1
|
Molinari S, Farano AC, Leonetti P. Root-Knot Nematode Early Infection Suppresses Immune Response and Elicits the Antioxidant System in Tomato. Int J Mol Sci 2024; 25:12602. [PMID: 39684315 DOI: 10.3390/ijms252312602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 11/15/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024] Open
Abstract
The immune response in plants is regulated by several phytohormones and involves the overexpression of defense genes, including the pathogenesis-related (PR-) genes. The data reported in this paper indicate that nematodes can suppress the immune response by inhibiting the expression of defense genes. Transcripts from nine defense genes were detected by qRT-PCR in the roots of tomato plants at three and seven days post-inoculation (dpi) with living juveniles (J2s) of Meloidogyne incognita (root-knot nematodes, RKNs). All the salicylic acid (SA)-responsive genes tested (PR-1, PR-2, PR-4b, PR-5) were down-regulated in response to nematode infection. On the contrary, the expression of jasmonic acid (JA)-responsive genes, including ACO (encoding the enzyme 1-aminocyclopropane-1-carboxylic acid oxidase, which catalyzes the last step of ethylene (ET) biosynthesis) and JERF3 (Jasmonate Ethylene Response Factor 3), was unaffected by the infection. Conversely, the effect of nematode attack on the activities of the defense enzymes endoglucanase and endochitinase, encoded by PR-2 and PR-3, respectively, changed depending on the tested dpi. At 5 dpi, both enzymes were inhibited in inoculated plants compared to healthy controls. The genes encoding glutathione peroxidase (GPX) and catalase (CAT), both part of the antioxidant plant system, were highly overexpressed. Additionally, the activity of the antioxidant enzymes superoxide dismutase (SOD), CAT, and ascorbate peroxidase (APX) was enhanced in infected roots. Isoelectrofocusing of root extracts revealed novel SOD isoforms in samples from inoculated plants. Furthermore, plants were pre-treated with an array of key compounds, including hormone generators, inhibitors of SA or JA-mediated defense pathways, reactive oxygen species (ROS) scavengers and generators, inhibitors of ROS generation, and compounds that interfere with calcium-mediated metabolism. After treatments, plants were inoculated with RKNs, and nematodes were allowed to complete their life cycle. Factors of plant growth and infection level in treated plants were compared with those from untreated inoculated plants. Generally, compounds that decreased SA and/or ROS levels increased infection severity, while those that reduced JA/ET levels did not affect infection rates. ROS generators induced resistance against the pests. Compounds that silence calcium signaling by preventing its intake augmented infection symptoms. The data shown in this paper indicate that SA-mediated plant immune responses are consistently suppressed during the early stages of nematode infection, and this restriction is associated with the activation of the antioxidant ROS-scavenging system.
Collapse
Affiliation(s)
- Sergio Molinari
- Bari Unit, Institute for Sustainable Plant Protection, Department of Biology, Agricultural and Food Sciences, National Research Council of Italy, 70126 Bari, Italy
| | | | - Paola Leonetti
- Bari Unit, Institute for Sustainable Plant Protection, Department of Biology, Agricultural and Food Sciences, National Research Council of Italy, 70126 Bari, Italy
| |
Collapse
|
2
|
Lin J, Wang W, Mazarei M, Zhao N, Chen X, Pantalone VR, Hewezi T, Stewart CN, Chen F. GmSABP2-1 encodes methyl salicylate esterase and functions in soybean defense against soybean cyst nematode. PLANT CELL REPORTS 2024; 43:138. [PMID: 38733408 DOI: 10.1007/s00299-024-03224-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024]
Abstract
KEY MESSAGE The soybean gene GmSABP2-1 encodes methyl salicylate esterase and its overexpression led to significant reduction in development of pathogenic soybean cyst nematode. Soybean cyst nematode (SCN, Heterodera glycines) is one of the most devastating pests of soybean (Glycine max L. Merr.). In searching for SCN-defense genes, a soybean gene of the methylesterase (MES) family was found to be upregulated in an SCN-resistant soybean line and downregulated in an SCN-susceptible line upon SCN infection. This gene was designated as GmSABP2-1. Here, we report on biochemical and overexpression studies of GmSABP2-1 to examine its possible function in SCN resistance. The protein encoded by GmSABP2-1 is closely related to known methyl salicylate esterases. To determine the biochemical function of GmSABP2-1, a full-length cDNA of GmSABP2-1 was cloned into a protein expression vector and expressed in Escherichia coli. The resulting recombinant GmSABP2-1 was demonstrated to catalyze the demethylation of methyl salicylate. The biochemical properties of GmSABP2-1 were determined. Its apparent Km value was 46.2 ± 2.2 μM for methyl salicylate, comparable to those of the known methyl salicylate esterases. To explore the biological significance of GmSABP2-1 in soybean defense against SCN, we first overexpressed GmSABP2-1 in transgenic hairy roots of an SCN-susceptible soybean line. When infected with SCN, GmSABP2-1-overexpressing hairy roots showed 84.5% reduction in the development of SCN beyond J2 stage. To provide further genetic evidence for the role of GmSABP2-1 in SCN resistance, stable transgenic soybean plants overexpressing GmSABP2-1 were produced. Analysis of the GmSABP2-1-overexpressing lines showed a significant reduction in SCN development compared to non-transgenic plants. In conclusion, we demonstrated that GmSABP2-1 encodes methyl salicylate esterase and functions as a resistance-related gene against SCN.
Collapse
Affiliation(s)
- Jingyu Lin
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, USA
| | - Weijiao Wang
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, USA
| | - Mitra Mazarei
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, USA
- Center for Agricultural Synthetic Biology, University of Tennessee, Knoxville, TN, USA
| | - Nan Zhao
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, USA
| | - Xinlu Chen
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, USA
| | | | - Tarek Hewezi
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, USA
| | - Charles Neal Stewart
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, USA
- Center for Agricultural Synthetic Biology, University of Tennessee, Knoxville, TN, USA
| | - Feng Chen
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, USA.
| |
Collapse
|
3
|
Qi N, Yan J, Lei P, Kang W, Liu X, Xuan Y, Fan H, Wang Y, Yang N, Chen L, Duan Y, Zhu X. Transcriptome Analysis of GmPUB20A Overexpressing and RNA-Interferencing Transgenic Hairy Roots Reveals Underlying Negative Role in Soybean Resistance to Cyst Nematode. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:18059-18073. [PMID: 37948664 DOI: 10.1021/acs.jafc.3c05617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Ubiquitination genes are key components of plant responses to biotic stress. GmPUB20A, a ubiquitination gene, plays a negative role in soybean resistance to soybean cyst nematode (SCN). In this study, we employed high-throughput sequencing to investigate transcriptional changes in GmPUB20A overexpressing and RNA-interfering transgenic hairy roots. Totally, 7661 differentially expressed genes (DEGs) were identified. Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses revealed that DEGs were significantly enriched in disease resistance and signal transduction pathways. In addition, silencing Glyma.15G021600 and Glyma.09G284700 by siRNA, the total number of nematodes was decreased by 33.48% and 27.47% than control plants, respectively. Further, GUS activity and reactive oxygen species (ROS) assays revealed that GmPUB20A, Glyma.15G021600, and Glyma.09G284700 respond to SCN parasitism and interfere with the accumulation of ROS in plant roots, respectively. Collectively, our study provides insights into the molecular mechanism of GmPUB20A in soybean resistance to SCN.
Collapse
Affiliation(s)
- Nawei Qi
- Nematology Institute of Northern China, Shenyang Agricultural University, Shenyang 110866, China
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
- College of Life Science, Shenyang Normal University, Shenyang 110034, China
| | - Jichen Yan
- Institute of Plant Protection, Liaoning Academy of Agriculture Sciences, Shenyang 100161, China
| | - Piao Lei
- Nematology Institute of Northern China, Shenyang Agricultural University, Shenyang 110866, China
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Wenshu Kang
- College of Environment, Shenyang University, Shenyang 110044, China
| | - Xiaoyu Liu
- College of Sciences, Shenyang Agricultural University, Shenyang 110866, China
| | - Yuanhu Xuan
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Haiyan Fan
- Nematology Institute of Northern China, Shenyang Agricultural University, Shenyang 110866, China
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Yuanyuan Wang
- Nematology Institute of Northern China, Shenyang Agricultural University, Shenyang 110866, China
- College of Biological Science and Technology, Shenyang Agricultural University, Shenyang 110866, China
| | - Ning Yang
- Nematology Institute of Northern China, Shenyang Agricultural University, Shenyang 110866, China
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Lijie Chen
- Nematology Institute of Northern China, Shenyang Agricultural University, Shenyang 110866, China
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Yuxi Duan
- Nematology Institute of Northern China, Shenyang Agricultural University, Shenyang 110866, China
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Xiaofeng Zhu
- Nematology Institute of Northern China, Shenyang Agricultural University, Shenyang 110866, China
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| |
Collapse
|
4
|
Sultana MS, Mazarei M, Jurat-Fuentes JL, Hewezi T, Millwood RJ, Stewart CN. Overexpression of soybean trypsin inhibitor genes decreases defoliation by corn earworm ( Helicoverpa zea) in soybean ( Glycine max) and Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2023; 14:1129454. [PMID: 36875574 PMCID: PMC9982021 DOI: 10.3389/fpls.2023.1129454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Trypsin inhibitors (TIs) are widely distributed in plants and are known to play a protective role against herbivores. TIs reduce the biological activity of trypsin, an enzyme involved in the breakdown of many different proteins, by inhibiting the activation and catalytic reactions of proteins. Soybean (Glycine max) contains two major TI classes: Kunitz trypsin inhibitor (KTI) and Bowman-Birk inhibitor (BBI). Both genes encoding TI inactivate trypsin and chymotrypsin enzymes, which are the main digestive enzymes in the gut fluids of Lepidopteran larvae feeding on soybean. In this study, the possible role of soybean TIs in plant defense against insects and nematodes was investigated. A total of six TIs were tested, including three known soybean trypsin inhibitors (KTI1, KTI2 and KTI3) and three genes encoding novel inhibitors identified in soybean (KTI5, KTI7, and BBI5). Their functional role was further examined by overexpression of the individual TI genes in soybean and Arabidopsis. The endogenous expression patterns of these TI genes varied among soybean tissues, including leaf, stem, seed, and root. In vitro enzyme inhibitory assays showed significant increase in trypsin and chymotrypsin inhibitory activities in both transgenic soybean and Arabidopsis. Detached leaf-punch feeding bioassays detected significant reduction in corn earworm (Helicoverpa zea) larval weight when larvae fed on transgenic soybean and Arabidopsis lines, with the greatest reduction observed in KTI7 and BBI5 overexpressing lines. Whole soybean plant greenhouse feeding bioassays with H. zea on KTI7 and BBI5 overexpressing lines resulted in significantly reduced leaf defoliation compared to non-transgenic plants. However, bioassays of KTI7 and BBI5 overexpressing lines with soybean cyst nematode (SCN, Heterodera glycines) showed no differences in SCN female index between transgenic and non-transgenic control plants. There were no significant differences in growth and productivity between transgenic and non-transgenic plants grown in the absence of herbivores to full maturity under greenhouse conditions. The present study provides further insight into the potential applications of TI genes for insect resistance improvement in plants.
Collapse
Affiliation(s)
- Mst Shamira Sultana
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, United States
- Center for Agricultural Synthetic Biology, University of Tennessee, Knoxville, TN, United States
| | - Mitra Mazarei
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, United States
- Center for Agricultural Synthetic Biology, University of Tennessee, Knoxville, TN, United States
| | - Juan Luis Jurat-Fuentes
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN, United States
| | - Tarek Hewezi
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, United States
| | - Reginald J. Millwood
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, United States
| | - C. Neal Stewart
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, United States
- Center for Agricultural Synthetic Biology, University of Tennessee, Knoxville, TN, United States
| |
Collapse
|
5
|
Du H, Fang C, Li Y, Kong F, Liu B. Understandings and future challenges in soybean functional genomics and molecular breeding. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:468-495. [PMID: 36511121 DOI: 10.1111/jipb.13433] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Abstract
Soybean (Glycine max) is a major source of plant protein and oil. Soybean breeding has benefited from advances in functional genomics. In particular, the release of soybean reference genomes has advanced our understanding of soybean adaptation to soil nutrient deficiencies, the molecular mechanism of symbiotic nitrogen (N) fixation, biotic and abiotic stress tolerance, and the roles of flowering time in regional adaptation, plant architecture, and seed yield and quality. Nevertheless, many challenges remain for soybean functional genomics and molecular breeding, mainly related to improving grain yield through high-density planting, maize-soybean intercropping, taking advantage of wild resources, utilization of heterosis, genomic prediction and selection breeding, and precise breeding through genome editing. This review summarizes the current progress in soybean functional genomics and directs future challenges for molecular breeding of soybean.
