1
|
Hussain S, Chang J, Li J, Chen L, Ahmad S, Song Z, Zhang B, Chen X. Multifunctional Role of Cytokinin in Horticultural Crops. Int J Mol Sci 2025; 26:1037. [PMID: 39940806 PMCID: PMC11816932 DOI: 10.3390/ijms26031037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/03/2025] [Accepted: 01/04/2025] [Indexed: 02/16/2025] Open
Abstract
Cytokinins (CKs) are a class of phytohormones identified in the early 1960s and are mainly responsible for stimulating cell division. Following the discovery, research to help understand the pluralistic roles of CKs in plant growth and stress biology increased. With their fascinating ability, CKs serve as an important element in regulating the defense-growth trade-off. Herein, we demonstrate how the CK fine-tuning the organogenesis of different parts of horticultural plants is discussed. CK's role in tailoring reproductive biology (flowering, sex differentiation, fruit set, and fruit attributes) has been presented. An extensive explanation of the CK-mediated response of horticultural crops to abiotic (temperature, drought, and salinity) and biotic stresses (fungal, bacterial, and nematodes) is provided. Finally, we posit the unexplored roles of CKs and highlight the research gaps worth addressing.
Collapse
Affiliation(s)
- Shahid Hussain
- Key Laboratory for New Technology Research of Vegetable, Vegetable Research Institute, Guangdong Academy of Agricultural Science, Guangzhou 510640, China; (S.H.); (J.C.); (J.L.); (L.C.); (Z.S.); (B.Z.)
| | - Jingjing Chang
- Key Laboratory for New Technology Research of Vegetable, Vegetable Research Institute, Guangdong Academy of Agricultural Science, Guangzhou 510640, China; (S.H.); (J.C.); (J.L.); (L.C.); (Z.S.); (B.Z.)
| | - Jing Li
- Key Laboratory for New Technology Research of Vegetable, Vegetable Research Institute, Guangdong Academy of Agricultural Science, Guangzhou 510640, China; (S.H.); (J.C.); (J.L.); (L.C.); (Z.S.); (B.Z.)
| | - Lei Chen
- Key Laboratory for New Technology Research of Vegetable, Vegetable Research Institute, Guangdong Academy of Agricultural Science, Guangzhou 510640, China; (S.H.); (J.C.); (J.L.); (L.C.); (Z.S.); (B.Z.)
| | - Sheraz Ahmad
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China;
| | - Zhao Song
- Key Laboratory for New Technology Research of Vegetable, Vegetable Research Institute, Guangdong Academy of Agricultural Science, Guangzhou 510640, China; (S.H.); (J.C.); (J.L.); (L.C.); (Z.S.); (B.Z.)
| | - Baige Zhang
- Key Laboratory for New Technology Research of Vegetable, Vegetable Research Institute, Guangdong Academy of Agricultural Science, Guangzhou 510640, China; (S.H.); (J.C.); (J.L.); (L.C.); (Z.S.); (B.Z.)
| | - Xiao Chen
- Key Laboratory for New Technology Research of Vegetable, Vegetable Research Institute, Guangdong Academy of Agricultural Science, Guangzhou 510640, China; (S.H.); (J.C.); (J.L.); (L.C.); (Z.S.); (B.Z.)
| |
Collapse
|
2
|
Zhang M, Song M, Cheng F, Han X, Cheng C, Yu X, Chen J, Lou Q. The mutation of ent-kaurenoic acid oxidase, a key enzyme involved in gibberellin biosynthesis, confers a dwarf phenotype to cucumber. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 138:12. [PMID: 39718570 DOI: 10.1007/s00122-024-04785-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 11/11/2024] [Indexed: 12/25/2024]
Abstract
KEY MESSAGE A dwarf mutant with short branches (csdf) was identified from EMS-induced mutagenesis. Bulked segregant analysis sequencing and map-based cloning revealed CsKAO encoding ent-kaurenoic acid oxidase as the causal gene. Plant architecture is the primary target of artificial selection during domestication and improvement based on the determinate function for fruit yield. Plant architecture is regulated by complicated genetic networks, more underlying mechanism remains to be elucidated. Here, we identified a dwarf mutant (csdf) in an EMS-induced cucumber population, and genetic analysis revealed the mutated phenotype is controlled by a single recessive gene. Optical microanalysis showed the decrease in cell length is mainly contribute to the dwarf phenotype. By strategy of BSA-seq combined with map-based cloning, CsaV3_6G006520 (CsKAO) on chromosome 6 was identified as the candidate gene for csdf. Gene cloning and sequence alignment revealed a G to A mutation in the sixth exon, which causes the premature stop codon in CsKAO of csdf. Expression analysis revealed CsKAO was expressed in various tissues with abundant transcripts, and has significant differences between WT and csdf. Gene annotation indicated CsKAO encodes a cytochrome P450 family ent-kaurenoic acid oxidase which functioned in GA biosynthesis. GA-relevant analysis showed that endogenous GA contents were significantly decreased and the dwarfism phenotype could be restored by exogenous GA3 treatment; while, some of the representative enzyme genes involved in the GA pathway were up-regulated in csdf. Besides, IAA content is decreased in the terminal bud and increased in the lateral bud in csdf as well as several IAA-related genes are differentially expressed. Overall, those findings suggest that CsKAO regulated plant height via the influence on GAs pathways, and IAA might interact with GAs on plant architecture morphogenesis in cucumber.
Collapse
Affiliation(s)
- Mengru Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street No.1, Nanjing, 210095, China
- College of Horticulture and Landscape, Henan Institute of Science and Technology, Xinxiang, China
| | - Mengfei Song
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street No.1, Nanjing, 210095, China
| | - Feng Cheng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street No.1, Nanjing, 210095, China
| | - Xiaoxu Han
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street No.1, Nanjing, 210095, China
| | - Chunyan Cheng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street No.1, Nanjing, 210095, China
| | - Xiaqing Yu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street No.1, Nanjing, 210095, China
| | - Jinfeng Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street No.1, Nanjing, 210095, China
| | - Qunfeng Lou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street No.1, Nanjing, 210095, China.
| |
Collapse
|
3
|
Zhang H, Luo Y, Zhen W, Li X, Liu M, Liu P, Zhang G, Chen P, Weng Y, Yue H, Li Y. Mutations in a Leucine-Rich Repeat Receptor-Like Kinase gene result in male sterility and reduction in the number and size of fruit warts in cucumber (Cucumis sativus L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 138:7. [PMID: 39666020 DOI: 10.1007/s00122-024-04790-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 11/20/2024] [Indexed: 12/13/2024]
Abstract
KEY MESSAGE Mutations in the CsEMS1 gene result in male sterility and reduced wart number and density. Male sterility and fruit wart formation are two significant agronomic characteristics in cucumber (Cucumis sativus), yet knowledge of our underlying genetics is limited. In this study, we identified an EMS-induced male sterility and few small warts mutant (msfsw). Histological observations revealed defects the absence of tapetum, meiotic aberration and impaired microspore formation in the anthers of the mutant. The mutant also exhibits a reduction in both the size and number of fruit spines and fruit tubercules. Genetic analysis revealed that a single recessive gene is responsible for the mutant phenotypes. BSA-Seq and fine genetic mapping mapped the msfsw locus to a 63.7 kb region with four predicted genes. Multiple lines of evidence support CsEMS1(CsaV3_3G016940) as the candidate for the mutant allele which encodes an LRR receptor-like kinase, and a non-synonymous SNP inside the exon of CsEMS1 is the causal polymorphisms for the mutant phenotypes. This function of CsEMS1 in determination of pollen fertility was confirmed with generation and characterization of multiple knockout mutations with CRISPR/Cas9 based gene editing. In the wild-type (WT) plants, CsEMS1 was highly expressed in male flowers. In the mutant, the expression level of CsEMS1, several tapetum identity-related genes, and trichome-related genes were all significantly reduced as compared with the wild-type. Protein-protein interaction assays revealed physical interactions between CsEMS1 and CsTPD1. Quantitation of endogenous phytohormones revealed a reduction in the ethylene precursor ACC in CsEMS1 knockout lines. This work identified an important role of CsEMS1 in anther and pollen development as well as fruit spine/wart development in cucumber.
Collapse
Affiliation(s)
- Haiqiang Zhang
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yanjie Luo
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Wenlong Zhen
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xin Li
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Mengying Liu
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Peng Liu
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Gaoyuan Zhang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, Gansu, China
| | - Peng Chen
- College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yiqun Weng
- USDA-ARS Vegetable Crops Research Unit, University of Wisconsin, Madison, WI, 53706, USA
| | - Hongzhong Yue
- Vegetable Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou, 730070, Gansu, China.
| | - Yuhong Li
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
4
|
Yane S, Zhuo D, Chengzhen S, Dun B, Haonan C. Cytokinin-related genes regulate cucumber fruit pedicel length. Sci Rep 2024; 14:23361. [PMID: 39375519 PMCID: PMC11458874 DOI: 10.1038/s41598-024-75186-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 10/03/2024] [Indexed: 10/09/2024] Open
Abstract
Pedicel length is a crucial agronomic trait of cucumbers. Fruit deformation can occur When the pedicel is too long or too short. Moreover, an appropriate pedicel length is advantageous for mechanized harvesting. Therefore, it is essential to investigate the molecular regulatory mechanisms underlying cucumber pedicel length. In the current study, we obtained a short pedicel mutant through EMS mutagenesis and discovered that the reduced cell number was the primary cause of the shortened pedicel. Upon analyzing the hormone content, we found that the level of trans zeatin in the long-pedicel material was significantly higher than that in the short-pedicel material. Further transcriptome sequencing analysis revealed that differentially expressed genes were enriched in cytokinin synthesis-related pathways. Based on these results, the present study concluded that cucumber pedicel length is regulated by genes related to the cytokinin synthesis pathway and that differences in length result from differences in zeatin content and cell number.
Collapse
Affiliation(s)
- Shi Yane
- College of Horticulture Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, 066000, China
- Hebei Key Laboratory of Horticultural Germplasm Excavation and Innovative Utilization, Qinhuangdao, 066000, China
- Hebei Higher Institute Application Technology Research and Development Center of Horticultural Plant Biological Breeding, Qinhuangdao, 066000, China
| | - Ding Zhuo
- College of Horticulture Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, 066000, China
- Hebei Key Laboratory of Horticultural Germplasm Excavation and Innovative Utilization, Qinhuangdao, 066000, China
- Hebei Higher Institute Application Technology Research and Development Center of Horticultural Plant Biological Breeding, Qinhuangdao, 066000, China
| | - Sun Chengzhen
- College of Horticulture Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, 066000, China
- Hebei Key Laboratory of Horticultural Germplasm Excavation and Innovative Utilization, Qinhuangdao, 066000, China
- Hebei Higher Institute Application Technology Research and Development Center of Horticultural Plant Biological Breeding, Qinhuangdao, 066000, China
| | - Ba Dun
- College of Horticulture Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, 066000, China
- Hebei Key Laboratory of Horticultural Germplasm Excavation and Innovative Utilization, Qinhuangdao, 066000, China
- Hebei Higher Institute Application Technology Research and Development Center of Horticultural Plant Biological Breeding, Qinhuangdao, 066000, China
| | - Cui Haonan
- College of Horticulture Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, 066000, China.
- Hebei Key Laboratory of Horticultural Germplasm Excavation and Innovative Utilization, Qinhuangdao, 066000, China.
- Hebei Higher Institute Application Technology Research and Development Center of Horticultural Plant Biological Breeding, Qinhuangdao, 066000, China.
| |
Collapse
|
5
|
Yang S, Amanullah S, Duan Y, Guo Y, Xu M, Bao X, An B, Yuan C, Liu X, Liu J, Gao Y, Zhao W, Li X, Gao M. Fine genetic mapping and transcriptomic analysis revealed major gene modulating the clear stripe margin pattern of watermelon peel. FRONTIERS IN PLANT SCIENCE 2024; 15:1462141. [PMID: 39297011 PMCID: PMC11409187 DOI: 10.3389/fpls.2024.1462141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 08/12/2024] [Indexed: 09/21/2024]
Abstract
The peel stripe margin pattern is one of the most important quality traits of watermelon. In this study, two contrasted watermelon lines [slb line (P1) with a clear peel stripe margin pattern and GWAS-38 line (P2) with a blurred peel stripe margin pattern] were crossed, and biparental F2 mapping populations were developed. Genetic segregation analysis revealed that a single recessive gene is modulating the main-effect genetic locus (Clcsm) of the clear stripe margin pattern of peel. Bulked segregant analysis-based sequencing (BSA-Seq) and fine genetic mapping exposed the delimited Clcsm locus to a 19.686-kb interval on chromosome 6, and the Cla97C06G126680 gene encoding the MYB transcription factor family was identified. The gene mutation analysis showed that two non-synonymous single-nucleotide polymorphism (nsSNP) sites [Chr6:28438793 (A-T) and Chr6:28438845 (A-C)] contribute to the clear peel stripe margin pattern, and quantitative real-time polymerase chain reaction (qRT-PCR) also showed a higher expression trend in the slb line than in the GWAS-38 line. Further, comparative transcriptomic analysis identified major differentially expressed genes (DEGs) in three developmental periods [4, 12, and 20 days after pollination (DAP)] of both parental lines. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) functional enrichment analyses indicated highly enriched DEGs involved in metabolic processes and catalytic activity. A total of 44 transcription factor families and candidate genes belonging to the ARR-B transcription factor family are believed to regulate the clear stripe margin trait of watermelon peel. The gene structure, sequence polymorphism, and expression trends depicted significant differences in the peel stripe margin pattern of both parental lines. The ClMYB36 gene showed a higher expression trend for regulating the clear peel stripe margin of the slb line, and the ClAPRR5 gene depicted a higher expression for modulating the blurred peel stripe margin in the GWAS-38 line. Overall, our fine genetic mapping and transcriptomic analysis revealed candidate genes differentiating the clear and blurred peel stripe patterns of watermelon fruit.
