cultivated cereal crops, providing nutrients to humans and domestic animals. Durum breeding programs prioritize the improvement of its main agronomic traits; however, the majority of these traits involve complex characteristics with a quantitative inheritance (quantitative trait loci, QTL). This can be solved with the use of genetic maps, new molecular markers, phenotyping data of segregating populations, and increased accessibility to sequences from next-generation sequencing (NGS) technologies. This allows for high-density genetic maps to be developed for localizing candidate loci within a few Kb in a complex genome, such as durum wheat. Here, we review the identified QTL, fine mapping, and cloning of QTL or candidate genes involved in the main traits regarding the quality and biotic and abiotic stresses of durum wheat. The current knowledge on the used molecular markers, sequence data, and how they changed the development of genetic maps and the characterization of QTL is summarized. A deeper understanding of the trait architecture useful in accelerating durum wheat breeding programs is envisioned.
Collapse
Affiliation(s)
- Pasqualina Colasuonno
- Department of Agricultural and Environmental Science, University of Bari ‘Aldo Moro’, Via G. Amendola 165/A, 70126 Bari, Italy; (P.C.); (I.M.)
| | - Ilaria Marcotuli
- Department of Agricultural and Environmental Science, University of Bari ‘Aldo Moro’, Via G. Amendola 165/A, 70126 Bari, Italy; (P.C.); (I.M.)
| | - Agata Gadaleta
- Department of Agricultural and Environmental Science, University of Bari ‘Aldo Moro’, Via G. Amendola 165/A, 70126 Bari, Italy; (P.C.); (I.M.)
| | - Jose Miguel Soriano
- Sustainable Field Crops Programme, IRTA (Institute for Food and Agricultural Research and Technology), 25198 Lleida, Spain
| |
Collapse
|
6
|
Nigro D, Fortunato S, Giove SL, Mazzucotelli E, Gadaleta A. Functional Validation of Glutamine synthetase and Glutamate synthase Genes in Durum Wheat near Isogenic Lines with QTL for High GPC. Int J Mol Sci 2020; 21:ijms21239253. [PMID: 33291583 PMCID: PMC7730160 DOI: 10.3390/ijms21239253] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 11/25/2020] [Accepted: 12/02/2020] [Indexed: 11/16/2022] Open
Abstract
Durum wheat (Triticum turgidum L. ssp. durum) is a minor crop grown on about 17 million hectares of land worldwide. Several grain characteristics determine semolina's high end-use quality, such as grain protein content (GPC) which is directly related to the final products' nutritional and technological values. GPC improvement could be pursued by considering a candidate gene approach. The glutamine synthetase (GS)/glutamate synthase (GOGAT) cycle represents a bottleneck in the first step of nitrogen assimilation. QTL for GPC have been located on all chromosomes, and several major ones have been reported on 2A and 2B chromosomes, where GS2 and Fd-GOGAT genes have been mapped. A useful and efficient method to validate a putative QTL is the constitution of near-isogenic lines (NILs) by using the marker found to be associated to that QTL. Here, we present the development of two distinct sets of heterogeneous inbred family (HIF)- based NILs segregating for GS2 and Fd-GOGAT genes obtained from heterozygous lines at those loci, as well as their genotypic and phenotypic characterizations. The results allow the validation of the previously identified GPC QTL on 2A and 2B chromosomes, along with the role of these key genes in GPC control.
Collapse
Affiliation(s)
- Domenica Nigro
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, 70126 Bari, Italy
- Correspondence: (D.N.); (A.G.); Tel.: +39-0805442997(D.N.); +39-0805442995 (A.G.)
| | | | - Stefania Lucia Giove
- Department of Agricultural and Environmental Science, University of Bari Aldo Moro, 70126 Bari, Italy;
| | | | - Agata Gadaleta
- Department of Agricultural and Environmental Science, University of Bari Aldo Moro, 70126 Bari, Italy;
- Correspondence: (D.N.); (A.G.); Tel.: +39-0805442997(D.N.); +39-0805442995 (A.G.)
| |
Collapse
|
7
|
Karcι H, Paizila A, Topçu H, Ilikçioğlu E, Kafkas S. Transcriptome Sequencing and Development of Novel Genic SSR Markers From Pistacia vera L. Front Genet 2020; 11:1021. [PMID: 33033493 PMCID: PMC7509152 DOI: 10.3389/fgene.2020.01021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 08/10/2020] [Indexed: 01/28/2023] Open
Abstract
In this study, we aimed to develop novel genic simple sequence repeat (eSSR) markers and to study phylogenetic relationship among Pistacia species. Transcriptome sequencing was performed in different tissues of Siirt and Atl cultivars of pistachio (Pistacia vera). A total of 37.5-Gb data were used in the assembly. The number of total contigs and unigenes was calculated as 98,831, and the length of N50 was 1,333 bp after assembly. A total of 14,308 dinucleotide, trinucleotide, tetranucleotide, pentanucleotide, and hexanucleotide SSR motifs (4–17) were detected, and the most abundant SSR repeat types were trinucleotide (29.54%), dinucleotide (24.06%), hexanucleotide (20.67%), pentanucleotide (18.88%), and tetranucleotide (6.85%), respectively. Overall 250 primer pairs were designed randomly and tested in eight Pistacia species for amplification. Of them, 233 were generated polymerase chain reaction products in at least one of the Pistacia species. A total of 55 primer pairs that had amplifications in all tested Pistacia species were used to characterize 11 P. vera cultivars and 78 wild Pistacia genotypes belonging to nine Pistacia species (P. khinjuk, P. eurycarpa, P. atlantica, P. mutica, P. integerrima, P. chinensis, P. terebinthus, P. palaestina, and P. lentiscus). A total of 434 alleles were generated from 55 polymorphic eSSR loci with an average of 7.89 alleles per locus. The mean number of effective allele was 3.40 per locus. Polymorphism information content was 0.61, whereas observed (Ho) and expected heterozygosity (He) values were 0.39 and 0.65, respectively. UPGMA (unweighted pair-group method with arithmetic averages) and STRUCTURE analysis divided 89 Pistacia genotypes into seven populations. The closest species to P. vera was P. khinjuk. P. eurycarpa was closer P. atlantica than P. khinjuk. P. atlantica–P. mutica and P. terebinthus–P. palaestina pairs of species were not clearly separated from each other, and they were suggested as the same species. The present study demonstrated that eSSR markers can be used in the characterization and phylogenetic analysis of Pistacia species and cultivars, as well as genetic linkage mapping and QTL (quantitative trait locus) analysis.
Collapse
Affiliation(s)
- Harun Karcι
- Department of Horticulture, Faculty of Agriculture, Çukurova University, Adana, Turkey
| | - Aibibula Paizila
- Department of Horticulture, Faculty of Agriculture, Çukurova University, Adana, Turkey
| | - Hayat Topçu
- Department of Horticulture, Faculty of Agriculture, Çukurova University, Adana, Turkey
| | | | - Salih Kafkas
- Department of Horticulture, Faculty of Agriculture, Çukurova University, Adana, Turkey
| |
Collapse
|
8
|
Li L, Qi Z, Chai L, Chen Z, Wang T, Zhang M, You M, Peng H, Yao Y, Hu Z, Xin M, Guo W, Sun Q, Ni Z. The semidominant mutation w5 impairs epicuticular wax deposition in common wheat (Triticum aestivum L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:1213-1225. [PMID: 31965231 DOI: 10.1007/s00122-020-03543-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 01/10/2020] [Indexed: 05/14/2023]
Abstract
The semidominant EMS-induced mutant w5 affects epicuticular wax deposition and mapped to an approximately 194-kb region on chromosome 7DL. Epicuticular wax is responsible for the glaucous appearance of plants and protects against many biotic and abiotic stresses. In wheat (Triticum aestivum L.), β-diketone is a major component of epicuticular wax in adult plants and contributes to the glaucousness of the aerial organs. In the present study, we identified an ethyl methanesulfonate-induced epicuticular wax-deficient mutant from the elite wheat cultivar Jimai22. Compared to wild-type Jimai22, the mutant lacked β-diketone and failed to form the glaucous coating on all aerial organs. The mutant also had significantly increased in cuticle permeability, based on water loss and chlorophyll efflux. Genetic analysis indicated that the mutant phenotype is controlled by a single, semidominant gene on the long arm of chromosome 7D, which was not allelic to the known wax gene loci W1-W4, and was therefore designated W5. W5 was finely mapped to an ~ 194-kb region (flanked by the molecular markers SSR2 and STARP11) that harbored four annotated genes according to the reference genome of Chinese Spring (RefSeq v1.0). Collectively, these data will broaden the knowledge of the genetic basis underlying epicuticular wax deposition in wheat.
