1
|
Yang S, Xue S, Shan L, Fan S, Sun L, Dong Y, Li S, Gao Y, Qi Y, Yang L, An M, Wang F, Pang J, Zhang W, Weng Y, Liu X, Ren H. The CsTM alters multicellular trichome morphology and enhances resistance against aphid by interacting with CsTIP1;1 in cucumber. J Adv Res 2025; 69:17-30. [PMID: 38609051 PMCID: PMC11954831 DOI: 10.1016/j.jare.2024.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 04/09/2024] [Accepted: 04/09/2024] [Indexed: 04/14/2024] Open
Abstract
The multicellular trichomes of cucumber (Cucumis sativus L.) serve as the primary defense barrier against external factors, whose impact extends beyond plant growth and development to include commercial characteristics of fruits. The aphid (Aphis gossypii Glover) is one of prominent pests in cucumber cultivation. However, the relationship between physical properties of trichomes and the aphid resistance at molecular level remains largely unexplored. Here, a spontaneous mutant trichome morphology (tm) was characterized by increased susceptibility towards aphid. Further observations showed the tm exhibited a higher and narrower trichome base, which was significantly distinguishable from that in wild-type (WT). We conducted map-based cloning and identified the candidate, CsTM, encoding a C-lectin receptor-like kinase. The knockout mutant demonstrated the role of CsTM in trichome morphogenesis. The presence of SNP does not regulate the relative expression of CsTM, but diminishes the CsTM abundance of membrane proteins in tm. Interestingly, CsTM was found to interact with CsTIP1;1, which encodes an aquaporin with extensive reports in plant resistance and growth development. The subsequent aphid resistance experiments revealed that both CsTM and CsTIP1;1 regulated the development of trichomes and conferred resistance against aphid by affecting cytoplasmic H2O2 contents. Transcriptome analysis revealed a significant enrichment of genes associated with pathogenesis, calcium binding and cellulose synthase. Overall, our study elucidates an unidentified mechanism that CsTM-CsTIP1;1 alters multicellular trichome morphology and enhances resistance against aphid, thus providing a wholly new perspective for trichome morphogenesis in cucumber.
Collapse
Affiliation(s)
- Songlin Yang
- College of Horticulture, China Agricultural University, Beijing 100193, PR China
| | - Shudan Xue
- College of Horticulture, China Agricultural University, Beijing 100193, PR China
| | - Li Shan
- College of Horticulture, China Agricultural University, Beijing 100193, PR China
| | - Shanshan Fan
- College of Horticulture, China Agricultural University, Beijing 100193, PR China
| | - Lei Sun
- College of Horticulture, China Agricultural University, Beijing 100193, PR China
| | - Yuming Dong
- College of Horticulture, China Agricultural University, Beijing 100193, PR China
| | - Sen Li
- College of Horticulture, China Agricultural University, Beijing 100193, PR China
| | - Yiming Gao
- College of Horticulture, China Agricultural University, Beijing 100193, PR China
| | - Yu Qi
- College of Horticulture, China Agricultural University, Beijing 100193, PR China
| | - Lin Yang
- College of Horticulture, China Agricultural University, Beijing 100193, PR China
| | - Menghang An
- College of Horticulture, China Agricultural University, Beijing 100193, PR China
| | - Fang Wang
- College of Horticulture, China Agricultural University, Beijing 100193, PR China
| | - Jin'an Pang
- Tianjin Derit Seeds Co. Ltd, Tianjin 300384, PR China
| | - Wenzhu Zhang
- Tianjin Derit Seeds Co. Ltd, Tianjin 300384, PR China
| | - Yiqun Weng
- USDA‑ARS Vegetable Crops Research Unit, Horticulture Department, University of Wisconsin-Madison, Madison, USA
| | - Xingwang Liu
- College of Horticulture, China Agricultural University, Beijing 100193, PR China.
| | - Huazhong Ren
- College of Horticulture, China Agricultural University, Beijing 100193, PR China.
| |
Collapse
|
2
|
Wang C, Yao H, Fang K, Yang T, Shen X, Du Y, Hao N, Cao J, Wu T. CsMYB36-mediated ROS homeostasis modulates the switch from cell division to differentiation in cucumber glandular trichome. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e70032. [PMID: 39994967 DOI: 10.1111/tpj.70032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 01/16/2025] [Accepted: 01/27/2025] [Indexed: 02/26/2025]
Abstract
Glandular trichomes (GTs) synthesize, store, and secrete diverse specialized metabolites that protect plants against biotic and abiotic stress. The bloom is deposited on the GTs and is perceptible on the surface of the cucumber fruit. Our previous investigation revealed the absence of bloom on the fruit surface in the loss-of-function CsMYB36 plants. GTs are formed through a series of cell differentiation events that support compound production. However, the mechanisms governing these events remain unclear. Here, we found GT cells initiate excessive periclinal divisions and fail to differentiate into functional GT cells in the absence of CsMYB36 based on the establishment of a detailed developmental process of GT in cucumber. We further found that CsMYB36 and CsGL1 form a positive feedback loop to regulate the cell differentiation of GT. DNA affinity purification (DAP)-seq, combined with RNA-seq data demonstrated that CsMYB36/CsGL1 can regulate the expression of phenylalanine synthesis-related genes, including peroxidase 53 (CsPRX53) which is a reactive oxygen species (ROS)-scavenging enzyme. H2O2 effectively inhibited GT cell division in Csmyb36 mutant plants. Collectively, our findings demonstrate that CsMYB36 combined with CsGL1 balances cell division and differentiation in the GT by mediating ROS homeostasis, thus affecting bloom production in cucumbers.
Collapse
Affiliation(s)
- Chunhua Wang
- College of Horticulture/Yuelushan Lab/Whampoa Innovation Research Institute, Hunan Agricultural University, Changsha, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops (Vegetables, Tea, etc.), Ministry of Agriculture and Rural Affairs of China, Changsha, 410128, China
| | - Hongxin Yao
- College of Horticulture/Yuelushan Lab/Whampoa Innovation Research Institute, Hunan Agricultural University, Changsha, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops (Vegetables, Tea, etc.), Ministry of Agriculture and Rural Affairs of China, Changsha, 410128, China
| | - Kai Fang
- College of Horticulture/Yuelushan Lab/Whampoa Innovation Research Institute, Hunan Agricultural University, Changsha, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops (Vegetables, Tea, etc.), Ministry of Agriculture and Rural Affairs of China, Changsha, 410128, China
| | - Ting Yang
- College of Horticulture/Yuelushan Lab/Whampoa Innovation Research Institute, Hunan Agricultural University, Changsha, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops (Vegetables, Tea, etc.), Ministry of Agriculture and Rural Affairs of China, Changsha, 410128, China
| | - Xi Shen
- College of Horticulture/Yuelushan Lab/Whampoa Innovation Research Institute, Hunan Agricultural University, Changsha, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops (Vegetables, Tea, etc.), Ministry of Agriculture and Rural Affairs of China, Changsha, 410128, China
| | - Yalin Du
- College of Horticulture/Yuelushan Lab/Whampoa Innovation Research Institute, Hunan Agricultural University, Changsha, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops (Vegetables, Tea, etc.), Ministry of Agriculture and Rural Affairs of China, Changsha, 410128, China
| | - Ning Hao
- College of Horticulture/Yuelushan Lab/Whampoa Innovation Research Institute, Hunan Agricultural University, Changsha, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops (Vegetables, Tea, etc.), Ministry of Agriculture and Rural Affairs of China, Changsha, 410128, China
| | - Jiajian Cao
- College of Horticulture/Yuelushan Lab/Whampoa Innovation Research Institute, Hunan Agricultural University, Changsha, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops (Vegetables, Tea, etc.), Ministry of Agriculture and Rural Affairs of China, Changsha, 410128, China
| | - Tao Wu
- College of Horticulture/Yuelushan Lab/Whampoa Innovation Research Institute, Hunan Agricultural University, Changsha, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops (Vegetables, Tea, etc.), Ministry of Agriculture and Rural Affairs of China, Changsha, 410128, China
| |
Collapse
|
3
|
Zhang H, Luo Y, Zhen W, Li X, Liu M, Liu P, Zhang G, Chen P, Weng Y, Yue H, Li Y. Mutations in a Leucine-Rich Repeat Receptor-Like Kinase gene result in male sterility and reduction in the number and size of fruit warts in cucumber (Cucumis sativus L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 138:7. [PMID: 39666020 DOI: 10.1007/s00122-024-04790-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 11/20/2024] [Indexed: 12/13/2024]
Abstract
KEY MESSAGE Mutations in the CsEMS1 gene result in male sterility and reduced wart number and density. Male sterility and fruit wart formation are two significant agronomic characteristics in cucumber (Cucumis sativus), yet knowledge of our underlying genetics is limited. In this study, we identified an EMS-induced male sterility and few small warts mutant (msfsw). Histological observations revealed defects the absence of tapetum, meiotic aberration and impaired microspore formation in the anthers of the mutant. The mutant also exhibits a reduction in both the size and number of fruit spines and fruit tubercules. Genetic analysis revealed that a single recessive gene is responsible for the mutant phenotypes. BSA-Seq and fine genetic mapping mapped the msfsw locus to a 63.7 kb region with four predicted genes. Multiple lines of evidence support CsEMS1(CsaV3_3G016940) as the candidate for the mutant allele which encodes an LRR receptor-like kinase, and a non-synonymous SNP inside the exon of CsEMS1 is the causal polymorphisms for the mutant phenotypes. This function of CsEMS1 in determination of pollen fertility was confirmed with generation and characterization of multiple knockout mutations with CRISPR/Cas9 based gene editing. In the wild-type (WT) plants, CsEMS1 was highly expressed in male flowers. In the mutant, the expression level of CsEMS1, several tapetum identity-related genes, and trichome-related genes were all significantly reduced as compared with the wild-type. Protein-protein interaction assays revealed physical interactions between CsEMS1 and CsTPD1. Quantitation of endogenous phytohormones revealed a reduction in the ethylene precursor ACC in CsEMS1 knockout lines. This work identified an important role of CsEMS1 in anther and pollen development as well as fruit spine/wart development in cucumber.
Collapse
Affiliation(s)
- Haiqiang Zhang
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yanjie Luo
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Wenlong Zhen
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xin Li
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Mengying Liu
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Peng Liu
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Gaoyuan Zhang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, Gansu, China
| | - Peng Chen
- College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yiqun Weng
- USDA-ARS Vegetable Crops Research Unit, University of Wisconsin, Madison, WI, 53706, USA
| | - Hongzhong Yue
- Vegetable Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou, 730070, Gansu, China.
| | - Yuhong Li
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
4
|
Lv D, Wen H, Wang G, Liu J, Guo C, Sun J, Zhang K, Li C, You J, Pan M, He H, Cai R, Pan J. CsTs, a C-type lectin receptor-like kinase, regulates the development trichome development and cuticle metabolism in cucumber ( Cucumis sativus). HORTICULTURE RESEARCH 2024; 11:uhae235. [PMID: 39431115 PMCID: PMC11489597 DOI: 10.1093/hr/uhae235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 08/08/2024] [Indexed: 10/22/2024]
Abstract
Cucumber (Cucumis sativus) fruit spines are a classic material for researching the development of multicellular trichomes. Some key genes that influence trichome development have been confirmed to be associated with cuticle biosynthesis and secondary metabolism. However, the biological mechanisms underlying trichome development, cuticle biosynthesis, and secondary metabolism in cucumber remain poorly understood. CsTs, a C-type lectin receptor-like kinase gene, reportedly causes a tender trichome phenotype in cucumber when it mutates. In this study, the role of CsTs in cucumber fruit spines morphogenesis was confirmed using gene editing technology. Sectioning and cell wall component detection were used to analyse the main reason of tender fruit spines in the ts mutant. Subsequently, transcriptome data and a series of molecular biology experiments were used to further investigate the relationship between CsTs and cytoskeletal homeostasis in cucumber. CsTs overexpression partially compensated for the abnormal trichome phenotype of an Arabidopsis homolog mutant. Genetic hybridization and metabolic analysis indicated that CsTs and CsMict can affect trichome development and cuticle biosynthesis in the same pathway. Our findings provide important background information for further researching on the molecular mechanism underlying cucumber trichome development and contribute to understanding the biological function of C-type lectin receptor-like kinases.
Collapse
Affiliation(s)
- Duo Lv
- Shanghai Collaborative Innovation Center of Agri-Seeds / School of Agriculture and Biology, Shanghai JiaoTong University, Shanghai 200240, China
- Shanghai Key Lab of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - HaiFan Wen
- Shanghai Collaborative Innovation Center of Agri-Seeds / School of Agriculture and Biology, Shanghai JiaoTong University, Shanghai 200240, China
| | - Gang Wang
- Shanghai Collaborative Innovation Center of Agri-Seeds / School of Agriculture and Biology, Shanghai JiaoTong University, Shanghai 200240, China
| | - Juan Liu
- Shanghai Collaborative Innovation Center of Agri-Seeds / School of Agriculture and Biology, Shanghai JiaoTong University, Shanghai 200240, China
| | - ChunLi Guo
- Shanghai Collaborative Innovation Center of Agri-Seeds / School of Agriculture and Biology, Shanghai JiaoTong University, Shanghai 200240, China
| | - Jingxian Sun
- Shanghai Collaborative Innovation Center of Agri-Seeds / School of Agriculture and Biology, Shanghai JiaoTong University, Shanghai 200240, China
| | - Keyan Zhang
- Shanghai Collaborative Innovation Center of Agri-Seeds / School of Agriculture and Biology, Shanghai JiaoTong University, Shanghai 200240, China
- Shanghai Key Lab of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - ChaoHan Li
- Shanghai Key Lab of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Jiaqi You
- Shanghai Key Lab of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Ming Pan
- Shanghai Agricultural Technology Extension and Service Center, Shanghai 201100, China
| | - Huanle He
- Shanghai Collaborative Innovation Center of Agri-Seeds / School of Agriculture and Biology, Shanghai JiaoTong University, Shanghai 200240, China
| | - Run Cai
- Shanghai Collaborative Innovation Center of Agri-Seeds / School of Agriculture and Biology, Shanghai JiaoTong University, Shanghai 200240, China
| | - Junsong Pan
- Shanghai Collaborative Innovation Center of Agri-Seeds / School of Agriculture and Biology, Shanghai JiaoTong University, Shanghai 200240, China
| |
Collapse
|
5
|
Sun P, Yuan H, Pan J, Wu Z, Li W, Wang X, Kuang H, Chen J. A WOX homolog disrupted by a transposon led to the loss of spines and contributed to the domestication of lettuce. THE NEW PHYTOLOGIST 2024; 242:2857-2871. [PMID: 38584520 DOI: 10.1111/nph.19738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 03/22/2024] [Indexed: 04/09/2024]
Abstract
The loss of spines is one of the most important domestication traits for lettuce (Lactuca sativa). However, the genetics and regulation of spine development in lettuce remain unclear. We examined the genetics of spines in lettuce using a segregating population derived from a cross between cultivated and wild lettuce (Lactuca serriola). A gene encoding WUSCHEL-related homeobox transcription factor, named as WOX-SPINE1 (WS1), was identified as the candidate gene controlling the spine development in lettuce, and its function on spines was verified. A CACTA transposon was found to be inserted into the first exon of the ws1 allele, knocking out its function and leading to the lack of spines in cultivated lettuce. All lettuce cultivars investigated have the nonfunctional ws1 gene, and a selection sweep was found at the WS1 locus, suggesting its important role in lettuce domestication. The expression levels of WS1 were associated with the density of spines among different accessions of wild lettuce. At least two independent loss-of-function mutations in the ws1 gene caused the loss of spines in wild lettuce. These findings provide new insights into the development of spines and facilitate the exploitation of wild genetic resources in future lettuce breeding programs.