Collapse
Affiliation(s)
- Shao Yang
- College of Life Science, Agriculture and Forestry, Qiqihar University, Qiqihar, China
| | - Sikandar Amanullah
- Department of Horticultural Science, North Carolina State University, Mountain Horticultural Crops Research and Extension Center, Mills River, NC, United States
| | - Yaru Duan
- College of Life Science, Agriculture and Forestry, Qiqihar University, Qiqihar, China
| | - Yu Guo
- College of Life Science, Agriculture and Forestry, Qiqihar University, Qiqihar, China
| | - Ming Xu
- College of Life Science, Agriculture and Forestry, Qiqihar University, Qiqihar, China
| | - Xiuping Bao
- College of Life Science, Agriculture and Forestry, Qiqihar University, Qiqihar, China
| | - Bohan An
- College of Life Science, Agriculture and Forestry, Qiqihar University, Qiqihar, China
| | - Chengzhi Yuan
- College of Life Science, Agriculture and Forestry, Qiqihar University, Qiqihar, China
| | - Xiujie Liu
- Qiqihar Agricultural Technology Extension Center, Qiqihar, China
| | - Jixiu Liu
- Qiqihar Agricultural Technology Extension Center, Qiqihar, China
| | - Yue Gao
- Qiqihar Agricultural Technology Extension Center, Qiqihar, China
| | - Wen Zhao
- Qiqihar Agricultural Technology Extension Center, Qiqihar, China
| | - Xinyuan Li
- College of Life Science, Agriculture and Forestry, Qiqihar University, Qiqihar, China
| | - Meiling Gao
- College of Life Science, Agriculture and Forestry, Qiqihar University, Qiqihar, China
- Heilongjiang Provincial Key Laboratory of Resistance Gene Engineering and Protection of Biodiversity in Cold Areas, Qiqihar, China
| |
Collapse
|
6
|
Sun Y, Zhou K, Wang X, Li X, Zhang X, Han N, Zhang J, Chen S. Identification and characterization of CsERECTA, a major gene controlling stem elongation through regulating GA biosynthesis in cucumber. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:151. [PMID: 38849610 DOI: 10.1007/s00122-024-04660-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 05/25/2024] [Indexed: 06/09/2024]
Abstract
Dwarfing is an ideal agronomic trait in crop breeding, which can improve lodging resistance and increase crop productivity. In this study, we identified a dwarf mutant cp-3 from an EMS-mutagenized population, which had extremely short internodes, and the cell length and number of internodes were significantly reduced. Meanwhile, exogenous GA3 treatment partially rescued the plant height of the cp-3. Inheritance analysis showed that the cp-3 mutant was regulated via a recessive nuclear locus. A candidate gene, CsERECTA, encoding an LRR receptor-like serine/threonine-protein kinase, was cloned through a map-based cloning strategy. Sequence analysis showed that a nucleotide mutation (C ~ T) in exon 26 of CsERECTA led to premature termination of the protein. Subsequently, two transgenic lines were generated using the CRISPR/Cas9 system, and they showed plant dwarfing. Plant endogenous hormones quantitative and RNA-sequencing analysis revealed that GA3 content and the expression levels of genes related to GA biosynthesis were significantly reduced in Cser knockout mutants. Meanwhile, exogenous GA3 treatment partially rescued the dwarf phenotype of Cser knockout mutants. These findings revealed that CsERECTA controls stem elongation by regulating GA biosynthesis in cucumber.
Collapse
Affiliation(s)
- Yinhui Sun
- College of Horticulture, Northwest A&F University, Yangling, China
- Shaanxi Engineering Research Center for Vegetables, Yangling, 712100, China
| | - Keke Zhou
- College of Horticulture, Northwest A&F University, Yangling, China
- Shaanxi Engineering Research Center for Vegetables, Yangling, 712100, China
| | - Xin Wang
- College of Horticulture, Northwest A&F University, Yangling, China
- Shaanxi Engineering Research Center for Vegetables, Yangling, 712100, China
| | - Xuzhen Li
- College of Horticulture, Northwest A&F University, Yangling, China
- Shaanxi Engineering Research Center for Vegetables, Yangling, 712100, China
| | - Xiaojiang Zhang
- College of Horticulture, Northwest A&F University, Yangling, China
- Shaanxi Engineering Research Center for Vegetables, Yangling, 712100, China
| | - Ni Han
- College of Horticulture, Northwest A&F University, Yangling, China
- Shaanxi Engineering Research Center for Vegetables, Yangling, 712100, China
| | - Jie Zhang
- College of Horticulture, Northwest A&F University, Yangling, China
- Shaanxi Engineering Research Center for Vegetables, Yangling, 712100, China
| | - Shuxia Chen
- College of Horticulture, Northwest A&F University, Yangling, China.
- Shaanxi Engineering Research Center for Vegetables, Yangling, 712100, China.
| |
Collapse
|
7
|
Liu M, Li Z, Kang Y, Lv J, Jin Z, Mu S, Yue H, Li L, Chen P, Li Y. A mutation in CsGME encoding GDP-mannose 3,5-epimerase results in little and wrinkled leaf in cucumber. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:114. [PMID: 38678513 DOI: 10.1007/s00122-024-04600-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 03/13/2024] [Indexed: 05/01/2024]
Abstract
KEY MESSAGE Map-based cloning revealed that a mutation in a highly conserved amino acid of the CsGME gene encoding GDP-mannose 3,5-epimerase, causes the phenotype of little and wrinkled leaves in cucumbers. Leaf size is a critical determinant of plant architecture in cucumbers, yet only a few genes associated with this trait have been mapped or cloned. Here, we identified and characterized a mutant with little and wrinkled leaves, named lwl-1. Genetic analysis revealed that the phenotype of the lwl-1 was controlled by a single recessive gene. Through map-based cloning, the lwl-1 locus was narrowed down to a 12.22-kb region exclusively containing one fully annotated gene CsGME (CsaV3_2G004170). CsGME encodes GDP-mannose 3,5-epimerase, which is involved in the synthesis of ascorbic acid (ASA) and one of the components of pectin, RG-II. Whole-length sequencing of the 12.22 kb DNA fragment revealed the presence of only a non-synonymous mutation located in the sixth exon of CsGME in lwl-1, resulting in an amino acid alteration from Pro363 to Leu363. This mutation was unique among 118 inbred lines from cucumber natural populations. CsGME expression significantly reduced in various organs of lwl-1, accompanied by a significant decrease in ASA and pectin content in leaves. Both CsGME and Csgme proteins were localized to the cytoplasm. The mutant phenotype exhibited partial recovery after the application of exogenous boric acid. Silencing CsGME in cucumber through VIGS confirmed its role as the causal gene for lwl-1. Transcriptome profiling revealed that CsGME greatly affected the expression of genes related to the cell division process and cell plate formation. This study represents the first report to characterize and clone the CsGME in cucumber, indicating its crucial role in regulating leaf size and development.
Collapse
Affiliation(s)
- Mengying Liu
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Zhaowei Li
- College of Life Science, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yunfeng Kang
- College of Life Science, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jinzhao Lv
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Zhuoshuai Jin
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Siyu Mu
- College of Life Science, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Hongzhong Yue
- Vegetable Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou, 730070, Gansu, China
| | - Lixia Li
- College of Horticulture, Shanxi Agricultural University, Taigu, 030801, China
| | - Peng Chen
- College of Life Science, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Yuhong Li
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
8
|
Zhang H, Liu Z, Wang Y, Mu S, Yue H, Luo Y, Zhang Z, Li Y, Chen P. A mutation in CsDWF7 gene encoding a delta7 sterol C-5(6) desaturase leads to the phenotype of super compact in cucumber (Cucumis sativus L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:20. [PMID: 38221593 DOI: 10.1007/s00122-023-04518-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/07/2023] [Indexed: 01/16/2024]
Abstract
KEY MESSAGE A novel super compact mutant, scp-3, was identified using map-based cloning in cucumber. The CsDWF7 gene encoding a delta7 sterol C-5(6) desaturase was the candidate gene of scp-3. Mining dwarf genes is important in understanding stem growth in crops. However, only a small number of dwarf genes have been cloned or characterized. Here, we characterized a cucumber (Cucumis sativus L.) dwarf mutant, super compact 3 (scp-3), which displays shortened internodes and dark green leaves with a wrinkled appearance. The photosynthetic rate of scp-3 is significantly lower than that of the wild type. The dwarf phenotype of scp-3 mutant can be partially rescued by the exogenous brassinolide (BL) application, and the endogenous brassinosteroids (BRs) levels in the scp-3 mutant were significantly lower compared to the wild type. Microscopic examination revealed that the reduced internode length in scp-3 resulted from a decrease in cell size. Genetic analysis showed that the dwarf phenotype of scp-3 was controlled by a single recessive gene. Combined with bulked segregant analysis and map-based cloning strategy, we delimited scp-3 locus into an 82.5 kb region harboring five putative genes, but only one non-synonymous mutation (A to T) was discovered between the mutant and its wild type in this region. This mutation occurred within the second exon of the CsGy4G017510 gene, leading to an amino acid alteration from Leu156 to His156. This gene encodes the CsDWF7 protein, an analog of the Arabidopsis DWF7 protein, which is known to be involved in the biosynthesis of BRs. The CsDWF7 protein was targeted to the cell membrane. In comparison to the wild type, scp-3 exhibited reduced CsDWF7 expression in different tissues. These findings imply that CsDWF7 is essential for both BR biosynthesis as well as growth and development of cucumber plants.
Collapse
Affiliation(s)
- Haiqiang Zhang
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Zichen Liu
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yunxiao Wang
- College of Life Science, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Siyu Mu
- College of Life Science, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Hongzhong Yue
- Vegetable Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou, 730070, Gansu, China
| | - Yanjie Luo
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Zhengao Zhang
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yuhong Li
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Peng Chen
- College of Life Science, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
9
|
Shahwar D, Khan Z, Park Y. Molecular Marker-Assisted Mapping, Candidate Gene Identification, and Breeding in Melon ( Cucumis melo L.): A Review. Int J Mol Sci 2023; 24:15490. [PMID: 37895169 PMCID: PMC10607903 DOI: 10.3390/ijms242015490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/18/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
Melon (Cucumis melo L.) is an important crop that is cultivated worldwide for its fleshy fruit. Understanding the genetic basis of a plant's qualitative and quantitative traits is essential for developing consumer-favored varieties. This review presents genetic and molecular advances related to qualitative and quantitative phenotypic traits and biochemical compounds in melons. This information guides trait incorporation and the production of novel varieties with desirable horticultural and economic characteristics and yield performance. This review summarizes the quantitative trait loci, candidate genes, and development of molecular markers related to plant architecture, branching patterns, floral attributes (sex expression and male sterility), fruit attributes (shape, rind and flesh color, yield, biochemical compounds, sugar content, and netting), and seed attributes (seed coat color and size). The findings discussed in this review will enhance demand-driven breeding to produce cultivars that benefit consumers and melon breeders.
Collapse
Affiliation(s)
- Durre Shahwar
- Department of Horticultural Bioscience, Pusan National University, Miryang 50463, Republic of Korea;
| | - Zeba Khan
- Center for Agricultural Education, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh 202002, India;
| | - Younghoon Park
- Department of Horticultural Bioscience, Pusan National University, Miryang 50463, Republic of Korea;
- Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Republic of Korea
| |
Collapse
|
10
|
Liang X, Li Q, Cao L, Du X, Qiang J, Hou J, Li X, Zhu H, Yang S, Liu D, Zhu L, Yang L, Wang P, Hu J. Natural allelic variation in the EamA-like transporter, CmSN, is associated with fruit skin netting in melon. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:192. [PMID: 37603118 DOI: 10.1007/s00122-023-04443-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/08/2023] [Indexed: 08/22/2023]
Abstract
KEY MESSAGE A SNP mutation in CmSN, encoding an EamA-like transporter, is responsible for fruit skin netting in melon. In maturing melon (Cucumis melo L.), the rind becomes reticulated or netted, a unique characteristic that dramatically changes the appearance of the fruit. However, little is known about the molecular basis of fruit skin netting formation in this important cucurbit crop. Here, we conducted map-based cloning of a skin netting (CmSN) locus using segregating populations derived from the cross between the smooth-fruit line H906 and the netted-fruit line H581. The results showed that CmSN was controlled by a single dominant gene and was primarily positioned on melon chromosome 2, within a physical interval of ~ 351 kb. Further fine mapping in a large F2 population narrowed this region to a 71-kb region harboring 5 genes. MELO3C010288, which encodes a protein in the EamA-like transporter family, is the best possible candidate gene for the netted phenotype. Two nonsynonymous single nucleotide polymorphisms (SNPs) were identified in the third and sixth exons of the CmSN gene and co-segregated with the skin netting (SN) phenotype among the genetic population. A genome-wide association study (GWAS) determined that CmSN is probably a domestication gene under selective pressure during the subspecies C. melo subsp. melo differentiation. The SNP in the third exon of CmSN (the leading SNP in GWAS) revealed a bi-allelic diversity in natural accessions with SN traits. Our results lay a foundation for deciphering the molecular mechanism underlying the formation of fruit skin netting in melon, as well as provide a strategy for genetic improvement of netted fruit using a marker-assisted selection approach.
Collapse
Affiliation(s)
- Xiaoxue Liang
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450002, China
| | - Qiong Li
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450002, China
| | - Lei Cao
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450002, China
| | - Xuanyu Du
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450002, China
| | - Junhao Qiang
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450002, China
| | - Juan Hou
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450002, China
- Henan Engineering Center for Cucurbit Germplasm Enhancement and Utilization, Zhengzhou, 450002, China
| | - Xiang Li
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450002, China
- Henan Engineering Center for Cucurbit Germplasm Enhancement and Utilization, Zhengzhou, 450002, China
| | - Huayu Zhu
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450002, China
- Henan Engineering Center for Cucurbit Germplasm Enhancement and Utilization, Zhengzhou, 450002, China
| | - Sen Yang
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450002, China
- Henan Engineering Center for Cucurbit Germplasm Enhancement and Utilization, Zhengzhou, 450002, China
| | - Dongming Liu
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450002, China
- Henan Engineering Center for Cucurbit Germplasm Enhancement and Utilization, Zhengzhou, 450002, China
| | - Lei Zhu
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450002, China
- Henan Engineering Center for Cucurbit Germplasm Enhancement and Utilization, Zhengzhou, 450002, China
| | - Luming Yang
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450002, China
- Henan Engineering Center for Cucurbit Germplasm Enhancement and Utilization, Zhengzhou, 450002, China
| | - Panqiao Wang
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450002, China.
- Henan Engineering Center for Cucurbit Germplasm Enhancement and Utilization, Zhengzhou, 450002, China.
| | - Jianbin Hu
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450002, China.
- Henan Engineering Center for Cucurbit Germplasm Enhancement and Utilization, Zhengzhou, 450002, China.
| |
Collapse
|
11
|
Chen F, Yong J, Zhang G, Liu M, Wang Q, Zhong H, Pan Y, Chen P, Weng Y, Li Y. An LTR retrotransposon insertion inside CsERECTA for an LRR receptor-like serine/threonine-protein kinase results in compact (cp) plant architecture in cucumber. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:31. [PMID: 36894705 DOI: 10.1007/s00122-023-04273-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 11/26/2022] [Indexed: 06/18/2023]
Abstract
The compact (cp) phenotype in cucumber (Cucumis sativus L.) is an important plant architecture-related trait with a great potential for cucumber improvement. In this study, we conducted map-based cloning of the cp locus, identified and functionally characterized the candidate gene. Comparative microscopic analysis suggested that the short internode in the cp mutant is due to fewer cell numbers. Fine genetic mapping delimited cp into an 8.8-kb region on chromosome 4 harboring only one gene, CsERECTA (CsER) that encodes a leucine-rich repeat receptor-like kinase. A 5.5-kb insertion of a long terminal repeat retrotransposon in the 22nd exon resulted in loss-of-function of CsER in the cp plant. Spatiotemporal expression analysis in cucumber and CsER promoter-driven GUS assays in Arabidopsis indicated that CsER was highly expressed in the stem apical meristem and young organs, but the expression level was similar in the wild type and mutant cucumber plants. However, CsER protein accumulation was reduced in the mutant as revealed by western hybridization. The mutation in cp also did not seem to affect self-association of CsER for formation of dimers. Ectopic expression of CsER in Arabidopsis was able to rescue the plant height of the loss-of-function AtERECTA mutant, whereas the compact inflorescence and small rosette leaves of the mutant could be partially recovered. Transcriptome profiling in the mutant and wild type cucumber plants revealed hormone biosynthesis/signaling, and photosynthesis pathways associated with CsER-dependent regulatory network. Our work provides new insights for the use of cp in cucumber breeding.