Collapse
Affiliation(s)
- Linghong Li
- State Key Laboratory for Agrobiotechnology/Key Laboratory of Crop Heterosis and Utilization, The Ministry of Education/Key Laboratory of Crop Genetic Improvement, Beijing Municipality/China Agricultural University, Beijing, 100193, China
- National Plant Gene Research Centre, Beijing, 100193, China
| | - Zhongqi Qi
- State Key Laboratory for Agrobiotechnology/Key Laboratory of Crop Heterosis and Utilization, The Ministry of Education/Key Laboratory of Crop Genetic Improvement, Beijing Municipality/China Agricultural University, Beijing, 100193, China
- National Plant Gene Research Centre, Beijing, 100193, China
| | - Lingling Chai
- State Key Laboratory for Agrobiotechnology/Key Laboratory of Crop Heterosis and Utilization, The Ministry of Education/Key Laboratory of Crop Genetic Improvement, Beijing Municipality/China Agricultural University, Beijing, 100193, China
- National Plant Gene Research Centre, Beijing, 100193, China
| | - Zhaoyan Chen
- State Key Laboratory for Agrobiotechnology/Key Laboratory of Crop Heterosis and Utilization, The Ministry of Education/Key Laboratory of Crop Genetic Improvement, Beijing Municipality/China Agricultural University, Beijing, 100193, China
- National Plant Gene Research Centre, Beijing, 100193, China
| | - Tianya Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Mingyi Zhang
- Dryland Agricultural Research Centre, Shanxi Academy of Agricultural Sciences, Taiyuan, 030031, China
| | - Mingshan You
- State Key Laboratory for Agrobiotechnology/Key Laboratory of Crop Heterosis and Utilization, The Ministry of Education/Key Laboratory of Crop Genetic Improvement, Beijing Municipality/China Agricultural University, Beijing, 100193, China
- National Plant Gene Research Centre, Beijing, 100193, China
| | - Huiru Peng
- State Key Laboratory for Agrobiotechnology/Key Laboratory of Crop Heterosis and Utilization, The Ministry of Education/Key Laboratory of Crop Genetic Improvement, Beijing Municipality/China Agricultural University, Beijing, 100193, China
- National Plant Gene Research Centre, Beijing, 100193, China
| | - Yingyin Yao
- State Key Laboratory for Agrobiotechnology/Key Laboratory of Crop Heterosis and Utilization, The Ministry of Education/Key Laboratory of Crop Genetic Improvement, Beijing Municipality/China Agricultural University, Beijing, 100193, China
- National Plant Gene Research Centre, Beijing, 100193, China
| | - Zhaorong Hu
- State Key Laboratory for Agrobiotechnology/Key Laboratory of Crop Heterosis and Utilization, The Ministry of Education/Key Laboratory of Crop Genetic Improvement, Beijing Municipality/China Agricultural University, Beijing, 100193, China
- National Plant Gene Research Centre, Beijing, 100193, China
| | - Mingming Xin
- State Key Laboratory for Agrobiotechnology/Key Laboratory of Crop Heterosis and Utilization, The Ministry of Education/Key Laboratory of Crop Genetic Improvement, Beijing Municipality/China Agricultural University, Beijing, 100193, China
- National Plant Gene Research Centre, Beijing, 100193, China
| | - Weilong Guo
- State Key Laboratory for Agrobiotechnology/Key Laboratory of Crop Heterosis and Utilization, The Ministry of Education/Key Laboratory of Crop Genetic Improvement, Beijing Municipality/China Agricultural University, Beijing, 100193, China
- National Plant Gene Research Centre, Beijing, 100193, China
| | - Qixin Sun
- State Key Laboratory for Agrobiotechnology/Key Laboratory of Crop Heterosis and Utilization, The Ministry of Education/Key Laboratory of Crop Genetic Improvement, Beijing Municipality/China Agricultural University, Beijing, 100193, China
- National Plant Gene Research Centre, Beijing, 100193, China
| | - Zhongfu Ni
- State Key Laboratory for Agrobiotechnology/Key Laboratory of Crop Heterosis and Utilization, The Ministry of Education/Key Laboratory of Crop Genetic Improvement, Beijing Municipality/China Agricultural University, Beijing, 100193, China.
- National Plant Gene Research Centre, Beijing, 100193, China.
| |
Collapse
|
9
|
Physical information of 2705 PCR-based molecular markers and the evaluation of their potential use in wheat. J Genet 2019. [DOI: 10.1007/s12041-019-1114-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
MusatransSSRDB (a transcriptome derived SSR database) – An advanced tool for banana improvement. J Biosci 2019. [DOI: 10.1007/s12038-018-9819-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Kumar S, Knox RE, Singh AK, DePauw RM, Campbell HL, Isidro-Sanchez J, Clarke FR, Pozniak CJ, N’Daye A, Meyer B, Sharpe A, Ruan Y, Cuthbert RD, Somers D, Fedak G. High-density genetic mapping of a major QTL for resistance to multiple races of loose smut in a tetraploid wheat cross. PLoS One 2018; 13:e0192261. [PMID: 29485999 PMCID: PMC5828438 DOI: 10.1371/journal.pone.0192261] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 01/19/2018] [Indexed: 11/28/2022] Open
Abstract
Loose smut, caused by Ustilago tritici (Pers.) Rostr., is a systemic disease of tetraploid durum wheat (Triticum turgidum L.). Loose smut can be economically controlled by growing resistant varieties, making it important to find and deploy new sources of resistance. Blackbird, a variety of T. turgidum L. subsp. carthlicum (Nevski) A. Love & D. Love, carries a high level of resistance to loose smut. Blackbird was crossed with the loose smut susceptible durum cultivar Strongfield to produce a doubled haploid (DH) mapping population. The parents and progenies were inoculated with U. tritici races T26, T32 and T33 individually and as a mixture at Swift Current, Canada in 2011 and 2012 and loose smut incidence (LSI) was assessed. Genotyping of the DH population and parents using an Infinium iSelect 90K single nucleotide polymorphism (SNP) array identified 12,952 polymorphic SNPs. The SNPs and 426 SSRs (previously genotyped in the same population) were mapped to 16 linkage groups spanning 3008.4 cM at an average inter-marker space of 0.2 cM in a high-density genetic map. Composite interval mapping analysis revealed three significant quantitative trait loci (QTL) for loose smut resistance on chromosomes 3A, 6B and 7A. The loose smut resistance QTL on 6B (QUt.spa-6B.2) and 7A (QUt.spa-7A.2) were derived from Blackbird. Strongfield contributed the minor QTL on 3A (QUt.spa-3A.2). The resistance on 6B was a stable major QTL effective against all individual races and the mixture of the three races; it explained up to 74% of the phenotypic variation. This study is the first attempt in durum wheat to identify and map loose smut resistance QTL using a high-density genetic map. The QTL QUt.spa-6B.2 would be an effective source for breeding resistance to multiple races of the loose smut pathogen because it provides near-complete broad resistance to the predominant virulence on the Canadian prairies.
Collapse
Affiliation(s)
- Sachin Kumar
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, Uttar Pradesh, India
- * E-mail: (RK); (SK)
| | - Ron E. Knox
- Swift Current Research and Development Centre, Agriculture and Agri-Food Canada, Swift Current, Saskatchewan, Canada
- * E-mail: (RK); (SK)
| | - Asheesh K. Singh
- 1501 Agronomy Hall, Iowa State University, Ames, Iowa, United States of America
| | - Ron M. DePauw
- Advancing Wheat Technology, Swift Current, Saskatchewan, Canada
| | - Heather L. Campbell
- Swift Current Research and Development Centre, Agriculture and Agri-Food Canada, Swift Current, Saskatchewan, Canada
| | - Julio Isidro-Sanchez
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland
| | - Fran R. Clarke
- Swift Current Research and Development Centre, Agriculture and Agri-Food Canada, Swift Current, Saskatchewan, Canada
| | - Curtis J. Pozniak
- Department of Plant Sciences and Crop Development Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Amidou N’Daye
- Department of Plant Sciences and Crop Development Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Brad Meyer
- Swift Current Research and Development Centre, Agriculture and Agri-Food Canada, Swift Current, Saskatchewan, Canada
| | - Andrew Sharpe
- Global Institute of Food Security, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Yuefeng Ruan
- Swift Current Research and Development Centre, Agriculture and Agri-Food Canada, Swift Current, Saskatchewan, Canada
| | - Richard D. Cuthbert
- Swift Current Research and Development Centre, Agriculture and Agri-Food Canada, Swift Current, Saskatchewan, Canada
| | - Daryl Somers
- Vineland Research and Innovation Centre, Vineland Station, Ontario, Canada
| | - George Fedak
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, Ontario, Canada
| |
Collapse
|
12
|
Nishijima R, Tanaka C, Yoshida K, Takumi S. Genetic mapping of a novel recessive allele for non-glaucousness in wild diploid wheat Aegilops tauschii: implications for the evolution of common wheat. Genetica 2018; 146:249-254. [PMID: 29397498 DOI: 10.1007/s10709-018-0012-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 01/31/2018] [Indexed: 11/29/2022]
Abstract
Cuticular wax on the aerial surface of plants has a protective function against many environmental stresses. The bluish-whitish appearance of wheat leaves and stems is called glaucousness. Most modern cultivars of polyploid wheat species exhibit the glaucous phenotype, while in a wild wheat progenitor, Ae. tauschii, both glaucous and non-glaucous accessions exist. Iw2, a wax inhibitor locus on the short arm of chromosome 2D, is the main contributor to this phenotypic variation in Ae. tauschii, and the glaucous/non-glaucous phenotype of Ae. tauschii is usually inherited by synthetic hexaploid wheat. However, a few synthetic lines show the glaucous phenotype although the parental Ae. tauschii accessions are non-glaucous. Molecular marker genotypes indicate that the exceptional non-glaucous Ae. tauschii accessions share the same genotype in the Iw2 chromosomal region as glaucous accessions, suggesting that these accessions have a different causal locus for their phenotype. This locus was assigned to the long arm of chromosome 3D using an F2 mapping population and designated W4, a novel glaucous locus in Ae. tauschii. The dominant W4 allele confers glaucousness, consistent with phenotypic observation of Ae. tauschii accessions and the derived synthetic lines. These results implied that glaucous accessions of Ae. tauschii with the W2W2iw2iw2W4W4 genotype could have been the D-genome donor of common wheat.