Collapse
Affiliation(s)
- Peinan Sun
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Hubei Hongshan Laboratory, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, 430070, Wuhan, China
| | - Huanran Yuan
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Hubei Hongshan Laboratory, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, 430070, Wuhan, China
| | - Jiangpeng Pan
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Hubei Hongshan Laboratory, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, 430070, Wuhan, China
| | - Zhihao Wu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Hubei Hongshan Laboratory, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, 430070, Wuhan, China
| | - Weibo Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Hubei Hongshan Laboratory, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, 430070, Wuhan, China
| | - Xin Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Hubei Hongshan Laboratory, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, 430070, Wuhan, China
| | - Hanhui Kuang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Hubei Hongshan Laboratory, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, 430070, Wuhan, China
| | - Jiongjiong Chen
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Hubei Hongshan Laboratory, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, 430070, Wuhan, China
| |
Collapse
|
6
|
Wu M, Bian X, Hu S, Huang B, Shen J, Du Y, Wang Y, Xu M, Xu H, Yang M, Wu S. A gradient of the HD-Zip regulator Woolly regulates multicellular trichome morphogenesis in tomato. THE PLANT CELL 2024; 36:2375-2392. [PMID: 38470570 PMCID: PMC11132899 DOI: 10.1093/plcell/koae077] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 02/02/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024]
Abstract
Homeodomain (HD) proteins regulate embryogenesis in animals such as the fruit fly (Drosophila melanogaster), often in a concentration-dependent manner. HD-leucine zipper (Zip) IV family genes are unique to plants and often function in the L1 epidermal cell layer. However, our understanding of the roles of HD-Zip IV family genes in plant morphogenesis is limited. In this study, we investigated the morphogenesis of tomato (Solanum lycopersicum) multicellular trichomes, a type of micro-organ in plants. We found that a gradient of the HD-Zip IV regulator Woolly (Wo) coordinates spatially polarized cell division and cell expansion in multicellular trichomes. Moreover, we identified a TEOSINTE BRANCHED1, CYCLOIDEA, and PROLIFERATING CELL NUCLEAR ANTIGEN BINDING FACTOR (TCP) transcription factor-encoding gene, SlBRANCHED2a (SlBRC2a), as a key downstream target of Wo that regulates the transition from cell division to cell expansion. High levels of Wo promote cell division in apical trichome cells, whereas in basal trichome cells, Wo mediates a negative feedback loop with SlBRC2a that forces basal cells to enter endoreduplication. The restricted high and low activities of Wo pattern the morphogenesis of tomato multicellular trichomes. These findings provide insights into the functions of HD-Zip IV genes during plant morphogenesis.
Collapse
Affiliation(s)
- MinLiang Wu
- College of Horticulture, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - XinXin Bian
- College of Horticulture, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - ShouRong Hu
- College of Horticulture, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - BenBen Huang
- College of Horticulture, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - JingYuan Shen
- College of Horticulture, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - YaDi Du
- College of Horticulture, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - YanLi Wang
- College of Horticulture, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - MengYuan Xu
- College of Horticulture, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - HuiMin Xu
- College of Horticulture, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - MeiNa Yang
- College of Horticulture, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shuang Wu
- College of Horticulture, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
7
|
Zhao L, Fan P, Wang Y, Xu N, Zhang M, Chen M, Zhang M, Dou J, Liu D, Niu H, Zhu H, Hu J, Sun S, Yang L, Yang S. ELONGATED HYPOTCOTYL5 and SPINE BASE SIZE1 together mediate light-regulated spine expansion in cucumber. PLANT PHYSIOLOGY 2024; 195:552-565. [PMID: 38243383 DOI: 10.1093/plphys/kiae027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 10/25/2023] [Accepted: 11/07/2023] [Indexed: 01/21/2024]
Abstract
Plant trichome development is influenced by diverse developmental and environmental signals, but the molecular mechanisms involved are not well understood in most plant species. Fruit spines (trichomes) are an important trait in cucumber (Cucumis sativus L.), as they affect both fruit smoothness and commercial quality. Spine Base Size1 (CsSBS1) has been identified as essential for regulating fruit spine size in cucumber. Here, we discovered that CsSBS1 controls a season-dependent phenotype of spine base size in wild-type plants. Decreased light intensity led to reduced expression of CsSBS1 and smaller spine base size in wild-type plants, but not in the mutants with CsSBS1 deletion. Additionally, knockout of CsSBS1 resulted in smaller fruit spine base size and eliminated the light-induced expansion of spines. Overexpression of CsSBS1 increased spine base size and rescued the decrease in spine base size under low light conditions. Further analysis revealed that ELONGATED HYPOTCOTYL5 (HY5), a major transcription factor involved in light signaling pathways, directly binds to the promoter of CsSBS1 and activates its expression. Knockout of CsHY5 led to smaller fruit spine base size and abolished the light-induced expansion of spines. Taken together, our study findings have clarified a CsHY5-CsSBS1 regulatory module that mediates light-regulated spine expansion in cucumber. This finding offers a strategy for cucumber breeders to develop fruit with stable appearance quality under changing light conditions.
Collapse
Affiliation(s)
- Lijun Zhao
- College of Horticulture, Henan Agricultural University, Zhengzhou, Henan, China
- Research Center of Cucurbit Germplasm Enhancement and Utilization of Henan Province, Zhengzhou, Henan, China
| | - Pengfei Fan
- College of Horticulture, Henan Agricultural University, Zhengzhou, Henan, China
- Research Center of Cucurbit Germplasm Enhancement and Utilization of Henan Province, Zhengzhou, Henan, China
| | - Yueling Wang
- College of Horticulture, Henan Agricultural University, Zhengzhou, Henan, China
- Research Center of Cucurbit Germplasm Enhancement and Utilization of Henan Province, Zhengzhou, Henan, China
| | - Nana Xu
- College of Horticulture, Henan Agricultural University, Zhengzhou, Henan, China
- Research Center of Cucurbit Germplasm Enhancement and Utilization of Henan Province, Zhengzhou, Henan, China
| | - Minjuan Zhang
- College of Horticulture, Henan Agricultural University, Zhengzhou, Henan, China
- Research Center of Cucurbit Germplasm Enhancement and Utilization of Henan Province, Zhengzhou, Henan, China
| | - Mingyue Chen
- College of Horticulture, Henan Agricultural University, Zhengzhou, Henan, China
- Research Center of Cucurbit Germplasm Enhancement and Utilization of Henan Province, Zhengzhou, Henan, China
| | - Mengyao Zhang
- College of Horticulture, Henan Agricultural University, Zhengzhou, Henan, China
- Research Center of Cucurbit Germplasm Enhancement and Utilization of Henan Province, Zhengzhou, Henan, China
| | - Junling Dou
- College of Horticulture, Henan Agricultural University, Zhengzhou, Henan, China
- Research Center of Cucurbit Germplasm Enhancement and Utilization of Henan Province, Zhengzhou, Henan, China
| | - Dongming Liu
- College of Horticulture, Henan Agricultural University, Zhengzhou, Henan, China
- Research Center of Cucurbit Germplasm Enhancement and Utilization of Henan Province, Zhengzhou, Henan, China
| | - Huanhuan Niu
- College of Horticulture, Henan Agricultural University, Zhengzhou, Henan, China
- Research Center of Cucurbit Germplasm Enhancement and Utilization of Henan Province, Zhengzhou, Henan, China
| | - Huayu Zhu
- College of Horticulture, Henan Agricultural University, Zhengzhou, Henan, China
- Research Center of Cucurbit Germplasm Enhancement and Utilization of Henan Province, Zhengzhou, Henan, China
| | - Jianbin Hu
- College of Horticulture, Henan Agricultural University, Zhengzhou, Henan, China
- Research Center of Cucurbit Germplasm Enhancement and Utilization of Henan Province, Zhengzhou, Henan, China
| | - Shouru Sun
- College of Horticulture, Henan Agricultural University, Zhengzhou, Henan, China
- Research Center of Cucurbit Germplasm Enhancement and Utilization of Henan Province, Zhengzhou, Henan, China
| | - Luming Yang
- College of Horticulture, Henan Agricultural University, Zhengzhou, Henan, China
- Research Center of Cucurbit Germplasm Enhancement and Utilization of Henan Province, Zhengzhou, Henan, China
| | - Sen Yang
- College of Horticulture, Henan Agricultural University, Zhengzhou, Henan, China
- Research Center of Cucurbit Germplasm Enhancement and Utilization of Henan Province, Zhengzhou, Henan, China
| |
Collapse
|
8
|
Fan H, Xu J, Ao D, Jia T, Shi Y, Li N, Jing R, Sun D. QTL Mapping of Trichome Traits and Analysis of Candidate Genes in Leaves of Wheat ( Triticum aestivum L.). Genes (Basel) 2023; 15:42. [PMID: 38254932 PMCID: PMC10815787 DOI: 10.3390/genes15010042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/22/2023] [Accepted: 12/25/2023] [Indexed: 01/24/2024] Open
Abstract
Trichome plays an important role in heat dissipation, cold resistance, water absorption, protection of leaves from mechanical damage, and direct exposure to ultraviolet rays. It also plays an important role in the photosynthesis, transpiration, and respiration of plants. However, the genetic basis of trichome traits is not fully understood in wheat. In this study, wheat DH population (Hanxuan 10 × Lumai 14) was used to map quantitative trait loci (QTL) for trichome traits in different parts of flag leaf at 10 days after anther with growing in Zhao County, Hebei Province, and Taigu County, Shanxi Province, respectively. The results showed that trichome density (TD) was leaf center > leaf tip > leaf base and near vein > middle > edge, respectively, in both environments. The trichome length (TL) was leaf tip > leaf center > leaf base and edge > middle > near vein. Significant phenotypic positive correlations were observed between the trichome-related traits of different parts. A total of 83 QTLs for trichome-related traits were mapped onto 18 chromosomes, and each one accounted for 2.41 to 27.99% of the phenotypic variations. Two QTL hotspots were detected in two marker intervals: AX-95232910~AX-95658735 on 3A and AX-94850949~AX-109507404 on 7D. Six possible candidate genes (TraesCS3A02G406000, TraesCS3A02G414900, TraesCS3A02G440900, TraesCS7D02G145200, TraesCS7D02G149200, and TraesCS7D02G152400) for trichome-related traits of wheat leaves were screened out according to their predicted expression levels in wheat leaves. The expression of these genes may be induced by a variety of abiotic stresses. The results provide the basis for further validation and functional characterization of the candidate genes.
Collapse
Affiliation(s)
- Hua Fan
- College of Agronomy, Shanxi Agricultural University, Taigu, Jinzhong 030800, China; (H.F.); (J.X.); (D.A.); (T.J.); (Y.S.); (N.L.)
- Experimental Teaching Center, Shanxi Agricultural University, Taigu, Jinzhong 030800, China
| | - Jianchao Xu
- College of Agronomy, Shanxi Agricultural University, Taigu, Jinzhong 030800, China; (H.F.); (J.X.); (D.A.); (T.J.); (Y.S.); (N.L.)
| | - Dan Ao
- College of Agronomy, Shanxi Agricultural University, Taigu, Jinzhong 030800, China; (H.F.); (J.X.); (D.A.); (T.J.); (Y.S.); (N.L.)
| | - Tianxiang Jia
- College of Agronomy, Shanxi Agricultural University, Taigu, Jinzhong 030800, China; (H.F.); (J.X.); (D.A.); (T.J.); (Y.S.); (N.L.)
| | - Yugang Shi
- College of Agronomy, Shanxi Agricultural University, Taigu, Jinzhong 030800, China; (H.F.); (J.X.); (D.A.); (T.J.); (Y.S.); (N.L.)
| | - Ning Li
- College of Agronomy, Shanxi Agricultural University, Taigu, Jinzhong 030800, China; (H.F.); (J.X.); (D.A.); (T.J.); (Y.S.); (N.L.)
| | - Ruilian Jing
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100000, China;
| | - Daizhen Sun
- College of Agronomy, Shanxi Agricultural University, Taigu, Jinzhong 030800, China; (H.F.); (J.X.); (D.A.); (T.J.); (Y.S.); (N.L.)
| |
Collapse
|
9
|
Zahid S, Schulfer AF, Di Stilio VS. A eudicot MIXTA family ancestor likely functioned in both conical cells and trichomes. FRONTIERS IN PLANT SCIENCE 2023; 14:1288961. [PMID: 38173925 PMCID: PMC10764028 DOI: 10.3389/fpls.2023.1288961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/27/2023] [Indexed: 01/05/2024]
Abstract
The MIXTA family of MYB transcription factors modulate the development of diverse epidermal features in land plants. This study investigates the evolutionary history and function of the MIXTA gene family in the early-diverging eudicot model lineage Thalictrum (Ranunculaceae), with R2R3 SBG9-A MYB transcription factors representative of the pre-core eudicot duplication and thus hereby referred to as "paleoMIXTA" (PMX). Cloning and phylogenetic analysis of Thalictrum paleoMIXTA (ThPMX) orthologs across 23 species reveal a genus-wide duplication coincident with a whole-genome duplication. Expression analysis by qPCR confirmed that the highest expression is found in carpels, while newly revealing high expression in leaves and nuanced differences between paralogs in representative polyploid species. The single-copy ortholog from the diploid species T. thalictroides (TthPMX, previously TtMYBML2), which has petaloid sepals with conical-papillate cells and trichomes on leaves, was functionally characterized by virus-induced gene silencing (VIGS), and its role in leaves was also assessed from heterologous overexpression in tobacco. Another ortholog from a species with conical-papillate cells on stamen filaments, TclPMX, was also targeted for silencing. Overexpression assays in tobacco provide further evidence that the paleoMIXTA lineage has the potential for leaf trichome function in a core eudicot. Transcriptome analysis by RNA-Seq on leaves of VIGS-treated plants suggests that TthPMX modulates leaf trichome development and morphogenesis through microtubule-associated mechanisms and that this may be a conserved pathway for eudicots. These experiments provide evidence for a combined role for paleoMIXTA orthologs in (leaf) trichomes and (floral) conical-papillate cells that, together with data from other systems, makes the functional reconstruction of a eudicot ancestor most likely as also having a combined function.