Collapse
Affiliation(s)
- Feifan Chen
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Horticulture Department, University of Wisconsin, Madison, WI, 53706, USA
| | - Jianpeng Yong
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Gaoyuan Zhang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, Gansu, China
| | - Mengying Liu
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Qiqi Wang
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Huili Zhong
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yupeng Pan
- Horticulture Department, University of Wisconsin, Madison, WI, 53706, USA
| | - Peng Chen
- College of Life Science, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yiqun Weng
- Horticulture Department, University of Wisconsin, Madison, WI, 53706, USA.
- USDA-ARS Vegetable Crops Research Unit, Madison, WI, 53705, USA.
| | - Yuhong Li
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
12
|
Xu X, Hu Q, Wang J, Wang X, Lou L, Xu J, Yang X, Chen X. A 2-bp deletion in the protein kinase domain region of the ERECTA-like receptor kinase gene in cucumber results in short internode phenotype. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 327:111536. [PMID: 36402238 DOI: 10.1016/j.plantsci.2022.111536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 10/31/2022] [Accepted: 11/10/2022] [Indexed: 06/16/2023]
Abstract
Cucumber varieties with shortend internodes require less space than regular vining varieties, thus have great significance for germplasm improvement. Here, we found a novel spontaneous cucumber mutant si107 that exhibited short intenodes (si), smaller leaves, fruits, and seeds. The decrease in longitudinal cell length led to the shortened internodes of si107. The genetic analysis revealed a single recessive gene si-2 that was responsible for the mutation. Through multiple lines of evidence, we demonstrated that CsSI is the possible candidate gene for si-2, which encodes an ERECTA leucine-rich repeat receptor-like kinase. The shortened internode in si107 is attributed to a 2-bp deletion in the protein kinase domain region of this gene. The expression of CsSI was higher in the internodes, petioles, and fruit peels of si107 than in the wild type (WT). The transcriptome analysis between the si107 mutant and WT indicated that differentially expressed genes were significantly enriched in the plant hormone signal transduction pathway, in which auxin signal genes comprised the largest group, and all were downregulated in si107. Phytohormone quantitation confirmed that endogenous auxin levels in the stems of si107 were decreased. Our results provide new insights into the molecular mechanisms underlying the internode length control in cucumber.
Collapse
Affiliation(s)
- Xuewen Xu
- School of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, Jiangsu 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Qiming Hu
- School of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Jiaxi Wang
- School of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Xueting Wang
- School of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Lina Lou
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China
| | - Jun Xu
- School of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Xiaodong Yang
- School of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Xuehao Chen
- School of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, Jiangsu 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, China.
| |
Collapse
|
13
|
Cheng X, Huang Y, Tan Y, Tan L, Yin J, Zou G. Potentially Useful Dwarfing or Semi-dwarfing Genes in Rice Breeding in Addition to the sd1 Gene. RICE (NEW YORK, N.Y.) 2022; 15:66. [PMID: 36542176 PMCID: PMC9772376 DOI: 10.1186/s12284-022-00615-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
The "Green revolution" gene sd1 has been used widely in the breeding of modern rice varieties for over half a century. The application of this gene has increased rice yields and thereby supported a significant proportion of the global population. The use of a single gene, however, has raised concerns in the scientific community regarding its durability, especially given the bottleneck in genetic background and the need for large input of fertilizer. New dwarfing or semi-dwarfing genes are needed to alleviate our dependence on the sole "Green revolution" gene. In the past few years, several new dwarfing and semi-dwarfing genes as well as their mutants have been reported. Here, we provide an extensive review of the recent discoveries concerning newly identified genes that are potentially useful in rice breeding, including methods employed to create and effectively screen new rice mutants, the phenotypic characteristics of the new dwarfing and semi-dwarfing mutants, potential values of the new dwarfing and semi-dwarfing genes in rice breeding, and potential molecular mechanisms associated with the newly identified genes.
Collapse
Affiliation(s)
- Xiaoyan Cheng
- National Engineering Research Center of Rice (Nanchang), Rice Research Institute, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, Jiangxi, People's Republic of China
- Jiangxi Tiandao Liangan Seed Industry Co., Ltd., 568 South Huancheng Rd., Yuanzhou Dist., Yi Chun, 336000, Jiangxi, People's Republic of China
| | - Yongping Huang
- National Engineering Research Center of Rice (Nanchang), Rice Research Institute, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, Jiangxi, People's Republic of China
| | - Yong Tan
- Jiangxi Tiandao Liangan Seed Industry Co., Ltd., 568 South Huancheng Rd., Yuanzhou Dist., Yi Chun, 336000, Jiangxi, People's Republic of China
| | - Lin Tan
- Jiangxi Tiandao Liangan Seed Industry Co., Ltd., 568 South Huancheng Rd., Yuanzhou Dist., Yi Chun, 336000, Jiangxi, People's Republic of China
| | - Jianhua Yin
- National Engineering Research Center of Rice (Nanchang), Rice Research Institute, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, Jiangxi, People's Republic of China
| | - Guoxing Zou
- National Engineering Research Center of Rice (Nanchang), Rice Research Institute, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, Jiangxi, People's Republic of China.
| |
Collapse
|
14
|
Tan J, Wang Y, Dymerski R, Wu Z, Weng Y. Sigma factor binding protein 1 (CsSIB1) is a putative candidate of the major-effect QTL dm5.3 for downy mildew resistance in cucumber (Cucumis sativus). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:4197-4215. [PMID: 36094614 DOI: 10.1007/s00122-022-04212-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/02/2022] [Indexed: 06/15/2023]
Abstract
The dm5.3 major-effect QTL in cucumber encodes a homolog of Arabidopsis sigma factor binding protein 1 (CsSIB1). CsSIB1 positively regulates defense responses against downy mildew in cucumber through the salicylic acid (SA) biosynthesis/signaling pathway. Downy mildew (DM) caused by the oomycete pathogen Pseudoperonospora cubensis is an important disease of cucumber and other cucurbits. Our knowledge on molecular mechanisms of DM resistance is still limited. In this study, we reported identification and functional characterization of the candidate gene for the major-effect QTL, dm5.3 for DM resistance originated from PI 197088. The dm5.3 QTL was Modelized through marker-assisted development of near isogenic lines (NILs). NIL-derived segregating populations were used for fine mapping which narrowed the dm5.3 locus down to a 144 kb region. Based on multiple lines of evidence, we show that CsSIB1 (CsGy5G027140) that encodes the VQ motif-containing sigma factor binding protein 1 as the most likely candidate for dm5.3. Local association analysis identified a haplotype consisting of 7 SNPs inside the coding and promoter region of CsSIB1 that was associated with DM resistance. Expression of CsSIB1 was up-regulated with P. cubensis infection. Transcriptome profiling of NILs in response to P. cubensis inoculation revealed key players and associated gene networks in which increased expression of CsSIB1 antagonistically promoted salicylic acid (SA) but suppressed jasmonic acid (JA) biosynthesis/signaling pathways. Our work provides novel insights into the function of CsSIB1/dm5.3 as a disease resistance (R) gene. The roles of sigma factor binding protein genes in pathogen defense in cucumber were also discussed.
Collapse
Affiliation(s)
- Junyi Tan
- Horticulture Department, University of Wisconsin, Madison, WI, 53706, USA
| | - Yuhui Wang
- Horticulture Department, University of Wisconsin, Madison, WI, 53706, USA
| | - Ronald Dymerski
- Horticulture Department, University of Wisconsin, Madison, WI, 53706, USA
| | - Zhiming Wu
- Horticulture Department, University of Wisconsin, Madison, WI, 53706, USA
- Institute of Cash Crops, Hebei Academy of Agriculture & Forestry Sciences, Shijiazhuang, 050051, Hebei, China
| | - Yiqun Weng
- Horticulture Department, University of Wisconsin, Madison, WI, 53706, USA.
- USDA-ARS Vegetable Crops Research Unit, Madison, WI, 53706, USA.
| |
Collapse
|
15
|
Strygina KV, Elatskova AG, Elatskov YA, Tekhanovich GA, Khlestkina EK. Analysis of the Genes That Determine the Dwarf Form of Watermelon Citrullus lanatus (Thunb.) Matsum. & Nakai in the VIR Collection. RUSS J GENET+ 2022. [DOI: 10.1134/s1022795422120134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
16
|
Pan Y, Chen B, Qiao L, Chen F, Zhao J, Cheng Z, Weng Y. Phenotypic Characterization and Fine Mapping of a Major-Effect Fruit Shape QTL FS5.2 in Cucumber, Cucumis sativus L., with Near-Isogenic Line-Derived Segregating Populations. Int J Mol Sci 2022; 23:13384. [PMID: 36362172 PMCID: PMC9653860 DOI: 10.3390/ijms232113384] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 10/30/2022] [Accepted: 10/31/2022] [Indexed: 04/21/2025] Open
Abstract
Cucumber (Cucumis sativus L.) fruit size/shape (FS) is an important yield and quality trait that is quantitatively inherited. Many quantitative trait loci (QTLs) for fruit size/shape have been identified, but very few have been fine-mapped or cloned. In this study, through marker-assisted foreground and background selections, we developed near-isogenic lines (NILs) for a major-effect fruit size/shape QTL FS5.2 in cucumber. Morphological and microscopic characterization of NILs suggests that the allele of fs5.2 from the semi-wild Xishuangbanna (XIS) cucumber (C. s. var. xishuangbannesis) reduces fruit elongation but promotes radial growth resulting in shorter but wider fruit, which seems to be due to reduced cell length, but increased cellular layers. Consistent with this, the NIL carrying the homozygous XIS allele (fs5.2) had lower auxin/IAA contents in both the ovary and the developing fruit. Fine genetic mapping with NIL-derived segregating populations placed FS5.2 into a 95.5 kb region with 15 predicted genes, and a homolog of the Arabidopsis CRABS CLAW (CsCRC) appeared to be the most possible candidate for FS5.2. Transcriptome profiling of NIL fruits at anthesis identified differentially expressed genes enriched in the auxin biosynthesis and signaling pathways, as well as genes involved in cell cycle, division, and cell wall processes. We conclude that the major-effect QTL FS5.2 controls cucumber fruit size/shape through regulating auxin-mediated cell division and expansion for the lateral and longitudinal fruit growth, respectively. The gibberellic acid (GA) signaling pathway also plays a role in FS5.2-mediated fruit elongation.
Collapse
Affiliation(s)
- Yupeng Pan
- Department of Horticulture, University of Wisconsin-Madison, Madison, WI 53706, USA
- College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Birong Chen
- College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Lijun Qiao
- College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Feifan Chen
- Department of Horticulture, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Jianyu Zhao
- Department of Horticulture, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Zhihui Cheng
- College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Yiqun Weng
- Department of Horticulture, University of Wisconsin-Madison, Madison, WI 53706, USA
- USDA-ARS Vegetable Crops Research Unit, 1575 Linden Dr., Madison, WI 53706, USA
| |
Collapse
|
17
|
Cheng F, Song M, Zhang M, Cheng C, Chen J, Lou Q. A SNP mutation in the CsCLAVATA1 leads to pleiotropic variation in plant architecture and fruit morphogenesis in cucumber (Cucumis sativus L.). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 323:111397. [PMID: 35902027 DOI: 10.1016/j.plantsci.2022.111397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/23/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
Plant architectures is predominantly determined by branching pattern, internode elongation, phyllotaxis, shoot determinacy and reproductive organs. Domestication or improvement of this critical agronomic trait played an important role in the breakthrough of crop yield. Here, we identified a mutant with fasciated plant architecture, named fas, from an ethyl methanesulfonate (EMS) induced mutant population in cucumber. The mutant exhibited abnormal phyllotaxy, flattened main stem, increased number of floral organs, and significantly shorter and thicker fruits. However, the molecular mechanism conferring this pleiotropic effect remains unknown. Using a map-based cloning strategy, we isolated the gene CsaV3_3G045960, encoding a leucine-rich repeat receptor-like kinase, a putative direct homolog of the Arabidopsis CLAVATA1 protein referred to as CsCLV1. Endogenous hormone assays showed that IAA and GA3 levels in fas stems and ovaries were significantly reduced. Conformably, RNA-seq analysis showed that CsCLV1 regulates cucumber stem and ovary development by coordinating hormones and transcription factors. Our results contribute to the understanding of the function of CsCLV1 throughout the growth cycle, provide new evidence that the CLV signaling system is functionally conserved in Cucurbitaceae.
Collapse
Affiliation(s)
- Feng Cheng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Mengfei Song
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Mengru Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Chunyan Cheng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Jinfeng Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Qunfeng Lou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
18
|
Zhao Z, Qi Y, Yang Z, Cheng L, Sharif R, Raza A, Chen P, Hou D, Li Y. Exploring the Agrobacterium-mediated transformation with CRISPR/Cas9 in cucumber (Cucumis sativus L.). Mol Biol Rep 2022; 49:11481-11490. [PMID: 36057005 DOI: 10.1007/s11033-022-07558-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 05/03/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUNDS The narrow genetic basis of cucumber makes breeding of this species difficult. CRISPR/Cas9 system is characteristic of simple design, low cost and high efficiency, which has opened a new path for cucumber functional genetics and the development of cucumber mocular breeding. However, the immature genetic transformation system is the main limiting factor for applying this technology in cucumber. METHODS AND RESULTS In this study, a Histochemical β-glucuronidase (GUS) assay was used to analyze the effect of various parameters, including slight scratch of explants, pre-culture time, acetosyringone (AS) concentration, infection time in Agrobacterium solution, and co-culture period on the transformation efficiency. The results showed that the explants slightly scratched after cutting, pre-cultured for 1 day, Agrobacterium bacterial solution containing AS, and 20 min length of infection could significantly increase the GUS staining rate of explants. On this basis, two sequences with high specificity (sgRNA-1 and sgRNA-2) targeted different loci of gene CsGCN5 were designed. The corresponding vectors Cas9-sgRNA-1 and Cas9-sgRNA-2 were constructed and transformed using the above-optimized cucumber genetic transformation system, and three and two PCR positive lines were obtained from 210 and 207 explants, respectively. No sequence mutation at target loci of CsGCN5 was detected in the Cas9-sgRNA-1 transformed three PCR positive lines. However, one mutant line with targeted homozygous change was recognized from the Cas9-sgRNA-2 transformed two PCR positive lines. CONCLUSION In this study, 2.4‰ of total explants had directed mutation in the CsGCN5 gene. The results in the present study would be beneficial to further optimize and improve the efficiency of the genetic transformation of cucumber.