Collapse
Affiliation(s)
- Ryo Nishijima
- Graduate School of Agricultural Science, Kobe University, Rokkodai 1-1, Nada, Kobe, 657-8501, Japan
| | - Chisa Tanaka
- Graduate School of Agricultural Science, Kobe University, Rokkodai 1-1, Nada, Kobe, 657-8501, Japan
| | - Kentaro Yoshida
- Graduate School of Agricultural Science, Kobe University, Rokkodai 1-1, Nada, Kobe, 657-8501, Japan.,Japan Science and Technology Agency, PRESTO, Kawaguchi, Saitama, 332-0012, Japan
| | - Shigeo Takumi
- Graduate School of Agricultural Science, Kobe University, Rokkodai 1-1, Nada, Kobe, 657-8501, Japan.
| |
Collapse
|
13
|
Liu J, He Z, Wu L, Bai B, Wen W, Xie C, Xia X. Genome-wide linkage mapping of QTL for black point reaction in bread wheat (Triticum aestivum L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2016; 129:2179-2190. [PMID: 27531362 DOI: 10.1007/s00122-016-2766-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 07/30/2016] [Indexed: 05/23/2023]
Abstract
Nine QTL for black point resistance in wheat were identified using a RIL population derived from a Linmai 2/Zhong 892 cross and 90K SNP assay. Black point, discoloration of the embryo end of the grain, downgrades wheat grain quality leading to significant economic losses to the wheat industry. The availability of molecular markers will accelerate improvement of black point resistance in wheat breeding. The aims of this study were to identify quantitative trait loci (QTL) for black point resistance and tightly linked molecular markers, and to search for candidate genes using a high-density genetic linkage map of wheat. A recombinant inbred line (RIL) population derived from the cross Linmai 2/Zhong 892 was evaluated for black point reaction during the 2011-2012, 2012-2013 and 2013-2014 cropping seasons, providing data for seven environments. A high-density linkage map was constructed by genotyping the RILs with the wheat 90K single nucleotide polymorphism (SNP) chip. Composite interval mapping detected nine QTL on chromosomes 2AL, 2BL, 3AL, 3BL, 5AS, 6A, 7AL (2) and 7BS, designated as QBp.caas-2AL, QBp.caas-2BL, QBp.caas-3AL, QBp.caas-3BL, QBp.caas-5AS, QBp.caas-6A, QBp.caas-7AL.1, QBp.caas-7AL.2 and QBp.caas-7BS, respectively. All resistance alleles, except for QBp.caas-7AL.1 from Linmai 2, were contributed by Zhong 892. QBp.caas-3BL, QBp.caas-5AS, QBp.caas-7AL.1, QBp.caas-7AL.2 and QBp.caas-7BS probably represent new loci for black point resistance. Sequences of tightly linked SNPs were used to survey wheat and related cereal genomes identifying three candidate genes for black point resistance. The tightly linked SNP markers can be used in marker-assisted breeding in combination with the kompetitive allele specific PCR technique to improve black point resistance.
Collapse
Affiliation(s)
- Jindong Liu
- Institute of Crop Science, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
- Department of Plant Genetics and Breeding, State Key Laboratory for Agrobiotechnology, China Agricultural University, 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Zhonghu He
- Institute of Crop Science, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
- International Maize and Wheat Improvement Center (CIMMYT) China Office, c/o CAAS, 12 Zhongguancun South Street, Beijing, 100081, China
| | - Ling Wu
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, 20 Jingjusi Road, Chengdu, 610066, Sichuan, China
| | - Bin Bai
- Wheat Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou, 730070, Gansu, China
| | - Weie Wen
- Institute of Crop Science, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Chaojie Xie
- Department of Plant Genetics and Breeding, State Key Laboratory for Agrobiotechnology, China Agricultural University, 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Xianchun Xia
- Institute of Crop Science, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China.
| |
Collapse
|
14
|
Genotyping by Sequencing Using Specific Allelic Capture to Build a High-Density Genetic Map of Durum Wheat. PLoS One 2016; 11:e0154609. [PMID: 27171472 PMCID: PMC4865223 DOI: 10.1371/journal.pone.0154609] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 04/15/2016] [Indexed: 11/19/2022] Open
Abstract
Targeted sequence capture is a promising technology which helps reduce costs for sequencing and genotyping numerous genomic regions in large sets of individuals. Bait sequences are designed to capture specific alleles previously discovered in parents or reference populations. We studied a set of 135 RILs originating from a cross between an emmer cultivar (Dic2) and a recent durum elite cultivar (Silur). Six thousand sequence baits were designed to target Dic2 vs. Silur polymorphisms discovered in a previous RNAseq study. These baits were exposed to genomic DNA of the RIL population. Eighty percent of the targeted SNPs were recovered, 65% of which were of high quality and coverage. The final high density genetic map consisted of more than 3,000 markers, whose genetic and physical mapping were consistent with those obtained with large arrays.
Collapse
|
15
|
Volpicella M, Fanizza I, Leoni C, Gadaleta A, Nigro D, Gattulli B, Mangini G, Blanco A, Ceci LR. Identification and Characterization of the Sucrose Synthase 2 Gene (Sus2) in Durum Wheat. FRONTIERS IN PLANT SCIENCE 2016; 7:266. [PMID: 27014292 PMCID: PMC4785679 DOI: 10.3389/fpls.2016.00266] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 02/19/2016] [Indexed: 05/14/2023]
Abstract
Sucrose transport is the central system for the allocation of carbon resources in vascular plants. Sucrose synthase (SUS), which reversibly catalyzes sucrose synthesis and cleavage, represents a key enzyme in the control of the flow of carbon into starch biosynthesis. In the present study the genomic identification and characterization of the Sus2-2A and Sus2-2B genes coding for SUS in durum wheat (cultivars Ciccio and Svevo) is reported. The genes were analyzed for their expression in different tissues and at different seed maturation stages, in four tetraploid wheat genotypes (Svevo, Ciccio, Primadur, and 5-BIL42). The activity of the encoded proteins was evaluated by specific activity assays on endosperm extracts and their structure established by modeling approaches. The combined results of sucrose synthase 2 expression and activity levels were then considered in the light of their possible involvement in starch yield.
Collapse
Affiliation(s)
- Mariateresa Volpicella
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari “A. Moro”Bari, Italy
- *Correspondence: Mariateresa Volpicella,
| | - Immacolata Fanizza
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari “A. Moro”Bari, Italy
| | - Claudia Leoni
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari “A. Moro”Bari, Italy
| | - Agata Gadaleta
- Department of Agricultural and Environmental Sciences, University of Bari “A. Moro”Bari, Italy
| | - Domenica Nigro
- Department of Soil, Plant and Food Sciences Section Genetics and Plant Breeding, University of Bari “A. Moro”Bari, Italy
| | - Bruno Gattulli
- Institute of Biomembranes and Bioenergetics – National Research CouncilBari, Italy
| | - Giacomo Mangini
- Department of Soil, Plant and Food Sciences Section Genetics and Plant Breeding, University of Bari “A. Moro”Bari, Italy
| | - Antonio Blanco
- Department of Soil, Plant and Food Sciences Section Genetics and Plant Breeding, University of Bari “A. Moro”Bari, Italy
| | - Luigi R. Ceci
- Institute of Biomembranes and Bioenergetics – National Research CouncilBari, Italy
| |
Collapse
|
16
|
Pirseyedi SM, Somo M, Poudel RS, Cai X, McCallum B, Saville B, Fetch T, Chao S, Marais F. Characterization of recombinants of the Aegilops peregrina-derived Lr59 translocation of common wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2015; 128:2403-14. [PMID: 26239411 DOI: 10.1007/s00122-015-2594-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 07/23/2015] [Indexed: 05/26/2023]
Abstract
A compensating, recombined Lr59 translocation with greatly reduced alien chromatin was identified. Microsatellite locus Xdupw217 occurs within the remaining segment and can be used as a co-dominant marker for Lr59. In earlier studies, leaf rust (caused by Puccinia triticina Eriks.) resistance gene Lr59 was transferred from Aegilops peregrina (Hackel) Maire et Weiler to chromosome arm 1AL of common wheat (Triticum aestivum L.). The resistance gene was then genetically mapped on the translocated chromosome segment following homoeologous pairing induction. Eight recombinants that retained the least alien chromatin apparently resulted from crossover within a terminal region of the translocation that was structurally different from 1AL. These recombinants could not be differentiated by size, and it was not clear whether they were compensating in nature. The present study determined that the distal part of the original translocation has group 6 chromosome homoeology and a 6BS telomere (with the constitution of the full translocation chromosome being 1AS·1L(P)·6S(P) ·6BS). During the allosyndetic pairing induction experiment to map and shorten the full size translocation, a low frequency of quadrivalents involving 1A, the 1A translocation, and two 6B chromosomes was likely formed. Crossover within such quadrivalents apparently produced comparatively small compensating alien chromatin inserts within the 6BS satellite region on chromosome 6B of seven of the eight recombinants. It appears that the Gli-B2 storage protein locus on 6BS has not been affected by the recombination events, and the translocations are therefore not expected to affect baking quality. Simple sequence repeat marker results showed that Lr59-151 is the shortest recombinant, and it will therefore be used in breeding. Marker DUPW217 detects a homoeo-allele within the remaining alien chromatin that can be used for marker-assisted selection of Lr59.