Collapse
Affiliation(s)
- Haiping Du
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Chao Fang
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Yaru Li
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Fanjiang Kong
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Baohui Liu
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| |
Collapse
|
6
|
Jiang H, Zhou C, Ma J, Qu S, Liu F, Sun H, Zhao X, Han Y. Weighted gene co-expression network analysis identifies genes related to HG Type 0 resistance and verification of hub gene GmHg1. FRONTIERS IN PLANT SCIENCE 2023; 13:1118503. [PMID: 36777536 PMCID: PMC9911859 DOI: 10.3389/fpls.2022.1118503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 12/28/2022] [Indexed: 06/18/2023]
Abstract
INTRODUCTION The soybean cyst nematode (SCN) is a major disease in soybean production thatseriously affects soybean yield. At present, there are no studies on weighted geneco-expression network analysis (WGCNA) related to SCN resistance. METHODS Here, transcriptome data from 36 soybean roots under SCN HG Type 0 (race 3) stresswere used in WGCNA to identify significant modules. RESULTS AND DISCUSSION A total of 10,000 differentially expressed genes and 21 modules were identified, of which the module most related to SCN was turquoise. In addition, the hub gene GmHg1 with high connectivity was selected, and its function was verified. GmHg1 encodes serine/threonine protein kinase (PK), and the expression of GmHg1 in SCN-resistant cultivars ('Dongnong L-204') and SCN-susceptible cultivars ('Heinong 37') increased significantly after HG Type 0 stress. Soybean plants transformed with GmHg1-OX had significantly increased SCN resistance. In contrast, the GmHg1-RNAi transgenic soybean plants significantly reduced SCN resistance. In transgenic materials, the expression patterns of 11 genes with the same expression trend as the GmHg1 gene in the 'turquoise module' were analyzed. Analysis showed that 11genes were co-expressed with GmHg1, which may be involved in the process of soybean resistance to SCN. Our work provides a new direction for studying the Molecular mechanism of soybean resistance to SCN.
Collapse
Affiliation(s)
- Haipeng Jiang
- Key Laboratory of Soybean Biology in Chinese Ministry of Education (Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), Northeast Agricultural University, Harbin, China
| | - Changjun Zhou
- Soybean Molecular Breeding Faculty Daqing Branch, Heilongjiang Academy of Agricultrual Science, Daqing, China
| | - Jinglin Ma
- Key Laboratory of Soybean Biology in Chinese Ministry of Education (Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), Northeast Agricultural University, Harbin, China
| | - Shuo Qu
- Key Laboratory of Soybean Biology in Chinese Ministry of Education (Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), Northeast Agricultural University, Harbin, China
| | - Fang Liu
- Key Laboratory of Soybean Biology in Chinese Ministry of Education (Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), Northeast Agricultural University, Harbin, China
| | - Haowen Sun
- Key Laboratory of Soybean Biology in Chinese Ministry of Education (Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), Northeast Agricultural University, Harbin, China
| | - Xue Zhao
- Key Laboratory of Soybean Biology in Chinese Ministry of Education (Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), Northeast Agricultural University, Harbin, China
| | - Yingpeng Han
- Key Laboratory of Soybean Biology in Chinese Ministry of Education (Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), Northeast Agricultural University, Harbin, China
| |
Collapse
|
7
|
Jiang H, Lv S, Zhou C, Qu S, Liu F, Sun H, Zhao X, Han Y. Identification of QTL, QTL-by-environment interactions, and their candidate genes for resistance HG Type 0 and HG Type 1.2.3.5.7 in soybean using 3VmrMLM. FRONTIERS IN PLANT SCIENCE 2023; 14:1177345. [PMID: 37152131 PMCID: PMC10162016 DOI: 10.3389/fpls.2023.1177345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 03/31/2023] [Indexed: 05/09/2023]
Abstract
Introduction Soybean cyst nematode (SCN, Heterodera glycines Ichinohe) is an important disease affecting soybean yield in the world. Potential SCN-related QTLs and QTL-by-environment interactions (QEIs) have been used in SCN-resistant breeding. Methods In this study, a compressed variance component mixed model, 3VmrMLM, in genome-wide association studies was used to detect QTLs and QEIs for resistance to SCN HG Type 0 and HG Type 1.2.3.5.7 in 156 different soybean cultivars materials. Results and discussion The results showed that 53 QTLs were detected in single environment analysis; 36 QTLs and 9 QEIs were detected in multi-environment analysis. Based on the statistical screening of the obtained QTLs, we obtained 10 novel QTLs and one QEI which were different from the previous studies. Based on previous studies, we identified 101 known genes around the significant/suggested QTLs and QEIs. Furthermore, used the transcriptome data of SCN-resistant (Dongnong L-10) and SCN-susceptible (Suinong 14) cultivars, 10 candidate genes related to SCN resistance were identified and verified by Quantitative real time polymerase chain reaction (qRT-PCR) analysis. Haplotype difference analysis showed that Glyma.03G005600 was associated with SCN HG Type 0 and HG Type 1.2.3.5.7 resistance and had a haplotype beneficial to multi-SCN-race resistance. These results provide a new idea for accelerating SCN disease resistance breeding.
Collapse
Affiliation(s)
- Haipeng Jiang
- Key Laboratory of Soybean Biology in Chinese Ministry of Education (Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), Northeast Agricultural University, Harbin, China
| | - Suchen Lv
- Key Laboratory of Soybean Biology in Chinese Ministry of Education (Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), Northeast Agricultural University, Harbin, China
| | - Changjun Zhou
- Daqing Branch, Heilongjiang Academy of Agricultural Science, Daqing, China
| | - Shuo Qu
- Key Laboratory of Soybean Biology in Chinese Ministry of Education (Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), Northeast Agricultural University, Harbin, China
| | - Fang Liu
- Key Laboratory of Soybean Biology in Chinese Ministry of Education (Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), Northeast Agricultural University, Harbin, China
| | - Haowen Sun
- Key Laboratory of Soybean Biology in Chinese Ministry of Education (Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), Northeast Agricultural University, Harbin, China
| | - Xue Zhao
- Key Laboratory of Soybean Biology in Chinese Ministry of Education (Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), Northeast Agricultural University, Harbin, China
- *Correspondence: Yingpeng Han, ; Xue Zhao,
| | - Yingpeng Han
- Key Laboratory of Soybean Biology in Chinese Ministry of Education (Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), Northeast Agricultural University, Harbin, China
- *Correspondence: Yingpeng Han, ; Xue Zhao,
| |
Collapse
|
8
|
Elsharkawy MM, Al-Askar AA, Behiry SI, Abdelkhalek A, Saleem MH, Kamran M, Derbalah A. Resistance induction and nematicidal activity of certain monoterpenes against tomato root-knot caused by Meloidogyne incognita. FRONTIERS IN PLANT SCIENCE 2022; 13:982414. [PMID: 36204064 PMCID: PMC9530745 DOI: 10.3389/fpls.2022.982414] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/25/2022] [Indexed: 06/16/2023]
Abstract
This research was performed to evaluate the potential of carvone, cuminaldehyde, cineole, and linalool for the control of root-knot of tomato. The tested control agents were evaluated for their ability to stimulate systemic resistance to Meloidogyne incognita in tomato by monitoring the transcription levels of defense-related genes. Moreover, the ability of the tested agents to induce nematicidal activity concerning second-stage juveniles (J2) hatching and mortality was evaluated. Furthermore, the effect of the tested agents on certain tomato growth and yield parameters was assessed. The tested monoterpenes showed high nematicidal activity against M. incognita concerning J2 hatching inhibition and mortality. Carvone, cuminaldhyde, linalool, and cineole had LC50 values of 123.5, 172.2, 354.9, 466.4, and 952.3 μg/mL, respectively. Carvone was found to be the most efficient hatching inhibitor. The tested monoterpenes showed a high potential against root-knot under greenhouse and field conditions with respect to root-galling, egg masses, and the number of J2. Carvone was the most effective treatment. The growth and yield characters of treated tomato were significantly increased in monoterpenes treatments compared to untreated control. Treated tomato plants showed expression of defense-related genes (PR1 and PAL) 5-8 folds higher than the control. The results also showed that cuminaldhyde, followed by carvone, linalool, and cineole, had the greatest levels of expression in tomato plants. Taken together, the selected monoterpenes could be used as alternatives to control the root-knot of tomato.
Collapse
Affiliation(s)
- Mohsen Mohamed Elsharkawy
- Department of Agricultural Botany, Faculty of Agriculture, Kafrelsheikh University, Kafr El Sheikh, Egypt
| | - Abdulaziz A. Al-Askar
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Said I. Behiry
- Agricultural Botany Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, Egypt
| | - Ahmed Abdelkhalek
- Plant Protection and Biomolecular Diagnosis Department, ALCRI, City of Scientific Research and Technological Applications, Alexandria, Egypt
| | - Muhammad Hamzah Saleem
- MOA Key Laboratory of Crop Ecophysiology and Farming System Core in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Muhammad Kamran
- School of Agriculture, Food and Wine, The University of Adelaide, Urrbrae, SA, Australia
| | - Aly Derbalah
- Pesticides Chemistry and Toxicology Department, Faculty of Agriculture, Kafrelsheikh University, Kafr El Sheikh, Egypt
| |
Collapse
|
9
|
Hasan MS, Chopra D, Damm A, Koprivova A, Kopriva S, Meyer AJ, Müller‐Schüssele S, Grundler FMW, Siddique S. Glutathione contributes to plant defence against parasitic cyst nematodes. MOLECULAR PLANT PATHOLOGY 2022; 23:1048-1059. [PMID: 35352464 PMCID: PMC9190975 DOI: 10.1111/mpp.13210] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
Cyst nematodes (CNs) are an important group of root-infecting sedentary endoparasites that severely damage many crop plants worldwide. An infective CN juvenile enters the host's roots and migrates towards the vascular cylinder, where it induces the formation of syncytial feeding cells, which nourish the CN throughout its parasitic stages. Here, we examined the role of glutathione (l-γ-glutamyl-l-cysteinyl-glycine) in Arabidopsis thaliana on infection with the CN Heterodera schachtii. Arabidopsis lines with mutations pad2, cad2, or zir1 in the glutamate-cysteine ligase (GSH1) gene, which encodes the first enzyme in the glutathione biosynthetic pathway, displayed enhanced CN susceptibility, but susceptibility was reduced for rax1, another GSH1 allele. Biochemical analysis revealed differentially altered thiol levels in these mutants that was independent of nematode infection. All glutathione-deficient mutants exhibited impaired activation of defence marker genes as well as genes for biosynthesis of the antimicrobial compound camalexin early in infection. Further analysis revealed a link between glutathione-mediated plant resistance to CN infection and the production of camalexin on nematode infection. These results suggest that glutathione levels affect plant resistance to CN by fine-tuning the balance between the cellular redox environment and the production of compounds related to defence against infection.
Collapse
Affiliation(s)
- M. Shamim Hasan
- Institute of Crop Science and Resource Conservation (INRES)Molecular PhytomedicineUniversity of BonnINRESBonnGermany
- Department of Plant PathologyFaculty of AgricultureHajee Mohammad Danesh Science and Technology UniversityDinajpurBangladesh
| | - Divykriti Chopra
- Institute of Crop Science and Resource Conservation (INRES)Molecular PhytomedicineUniversity of BonnINRESBonnGermany
| | - Anika Damm
- Institute of Crop Science and Resource Conservation (INRES)Molecular PhytomedicineUniversity of BonnINRESBonnGermany
| | - Anna Koprivova
- Institute for Plant SciencesCluster of Excellence on Plant SciencesUniversity of CologneCologneGermany
| | - Stanislav Kopriva
- Institute for Plant SciencesCluster of Excellence on Plant SciencesUniversity of CologneCologneGermany
| | - Andreas J. Meyer
- Institute of Crop Science and Resource Conservation (INRES)Chemical SignallingUniversity of BonnBonnGermany
| | - Stefanie Müller‐Schüssele
- Institute of Crop Science and Resource Conservation (INRES)Chemical SignallingUniversity of BonnBonnGermany
| | - Florian M. W. Grundler
- Institute of Crop Science and Resource Conservation (INRES)Molecular PhytomedicineUniversity of BonnINRESBonnGermany
| | - Shahid Siddique
- Institute of Crop Science and Resource Conservation (INRES)Molecular PhytomedicineUniversity of BonnINRESBonnGermany
- Department of Entomology and NematologyUniversity of CaliforniaDavisCaliforniaUSA
| |
Collapse
|
10
|
Huang M, Jiang Y, Qin R, Jiang D, Chang D, Tian Z, Li C, Wang C. Full-Length Transcriptional Analysis of the Same Soybean Genotype With Compatible and Incompatible Reactions to Heterodera glycines Reveals Nematode Infection Activating Plant Defense Response. FRONTIERS IN PLANT SCIENCE 2022; 13:866322. [PMID: 35665156 PMCID: PMC9158574 DOI: 10.3389/fpls.2022.866322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/22/2022] [Indexed: 06/04/2023]
Abstract
Full-length transcriptome sequencing with long reads is a powerful tool to analyze transcriptional and post-transcriptional events; however, it has not been applied on soybean (Glycine max). Here, a comparative full-length transcriptome analysis was performed on soybean genotype 09-138 infected with soybean cyst nematode (SCN, Heterodera glycines) race 4 (SCN4, incompatible reaction) and race 5 (SCN5, compatible reaction) using Oxford Nanopore Technology. Each of 9 full-length samples collected 8 days post inoculation with/without nematodes generated an average of 6.1 GB of clean data and a total of 65,038 transcript sequences. After redundant transcripts were removed, 1,117 novel genes and 41,096 novel transcripts were identified. By analyzing the sequence structure of the novel transcripts, a total of 28,759 complete open reading frame (ORF) sequences, 5,337 transcription factors, 288 long non-coding RNAs, and 40,090 novel transcripts with function annotation were predicted. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses of differentially expressed genes (DEGs) revealed that growth hormone, auxin-activated signaling pathway and multidimensional cell growth, and phenylpropanoid biosynthesis pathway were enriched by infection with both nematode races. More DEGs associated with stress response elements, plant-hormone signaling transduction pathway, and plant-pathogen interaction pathway with more upregulation were found in the incompatible reaction with SCN4 infection, and more DEGs with more upregulation involved in cell wall modification and carbohydrate bioprocess were detected in the compatible reaction with SCN5 infection when compared with each other. Among them, overlapping DEGs with a quantitative difference was triggered. The combination of protein-protein interaction with DEGs for the first time indicated that nematode infection activated the interactions between transcription factor WRKY and VQ (valine-glutamine motif) to contribute to soybean defense. The knowledge of the SCN-soybean interaction mechanism as a model will present more understanding of other plant-nematode interactions.