Collapse
|
10
|
Dong Y, Li S, Wu H, Gao Y, Feng Z, Zhao X, Shan L, Zhang Z, Ren H, Liu X. Advances in understanding epigenetic regulation of plant trichome development: a comprehensive review. HORTICULTURE RESEARCH 2023; 10:uhad145. [PMID: 37691965 PMCID: PMC10483894 DOI: 10.1093/hr/uhad145] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 07/14/2023] [Indexed: 09/12/2023]
Abstract
Plant growth and development are controlled by a complex gene regulatory network, which is currently a focal point of research. It has been established that epigenetic factors play a crucial role in plant growth. Trichomes, specialized appendages that arise from epidermal cells, are of great significance in plant growth and development. As a model system for studying plant development, trichomes possess both commercial and research value. Epigenetic regulation has only recently been implicated in the development of trichomes in a limited number of studies, and microRNA-mediated post-transcriptional regulation appears to dominate in this context. In light of this, we have conducted a review that explores the interplay between epigenetic regulations and the formation of plant trichomes, building upon existing knowledge of hormones and transcription factors in trichome development. Through this review, we aim to deepen our understanding of the regulatory mechanisms underlying trichome formation and shed light on future avenues of research in the field of epigenetics as it pertains to epidermal hair growth.
Collapse
Affiliation(s)
- Yuming Dong
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Sen Li
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Haoying Wu
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Yiming Gao
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Zhongxuan Feng
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Xi Zhao
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Li Shan
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Zhongren Zhang
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Huazhong Ren
- College of Horticulture, China Agricultural University, Beijing 100193, China
- Sanya Institute of China Agricultural University, Sanya Hainan 572000, China
| | - Xingwang Liu
- College of Horticulture, China Agricultural University, Beijing 100193, China
- Sanya Institute of China Agricultural University, Sanya Hainan 572000, China
| |
Collapse
|
11
|
Wang Y, Wang G, Lin D, Luo Q, Xu W, Qu S. QTL mapping and stability analysis of trichome density in zucchini ( Cucurbita pepo L.). FRONTIERS IN PLANT SCIENCE 2023; 14:1232154. [PMID: 37636121 PMCID: PMC10457680 DOI: 10.3389/fpls.2023.1232154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/06/2023] [Indexed: 08/29/2023]
Abstract
Trichomes provide an excellent model for studying cell differentiation and proliferation. The aboveground tissues of plants with long dense trichomes (LDTs) can cause skin itching in people working in a zucchini field, in which management, pollination, and fruit harvesting are difficult. In this study, an F2 population was constructed with the LDT inbred line "16" and the sparse micro trichome (SMT) inbred line "63" for QTL analysis of type I and II trichome density. Two QTLs were identified on chromosomes 3 and 15 using the QTL-seq method. Additionally, 191 InDel markers were developed on 20 chromosomes, a genetic map was constructed for QTL mapping, and three QTLs were identified on chromosomes 3, 6, and 15. Two QTLs, CpTD3.1 and CpTD15.1, were identified in both QTL-seq and genetic map-based QTL analyses, and CpTD15.1 was the major-effect QTL. The stability of CpTD3.1 and CpTD15.1 was confirmed using data from F2 plants under different environmental conditions. The major-effect QTL CpTD15.1 was located between markers chr15-4991349 and chr15-5766791, with a physical distance of 775.44 kb, and explained 12.71%-29.37% of the phenotypic variation observed in the three environments. CpTD3.1 was located between markers chr3-218350 and chr3-2891236, in a region with a physical distance of 2,672.89 kb, and explained 5.00%-10.64% of the phenotypic variation observed in the three environments. The functional annotations of the genes within the CpTD15.1 region were predicted, and five genes encoding transcription factors regulating trichome development were selected. Cp4.1LG15g04400 encoded zinc finger protein (ZFP) and harbored nonsynonymous SNPs in the conserved ring finger domain between the two parental lines. There were significant differences in Cp4.1LG15g04400 expression between "16" and "63", and a similar pattern was found between germplasm resources of LDT lines and SMT lines. It was presumed that Cp4.1LG15g04400 might regulate trichome density in zucchini. These results lay a foundation for better understanding the density of multicellular nonglandular trichomes and the regulatory mechanism of trichome density in zucchini.
Collapse
Affiliation(s)
- Yunli Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs/Northeast Agricultural University, Harbin, China
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
| | - Guichao Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs/Northeast Agricultural University, Harbin, China
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
| | - Dongjuan Lin
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs/Northeast Agricultural University, Harbin, China
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
| | - Qinfen Luo
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs/Northeast Agricultural University, Harbin, China
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
| | - Wenlong Xu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs/Northeast Agricultural University, Harbin, China
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
| | - Shuping Qu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs/Northeast Agricultural University, Harbin, China
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
| |
Collapse
|
12
|
Feng Z, Sun L, Dong M, Fan S, Shi K, Qu Y, Zhu L, Shi J, Wang W, Liu Y, Song L, Weng Y, Liu X, Ren H. Novel players in organogenesis and flavonoid biosynthesis in cucumber glandular trichomes. PLANT PHYSIOLOGY 2023:kiad236. [PMID: 37099480 PMCID: PMC10400037 DOI: 10.1093/plphys/kiad236] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/24/2023] [Accepted: 04/25/2023] [Indexed: 06/19/2023]
Abstract
Glandular trichomes (GTs) are outgrowths of plant epidermal cells that secrete and store specialized secondary metabolites that protect plants against biotic and abiotic stresses and have economic importance for human use. While extensive work has been done to understand the molecular mechanisms of trichome organogenesis in Arabidopsis (Arabidopsis thaliana), which forms unicellular, non-glandular trichomes (NGTs), little is known about the mechanisms of GT development or regulation of secondary metabolites in plants with multicellular GTs. Here, we identified and functionally characterized genes associated with GT organogenesis and secondary metabolism in GTs of cucumber (Cucumis sativus). We developed a method for effective separation and isolation of cucumber GTs and NGTs. Transcriptomic and metabolomic analyses showed that flavonoid accumulation in cucumber GTs is positively associated with increased expression of related biosynthesis genes. We identified 67 GT development-related genes, the functions of 7 of which were validated by virus-induced gene silencing. We further validated the role of cucumber ECERIFERUM1 (CsCER1) in GT organogenesis by overexpression and RNA interference transgenic approaches. We further show that the transcription factor TINY BRANCHED HAIR (CsTBH) serves as a central regulator of flavonoid biosynthesis in cucumber glandular trichomes. Work from this study provides insight into the development of secondary metabolite biosynthesis in multi-cellular glandular trichomes.
Collapse
Affiliation(s)
- Zhongxuan Feng
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Lei Sun
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Mingming Dong
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Shanshan Fan
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Kexin Shi
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Yixin Qu
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Liyan Zhu
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Jinfeng Shi
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Wujun Wang
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Yihan Liu
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Liyan Song
- Agricultural and Rural Bureau of Qingxian in Hebei Province, Qingxian 062650, China
| | - Yiqun Weng
- USDA-ARS, Vegetable Crops Research Unit, Horticulture Department, University of Wisconsin, 1575 Linden Dr., Madison, WI 53706, USA
| | - Xingwang Liu
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China
- Sanya Institute of China Agricultural University, Sanya, Hainan 572019, China
- Engineering Research Center of Breeding and Propagation of Horticultural Crops, Ministry on Education, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Huazhong Ren
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China
- Sanya Institute of China Agricultural University, Sanya, Hainan 572019, China
- Engineering Research Center of Breeding and Propagation of Horticultural Crops, Ministry on Education, College of Horticulture, China Agricultural University, Beijing 100193, China
| |
Collapse
|
13
|
Feng Z, Sun L, Dong M, Fan S, Shi K, Qu Y, Zhu L, Shi J, Wang W, Liu Y, Chen X, Weng Y, Liu X, Ren H. Identification and Functional Characterization of CsMYCs in Cucumber Glandular Trichome Development. Int J Mol Sci 2023; 24:ijms24076435. [PMID: 37047408 PMCID: PMC10094329 DOI: 10.3390/ijms24076435] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 03/26/2023] [Accepted: 03/28/2023] [Indexed: 04/14/2023] Open
Abstract
Glandular trichomes (GTs), specialized structures formed by the differentiation of plant epidermal cells, are known to play important roles in the resistance of plants to external biotic and abiotic stresses. These structures are capable of storing and secreting secondary metabolites, which often have important agricultural and medicinal values. In order to better understand the molecular developmental mechanisms of GTs, studies have been conducted in a variety of crops, including tomato (Solanum lycopersicum), sweetworm (Artemisia annua), and cotton (Gossypium hirsutum). The MYC transcription factor of the basic helix-loop-helix (bHLH) transcription factor family has been found to play an important role in GT development. In this study, a total of 13 cucumber MYC transcription factors were identified in the cucumber (Cucumis sativus L.) genome. After performing phylogenetic analyses and conserved motifs on the 13 CsMYCs in comparison to previously reported MYC transcription factors that regulate trichome development, seven candidate MYC transcription factors were selected. Through virus-induced gene silencing (VIGS), CsMYC2 is found to negatively regulate GT formation while CsMYC4, CsMYC5, CsMYC6, CsMYC7, and CsMYC8 are found to positively regulate GT formation. Furthermore, the two master effector genes, CsMYC2 and CsMYC7, are observed to have similar expression patterns indicating that they co-regulate the balance of GT development in an antagonistic way.
Collapse
Affiliation(s)
- Zhongxuan Feng
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Lei Sun
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Mingming Dong
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Shanshan Fan
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Kexin Shi
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Yixin Qu
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Liyan Zhu
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Jinfeng Shi
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Wujun Wang
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Yihan Liu
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Xiaofeng Chen
- Yantai Institute, China Agricultural University, Yantai 264670, China
| | - Yiqun Weng
- USDA-ARS, Vegetable Crops Research Unit, Horticulture Department, University of Wisconsin, 1575 Linden Drive, Madison, WI 53706, USA
| | - Xingwang Liu
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China
- Sanya Institute, China Agricultural University, Sanya 572019, China
- Engineering Research Center of Breeding and Propagation of Horticultural Crops, Ministry on Education, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Huazhong Ren
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China
- Sanya Institute, China Agricultural University, Sanya 572019, China
- Engineering Research Center of Breeding and Propagation of Horticultural Crops, Ministry on Education, College of Horticulture, China Agricultural University, Beijing 100193, China
| |
Collapse
|
14
|
Grumet R, Lin YC, Rett-Cadman S, Malik A. Morphological and Genetic Diversity of Cucumber ( Cucumis sativus L.) Fruit Development. PLANTS (BASEL, SWITZERLAND) 2022; 12:23. [PMID: 36616152 PMCID: PMC9824707 DOI: 10.3390/plants12010023] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/30/2022] [Accepted: 12/04/2022] [Indexed: 06/03/2023]
Abstract
Cucumber (Cucumis sativus L.) fruits, which are eaten at an immature stage of development, can vary extensively in morphological features such as size, shape, waxiness, spines, warts, and flesh thickness. Different types of cucumbers that vary in these morphological traits are preferred throughout the world. Numerous studies in recent years have added greatly to our understanding of cucumber fruit development and have identified a variety of genetic factors leading to extensive diversity. Candidate genes influencing floral organ establishment, cell division and cell cycle regulation, hormone biosynthesis and response, sugar transport, trichome development, and cutin, wax, and pigment biosynthesis have all been identified as factors influencing cucumber fruit morphology. The identified genes demonstrate complex interplay between structural genes, transcription factors, and hormone signaling. Identification of genetic factors controlling these traits will facilitate breeding for desired characteristics to increase productivity, improve shipping, handling, and storage traits, and enhance consumer-desired qualities. The following review examines our current understanding of developmental and genetic factors driving diversity of cucumber fruit morphology.
Collapse
Affiliation(s)
- Rebecca Grumet
- Graduate Program in Plant Breeding, Genetics and Biotechnology, Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA
| | - Ying-Chen Lin
- Graduate Program in Plant Breeding, Genetics and Biotechnology, Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA
| | - Stephanie Rett-Cadman
- Graduate Program in Plant Breeding, Genetics and Biotechnology, Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA
| | - Ajaz Malik
- Department of Horticulture-Vegetable Science, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Srinagar 190 025, India
| |
Collapse
|
15
|
Xie Q, Xiong C, Yang Q, Zheng F, Larkin RM, Zhang J, Wang T, Zhang Y, Ouyang B, Lu Y, Ye J, Ye Z, Yang C. A novel regulatory complex mediated by Lanata (Ln) controls multicellular trichome formation in tomato. THE NEW PHYTOLOGIST 2022; 236:2294-2310. [PMID: 36102042 DOI: 10.1111/nph.18492] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/02/2022] [Indexed: 06/15/2023]
Abstract
Trichomes that originate from plant aerial epidermis act as mechanical and chemical barriers against herbivores. Although several regulators have recently been identified, the regulatory pathway underlying multicellular trichome formation remains largely unknown in tomato. Here, we report a novel HD-ZIP IV transcription factor, Lanata (Ln), a missense mutation which caused the hairy phenotype. Biochemical analyses demonstrate that Ln separately interacts with two trichome regulators, Woolly (Wo) and Hair (H). Genetic and molecular evidence demonstrates that Ln directly regulates the expression of H. The interaction between Ln and Wo can increase trichome density by enhancing the expression of SlCycB2 and SlCycB3, which we previously showed are involved in tomato trichome formation. Furthermore, SlCycB2 represses the transactivation of the SlCycB3 gene by Ln and vice versa. Our findings provide new insights into the novel regulatory network controlling multicellular trichome formation in tomato.