Collapse
Affiliation(s)
- Ziyao Zhao
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
- College of Horticulture, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Yaguang Qi
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Zhimin Yang
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Liyu Cheng
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Rahat Sharif
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Ali Raza
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Center of Legume Crop Genetics and Systems Biology/College of Agriculture, Oil Crops Research Institute, Fujian Agriculture and Forestry University (FAFU), Fuzhou, China
| | - Peng Chen
- College of Life Science, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Dong Hou
- Vegetable Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou, 730070, Gansu, China
| | - Yuhong Li
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
19
|
Research Progress on the Leaf Morphology, Fruit Development and Plant Architecture of the Cucumber. PLANTS 2022; 11:plants11162128. [PMID: 36015432 PMCID: PMC9415855 DOI: 10.3390/plants11162128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 11/21/2022]
Abstract
Cucumber (Cucumis sativus L.) is an annual climbing herb that belongs to the Cucurbitaceae family and is one of the most important economic crops in the world. The breeding of cucumber varieties with excellent agronomic characteristics has gained more attention in recent years. The size and shape of the leaves or fruit and the plant architecture are important agronomic traits that influence crop management and productivity, thus determining the crop yields and consumer preferences. The growth of the plant is precisely regulated by both environmental stimuli and internal signals. Although significant progress has been made in understanding the plant morphological regulation of Arabidopsis, rice, and maize, our understanding of the control mechanisms of the growth and development of cucumber is still limited. This paper reviews the regulation of phytohormones in plant growth and expounds the latest progress in research regarding the genetic regulation pathways in leaf development, fruit size and shape, branching, and plant type in cucumber, so as to provide a theoretical basis for improving cucumber productivity and cultivation efficiency.
Collapse
|
20
|
Zhang M, Song M, Davoudi M, Cheng F, Yin J, Zha G, Yang Z, Chen J, Lou Q. The mutation of C-24 reductase, a key enzyme involved in brassinolide biosynthesis, confers a novel compact plant architecture phenotype to cucumber. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:2711-2723. [PMID: 35788747 DOI: 10.1007/s00122-022-04144-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/28/2022] [Indexed: 06/15/2023]
Abstract
A novel compact plant architecture mutant, cpa-2, was identified from EMS-induced mutagenesis. Bulked segregant analysis sequencing and map-based cloning revealed CsDWF1 encoding C-24 reductase enzyme as the candidate gene. The compact architecture is a vital and valuable agronomic trait that helps to reduce the labor of plant management, and improve the fruit yield by increasing planting density in cucumbers. However, the molecular basis underlying the regulation of plant architecture in cucumber is complex and largely unknown. In this study, a novel recessive compact allele, designated as cpa-2 (compact plant architecture-2) was fine mapped in a 109 kb region on chromosome 7 by the strategy of bulked segregant analysis sequencing combined with map-based cloning. Gene annotation of the corresponding region revealed that the CsaV3_7G030530 (CsDWF1) gene encoding C-24 reductase, which acts as the key enzyme in brassinosteroids biosynthesis, functions as the candidate gene for cpa-2. Sequence analysis showed that a single-nucleotide mutation (G to A) in the second exon of CsaV3_7G030530 caused an amino acid substitution from E502 to K502. Compared with wild-type CCMC, CsDWF1 had lower expression levels in the stem, leaf and ovary of cpa-2. In addition, the compact phenotype in cpa-2 could be partially restored by exogenous BR application. Transcriptome analysis revealed that many genes related to plant growth hormones were differentially expressed in cpa-2 plants. This is the first report about the characterization and cloning of the CsDWF1 gene. This work revealed the importance of CsDWF1 in plant development regulation and extended our understanding of the interaction between BRs and other hormones for plant architecture development.
Collapse
Affiliation(s)
- Mengru Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street No.1, Nanjing, 210095, China
| | - Mengfei Song
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street No.1, Nanjing, 210095, China
| | - Marzieh Davoudi
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street No.1, Nanjing, 210095, China
| | - Feng Cheng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street No.1, Nanjing, 210095, China
| | - Juan Yin
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street No.1, Nanjing, 210095, China
| | - Gaohui Zha
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street No.1, Nanjing, 210095, China
| | - Zhengan Yang
- College of Horticulture and Landscape, Yunnan Agricultural University, Kunming, 650500, China
| | - Jinfeng Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street No.1, Nanjing, 210095, China
| | - Qunfeng Lou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street No.1, Nanjing, 210095, China.
| |
Collapse
|
21
|
Zhang H, Wang Y, Tan J, Weng Y. Functional copy number variation of CsSHINE1 is associated with fruit skin netting intensity in cucumber, Cucumis sativus. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:2101-2119. [PMID: 35524817 DOI: 10.1007/s00122-022-04100-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 04/11/2022] [Indexed: 06/14/2023]
Abstract
Fruit skin netting in cucumber (Cucumis sativus) is associated with important fruit quality attributes. Two simply inherited genes H (Heavy netting) and Rs (Russet skin) control skin netting, but their molecular basis is unknown. Here, we reported map-based cloning and functional characterization of the candidate gene for the Rs locus that encodes CsSHINE1 (CsSHN1), an AP2 domain containing ethylene-responsive transcription factor protein. Comparative phenotypic analysis in near-isogenic lines revealed that fruit with netted skin had different epidermal structures from that with smooth skin including thicker cuticles, smaller, palisade-shaped epidermal and sub-epidermal cells with heavily suberized and lignified cell walls, higher peroxidase activities, which suggests multiple functions of CsSHN1 in regulating fruit skin netting and epidermal cell patterning. Among three representative cucumber inbred lines, three haplotypes at three polymorphic sites were identified inside CsSHN1: a functional copy in Gy14 (wild type) with light fruit skin netting, a copy number variant with two tandemly arrayed functional copies in WI7120 with heavy skin netting, and a loss-of-function copy in 9930 with smooth skin. The expression level of CsSHN1 in fruit exocarp of three lines was positively correlated with the skin netting intensity. Comparative analysis between cucumber and melon revealed conserved and divergent genetic mechanisms underlying fruit skin netting/reticulation that may reflect the different selection histories in the two crops. A discussion was made on genetic basis of fruit skin netting in the context of natural and artificial selections of fruit quality-related epidermal features during cucumber breeding.
Collapse
Affiliation(s)
- Huijun Zhang
- School of Life Science, Huaibei Normal University, Huaibei, 10000, China
- Horticulture Department, University of Wisconsin, Madison, WI, 53706, USA
| | - Yuhui Wang
- Horticulture Department, University of Wisconsin, Madison, WI, 53706, USA.
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China.
| | - Junyi Tan
- Horticulture Department, University of Wisconsin, Madison, WI, 53706, USA
| | - Yiqun Weng
- Horticulture Department, University of Wisconsin, Madison, WI, 53706, USA.
- USDA-ARS Vegetable Crops Research Unit, Madison, WI, 53706, USA.
| |
Collapse
|
22
|
Han J, Ma Z, Chen L, Wang Z, Wang C, Wang L, Chen C, Ren Z, Cao C. Morphological Characterization and Integrated Transcriptome and Proteome Analysis of Organ Development Defective 1 ( odd1) Mutant in Cucumis sativus L. Int J Mol Sci 2022; 23:ijms23105843. [PMID: 35628653 PMCID: PMC9145247 DOI: 10.3390/ijms23105843] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/09/2022] [Accepted: 05/17/2022] [Indexed: 11/18/2022] Open
Abstract
Cucumber (Cucumis sativus L.) is an economically important vegetable crop with the unique growth habit and typical trailing shoot architecture of Cucurbitaceae. Elucidating the regulatory mechanisms of growth and development is significant for improving quality and productivity in cucumber. Here we isolated a spontaneous cucumber mutant organ development defective 1 (odd1) with multiple morphological changes including root, plant stature, stem, leaf, male and female flowers, as well as fruit. Anatomical and cytological analyses demonstrated that both cell size and number decreased, and the shoot apical meristem (SAM) was smaller in odd1 compared with WT. Pollen vigor and germination assays and cross tests revealed that odd1 is female sterile, which may be caused by the absence of ovules. Genetic analysis showed that odd1 is a recessive single gene mutant. Using the MutMap strategy, the odd1 gene was found to be located on chromosome 5. Integrated profiling of transcriptome and proteome indicated that the different expression genes related to hormones and SAM maintenance might be the reason for the phenotypic changes of odd1. These results expanded the insight into the molecular regulation of organ growth and development and provided a comprehensive reference map for further studies in cucumber.
Collapse
|
23
|
Amanullah S, Osae BA, Yang T, Li S, Abbas F, Liu S, Liu S, Song Z, Wang X, Gao P, Luan F. Development of Whole Genome SNP-CAPS Markers and Preliminary QTL Mapping of Fruit Pedicel Traits in Watermelon. FRONTIERS IN PLANT SCIENCE 2022; 13:879919. [PMID: 35620678 PMCID: PMC9128861 DOI: 10.3389/fpls.2022.879919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 03/25/2022] [Indexed: 06/15/2023]
Abstract
Fruit pedicel (FP) is an important determinant of premium fruit quality that directly affects commercial market value. However, in-depth molecular and genetic basis of pedicel-related traits has not been identified in watermelon. Herein, a quantitative trait locus (QTL) mapping strategy was used to identify the potential genetic regions controlling FP traits based on newly derived whole-genome single nucleotide polymorphism based cleaved amplified polymorphism sequence (SNP-CAPS) markers. Next-generation sequencing based whole-genome re-sequencing of two watermelon parent lines revealed 98.30 and 98.40% of average coverage, 4,989,869 SNP variants, and 182,949 CAPS loci pairs across the reference genome, respectively. A total of 221 sets of codominant markers exhibited 46.42% polymorphism rate and were effectively genotyped within 100-F2:3 derived mapping population. The developed linkage map covered a total of 2,630.49 cM genetic length with averaged 11.90 cM, and depicted a valid marker-trait association. In total, 6 QTLs (qFPL4.1, qFPW4.1, qFPD2.1, qFPD2.2, qFPD8.1, qFPD10.1) were mapped with five major effects and one minor effect between the whole genome adjacent markers positioned over distinct chromosomes (02, 04, 08, 10), based on the ICIM-ADD mapping approach. These significant QTLs were similarly mapped in delimited flanking regions of 675.10, 751.38, 859.24, 948.39, and 947.51 kb, which collectively explained 8.64-13.60% PVE, respectively. A highly significant and positive correlation was found among the observed variables. To our knowledge, we first time reported the mapped QTLs/genes affecting FP traits of watermelon, and our illustrated outcomes will deliver the potential insights for fine genetic mapping as well as functional gene analysis through MAS-based breeding approaches.
Collapse
Affiliation(s)
- Sikandar Amanullah
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Harbin, China
| | - Benjamin Agyei Osae
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Harbin, China
| | - Tiantian Yang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Harbin, China
| | - Shenglong Li
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Harbin, China
| | - Farhat Abbas
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Shi Liu
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Harbin, China
| | - Shusen Liu
- Shouguang Sanmu Seed & Seedling Co., Ltd., Shouguang, China
| | - Zhengfeng Song
- Shouguang Sanmu Seed & Seedling Co., Ltd., Shouguang, China
| | - Xuezheng Wang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Harbin, China
| | - Peng Gao
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Harbin, China
| | - Feishi Luan
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Harbin, China
| |
Collapse
|
24
|
Bo K, Duan Y, Qiu X, Zhang M, Shu Q, Sun Y, He Y, Shi Y, Weng Y, Wang C. Promoter variation in a homeobox gene, CpDll, is associated with deeply lobed leaf in Cucurbita pepo L. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:1223-1234. [PMID: 34985539 DOI: 10.1007/s00122-021-04026-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 12/23/2021] [Indexed: 06/14/2023]
Abstract
CpDll, encoding an HD-Zip I transcription factor, positively regulates formation of deeply lobed leaf shape in zucchini, Cucurbita pepo, which is associated with sequence variation in its promoter region. Leaf shape is an important horticultural trait in zucchini (Cucurbita pepo L.). Deeply lobed leaves have potential advantages for high-density planting and hybrid production. However, little is known about the molecular basis of deeply lobed leaf formation in this important vegetable crop. Here, we conducted QTL analysis and fine mapping of the deeply lobed leaf (CpDll) locus using recombinant inbred lines and large F2 populations developed from crosses between the deeply lobed leaf HM-S2, and entire leaf Jin-GL parental lines. We show that CpDll exhibited incomplete dominance for the deeply lobed leaf shape in HM-S2. Map-based cloning provided evidence that CpCll encodes a type I homeodomain (HD)- and Leu zipper (Zip) element-containing transcription factor. Sequence analysis between HM-S2 and Jin-GL revealed no sequence variations in the coding sequences, whereas a number of variations were identified in the promoter region between them. DUAL-LUC assays revealed significantly stronger promoter activity in HM-S2 than that in Jin-GL. There was also significantly higher expression of CpDll in the leaf base of deeply lobed leaves of HM-S2 compared with entire leaf Jin-GL. Comparative analysis of CpDll gene homologs in nine cucurbit crop species (family Cucurbitaceae) revealed conservation in both structure and function of this gene in regulation of deeply lobed leaf formation. Our work provides new insights into the molecular basis of leaf lobe formation in pumpkin/squash and other cucurbit crops. This work also facilitates marker-assisted selection for leaf shape in zucchini breeding.
Collapse
Affiliation(s)
- Kailiang Bo
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Ying Duan
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Xiyan Qiu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Meng Zhang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Qin Shu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Yapei Sun
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Yadi He
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Yuzi Shi
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Yiqun Weng
- USDA-ARS Vegetable Crops Research Unit, Horticulture Department, University of Wisconsin, Madison, WI, 53706, USA.
| | - Changlin Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China.
- China Vegetable Biotechnology (Shouguang) Co., Ltd, Shouguang, Shandong, People's Republic of China.
| |
Collapse
|
25
|
Li S, Zhang Q, Zhang H, Wang J, Sun J, Yang X, Huang S, Zhang Z. Deletion of a cyclin-dependent protein kinase inhibitor, CsSMR1, leads to dwarf and determinate growth in cucumber (Cucumis sativus L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:915-927. [PMID: 34841478 PMCID: PMC8942921 DOI: 10.1007/s00122-021-04006-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 11/23/2021] [Indexed: 05/12/2023]
Abstract
A 7.9 kb deletion which contains a cyclin-dependent protein kinase inhibitor leads to determinate growth and dwarf phenotype in cucumber. Plant architecture is a composite character which are mainly defined by shoot branching, internode elongation and shoot determinacy. Ideal architecture tends to increase the yield of plants, just like the case of "Green Revolution" increased by the application of semi-dwarf cereal crop varieties in 1960s. Cucumber (Cucumis sativus L.) is an important vegetable cultivated worldwide, and suitable architecture varieties were selected for different production systems. In this study, we obtained a novel dwarf mutant with strikingly shortened plant height and determinate growth habit. By bulked segregant analysis and map-based cloning, we delimited the dw2 locus to a 56.4 kb region which contain five genes. Among all the variations between WT and dw2 within the 56.4 kb region, a 7.9 kb deletion which resulted in complete deletion of CsaV3_5G035790 in dw2 was co-segregated with the dwarf phenotype. Haplotype analysis and gene expression analysis suggest that CsaV3_5G035790 encoding a cyclin-dependent protein kinase inhibitor (CsSMR1) be the candidate gene responsible for the dwarf phenotype in dw2. RNA-seq analysis shows that several kinesin-like proteins, cyclins and reported organ size regulators are expressed differentially between WT and dw2, which may account for the reduced organ size in dwarf plants. Additionally, the down-regulation of CsSTM and CsWOX9 in dw2 resulted in premature termination of shoot apical meristem development, which eventually reduces the internode number and plant height. Identification and characterization of the CsSMR1 provide a new insight into cucumber architecture modification to be applied to mechanized production system.