Collapse
Affiliation(s)
- Minghui Huang
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
| | - Ye Jiang
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
- Heilongjiang Academy of Agricultural Sciences, Daqing, China
| | - Ruifeng Qin
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
- Heilongjiang Academy of Agricultural Sciences, Daqing, China
| | - Dan Jiang
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
- Heilongjiang Academy of Agricultural Sciences, Daqing, China
| | - Doudou Chang
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
- Heilongjiang Academy of Agricultural Sciences, Daqing, China
| | - Zhongyan Tian
- Heilongjiang Academy of Agricultural Sciences, Daqing, China
| | - Chunjie Li
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
| | - Congli Wang
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
| |
Collapse
|
11
|
Piya S, Hawk T, Patel B, Baldwin L, Rice JH, Stewart CN, Hewezi T. Kinase-dead mutation: A novel strategy for improving soybean resistance to soybean cyst nematode Heterodera glycines. MOLECULAR PLANT PATHOLOGY 2022; 23:417-430. [PMID: 34851539 PMCID: PMC8828698 DOI: 10.1111/mpp.13168] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/12/2021] [Accepted: 11/12/2021] [Indexed: 05/29/2023]
Abstract
Protein kinases phosphorylate proteins for functional changes and are involved in nearly all cellular processes, thereby regulating almost all aspects of plant growth and development, and responses to biotic and abiotic stresses. We generated two independent co-expression networks of soybean genes using control and stress response gene expression data and identified 392 differentially highly interconnected kinase hub genes among the two networks. Of these 392 kinases, 90 genes were identified as "syncytium highly connected hubs", potentially essential for activating kinase signalling pathways in the nematode feeding site. Overexpression of wild-type coding sequences of five syncytium highly connected kinase hub genes using transgenic soybean hairy roots enhanced plant susceptibility to soybean cyst nematode (SCN; Heterodera glycines) Hg Type 0 (race 3). In contrast, overexpression of kinase-dead variants of these five syncytium kinase hub genes significantly enhanced soybean resistance to SCN. Additionally, three of the five tested kinase hub genes enhanced soybean resistance to SCN Hg Type 1.2.5.7 (race 2), highlighting the potential of the kinase-dead approach to generate effective and durable resistance against a wide range of SCN Hg types. Subcellular localization analysis revealed that kinase-dead mutations do not alter protein cellular localization, confirming the structure-function of the kinase-inactive variants in producing loss-of-function phenotypes causing significant decrease in nematode susceptibility. Because many protein kinases are highly conserved and are involved in plant responses to various biotic and abiotic stresses, our approach of identifying kinase hub genes and their inactivation using kinase-dead mutation could be translated for biotic and abiotic stress tolerance.
Collapse
Affiliation(s)
- Sarbottam Piya
- Department of Plant SciencesUniversity of TennesseeKnoxvilleTennesseeUSA
| | - Tracy Hawk
- Department of Plant SciencesUniversity of TennesseeKnoxvilleTennesseeUSA
| | - Bhoomi Patel
- Department of Plant SciencesUniversity of TennesseeKnoxvilleTennesseeUSA
| | - Logan Baldwin
- Department of Plant SciencesUniversity of TennesseeKnoxvilleTennesseeUSA
| | - John H. Rice
- Department of Plant SciencesUniversity of TennesseeKnoxvilleTennesseeUSA
| | - C. Neal Stewart
- Department of Plant SciencesUniversity of TennesseeKnoxvilleTennesseeUSA
| | - Tarek Hewezi
- Department of Plant SciencesUniversity of TennesseeKnoxvilleTennesseeUSA
| |
Collapse
|
12
|
Shi X, Chen Q, Liu S, Wang J, Peng D, Kong L. Combining targeted metabolite analyses and transcriptomics to reveal the specific chemical composition and associated genes in the incompatible soybean variety PI437654 infected with soybean cyst nematode HG1.2.3.5.7. BMC PLANT BIOLOGY 2021; 21:217. [PMID: 33990182 PMCID: PMC8120846 DOI: 10.1186/s12870-021-02998-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 04/30/2021] [Indexed: 05/04/2023]
Abstract
BACKGROUND Soybean cyst nematode, Heterodera glycines, is one of the most devastating pathogens of soybean and causes severe annual yield losses worldwide. Different soybean varieties exhibit different responses to H. glycines infection at various levels, such as the genomic, transcriptional, proteomic and metabolomic levels. However, there have not yet been any reports of the differential responses of incompatible and compatible soybean varieties infected with H. glycines based on combined metabolomic and transcriptomic analyses. RESULTS In this study, the incompatible soybean variety PI437654 and three compatible soybean varieties, Williams 82, Zhonghuang 13 and Hefeng 47, were used to clarify the differences in metabolites and transcriptomics before and after the infection with HG1.2.3.5.7. A local metabolite-calibrated database was used to identify potentially differential metabolites, and the differences in metabolites and metabolic pathways were compared between the incompatible and compatible soybean varieties after inoculation with HG1.2.3.5.7. In total, 37 differential metabolites and 20 KEGG metabolic pathways were identified, which were divided into three categories: metabolites/pathways overlapped in the incompatible and compatible soybeans, and metabolites/pathways specific to either the incompatible or compatible soybean varieties. Twelve differential metabolites were found to be involved in predicted KEGG metabolite pathways. Moreover, 14 specific differential metabolites (such as significantly up-regulated nicotine and down-regulated D-aspartic acid) and their associated KEGG pathways (such as the tropane, piperidine and pyridine alkaloid biosynthesis, alanine, aspartate and glutamate metabolism, sphingolipid metabolism and arginine biosynthesis) were significantly altered and abundantly enriched in the incompatible soybean variety PI437654, and likely played pivotal roles in defending against HG1.2.3.5.7 infection. Three key metabolites (N-acetyltranexamic acid, nicotine and D,L-tryptophan) found to be significantly up-regulated in the incompatible soybean variety PI437654 infected by HG1.2.3.5.7 were classified into two types and used for combined analyses with the transcriptomic expression profiling. Associated genes were predicted, along with the likely corresponding biological processes, cellular components, molecular functions and pathways. CONCLUSIONS Our results not only identified potential novel metabolites and associated genes involved in the incompatible response of PI437654 to soybean cyst nematode HG1.2.3.5.7, but also provided new insights into the interactions between soybeans and soybean cyst nematodes.
Collapse
Affiliation(s)
- Xue Shi
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Qiansi Chen
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, Henan, China
| | - Shiming Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Jiajun Wang
- Soybean Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China
| | - Deliang Peng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Lingan Kong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
13
|
Miraeiz E, Chaiprom U, Afsharifar A, Karegar A, M Drnevich J, E Hudson M. Early transcriptional responses to soybean cyst nematode HG Type 0 show genetic differences among resistant and susceptible soybeans. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:87-102. [PMID: 31570969 DOI: 10.1007/s00122-019-03442-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 09/18/2019] [Indexed: 05/24/2023]
Abstract
KEY MESSAGE Root transcriptome profiling of three soybean cultivars and a wild relative infected with soybean cyst nematode at migratory phase revealed differential resistance pathway responses between resistant and susceptible genotypes. The soybean cyst nematode (SCN), Heterodera glycines, is the most serious pathogen of soybean production throughout the world. Using resistant cultivars is the primary management strategy against SCN infestation. To gain insight into the still obscure mechanisms of genetic resistance to nematodes in different soybean genotypes, RNA-Seq profiling of the roots of Glycine max cv. Peking, Fayette, Williams 82, and a wild relative (Glycine soja PI 468916) was performed during SCN infection at the migratory phase. The analysis showed statistically significant changes of expression beginning at eight hours after inoculation in genes associated with defense mechanisms and pathways, such as the phenylpropanoid biosynthesis pathway, plant innate immunity and hormone signaling. Our results indicate the importance of the early plant response to migratory phase nematodes in pathogenicity determination. The transcriptome changes occurring during early SCN infection included a number of genes and pathways specific to the different resistant genotypes. We observed the most extensive resistant transcriptome reaction in PI 468916, where the resistant response was qualitatively different from that of commonly used G. max varieties.
Collapse
Affiliation(s)
- Esmaeil Miraeiz
- Department of Plant Protection, School of Agriculture, Shiraz University, Shiraz, Iran
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Usawadee Chaiprom
- PhD Program in Informatics, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Alireza Afsharifar
- Plant Virology Research Center, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Akbar Karegar
- Department of Plant Protection, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Jenny M Drnevich
- High Performance Biological Computing (HPCBio), Roy J. Carver Biotechnology Center, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Matthew E Hudson
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
14
|
Kankanala P, Nandety RS, Mysore KS. Genomics of Plant Disease Resistance in Legumes. FRONTIERS IN PLANT SCIENCE 2019; 10:1345. [PMID: 31749817 PMCID: PMC6842968 DOI: 10.3389/fpls.2019.01345] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 09/27/2019] [Indexed: 05/15/2023]
Abstract
The constant interactions between plants and pathogens in the environment and the resulting outcomes are of significant importance for agriculture and agricultural scientists. Disease resistance genes in plant cultivars can break down in the field due to the evolution of pathogens under high selection pressure. Thus, the protection of crop plants against pathogens is a continuous arms race. Like any other type of crop plant, legumes are susceptible to many pathogens. The dawn of the genomic era, in which high-throughput and cost-effective genomic tools have become available, has revolutionized our understanding of the complex interactions between legumes and pathogens. Genomic tools have enabled a global view of transcriptome changes during these interactions, from which several key players in both the resistant and susceptible interactions have been identified. This review summarizes some of the large-scale genomic studies that have clarified the host transcriptional changes during interactions between legumes and their plant pathogens while highlighting some of the molecular breeding tools that are available to introgress the traits into breeding programs. These studies provide valuable insights into the molecular basis of different levels of host defenses in resistant and susceptible interactions.
Collapse
|
15
|
Song W, Qi N, Liang C, Duan F, Zhao H. Soybean root transcriptome profiling reveals a nonhost resistant response during Heterodera glycines infection. PLoS One 2019; 14:e0217130. [PMID: 31125369 PMCID: PMC6534303 DOI: 10.1371/journal.pone.0217130] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Accepted: 05/06/2019] [Indexed: 11/19/2022] Open
Abstract
Heterodera glycines (soybean cyst nematode, SCN) is one of the most devastating pathogens of soybean worldwide. The compatible and in compatible interactions between soybean and SCN have well documented. Nevertheless, the molecular mechanism of a nonhost resistant response in soybean against SCN infection remains obscure. Toward this end, a global transcriptional comparison was conducted between susceptible and resistant reactions of soybean roots infected by taking advantage of finding a new pathotype of SCN (SCNT). The soybean cultivar Lee, which exhibits resistant to SCNT and susceptible to HG 1.2.3.4.7 (SCNs) was utilized in the expriments. The results highlighted a nonhost resistant response of soybean. Transcriptome analysis indicated that the number of differentially expressed genes (DEGs) in the resistant interaction (3746) was much larger than that in the susceptible interaction (602). A great number of genes acting as intrinsic component of membrane, integral component of membrane, cell periphery and plasma membrance were remarkably enriched only in the resistant interaction, while the taurine and hypotaurine, phenylpropanoid pathway, plant-pathogen interaction and transcript factors were modulated in both interactions. This is the first study to examine genes expression patterns in a soybean genotype in response to invasion by a virulent and avirulent SCN population at the transcriptional level, which will provide insights into the complicate molecular mechanism of the nonhost resistant interaction.