Collapse
Affiliation(s)
- Qingmin Xie
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Cheng Xiong
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qihong Yang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Fangyan Zheng
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Robert M Larkin
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Junhong Zhang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Taotao Wang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yuyang Zhang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Bo Ouyang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yongen Lu
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jie Ye
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhibiao Ye
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Changxian Yang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
16
|
Han G, Li Y, Yang Z, Wang C, Zhang Y, Wang B. Molecular Mechanisms of Plant Trichome Development. FRONTIERS IN PLANT SCIENCE 2022; 13:910228. [PMID: 35720574 PMCID: PMC9198495 DOI: 10.3389/fpls.2022.910228] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/13/2022] [Indexed: 05/25/2023]
Abstract
Plant trichomes, protrusions formed from specialized aboveground epidermal cells, provide protection against various biotic and abiotic stresses. Trichomes can be unicellular, bicellular or multicellular, with multiple branches or no branches at all. Unicellular trichomes are generally not secretory, whereas multicellular trichomes include both secretory and non-secretory hairs. The secretory trichomes release secondary metabolites such as artemisinin, which is valuable as an antimalarial agent. Cotton trichomes, also known as cotton fibers, are an important natural product for the textile industry. In recent years, much progress has been made in unraveling the molecular mechanisms of trichome formation in Arabidopsis thaliana, Gossypium hirsutum, Oryza sativa, Cucumis sativus, Solanum lycopersicum, Nicotiana tabacum, and Artemisia annua. Here, we review current knowledge of the molecular mechanisms underlying fate determination and initiation, elongation, and maturation of unicellular, bicellular and multicellular trichomes in several representative plants. We emphasize the regulatory roles of plant hormones, transcription factors, the cell cycle and epigenetic modifications in different stages of trichome development. Finally, we identify the obstacles and key points for future research on plant trichome development, and speculated the development relationship between the salt glands of halophytes and the trichomes of non-halophytes, which provides a reference for future studying the development of plant epidermal cells.
Collapse
Affiliation(s)
- Guoliang Han
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Jinan, China
- Dongying Institute, Shandong Normal University, Dongying, China
| | - Yuxia Li
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Zongran Yang
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Chengfeng Wang
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Yuanyuan Zhang
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Baoshan Wang
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Jinan, China
| |
Collapse
|
17
|
Liu X, He X, Liu Z, Wu P, Tang N, Chen Z, Zhang W, Rao S, Cheng S, Luo C, Xu F. Transcriptome mining of genes in Zanthoxylum armatum revealed ZaMYB86 as a negative regulator of prickly development. Genomics 2022; 114:110374. [PMID: 35489616 DOI: 10.1016/j.ygeno.2022.110374] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/23/2022] [Accepted: 04/22/2022] [Indexed: 01/14/2023]
Abstract
Zanthoxylum armatum DC. is an important economic tree species. Prickle is a type of trichome with special morphology, and there are a lot of prickles on the leaves of Z. armatum, which seriously restricts the development of Z. armatum industry. In this study, the leaves of Z. armatum cv. Zhuye (ZY) and its budding variety 'Rongchangwuci' (WC) (A less prickly mutant variety) at different developmental stages were used as materials, and the transcriptome sequencing data were analyzed. A total of 96,931 differentially expressed genes (DEGs) were identified among the samples, among which 1560 were candidate DEGs that might be involved in hormone metabolism. The contents of JA, auxin and CK phytohormones in ZY leaves were significantly higher than those in WC leaves. Combined with weighted gene co-expression network analysis, eight genes (MYC, IAA, ARF, CRE/AHK, PP2C, ARR-A, AOS and LOX) were identified, including 25 transcripts, which might affect the metabolism of the three hormones and indirectly participate in the formation of prickles. Combining with the proteins successfully reported in other plants to regulate trichome formation, ZaMYB86, a transcription factor of R2R3 MYB family, was identified through local Blast and phylogenetic tree analysis, which might regulate prickle formation of Z. armatum. Overexpression of ZaMYB86 in mutant A. thaliana resulted in the reduction of trichomes in A. thaliana leaves, which further verified that ZaMYB86 was involved in the formation of pickles. Yeast two-hybrid results showed that ZaMYB86 interacted with ZaMYB5. Furthermore, ZaMYB5 was highly homologous to AtMYB5, a transcription factor that regulated trichomes development, in MYB DNA binding domain. Taken together, these results indicated that ZaMYB86 and ZaMYB5 act together to regulate the formation of prickles in Z. armatum. Our findings provided a new perspective for revealing the molecular mechanism of prickly formation.
Collapse
Affiliation(s)
- Xiaomeng Liu
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, Hubei, China
| | - Xiao He
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, Hubei, China
| | - Zhongbing Liu
- School of Horticulture and Landscape, Wuhan University of Bioengineering, Wuhan, China
| | - Peiyin Wu
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, Hubei, China
| | - Ning Tang
- College of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Chongqing 402160, China; Chongqing Key Laboratory of Economic Plant Biotechnology, Chongqing 400000, China
| | - Zexiong Chen
- College of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Chongqing 402160, China; Chongqing Key Laboratory of Economic Plant Biotechnology, Chongqing 400000, China
| | - Weiwei Zhang
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, Hubei, China; Spice Crops Research Institute, Yangtze University, Jingzhou 434025, Hubei, China.
| | - Shen Rao
- School of Modern Industry for Selenium Science and Engineering, National R&D Center for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan 430023, Hubei, China
| | - Shuiyuan Cheng
- School of Modern Industry for Selenium Science and Engineering, National R&D Center for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan 430023, Hubei, China; National Selenium Rich Product Quality Supervision and Inspection Center, Enshi 445000, Hubei, China
| | - Chengrong Luo
- Sichuan Academy of Forestry, Chengdu 610081, Sichuan, China
| | - Feng Xu
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, Hubei, China.
| |
Collapse
|
18
|
Bo K, Duan Y, Qiu X, Zhang M, Shu Q, Sun Y, He Y, Shi Y, Weng Y, Wang C. Promoter variation in a homeobox gene, CpDll, is associated with deeply lobed leaf in Cucurbita pepo L. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:1223-1234. [PMID: 34985539 DOI: 10.1007/s00122-021-04026-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 12/23/2021] [Indexed: 06/14/2023]
Abstract
CpDll, encoding an HD-Zip I transcription factor, positively regulates formation of deeply lobed leaf shape in zucchini, Cucurbita pepo, which is associated with sequence variation in its promoter region. Leaf shape is an important horticultural trait in zucchini (Cucurbita pepo L.). Deeply lobed leaves have potential advantages for high-density planting and hybrid production. However, little is known about the molecular basis of deeply lobed leaf formation in this important vegetable crop. Here, we conducted QTL analysis and fine mapping of the deeply lobed leaf (CpDll) locus using recombinant inbred lines and large F2 populations developed from crosses between the deeply lobed leaf HM-S2, and entire leaf Jin-GL parental lines. We show that CpDll exhibited incomplete dominance for the deeply lobed leaf shape in HM-S2. Map-based cloning provided evidence that CpCll encodes a type I homeodomain (HD)- and Leu zipper (Zip) element-containing transcription factor. Sequence analysis between HM-S2 and Jin-GL revealed no sequence variations in the coding sequences, whereas a number of variations were identified in the promoter region between them. DUAL-LUC assays revealed significantly stronger promoter activity in HM-S2 than that in Jin-GL. There was also significantly higher expression of CpDll in the leaf base of deeply lobed leaves of HM-S2 compared with entire leaf Jin-GL. Comparative analysis of CpDll gene homologs in nine cucurbit crop species (family Cucurbitaceae) revealed conservation in both structure and function of this gene in regulation of deeply lobed leaf formation. Our work provides new insights into the molecular basis of leaf lobe formation in pumpkin/squash and other cucurbit crops. This work also facilitates marker-assisted selection for leaf shape in zucchini breeding.
Collapse
Affiliation(s)
- Kailiang Bo
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Ying Duan
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Xiyan Qiu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Meng Zhang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Qin Shu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Yapei Sun
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Yadi He
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Yuzi Shi
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Yiqun Weng
- USDA-ARS Vegetable Crops Research Unit, Horticulture Department, University of Wisconsin, Madison, WI, 53706, USA.
| | - Changlin Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China.
- China Vegetable Biotechnology (Shouguang) Co., Ltd, Shouguang, Shandong, People's Republic of China.
| |
Collapse
|
19
|
Liu X, Yang X, Xie Q, Miao H, Bo K, Dong S, Xin T, Gu X, Sun J, Zhang S. NS encodes an auxin transporter that regulates the 'numerous spines' trait in cucumber (Cucumis sativus) fruit. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:325-336. [PMID: 35181968 DOI: 10.1111/tpj.15710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Abstract
Fruit spine is an important agronomic trait in cucumber and the "numerous spines (ns)" cucumber varieties are popular in Europe and West Asia. Although the classical genetic locus of ns was reported more than two decades ago, the NS gene has not been cloned yet. In this study, nine genetic loci for the different densities of fruit spines were identified by a genome-wide association study. Among the nine loci, fsdG2.1 was closely associated with the classical genetic locus ns, which harbors a candidate gene Csa2G264590. Overexpression of Csa2G264590 resulted in lower fruit spine density, and the knockout mutant generated by CRISPR/Cas9 displayed an increased spine density, demonstrating that the Csa2G264590 gene is NS. NS is specifically expressed in the fruit peel and spine. Genetic analysis showed that NS regulates fruit spine development independently of the tuberculate gene, Tu, which regulates spine development on tubercules; the cucumber glabrous mutants csgl1 and csgl3 are epistatic to ns. Furthermore, we found that auxin levels in the fruit peel and spine were significantly lower in the knockout mutant ns-cr. Moreover, RNA-sequencing showed that the plant hormone signal transduction pathway was enriched. Notably, most of the auxin responsive Aux/IAA family genes were downregulated in ns-cr. Haplotype analysis showed that the non-functional haplotype of NS exists exclusively in the Eurasian cucumber backgrounds. Taken together, the cloning of NS gene provides new insights into the regulatory network of fruit spine development.
Collapse
Affiliation(s)
- Xiaoping Liu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xueyong Yang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Qing Xie
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Han Miao
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Kailiang Bo
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Shaoyun Dong
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Tongxu Xin
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xingfang Gu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jiaqiang Sun
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Shengping Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
20
|
Lv D, Wang G, Zhang Q, Yu Y, Qin PC, Pang JA, Sun JX, Zhang KY, He HL, Cai R, Pan JS. Comparative Transcriptome Analysis of Hard and Tender Fruit Spines of Cucumber to Identify Genes Involved in the Morphological Development of Fruit Spines. FRONTIERS IN PLANT SCIENCE 2022; 13:797433. [PMID: 35371132 PMCID: PMC8965156 DOI: 10.3389/fpls.2022.797433] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 01/10/2022] [Indexed: 06/14/2023]
Abstract
The spines of cucumber fruit not only have important commercial value but are also a classical tissue to study cell division and differentiation modes of multicellular trichomes. It has been reported that CsTs (C-type Lectin receptor-like kinase) can influence the development of fruit spines. In this study, we took a pair of cucumber materials defined as hard (Ts, wild type) and tender spines (ts, mutant) and defined the developmental process of fruit spines as consisting of four stages (stage I to stage IV) by continuously observing by microscope and SEM. Comparisons of transcriptome profiles at different development stages of wild-type spines showed that 803 and 722 genes were upregulated in the stalk (stage II and stage III) and base (stage IV) development stages of fruit spines, respectively. The function analysis of DEGs showed that genes related to auxin polar transport and HD-ZIP transcription factor are significantly upregulated during the development of the stalk. bHLH transcription factors and cytoskeleton-related genes were significantly upregulated during the development of the base. In addition, stage III is the key point for the difference between wild-type and mutant spines. We detected 628 DEGs between wild type and mutant at stage III. These DEGs are mainly involved in the calcium signaling of the cytoskeleton and auxin polar transport. Coincidentally, we found that CsVTI11, a factor involved in auxin signal transmission, can interact with CsTs in vivo, but this interaction does not occur between CsVTI11 and Csts, further suggesting that CsTs may regulate the development of fruit spines by influencing cell polarity. These results provide useful tools to study the molecular networks associated with cucumber fruit spine development and elucidate the biological pathways that C-type Lectin receptor-like kinase plays in regulating the development of fruit spines.
Collapse
Affiliation(s)
- Duo Lv
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Gang Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Qi Zhang
- Committee of Agriculture and Rural Areas of Jinshan District, Shanghai, China
| | - Yao Yu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Pei-Chao Qin
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Jin-An Pang
- Tianjin Derit Seeds Company Limited, Tianjin, China
| | - Jing-Xian Sun
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Ke-Yan Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Huan-Le He
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Run Cai
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Jun-Song Pan
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
21
|
Yang S, Wang Y, Zhu H, Zhang M, Wang D, Xie K, Fan P, Dou J, Liu D, Liu B, Chen C, Yan Y, Zhao L, Yang L. A novel HD-Zip I/C2H2-ZFP/WD-repeat complex regulates the size of spine base in cucumber. THE NEW PHYTOLOGIST 2022; 233:2643-2658. [PMID: 35037268 DOI: 10.1111/nph.17967] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 12/31/2021] [Indexed: 06/14/2023]
Abstract
Fruit spine is an important trait in cucumber, affecting not only commercial quality, but also fruit smoothness, transportation and storage. Spine size is determined by a multi-cellular base. However, the molecular mechanism underlying the regulation of cucumber spine base remains largely unknown. Here, we report map-based cloning and characterization of a spine base size 1 (SBS1) gene, encoding a C2H2 zinc-finger transcription factor. Near-isogenic lines of cucumber were used to map, identify and quantify cucumber spine base size 1 (CsSBS1). Yeast-hybrid, bimolecular fluorescence complementation (BiFC), co-immunoprecipitation (Co-IP) and RNA-sequencing assays were used to explore the molecular mechanism of CsSBS1 in regulating spine base size development. CsSBS1 was specifically expressed in cucumber ovaries with particularly high expression in fruit spines. Overexpression of CsSBS1 resulted in large fruit spine base, while RNA-interference silencing of CsSBS1 inhibited the expansion of fruit spine base. Sequence analysis of natural cucumber accessions revealed that CsSBS1 was lost in small spine base accessions, resulting from a 4895 bp fragment deletion in CsSBS1 locus. CsSBS1 can form a trimeric complex with two positive regulators CsTTG1 and CsGL1 to regulate spine base development through ethylene signaling. A novel regulator network is proposed that the CsGL1/CsSBS1/CsTTG1 complex plays a significant role in regulating spine base formation and size, which offers a strategy for cucumber breeders to develop smooth fruit.