Collapse
Affiliation(s)
- Shuai Li
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China
| | - Qiqi Zhang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Huimin Zhang
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
| | - Jie Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
| | - Jinjing Sun
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xueyong Yang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Sanwen Huang
- Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China
| | - Zhonghua Zhang
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
26
|
Ou C, Sun T, Liu X, Li C, Li M, Wang X, Ren H, Zhao Z, Zhuang F. Detection of Chromosomal Segments Introgressed from Wild Species of Carrot into Cultivars: Quantitative Trait Loci Mapping for Morphological Features in Backcross Inbred Lines. PLANTS (BASEL, SWITZERLAND) 2022; 11:391. [PMID: 35161370 PMCID: PMC8840429 DOI: 10.3390/plants11030391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/25/2022] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
Cultivated carrot is thought to have been domesticated from a wild species, and various phenotypes developed through human domestication and selection over the past several centuries. Little is known about the genomic contribution of wild species to the phenotypes of present-day cultivars, although several studies have focused on identifying genetic loci that contribute to the morphology of storage roots. A backcross inbred line (BIL) population derived from a cross between the wild species Daucus carota ssp. carota "Songzi" and the orange cultivar "Amsterdam forcing" was developed. The morphological features in the BIL population became more diverse after several generations of selfing BC2F1 plants. Only few lines retained features of wild parent. Genomic resequencing of the two parental lines and the BILs resulted in 3,223,651 single nucleotide polymorphisms (SNPs), and 13,445 bin markers were generated using a sliding window approach. We constructed a genetic map with 2027 bins containing 154,776 SNPs; the total genetic distance was 1436.43 cM and the average interval between the bins was 0.71 cm. Five stable QTLs related to root length, root shoulder width, dry material content of root, and ratio of root shoulder width to root middle width were consistently detected on chromosome 2 in both years and explained 23.4-66.9% of the phenotypic variance. The effects of introgressed genomic segments from the wild species on the storage root are reported and will enable the identification of functional genes that control root morphological traits in carrot.
Collapse
Affiliation(s)
- Chenggang Ou
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Science, Beijing 100081, China; (C.O.); (T.S.); (X.L.); (M.L.); (X.W.); (Z.Z.)
| | - Tingting Sun
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Science, Beijing 100081, China; (C.O.); (T.S.); (X.L.); (M.L.); (X.W.); (Z.Z.)
| | - Xing Liu
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Science, Beijing 100081, China; (C.O.); (T.S.); (X.L.); (M.L.); (X.W.); (Z.Z.)
| | - Chengjiang Li
- Suzhou Academy of Agricultural Science, Suzhou 234000, China; (C.L.); (H.R.)
| | - Min Li
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Science, Beijing 100081, China; (C.O.); (T.S.); (X.L.); (M.L.); (X.W.); (Z.Z.)
| | - Xuewei Wang
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Science, Beijing 100081, China; (C.O.); (T.S.); (X.L.); (M.L.); (X.W.); (Z.Z.)
| | - Huaifu Ren
- Suzhou Academy of Agricultural Science, Suzhou 234000, China; (C.L.); (H.R.)
| | - Zhiwei Zhao
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Science, Beijing 100081, China; (C.O.); (T.S.); (X.L.); (M.L.); (X.W.); (Z.Z.)
| | - Feiyun Zhuang
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Science, Beijing 100081, China; (C.O.); (T.S.); (X.L.); (M.L.); (X.W.); (Z.Z.)
| |
Collapse
|
27
|
Zhao G, Luo C, Luo J, Li J, Gong H, Zheng X, Liu X, Guo J, Zhou L, Wu H. A mutation in LacDWARF1 results in a GA-deficient dwarf phenotype in sponge gourd (Luffa acutangula). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:3443-3457. [PMID: 34390352 PMCID: PMC8440308 DOI: 10.1007/s00122-021-03938-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 12/07/2020] [Indexed: 06/13/2023]
Abstract
KEY MESSAGE A dwarfism gene LacDWARF1 was mapped by combined BSA-Seq and comparative genomics analyses to a 65.4 kb physical genomic region on chromosome 05. Dwarf architecture is one of the most important traits utilized in Cucurbitaceae breeding because it saves labor and increases the harvest index. To our knowledge, there has been no prior research about dwarfism in the sponge gourd. This study reports the first dwarf mutant WJ209 with a decrease in cell size and internodes. A genetic analysis revealed that the mutant phenotype was controlled by a single recessive gene, which is designated Lacdwarf1 (Lacd1). Combined with bulked segregate analysis and next-generation sequencing, we quickly mapped a 65.4 kb region on chromosome 5 using F2 segregation population with InDel and SNP polymorphism markers. Gene annotation revealed that Lac05g019500 encodes a gibberellin 3β-hydroxylase (GA3ox) that functions as the most likely candidate gene for Lacd1. DNA sequence analysis showed that there is an approximately 4 kb insertion in the first intron of Lac05g019500 in WJ209. Lac05g019500 is transcribed incorrectly in the dwarf mutant owing to the presence of the insertion. Moreover, the bioactive GAs decreased significantly in WJ209, and the dwarf phenotype could be restored by exogenous GA3 treatment, indicating that WJ209 is a GA-deficient mutant. All these results support the conclusion that Lac05g019500 is the Lacd1 gene. In addition, RNA-Seq revealed that many genes, including those related to plant hormones, cellular process, cell wall, membrane and response to stress, were significantly altered in WJ209 compared with the wild type. This study will aid in the use of molecular marker-assisted breeding in the dwarf sponge gourd.
Collapse
Affiliation(s)
- Gangjun Zhao
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong, China
| | - Caixia Luo
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong, China
- College of Agriculture & Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, Guangdong, China
| | - Jianning Luo
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong, China
| | - Junxing Li
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong, China
| | - Hao Gong
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong, China
| | - Xiaoming Zheng
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong, China
| | - Xiaoxi Liu
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong, China
| | - Jinju Guo
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong, China
| | - Lingyan Zhou
- College of Agriculture & Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, Guangdong, China
| | - Haibin Wu
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong, China.
| |
Collapse
|
28
|
Wang H, Sun J, Yang F, Weng Y, Chen P, Du S, Wei A, Li Y. CsKTN1 for a katanin p60 subunit is associated with the regulation of fruit elongation in cucumber (Cucumis sativus L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:2429-2441. [PMID: 34043036 DOI: 10.1007/s00122-021-03833-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 04/03/2021] [Indexed: 06/12/2023]
Abstract
We identified a short fruit3 (sf3) mutant in cucumber. Map-based cloning revealed that CsKTN1 gene encodes a katanin p60 subunit, which is associated with the regulation of fruit elongation. Fruit length is an important horticultural trait for both fruit yield and quality of cucumber (Cucumis sativus L.). Knowledge on the molecular regulation of fruit elongation in cucumber is very limited. In this study, we identified and characterized a cucumber short fruit3 (sf3) mutant. Histological examination indicated that the shorter fruit in the mutant was due to reduced cell numbers. Genetic analysis revealed that the phenotype of the sf3 mutant was controlled by a single gene with semi-dominant inheritance. By map-based cloning and Arabidopsis genetic transformation, we showed that Sf3 was a homolog of KTN1 (CsKTN1) encoding a katanin p60 subunit. A non-synonymous mutation in the fifth exon of CsKTN1 resulted in an amino acid substitution from Serine in the wild type to Phenylalanine in the sf3 mutant. CsKTN1 expressed in all tissues of both the wild type and the sf3 mutant. However, there was no significant difference in CsKTN1 expression levels between the wild type and the sf3 mutant. The hormone quantitation and RNA-seq analysis suggested that auxin and gibberellin contents are decreased in sf3 by changing the expression levels of genes related with auxin and gibberellin metabolism and signaling. This work helps understand the function of the katanin and the molecular mechanisms of fruit growth regulation in cucumber.
Collapse
Affiliation(s)
- Hui Wang
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jing Sun
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Fan Yang
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yiqun Weng
- Horticulture Department, USDA-ARS Vegetable Crops Research Unit, University of Wisconsin, Madison, WI, 53706, USA
| | - Peng Chen
- College of Life Science, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Shengli Du
- Tianjin Vegetable Research Center, Tianjin, 300192, China
- National Key Laboratory of Vegetable Germplasm Innovation, Tianjin, 300192, China
| | - Aimin Wei
- Tianjin Vegetable Research Center, Tianjin, 300192, China.
- National Key Laboratory of Vegetable Germplasm Innovation, Tianjin, 300192, China.
| | - Yuhong Li
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
29
|
Liu X, Chen J, Zhang X. Genetic regulation of shoot architecture in cucumber. HORTICULTURE RESEARCH 2021; 8:143. [PMID: 34193859 PMCID: PMC8245548 DOI: 10.1038/s41438-021-00577-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/31/2021] [Accepted: 04/12/2021] [Indexed: 05/08/2023]
Abstract
Cucumber (Cucumis sativus L.) is an important vegetable crop species with great economic value. Shoot architecture determines the visual appearance of plants and has a strong impact on crop management and yield. Unlike most model plant species, cucumber undergoes vegetative growth and reproductive growth simultaneously, in which leaves are produced from the shoot apical meristem and flowers are generated from leaf axils, during the majority of its life, a feature representative of the Cucurbitaceae family. Despite substantial advances achieved in understanding the regulation of plant form in Arabidopsis thaliana, rice, and maize, our understanding of the mechanisms controlling shoot architecture in Cucurbitaceae crop species is still limited. In this review, we focus on recent progress on elucidating the genetic regulatory pathways underlying the determinant/indeterminant growth habit, leaf shape, branch outgrowth, tendril identity, and vine length determination in cucumber. We also discuss the potential of applying biotechnology tools and resources for the generation of ideal plant types with desired architectural features to improve cucumber productivity and cultivation efficiency.
Collapse
Affiliation(s)
- Xiaofeng Liu
- State Key Laboratories of Agrobiotechnology, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Jiacai Chen
- State Key Laboratories of Agrobiotechnology, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Xiaolan Zhang
- State Key Laboratories of Agrobiotechnology, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
30
|
Zhang M, Song M, Cheng F, Yang Z, Davoudi M, Chen J, Lou Q. Identification of a putative candidate gene encoding 7-dehydrocholesterol reductase involved in brassinosteroids biosynthesis for compact plant architecture in Cucumber (Cucumis sativus L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:2023-2034. [PMID: 33683399 DOI: 10.1007/s00122-021-03802-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 02/23/2021] [Indexed: 06/12/2023]
Abstract
By the strategy of bulked segregant analysis sequencing combined with genetic mapping, CsDWF5, which encodes 7 dehydrocholesterol reductase that involved in brassinosteroids biosynthesis, was identified as the candidate gene for cpa. Dwarf architecture is one of the most important breeding goals in crops. The biosynthesis and signal transduction of brassinosteroids (BRs) have a great impact on plant growth and development including plant architecture. Here, we identified a compact plant architecture (cpa) mutant from an EMS-induced cucumber population. cpa displayed the extremely dwarf phenotype with shortened internode and petiole, darkened and wrinkled leaf. Genetic analysis revealed that cpa was caused by a single recessive gene. By the strategy of bulked segregant analysis sequencing combined with genetic mapping, CsDWF5, encoding a 7-dehydrocholesterol reductase that involved in sterol biosynthesis, was identified as the candidate gene for cpa. One single nucleotide mutation (G→A) in splicing site causing 3-bp insertion (TAG) was found in the first base of the sixth intron of CsDWF5 in cpa, which furtherly resulted in the frameshift mutation and got a premature stop codon. The expression of CsDWF5 gene was significantly down regulated in different tissues of the cpa mutant compared with that in wild type. The phenotype of cpa could be partially recovered by exogenous BR treatment. Transcriptome analysis identified 1096 genes that exhibited differential expression between the cpa mutant and wild type. KEGG enrichment analysis indicated that differentially expressed genes were significantly enriched in BR biosynthesis and plant-pathogen interaction pathways. These results provide perspectives on the molecular mechanisms underlying the dwarfing phenotype in cucumber.
Collapse
Affiliation(s)
- Mengru Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street No. 1, Nanjing, 210095, China
| | - Mengfei Song
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street No. 1, Nanjing, 210095, China
| | - Feng Cheng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street No. 1, Nanjing, 210095, China
| | - Zhige Yang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street No. 1, Nanjing, 210095, China
| | - Marzieh Davoudi
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street No. 1, Nanjing, 210095, China
| | - Jinfeng Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street No. 1, Nanjing, 210095, China.
| | - Qunfeng Lou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street No. 1, Nanjing, 210095, China.
| |
Collapse
|
31
|
Sun Y, Zhang H, Fan M, He Y, Guo P. A mutation in the intron splice acceptor site of a GA3ox gene confers dwarf architecture in watermelon (Citrullus lanatus L.). Sci Rep 2020; 10:14915. [PMID: 32913219 PMCID: PMC7483442 DOI: 10.1038/s41598-020-71861-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 08/18/2020] [Indexed: 12/24/2022] Open
Abstract
Dwarf architecture is an important trait associated with plant yield, lodging resistance and labor cost. Here, we aimed to identify a gene causing dwarfism in watermelon. The ‘w106’ (dwarf) and ‘Charleston Gray’ (vine) were used as parents to construct F1 and F2 progeny. Dwarf architecture of ‘w106’ was mainly caused by longitudinal cell length reduction and was controlled by a single recessive gene. Whole-genome sequencing of two parents and two bulk DNAs of F2 population localized this gene to a 2.63-Mb region on chromosome 9; this was further narrowed to a 541-kb region. Within this region, Cla015407, encoding a gibberellin 3β-hydroxylase (GA3ox), was the candidate gene. Cla015407 had a SNP mutation (G → A) in the splice acceptor site of the intron, leading to altered splicing event and generating two splicing isoforms in dwarf plants. One splicing isoform retained the intron sequences, while the other had a 13-bp deletion in the second exon of GA3ox transcript, both resulting in truncated proteins and loss of the functional Fe2OG dioxygenase domain in dwarf plants. RNA-Seq analysis indicated that expression of Cla015407 and other GA biosynthetic and metabolic genes were mostly up-regulated in the shoots of dwarf plants compared with vine plants in F2 population. Measurement of endogenous GA levels indicated that bioactive GA4 was significantly decreased in the shoots of dwarf plants. Moreover, the dwarf phenotype can be rescued by exogenous applications of GA3 or GA4+7, with the latter having a more distinct effect than the former. Subcellular localization analyses of GA3ox proteins from two parents revealed their subcellular targeting in nucleus and cytosol. Here, a GA3ox gene controlling dwarf architecture was identified, and loss function of GA3ox leads to GA4 reduction and dwarfism phenotype in watermelon.