Collapse
Affiliation(s)
- Wenwen Song
- Key Lab of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Nawei Qi
- Key Lab of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Chen Liang
- Key Lab of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Fangmeng Duan
- Key Lab of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Honghai Zhao
- Key Lab of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
16
|
Li R, Erpelding JE, Stetina SR. Genome-wide association study of Gossypium arboreum resistance to reniform nematode. BMC Genet 2018; 19:52. [PMID: 30075700 PMCID: PMC6091029 DOI: 10.1186/s12863-018-0662-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 07/26/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Reniform nematode (Rotylenchulus reniformis) has emerged as one of the most destructive root pathogens of upland cotton (Gossypium hirsutum) in the United States. Management of R. reniformis has been hindered by the lack of resistant G. hirsutum cultivars; however, resistance has been frequently identified in germplasm accessions from the G. arboreum collection. To determine the genetic basis of reniform nematode resistance, a genome-wide association study (GWAS) was performed using 246 G. arboreum germplasm accessions that were genotyped with 7220 single nucleotide polymorphic (SNP) sequence markers generated from genotyping-by-sequencing. RESULTS Fifteen SNPs representing 12 genomic loci distributed over eight chromosomes showed association with reniform nematode resistance. For 14 SNPs, major alleles were shown to be associated with resistance. From the 15 significantly associated SNPs, 146 genes containing or physically close to these loci were identified as putative reniform nematode resistance candidate genes. These genes are involved in a broad range of biological pathways, including plant innate immunity, transcriptional regulation, and redox reaction that may have a role in the expression of resistance. Eighteen of these genes corresponded to differentially expressed genes identified from G. hirsutum in response to reniform nematode infection. CONCLUSIONS The identification of multiple genomic loci associated with reniform nematode resistance would indicate that the G. arboreum collection is a significant resource of novel resistance genes. The significantly associated markers identified from this GWAS can be used for the development of molecular tools for breeding improved reniform nematode resistant upland cotton with resistance introgressed from G. arboreum. Additionally, a greater understanding of the molecular mechanisms of reniform nematode resistance can be determined through genetic structure and functional analyses of candidate genes, which will aid in the pyramiding of multiple resistance genes.
Collapse
Affiliation(s)
- Ruijuan Li
- Present address: Department of Plant Biology, University of California, Davis, One Shields Avenue, Davis, CA 95616 USA
| | - John E. Erpelding
- USDA-ARS, Crop Genetics Research Unit, 141 Experiment Station Road, PO Box 345, Stoneville, MS 38776 USA
| | - Salliana R. Stetina
- USDA-ARS, Crop Genetics Research Unit, 141 Experiment Station Road, PO Box 345, Stoneville, MS 38776 USA
| |
Collapse
|
17
|
Kang W, Zhu X, Wang Y, Chen L, Duan Y. Transcriptomic and metabolomic analyses reveal that bacteria promote plant defense during infection of soybean cyst nematode in soybean. BMC PLANT BIOLOGY 2018; 18:86. [PMID: 29751738 PMCID: PMC5948838 DOI: 10.1186/s12870-018-1302-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 04/30/2018] [Indexed: 05/19/2023]
Abstract
BACKGROUND Soybean cyst nematode (SCN) is the most devastating pathogen of soybean. Our previous study showed that the plant growth-promoting rhizobacterium Bacillus simplex strain Sneb545 promotes soybean resistance to SCN. Here, we conducted a combined metabolomic and transcriptomic analysis to gain information regarding the biological mechanism of defence enhancement against SCN in Sneb545-treated soybean. To this end, we compared the transcriptome and metabolome of Sneb545-treated and non-treated soybeans under SCN infection. RESULTS Transcriptomic analysis showed that 6792 gene transcripts were common in Sneb545-treated and non-treated soybeans. However, Sneb545-treated soybeans showed a higher concentration of various nematicidal metabolites, including 4-vinylphenol, methionine, piperine, and palmitic acid, than non-treated soybeans under SCN infection. CONCLUSIONS Overall, our results validated and expanded the existing models regarding the co-regulation of gene expression and metabolites in plants, indicating the advantage of integrated system-oriented analysis.
Collapse
Affiliation(s)
- Wenshu Kang
- Nematology Institute of Northern China, Shenyang Agricultural University, No.120 Dongling Road, Shenyang, 110866 China
| | - Xiaofeng Zhu
- Nematology Institute of Northern China, Shenyang Agricultural University, No.120 Dongling Road, Shenyang, 110866 China
| | - Yuanyuan Wang
- Institute of Biotechnology, Shenyang Agricultural University, No.120 Dongling Road, Shenyang, 110866 China
| | - Lijie Chen
- Nematology Institute of Northern China, Shenyang Agricultural University, No.120 Dongling Road, Shenyang, 110866 China
| | - Yuxi Duan
- Nematology Institute of Northern China, Shenyang Agricultural University, No.120 Dongling Road, Shenyang, 110866 China
| |
Collapse
|
18
|
Zhang H, Song BH. RNA-seq data comparisons of wild soybean genotypes in response to soybean cyst nematode ( Heterodera glycines). GENOMICS DATA 2017; 14:36-39. [PMID: 28856099 PMCID: PMC5565783 DOI: 10.1016/j.gdata.2017.08.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 08/02/2017] [Accepted: 08/09/2017] [Indexed: 01/14/2023]
Abstract
Soybean [Glycine max (L.) Merr.] is an important crop rich in vegetable protein and oil, and is a staple food for human and animals worldwide. However, soybean plants have been challenged by soybean cyst nematode (SCN, Heterodera glycines), one of the most damaging pests found in soybean fields. Applying SCN-resistant cultivars is the most efficient and environmentally friendly strategy to manage SCN. Currently, soybean breeding and further improvement in soybean agriculture are hindered by severely limited genetic diversity in cultivated soybeans. G. soja is a soybean wild progenitor with much higher levels of genetic diversity compared to cultivated soybeans. In this study, transcriptomes of the resistant and susceptible genotypes of the wild soybean, Glycine soja Sieb & Zucc, were sequenced to examine the genetic basis of SCN resistance. Seedling roots were treated with infective second-stage juveniles (J2s) of the soybean cyst nematode (HG type 2.5.7) for 3, 5, 8 days and pooled for library construction and RNA sequencing. The transcriptome sequencing generated approximately 245 million (M) high quality (Q > 30) raw sequence reads (125 bp in length) for twelve libraries. The raw sequence reads were deposited in NCBI sequence read archive (SRA) database, with the accession numbers SRR5227314-25. Further analysis of this data would be helpful to improve our understanding of the molecular mechanisms of soybean-SCN interaction and facilitate the development of diverse SCN resistance cultivars.
Collapse
Affiliation(s)
| | - Bao-Hua Song
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| |
Collapse
|
19
|
Chen C, Cui L, Chen Y, Zhang H, Liu P, Wu P, Qiu D, Zou J, Yang D, Yang L, Liu H, Zhou Y, Li H. Transcriptional responses of wheat and the cereal cyst nematode Heterodera avenae during their early contact stage. Sci Rep 2017; 7:14471. [PMID: 29101332 PMCID: PMC5670130 DOI: 10.1038/s41598-017-14047-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 10/04/2017] [Indexed: 01/22/2023] Open
Abstract
Cereal cyst nematode (Heterodera avenae) is attracted to and aggregated around wheat roots to initiate infection, but this interaction between wheat and the nematode is not fully understood. The transcriptional responses of both wheat and H. avenae were examined during their early contact stage by mRNA sequencing analysis; certain numbers of the differentially expressed genes (DEGs) were validated using quantitative real-time PCR. The immobile host wheat root only had 93 DEGs (27 up-regulated and 66 down-regulated), while the mobile plant parasitic nematode reacted much more actively with 879 DEGs (867 up-regulated and 12 down-regulated). Among them, a number of wheat DEGs (mostly down-regulated) were involved in biotic stress pathways, while several putative effector genes were up-regulated in the nematode DEGs. One putative chitinase-like effector gene of H. avenae was able to suppress BAX-triggered programmed cell death in Nicotiana benthamiana. Results of these experiments demonstrated that nematode responded more actively than wheat during the contact stage of parasitism. The parasite's responses mainly involved up-regulation of genes including at least one anti-plant-defence effector gene, whereas the host responses mainly involved down-regulation of certain defence-related genes.
Collapse
Affiliation(s)
- Changlong Chen
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Lei Cui
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yongpan Chen
- Department of Plant Pathology, China Agricultural University, Beijing, 100193, China
| | - Hongjun Zhang
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Pei Liu
- Department of Plant Pathology, China Agricultural University, Beijing, 100193, China
| | - Peipei Wu
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Dan Qiu
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jingwei Zou
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Dan Yang
- Department of Plant Pathology, China Agricultural University, Beijing, 100193, China
| | - Li Yang
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Hongwei Liu
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yang Zhou
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Hongjie Li
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
20
|
Zhang H, Kjemtrup-Lovelace S, Li C, Luo Y, Chen LP, Song BH. Comparative RNA-Seq Analysis Uncovers a Complex Regulatory Network for Soybean Cyst Nematode Resistance in Wild Soybean (Glycine soja). Sci Rep 2017; 7:9699. [PMID: 28852059 PMCID: PMC5575055 DOI: 10.1038/s41598-017-09945-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 08/01/2017] [Indexed: 01/28/2023] Open
Abstract
Soybean cyst nematode (SCN) is the most damaging pest of soybean worldwide. The molecular mechanism of SCN resistance remains largely unknown. We conducted a global RNA-seq comparison between a resistant genotype (S54) and a susceptible genotype (S67) of Glycine soja, the wild progenitor of soybean, to understand its regulatory network in SCN defense. The number of differentially expressed genes (DEGs) in S54 (2,290) was much larger than that in S67 (555). A number of defense-related genes/pathways were significantly induced only in S54, while photosynthesis and several metabolic pathways were affected in both genotypes with SCN infection. These defense-associated DEGs were involved in pathogen recognition, calcium/calmodulin-mediated defense signaling, jasmonic acid (JA)/ethylene (ET) and sialic acid (SA)-involved signaling, the MAPK signaling cascade, and WRKY-involved transcriptional regulation. Our results revealed a comprehensive regulatory network involved in SCN resistance and provided insights into the complex molecular mechanisms of SCN resistance in wild soybean.
Collapse
Affiliation(s)
- Hengyou Zhang
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | | | - Changbao Li
- Double Haploid Optimization Group, Monsanto Company, St. Louis, MO 63167, USA
| | - Yan Luo
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
- Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Yunnan 650221, China
| | - Lars P Chen
- Biology Department, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Bao-Hua Song
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA.
| |
Collapse
|
21
|
Tian B, Wang S, Todd TC, Johnson CD, Tang G, Trick HN. Genome-wide identification of soybean microRNA responsive to soybean cyst nematodes infection by deep sequencing. BMC Genomics 2017; 18:572. [PMID: 28768484 PMCID: PMC5541722 DOI: 10.1186/s12864-017-3963-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 07/25/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The soybean cyst nematode (SCN), Heterodera glycines, is one of the most devastating diseases limiting soybean production worldwide. It is known that small RNAs, including microRNAs (miRNAs) and small interfering RNAs (siRNAs), play important roles in regulating plant growth and development, defense against pathogens, and responses to environmental changes. RESULTS In order to understand the role of soybean miRNAs during SCN infection, we analyzed 24 small RNA libraries including three biological replicates from two soybean cultivars (SCN susceptible KS4607, and SCN HG Type 7 resistant KS4313N) that were grown under SCN-infested and -noninfested soil at two different time points (SCN feeding establishment and egg production). In total, 537 known and 70 putative novel miRNAs in soybean were identified from a total of 0.3 billion reads (average about 13.5 million reads for each sample) with the programs of Bowtie and miRDeep2 mapper. Differential expression analyses were carried out using edgeR to identify miRNAs involved in the soybean-SCN interaction. Comparative analysis of miRNA profiling indicated a total of 60 miRNAs belonging to 25 families that might be specifically related to cultivar responses to SCN. Quantitative RT-PCR validated similar miRNA interaction patterns as sequencing results. CONCLUSION These findings suggest that miRNAs are likely to play key roles in soybean response to SCN. The present work could provide a framework for miRNA functional identification and the development of novel approaches for improving soybean SCN resistance in future studies.