Collapse
Affiliation(s)
- Sen Yang
- College of Horticulture, Henan Agricultural University, 63 Nongye Road, Zhengzhou, 450002, China
| | - Yueling Wang
- College of Horticulture, Henan Agricultural University, 63 Nongye Road, Zhengzhou, 450002, China
| | - Huayu Zhu
- College of Horticulture, Henan Agricultural University, 63 Nongye Road, Zhengzhou, 450002, China
| | - Minjuan Zhang
- College of Horticulture, Henan Agricultural University, 63 Nongye Road, Zhengzhou, 450002, China
| | - Dengke Wang
- College of Horticulture, Henan Agricultural University, 63 Nongye Road, Zhengzhou, 450002, China
| | - Kuixi Xie
- College of Horticulture, Henan Agricultural University, 63 Nongye Road, Zhengzhou, 450002, China
| | - Pengfei Fan
- College of Horticulture, Henan Agricultural University, 63 Nongye Road, Zhengzhou, 450002, China
| | - Junling Dou
- College of Horticulture, Henan Agricultural University, 63 Nongye Road, Zhengzhou, 450002, China
| | - Dongming Liu
- College of Horticulture, Henan Agricultural University, 63 Nongye Road, Zhengzhou, 450002, China
| | - Bin Liu
- Department of Plant Genomics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Bellaterra, 08193, Spain
| | - Chunhua Chen
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Yan Yan
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Lijun Zhao
- College of Horticulture, Henan Agricultural University, 63 Nongye Road, Zhengzhou, 450002, China
| | - Luming Yang
- College of Horticulture, Henan Agricultural University, 63 Nongye Road, Zhengzhou, 450002, China
| |
Collapse
|
22
|
Yang Y, Cai C, Wang Y, Wang Y, Ju H, Chen X. Cucumber glossy fruit 1 ( CsGLF1) encodes the zinc finger protein 6 that regulates fruit glossiness by enhancing cuticular wax biosynthesis. HORTICULTURE RESEARCH 2022; 10:uhac237. [PMID: 36643740 PMCID: PMC9832831 DOI: 10.1093/hr/uhac237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Revised: 10/29/2022] [Accepted: 10/16/2022] [Indexed: 06/17/2023]
Abstract
Cucumber glossiness is an important visual quality trait that affects consumer choice. Accumulating evidence suggests that glossy trait is associated with cuticular wax accumulation. However, the molecular genetic mechanism controlling cucumber glossiness remains largely unknown. Here, we report the map-based cloning and functional characterization of CsGLF1, a locus that determines the glossy trait in cucumber. CsGLF1 encodes a homolog of the Cys2His2-like fold group (C2H2) -type zinc finger protein 6 (ZFP6) and its deletion leads to glossier pericarp and decreased cuticular wax accumulation. Consistently, transcriptomic analysis demonstrated that a group of wax biosynthetic genes were downregulated when CsZFP6 was absent. Further, transient expression assay revealed that CsZFP6 acted as a transcription activator of cuticular wax biosynthetic genes. Taken together, our findings demonstrated a novel regulator of fruit glossiness, which will provide new insights into regulatory mechanism of fruit glossiness in cucumber.
Collapse
Affiliation(s)
| | | | - Yipeng Wang
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, Jiangsu Province, China
| | - Yanran Wang
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, Jiangsu Province, China
| | - Haolun Ju
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, Jiangsu Province, China
| | | |
Collapse
|
23
|
Chang L, Hu M, Ning J, He W, Gao J, Ndjiondjop MN, Fu Y, Liu F, Sun H, Gu P, Sun C, Zhu Z. The genetic control of glabrous glume during African rice domestication. J Genet Genomics 2022; 49:427-436. [DOI: 10.1016/j.jgg.2022.02.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 02/08/2022] [Accepted: 02/08/2022] [Indexed: 11/27/2022]
|
24
|
Zheng F, Cui L, Li C, Xie Q, Ai G, Wang J, Yu H, Wang T, Zhang J, Ye Z, Yang C. Hair interacts with SlZFP8-like to regulate the initiation and elongation of trichomes by modulating SlZFP6 expression in tomato. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:228-244. [PMID: 34499170 DOI: 10.1093/jxb/erab417] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 09/09/2021] [Indexed: 06/13/2023]
Abstract
Trichomes are specialized glandular or non-glandular structures that provide physical or chemical protection against insect and pathogen attack. Trichomes in Arabidopsis have been extensively studied as typical non-glandular structures. By contrast, the molecular mechanism underlying glandular trichome formation and elongation remains largely unknown. We previously demonstrated that Hair is essential for the formation of type I and type VI trichomes. Here, we found that overexpression of Hair increased the density and length of tomato trichomes. Biochemical assays revealed that Hair physically interacts with its close homolog SlZFP8-like (SlZFP8L), and SlZFP8L also directly interacts with Woolly. SlZFP8L-overexpressing plants showed increased trichome density and length. We further found that the expression of SlZFP6, which encodes a C2H2 zinc finger protein, is positively regulated by Hair. Using chromatin immunoprecipitation, yeast one-hybrid, and dual-luciferase assays we identified that SlZFP6 is a direct target of Hair. Similar to Hair and SlZFP8L, the overexpression of SlZFP6 also increased the density and length of tomato trichomes. Taken together, our results suggest that Hair interacts with SlZFP8-like to regulate the initiation and elongation of trichomes by modulating SlZFP6 expression in tomato.
Collapse
Affiliation(s)
- Fangyan Zheng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, China
| | - Long Cui
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, China
| | - Changxing Li
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, China
| | - Qingmin Xie
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, China
| | - Guo Ai
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, China
| | - Junqiang Wang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, China
| | - Huiyang Yu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, China
| | - Taotao Wang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, China
| | - Junhong Zhang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, China
| | - Zhibiao Ye
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, China
| | - Changxian Yang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| |
Collapse
|
25
|
Liu J, Wang H, Liu M, Liu J, Liu S, Cheng Q, Shen H. Hairiness Gene Regulated Multicellular, Non-Glandular Trichome Formation in Pepper Species. FRONTIERS IN PLANT SCIENCE 2021; 12:784755. [PMID: 34975970 PMCID: PMC8716684 DOI: 10.3389/fpls.2021.784755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 11/18/2021] [Indexed: 06/14/2023]
Abstract
Trichomes are unicellular or multicellular epidermal structures that play a defensive role against environmental stresses. Although unicellular trichomes have been extensively studied as a mechanistic model, the genes involved in multicellular trichome formation are not well understood. In this study, we first classified the trichome morphology structures in Capsicum species using 280 diverse peppers. We cloned a key gene (Hairiness) on chromosome 10, which mainly controlled the formation of multicellular non-glandular trichomes (types II, III, and V). Hairiness encodes a Cys2-His2 zinc-finger protein, and virus-induced gene silencing of the gene resulted in a hairless phenotype. Differential expression of Hairiness between the hairiness and hairless lines was due to variations in promoter sequences. Transgenic experiments verified the hypothesis that the promoter of Hairiness in the hairless line had extremely low activity causing a hairless phenotype. Hair controlled the formation of type I glandular trichomes in tomatoes, which was due to nucleotide differences. Taken together, our findings suggest that the regulation of multicellular trichome formation might have similar pathways, but the gene could perform slightly different functions in crops.
Collapse
|
26
|
Wang Z, Wang L, Han L, Cheng Z, Liu X, Wang S, Liu L, Chen J, Song W, Zhao J, Zhou Z, Zhang X. HECATE2 acts with GLABROUS3 and Tu to boost cytokinin biosynthesis and regulate cucumber fruit wart formation. PLANT PHYSIOLOGY 2021; 187:1619-1635. [PMID: 34618075 PMCID: PMC8566225 DOI: 10.1093/plphys/kiab377] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 07/16/2021] [Indexed: 05/24/2023]
Abstract
Warty fruit in cucumber (Cucumis sativus L.) is an important quality trait that greatly affects fruit appearance and market value. The cucumber wart consists of fruit trichomes (spines) and underlying tubercules, in which the existence of spines is prerequisite for tubercule formation. Although several regulators have been reported to mediate spine or tubercule formation, the direct link between spine and tubercule development remains unknown. Here, we found that the basic Helix-Loop-Helix (bHLH) gene HECATE2 (CsHEC2) was highly expressed in cucumber fruit peels including spines and tubercules. Knockout of CsHEC2 by the CRISPR/Cas9 system resulted in reduced wart density and decreased cytokinin (CTK) accumulation in the fruit peel, whereas overexpression of CsHEC2 led to elevated wart density and CTK level. CsHEC2 is directly bound to the promoter of the CTK hydroxylase-like1 gene (CsCHL1) that catalyzes CTK biosynthesis, and activated CsCHL1 expression. Moreover, CsHEC2 physically interacted with GLABROUS3 (CsGL3, a key spine regulator) and Tuberculate fruit (CsTu, a core tubercule formation factor), and such interactions further enhanced CsHEC2-mediated CsCHL1 expression. These data suggested that CsHEC2 promotes wart formation by acting as an important cofactor for CsGL3 and CsTu to directly stimulate CTK biosynthesis in cucumber. Thus, CsHEC2 can serve as a valuable target for molecular breeding of cucumber varieties with different wart density requirements.
Collapse
Affiliation(s)
- Zhongyi Wang
- State Key Laboratories of Agrobiotechnology, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, MOE Joint Laboratory for International Cooperation in Crop Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Liming Wang
- State Key Laboratories of Agrobiotechnology, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, MOE Joint Laboratory for International Cooperation in Crop Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Lijie Han
- State Key Laboratories of Agrobiotechnology, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, MOE Joint Laboratory for International Cooperation in Crop Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Zhihua Cheng
- State Key Laboratories of Agrobiotechnology, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, MOE Joint Laboratory for International Cooperation in Crop Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Xiaofeng Liu
- State Key Laboratories of Agrobiotechnology, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, MOE Joint Laboratory for International Cooperation in Crop Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Shaoyun Wang
- State Key Laboratories of Agrobiotechnology, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, MOE Joint Laboratory for International Cooperation in Crop Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Liu Liu
- State Key Laboratories of Agrobiotechnology, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, MOE Joint Laboratory for International Cooperation in Crop Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Jiacai Chen
- State Key Laboratories of Agrobiotechnology, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, MOE Joint Laboratory for International Cooperation in Crop Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Weiyuan Song
- State Key Laboratories of Agrobiotechnology, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, MOE Joint Laboratory for International Cooperation in Crop Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Jianyu Zhao
- State Key Laboratories of Agrobiotechnology, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, MOE Joint Laboratory for International Cooperation in Crop Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Zhaoyang Zhou
- State Key Laboratories of Agrobiotechnology, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, MOE Joint Laboratory for International Cooperation in Crop Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Xiaolan Zhang
- State Key Laboratories of Agrobiotechnology, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, MOE Joint Laboratory for International Cooperation in Crop Molecular Breeding, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
27
|
Gebretsadik K, Qiu X, Dong S, Miao H, Bo K. Molecular research progress and improvement approach of fruit quality traits in cucumber. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:3535-3552. [PMID: 34181057 DOI: 10.1007/s00122-021-03895-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 06/21/2021] [Indexed: 05/10/2023]
Abstract
Recent molecular studies revealed new opportunities to improve cucumber fruit quality. However, the fruit color and spine traits molecular basis remain vague despite the vast sources of genetic diversity. Cucumber is agriculturally, economically and nutritionally important vegetable crop. China produces three-fourths of the world's total cucumber production. Cucumber fruit quality depends on a number of traits such as the fruit color (peel and flesh color), spine (density, size and color), fruit shape, fruit size, defects, texture, firmness, taste, maturity stage and nutritional composition. Fruit color and spine traits determine critical quality attributes and have been the interest of researchers at the molecular level. Evaluating the molecular mechanisms of fruit quality traits is important to improve production and quality of cucumber varieties. Genes and qualitative trait locus (QTL) that are responsible for cucumber fruit color and fruit spine have been identified. The purpose of this paper is to reveal the molecular research progress of fruit color and spines as key quality traits of cucumber. The markers and genes identified so far could help for marker-assisted selection of the fruit color and spine trait in cucumber breeding and its associated nutritional improvement. Based on the previous studies, peel color and spine density as examples, we proposed a comprehensive approach for cucumber fruit quality traits improvement. Moreover, the markers and genes can be useful to facilitate cloning-mediated genetic breeding in cucumber. However, in the era of climate change, increased human population and high-quality demand of consumers, studies on molecular mechanisms of cucumber fruit quality traits are limited.
Collapse
Affiliation(s)
- Kiros Gebretsadik
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- Department of Plant Science, Aksum University, Shire Campus, Shire, Ethiopia
| | - Xiyan Qiu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shaoyun Dong
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Han Miao
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Kailiang Bo
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
28
|
A SNP Mutation in Homeodomain-DDT (HD-DDT) Transcription Factor Results in Multiple Trichomes ( mt) in Cucumber ( Cucumis sativus L.). Genes (Basel) 2021; 12:genes12101478. [PMID: 34680876 PMCID: PMC8536133 DOI: 10.3390/genes12101478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/12/2021] [Accepted: 09/14/2021] [Indexed: 11/25/2022] Open
Abstract
Trichome is a natural physical barrier protecting plants against environmental stresses, natural infestations, ultraviolet rays and pathogenicity. Trichome also helps plants in maintaining appropriate water content by reducing transpiration rate. The molecular mechanism regulating unicellular trichome development in Arabidopsis has been extensively elucidated, but the molecular mechanism regulating multicellular trichome development remains unclear. In this study, we identified a multiple trichomes (mt) mutant from a cucumber EMS (Ethylmethylsulfone) mutagenesis population. Genetic analysis indicated that an incomplete dominant gene controls the mt trait. Using a combination of map-based cloning and BSA-seq (Bulked Segregant Analysis -Sequencing), we identified the candidate gene, CsaV3_6G050410, responsible for the mt mutation. Sequence alignment revealed one base substitution in gene CsaV3_6G050410, resulting in an amino acid substitution. The deduced amino acid sequence of CsaV3_6G050410 encodes a HD-DDT (homeodomain-DDT) transcriptional regulatory protein containing a conserved homeobox domain and a DDT domain. Gene expression analysis revealed that the expression level of CsaV3_6G050410 in the mt mutant was similar to that in the WT (wild type). Transcriptome analysis indicated that the mt gene may regulate the development of the epidermis by influencing plant hormone signaling pathways or participating in several transcription factor pathways. The results of this study are fundamental for a better understanding of the function of the HD-DDT transcription factor in the trichome development of cucumber.