Collapse
Affiliation(s)
- Yuyan Sun
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Huiqing Zhang
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Min Fan
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| | - Yanjun He
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Pingan Guo
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| |
Collapse
|
32
|
Feng S, Zhang J, Mu Z, Wang Y, Wen C, Wu T, Yu C, Li Z, Wang H. Recent progress on the molecular breeding of Cucumis sativus L. in China. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:1777-1790. [PMID: 31754760 DOI: 10.1007/s00122-019-03484-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 11/11/2019] [Indexed: 06/10/2023]
Abstract
Molecular breeding of Cucumis sativus L. is based on traditional breeding techniques and modern biological breeding in China. There are opportunities for further breeding improvement by molecular design breeding and the automation of phenotyping technology using untapped sources of genetic diversity. Cucumber (Cucumis sativus L.) is an important vegetable cultivated worldwide. It bears fruits of light fragrance, and crisp texture with high nutrition. China is the largest producer and consumer of cucumber, accounting for 70% of the world's total production. With increasing consumption demand, the production of Cucurbitaceae crops has been increasing yearly. Thus, new cultivars that can produce high-quality cucumber with high yield and easy cultivation are in need. Conventional genetic breeding has played an essential role in cucumber cultivar innovation over the past decades. However, its progress is slow due to the long breeding period, and difficulty in selecting stable genetic characters or genotypes, prompting researchers to apply molecular biotechnologies in cucumber breeding. Here, we first summarize the achievements of conventional cucumber breeding such as crossing and mutagenesis, and then focus on the current status of molecular breeding of cucumber in China, including the progress and achievements on cucumber genomics, molecular mechanism underlying important agronomic traits, and also on the creation of high-quality multi-resistant germplasm resources, new variety breeding and ecological breeding. Future development trends and prospects of cucumber molecular breeding in China are also discussed.
Collapse
Affiliation(s)
- Shengjun Feng
- The State Key Laboratory of Subtropical Silviculture, Laboratory of Plant Molecular and Developmental Biology, Zhejiang A&F University, Hangzhou, 311300, China
| | - Juping Zhang
- The State Key Laboratory of Subtropical Silviculture, Laboratory of Plant Molecular and Developmental Biology, Zhejiang A&F University, Hangzhou, 311300, China
| | - Zihan Mu
- The State Key Laboratory of Subtropical Silviculture, Laboratory of Plant Molecular and Developmental Biology, Zhejiang A&F University, Hangzhou, 311300, China
| | - Yuji Wang
- The State Key Laboratory of Subtropical Silviculture, Laboratory of Plant Molecular and Developmental Biology, Zhejiang A&F University, Hangzhou, 311300, China
| | - Changlong Wen
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agricultural and Forestry Sciences, National Engineering Research Center for Vegetables, Beijing, 100097, China
| | - Tao Wu
- College of Horticulture and Landscape, Hunan Agricultural University, Changsha, 410128, China
| | - Chao Yu
- The State Key Laboratory of Subtropical Silviculture, Laboratory of Plant Molecular and Developmental Biology, Zhejiang A&F University, Hangzhou, 311300, China
| | - Zheng Li
- College of Horticulture, Northwest A&F University, Yangling, 712100, China.
| | - Huasen Wang
- The State Key Laboratory of Subtropical Silviculture, Laboratory of Plant Molecular and Developmental Biology, Zhejiang A&F University, Hangzhou, 311300, China.
| |
Collapse
|
33
|
Hu L, Zhang H, Xie C, Wang J, Zhang J, Wang H, Weng Y, Chen P, Li Y. A mutation in CsHD encoding a histidine and aspartic acid domain-containing protein leads to yellow young leaf-1 (yyl-1) in cucumber (Cucumis sativus L.). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 293:110407. [PMID: 32081257 DOI: 10.1016/j.plantsci.2020.110407] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 01/03/2020] [Accepted: 01/06/2020] [Indexed: 05/24/2023]
Abstract
Leaf color mutants are an ideal tool to study chlorophyll biosynthesis, chloroplast development and photosynthesis. In this study, we identified an EMS-induced yellow young leaf mutant C777. The mutant exhibited yellow cotyledons and emerging true leaves with stay-green dots that turn green gradually with leaf growth. Segregation analysis in several populations indicated that the mutant C777 was controlled by a recessive gene yyl-1. Fine mapping delimited the yyl-1 locus to a 45.3 kb region harboring 8 putative genes, but only one SNP (G to A) was identified between C777 and its wild-type parental line in this region which occurred in the 13th exon of CsHD that encodes a histidine and aspartic acid (HD) domain containing protein. This nonsense mutation introduced a stop codon and thus a premature protein. Uniqueness of this mutant allele was verified in 515 cucumber lines. Quantitative real-time PCR revealed significantly reduced expression of CsHD gene in the mutant. Further, silencing the NbHD gene by VIGS in tobacco resulted in virescent young leaves and significantly down-regulated expression of HD gene. These results strongly supported the association of the CsHD gene with the virescent young leaf phenotype in C777. This is the first report to clone and characterize the CsHD gene in the horticultural crops. The results may help understand the functions of the HD gene in chloroplast development and chlorophyll biosynthesis in plants.
Collapse
Affiliation(s)
- Liangliang Hu
- College of Horticulture, Northwest A&F University, Yangling, Shanxi, 712100, China
| | - Haiqiang Zhang
- College of Horticulture, Northwest A&F University, Yangling, Shanxi, 712100, China
| | - Chen Xie
- College of Horticulture, Northwest A&F University, Yangling, Shanxi, 712100, China
| | - Jin Wang
- College of Horticulture, Northwest A&F University, Yangling, Shanxi, 712100, China
| | - Jiayu Zhang
- College of Horticulture, Northwest A&F University, Yangling, Shanxi, 712100, China
| | - Hui Wang
- College of Horticulture, Northwest A&F University, Yangling, Shanxi, 712100, China
| | - Yiqun Weng
- USDA-ARS, Vegetable Crops Research Unit, Horticulture Department, University of Wisconsin, 1575 Linden Drive, Madison, WI, 53706, USA
| | - Peng Chen
- College of Life Science, Northwest A&F University, Yangling, Shanxi, 712100, China.
| | - Yuhong Li
- College of Horticulture, Northwest A&F University, Yangling, Shanxi, 712100, China.
| |
Collapse
|
34
|
Guillaumie S, Decroocq S, Ollat N, Delrot S, Gomès E, Cookson SJ. Dissecting the control of shoot development in grapevine: genetics and genomics identify potential regulators. BMC PLANT BIOLOGY 2020; 20:43. [PMID: 31996141 PMCID: PMC6988314 DOI: 10.1186/s12870-020-2258-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 01/20/2020] [Indexed: 05/17/2023]
Abstract
BACKGROUND Grapevine is a crop of major economic importance, yet little is known about the regulation of shoot development in grapevine or other perennial fruits crops. Here we combine genetic and genomic tools to identify candidate genes regulating shoot development in Vitis spp. RESULTS An F2 population from an interspecific cross between V. vinifera and V. riparia was phenotyped for shoot development traits, and three Quantitative Trait Loci (QTLs) were identified on linkage groups (LGs) 7, 14 and 18. Around 17% of the individuals exhibited a dwarfed phenotype. A transcriptomic study identified four candidate genes that were not expressed in dwarfed individuals and located within the confidence interval of the QTL on LG7. A deletion of 84,482 bp was identified in the genome of dwarfed plants, which included these four not expressed genes. One of these genes was VviCURLY LEAF (VviCLF), an orthologue of CLF, a regulator of shoot development in Arabidopsis thaliana. CONCLUSIONS The phenotype of the dwarfed grapevine plants was similar to that of clf mutants of A. thaliana and orthologues of the known targets of CLF in A. thaliana were differentially expressed in the dwarfed plants. This suggests that CLF, a major developmental regulator in A. thaliana, also controls shoot development in grapevine.
Collapse
Affiliation(s)
- Sabine Guillaumie
- UMR1287 EGFV, Bordeaux Sciences Agro, INRAE, University of Bordeaux, Villenave d'Ornon, France.
| | - Stéphane Decroocq
- UMR1332 BFP, INRAE, University of Bordeaux, Villenave d'Ornon, France
| | - Nathalie Ollat
- UMR1287 EGFV, Bordeaux Sciences Agro, INRAE, University of Bordeaux, Villenave d'Ornon, France
| | - Serge Delrot
- UMR1287 EGFV, Bordeaux Sciences Agro, INRAE, University of Bordeaux, Villenave d'Ornon, France
| | - Eric Gomès
- UMR1287 EGFV, Bordeaux Sciences Agro, INRAE, University of Bordeaux, Villenave d'Ornon, France
| | - Sarah J Cookson
- UMR1287 EGFV, Bordeaux Sciences Agro, INRAE, University of Bordeaux, Villenave d'Ornon, France
| |
Collapse
|
35
|
Wang Y, Bo K, Gu X, Pan J, Li Y, Chen J, Wen C, Ren Z, Ren H, Chen X, Grumet R, Weng Y. Molecularly tagged genes and quantitative trait loci in cucumber with recommendations for QTL nomenclature. HORTICULTURE RESEARCH 2020; 7:3. [PMID: 31908806 PMCID: PMC6938495 DOI: 10.1038/s41438-019-0226-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 10/05/2019] [Accepted: 11/08/2019] [Indexed: 05/06/2023]
Abstract
Cucumber, Cucumis sativus L. (2n = 2x = 14), is an important vegetable crop worldwide. It was the first specialty crop with a publicly available draft genome. Its relatively small, diploid genome, short life cycle, and self-compatible mating system offers advantages for genetic studies. In recent years, significant progress has been made in molecular mapping, and identification of genes and QTL responsible for key phenotypic traits, but a systematic review of the work is lacking. Here, we conducted an extensive literature review on mutants, genes and QTL that have been molecularly mapped or characterized in cucumber. We documented 81 simply inherited trait genes or major-effect QTL that have been cloned or fine mapped. For each gene, detailed information was compiled including chromosome locations, allelic variants and associated polymorphisms, predicted functions, and diagnostic markers that could be used for marker-assisted selection in cucumber breeding. We also documented 322 QTL for 42 quantitative traits, including 109 for disease resistances against seven pathogens. By alignment of these QTL on the latest version of cucumber draft genomes, consensus QTL across multiple studies were inferred, which provided insights into heritable correlations among different traits. Through collaborative efforts among public and private cucumber researchers, we identified 130 quantitative traits and developed a set of recommendations for QTL nomenclature in cucumber. This is the first attempt to systematically summarize, analyze and inventory cucumber mutants, cloned or mapped genes and QTL, which should be a useful resource for the cucurbit research community.
Collapse
Affiliation(s)
- Yuhui Wang
- Department of Horticulture, University of Wisconsin, Madison, WI 53706 USA
| | - Kailiang Bo
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Xingfang Gu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Junsong Pan
- Department of Plant Sciences, Shanghai Jiaotong University, Shanghai, 200240 China
| | - Yuhong Li
- Horticulture College, Northwest A&F University, Yangling, 712100 China
| | - Jinfeng Chen
- Horticulture College, Nanjing Agricultural University, Nanjing, 210095 China
| | - Changlong Wen
- Beijing Vegetable Research Center, Beijing Academy of Agricultural and Forestry Sciences, Beijing, 100097 China
| | - Zhonghai Ren
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, 271018 China
| | - Huazhong Ren
- College of Horticulture, China Agricultural University, Beijing, 100193 China
| | - Xuehao Chen
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009 China
| | - Rebecca Grumet
- Department of Horticulture, Michigan State University, East Lansing, MI 48824 USA
| | - Yiqun Weng
- Department of Horticulture, University of Wisconsin, Madison, WI 53706 USA
- USDA-ARS Vegetable Crops Research Unit, 1575 Linden Dr., Madison, WI 53706 USA
| |
Collapse
|
36
|
Gebremeskel H, Dou J, Li B, Zhao S, Muhammad U, Lu X, He N, Liu W. Molecular Mapping and Candidate Gene Analysis for GA 3 Responsive Short Internode in Watermelon ( Citrullus lanatus). Int J Mol Sci 2019; 21:E290. [PMID: 31906246 PMCID: PMC6982186 DOI: 10.3390/ijms21010290] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 12/27/2019] [Accepted: 12/27/2019] [Indexed: 11/16/2022] Open
Abstract
Plants with shorter internodes are suitable for high-density planting, lodging resistance and the preservation of land resources by improving yield per unit area. In this study, we identified a locus controlling the short internode trait in watermelon using Zhengzhouzigua (long internode) and Duan125 (short internode) as mapping parents. Genetic analysis indicated that F1 plants were consistent with long internode plants, which indicates that the long internode was dominant over the short internode. The observed F2 and BC1 individuals fitted the expected phenotypic segregation ratios of 3:1 and 1:1, respectively. The locus was mapped on chromosome 9 using a bulked segregant analysis approach. The region was narrowed down to 8.525 kb having only one putative gene, Cla015407, flanking by CAPS90 and CAPS91 markers, which encodes gibberellin 3β-hydroxylase (GA 3β-hydroxylase). The sequence alignment of the candidate gene between both parents revealed a 13 bp deletion in the short internode parent, which resulted in a truncated protein. Before GA3 application, significantly lower GA3 content and shorter cell length were obtained in the short internode plants. However, the highest GA3 content and significant increase in cell length were observed in the short internode plants after exogenous GA3 application. In the short internode plants, the expression level of the Cla015407 was threefold lower than the long internode plants in the stem tissue. In general, our results suggested that Cla015407 might be the candidate gene responsible for the short internode phenotype in watermelon and the phenotype is responsive to exogenous GA3 application.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Wenge Liu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China; (H.G.); (J.D.); (B.L.); (S.Z.); (U.M.); (X.L.); (N.H.)
| |
Collapse
|
37
|
Bo K, Wei S, Wang W, Miao H, Dong S, Zhang S, Gu X. QTL mapping and genome-wide association study reveal two novel loci associated with green flesh color in cucumber. BMC PLANT BIOLOGY 2019; 19:243. [PMID: 31174472 PMCID: PMC6556036 DOI: 10.1186/s12870-019-1835-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 05/15/2019] [Indexed: 05/05/2023]
Abstract
BACKGROUND Green flesh color, resulting from the accumulation of chlorophyll, is one of the most important commercial traits for the fruits. The genetic network regulating green flesh formation has been studied in tomato, melon and watermelon. However, little is known about the inheritance and molecular basis of green flesh in cucumber. This study sought to determine the main genomic regions associated with green flesh. Three F2 and two BC1 populations derived from the 9110Gt (cultivated cucumber, green flesh color) and PI183967 (wild cucumber, white flesh color) were used for the green flesh genetic analysis. Two F2 populations of them were further employed to do the map construction and quantitative trait loci (QTL) study. Also, a core cucumber germplasms population was used to do the GWAS analysis. RESULTS We identified three indexes, flesh color (FC), flesh extract color (FEC) and flesh chlorophyll content (FCC) in three environments. Genetic analysis indicated that green flesh color in 9110Gt is controlled by a major-effect QTL. We developed two genetic maps with 192 and 174 microsatellite markers respectively. Two novel inversions in Chr1 were identified between cultivated and wild cucumbers. The major-effect QTL, qgf5.1, was identified using FC, FEC and FCC index in all different environments used. In addition, the same qgf5.1, together with qgf3.1, was identified via GWAS. Further investigation of two candidate regions using pairwise LD correlations, combined with genetic diversity of qgf5.1 in natural populations, it was found that Csa5G021320 is the candidate gene of qgf5.1. Geographical distribution revealed that green flesh color formation could be due to the high latitude, which has longer day time to produce the photosynthesis and chlorophyll synthesis during cucumber domestication and evolution. CONCLUSIONS We first reported the cucumber green flesh color is a quantitative trait. We detected two novel loci qgf5.1 and qgf3.1, which regulate the green flesh formation in cucumber. The QTL mapping and GWAS approaches identified several candidate genes for further validation using functional genomics or forward genetics approaches. Findings from the present study provide a new insight into the genetic control of green flesh in cucumber.