Collapse
Affiliation(s)
- Bin Tian
- Department of Plant Pathology, Kansas State University, 1712 Claflin Road, 4024 Throckmorton Plant Sciences Center, Manhattan, KS 66506 USA
| | - Shichen Wang
- Genomics and Bioinformatics Service, Texas A&M AgriLife, College Station, TX 77845 USA
| | - Timothy C. Todd
- Department of Plant Pathology, Kansas State University, 1712 Claflin Road, 4024 Throckmorton Plant Sciences Center, Manhattan, KS 66506 USA
| | - Charles D. Johnson
- Genomics and Bioinformatics Service, Texas A&M AgriLife, College Station, TX 77845 USA
| | - Guiliang Tang
- Department of Biological Sciences, Michigan Technological University, Dow Environmental Sciences and Engineering Building - Room 406, 1400 Townsend Drive, Houghton, MI 49931-1295 USA
| | - Harold N. Trick
- Department of Plant Pathology, Kansas State University, 1712 Claflin Road, 4024 Throckmorton Plant Sciences Center, Manhattan, KS 66506 USA
| |
Collapse
|
22
|
Lin J, Wang D, Chen X, Köllner TG, Mazarei M, Guo H, Pantalone VR, Arelli P, Stewart CN, Wang N, Chen F. An (E,E)-α-farnesene synthase gene of soybean has a role in defence against nematodes and is involved in synthesizing insect-induced volatiles. PLANT BIOTECHNOLOGY JOURNAL 2017; 15:510-519. [PMID: 27734633 PMCID: PMC5362686 DOI: 10.1111/pbi.12649] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 10/05/2016] [Indexed: 05/23/2023]
Abstract
Plant terpene synthase genes (TPSs) have roles in diverse biological processes. Here, we report the functional characterization of one member of the soybean TPS gene family, which was designated GmAFS. Recombinant GmAFS produced in Escherichia coli catalysed the formation of a sesquiterpene (E,E)-α-farnesene. GmAFS is closely related to (E,E)-α-farnesene synthase gene from apple, both phylogenetically and structurally. GmAFS was further investigated for its biological role in defence against nematodes and insects. Soybean cyst nematode (SCN) is the most important pathogen of soybean. The expression of GmAFS in a SCN-resistant soybean was significantly induced by SCN infection compared with the control, whereas its expression in a SCN-susceptible soybean was not changed by SCN infection. Transgenic hairy roots overexpressing GmAFS under the control of the CaMV 35S promoter were generated in an SCN-susceptible soybean line. The transgenic lines showed significantly higher resistance to SCN, which indicates that GmAFS contributes to the resistance of soybean to SCN. In soybean leaves, the expression of GmAFS was found to be induced by Tetranychus urticae (two-spotted spider mites). Exogenous application of methyl jasmonate to soybean plants also induced the expression of GmAFS in leaves. Using headspace collection combined with gas chromatography-mass spectrometry analysis, soybean plants that were infested with T. urticae were shown to emit a mixture of volatiles with (E,E)-α-farnesene as one of the most abundant constituents. In summary, this study showed that GmAFS has defence roles in both below-ground and above-ground organs of soybean against nematodes and insects, respectively.
Collapse
Affiliation(s)
- Jingyu Lin
- Department of Plant SciencesUniversity of TennesseeKnoxvilleTNUSA
| | - Dan Wang
- Department of Plant Biology and EcologyCollege of Life SciencesNankai UniversityTianjinChina
| | - Xinlu Chen
- Department of Plant SciencesUniversity of TennesseeKnoxvilleTNUSA
| | - Tobias G. Köllner
- Department of BiochemistryMax Planck Institute for Chemical EcologyJenaGermany
| | - Mitra Mazarei
- Department of Plant SciencesUniversity of TennesseeKnoxvilleTNUSA
| | - Hong Guo
- Department of BiochemistryCellular and Molecular BiologyUniversity of TennesseeKnoxvilleTNUSA
| | | | | | | | - Ningning Wang
- Department of Plant Biology and EcologyCollege of Life SciencesNankai UniversityTianjinChina
| | - Feng Chen
- Department of Plant SciencesUniversity of TennesseeKnoxvilleTNUSA
| |
Collapse
|
23
|
Mitchum MG. Soybean Resistance to the Soybean Cyst Nematode Heterodera glycines: An Update. PHYTOPATHOLOGY 2016; 106:1444-1450. [PMID: 27392178 DOI: 10.1094/phyto-06-16-0227-rvw] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The soybean cyst nematode (SCN), Heterodera glycines, remains a serious threat to soybean production throughout the world. A lack of genetic diversity in resistant soybean cultivars has led to a widespread shift toward virulence in SCN populations, leaving farmers with few proven options other than nonhost rotation to manage this nematode. Recent advances in our understanding of the genes controlling resistance to the nematode have led to improved molecular markers, which are, in turn, increasing the efficiency and precision of the breeding pipeline. A better understanding of the molecular and biochemical basis of SCN resistance and nematode virulence will provide information useful for the development of a long-term strategic plan for diversification and the deployment of cultivars that protect current sources of natural resistance while identifying new targets for engineering novel resistance.
Collapse
Affiliation(s)
- Melissa G Mitchum
- Division of Plant Sciences and Bond Life Sciences Center, Columbia, MO 65211
| |
Collapse
|
24
|
Iqbal MJ, Majeed M, Humayun M, Lightfoot DA, Afzal AJ. Proteomic Profiling and the Predicted Interactome of Host Proteins in Compatible and Incompatible Interactions Between Soybean and Fusarium virguliforme. Appl Biochem Biotechnol 2016; 180:1657-1674. [PMID: 27491306 DOI: 10.1007/s12010-016-2194-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 07/13/2016] [Indexed: 12/27/2022]
Abstract
Sudden death syndrome (SDS) is a complex of two diseases of soybean (Glycine max), caused by the soil borne pathogenic fungus Fusarium virguliforme. The root rot and leaf scorch diseases both result in significant yield losses worldwide. Partial SDS resistance has been demonstrated in multiple soybean cultivars. This study aimed to highlight proteomic changes in soybean roots by identifying proteins which are differentially expressed in near isogenic lines (NILs) contrasting at the Rhg1/Rfs2 locus for partial resistance or susceptibility to SDS. Two-dimensional gel electrophoresis resolved approximately 1000 spots on each gel; 12 spots with a significant (P < 0.05) difference in abundance of 1.5-fold or more were picked, trypsin-digested, and analyzed using quadruple time-of-flight tandem mass spectrometry. Several spots contained more than one protein, so that 18 distinct proteins were identified overall. A functional analysis performed to categorize the proteins depicted that the major pathways altered by fungal infection include disease resistance, stress tolerance, and metabolism. This is the first report which identifies proteins whose abundances are altered in response to fungal infection leading to SDS. The results provide valuable information about SDS resistance in soybean plants, and plant partial resistance responses in general. More importantly, several of the identified proteins could be good candidates for the development of SDS-resistant soybean plants.
Collapse
Affiliation(s)
- M Javed Iqbal
- Department of Plant Sciences, University of California, Davis, California, 95616, USA
| | - Maryam Majeed
- Department of Biology, SBA School of Science and Engineering, Lahore University of Management Sciences, Lahore, 54792, Pakistan
- Department of Biological Sciences, Columbia University, New York, NY, 10027, USA
| | - Maheen Humayun
- Department of Biology, SBA School of Science and Engineering, Lahore University of Management Sciences, Lahore, 54792, Pakistan
| | - David A Lightfoot
- Department of Molecular Biology, Microbiology, and Biochemistry, Genomics Core Facility and Center for Excellence in Soybean Research, Teaching, and Outreach, and Department of Plant Biology, Southern Illinois University, Carbondale, Illinois, 62901, USA
| | - Ahmed J Afzal
- Department of Biology, SBA School of Science and Engineering, Lahore University of Management Sciences, Lahore, 54792, Pakistan.
- Department of Molecular Biology, Microbiology, and Biochemistry, Genomics Core Facility and Center for Excellence in Soybean Research, Teaching, and Outreach, and Department of Plant Biology, Southern Illinois University, Carbondale, Illinois, 62901, USA.
| |
Collapse
|
25
|
Lin J, Mazarei M, Zhao N, Hatcher CN, Wuddineh WA, Rudis M, Tschaplinski TJ, Pantalone VR, Arelli PR, Hewezi T, Chen F, Stewart CN. Transgenic soybean overexpressing GmSAMT1 exhibits resistance to multiple-HG types of soybean cyst nematode Heterodera glycines. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:2100-2109. [PMID: 27064027 PMCID: PMC5095773 DOI: 10.1111/pbi.12566] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 03/10/2016] [Accepted: 04/07/2016] [Indexed: 05/10/2023]
Abstract
Soybean (Glycine max (L.) Merr.) salicylic acid methyl transferase (GmSAMT1) catalyses the conversion of salicylic acid to methyl salicylate. Prior results showed that when GmSAMT1 was overexpressed in transgenic soybean hairy roots, resistance is conferred against soybean cyst nematode (SCN), Heterodera glycines Ichinohe. In this study, we produced transgenic soybean overexpressing GmSAMT1 and characterized their response to various SCN races. Transgenic plants conferred a significant reduction in the development of SCN HG type 1.2.5.7 (race 2), HG type 0 (race 3) and HG type 2.5.7 (race 5). Among transgenic lines, GmSAMT1 expression in roots was positively associated with SCN resistance. In some transgenic lines, there was a significant decrease in salicylic acid titer relative to control plants. No significant seed yield differences were observed between transgenics and control soybean plants grown in one greenhouse with 22 °C day/night temperature, whereas transgenic soybean had higher yield than controls grown a warmer greenhouse (27 °C day/23 °C night) temperature. In a 1-year field experiment in Knoxville, TN, there was no significant difference in seed yield between the transgenic and nontransgenic soybean under conditions with negligible SCN infection. We hypothesize that GmSAMT1 expression affects salicylic acid biosynthesis, which, in turn, attenuates SCN development, without negative consequences to soybean yield or other morphological traits. Thus, we conclude that GmSAMT1 overexpression confers broad resistance to multiple SCN races, which would be potentially applicable to commercial production.
Collapse
Affiliation(s)
- Jingyu Lin
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, USA
| | - Mitra Mazarei
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, USA
| | - Nan Zhao
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | | | - Wegi A Wuddineh
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, USA
| | - Mary Rudis
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, USA
| | | | | | | | - Tarek Hewezi
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, USA
| | - Feng Chen
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, USA
| | | |
Collapse
|
26
|
Kammerhofer N, Egger B, Dobrev P, Vankova R, Hofmann J, Schausberger P, Wieczorek K. Systemic above- and belowground cross talk: hormone-based responses triggered by Heterodera schachtii and shoot herbivores in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:7005-17. [PMID: 26324462 PMCID: PMC4765779 DOI: 10.1093/jxb/erv398] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Above- and belowground plant parts are simultaneously attacked by different pests and pathogens. The host mediates these interactions and physiologically reacts, e.g. with local and systemic alterations of endogenous hormone levels coupled with coordinated transcriptional changes. This in turn affects attractiveness and susceptibility of the plant to subsequent attackers. Here, the model plant Arabidopsis thaliana is used to study stress hormone-based systemic responses triggered by simultaneous root parasitism by the cyst nematode Heterodera schachtii and shoot herbivory by the thrips Frankliniella occidentalis and the spider mite Tetranychus urticae. First, HPLC/MS and quantitative reverse transcriptase PCR are used to show that nematode parasitism strongly affects stress hormone levels and expression of hormone marker genes in shoots. Previous nematode infection is then demonstrated to affect the behavioural and life history performance of both arthropods. While thrips explicitly avoid nematode-infected plants, spider mites prefer them. In addition, the life history performance of T. urticae is significantly enhanced by nematode infection. Finally, systemic changes triggered by shoot-feeding F. occidentalis but not T. urticae are shown to make the roots more attractive for H. schachtii. This work emphasises the importance of above- and belowground signalling and contributes to a better understanding of plant systemic defence mechanisms against plant-parasitic nematodes.
Collapse
Affiliation(s)
- Nina Kammerhofer
- Division of Plant Protection, Department of Crop Sciences, University of Natural Resources and Life Sciences, UFT Tulln, Konrad-Lorenz-Str. 24, 3430 Tulln, Austria
| | - Barbara Egger
- Division of Plant Protection, Department of Crop Sciences, University of Natural Resources and Life Sciences, UFT Tulln, Konrad-Lorenz-Str. 24, 3430 Tulln, Austria
| | - Petre Dobrev
- Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Rozvojová 263, 165 02 Prague 6 - Lysolaje, Czech Republic
| | - Radomira Vankova
- Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Rozvojová 263, 165 02 Prague 6 - Lysolaje, Czech Republic
| | - Julia Hofmann
- Division of Plant Protection, Department of Crop Sciences, University of Natural Resources and Life Sciences, UFT Tulln, Konrad-Lorenz-Str. 24, 3430 Tulln, Austria
| | - Peter Schausberger
- Group of Arthropod Ecology and Behavior, Division of Plant Protection, Department of Crop Sciences, University of Natural Resources and Life Sciences, Peter-Jordan-Str. 82, 1190 Vienna, Austria
| | - Krzysztof Wieczorek
- Division of Plant Protection, Department of Crop Sciences, University of Natural Resources and Life Sciences, UFT Tulln, Konrad-Lorenz-Str. 24, 3430 Tulln, Austria
| |
Collapse
|
27
|
Li R, Rashotte AM, Singh NK, Lawrence KS, Weaver DB, Locy RD. Transcriptome Analysis of Cotton (Gossypium hirsutum L.) Genotypes That Are Susceptible, Resistant, and Hypersensitive to Reniform Nematode (Rotylenchulus reniformis). PLoS One 2015; 10:e0143261. [PMID: 26571375 PMCID: PMC4646469 DOI: 10.1371/journal.pone.0143261] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 11/02/2015] [Indexed: 11/18/2022] Open
Abstract
Reniform nematode is a semi-endoparasitic nematode species causing significant yield loss in numerous crops, including cotton (Gossypium hirsutum L.). An RNA-sequencing analysis was conducted to measure transcript abundance in reniform nematode susceptible (DP90 & SG747), resistant (BARBREN-713), and hypersensitive (LONREN-1) genotypes of cotton (Gossypium hirsutum L.) with and without reniform nematode infestation. Over 90 million trimmed high quality reads were assembled into 84,711 and 80, 353 transcripts using the G. arboreum and the G. raimondii genomes as references. Many transcripts were significantly differentially expressed between the three different genotypes both prior to and during nematode pathogenesis, including transcripts corresponding to the gene ontology categories of cell wall, hormone metabolism and signaling, redox reactions, secondary metabolism, transcriptional regulation, stress responses, and signaling. Further analysis revealed that a number of these differentially expressed transcripts mapped to the G. raimondii and/or the G. arboreum genomes within 1 megabase of quantitative trait loci that had previously been linked to reniform nematode resistance. Several resistance genes encoding proteins known to be strongly linked to pathogen perception and resistance, including LRR-like and NBS-LRR domain-containing proteins, were among the differentially expressed transcripts mapping near these quantitative trait loci. Further investigation is required to confirm a role for these transcripts in reniform nematode susceptibility, hypersensitivity, and/or resistance. This study presents the first systemic investigation of reniform nematode resistance-associated genes using different genotypes of cotton. The candidate reniform nematode resistance-associated genes identified in this study can serve as the basis for further functional analysis and aid in further development of reniform a nematode resistant cotton germplasm.