Collapse
Affiliation(s)
| | - Mohamed Somo
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58108, USA
| | - Roshan Sharma Poudel
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58108, USA
| | - Xiwen Cai
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58108, USA
| | | | - Barry Saville
- Trent University, Peterborough, ON, K9J 7B8C, Canada
| | | | - Shiaoman Chao
- Agricultural Research Service Biosciences Research Laboratory, US Department of Agriculture, Fargo, ND, 58102, USA
| | - Francois Marais
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58108, USA.
| |
Collapse
|
17
|
Lu P, Qin J, Wang G, Wang L, Wang Z, Wu Q, Xie J, Liang Y, Wang Y, Zhang D, Sun Q, Liu Z. Comparative fine mapping of the Wax 1 (W1) locus in hexaploid wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2015; 128:1595-603. [PMID: 25957646 DOI: 10.1007/s00122-015-2534-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 05/02/2015] [Indexed: 05/14/2023]
Abstract
By applying comparative genomics analyses, a high-density genetic linkage map of the Wax 1 ( W1 ) locus was constructed as a framework for map-based cloning. Glaucousness is described as the scattering effect of visible light from wax deposited on the cuticle of plant aerial organs. In wheat, the wax on leaves and stems is mainly controlled by two sets of genes: glaucousness loci (W1 and W2) and non-glaucousness loci (Iw1 and Iw2). Bulked segregant analysis (BSA) and simple sequence repeat (SSR) mapping showed that Wax1 (W1) is located on chromosome arm 2BS between markers Xgwm210 and Xbarc35. By applying comparative genomics analyses, colinearity genomic regions of the W1 locus on wheat 2BS were identified in Brachypodium distachyon chromosome 5, rice chromosome 4 and sorghum chromosome 6, respectively. Four STS markers were developed using the Triticum aestivum cv. Chinese Spring 454 contig sequences and the International Wheat Genome Sequencing Consortium (IWGSC) survey sequences. W1 was mapped into a 0.93 cM genetic interval flanked by markers XWGGC3197 and XWGGC2484, which has synteny with genomic regions of 56.5 kb in Brachypodium, 390 kb in rice and 31.8 kb in sorghum. The fine genetic map can serve as a framework for chromosome landing, physical mapping and map-based cloning of the W1 in wheat.
Collapse
Affiliation(s)
- Ping Lu
- State Key Laboratory for Agrobiotechnology/Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Zhang Y, Chen Y, Wang R, Zeng A, Deyholos MK, Shu J, Guo H. Development of Microsatellite Markers Derived from Expressed Sequence Tags of Polyporales for Genetic Diversity Analysis of Endangered Polyporus umbellatus. BIOMED RESEARCH INTERNATIONAL 2015; 2015:941357. [PMID: 26146636 PMCID: PMC4469788 DOI: 10.1155/2015/941357] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 04/30/2015] [Accepted: 05/18/2015] [Indexed: 11/18/2022]
Abstract
A large scale of EST sequences of Polyporales was screened in this investigation in order to identify EST-SSR markers for various applications. The distribution of EST sequences and SSRs in five families of Polyporales was analyzed, respectively. Mononucleotide was the most abundant type, followed by trinucleotide. Among five families, Ganodermataceae occupied the most SSR markers, followed by Coriolaceae. Functional prediction of SSR marker-containing EST sequences in Ganoderma lucidum obtained three main groups, namely, cellular component, biological process, and molecular function. Thirty EST-SSR primers were designed to evaluate the genetic diversity of 13 natural Polyporus umbellatus accessions. Twenty one EST-SSRs were polymorphic with average PIC value of 0.33 and transferability rate of 71%. These 13 P. umbellatus accessions showed relatively high genetic diversity. The expected heterozygosity, Nei's gene diversity, and Shannon information index were 0.41, 0.39, and 0.57, respectively. Both UPGMA dendrogram and principal coordinate analysis (PCA) showed the same cluster result that divided the 13 accessions into three or four groups.
Collapse
Affiliation(s)
- Yuejin Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Yuanyuan Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Ruihong Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Ailin Zeng
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Michael K. Deyholos
- Department of Biology, The University of British Columbia Okanagan, Kelowna, BC, Canada V1V 1V7
| | - Jia Shu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Hongbo Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, China
- Department of Biology, The University of British Columbia Okanagan, Kelowna, BC, Canada V1V 1V7
| |
Collapse
|
19
|
Basnet BR, Singh S, Lopez-Vera EE, Huerta-Espino J, Bhavani S, Jin Y, Rouse MN, Singh RP. Molecular Mapping and Validation of SrND643: A New Wheat Gene for Resistance to the Stem Rust Pathogen Ug99 Race Group. PHYTOPATHOLOGY 2015; 105:470-6. [PMID: 25870921 DOI: 10.1094/phyto-01-14-0016-r] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
This study reports the identification of a new gene conferring resistance to the Ug99 lineage of races of Puccinia graminis f. sp. tritici in wheat (Triticum aestivum L.). Because the virulent races of stem rust pathogen continue to pose a serious threat in global wheat production, identification and molecular characterization of new resistance genes remains of utmost important to enhance resistance diversity and durability in wheat germplasm. Advanced wheat breeding line 'ND643/2*Weebill1' carries a stem rust resistance gene, temporarily designated as SrND643, effective against the Ug99 group of P. graminis f. sp. tritici races at both seedling and adult growth stages. This study was conducted to map the chromosomal location of SrND643 and identify closely linked molecular markers to allow its selection in breeding populations. In total, 123 recombinant inbred lines, developed by crossing ND643/2*Weebill1 with susceptible line 'Cacuke', were evaluated for stem rust response in field nurseries at Njoro, Kenya, during two growing seasons in 2010, and were genotyped with DNA markers, including Diversity Arrays Technology, simple sequence repeats (SSR), and single-nucleotide polymorphisms. Linkage mapping tagged SrND643 at the distal end of chromosome 4AL, showing close association with SSR markers Xgwm350 (0.5 centimorgans [cM]), Xwmc219 (4.1 cM), and Xwmc776 (2.9 cM). The race specificity of SrND643 is different from that of Sr7a and Sr7b, indicating that the resistance is conferred by a gene at a new locus or by a new allele of Sr7. The flanking markers Xgwm350 and Xwmc219 were predictive of the presence of SrND643 in advanced germplasm, thus validating the map location and their use in marker-assisted selection.
Collapse
Affiliation(s)
- Bhoja R Basnet
- First, second, third, and eighth authors: International Maize and Wheat Improvement Center (CIMMYT), Mexico D.F. 06600, Mexico; third author: CINVESTAV-IPN, Col. San Pedro Zacatenco, Mexico D.F. 07360, Mexico; fourth author: INIFAP CEVAMEX, Chapingo 56230, Edo. Mexico, Mexico; fifth author: CIMMYT, Nairobi, Kenya; and sixth and seventh authors: United States Department of Agriculture-Agricultural Research Service Cereal Disease Laboratory, St. Paul, MN 55108
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Maccaferri M, Cane' MA, Sanguineti MC, Salvi S, Colalongo MC, Massi A, Clarke F, Knox R, Pozniak CJ, Clarke JM, Fahima T, Dubcovsky J, Xu S, Ammar K, Karsai I, Vida G, Tuberosa R. A consensus framework map of durum wheat (Triticum durum Desf.) suitable for linkage disequilibrium analysis and genome-wide association mapping. BMC Genomics 2014; 15:873. [PMID: 25293821 PMCID: PMC4287192 DOI: 10.1186/1471-2164-15-873] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2014] [Accepted: 09/23/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Durum wheat (Triticum durum Desf.) is a tetraploid cereal grown in the medium to low-precipitation areas of the Mediterranean Basin, North America and South-West Asia. Genomics applications in durum wheat have the potential to boost exploitation of genetic resources and to advance understanding of the genetics of important complex traits (e.g. resilience to environmental and biotic stresses). A dense and accurate consensus map specific for T. durum will greatly facilitate genetic mapping, functional genomics and marker-assisted improvement. RESULTS High quality genotypic data from six core recombinant inbred line populations were used to obtain a consensus framework map of 598 simple sequence repeats (SSR) and Diversity Array Technology® (DArT) anchor markers (common across populations). Interpolation of unique markers from 14 maps allowed us to position a total of 2,575 markers in a consensus map of 2,463 cM. The T. durum A and B genomes were covered in their near totality based on the reference SSR hexaploid wheat map. The consensus locus order compared to those of the single component maps showed good correspondence, (average Spearman's rank correlation rho ρ value of 0.96). Differences in marker order and local recombination rate were observed between the durum and hexaploid wheat consensus maps. The consensus map was used to carry out a whole-genome search for genetic differentiation signatures and association to heading date in a panel of 183 accessions adapted to the Mediterranean areas. Linkage disequilibrium was found to decay below the r2 threshold=0.3 within 2.20 cM, on average. Strong molecular differentiations among sub-populations were mapped to 87 chromosome regions. A genome-wide association scan for heading date from 27 field trials in the Mediterranean Basin and in Mexico yielded 50 chromosome regions with evidences of association in multiple environments. CONCLUSIONS The consensus map presented here was used as a reference for genetic diversity and mapping analyses in T. durum, providing nearly complete genome coverage and even marker density. Markers previously mapped in hexaploid wheat constitute a strong link between the two species. The consensus map provides the basis for high-density single nucleotide polymorphic (SNP) marker implementation in durum wheat.