Collapse
Affiliation(s)
- Kailiang Bo
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Shuang Wei
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Weiping Wang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Han Miao
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Shaoyun Dong
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Shengping Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Xingfang Gu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| |
Collapse
|
38
|
Rong F, Chen F, Huang L, Zhang J, Zhang C, Hou D, Cheng Z, Weng Y, Chen P, Li Y. A mutation in class III homeodomain-leucine zipper (HD-ZIP III) transcription factor results in curly leaf (cul) in cucumber (Cucumis sativus L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:113-123. [PMID: 30334067 DOI: 10.1007/s00122-018-3198-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 09/28/2018] [Indexed: 05/23/2023]
Abstract
We identified two curly-leaf (cul) mutants in cucumber. Map-based cloning revealed that both mutants are due to allelic mutations in the CsPHB gene, a homolog of the Arabidopsis PHABULOSA which encodes a class III homeodomain-leucine zipper (HD-ZIP III) transcription factor. Leaf rolling is an important agronomic trait in crop breeding. Moderate leaf rolling minimizes shadowing between leaves, leading to improved photosynthetic efficiency. Although a number of genes controlling rolled leaf have been identified from rice and other plant species, none have been mapped or cloned in cucurbit crops. In this study, we identified and characterized two curly leaf (cul) mutants, cul-1 and cul-2 in cucumber. With map-based cloning, we show that cul-1 and cul-2 are allelic mutations and CsPHB (Csa6G525430) was the candidate gene for both mutants. The CsPHB gene encoded a class III homeodomain-leucine zipper (HD-ZIP III) transcription factor. A single non-synonymous mutation in the fourth and fifth exons of the CsPHB was responsible for the cul-1 and cul-2 mutant phenotypes, respectively. The single-nucleotide substitutions in cul-1 and cul-2 were both located in cs-miRNA165/166 complementary sites of CsPHB. The expression level of CsPHB gene in multiple organs of cul-1 and cul-2 mutants was higher than that in the wild type, while the expression of cs-miRNA165/166 in the two genotypes showed the opposite trend. We speculate that disruption of the binding between the mutant allele of CsPHB and cs-miRNA165/166 leads to the curly-leaf phenotype. This is the first report to clone and characterize the CsPHB gene in the family Cucurbitaceae. Taken together, these results support CsPHB as an important player in the modulation of leaf shape development in cucumber.
Collapse
Affiliation(s)
- Fuxi Rong
- College of Horticulture, Northwest A&F University, 712100, Yangling, Shanxi, China
| | - Feifan Chen
- College of Horticulture, Northwest A&F University, 712100, Yangling, Shanxi, China
| | - Li Huang
- College of Horticulture, Northwest A&F University, 712100, Yangling, Shanxi, China
| | - Jiayu Zhang
- College of Horticulture, Northwest A&F University, 712100, Yangling, Shanxi, China
| | - Chaowen Zhang
- College of Horticulture, Northwest A&F University, 712100, Yangling, Shanxi, China
| | - Dong Hou
- Vegetable Research Institute, Gansu Academy of Agricultural Sciences, 730070, Lanzhou, Gansu, China
| | - Zhihui Cheng
- College of Horticulture, Northwest A&F University, 712100, Yangling, Shanxi, China
| | - Yiqun Weng
- Horticulture Department, University of Wisconsin, Madison, WI, 53706, USA
- Vegetable Crops Research Unit, USDA-ARS, 1575 Linden Drive, Madison, WI, 53706, USA
| | - Peng Chen
- College of Life Science, Northwest A&F University, 712100, Yangling, Shanxi, China.
| | - Yuhong Li
- College of Horticulture, Northwest A&F University, 712100, Yangling, Shanxi, China.
| |
Collapse
|
39
|
Zhu H, Zhang M, Sun S, Yang S, Li J, Li H, Yang H, Zhang K, Hu J, Liu D, Yang L. A Single Nucleotide Deletion in an ABC Transporter Gene Leads to a Dwarf Phenotype in Watermelon. FRONTIERS IN PLANT SCIENCE 2019; 10:1399. [PMID: 31798601 PMCID: PMC6863960 DOI: 10.3389/fpls.2019.01399] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 10/10/2019] [Indexed: 05/15/2023]
Abstract
Dwarf habit is one of the most important traits in crop plant architecture, as it can increase plant density and improved land utilization, especially for protected cultivation, as well as increasing lodging resistance and economic yield. At least four dwarf genes have been identified in watermelon, but none of them has been cloned. In the current study, the Cldw-1 gene was primary-mapped onto watermelon chromosome 9 by next-generation sequencing-aided bulked-segregant analysis (BSA-seq) of F2 plants derived from a cross between a normal-height line, WT4, and a dwarf line, WM102, in watermelon. The candidate region identified by BSA-seq was subsequently validated and confirmed by linkage analysis using 30 simple sequence repeat (SSR) markers in an F2 population of 124 plants. The Cldw-1 gene was further fine-mapped by chromosome walking in a large F2 population of 1,053 plants and was delimited into a candidate region of 107.00 kb. Six genes were predicted to be in the candidate region, and only one gene, Cla010337, was identified to have two single nucleotide polymorphisms (SNPs) and a single nucleotide deletion in the exons in the dwarf line, WM102. A derived cleaved amplified polymorphic sequence (dCAPS) marker was developed from the single nucleotide deletion, co-segregated with the dwarf trait in both the F2 population and a germplasm collection of 165 accessions. Cla010337 encoded an ATP-binding cassette transporter (ABC transporter) protein, and the expression levels of Cla010337 were significantly reduced in all the tissues tested in the dwarf line, WM102. The results of this study will be useful in achieving a better understanding of the molecular mechanism of the dwarf plant trait in watermelon and for the development of marker-assisted selection (MAS) for new dwarf cultivars.
Collapse
|
40
|
Wei C, Zhu C, Yang L, Zhao W, Ma R, Li H, Zhang Y, Ma J, Yang J, Zhang X. A point mutation resulting in a 13 bp deletion in the coding sequence of Cldf leads to a GA-deficient dwarf phenotype in watermelon. HORTICULTURE RESEARCH 2019; 6:132. [PMID: 31814985 PMCID: PMC6885051 DOI: 10.1038/s41438-019-0213-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/26/2019] [Accepted: 10/19/2019] [Indexed: 05/08/2023]
Abstract
The dwarf architecture is an important and valuable agronomic trait in watermelon breeding and has the potential to increase fruit yield and reduce labor cost in crop cultivation. However, the molecular basis for dwarfism in watermelon remains largely unknown. In this study, a recessive dwarf allele (designated as Cldf (Citrullus lanatus dwarfism)) was fine mapped in a 32.88 kb region on chromosome 09 using F2 segregation populations derived from reciprocal crossing of a normal line M08 and a dwarf line N21. Gene annotation of the corresponding region revealed that the Cla015407 gene encoding a gibberellin 3β-hydroxylase functions as the best possible candidate gene for Cldf. Sequence analysis showed that the fourth polymorphism site (a G to A point mutation) at the 3' AG splice receptor site of the intron leads to a 13 bp deletion in the coding sequence of Cldf in dwarf line N21 and thus results in a truncated protein lacking the conserved domain for binding 2-oxoglutarate. In addition, the dwarf phenotype of Cldf could be rescued by exogenous GA3 application. Phylogenetic analysis suggested that the small multigene family GA3ox (GA3 oxidase) in cucurbit species may originate from three ancient lineages in Cucurbitaceae. All these data support the conclusion that Cldf is a GA-deficient mutant, which together with the cosegregated marker can be used for breeding new dwarf cultivars.
Collapse
Affiliation(s)
- Chunhua Wei
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100 China
| | - Chunyu Zhu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100 China
| | - Liping Yang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100 China
| | - Wei Zhao
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100 China
| | - Rongxue Ma
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100 China
| | - Hao Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100 China
| | - Yong Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100 China
| | - Jianxiang Ma
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100 China
| | - Jianqiang Yang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100 China
| | - Xian Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100 China
| |
Collapse
|
41
|
Bo K, Miao H, Wang M, Xie X, Song Z, Xie Q, Shi L, Wang W, Wei S, Zhang S, Gu X. Novel loci fsd6.1 and Csgl3 regulate ultra-high fruit spine density in cucumber. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:27-40. [PMID: 30242492 DOI: 10.1007/s00122-018-3191-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 09/13/2018] [Indexed: 05/06/2023]
Abstract
Quantitative Trait Loci (QTL) analysis of multiple populations in multiple environments revealed that the fsd6.2 locus, which includes the candidate gene Csgl3, controls high fruit spine density in natural cucumbers. GWAS identified a novel locus fsd6.1, which regulates ultra-high fruit spine density in combination with Csgl3, and evolved during cucumber domestication. Fruit spine density, a domestication trait, largely influences the commercial value of cucumbers. However, the molecular basis of fruit spine density in cucumber remains unclear. In this study, four populations were derived from five materials, which included three with low fruit spine density, one with high fruit spine density, and one with ultra-high fruit spine density. Fruit spine densities were measured in 15 environments over a span of 6 years. The distributions were bimodal suggesting that fruit spine density is controlled by a major-effect QTL. QTL analysis determined that the same major-effect QTL, fsd6.2, is present in four populations. Fine mapping indicated that Csgl3 is the candidate gene at the fsd6.2 locus. Phylogenetic and geographical distribution analyses revealed that Csgl3 originated from China, which has the highest genetic diversity for fruit spine density. One novel minor-effect QTL, fsd6.1, was detected in the HR and HP populations derived from the cross between 65G and 02245. In addition, GWAS identified a novel locus that colocates with fsd6.1. Inspection of a candidate region of about 18 kb in size using pairwise LD correlations, combined with genetic diversity and phylogenetic analysis of fsd6.1 in natural populations, indicated that Csa6G421750 is the candidate gene responsible for ultra-high fruit spine density in cucumber. This study provides new insights into the origin of fruit spine density and the evolution of high/ultra-high fruit spine density during cucumber domestication.
Collapse
Affiliation(s)
- Kailiang Bo
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Han Miao
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Min Wang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaoxiao Xie
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zichao Song
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qing Xie
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lixue Shi
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Weiping Wang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shuang Wei
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shengping Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Xingfang Gu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
42
|
COPATI MARIANEG, ALVES FLÁVIAM, DARIVA FRANÇOISED, PESSOA HERIKAP, DIAS FELIPEO, CARNEIRO PEDROC, CARNEIRO DERLYJ, NICK CARLOS. Resistance of the wild tomato Solanum habrochaites to Phytophthora infestans is governed by a major gene and polygenes. ACTA ACUST UNITED AC 2019; 91:e20190149. [DOI: 10.1590/0001-3765201920190149] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 04/10/2019] [Indexed: 11/22/2022]
|
43
|
Niu H, Liu X, Tong C, Wang H, Li S, Lu L, Pan Y, Zhang X, Weng Y, Li Z. The WUSCHEL-related homeobox1 gene of cucumber regulates reproductive organ development. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:5373-5387. [PMID: 30204887 DOI: 10.1093/jxb/ery329] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 09/10/2018] [Indexed: 05/13/2023]
Abstract
The WUSCHEL-related homeobox1 (WOX1) transcription factor plays an important role in lateral growth of plant organs; however, the underlying mechanisms in the regulation of reproductive development are largely unknown. Cucumber (Cucumis sativus) has separate male and female flowers, facilitating the study of the role of WOX1 in stamen and carpel development. Here, we identified a mango fruit (mf) mutant in cucumber, which displayed multiple defects in flower growth as well as male and female sterility. Map-based cloning showed that Mf encodes a WOX1-type transcriptional regulator (CsWOX1), and that the mf mutant encodes a truncated protein lacking the conserved WUS box. Further analysis showed that elevated expression of CsWOX1 was responsible for the mutant phenotype in cucumber and Arabidopsis. Comparative transcriptome profiling revealed certain key players and CsWOX1-associated networks that regulate reproductive development. CsWOX1 directly interacts with cucumber SPOROCYTELESS (CsSPL), and many genes in the CsSPL-mediated pathway were down-regulated in plants with the mutant allele at the Mf locus. In addition, auxin distribution was affected in both male and female flowers of the mutant. Taking together, these data suggest that CsWOX1 may regulate early reproductive organ development and be involved in sporogenesis via the CsSPL-mediated pathway and/or modulate auxin signaling in cucumber.
Collapse
Affiliation(s)
- Huanhuan Niu
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiaofeng Liu
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, China
| | - Can Tong
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | - Hu Wang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | - Sen Li
- Horticulture Department, University of Wisconsin, Madison, WI, USA
- Horticulture College, Shanxi Agricultural University, Taigu, China
| | - Li Lu
- Departments of Medicine, University of Wisconsin, Madison, WI, USA
| | - Yupeng Pan
- Horticulture Department, University of Wisconsin, Madison, WI, USA
| | - Xiaolan Zhang
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, China
| | - Yiqun Weng
- Horticulture Department, University of Wisconsin, Madison, WI, USA
- USDA-ARS, Vegetable Crops Research Unit, Madison, WI, USA
| | - Zheng Li
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
- Horticulture Department, University of Wisconsin, Madison, WI, USA
| |
Collapse
|
44
|
Zhang K, Wang X, Zhu W, Qin X, Xu J, Cheng C, Lou Q, Li J, Chen J. Complete resistance to powdery mildew and partial resistance to downy mildew in a Cucumis hystrix introgression line of cucumber were controlled by a co-localized locus. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2018; 131:2229-2243. [PMID: 30078164 DOI: 10.1007/s00122-018-3150-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 07/23/2018] [Indexed: 05/16/2023]
Abstract
Key message A single recessive gene for complete resistance to powdery mildew and a major-effect QTL for partial resistance to downy mildew were co-localized in a Cucumis hystrix introgression line of cucumber. Downy mildew (DM) and powdery mildew (PM) are two major foliar diseases in cucumber. DM resistance (DMR) and PM resistance (PMR) may share common components; however, the genetic relationship between them remains unclear. IL52, a Cucumis hystrix introgression line of cucumber which has been reported to possess DMR, was recently identified to exhibit PMR as well. In this study, a single recessive gene pm for PMR was mapped to an approximately 468-kb region on chromosome 5 with 155 recombinant inbred lines (RILs) and 193 F2 plants derived from the cross between a susceptible line 'changchunmici' and IL52. Interestingly, pm was co-localized with the major-effect DMR QTL dm5.2 confirmed by combining linkage analysis and BSA-seq, which was consistent with the observed linkage of DMR and PMR in IL52. Further, phenotype-genotype correlation analysis of DMR and PMR in the RILs indicated that the co-localized locus pm/dm5.2 confers complete resistance to PM and partial resistance to DM. Seven candidate genes for DMR were identified within dm5.2 by BSA-seq analysis, of which Csa5M622800.1, Csa5M622830.1 and Csa5M623490.1 were also the same candidate genes for PMR. A single nucleotide polymorphism that is present in the 3' untranslated region (3'UTR) of Csa5M622830.1 co-segregated perfectly with PMR. The GATA transcriptional factor gene Csa5M622830.1 may be a likely candidate gene for DMR and PMR. This study has provided a clear evidence for the relationship between DMR and PMR in IL52 and sheds new light on the potential value of IL52 for cucumber DMR and PMR breeding program.