Collapse
Affiliation(s)
- Ruijuan Li
- Department of Biological Sciences, Auburn University, Auburn, Alabama, United States of America
| | - Aaron M. Rashotte
- Department of Biological Sciences, Auburn University, Auburn, Alabama, United States of America
| | - Narendra K. Singh
- Department of Biological Sciences, Auburn University, Auburn, Alabama, United States of America
| | - Kathy S. Lawrence
- Department of Entomology and Plant Pathology, Auburn University, Auburn, Alabama, United States of America
| | - David B. Weaver
- Department of Crop, Soil and Environmental Sciences, Auburn University, Auburn, Alabama, United States of America
| | - Robert D. Locy
- Department of Biological Sciences, Auburn University, Auburn, Alabama, United States of America
- * E-mail:
| |
Collapse
|
28
|
Zheng M, Long H, Zhao Y, Li L, Xu D, Zhang H, Liu F, Deng G, Pan Z, Yu M. RNA-Seq Based Identification of Candidate Parasitism Genes of Cereal Cyst Nematode (Heterodera avenae) during Incompatible Infection to Aegilops variabilis. PLoS One 2015; 10:e0141095. [PMID: 26517841 PMCID: PMC4627824 DOI: 10.1371/journal.pone.0141095] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 10/05/2015] [Indexed: 11/19/2022] Open
Abstract
One of the reasons for the progressive yield decline observed in cereals production is the rapid build-up of populations of the cereal cyst nematode (CCN, Heterodera avenae). These nematodes secrete so-call effectors into their host plant to suppress the plant defense responses, alter plant signaling pathways and then induce the formation of syncytium after infection. However, little is known about its molecular mechanism and parasitism during incompatible infection. To gain insight into its repertoire of parasitism genes, we investigated the transcriptome of the early parasitic second-stage (30 hours, 3 days and 9 days post infection) juveniles of the CCN as well as the CCN infected tissue of the host Aegilops variabilis by Illumina sequencing. Among all assembled unigenes, 681 putative genes of parasitic nematode were found, in which 56 putative effectors were identified, including novel pioneer genes and genes corresponding to previously reported effectors. All the 681 CCN unigenes were mapped to 229 GO terms and 200 KEGG pathways, including growth, development and several stimulus-related signaling pathways. Sixteen clusters were involved in the CCN unigene expression atlas at the early stages during infection process, and three of which were significantly gene-enriched. Besides, the protein-protein interaction network analysis revealed 35 node unigenes which may play an important role in the plant-CCN interaction. Moreover, in a comparison of differentially expressed genes between the pre-parasitic juveniles and the early parasitic juveniles, we found that hydrolase activity was up-regulated in pre J2s whereas binding activity was upregulated in infective J2s. RT-qPCR analysis on some selected genes showed detectable expression, indicating possible secretion of the proteins and putative role in infection. This study provided better insights into the incompatible interaction between H. avenae and the host plant Ae. varabilis. Moreover, RNAi targets with potential lethality were screened out and primarily validated, which provide candidates for engineering-based control of cereal cyst nematode in crops breeding.
Collapse
Affiliation(s)
- Minghui Zheng
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of the Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, Sichuan University, Chengdu, China
| | - Hai Long
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Yun Zhao
- College of Life Sciences, Sichuan University, Chengdu, China
| | - Lin Li
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Delin Xu
- Zunyi Medical University, Zunyi, China
| | - Haili Zhang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Feng Liu
- Plant Protection College, Shandong Agriculture University, Tai’an, China
| | - Guangbing Deng
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Zhifen Pan
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Maoqun Yu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| |
Collapse
|
29
|
Kong LA, Wu DQ, Huang WK, Peng H, Wang GF, Cui JK, Liu SM, Li ZG, Yang J, Peng DL. Large-scale identification of wheat genes resistant to cereal cyst nematode Heterodera avenae using comparative transcriptomic analysis. BMC Genomics 2015; 16:801. [PMID: 26475271 PMCID: PMC4609135 DOI: 10.1186/s12864-015-2037-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 10/08/2015] [Indexed: 11/10/2022] Open
Abstract
Background Cereal cyst nematode Heterodera avenae, an important soil-borne pathogen in wheat, causes numerous annual yield losses worldwide, and use of resistant cultivars is the best strategy for control. However, target genes are not readily available for breeding resistant cultivars. Therefore, comparative transcriptomic analyses were performed to identify more applicable resistance genes for cultivar breeding. Methods The developing nematodes within roots were stained with acid fuchsin solution. Transcriptome assemblies and redundancy filteration were obtained by Trinity, TGI Clustering Tool and BLASTN, respectively. Gene Ontology annotation was yielded by Blast2GO program, and metabolic pathways of transcripts were analyzed by Path_finder. The ROS levels were determined by luminol-chemiluminescence assay. The transcriptional gene expression profiles were obtained by quantitative RT-PCR. Results The RNA-sequencing was performed using an incompatible wheat cultivar VP1620 and a compatible control cultivar WEN19 infected with H. avenae at 24 h, 3 d and 8 d. Infection assays showed that VP1620 failed to block penetration of H. avenae but disturbed the transition of developmental stages, leading to a significant reduction in cyst formation. Two types of expression profiles were established to predict candidate resistance genes after developing a novel strategy to generate clean RNA-seq data by removing the transcripts of H. avenae within the raw data before assembly. Using the uncoordinated expression profiles with transcript abundance as a standard, 424 candidate resistance genes were identified, including 302 overlapping genes and 122 VP1620-specific genes. Genes with similar expression patterns were further classified according to the scales of changed transcript abundances, and 182 genes were rescued as supplementary candidate resistance genes. Functional characterizations revealed that diverse defense-related pathways were responsible for wheat resistance against H. avenae. Moreover, phospholipase was involved in many defense-related pathways and localized in the connection position. Furthermore, strong bursts of reactive oxygen species (ROS) within VP1620 roots infected with H. avenae were induced at 24 h and 3 d, and eight ROS-producing genes were significantly upregulated, including three class III peroxidase and five lipoxygenase genes. Conclusions Large-scale identification of wheat resistance genes were processed by comparative transcriptomic analysis. Functional characterization showed that phospholipases associated with ROS production played vital roles in early defense responses to H. avenae via involvement in diverse defense-related pathways as a hub switch. This study is the first to investigate the early defense responses of wheat against H. avenae, not only provides applicable candidate resistance genes for breeding novel wheat cultivars, but also enables a better understanding of the defense mechanisms of wheat against H. avenae. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2037-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ling-An Kong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Du-Qing Wu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Wen-Kun Huang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Huan Peng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Gao-Feng Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Jiang-Kuan Cui
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Shi-Ming Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Zhi-Gang Li
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Plant Pathology, China Agricultural University, Beijing, 100193, China.
| | - Jun Yang
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Plant Pathology, China Agricultural University, Beijing, 100193, China.
| | - De-Liang Peng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
30
|
Han Y, Zhao X, Cao G, Wang Y, Li Y, Liu D, Teng W, Zhang Z, Li D, Qiu L, Zheng H, Li W. Genetic characteristics of soybean resistance to HG type 0 and HG type 1.2.3.5.7 of the cyst nematode analyzed by genome-wide association mapping. BMC Genomics 2015; 16:598. [PMID: 26268218 PMCID: PMC4542112 DOI: 10.1186/s12864-015-1800-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 07/27/2015] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Soybean cyst nematode (SCN, Heterodera glycines Ichinohe) is one of the most fatal pests of soybean (Glycine max (L.) Merr.) worldwide and causes huge loss of soybean yield each year. Multiple sources of resistance are urgently needed for effective management of SCN via the development of resistant cultivars. The aim of the present study was to investigate the genetic architecture of resistance to SCN HG Type 0 (race 3) and HG Type 1.2.3.5.7 (race 4) in landraces and released elite soybean cultivars mostly from China. RESULTS A total of 440 diverse soybean landraces and elite cultivars were screened for resistance to SCN HG Type 0 and HG Type 1.2.3.5.7. Exactly 131 new sources of SCN resistance were identified. Lines were genotyped by SNP markers detected by the Specific Locus Amplified Fragment Sequencing (SLAF-seq) approach. A total of 36,976 SNPs were identified with minor allele frequencies (MAF) > 4% that were present in 97% of all the genotypes. Genome-wide association mapping showed that a total of 19 association signals were significantly related to the resistance for the two HG Types. Of the 19 association signals, eight signals overlapped with reported QTL including Rhg1 and Rhg4 genes. Another eight were located in the linked regions encompassing known QTL. Three QTL were found that were not previously reported. The average value of female index (FI) of soybean accessions with resistant alleles was significantly lower than those with susceptible alleles for each peak SNP. Disease resistance proteins with leucine rich regions, cytochrome P450s, protein kinases, zinc finger domain proteins, RING domain proteins, MYB and WRKY transcription activation families were identified. Such proteins may participate in the resistant reaction to SCN and were frequently found in the tightly linked genomic regions of the peak SNPs. CONCLUSIONS GWAS extended understanding of the genetic architecture of SCN resistance in multiple genetic backgrounds. Nineteen association signals were obtained for the resistance to the two Hg Types of SCN. The multiple beneficial alleles from resistant germplasm sources will be useful for the breeding of cultivars with improved resistance to SCN. Analysis of genes near association signals may facilitate the recognition of the causal gene(s) underlying SCN resistances.
Collapse
Affiliation(s)
- Yingpeng Han
- Key Laboratory of Soybean Biology in Chinese Ministry of Education (key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), Northeast Agricultural University, Harbin, 150030, China.
| | - Xue Zhao
- Key Laboratory of Soybean Biology in Chinese Ministry of Education (key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), Northeast Agricultural University, Harbin, 150030, China.
| | - Guanglu Cao
- Key Laboratory of Soybean Biology in Chinese Ministry of Education (key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), Northeast Agricultural University, Harbin, 150030, China.
| | - Yan Wang
- Key Laboratory of Soybean Biology in Chinese Ministry of Education (key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), Northeast Agricultural University, Harbin, 150030, China.
| | - Yinghui Li
- Institute of Crop Science, National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI) Chinese Academy of Agricultural Sciences, 100081, Beijing, China.
| | - Dongyuan Liu
- Bioinformatics Division, Biomarker Technologies Corporation, 101300, Beijing, China.
| | - Weili Teng
- Key Laboratory of Soybean Biology in Chinese Ministry of Education (key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), Northeast Agricultural University, Harbin, 150030, China.
| | - Zhiwu Zhang
- Key Laboratory of Soybean Biology in Chinese Ministry of Education (key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), Northeast Agricultural University, Harbin, 150030, China.
| | - Dongmei Li
- Key Laboratory of Soybean Biology in Chinese Ministry of Education (key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), Northeast Agricultural University, Harbin, 150030, China.
| | - Lijuan Qiu
- Institute of Crop Science, National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI) Chinese Academy of Agricultural Sciences, 100081, Beijing, China.
| | - Hongkun Zheng
- Bioinformatics Division, Biomarker Technologies Corporation, 101300, Beijing, China.
| | - Wenbin Li
- Key Laboratory of Soybean Biology in Chinese Ministry of Education (key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
31
|
Kammerhofer N, Radakovic Z, Regis JMA, Dobrev P, Vankova R, Grundler FMW, Siddique S, Hofmann J, Wieczorek K. Role of stress-related hormones in plant defence during early infection of the cyst nematode Heterodera schachtii in Arabidopsis. THE NEW PHYTOLOGIST 2015; 207:778-89. [PMID: 25825039 PMCID: PMC4657489 DOI: 10.1111/nph.13395] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 03/03/2015] [Indexed: 05/17/2023]
Abstract
Heterodera schachtii, a plant-parasitic cyst nematode, invades host roots and induces a specific syncytial feeding structure, from which it withdraws all required nutrients, causing severe yield losses. The system H. schachtii-Arabidopsis is an excellent research model for investigating plant defence mechanisms. Such responses are suppressed in well-established syncytia, whereas they are induced during early parasitism. However, the mechanisms by which the defence responses are modulated and the role of phytohormones are largely unknown. The aim of this study was to elucidate the role of hormone-based defence responses at the onset of nematode infection. First, concentrations of main phytohormones were quantified and the expression of several hormone-related genes was analysed using quantitative real-time (qRT)-PCR or GeneChip. Further, the effects of individual hormones were evaluated via nematode attraction and infection assays using plants with altered endogenous hormone concentrations. Our results suggest a pivotal and positive role for ethylene during nematode attraction, whereas jasmonic acid triggers early defence responses against H. schachtii. Salicylic acid seems to be a negative regulator during later syncytium and female development. We conclude that nematodes are able to impose specific changes in hormone pools, thus modulating hormone-based defence and signal transduction in strict dependence on their parasitism stage.