Collapse
|
29
|
Feng Z, Bartholomew ES, Liu Z, Cui Y, Dong Y, Li S, Wu H, Ren H, Liu X. Glandular trichomes: new focus on horticultural crops. HORTICULTURE RESEARCH 2021; 8:158. [PMID: 34193839 PMCID: PMC8245418 DOI: 10.1038/s41438-021-00592-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/07/2021] [Accepted: 05/10/2021] [Indexed: 05/31/2023]
Abstract
Plant glandular trichomes (GTs) are epidermal outgrowths with the capacity to biosynthesize and secrete specialized metabolites, that are of great scientific and practical significance. Our understanding of the developmental process of GTs is limited, and no single plant species serves as a unique model. Here, we review the genetic mechanisms of GT initiation and development and provide a summary of the biosynthetic pathways of GT-specialized metabolites in nonmodel plant species, especially horticultural crops. We discuss the morphology and classification of GT types. Moreover, we highlight technological advancements in methods employed for investigating GTs. Understanding the molecular basis of GT development and specialized metabolites not only offers useful avenues for research in plant breeding that will lead to the improved production of desirable metabolites, but also provides insights for plant epidermal development research.
Collapse
Affiliation(s)
- Zhongxuan Feng
- Engineering Research Center of the Ministry of Education for Horticultural Crops Breeding and Propagation, College of Horticulture, China Agricultural University, 100193, Beijing, P. R. China
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, 100193, Beijing, P. R. China
| | - Ezra S Bartholomew
- Engineering Research Center of the Ministry of Education for Horticultural Crops Breeding and Propagation, College of Horticulture, China Agricultural University, 100193, Beijing, P. R. China
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, 100193, Beijing, P. R. China
| | - Ziyu Liu
- Library of China Agricultural University, China Agricultural University, 100193, Beijing, P. R. China
| | - Yuanyuan Cui
- Engineering Research Center of the Ministry of Education for Horticultural Crops Breeding and Propagation, College of Horticulture, China Agricultural University, 100193, Beijing, P. R. China
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, 100193, Beijing, P. R. China
| | - Yuming Dong
- Engineering Research Center of the Ministry of Education for Horticultural Crops Breeding and Propagation, College of Horticulture, China Agricultural University, 100193, Beijing, P. R. China
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, 100193, Beijing, P. R. China
| | - Sen Li
- Engineering Research Center of the Ministry of Education for Horticultural Crops Breeding and Propagation, College of Horticulture, China Agricultural University, 100193, Beijing, P. R. China
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, 100193, Beijing, P. R. China
| | - Haoying Wu
- Engineering Research Center of the Ministry of Education for Horticultural Crops Breeding and Propagation, College of Horticulture, China Agricultural University, 100193, Beijing, P. R. China
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, 100193, Beijing, P. R. China
| | - Huazhong Ren
- Engineering Research Center of the Ministry of Education for Horticultural Crops Breeding and Propagation, College of Horticulture, China Agricultural University, 100193, Beijing, P. R. China.
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, 100193, Beijing, P. R. China.
- State Key Laboratory of Vegetable Germplasm Innovation, Tianjin, China.
| | - Xingwang Liu
- Engineering Research Center of the Ministry of Education for Horticultural Crops Breeding and Propagation, College of Horticulture, China Agricultural University, 100193, Beijing, P. R. China.
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, 100193, Beijing, P. R. China.
| |
Collapse
|
30
|
Gao S, Li N, Niran J, Wang F, Yin Y, Yu C, Jiao C, Yang C, Yao M. Transcriptome profiling of Capsicum annuum using Illumina- and PacBio SMRT-based RNA-Seq for in-depth understanding of genes involved in trichome formation. Sci Rep 2021; 11:10164. [PMID: 33986344 PMCID: PMC8119447 DOI: 10.1038/s41598-021-89619-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 04/26/2021] [Indexed: 11/16/2022] Open
Abstract
Trichomes, specialized epidermal cells located in aerial parts of plants, play indispensable roles in resisting abiotic and biotic stresses. However, the regulatory genes essential for multicellular trichrome development in Capsicum annuum L. (pepper) remain unclear. In this study, the transcript profiles of peppers GZZY-23 (hairy) and PI246331 (hairless) were investigated to gain insights into the genes responsible for the formation of multicellular trichomes. A total of 40,079 genes, including 4743 novel genes and 13,568 differentially expressed genes (DEGs), were obtained. Functional enrichment analysis revealed that the most noticeable pathways were transcription factor activity, sequence-specific DNA binding, and plant hormone signal transduction, which might be critical for multicellular trichome formation in hairy plants. We screened 11 DEGs related to trichome development; 151 DEGs involved in plant hormone signal transduction; 312 DEGs belonging to the MYB, bHLH, HD-Zip, and zinc finger transcription factor families; and 1629 DEGs predicted as plant resistance genes (PRGs). Most of these DEGs were highly expressed in GZZY-23 or trichomes. Several homologs of trichome regulators, such as SlCycB2, SlCycB3, and H, were considerably upregulated in GZZY-23, especially in the trichomes. The transcriptomic data generated in this study provide a basis for future characterization of trichome formation in pepper.
Collapse
Affiliation(s)
- Shenghua Gao
- Hubei Key Laboratory of Vegetable Germplasm Enhancement and Genetic Improvement, Cash Crops Research Institute, Hubei Academy of Agricultural Sciences, Wuhan, 430070, Hubei, China
| | - Ning Li
- Hubei Key Laboratory of Vegetable Germplasm Enhancement and Genetic Improvement, Cash Crops Research Institute, Hubei Academy of Agricultural Sciences, Wuhan, 430070, Hubei, China
| | | | - Fei Wang
- Hubei Key Laboratory of Vegetable Germplasm Enhancement and Genetic Improvement, Cash Crops Research Institute, Hubei Academy of Agricultural Sciences, Wuhan, 430070, Hubei, China
| | - Yanxu Yin
- Hubei Key Laboratory of Vegetable Germplasm Enhancement and Genetic Improvement, Cash Crops Research Institute, Hubei Academy of Agricultural Sciences, Wuhan, 430070, Hubei, China
| | - Chuying Yu
- Hubei Key Laboratory of Vegetable Germplasm Enhancement and Genetic Improvement, Cash Crops Research Institute, Hubei Academy of Agricultural Sciences, Wuhan, 430070, Hubei, China
| | - Chunhai Jiao
- Hubei Key Laboratory of Vegetable Germplasm Enhancement and Genetic Improvement, Cash Crops Research Institute, Hubei Academy of Agricultural Sciences, Wuhan, 430070, Hubei, China.
| | - Changxian Yang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| | - Minghua Yao
- Hubei Key Laboratory of Vegetable Germplasm Enhancement and Genetic Improvement, Cash Crops Research Institute, Hubei Academy of Agricultural Sciences, Wuhan, 430070, Hubei, China.
| |
Collapse
|
31
|
Suárez-Baron H, Alzate JF, González F, Pelaz S, Ambrose BA, Pabón-Mora N. Gene expression underlying floral epidermal specialization in Aristolochia fimbriata (Aristolochiaceae). ANNALS OF BOTANY 2021; 127:749-764. [PMID: 33630993 PMCID: PMC8103811 DOI: 10.1093/aob/mcab033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 02/22/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND AND AIMS The epidermis constitutes the outermost tissue of the plant body. Although it plays major structural, physiological and ecological roles in embryophytes, the molecular mechanisms controlling epidermal cell fate, differentiation and trichome development have been scarcely studied across angiosperms, and remain almost unexplored in floral organs. METHODS In this study, we assess the spatio-temporal expression patterns of GL2, GL3, TTG1, TRY, MYB5, MYB6, HDG2, MYB106-like, WIN1 and RAV1-like homologues in the magnoliid Aristolochia fimbriata (Aristolochiaceae) by using comparative RNA-sequencing and in situ hybridization assays. KEY RESULTS Genes involved in Aristolochia fimbriata trichome development vary depending on the organ where they are formed. Stem, leaf and pedicel trichomes recruit most of the transcription factors (TFs) described above. Conversely, floral trichomes only use a small subset of genes including AfimGL2, AfimRAV1-like, AfimWIN1, AfimMYB106-like and AfimHDG2. The remaining TFs, AfimTTG1, AfimGL3, AfimTRY, AfimMYB5 and AfimMYB6, are restricted to the abaxial (outer) and the adaxial (inner) pavement epidermal cells. CONCLUSIONS We re-evaluate the core genetic network shaping trichome fate in flowers of an early-divergent angiosperm lineage and show a morphologically diverse output with a simpler genetic mechanism in place when compared to the models Arabidopsis thaliana and Cucumis sativus. In turn, our results strongly suggest that the canonical trichome gene expression appears to be more conserved in vegetative than in floral tissues across angiosperms.
Collapse
Affiliation(s)
| | - Juan F Alzate
- Centro Nacional de Secuenciación Genómica (CNSG), Sede de Investigación Universitaria, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - Favio González
- Universidad Nacional de Colombia, Facultad de Ciencias, Instituto de Ciencias Naturales, Bogotá, Colombia
| | - Soraya Pelaz
- Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, Barcelona, Spain
- ICREA (Institució Catalana de Recerca i Estudis Avançats), Barcelona, Spain
| | | | | |
Collapse
|
32
|
Wang DJ, Lu M, Ludlow RA, Zeng JW, Ma WT, An HM. Comparative ultrastructure of trichomes on various organs of Rosa roxburghii. Microsc Res Tech 2021; 84:2095-2103. [PMID: 33934435 DOI: 10.1002/jemt.23765] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 03/06/2021] [Accepted: 03/23/2021] [Indexed: 11/10/2022]
Abstract
Chestnut rose, R. roxburghii Tratt. (Rosaceae) (RR) is an important crop in China due to its nutritional and medicinal values. RR frequently produces trichomes on the surfaces of a diverse range of organs, however a genetic component exists to the control of trichome development, with some cultivars having significantly fewer trichomes to others. Certain varieties have fruits that are thickly covered with macroscopic trichomes, which is an undesirable trait for fruit processing and consumption. However, smooth-fruit cultivars exist, such as R. roxburghii Tratt. f. esetosa Ku (RRE). Despite their economic importance, the anatomical features of trichomes have not been explored in detail for these two chestnut rose germplasms. Here, we investigate the ultrastructure of trichomes distributed on the stem, sepal, and fruit of RR and RRE using transmission electron microscopy (TEM). The internal structure of stem prickle trichomes in RR and RRE was oval in shape and did not contain nucleoli or other organelles. The cell walls of stem prickles in RR are thick and the intercellular spaces occupied with liquid, whereas the cells wall of stem prickles in RRE are thin and have air-filled intercellular spaces. The cells of sepal acicular trichomes in RR and glandular trichomes (GTs) of sepals in RRE had similar vacuole sizes, cytoplasm content, intercellular spaces, and arrangement of plastids within cells. However, there were osmiophilic granules present in the GTs of RRE. The flagelliform trichomes in the sepals of the two germplasms are composed of oval or rod-shaped cells. Although the flagelliform trichomes in the sepals of the two germplasms had a similar internal structure, and both contained starch grains and plastids with visible thylakoid membranes, the flagelliform trichomes in the sepals of RR had a thinner cell wall and a higher proportion of cytoplasm which was more evenly distributed across the cell. There were granules that stained heavily with osmium tetroxide which occurred infrequently in the flagelliform trichomes of sepals in RRE but were not observed in RR. On the acicular trichomes of fruit in RR, the flagelliform trichomes and the GTs of fruit in RRE shared similar cell morphology, arrangement and vacuole size as well as intercellular space. Both the fruit flagelliform trichomes and GTs in RRE contain granules which stain heavily with osmium tetroxide, and the GTs contain plastids and starch grains. These differences in trichome cell ultrastructure may be related to developmental processes or biological functions of the trichomes. These results also suggest that the two chestnut rose germplasms are good candidates for further study of trichome ontogeny in the genus and subsequent breeding of the smooth organ trait in this species.
Collapse
Affiliation(s)
- Dao-Jing Wang
- Agricultural College, Guizhou University, Guiyang, China.,Guizhou Engineering Research Center for fruit Crops, Guiyang, China.,GuiYang Agricultural Test Center, Guiyang, China
| | - Min Lu
- Agricultural College, Guizhou University, Guiyang, China.,Guizhou Engineering Research Center for fruit Crops, Guiyang, China
| | - Richard A Ludlow
- School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff, UK
| | - Jing-Wen Zeng
- Agricultural College, Guizhou University, Guiyang, China.,Guizhou Engineering Research Center for fruit Crops, Guiyang, China
| | - Wen-Tao Ma
- Agricultural College, Guizhou University, Guiyang, China.,Guizhou Engineering Research Center for fruit Crops, Guiyang, China
| | - Hua-Ming An
- Agricultural College, Guizhou University, Guiyang, China.,Guizhou Engineering Research Center for fruit Crops, Guiyang, China
| |
Collapse
|
33
|
Zhang Y, Shen J, Bartholomew ES, Dong M, Chen S, Yin S, Zhai X, Feng Z, Ren H, Liu X. TINY BRANCHED HAIR functions in multicellular trichome development through an ethylene pathway in Cucumis sativus L. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:753-765. [PMID: 33577109 DOI: 10.1111/tpj.15198] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 01/19/2021] [Accepted: 02/05/2021] [Indexed: 05/24/2023]
Abstract
The fruit trichomes of Cucurbitaceae are widely desired in many Asian countries and have been a key determinant of cucumber (Cucumis sativus L.) cultivar selection for commercial production and breeding. However, our understanding of the initiation and development of cucumber trichomes is still limited. Here, we found that the cucumber TINY BRANCHED HAIR (TBH) gene is preferentially expressed in multicellular trichomes. Overexpression of CsTBH in tbh mutants restored the trichome phenotype and increased the percentage of female flowers, whereas silencing of CsTBH in wild-type plants resulted in stunted trichomes with a lower rate of female flowers. Furthermore, we provide evidence that CsTBH can directly bind to the promoters of cucumber 1-Aminocyclopropane-1-Carboxylate Synthase (CsACS) genes and regulate their expression, which affects multicellular trichome development, ethylene accumulation, and sex expression. Two cucumber acs mutants with different trichome morphology and sex morphs compared with their near-isogenic line further support our findings. Collectively, our study provides new information on the molecular mechanism of CsTBH in regulating multicellular trichome development and sex expression through an ethylene pathway.