Collapse
Affiliation(s)
- Kaijing Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street No. 1, Nanjing, 210095, China
| | - Xing Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street No. 1, Nanjing, 210095, China
| | - Wenwei Zhu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street No. 1, Nanjing, 210095, China
| | - Xiaodong Qin
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street No. 1, Nanjing, 210095, China
| | - Jian Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street No. 1, Nanjing, 210095, China
| | - Chunyan Cheng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street No. 1, Nanjing, 210095, China
| | - Qunfeng Lou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street No. 1, Nanjing, 210095, China
| | - Ji Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street No. 1, Nanjing, 210095, China.
| | - Jinfeng Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street No. 1, Nanjing, 210095, China.
| |
Collapse
|
45
|
Yang L, Liu H, Zhao J, Pan Y, Cheng S, Lietzow CD, Wen C, Zhang X, Weng Y. LITTLELEAF (LL) encodes a WD40 repeat domain-containing protein associated with organ size variation in cucumber. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 95:834-847. [PMID: 29901823 DOI: 10.1111/tpj.13991] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 06/04/2018] [Accepted: 06/06/2018] [Indexed: 05/03/2023]
Abstract
Plants employ tight genetic control to integrate intrinsic growth signals and environmental cues to enable organs to grow to a defined size. Many genes contributing to cell proliferation and/or cell expansion, and consequently organ size control, have been identified, but the regulatory pathways are poorly understood. Here we have characterized a cucumber littleleaf (ll) mutant which exhibits smaller organ sizes but more lateral branches than the wild type. The small organ size in ll was due to a reduction of both cell number and cell size. Quantitative trait locus (QTL) analyses revealed co-localization of major-effect QTLs for fruit size, fruit and seed weight, as well as number of lateral branches, with the LL locus indicating pleiotropic effects of the ll mutation. We demonstrate that LL is an ortholog of Arabidopsis STERILE APETALA (SAP) encoding a WD40 repeat domain-containing protein; the mutant protein differed from the wild type by a single amino acid substitution (W264G) in the second WD40 repeat. W264 was conserved in 34 vascular plant genomes examined. Phylogenetic analysis suggested that LL originated before the emergence of flowering plants but was lost in the grass genome lineage. The function of LL in organ size control was confirmed by its overexpression in transgenic cucumbers and ectopic expression in Arabidopsis. Transcriptome profiling in LL and ll bulks revealed a complex regulatory network for LL-mediated organ size variation that involves several known organ size regulators and associated pathways. The data support LL as an important player in organ size control and lateral branch development in cucumber.
Collapse
Affiliation(s)
- Luming Yang
- Horticulture Department, University of Wisconsin-Madison, Madison, WI, 53706, USA
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450002, China
| | - Hanqiang Liu
- Horticulture Department, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Jianyu Zhao
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, 100193, China
| | - Yupeng Pan
- Horticulture Department, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Siyuan Cheng
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450002, China
| | - Calvin D Lietzow
- Horticulture Department, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Changlong Wen
- Horticulture Department, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Beijing Vegetable Research Center and National Engineering Research Center for Vegetables, Beijing Academy of Agricultural and Forestry Sciences, Beijing, 100097, China
| | - Xiaolan Zhang
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, 100193, China
| | - Yiqun Weng
- Horticulture Department, University of Wisconsin-Madison, Madison, WI, 53706, USA
- USDA-ARS, Vegetable Crops Research Unit, 1575 Linden Drive, Madison, WI, 53706, USA
| |
Collapse
|
46
|
Zhang C, Chen F, Zhao Z, Hu L, Liu H, Cheng Z, Weng Y, Chen P, Li Y. Mutations in CsPID encoding a Ser/Thr protein kinase are responsible for round leaf shape in cucumber (Cucumis sativus L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2018. [PMID: 29541828 DOI: 10.1007/s00122-018-3084-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Two round-leaf mutants, rl-1 and rl-2, were identified from EMS-induced mutagenesis. High throughput sequencing and map-based cloning suggested CsPID encoding a Ser/Thr protein kinase as the most possible candidate for rl-1. Rl-2 was allelic to Rl-1. Leaf shape is an important plant architecture trait that is affected by plant hormones, especially auxin. In Arabidopsis, PINOID (PID), a regulator for the auxin polar transporter PIN (PIN-FORMED) affects leaf shape formation, but this function of PID in crop plants has not been well studied. From an EMS mutagenesis population, we identified two round-leaf (rl) mutants, C356 and C949. Segregation analysis suggested that both mutations were controlled by single recessive genes, rl-1 and rl-2, respectively. With map-based cloning, we show that CsPID as the candidate gene of rl-1; a non-synonymous SNP in the second exon of CsPID resulted in an amino acid substitution and the round leaf phenotype. As compared in the wild type plant, CsPID had significantly lower expression in the root, leaf and female flowers in C356, which may result in the less developed roots, round leaves and abnormal female flowers, respectively in the rl-1 mutant. Among the three copies of PID genes, CsPID, CsPID2 and CSPID2L (CsPID2-like) in the cucumber genome, CsPID was the only one with significantly differential expression in adult leaves between WT and C356 suggesting CsPID plays a main role in leaf shape formation. The rl-2 mutation in C949 was also cloned, which was due to another SNP in a nearby location of rl-1 in the same CsPID gene. The two round leaf mutants and the work presented herein provide a good foundation for understanding the molecular mechanisms of CsPID in cucumber leaf development.
Collapse
Affiliation(s)
- Chaowen Zhang
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Feifan Chen
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Ziyao Zhao
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Liangliang Hu
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Hanqiang Liu
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Zhihui Cheng
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yiqun Weng
- Horticulture Department, University of Wisconsin, Madison, WI, 53706, USA
- Vegetable Crops Research Unit, USDA-ARS, 1575 Linden Drive, Madison, WI, 53706, USA
| | - Peng Chen
- College of Life Science, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Yuhong Li
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
47
|
Song M, Wei Q, Wang J, Fu W, Qin X, Lu X, Cheng F, Yang K, Zhang L, Yu X, Li J, Chen J, Lou Q. Fine Mapping of CsVYL, Conferring Virescent Leaf Through the Regulation of Chloroplast Development in Cucumber. FRONTIERS IN PLANT SCIENCE 2018; 9:432. [PMID: 29681911 PMCID: PMC5897749 DOI: 10.3389/fpls.2018.00432] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Accepted: 03/21/2018] [Indexed: 05/19/2023]
Abstract
Leaf color mutants in higher plants are ideal materials for investigating the structure and function of photosynthetic system. In this study, we identified a cucumber vyl (virescent-yellow leaf) mutant in the mutant library, which exhibited reduced pigment contents and delayed chloroplast development process. F2 and BC1 populations were constructed from the cross between vyl mutant and cucumber inbred line 'Hazerd' to identify that the vyl trait is controlled by a simply recessive gene designated as CsVYL. The CsVYL gene was mapped to a 3.8 cM interval on chromosome 4 using these 80 F2 individuals and BSA (bulked segregation analysis) approach. Fine genetic map was conducted with 1542 F2 plants and narrowed down the vyl locus to an 86.3 kb genomic region, which contains a total of 11 genes. Sequence alignment between the wild type (WT) and vyl only identified one single nucleotide mutation (C→T) in the first exon of gene Csa4G637110, which encodes a DnaJ-like zinc finger protein. Gene Expression analysis confirmed the differences in transcription level of Csa4G637110 between wild type and mutant plants. Map-based cloning of the CsVYL gene could accelerate the study of chloroplast development and chlorophyll synthesis of cucumber.
Collapse
|
48
|
Hou S, Niu H, Tao Q, Wang S, Gong Z, Li S, Weng Y, Li Z. A mutant in the CsDET2 gene leads to a systemic brassinosteriod deficiency and super compact phenotype in cucumber (Cucumis sativus L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2017; 130:1693-1703. [PMID: 28516384 DOI: 10.1007/s00122-017-2919-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 05/04/2017] [Indexed: 05/07/2023]
Abstract
A novel dwarf cucumber mutant, scp-2, displays a typical BR biosynthesis-deficient phenotype, which is due to a mutation in CsDET2 for a steroid 5-alpha-reductase. Brassinosteroids (BRs) are a group of plant hormones that play important roles in the development of plant architecture, and extreme dwarfism is a typical outcome of BR-deficiency. Most cucumber (Cucumis sativus L.) varieties have an indeterminate growth habit, and dwarfism may have its value in manipulation of plant architecture and improve production in certain production systems. In this study, we identified a spontaneous dwarf mutant, super compact-2 (scp-2), that also has dark green, wrinkle leaves. Genetic analyses indicated that scp-2 was different from two previously reported dwarf mutants: compact (cp) and super compact-1 (scp-1). Map-based cloning revealed that the mutant phenotype was due to two single nucleotide polymorphism and a single-base insertion in the CsDET2 gene that resulted in a missense mutation in a conserved amino acid and thus a truncated protein lacking the conserved catalytic domains in the predicted steroid 5α-reductase protein. Measurement of endogenous hormone levels indicated a reduced level of brassinolide (BL, a bioactive BR) in scp-2, and the mutant phenotype could be partially rescued by the application of epibrassinolide (EBR). In addition, scp-2 mutant seedlings exhibited dark-grown de-etiolation, and defects in cell elongation and vascular development. These data support that scp-2 is a BR biosynthesis-deficient mutant, and that the CsDET2 gene plays a key role in BR biosynthesis in cucumber. We also described the systemic BR responses and discussed the specific BR-related phenotypes in cucumber plants.
Collapse
Affiliation(s)
- Shanshan Hou
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Huanhuan Niu
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Qianyi Tao
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Shenhao Wang
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Zhenhui Gong
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Sen Li
- Horticulture Department, University of Wisconsin, Madison, WI, 53706, USA
- Horticulture College, Shanxi Agricultural University, Taigu, 030801, China
| | - Yiqun Weng
- Horticulture Department, University of Wisconsin, Madison, WI, 53706, USA.
- USDA ARS, Vegetable Crops Research Unit, Madison, WI, 53706, USA.
| | - Zheng Li
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China.
- Horticulture Department, University of Wisconsin, Madison, WI, 53706, USA.
| |
Collapse
|
49
|
Pan Y, Qu S, Bo K, Gao M, Haider KR, Weng Y. QTL mapping of domestication and diversifying selection related traits in round-fruited semi-wild Xishuangbanna cucumber (Cucumis sativus L. var. xishuangbannanesis). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2017; 130:1531-1548. [PMID: 28439621 DOI: 10.1007/s00122-017-2908-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Accepted: 04/13/2017] [Indexed: 05/02/2023]
Abstract
QTL analysis revealed 11 QTL underlying flowering time and fruit size variation in the semi-wild Xishuangbanna cucumber, of which, FT6.2 and FS5.2 played the most important roles in determining photoperiod-dependent flowering time and round-fruit shape, respectively. Flowering time and fruit size are two important traits in domestication and diversifying selection in cucumber, but their genetic basis is not well understood. Here we reported QTL mapping results on flowering time and fruit size with F2 and F2:3 segregating populations derived from the cross between WI7200, a small fruited, early flowering primitive cultivated cucumber and WI7167, a round-fruited, later flowering semi-wild Xishuangbanna (XIS) cucumber. A linkage map with 267 microsatellite marker loci was developed with 138 F2 plants. Phenotypic data of male and female flowering time, fruit length and diameter and three other traits (mature fruit weight and number, and seedling hypocotyl length) were collected in multiple environments. Three flowering time QTL, FT1.1, FT5.1 and FT6.2 were identified, in which FT6.2 played the most important role in conferring less photoperiod sensitive early flowering during domestication whereas FT1.1 seemed more influential in regulating flowering time within the cultivated cucumber. Eight consensus fruit size QTL distributed in 7 chromosomes were detected, each of which contributed to both longitudinal and radial growth in cucumber fruit development. Among them, FS5.2 on chromosome 5 exhibited the largest effect on the determination of round fruit shape that was characteristic of the WI7167 XIS cucumber. Possible roles of these flowering time and fruit size QTL in domestication of cucumber and crop evolution of the semi-wild XIS cucumber, as well as the genetic basis of round fruit shape in cucumber are discussed.
Collapse
Affiliation(s)
- Yupeng Pan
- Department of Horticulture, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Shuping Qu
- Department of Horticulture, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Horticulture College, Northeast Agricultural University, Harbin, 150030, China
| | - Kailiang Bo
- Department of Horticulture, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Meiling Gao
- Department of Horticulture, University of Wisconsin-Madison, Madison, WI, 53706, USA
- College of Life Science, Agriculture and Forestry, Qiqihar University, Qiqihar, 161006, China
| | - Kristin R Haider
- USDA-ARS Vegetable Crops Research Unit, Horticulture Department, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Yiqun Weng
- Department of Horticulture, University of Wisconsin-Madison, Madison, WI, 53706, USA.
- USDA-ARS Vegetable Crops Research Unit, Horticulture Department, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| |
Collapse
|
50
|
Li X, Wang X, Peng Y, Wei H, Zhu X, Chang S, Li M, Li T, Huang H. Quantitative descriptions of rice plant architecture and their application. PLoS One 2017; 12:e0177669. [PMID: 28545144 PMCID: PMC5435225 DOI: 10.1371/journal.pone.0177669] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 05/01/2017] [Indexed: 11/18/2022] Open
Abstract
Plant architecture is an important agronomic trait, and improving plant architecture has attracted the attention of scientists for decades, particularly studies to create desirable plant architecture for high grain yields through breeding and culture practices. However, many important structural phenotypic traits still lack quantitative description and modeling on structural-functional relativity. This study defined new architecture indices (AIs) derived from the digitalized plant architecture using the virtual blade method. The influences of varieties and crop management on these indices and the influences of these indices on biomass accumulation were analyzed using field experiment data at two crop growth stages: early and late panicle initiation. The results indicated that the vertical architecture indices (LAI, PH, 90%-DRI, MDI, 90%-LI) were significantly influenced by variety, water, nitrogen management and the interaction of water and nitrogen, and compact architecture indices (H-CI, Q-CI, 90%-LI, 50%-LI) were significantly influenced by nitrogen management and the interaction of variety and water. Furthermore, there were certain trends in the influence of variety, water, and nitrogen management on AIs. Biomass accumulation has a positive linear correlation with vertical architecture indices and has a quadratic correlation with compact architecture indices, respectively. Furthermore, the combination of vertical and compact architecture indices is the indicator for evaluating the effects of plant architecture on biomass accumulation.
Collapse
Affiliation(s)
- Xumeng Li
- Agricultural mathematical modeling and data processing center, Hunan Agricultural University, Changsha, China
- International Rice Research Institute, Metro Manila, Philippines
- State Key Laboratory of Hybrid Rice, Changsha, China
- Hunan Agricultural University, Changsha, China
| | | | - Yulin Peng
- State Key Laboratory of Hybrid Rice, Changsha, China
| | - Hailin Wei
- Hunan Agricultural University, Changsha, China
| | - Xinguang Zhu
- State Key Laboratory of Hybrid Rice, Changsha, China
| | - Shuoqi Chang
- State Key Laboratory of Hybrid Rice, Changsha, China
| | - Ming Li
- Hunan Agricultural University, Changsha, China
| | - Tao Li
- International Rice Research Institute, Metro Manila, Philippines
- * E-mail: (TL); (HH)
| | - Huang Huang
- Hunan Agricultural University, Changsha, China
- * E-mail: (TL); (HH)
| |
Collapse
|