Collapse
Affiliation(s)
- Nina Kammerhofer
- Division of Plant Protection, Department of Crop Sciences, University of Natural Resources and Life Sciences, UFT TullnKonrad Lorenz Str. 24, 3430, Tulln, Austria
| | - Zoran Radakovic
- Institute of Crop Science and Resource Conservation, Department Molecular Phytomedicine, University BonnKarlrobert-Kreiten-Str. 13, D-53115, Bonn, Germany
| | - Jully M A Regis
- Division of Plant Protection, Department of Crop Sciences, University of Natural Resources and Life Sciences, UFT TullnKonrad Lorenz Str. 24, 3430, Tulln, Austria
| | - Petre Dobrev
- Institute of Experimental Botany, Academy of Sciences of the Czech RepublicRozvojová 263, 165 02, Prague 6, Lysolaje, Czech Republic
| | - Radomira Vankova
- Institute of Experimental Botany, Academy of Sciences of the Czech RepublicRozvojová 263, 165 02, Prague 6, Lysolaje, Czech Republic
| | - Florian M W Grundler
- Institute of Crop Science and Resource Conservation, Department Molecular Phytomedicine, University BonnKarlrobert-Kreiten-Str. 13, D-53115, Bonn, Germany
| | - Shahid Siddique
- Institute of Crop Science and Resource Conservation, Department Molecular Phytomedicine, University BonnKarlrobert-Kreiten-Str. 13, D-53115, Bonn, Germany
| | - Julia Hofmann
- Division of Plant Protection, Department of Crop Sciences, University of Natural Resources and Life Sciences, UFT TullnKonrad Lorenz Str. 24, 3430, Tulln, Austria
| | - Krzysztof Wieczorek
- Division of Plant Protection, Department of Crop Sciences, University of Natural Resources and Life Sciences, UFT TullnKonrad Lorenz Str. 24, 3430, Tulln, Austria
- Author for correspondence:,
Krzysztof Wieczorek
,
Tel: +43 1 47654 3397
,
| |
Collapse
|
32
|
Wan J, Vuong T, Jiao Y, Joshi T, Zhang H, Xu D, Nguyen HT. Whole-genome gene expression profiling revealed genes and pathways potentially involved in regulating interactions of soybean with cyst nematode (Heterodera glycines Ichinohe). BMC Genomics 2015; 16:148. [PMID: 25880563 PMCID: PMC4351908 DOI: 10.1186/s12864-015-1316-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 02/03/2015] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Soybean cyst nematode (SCN, Heterodera glycines Ichinohe) is the most devastating pathogen of soybean. Many gene expression profiling studies have been conducted to investigate the responses of soybean to the infection by this pathogen using primarily the first-generation soybean genome array that covered approximately 37,500 soybean transcripts. However, no study has been reported yet using the second-generation Affymetrix soybean whole-genome transcript array (Soybean WT array) that represents approximately 66,000 predicted soybean transcripts. RESULTS In the present work, the gene expression profiles of two soybean plant introductions (PIs) PI 437654 and PI 567516C (both resistant to multiple SCN HG Types) and cultivar Magellan (susceptible to SCN) were compared in the presence or absence of the SCN inoculum at 3 and 8 days post-inoculation using the Soybean WT array. Data analysis revealed that the two resistant soybean lines showed distinctive gene expression profiles from each other and from Magellan not only in response to the SCN inoculation, but also in the absence of SCN. Overall, 1,413 genes and many pathways were revealed to be differentially regulated. Among them, 297 genes were constitutively regulated in the two resistant lines (compared with Magellan) and 1,146 genes were responsive to the SCN inoculation in the three lines, with 30 genes regulated both constitutively and by SCN. In addition to the findings similar to those in the published work, many genes involved in ethylene, protein degradation, and phenylpropanoid pathways were also revealed differentially regulated in the present study. GC-rich elements (e.g., GCATGC) were found over-represented in the promoter regions of certain groups of genes. These have not been observed before, and could be new defense-responsive regulatory elements. CONCLUSIONS Different soybean lines showed different gene expression profiles in the presence and absence of the SCN inoculum. Both inducible and constitutive gene expression may contribute to resistance to multiple SCN HG Types in the resistant soybean PI lines. Ethylene, protein degradation, and phenylpropanoid pathways, as well as many other pathways reported previously, may play important roles in mediating the soybean-SCN interactions. The revealed genes, pathways, and promoter elements can be further explored to regulate or engineer soybean for resistance to SCN.
Collapse
Affiliation(s)
- Jinrong Wan
- Division of Plant Sciences and National Center for Soybean Biotechnology, University of Missouri, Columbia, MO, 65211, USA.
| | - Tri Vuong
- Division of Plant Sciences and National Center for Soybean Biotechnology, University of Missouri, Columbia, MO, 65211, USA.
| | - Yongqing Jiao
- Division of Plant Sciences and National Center for Soybean Biotechnology, University of Missouri, Columbia, MO, 65211, USA.
- Current address: Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, Hubei, 430062, China.
| | - Trupti Joshi
- Department of Computer Sciences, University of Missouri, Columbia, MO, 65211, USA.
- Informatics Institute and Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA.
| | - Hongxin Zhang
- Department of Computer Sciences, University of Missouri, Columbia, MO, 65211, USA.
- Informatics Institute and Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA.
| | - Dong Xu
- Department of Computer Sciences, University of Missouri, Columbia, MO, 65211, USA.
- Informatics Institute and Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA.
| | - Henry T Nguyen
- Division of Plant Sciences and National Center for Soybean Biotechnology, University of Missouri, Columbia, MO, 65211, USA.
| |
Collapse
|
33
|
Li R, Rashotte AM, Singh NK, Weaver DB, Lawrence KS, Locy RD. Integrated signaling networks in plant responses to sedentary endoparasitic nematodes: a perspective. PLANT CELL REPORTS 2015; 34:5-22. [PMID: 25208657 DOI: 10.1007/s00299-014-1676-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 08/13/2014] [Accepted: 08/18/2014] [Indexed: 05/24/2023]
Abstract
Sedentary plant endoparasitic nematodes can cause detrimental yield losses in crop plants making the study of detailed cellular, molecular, and whole plant responses to them a subject of importance. In response to invading nematodes and nematode-secreted effectors, plant susceptibility/resistance is mainly determined by the coordination of different signaling pathways including specific plant resistance genes or proteins, plant hormone synthesis and signaling pathways, as well as reactive oxygen signals that are generated in response to nematode attack. Crosstalk between various nematode resistance-related elements can be seen as an integrated signaling network regulated by transcription factors and small RNAs at the transcriptional, posttranscriptional, and/or translational levels. Ultimately, the outcome of this highly controlled signaling network determines the host plant susceptibility/resistance to nematodes.
Collapse
Affiliation(s)
- Ruijuan Li
- Department of Biological Sciences, Auburn University, 101 Rouse Life Science Building, Auburn, AL, 36849, USA
| | | | | | | | | | | |
Collapse
|
34
|
Hosseini P, Matthews BF. Regulatory interplay between soybean root and soybean cyst nematode during a resistant and susceptible reaction. BMC PLANT BIOLOGY 2014; 14:300. [PMID: 25421055 PMCID: PMC4262236 DOI: 10.1186/s12870-014-0300-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 10/22/2014] [Indexed: 05/20/2023]
Abstract
BACKGROUND Plant-parasitic nematodes (PPNs) are obligate parasites that feed on the roots of living host plants. Often, these nematodes can lay hundreds of eggs, each capable of surviving without a host for as long as 12 years. When it comes to wreaking havoc on agricultural yield, few nematodes can compare to the soybean cyst nematode (SCN). Quantifying soybean (Glycine max) transcription factor binding sites (TFBSs) during a late-stage SCN resistant and susceptible reaction can shed light onto the systematic interplay between host and pathogen, thereby elucidating underlying cis-regulatory mechanisms. RESULTS We sequenced the soybean root transcriptome at 6 and 8 days upon independent inoculation with a virulent and avirulent SCN population. Genes such as β-1,4 glucanase, chalcone synthase, superoxide dismutase and various heat shock proteins (HSPs) exhibited reaction-specific expression profiles. Several likely defense-response genes candidates were also identified which are believed to confer SCN resistance. To explore magnitude of TFBS representation during SCN pathogenesis, a multivariate statistical software identified 46 over-represented TFBSs which capture soybean regulatory dynamics across both reactions. CONCLUSIONS Our results reveal a set of soybean TFBSs which are over-represented solely throughout a resistant and susceptible SCN reaction. This set furthers our understanding of soybean cis-regulatory dynamics by providing reaction-specific levels of over-representation at 6 and 8 days after inoculation (dai) with SCN.
Collapse
Affiliation(s)
- Parsa Hosseini
- />School of Systems Biology, George Mason University, Manassas, VA USA
- />Computational Biology Branch, National Center for Biotechnology Information, National Institutes of Health, Bethesda, MD USA
- />Soybean Genomics and Improvement Laboratory, United States Department of Agriculture, Beltsville, MD USA
| | - Benjamin F Matthews
- />Soybean Genomics and Improvement Laboratory, United States Department of Agriculture, Beltsville, MD USA
| |
Collapse
|
35
|
Liu W, Mazarei M, Peng Y, Fethe MH, Rudis MR, Lin J, Millwood RJ, Arelli PR, Stewart CN. Computational discovery of soybean promoter cis-regulatory elements for the construction of soybean cyst nematode-inducible synthetic promoters. PLANT BIOTECHNOLOGY JOURNAL 2014; 12:1015-26. [PMID: 24893752 DOI: 10.1111/pbi.12206] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 04/14/2014] [Accepted: 04/23/2014] [Indexed: 05/03/2023]
Abstract
Computational methods offer great hope but limited accuracy in the prediction of functional cis-regulatory elements; improvements are needed to enable synthetic promoter design. We applied an ensemble strategy for de novo soybean cyst nematode (SCN)-inducible motif discovery among promoters of 18 co-expressed soybean genes that were selected from six reported microarray studies involving a compatible soybean-SCN interaction. A total of 116 overlapping motif regions (OMRs) were discovered bioinformatically that were identified by at least four out of seven bioinformatic tools. Using synthetic promoters, the inducibility of each OMR or motif itself was evaluated by co-localization of gain of function of an orange fluorescent protein reporter and the presence of SCN in transgenic soybean hairy roots. Among 16 OMRs detected from two experimentally confirmed SCN-inducible promoters, 11 OMRs (i.e. 68.75%) were experimentally confirmed to be SCN-inducible, leading to the discovery of 23 core motifs of 5- to 7-bp length, of which 14 are novel in plants. We found that a combination of the three best tools (i.e. SCOPE, W-AlignACE and Weeder) could detect all 23 core motifs. Thus, this strategy is a high-throughput approach for de novo motif discovery in soybean and offers great potential for novel motif discovery and synthetic promoter engineering for any plant and trait in crop biotechnology.
Collapse
Affiliation(s)
- Wusheng Liu
- Department of Plant Sciences, The University of Tennessee, Knoxville, TN, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Molinari S, Fanelli E, Leonetti P. Expression of tomato salicylic acid (SA)-responsive pathogenesis-related genes in Mi-1-mediated and SA-induced resistance to root-knot nematodes. MOLECULAR PLANT PATHOLOGY 2014; 15:255-64. [PMID: 24118790 PMCID: PMC6638815 DOI: 10.1111/mpp.12085] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The expression pattern of pathogenesis-related genes PR-1, PR-2 and PR-5, considered as markers for salicylic acid (SA)-dependent systemic acquired resistance (SAR), was examined in the roots and shoots of tomato plants pre-treated with SA and subsequently infected with root-knot nematodes (RKNs) (Meloidogyne incognita). PR-1 was up-regulated in both roots and shoots of SA-treated plants, whereas the expression of PR-5 was enhanced only in roots. The over-expression of PR-1 in the whole plant occurred as soon as 1 day after SA treatment. Up-regulation of the PR-1 gene was considered to be the main marker of SAR elicitation. One day after treatment, plants were inoculated with active juveniles (J2s) of M. incognita. The number of J2s that entered the roots and started to develop was significantly lower in SA-treated than in untreated plants at 5 and 15 days after inoculation. The expression pattern of PR-1, PR-2 and PR-5 was also examined in the roots and shoots of susceptible and Mi-1-carrying resistant tomato plants infected by RKNs. Nematode infection produced a down-regulation of PR genes in both roots and shoots of SA-treated and untreated plants, and in roots of Mi-carrying resistant plants. Moreover, in resistant infected plants, PR gene expression, in particular PR-1 gene expression, was highly induced in shoots. Thus, nematode infection was demonstrated to elicit SAR in shoots of resistant plants. The data presented in this study show that the repression of host defence SA signalling is associated with the successful development of RKNs, and that SA exogenously added as a soil drench is able to trigger a SAR-like response to RKNs in tomato.