Collapse
Affiliation(s)
- Yaqi Zhang
- Engineering Research Center of Breeding and Propagation of Horticultural Crops, Ministry on Education, College of Horticulture, China Agricultural University, Beijing, 100193, P. R. China
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193, P. R. China
| | - Junjun Shen
- Engineering Research Center of Breeding and Propagation of Horticultural Crops, Ministry on Education, College of Horticulture, China Agricultural University, Beijing, 100193, P. R. China
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193, P. R. China
| | - Ezra S Bartholomew
- Engineering Research Center of Breeding and Propagation of Horticultural Crops, Ministry on Education, College of Horticulture, China Agricultural University, Beijing, 100193, P. R. China
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193, P. R. China
| | - Mingming Dong
- Engineering Research Center of Breeding and Propagation of Horticultural Crops, Ministry on Education, College of Horticulture, China Agricultural University, Beijing, 100193, P. R. China
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193, P. R. China
| | - Shuying Chen
- Engineering Research Center of Breeding and Propagation of Horticultural Crops, Ministry on Education, College of Horticulture, China Agricultural University, Beijing, 100193, P. R. China
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193, P. R. China
| | - Shuai Yin
- Engineering Research Center of Breeding and Propagation of Horticultural Crops, Ministry on Education, College of Horticulture, China Agricultural University, Beijing, 100193, P. R. China
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193, P. R. China
| | - Xuling Zhai
- Engineering Research Center of Breeding and Propagation of Horticultural Crops, Ministry on Education, College of Horticulture, China Agricultural University, Beijing, 100193, P. R. China
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193, P. R. China
| | - Zhongxuan Feng
- Engineering Research Center of Breeding and Propagation of Horticultural Crops, Ministry on Education, College of Horticulture, China Agricultural University, Beijing, 100193, P. R. China
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193, P. R. China
| | - Huazhong Ren
- Engineering Research Center of Breeding and Propagation of Horticultural Crops, Ministry on Education, College of Horticulture, China Agricultural University, Beijing, 100193, P. R. China
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193, P. R. China
- State Key Laboratory of Vegetable Germplasm Innovation, Tianjin, China
| | - Xingwang Liu
- Engineering Research Center of Breeding and Propagation of Horticultural Crops, Ministry on Education, College of Horticulture, China Agricultural University, Beijing, 100193, P. R. China
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193, P. R. China
| |
Collapse
|
34
|
Gasparini K, da Silva MF, Costa LC, Martins SCV, Ribeiro DM, Peres LEP, Zsögön A. The Lanata trichome mutation increases stomatal conductance and reduces leaf temperature in tomato. JOURNAL OF PLANT PHYSIOLOGY 2021; 260:153413. [PMID: 33848796 DOI: 10.1016/j.jplph.2021.153413] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/31/2021] [Accepted: 04/02/2021] [Indexed: 06/12/2023]
Abstract
Trichomes are epidermal structures with a large variety of ecological functions and economic applications. Glandular trichomes produce a rich repertoire of secondary metabolites, whereas non-glandular trichomes create a physical barrier on the epidermis: both operate in tandem against biotic and abiotic stressors. A deeper understanding of trichome development and function would enable the breeding of more resilient crops. However, little is known about the impact of altered trichome density on leaf photosynthesis, gas exchange and energy balance. Previous work has compared multiple, closely related species differing in trichome density. Here, we analysed monogenic trichome mutants in the same tomato genetic background (Solanum lycopersicum cv. 'Micro-Tom'). We determined growth parameters, leaf spectral properties, gas exchange and leaf temperature in the hairs absent (h), Lanata (Ln) and Woolly (Wo) trichome mutants. Shoot dry weight, leaf area, leaf spectral properties and cuticular conductance were not affected by the mutations. However, the Ln mutant showed increased net carbon assimilation rate (An), associated with higher stomatal conductance (gs), with no differences in stomatal density or stomatal index between genotypes. Leaf temperature was furthermore reduced in Ln in the hottest, early hours of the afternoon. We show that a single monogenic mutation that modifies trichome density, a desirable trait for crop breeding, concomitantly improves leaf gas exchange and reduces leaf temperature.
Collapse
Affiliation(s)
- Karla Gasparini
- Laboratory of Hormonal Control of Plant Development, Departamento de Ciências Biológicas, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, CP 09, 13418-900, Piracicaba, SP, Brazil.
| | - Mateus F da Silva
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, CEP 36570-900, Viçosa, MG, Brazil.
| | - Lucas C Costa
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, CEP 36570-900, Viçosa, MG, Brazil.
| | - Samuel C V Martins
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, CEP 36570-900, Viçosa, MG, Brazil.
| | - Dimas M Ribeiro
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, CEP 36570-900, Viçosa, MG, Brazil.
| | - Lázaro E P Peres
- Laboratory of Hormonal Control of Plant Development, Departamento de Ciências Biológicas, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, CP 09, 13418-900, Piracicaba, SP, Brazil.
| | - Agustin Zsögön
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, CEP 36570-900, Viçosa, MG, Brazil.
| |
Collapse
|
35
|
Zhang L, Lv D, Pan J, Zhang K, Wen H, Chen Y, Du H, He H, Cai R, Pan J, Wang G. A SNP of HD-ZIP I transcription factor leads to distortion of trichome morphology in cucumber (Cucumis sativus L.). BMC PLANT BIOLOGY 2021; 21:182. [PMID: 33863289 PMCID: PMC8052656 DOI: 10.1186/s12870-021-02955-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/24/2021] [Indexed: 05/23/2023]
Abstract
BACKGROUND Trichomes are excellent model systems for the analysis of cell differentiation and play essential roles in plant protection. From cucumber inbred line 'WD1', we identified an EMS-induced trichome abnormally developing mutant, nps, which exhibited smaller, denser and no pyramid-shaped head trichomes. RESULTS Using F2 and BC1 populations constructed from a cross between nps and '9930', the genetic analysis showed that the nps trait is controlled by a single recessive nuclear gene. We identified CsNps by map-based cloning with 576 individuals of the F2 population generated from the cross of nps and inbred line '9930'. The CsNps was located at a 13.4-kb genomic region on chromosome 3, which region contains three predicted genes. Sequence analysis showed that only one single nucleotide mutation (C → T) between 9930 and nps was found in the second exon of Csa3G748220, a plant-specific class I HD-Zip gene. The result of allelism test also indicated that nps is a novel allelic mutant of Mict (Micro-trichome). Thus, nps was renamed mict-L130F. By comparing the transcriptome of mict-L130F vs WD1 and 06-2 (mict) vs 06-1 (wildtype, near-isogenic line of 06-2), several potential target genes that may be related to trichome development were identified. CONCLUSIONS Our results demonstrate that Mict-L130F is involved in the morphogenesis of trichomes. Map-based cloning of the Mict-L130F gene could promote the study of trichome development in cucumber.
Collapse
Affiliation(s)
- Leyu Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Duo Lv
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jian Pan
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Keyan Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Haifan Wen
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yue Chen
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hui Du
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Huanle He
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Run Cai
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
- State Key Laboratory of Vegetable Germplasm Innovation, Tianjin, 300384, China
| | - Junsong Pan
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Gang Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
36
|
Pan J, Zhang L, Chen G, Wen H, Chen Y, Du H, Zhao J, He H, Lian H, Chen H, Shi J, Cai R, Wang G, Pan J. Study of micro-trichome (mict) reveals novel connections between transcriptional regulation of multicellular trichome development and specific metabolism in cucumber. HORTICULTURE RESEARCH 2021; 8:21. [PMID: 33518711 PMCID: PMC7848009 DOI: 10.1038/s41438-020-00456-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/10/2020] [Accepted: 11/20/2020] [Indexed: 05/25/2023]
Abstract
Trichomes that cover the epidermis of aerial plant organs play multiple roles in plant protection. Compared with a unicellular trichome in model plants, the development mechanism of the multicellular trichome is largely unclear. Notably, variations in trichome development are often accompanied by defects in the biosynthesis of cuticle and secondary metabolites; however, major questions about the interactions between developmental differences in trichomes and defects in metabolic pathways remain unanswered. Here, we characterized the glabrous mutant mict/csgl1/cstbh via combined metabolomic and transcriptomic analyses to extend our limited knowledge regarding multicellular trichome development and metabolism in cucumber. Mict was found to be explicitly expressed within trichome cells. Transcriptomic analysis indicated that genes involved in flavonoid and cuticle metabolism are significantly downregulated in mict mutants. Further metabolomic analysis confirmed that flavonoids, lipids, and cuticle compositions are dramatically altered in mict mutants. Additional studies revealed that Mict regulates flavonoid, lipid, and cuticle biosynthesis by likely directly binding to downstream functional genes, such as CsTT4, CsFLS1, CsCER26, and CsMYB36. These findings suggest that specific metabolic pathways (e.g., flavonoids and cuticle components) are co-regulated by Mict and provide insights into transcriptional regulation mechanisms of multicellular trichome development and its specific metabolism in cucumber.
Collapse
Affiliation(s)
- Jian Pan
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Leyu Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Guanqun Chen
- School of Design, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Haifan Wen
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yue Chen
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hui Du
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Junlong Zhao
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Huanle He
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hongli Lian
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Huiming Chen
- Hunan Vegetable Research Institute, Hunan Academy of Agriculture Sciences, Changsha, 410125, China
| | - Jianxin Shi
- Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Run Cai
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
- State Key Laboratory of Vegetable Germplasm Innovation, Tianjin, 300384, China
| | - Gang Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Junsong Pan
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
37
|
Xie Q, Gao Y, Li J, Yang Q, Qu X, Li H, Zhang J, Wang T, Ye Z, Yang C. The HD-Zip IV transcription factor SlHDZIV8 controls multicellular trichome morphology by regulating the expression of Hairless-2. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:7132-7145. [PMID: 32930788 DOI: 10.1093/jxb/eraa428] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 09/12/2020] [Indexed: 06/11/2023]
Abstract
Trichomes are specialized epidermal appendages that serve as excellent models to study cell morphogenesis. Although the molecular mechanism underlying trichome morphogenesis in Arabidopsis has been well characterized, most of the regulators essential for multicellular trichome morphology remain unknown in tomato. In this study, we determined that the recessive hairless-2 (hl-2) mutation in tomato causes severe distortion of all trichome types, along with increased stem fragility. Using map-based cloning, we found that the hl-2 phenotype was associated with a 100 bp insertion in the coding region of Nck-associated protein 1, a component of the SCAR/WAVE complex. Direct protein-protein interaction was detected between Hl-2 and Hl (SRA1, specifically Rac1-associated protein) using yeast two-hybrid and co-immunoprecipitation assays, suggesting that these proteins may work together during trichome formation. In addition, knock-down of a HD-Zip IV transcription factor, HDZIPIV8, distorted trichomes similar to the hl-2 mutant. HDZIPIV8 regulates the expression of Hl-2 by binding to the L1-box in the Hl-2 promoter region, and is involved in organizing actin filaments. The brittleness of hl-2 stems was found to result from decreased cellulose content. Taken together, these findings suggest that the Hl-2 gene plays an important role in controlling multicellular trichome morphogenesis and mechanical properties of stems in tomato plants.
Collapse
Affiliation(s)
- Qingmin Xie
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Yanna Gao
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Jing Li
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Qihong Yang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Xiaolu Qu
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Hanxia Li
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Junhong Zhang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Taotao Wang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Zhibiao Ye
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Changxian Yang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
38
|
Liu S, Fan L, Liu Z, Yang X, Zhang Z, Duan Z, Liang Q, Imran M, Zhang M, Tian Z. A Pd1-Ps-P1 Feedback Loop Controls Pubescence Density in Soybean. MOLECULAR PLANT 2020; 13:1768-1783. [PMID: 33065270 DOI: 10.1016/j.molp.2020.10.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 08/20/2020] [Accepted: 10/09/2020] [Indexed: 05/24/2023]
Abstract
Trichomes are universally present in plants and their development is delicately regulated. Trichomes are responsible for pubescence, whose density is associated with some agronomic traits such as insect resistance, evapotranspiration, and yield. Almost a century ago, three dominant alleles related to pubescence density in soybean, namely Pd1 (dense pubescence), Ps (sparse pubescence), and P1 (glabrous), were identified. However, their molecular identity and genetic relationships remain unclear. In this study, through a genome-wide association study and map-based cloning, we determined the genetic basis of these three traits. The sparse-pubescence phenotype of Ps was attributed to a copy-number variation of a 25.6-kb sequence that includes a gene encoding a protein with WD40 and RING domains. The dense-pubescence phenotype of Pd1 was attributed to a T-C transition in the last exon of an HD-Zip transcription factor gene, and the glabrous phenotype of P1 was caused by a G-A transition in the first exon of a lipid transfer protein gene. Genetic and biochemical analyses revealed that Pd1 functions as a transcriptional activator that can bind the promoters of the P1 and Ps genes to induce their expression; Interestingly, Pd1 can also bind its own promoter and inhibit its gene transcription. In addition, Ps can interact with Pd1 and weaken the transcriptional activity of Pd1. Taken together, our results demonstrate that Pd1, Ps, and P1 form a complex feedback loop to regulate pubescence formation in soybean.