Collapse
Affiliation(s)
- Marco Maccaferri
- Department of Agricultural Sciences (DipSA), Viale Fanin 44, University of Bologna, 40127 Bologna, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Characterization of ferredoxin-dependent glutamine-oxoglutarate amidotransferase (Fd-GOGAT) genes and their relationship with grain protein content QTL in wheat. PLoS One 2014; 9:e103869. [PMID: 25099972 PMCID: PMC4123923 DOI: 10.1371/journal.pone.0103869] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 07/02/2014] [Indexed: 11/19/2022] Open
Abstract
Background In higher plants, inorganic nitrogen is assimilated via the glutamate synthase cycle or GS-GOGAT pathway. GOGAT enzyme occurs in two distinct forms that use NADH (NADH-GOGAT) or Fd (Fd-GOGAT) as electron carriers. The goal of the present study was to characterize wheat Fd-GOGAT genes and to assess the linkage with grain protein content (GPC), an important quantitative trait controlled by multiple genes. Results We report the complete genomic sequences of the three homoeologous A, B and D Fd-GOGAT genes from hexaploid wheat (Triticum aestivum) and their localization and characterization. The gene is comprised of 33 exons and 32 introns for all the three homoeologues genes. The three genes show the same exon/intron number and size, with the only exception of a series of indels in intronic regions. The partial sequence of the Fd-GOGAT gene located on A genome was determined in two durum wheat (Triticum turgidum ssp. durum) cvs Ciccio and Svevo, characterized by different grain protein content. Genomic differences allowed the gene mapping in the centromeric region of chromosome 2A. QTL analysis was conducted in the Svevo×Ciccio RIL mapping population, previously evaluated in 5 different environments. The study co-localized the Fd-GOGAT-A gene with the marker GWM-339, identifying a significant major QTL for GPC. Conclusions The wheat Fd-GOGAT genes are highly conserved; both among the three homoeologous hexaploid wheat genes and in comparison with other plants. In durum wheat, an association was shown between the Fd-GOGAT allele of cv Svevo with increasing GPC - potentially useful in breeding programs.
Collapse
|
22
|
Cui F, Fan X, Zhao C, Zhang W, Chen M, Ji J, Li J. A novel genetic map of wheat: utility for mapping QTL for yield under different nitrogen treatments. BMC Genet 2014; 15:57. [PMID: 24885313 PMCID: PMC4038385 DOI: 10.1186/1471-2156-15-57] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 05/09/2014] [Indexed: 12/11/2022] Open
Abstract
Background Common wheat (Triticum aestivum L.) is one of the most important food crops worldwide. Wheat varieties that maintain yield (YD) under moderate or even intense nitrogen (N) deficiency can adapt to low input management systems. A detailed genetic map is necessary for both wheat molecular breeding and genomics research. In this study, an F6:7 recombinant inbred line population comprising 188 lines was used to construct a novel genetic map and subsequently to detect quantitative trait loci (QTL) for YD and response to N stress. Results A genetic map consisting of 591 loci distributed across 21 wheat chromosomes was constructed. The map spanned 3930.7 cM, with one marker per 6.7 cM on average. Genomic simple sequence repeat (g-SSR), expressed sequence tag-derived microsatellite (e-SSR), diversity arrays technology (DArT), sequence-tagged sites (STS), sequence-related amplified polymorphism (SRAP), and inter-simple sequence repeat (ISSR) molecular markers were included in the map. The linear relationships between loci found in the present map and in previously compiled physical maps were presented, which were generally in accordance. Information on the genetic and physical positions and allele sizes (when possible) of 17 DArT, 50 e-SSR, 44 SRAP, five ISSR, and two morphological markers is reported here for the first time. Seven segregation distortion regions (SDR) were identified on chromosomes 1B, 3BL, 4AL, 6AS, 6AL, 6BL, and 7B. A total of 22 and 12 QTLs for YD and yield difference between the value (YDDV) under HN and the value under LN were identified, respectively. Of these, QYd-4B-2 and QYddv-4B, two major stable QTL, shared support interval with alleles from KN9204 increasing YD in LN and decreasing YDDV. We probe into the use of these QTLs in wheat breeding programs. Moreover, factors affecting the SDR and total map length are discussed in depth. Conclusions This novel map may facilitate the use of novel markers in wheat molecular breeding programs and genomics research. Moreover, QTLs for YD and YDDV provide useful markers for wheat molecular breeding programs designed to increase yield potential under N stress.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Junming Li
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050022, China.
| |
Collapse
|
23
|
Asadi AA, Rashidi Monfared S. Characterization of EST-SSR markers in durum wheat EST library and functional analysis of SSR-containing EST fragments. Mol Genet Genomics 2014; 289:625-40. [PMID: 24652471 DOI: 10.1007/s00438-014-0839-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Accepted: 03/01/2014] [Indexed: 11/28/2022]
Abstract
The goal of this study is to identify characterization of expressed sequence tag (EST)-simple sequence repeats (SSR) markers from EST library of durum wheat and functional analysis of SSR-containing EST sequences for application in comparative genomics and breeding. 19,141 sequences were analyzed among which 18,937 ESTs were selected. Consistent with MISA results, 313 EST-SSRs were yielded. The final EST-SSRs were compared to the GenBank non-redundant database using BLASTX and classified based on these functions. Results indicated that the perfect EST-SSRs are the most frequent. The TTG/CTG imperfect EST-SSR had gamma-gliadin putative function that can be appropriate for durum wheat. Also, the mononucleotides and trinucleotides were the most frequent. Findings suggested that the identified EST-SSRs could be categorized into 83 types. Motifs TTG in trinucleotides and TC in dinucleotides had the highest frequency. TTG is the new motif in durum wheat identified in this study. We identified new EST-SSRs with more than trinucleotide and detected motifs that have potential to code amino acids. Arginine was the most frequent amino acid. Enzymes had the highest frequency among predicted functions. EST-SSRs have been identified in this study can be used for developing ESS-SSR-based detection tool for durum wheat in future studies and will be a useful resource for molecular breeding, genetics, genomics, and environmental stress studies. Motifs coding amino acids could be used as a new source of functional markers and biological study. In addition to, designed new PCR primer pairs are new resources for to identify useful alleles in transcription factors, storage proteins, and enzymes which incorporated them again into the cultivated material.
Collapse
Affiliation(s)
- Ali Akbar Asadi
- Plant Breeding and Biotechnology Department, Agriculture College, Tarbiat Modares University, Tehran, Iran,
| | | |
Collapse
|
24
|
Abstract
Wheat is the most widely grown crop in the world and provides 20% of the daily protein and food calories for 4.5 billion people. Together with rice, it is the most important food crop in the developing world. In the last decades, various symptoms have been recorded across the population due to the consumption of wheat products, also summarized as “wheat allergy.” Wheat allergy is usually reported as a food allergy but can also be a contact allergy as a result of exposure to wheat. Several important wheat allergens have been characterized in the last years through biochemical, immunological, and molecular biological techniques. In the present work, the identification of allelic variation of genes involved in wheat allergy was reported. A collection of wheat genotypes was screened in order to identify new alleles. A total of 14 new alleles were identified forprofilin, triosephosphate-isomerase, dehydrin, glyceraldehyde-3-phosphate-dehydrogenase,α/βgliadin, GluB3-23,andGlutathione transferaseallergen genes (located on chromosomes 1B, 3B, 6A, and homoelogous groups 5 and 7), potentially related to a minor allergenicity and useful in breeding programs.
Collapse
|
25
|
Wu H, Qin J, Han J, Zhao X, Ouyang S, Liang Y, Zhang D, Wang Z, Wu Q, Xie J, Cui Y, Peng H, Sun Q, Liu Z. Comparative high-resolution mapping of the wax inhibitors Iw1 and Iw2 in hexaploid wheat. PLoS One 2013; 8:e84691. [PMID: 24376835 PMCID: PMC3871689 DOI: 10.1371/journal.pone.0084691] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2013] [Accepted: 11/25/2013] [Indexed: 01/16/2023] Open
Abstract
The wax (glaucousness) on wheat leaves and stems is mainly controlled by two sets of genes: glaucousness loci (W1 and W2) and non-glaucousness loci (Iw1 and Iw2). The non-glaucousness (Iw) loci act as inhibitors of the glaucousness loci (W). High-resolution comparative genetic linkage maps of the wax inhibitors Iw1 originating from Triticum dicoccoides, and Iw2 from Aegilops tauschii were developed by comparative genomics analyses of Brachypodium, sorghum and rice genomic sequences corresponding to the syntenic regions of the Iw loci in wheat. Eleven Iw1 and eight Iw2 linked EST markers were developed and mapped to linkage maps on the distal regions of chromosomes 2BS and 2DS, respectively. The Iw1 locus mapped within a 0.96 cM interval flanked by the BE498358 and CA499581 EST markers that are collinear with 122 kb, 202 kb, and 466 kb genomic regions in the Brachypodium 5S chromosome, the sorghum 6S chromosome and the rice 4S chromosome, respectively. The Iw2 locus was located in a 4.1 to 5.4-cM interval in chromosome 2DS that is flanked by the CJ886319 and CJ519831 EST markers, and this region is collinear with a 2.3 cM region spanning the Iw1 locus on chromosome 2BS. Both Iw1 and Iw2 co-segregated with the BF474014 and CJ876545 EST markers, indicating they are most likely orthologs on 2BS and 2DS. These high-resolution maps can serve as a framework for chromosome landing, physical mapping and map-based cloning of the wax inhibitors in wheat.