Collapse
Affiliation(s)
- Sergio Molinari
- Institute of Plant Protection (IPP), National Research Council of Italy (CNR), Via G. Amendola 122/D, 70126, Bari, Italy
| | | | | |
Collapse
|
37
|
Lin J, Mazarei M, Zhao N, Zhu JJ, Zhuang X, Liu W, Pantalone VR, Arelli PR, Stewart CN, Chen F. Overexpression of a soybean salicylic acid methyltransferase gene confers resistance to soybean cyst nematode. PLANT BIOTECHNOLOGY JOURNAL 2013; 11:1135-45. [PMID: 24034273 DOI: 10.1111/pbi.12108] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Revised: 07/10/2013] [Accepted: 07/11/2013] [Indexed: 06/02/2023]
Abstract
Salicylic acid plays a critical role in activating plant defence responses after pathogen attack. Salicylic acid methyltransferase (SAMT) modulates the level of salicylic acid by converting salicylic acid to methyl salicylate. Here, we report that a SAMT gene from soybean (GmSAMT1) plays a role in soybean defence against soybean cyst nematode (Heterodera glycines Ichinohe, SCN). GmSAMT1 was identified as a candidate SCN defence-related gene in our previous analysis of soybean defence against SCN using GeneChip microarray experiments. The current study started with the isolation of the full-length cDNAs of GmSAMT1 from a SCN-resistant soybean line and from a SCN-susceptible soybean line. The two cDNAs encode proteins of identical sequences. The GmSAMT1 cDNA was expressed in Escherichia coli. Using in vitro enzyme assays, E. coli-expressed GmSAMT1 was confirmed to function as salicylic acid methyltransferase. The apparent Km value of GmSAMT1 for salicylic acid was approximately 46 μM. To determine the role of GmSAMT1 in soybean defence against SCN, transgenic hairy roots overexpressing GmSAMT1 were produced and tested for SCN resistance. Overexpression of GmSAMT1 in SCN-susceptible backgrounds significantly reduced the development of SCN, indicating that overexpression of GmSAMT1 in the transgenic hairy root system could confer resistance to SCN. Overexpression of GmSAMT1 in transgenic hairy roots was also found to affect the expression of selected genes involved in salicylic acid biosynthesis and salicylic acid signal transduction.
Collapse
Affiliation(s)
- Jingyu Lin
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Jubault M, Lariagon C, Taconnat L, Renou JP, Gravot A, Delourme R, Manzanares-Dauleux MJ. Partial resistance to clubroot in Arabidopsis is based on changes in the host primary metabolism and targeted cell division and expansion capacity. Funct Integr Genomics 2013; 13:191-205. [PMID: 23420032 PMCID: PMC3664179 DOI: 10.1007/s10142-013-0312-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 01/21/2013] [Accepted: 02/04/2013] [Indexed: 01/11/2023]
Abstract
To date, studies of the molecular basis of disease resistance mainly focused on qualitative resistance. However, deciphering mechanisms underlying quantitative resistance could lead to insights into the relationship between qualitative and quantitative resistance and guide the utilization of these two types of resistance to produce durably resistant cultivars. A functional genomics approach, using the CATMA whole-genome microarray, was used to detect changes in gene expression associated with partial quantitative resistance in the Arabidopsis thaliana-Plasmodiophora brassicae pathosystem. The time course of transcript abundance during partial clubroot resistance response was monitored at the whole plant level, and direct comparisons between partial resistance and susceptibility responses were made using the same host genotype. An increasingly complex host response was revealed, as was the differential influence of P. brassicae infection on the transcription of Arabidopsis genes according to the isolate used. We observed, at the transcriptomic level, that metabolic diversion by the pathogen was reduced or delayed, classical plant defense responses were induced earlier and/or more strongly, and cell enlargement and proliferation were actively inhibited in the partial quantitative resistance response compared to the susceptible one.
Collapse
Affiliation(s)
- Mélanie Jubault
- Agrocampus Ouest, UMR1349 IGEPP, 35000 Rennes, France
- Université Européenne de Bretagne, Rennes, France
| | | | - Ludivine Taconnat
- UMR INRA 1165–CNRS 8114–UEVE, Unité de Recherche en Génomique Végétale, Université d’Evry-Val-d’Essone, CP 5708, 91057 Evry Cedex, France
| | - Jean-Pierre Renou
- UMR INRA 1165–CNRS 8114–UEVE, Unité de Recherche en Génomique Végétale, Université d’Evry-Val-d’Essone, CP 5708, 91057 Evry Cedex, France
- Present Address: UMR IRHS, 42 rue Georges Morel, 49071 Beaucouzé Cedex, France
| | - Antoine Gravot
- Université Européenne de Bretagne, Rennes, France
- Université Rennes 1, UMR1349 IGEPP, 35000 Rennes, France
| | | | - Maria J. Manzanares-Dauleux
- Agrocampus Ouest, UMR1349 IGEPP, 35000 Rennes, France
- Université Européenne de Bretagne, Rennes, France
- UMR 1349 IGEPP INRA, Agrocampus Ouest Rennes, Université Rennes 1, BP35327, 35653 Le Rheu Cedex, France
| |
Collapse
|
39
|
Chan C, Qi X, Li MW, Wong FL, Lam HM. Recent developments of genomic research in soybean. J Genet Genomics 2012; 39:317-24. [PMID: 22835978 DOI: 10.1016/j.jgg.2012.02.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Revised: 02/03/2012] [Accepted: 02/04/2012] [Indexed: 10/28/2022]
Abstract
Soybean is an important cash crop with unique and important traits such as the high seed protein and oil contents, and the ability to perform symbiotic nitrogen fixation. A reference genome of cultivated soybeans was established in 2010, followed by whole-genome re-sequencing of wild and cultivated soybean accessions. These efforts revealed unique features of the soybean genome and helped to understand its evolution. Mapping of variations between wild and cultivated soybean genomes were performed. These genomic variations may be related to the process of domestication and human selection. Wild soybean germplasms exhibited high genomic diversity and hence may be an important source of novel genes/alleles. Accumulation of genomic data will help to refine genetic maps and expedite the identification of functional genes. In this review, we summarize the major findings from the whole-genome sequencing projects and discuss the possible impacts on soybean researches and breeding programs. Some emerging areas such as transcriptomic and epigenomic studies will be introduced. In addition, we also tabulated some useful bioinformatics tools that will help the mining of the soybean genomic data.
Collapse
Affiliation(s)
- Ching Chan
- State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | | | | | | | | |
Collapse
|
40
|
de Sá MEL, Conceição Lopes MJ, de Araújo Campos M, Paiva LV, dos Santos RMA, Beneventi MA, Firmino AAP, de Sá MFG. Transcriptome analysis of resistant soybean roots infected by Meloidogyne javanica. Genet Mol Biol 2012; 35:272-82. [PMID: 22802712 PMCID: PMC3392879 DOI: 10.1590/s1415-47572012000200008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Soybean is an important crop for Brazilian agribusiness. However, many factors can limit its production, especially root-knot nematode infection. Studies on the mechanisms employed by the resistant soybean genotypes to prevent infection by these nematodes are of great interest for breeders. For these reasons, the aim of this work is to characterize the transcriptome of soybean line PI 595099-Meloidogyne javanica interaction through expression analysis. Two cDNA libraries were obtained using a pool of RNA from PI 595099 uninfected and M. javanica (J(2)) infected roots, collected at 6, 12, 24, 48, 96, 144 and 192 h after inoculation. Around 800 ESTs (Expressed Sequence Tags) were sequenced and clustered into 195 clusters. In silico subtraction analysis identified eleven differentially expressed genes encoding putative proteins sharing amino acid sequence similarities by using BlastX: metallothionein, SLAH4 (SLAC1 Homologue 4), SLAH1 (SLAC1 Homologue 1), zinc-finger proteins, AN1-type proteins, auxin-repressed proteins, thioredoxin and nuclear transport factor 2 (NTF-2). Other genes were also found exclusively in nematode stressed soybean roots, such as NAC domain-containing proteins, MADS-box proteins, SOC1 (suppressor of overexpression of constans 1) proteins, thioredoxin-like protein 4-Coumarate-CoA ligase and the transcription factor (TF) MYBZ2. Among the genes identified in non-stressed roots only were Ser/Thr protein kinases, wound-induced basic protein, ethylene-responsive family protein, metallothionein-like protein cysteine proteinase inhibitor (cystatin) and Putative Kunitz trypsin protease inhibitor. An understanding of the roles of these differentially expressed genes will provide insights into the resistance mechanisms and candidate genes involved in soybean-M. javanica interaction and contribute to more effective control of this pathogen.
Collapse
Affiliation(s)
- Maria Eugênia Lisei de Sá
- Empresa de Pesquisa Agropecuária de Minas Gerais, Uberaba, MG, Brazil
- Laboratório Interação Molecular Planta-Praga, Embrapa Recursos Genéticos e Biotecnologia, Brasília, DF, Brazil
| | - Marcus José Conceição Lopes
- Universidade Federal de Campina Grande, Centro de Educação e Saúde, Cuité, PB, Brazil
- Universidade Federal de Lavras, Lavras, MG, Brazil
| | - Magnólia de Araújo Campos
- Universidade Federal de Campina Grande, Centro de Educação e Saúde, Cuité, PB, Brazil
- Universidade Federal de Lavras, Lavras, MG, Brazil
| | | | | | - Magda Aparecida Beneventi
- Laboratório Interação Molecular Planta-Praga, Embrapa Recursos Genéticos e Biotecnologia, Brasília, DF, Brazil
| | - Alexandre Augusto Pereira Firmino
- Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Laboratório Interação Molecular Planta-Praga, Embrapa Recursos Genéticos e Biotecnologia, Brasília, DF, Brazil
| | - Maria Fátima Grossi de Sá
- Laboratório Interação Molecular Planta-Praga, Embrapa Recursos Genéticos e Biotecnologia, Brasília, DF, Brazil
| |
Collapse
|
41
|
Xu DL, Long H, Liang JJ, Zhang J, Chen X, Li JL, Pan ZF, Deng GB, Yu MQ. De novo assembly and characterization of the root transcriptome of Aegilops variabilis during an interaction with the cereal cyst nematode. BMC Genomics 2012; 13:133. [PMID: 22494814 PMCID: PMC3439707 DOI: 10.1186/1471-2164-13-133] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Accepted: 04/11/2012] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Aegilops variabilis No.1 is highly resistant to cereal cyst nematode (CCN). However, a lack of genomic information has restricted studies on CCN resistance genes in Ae. variabilis and has limited genetic applications in wheat breeding. RESULTS Using RNA-Seq technology, we generated a root transcriptome at a sequencing depth of 4.69 gigabases of Ae. variabilis No. 1 from a pooled RNA sample. The sample contained equal amounts of RNA extracted from CCN-infected and untreated control plants at three time-points. Using the Trinity method, nearly 52,081,238 high-quality trimmed reads were assembled into a non-redundant set of 118,064 unigenes with an average length of 500 bp and an N50 of 599 bp. The total assembly was 59.09 Mb of unique transcriptome sequences with average read-depth coverage of 33.25×. In BLAST searches of our database against public databases, 66.46% (78,467) of the unigenes were annotated with gene descriptions, conserved protein domains, or gene ontology terms. Functional categorization further revealed 7,408 individual unigenes and three pathways related to plant stress resistance. CONCLUSIONS We conducted high-resolution transcriptome profiling related to root development and the response to CCN infection in Ae. variabilis No.1. This research facilitates further studies on gene discovery and on the molecular mechanisms related to CCN resistance.
Collapse
Affiliation(s)
- De-Lin Xu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan, China
- Graduate University of the Chinese Academy of Sciences, Beijing, China
| | - Hai Long
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan, China
| | - Jun-Jun Liang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan, China
- Graduate University of the Chinese Academy of Sciences, Beijing, China
| | - Jie Zhang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan, China
- Graduate University of the Chinese Academy of Sciences, Beijing, China
| | - Xin Chen
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan, China
- Graduate University of the Chinese Academy of Sciences, Beijing, China
| | - Jing-Liang Li
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan, China
- Graduate University of the Chinese Academy of Sciences, Beijing, China
| | - Zhi-Fen Pan
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan, China
| | - Guang-Bing Deng
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan, China
| | - Mao-Qun Yu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan, China
| |
Collapse
|