Collapse
Affiliation(s)
- Haibin Wu
- State Key Laboratory for Agrobiotechnology / Beijing Key Laboratory of Crop Genetic Improvement / Key Laboratory of Crop Heterosis Research & Utilization, Department of Plant Genetics & Breeding, China Agricultural University, Beijing, China
| | - Jinxia Qin
- State Key Laboratory for Agrobiotechnology / Beijing Key Laboratory of Crop Genetic Improvement / Key Laboratory of Crop Heterosis Research & Utilization, Department of Plant Genetics & Breeding, China Agricultural University, Beijing, China
| | - Jun Han
- State Key Laboratory for Agrobiotechnology / Beijing Key Laboratory of Crop Genetic Improvement / Key Laboratory of Crop Heterosis Research & Utilization, Department of Plant Genetics & Breeding, China Agricultural University, Beijing, China
- Plant Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Xiaojie Zhao
- State Key Laboratory for Agrobiotechnology / Beijing Key Laboratory of Crop Genetic Improvement / Key Laboratory of Crop Heterosis Research & Utilization, Department of Plant Genetics & Breeding, China Agricultural University, Beijing, China
| | - Shuhong Ouyang
- State Key Laboratory for Agrobiotechnology / Beijing Key Laboratory of Crop Genetic Improvement / Key Laboratory of Crop Heterosis Research & Utilization, Department of Plant Genetics & Breeding, China Agricultural University, Beijing, China
| | - Yong Liang
- State Key Laboratory for Agrobiotechnology / Beijing Key Laboratory of Crop Genetic Improvement / Key Laboratory of Crop Heterosis Research & Utilization, Department of Plant Genetics & Breeding, China Agricultural University, Beijing, China
| | - Dong Zhang
- State Key Laboratory for Agrobiotechnology / Beijing Key Laboratory of Crop Genetic Improvement / Key Laboratory of Crop Heterosis Research & Utilization, Department of Plant Genetics & Breeding, China Agricultural University, Beijing, China
| | - Zhenzhong Wang
- State Key Laboratory for Agrobiotechnology / Beijing Key Laboratory of Crop Genetic Improvement / Key Laboratory of Crop Heterosis Research & Utilization, Department of Plant Genetics & Breeding, China Agricultural University, Beijing, China
| | - Qiuhong Wu
- State Key Laboratory for Agrobiotechnology / Beijing Key Laboratory of Crop Genetic Improvement / Key Laboratory of Crop Heterosis Research & Utilization, Department of Plant Genetics & Breeding, China Agricultural University, Beijing, China
| | - Jingzhong Xie
- State Key Laboratory for Agrobiotechnology / Beijing Key Laboratory of Crop Genetic Improvement / Key Laboratory of Crop Heterosis Research & Utilization, Department of Plant Genetics & Breeding, China Agricultural University, Beijing, China
| | - Yu Cui
- State Key Laboratory for Agrobiotechnology / Beijing Key Laboratory of Crop Genetic Improvement / Key Laboratory of Crop Heterosis Research & Utilization, Department of Plant Genetics & Breeding, China Agricultural University, Beijing, China
| | - Huiru Peng
- State Key Laboratory for Agrobiotechnology / Beijing Key Laboratory of Crop Genetic Improvement / Key Laboratory of Crop Heterosis Research & Utilization, Department of Plant Genetics & Breeding, China Agricultural University, Beijing, China
| | - Qixin Sun
- State Key Laboratory for Agrobiotechnology / Beijing Key Laboratory of Crop Genetic Improvement / Key Laboratory of Crop Heterosis Research & Utilization, Department of Plant Genetics & Breeding, China Agricultural University, Beijing, China
| | - Zhiyong Liu
- State Key Laboratory for Agrobiotechnology / Beijing Key Laboratory of Crop Genetic Improvement / Key Laboratory of Crop Heterosis Research & Utilization, Department of Plant Genetics & Breeding, China Agricultural University, Beijing, China
| |
Collapse
|
26
|
Colasuonno P, Maria MA, Blanco A, Gadaleta A. Description of durum wheat linkage map and comparative sequence analysis of wheat mapped DArT markers with rice and Brachypodium genomes. BMC Genet 2013; 14:114. [PMID: 24304553 PMCID: PMC3866978 DOI: 10.1186/1471-2156-14-114] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 11/25/2013] [Indexed: 01/29/2023] Open
Abstract
Background The importance of wheat to the world economy, together with progresses in high-throughput next-generation DNA sequencing, have accelerated initiatives of genetic research for wheat improvement. The availability of high density linkage maps is crucial to identify genotype-phenotype associations, but also for anchoring BAC contigs to genetic maps, a strategy followed for sequencing the wheat genome. Results Here we report a genetic linkage map in a durum wheat segregating population and the study of mapped DArT markers. The linkage map consists of 126 gSSR, 31 EST-SSR and 351 DArT markers distributed in 24 linkage groups for a total length of 1,272 cM. Through bioinformatic approaches we have analysed 327 DArT clones to reveal their redundancy, syntenic and functional aspects. The DNA sequences of 174 DArT markers were assembled into a non-redundant set of 60 marker clusters. This explained the generation of clusters in very small chromosome regions across genomes. Of these DArT markers, 61 showed highly significant (Expectation < E-10) BLAST similarity to gene sequences in public databases of model species such as Brachypodium and rice. Based on sequence alignments, the analysis revealed a mosaic gene conservation, with 54 and 72 genes present in rice and Brachypodium species, respectively. Conclusions In the present manuscript we provide a detailed DArT markers characterization and the basis for future efforts in durum wheat map comparing.
Collapse
Affiliation(s)
| | | | | | - Agata Gadaleta
- Department of Soil, Plant and Food Sciences, University of Bari "Aldo Moro", Via Amendola 165/A, Bari 70126, Italy.
| |
Collapse
|
27
|
Nigro D, Gu YQ, Huo N, Marcotuli I, Blanco A, Gadaleta A, Anderson OD. Structural analysis of the wheat genes encoding NADH-dependent glutamine-2-oxoglutarate amidotransferases and correlation with grain protein content. PLoS One 2013; 8:e73751. [PMID: 24069228 PMCID: PMC3775782 DOI: 10.1371/journal.pone.0073751] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 07/21/2013] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Nitrogen uptake and the efficient absorption and metabolism of nitrogen are essential elements in attempts to breed improved cereal cultivars for grain or silage production. One of the enzymes related to nitrogen metabolism is glutamine-2-oxoglutarate amidotransferase (GOGAT). Together with glutamine synthetase (GS), GOGAT maintains the flow of nitrogen from NH4 (+) into glutamine and glutamate, which are then used for several aminotransferase reactions during amino acid synthesis. RESULTS The aim of the present work was to identify and analyse the structure of wheat NADH-GOGAT genomic sequences, and study the expression in two durum wheat cultivars characterized by low and high kernel protein content. The genomic sequences of the three homoeologous A, B and D NADH-GOGAT genes were obtained for hexaploid Triticum aestivum and the tetraploid A and B genes of Triticum turgidum ssp. durum. Analysis of the gene sequences indicates that all wheat NADH-GOGAT genes are composed of 22 exons and 21 introns. The three hexaploid wheat homoeologous genes have high conservation of sequence except intron 13 which shows differences in both length and sequence. A comparative analysis of sequences among di- and mono-cotyledonous plants shows both regions of high conservation and of divergence. qRT-PCR performed with the two durum wheat cvs Svevo and Ciccio (characterized by high and low protein content, respectively) indicates different expression levels of the two NADH-GOGAT-3A and NADH-GOGAT-3B genes. CONCLUSION The three hexaploid wheat homoeologous NADH-GOGAT gene sequences are highly conserved - consistent with the key metabolic role of this gene. However, the dicot and monocot amino acid sequences show distinctive patterns, particularly in the transit peptide, the exon 16-17 junction, and the C-terminus. The lack of conservation in the transit peptide may indicate subcellular differences between the two plant divisions - while the sequence conservation within enzyme functional domains remains high. Higher expression levels of NADH-GOGAT are associated with higher grain protein content in two durum wheats.
Collapse
Affiliation(s)
- Domenica Nigro
- Department of Soil, Plant and Food Sciences, Section of Genetic and Plant Breeding, University of Bari “Aldo Moro”, Bari, Italy
| | - Yong Q. Gu
- Genomics and Gene Discovery Research Unit, Western Regional Research Center, USDA-ARS, Albany, California, United States of America
| | - Naxin Huo
- Genomics and Gene Discovery Research Unit, Western Regional Research Center, USDA-ARS, Albany, California, United States of America
| | - Ilaria Marcotuli
- Department of Soil, Plant and Food Sciences, Section of Genetic and Plant Breeding, University of Bari “Aldo Moro”, Bari, Italy
| | - Antonio Blanco
- Department of Soil, Plant and Food Sciences, Section of Genetic and Plant Breeding, University of Bari “Aldo Moro”, Bari, Italy
| | - Agata Gadaleta
- Department of Soil, Plant and Food Sciences, Section of Genetic and Plant Breeding, University of Bari “Aldo Moro”, Bari, Italy
- * E-mail: (AG); (OA)
| | - Olin D. Anderson
- Genomics and Gene Discovery Research Unit, Western Regional Research Center, USDA-ARS, Albany, California, United States of America
- * E-mail: (AG); (OA)
| |
Collapse
|
28
|
Laidò G, Mangini G, Taranto F, Gadaleta A, Blanco A, Cattivelli L, Marone D, Mastrangelo AM, Papa R, De Vita P. Genetic Diversity and Population Structure of Tetraploid Wheats (Triticum turgidum L.) Estimated by SSR, DArT and Pedigree Data. PLoS One 2013; 8:e67280. [PMID: 23826256 PMCID: PMC3694930 DOI: 10.1371/journal.pone.0067280] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 05/17/2013] [Indexed: 11/24/2022] Open
Abstract
Levels of genetic diversity and population genetic structure of a collection of 230 accessions of seven tetraploid Triticum turgidum L. subspecies were investigated using six morphological, nine seed storage protein loci, 26 SSRs and 970 DArT markers. The genetic diversity of the morphological traits and seed storage proteins was always lower in the durum wheat compared to the wild and domesticated emmer. Using Bayesian clustering (K = 2), both of the sets of molecular markers distinguished the durum wheat cultivars from the other tetraploid subspecies, and two distinct subgroups were detected within the durum wheat subspecies, which is in agreement with their origin and year of release. The genetic diversity of morphological traits and seed storage proteins was always lower in the improved durum cultivars registered after 1990, than in the intermediate and older ones. This marked effect on diversity was not observed for molecular markers, where there was only a weak reduction. At K >2, the SSR markers showed a greater degree of resolution than for DArT, with their identification of a greater number of groups within each subspecies. Analysis of DArT marker differentiation between the wheat subspecies indicated outlier loci that are potentially linked to genes controlling some important agronomic traits. Among the 211 loci identified under selection, 109 markers were recently mapped, and some of these markers were clustered into specific regions on chromosome arms 2BL, 3BS and 4AL, where several genes/quantitative trait loci (QTLs) are involved in the domestication of tetraploid wheats, such as the tenacious glumes (Tg) and brittle rachis (Br) characteristics. On the basis of these results, it can be assumed that the population structure of the tetraploid wheat collection partially reflects the evolutionary history of Triticum turgidum L. subspecies and the genetic potential of landraces and wild accessions for the detection of unexplored alleles.
Collapse
Affiliation(s)
- Giovanni Laidò
- Consiglio per la Ricerca e la sperimentazione in Agricoltura, Cereal Research Centre, Foggia, Italy
| | - Giacomo Mangini
- Department of Soil, Plant, and Food Sciences, Section of Genetics and Plant Breeding, University of Bari, Via Amendola, Bari, Italy
| | - Francesca Taranto
- Department of Soil, Plant, and Food Sciences, Section of Genetics and Plant Breeding, University of Bari, Via Amendola, Bari, Italy
| | - Agata Gadaleta
- Department of Soil, Plant, and Food Sciences, Section of Genetics and Plant Breeding, University of Bari, Via Amendola, Bari, Italy
| | - Antonio Blanco
- Department of Soil, Plant, and Food Sciences, Section of Genetics and Plant Breeding, University of Bari, Via Amendola, Bari, Italy
| | - Luigi Cattivelli
- Consiglio per la Ricerca e la sperimentazione in Agricoltura, Cereal Research Centre, Foggia, Italy
| | - Daniela Marone
- Consiglio per la Ricerca e la sperimentazione in Agricoltura, Cereal Research Centre, Foggia, Italy
| | - Anna M. Mastrangelo
- Consiglio per la Ricerca e la sperimentazione in Agricoltura, Cereal Research Centre, Foggia, Italy
| | - Roberto Papa
- Consiglio per la Ricerca e la sperimentazione in Agricoltura, Cereal Research Centre, Foggia, Italy
| | - Pasquale De Vita
- Consiglio per la Ricerca e la sperimentazione in Agricoltura, Cereal Research Centre, Foggia, Italy
| |
Collapse
|
29
|
Philippe R, Paux E, Bertin I, Sourdille P, Choulet F, Laugier C, Šimková H, Šafář J, Bellec A, Vautrin S, Frenkel Z, Cattonaro F, Magni F, Scalabrin S, Martis MM, Mayer KFX, Korol A, Bergès H, Doležel J, Feuillet C. A high density physical map of chromosome 1BL supports evolutionary studies, map-based cloning and sequencing in wheat. Genome Biol 2013; 14:R64. [PMID: 23800011 PMCID: PMC4054855 DOI: 10.1186/gb-2013-14-6-r64] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 05/24/2013] [Accepted: 06/25/2013] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND As for other major crops, achieving a complete wheat genome sequence is essential for the application of genomics to breeding new and improved varieties. To overcome the complexities of the large, highly repetitive and hexaploid wheat genome, the International Wheat Genome Sequencing Consortium established a chromosome-based strategy that was validated by the construction of the physical map of chromosome 3B. Here, we present improved strategies for the construction of highly integrated and ordered wheat physical maps, using chromosome 1BL as a template, and illustrate their potential for evolutionary studies and map-based cloning. RESULTS Using a combination of novel high throughput marker assays and an assembly program, we developed a high quality physical map representing 93% of wheat chromosome 1BL, anchored and ordered with 5,489 markers including 1,161 genes. Analysis of the gene space organization and evolution revealed that gene distribution and conservation along the chromosome results from the superimposition of the ancestral grass and recent wheat evolutionary patterns, leading to a peak of synteny in the central part of the chromosome arm and an increased density of non-collinear genes towards the telomere. With a density of about 11 markers per Mb, the 1BL physical map provides 916 markers, including 193 genes, for fine mapping the 40 QTLs mapped on this chromosome. CONCLUSIONS Here, we demonstrate that high marker density physical maps can be developed in complex genomes such as wheat to accelerate map-based cloning, gain new insights into genome evolution, and provide a foundation for reference sequencing.
Collapse
Affiliation(s)
- Romain Philippe
- INRA-UBP UMR 1095 Genetics, Diversity and Ecophysiology of Cereals, 5 Chemin de Beaulieu 63039 Clermont-Ferrand, France
| | - Etienne Paux
- INRA-UBP UMR 1095 Genetics, Diversity and Ecophysiology of Cereals, 5 Chemin de Beaulieu 63039 Clermont-Ferrand, France
| | - Isabelle Bertin
- INRA-UBP UMR 1095 Genetics, Diversity and Ecophysiology of Cereals, 5 Chemin de Beaulieu 63039 Clermont-Ferrand, France
| | - Pierre Sourdille
- INRA-UBP UMR 1095 Genetics, Diversity and Ecophysiology of Cereals, 5 Chemin de Beaulieu 63039 Clermont-Ferrand, France
| | - Fréderic Choulet
- INRA-UBP UMR 1095 Genetics, Diversity and Ecophysiology of Cereals, 5 Chemin de Beaulieu 63039 Clermont-Ferrand, France
| | - Christel Laugier
- INRA-UBP UMR 1095 Genetics, Diversity and Ecophysiology of Cereals, 5 Chemin de Beaulieu 63039 Clermont-Ferrand, France
| | - Hana Šimková
- Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany, Sokolovska 6, CZ-77200 Olomouc, Czech Republic
| | - Jan Šafář
- Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany, Sokolovska 6, CZ-77200 Olomouc, Czech Republic
| | - Arnaud Bellec
- Centre National des Ressources Génomiques Végétales, INRA UPR 1258, 24 Chemin de Borde Rouge - Auzeville 31326 Castalnet Tolosan, France
| | - Sonia Vautrin
- Centre National des Ressources Génomiques Végétales, INRA UPR 1258, 24 Chemin de Borde Rouge - Auzeville 31326 Castalnet Tolosan, France
| | - Zeev Frenkel
- University of Haifa, Institute of Evolution and Department of Evolutionary and Environmental Biology, Haifa 31905, Israel
| | - Federica Cattonaro
- Instituto di Genomica Applicata, Via J. Linussio 51, Udine, 33100, Italy
| | - Federica Magni
- Instituto di Genomica Applicata, Via J. Linussio 51, Udine, 33100, Italy
| | - Simone Scalabrin
- Instituto di Genomica Applicata, Via J. Linussio 51, Udine, 33100, Italy
| | | | - Klaus FX Mayer
- MIPS/IBIS; Helmholtz-Zentrum München, 85764 Neuherberg, Germany
| | - Abraham Korol
- University of Haifa, Institute of Evolution and Department of Evolutionary and Environmental Biology, Haifa 31905, Israel
| | - Hélène Bergès
- Centre National des Ressources Génomiques Végétales, INRA UPR 1258, 24 Chemin de Borde Rouge - Auzeville 31326 Castalnet Tolosan, France
| | - Jaroslav Doležel
- Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany, Sokolovska 6, CZ-77200 Olomouc, Czech Republic
| | - Catherine Feuillet
- INRA-UBP UMR 1095 Genetics, Diversity and Ecophysiology of Cereals, 5 Chemin de Beaulieu 63039 Clermont-Ferrand, France
| |
Collapse
|
30
|
Marone D, Laidò G, Gadaleta A, Colasuonno P, Ficco DBM, Giancaspro A, Giove S, Panio G, Russo MA, De Vita P, Cattivelli L, Papa R, Blanco A, Mastrangelo AM. A high-density consensus map of A and B wheat genomes. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2012; 125:1619-38. [PMID: 22872151 PMCID: PMC3493672 DOI: 10.1007/s00122-012-1939-y] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Accepted: 07/03/2012] [Indexed: 05/18/2023]
Abstract
A durum wheat consensus linkage map was developed by combining segregation data from six mapping populations. All of the crosses were derived from durum wheat cultivars, except for one accession of T. ssp. dicoccoides. The consensus map was composed of 1,898 loci arranged into 27 linkage groups covering all 14 chromosomes. The length of the integrated map and the average marker distance were 3,058.6 and 1.6 cM, respectively. The order of the loci was generally in agreement with respect to the individual maps and with previously published maps. When the consensus map was aligned to the deletion bin map, 493 markers were assigned to specific bins. Segregation distortion was found across many durum wheat chromosomes, with a higher frequency for the B genome. This high-density consensus map allowed the scanning of the genome for chromosomal rearrangements occurring during the wheat evolution. Translocations and inversions that were already known in literature were confirmed, and new putative rearrangements are proposed. The consensus map herein described provides a more complete coverage of the durum wheat genome compared with previously developed maps. It also represents a step forward in durum wheat genomics and an essential tool for further research and studies on evolution of the wheat genome.
Collapse
Affiliation(s)
- Daniela Marone
- CRA-Cereal Research Centre, SS16 km 675, 71122 Foggia, Italy
| | - Giovanni Laidò
- CRA-Cereal Research Centre, SS16 km 675, 71122 Foggia, Italy
| | - Agata Gadaleta
- Department of Agro-Forestry and Environmental Biology and Chemistry, University of Bari, Via Amendola, 165/A, 70126 Bari, Italy
| | - Pasqualina Colasuonno
- Department of Agro-Forestry and Environmental Biology and Chemistry, University of Bari, Via Amendola, 165/A, 70126 Bari, Italy
| | | | - Angelica Giancaspro
- Department of Agro-Forestry and Environmental Biology and Chemistry, University of Bari, Via Amendola, 165/A, 70126 Bari, Italy
| | - Stefania Giove
- Department of Agro-Forestry and Environmental Biology and Chemistry, University of Bari, Via Amendola, 165/A, 70126 Bari, Italy
| | - Giosué Panio
- CRA-Cereal Research Centre, SS16 km 675, 71122 Foggia, Italy
| | - Maria A. Russo
- CRA-Cereal Research Centre, SS16 km 675, 71122 Foggia, Italy
| | | | - Luigi Cattivelli
- CRA-Cereal Research Centre, SS16 km 675, 71122 Foggia, Italy
- CRA-Genomics Research Centre, Via S. Protaso 302, 29017 Fiorenzuola d’Arda, PC Italy
| | - Roberto Papa
- CRA-Cereal Research Centre, SS16 km 675, 71122 Foggia, Italy
| | - Antonio Blanco
- Department of Agro-Forestry and Environmental Biology and Chemistry, University of Bari, Via Amendola, 165/A, 70126 Bari, Italy
| | | |
Collapse
|
31
|
Marone D, Panio G, Ficco DBM, Russo MA, De Vita P, Papa R, Rubiales D, Cattivelli L, Mastrangelo AM. Characterization of wheat DArT markers: genetic and functional features. Mol Genet Genomics 2012; 287:741-53. [DOI: 10.1007/s00438-012-0714-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 07/20/2012] [Indexed: 11/30/2022]
|
32
|
Antonyuk MZ, Prokopyk DO, Martynenko VS, Ternovska TK. Identification of the genes promoting awnedness in the Triticum Aestivum/Aegilops Umbellulata introgressive line. CYTOL GENET+ 2012. [DOI: 10.3103/s0095452712030024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
33
|
Gadaleta A, Giancaspro A, Giove SL, Zacheo S, Incerti O, Simeone R, Colasuonno P, Nigro D, Valè G, Cattivelli L, Stanca M, Blanco A. Development of a deletion and genetic linkage map for the 5A and 5B chromosomes of wheat (Triticum aestivum). Genome 2012; 55:417-27. [PMID: 22624876 DOI: 10.1139/g2012-028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The aims of the present study were to provide deletion maps for wheat ( Triticum aestivum L.) chromosomes 5A and 5B and a detailed genetic map of chromosome 5A enriched with popular microsatellite markers, which could be compared with other existing maps and useful for mapping major genes and quantitative traits loci (QTL). Physical mapping of 165 gSSR and EST-SSR markers was conducted by amplifying each primer pair on Chinese Spring, aneuploid lines, and deletion lines for the homoeologous group 5 chromosomes. A recombinant inbred line (RIL) mapping population that is recombinant for only chromosome 5A was obtained by crossing the wheat cultivar Chinese Spring and the disomic substitution line Chinese Spring-5A dicoccoides and was used to develop a genetic linkage map of chromosome 5A. A total of 67 markers were found polymorphic between the parental lines and were mapped in the RIL population. Sixty-three loci and the Q gene were clustered in three linkage groups ordered at a minimum LOD score of 5, while four loci remained unlinked. The whole genetic 5A chromosome map covered 420.2 cM, distributed among three linkage groups of 189.3, 35.4, and 195.5 cM. The EST sequences located on chromosomes 5A and 5B were used for comparative analysis against Brachypodium distachyon (L.) P. Beauv. and rice ( Oryza sativa L.) genomes to resolve orthologous relationships among the genomes of wheat and the two model species.
Collapse
Affiliation(s)
- A Gadaleta
- Department of Agro-Forestry and Environmental Biology and Chemistry, Section of Genetics and Plant Breeding, University of Bari Aldo Moro, Via Amendola 165/A, 70126 - Bari, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Sonnante G, Gatto A, Morgese A, Montemurro F, Sarli G, Blanco E, Pignone D. Genetic map of artichoke × wild cardoon: toward a consensus map for Cynara cardunculus. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2011; 123:1215-29. [PMID: 21800142 DOI: 10.1007/s00122-011-1661-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Accepted: 07/09/2011] [Indexed: 05/07/2023]
Abstract
An integrated consensus linkage map is proposed for globe artichoke. Maternal and paternal genetic maps were constructed on the basis of an F(1) progeny derived from crossing an artichoke genotype (Mola) with its progenitor, the wild cardoon (Tolfa), using EST-derived SSRs, genomic SSRs, AFLPs, ten genes, and two morphological traits. For most genes, mainly belonging to the chlorogenic acid pathway, new markers were developed. Five of these were SNP markers analyzed through high-resolution melt technology. From the maternal (Mola) and paternal (Tolfa) maps, an integrated map was obtained, containing 337 molecular and one morphological markers ordered in 17 linkage groups (LGs), linked between Mola and Tolfa. The integrated map covers 1,488.8 cM, with an average distance of 4.4 cM between markers. The map was aligned with already existing maps for artichoke, and 12 LGs were linked via 31 bridge markers. LG numbering has been proposed. A total of 124 EST-SSRs and two genes were mapped here for the first time, providing a framework for the construction of a functional map in artichoke. The establishment of a consensus map represents a necessary condition to plan a complete sequencing of the globe artichoke genome.
Collapse
Affiliation(s)
- Gabriella Sonnante
- Institute of Plant Genetics, National Research Council, Via Amendola, 165/A, 70126, Bari, Italy.
| | | | | | | | | | | | | |
Collapse
|
35
|
Blanco A, Colasuonno P, Gadaleta A, Mangini G, Schiavulli A, Simeone R, Digesù AM, De Vita P, Mastrangelo AM, Cattivelli L. Quantitative trait loci for yellow pigment concentration and individual carotenoid compounds in durum wheat. J Cereal Sci 2011. [DOI: 10.1016/j.jcs.2011.07.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
36
|
Gadaleta A, Nigro D, Giancaspro A, Blanco A. The glutamine synthetase (GS2) genes in relation to grain protein content of durum wheat. Funct Integr Genomics 2011; 11:665-70. [PMID: 21755355 DOI: 10.1007/s10142-011-0235-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Revised: 06/09/2011] [Accepted: 06/26/2011] [Indexed: 10/18/2022]
Abstract
Glutamine synthetase (GS2) is a key enzyme in plant nitrogen metabolism responsible of the first step of ammonium assimilation and transformation into glutamine (an essential compound in the amino acid-biosynthetic pathway). The goal of the present study was to isolate and characterize GS2 genes and to assess the linkage with grain protein content (GPC), an important quantitative trait controlled by multiple genes. Here, we report the isolation of the complete glutamine synthetase gene sequences and their localization on the two homeologous chromosome 2A and 2B in durum wheat cvs. Ciccio and Svevo characterized by a different grain protein content. GS2-A2 located on 2A chromosome is comprised of 13 exons separated by 12 introns, and the allele sequence in the two cultivars were different for an insertion of 5 bp located in the third exon in the cv. Ciccio. The GS2-B2 has the same intron/exon structure, but the two cultivars differ for the insertion of a 33-bp sequence located in the second intron of the cv. Svevo. Specific primers were designed in the polymorphic region and amplified in a recombinant inbred line mapping population. The study localized GS genes (GS2-A2, GS2-B2 GSe, GSr) on chromosomes 2A, 2B, 4A, and 4B, where four significant QTLs for GPC were also located.
Collapse
Affiliation(s)
- Agata Gadaleta
- Department of Agro-Forestry and Environmental Biology and Chemistry, University of Bari, Via Amendola 165/A, Bari, Italy.
| | | | | | | |
Collapse
|