Collapse
Affiliation(s)
- Shulin Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agriculture Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Fan
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agriculture Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agriculture Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xia Yang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agriculture Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhifang Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agriculture Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zongbiao Duan
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agriculture Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qianjin Liang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agriculture Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Muhammad Imran
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Min Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhixi Tian
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agriculture Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
39
|
Zhao L, Zhu H, Zhang K, Wang Y, Wu L, Chen C, Liu X, Yang S, Ren H, Yang L. The MIXTA-LIKE transcription factor CsMYB6 regulates fruit spine and tubercule formation in cucumber. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 300:110636. [PMID: 33180714 DOI: 10.1016/j.plantsci.2020.110636] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/23/2020] [Accepted: 08/11/2020] [Indexed: 05/25/2023]
Abstract
Cucumber fruit wart composed of tubercule and spine (trichome on fruit) is not only an important fruit quality trait in cucumber production, but also a well-studied model for plant cell-fate determination. The development of spine is closely related to the initiation and formation of tubercule. The spine differentiation regulator CsGL1 has been proved to be epistatic to the tubercule initiation factor CsTu, which is the only connection to be identified between spine and tubercule formations. Our previous studies found that the MIXTA-LIKE transcription factor CsMYB6 can suppress fruit spine initiation, which is independent of CsGL1. How the formation of spine and tubercule is regulated at the molecular level by CsMYB6 remains poorly understood. In this study, we characterized cucumber 35S:CsMYB6 transgenic plants, which displayed an obvious reduction in the number and size of fruit spines and tubecules. Molecular analyses showed that CsMYB6 directly interacted with the key spine formation factor CsTTG1 in regulating the formation of fruit spine, and CsTu in regulating the initiation of fruit tubercule, respectively. Based on these evidences, a novel regulatory network is proposed by which CsMYB6/CsTTG1 and CsMYB6/CsTu complexes play an important role in regulating epidermal development, including spine formation and tubercule initiation in cucumber.
Collapse
Affiliation(s)
- Lijun Zhao
- College of Horticulture, Henan Agricultural University, 63 Nongye Road, Zhengzhou, 450002, China
| | - Huayu Zhu
- College of Horticulture, Henan Agricultural University, 63 Nongye Road, Zhengzhou, 450002, China
| | - Kaige Zhang
- College of Horticulture, Henan Agricultural University, 63 Nongye Road, Zhengzhou, 450002, China
| | - Yueling Wang
- College of Horticulture, Henan Agricultural University, 63 Nongye Road, Zhengzhou, 450002, China
| | - Lin Wu
- Chongqing College Garden and Flower Engineering Research Center, Chongqing Engineering Research Center for Special Plant Seedlings, Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan, 402168, China
| | - Chunhua Chen
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Xingwang Liu
- Engineering Research Center of Breeding and Propagation of Horticultural Crops, Ministry of Education, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, 100193, China
| | - Sen Yang
- College of Horticulture, Henan Agricultural University, 63 Nongye Road, Zhengzhou, 450002, China.
| | - Huazhong Ren
- Engineering Research Center of Breeding and Propagation of Horticultural Crops, Ministry of Education, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, 100193, China.
| | - Luming Yang
- College of Horticulture, Henan Agricultural University, 63 Nongye Road, Zhengzhou, 450002, China.
| |
Collapse
|
40
|
Du H, Wang G, Pan J, Chen Y, Xiao T, Zhang L, Zhang K, Wen H, Xiong L, Yu Y, He H, Pan J, Cai R. The HD-ZIP IV transcription factor Tril regulates fruit spine density through gene dosage effects in cucumber. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:6297-6310. [PMID: 32710537 DOI: 10.1093/jxb/eraa344] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 07/21/2020] [Indexed: 05/24/2023]
Abstract
Trichomes and fruit spines are important traits that directly affect the appearance quality and commercial value of cucumber (Cucumis sativus). Tril (Trichome-less), encodes a HD-Zip IV transcription factor that plays a crucial role in the initiation of trichomes and fruit spines, but little is known about the details of the regulatory mechanisms involved. In this study, analysis of tissue expression patterns indicated that Tril is expressed and functions in the early stages of organ initiation and development. Expression of Tril under the control of its own promoter (the TrilPro::Tril-3*flag fragment) could partly rescue the mutant phenotypes of tril, csgl3 (cucumber glabrous 3, an allelic mutant of tril), and fs1 (few spines 1, a fragment substitution in the Tril promoter region), providing further evidence that Tril is responsible for the initiation of trichomes and fruit spines. In lines with dense spine, fs1-type lines, and transgenic lines of different backgrounds containing the TrilPro::Tril-3*flag foreign fragment, spine density increased in conjunction with increases in Tril expression, indicating that Tril has a gene dosage effect on fruit spine density in cucumber. Numerous Spines (NS) is a negative regulatory factor of fruit spine density. Characterization of the molecular and genetic interaction between Tril and NS/ns demonstrated that Tril functions upstream of NS with respect to spine initiation. Overall, our results reveal a novel regulatory mechanism governing the effect of Tril on fruit spine development, and provide a reference for future work on breeding for physical quality in cucumber.
Collapse
Affiliation(s)
- Hui Du
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Gang Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Jian Pan
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yue Chen
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Tingting Xiao
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Leyu Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Keyan Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Haifan Wen
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Liangrong Xiong
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yao Yu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Huanle He
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Junsong Pan
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Run Cai
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- State Key Laboratory of Vegetable Germplasm Innovation, Tianjin, China
| |
Collapse
|
41
|
Tan Y, Barnbrook M, Wilson Y, Molnár A, Bukys A, Hudson A. Shared Mutations in a Novel Glutaredoxin Repressor of Multicellular Trichome Fate Underlie Parallel Evolution of Antirrhinum Species. Curr Biol 2020; 30:1357-1366.e4. [DOI: 10.1016/j.cub.2020.01.060] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 10/25/2019] [Accepted: 01/17/2020] [Indexed: 01/24/2023]
|
42
|
Wang Y, Bo K, Gu X, Pan J, Li Y, Chen J, Wen C, Ren Z, Ren H, Chen X, Grumet R, Weng Y. Molecularly tagged genes and quantitative trait loci in cucumber with recommendations for QTL nomenclature. HORTICULTURE RESEARCH 2020; 7:3. [PMID: 31908806 PMCID: PMC6938495 DOI: 10.1038/s41438-019-0226-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 10/05/2019] [Accepted: 11/08/2019] [Indexed: 05/06/2023]
Abstract
Cucumber, Cucumis sativus L. (2n = 2x = 14), is an important vegetable crop worldwide. It was the first specialty crop with a publicly available draft genome. Its relatively small, diploid genome, short life cycle, and self-compatible mating system offers advantages for genetic studies. In recent years, significant progress has been made in molecular mapping, and identification of genes and QTL responsible for key phenotypic traits, but a systematic review of the work is lacking. Here, we conducted an extensive literature review on mutants, genes and QTL that have been molecularly mapped or characterized in cucumber. We documented 81 simply inherited trait genes or major-effect QTL that have been cloned or fine mapped. For each gene, detailed information was compiled including chromosome locations, allelic variants and associated polymorphisms, predicted functions, and diagnostic markers that could be used for marker-assisted selection in cucumber breeding. We also documented 322 QTL for 42 quantitative traits, including 109 for disease resistances against seven pathogens. By alignment of these QTL on the latest version of cucumber draft genomes, consensus QTL across multiple studies were inferred, which provided insights into heritable correlations among different traits. Through collaborative efforts among public and private cucumber researchers, we identified 130 quantitative traits and developed a set of recommendations for QTL nomenclature in cucumber. This is the first attempt to systematically summarize, analyze and inventory cucumber mutants, cloned or mapped genes and QTL, which should be a useful resource for the cucurbit research community.
Collapse
Affiliation(s)
- Yuhui Wang
- Department of Horticulture, University of Wisconsin, Madison, WI 53706 USA
| | - Kailiang Bo
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Xingfang Gu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Junsong Pan
- Department of Plant Sciences, Shanghai Jiaotong University, Shanghai, 200240 China
| | - Yuhong Li
- Horticulture College, Northwest A&F University, Yangling, 712100 China
| | - Jinfeng Chen
- Horticulture College, Nanjing Agricultural University, Nanjing, 210095 China
| | - Changlong Wen
- Beijing Vegetable Research Center, Beijing Academy of Agricultural and Forestry Sciences, Beijing, 100097 China
| | - Zhonghai Ren
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, 271018 China
| | - Huazhong Ren
- College of Horticulture, China Agricultural University, Beijing, 100193 China
| | - Xuehao Chen
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009 China
| | - Rebecca Grumet
- Department of Horticulture, Michigan State University, East Lansing, MI 48824 USA
| | - Yiqun Weng
- Department of Horticulture, University of Wisconsin, Madison, WI 53706 USA
- USDA-ARS Vegetable Crops Research Unit, 1575 Linden Dr., Madison, WI 53706 USA
| |
Collapse
|
43
|
Liu B, Guan D, Zhai X, Yang S, Xue S, Chen S, Huang J, Ren H, Liu X. Selection footprints reflect genomic changes associated with breeding efforts in 56 cucumber inbred lines. HORTICULTURE RESEARCH 2019; 6:127. [PMID: 31754434 PMCID: PMC6856066 DOI: 10.1038/s41438-019-0209-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 09/01/2019] [Accepted: 10/13/2019] [Indexed: 06/10/2023]
Abstract
Cucumber selective breeding over recent decades has dramatically increased productivity and quality, but the genomic characterizations and changes associated with this breeding history remain unclear. Here, we analyzed the genome resequencing data of 56 artificially selected cucumber inbred lines that exhibit various phenotypes to detect trait-associated sequence variations that reflect breeding improvement. We found that the 56 cucumber lines could be assigned to group 1 and group 2, and the two groups formed a distinctive genetic structure due to the breeding history involving hybridization and selection. Differentially selected regions were identified between group 1 and group 2, with implications for genomic-selection breeding signatures. These regions included known quantitative trait loci or genes that were reported to be associated with agronomic traits. Our results advance knowledge of cucumber genomics, and the 56 selected inbred lines could be good germplasm resources for breeding.
Collapse
Affiliation(s)
- Bin Liu
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193 P. R. China
| | - Dailu Guan
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus Universitat Autònoma de Barcelona, Bellaterra, 08193 Spain
| | - Xuling Zhai
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193 P. R. China
| | - Sen Yang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193 P. R. China
| | - Shudan Xue
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193 P. R. China
| | - Shuying Chen
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193 P. R. China
| | - Jing Huang
- Department of Agronomy, College of Agriculture, Purdue University, West Lafayette, IN 47907 USA
| | - Huazhong Ren
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193 P. R. China
| | - Xingwang Liu
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193 P. R. China
| |
Collapse
|
44
|
Wang Z, Yang Z, Li F. Updates on molecular mechanisms in the development of branched trichome in Arabidopsis and nonbranched in cotton. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:1706-1722. [PMID: 31111642 PMCID: PMC6686129 DOI: 10.1111/pbi.13167] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/12/2019] [Accepted: 05/14/2019] [Indexed: 05/11/2023]
Abstract
Trichomes are specialized epidermal cells and a vital plant organ that protect plants from various harms and provide valuable resources for plant development and use. Some key genes related to trichomes have been identified in the model plant Arabidopsis thaliana through glabrous mutants and gene cloning, and the hub MYB-bHLH-WD40, consisting of several factors including GLABRA1 (GL1), GL3, TRANSPARENT TESTA GLABRA1 (TTG1), and ENHANCER OF GLABRA3 (EGL3), has been established. Subsequently, some upstream transcription factors, phytohormones and epigenetic modification factors have also been studied in depth. In cotton, a very important fibre and oil crop globally, in addition to the key MYB-like factors, more important regulators and potential molecular mechanisms (e.g. epigenetic modifiers, distinct metabolic pathways) are being exploited during different fibre developmental stages. This occurs due to increased cotton research, resulting in the discovery of more complex regulation mechanisms from the allotetraploid genome of cotton. In addition, some conservative as well as specific mediators are involved in trichome development in other species. This study summarizes molecular mechanisms in trichome development and provides a detailed comparison of the similarities and differences between Arabidopsis and cotton, analyses the possible reasons for the discrepancy in identification of regulators, and raises future questions and foci for understanding trichome development in more detail.
Collapse
Affiliation(s)
- Zhi Wang
- Zhengzhou Research BaseState Key Laboratory of Cotton BiologyZhengzhou UniversityZhengzhouChina
- State Key Laboratory of Cotton BiologyInstitute of Cotton ResearchChinese Academy of Agricultural SciencesAnyangChina
| | - Zuoren Yang
- Zhengzhou Research BaseState Key Laboratory of Cotton BiologyZhengzhou UniversityZhengzhouChina
- State Key Laboratory of Cotton BiologyInstitute of Cotton ResearchChinese Academy of Agricultural SciencesAnyangChina
| | - Fuguang Li
- Zhengzhou Research BaseState Key Laboratory of Cotton BiologyZhengzhou UniversityZhengzhouChina
- State Key Laboratory of Cotton BiologyInstitute of Cotton ResearchChinese Academy of Agricultural SciencesAnyangChina
| |
Collapse
|
45
|
Xue S, Dong M, Liu X, Xu S, Pang J, Zhang W, Weng Y, Ren H. Classification of fruit trichomes in cucumber and effects of plant hormones on type II fruit trichome development. PLANTA 2019; 249:407-416. [PMID: 30225671 DOI: 10.1007/s00425-018-3004-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 09/03/2018] [Indexed: 05/25/2023]
Abstract
Cucumber fruit trichomes could be classified into eight types; all of them are multicellular with complex and different developmental processes as compared with unicellular trichomes in other plants. The fruit trichomes or fruit spines of cucumber, Cucumis sativus L., are highly specialized structures originating from epidermal cells with diverse morphology, which grow perpendicular to the fruit surface. To understand the underlying molecular mechanisms of fruit trichome development, in this study, we conducted morphological characterization and classification of cucumber fruit trichomes and their developmental processes. We examined the fruit trichomes among 200 cucumber varieties, which could be classified into eight morphologically distinct types (I-VIII). Investigation of the organogenesis of the eight types of trichomes revealed two main developmental patterns. The development of glandular trichomes had multiple stages including initiation and expansion of the trichome precursor cell protuberating out of the epidermal surface, followed by periclinal bipartition to two cells (top and bottom) which later formed the head region and the stalk, respectively, through subsequent cell divisions. The non-glandular trichome development started with the expansion of the precursor cell perpendicularly to the epidermal plane followed by cell periclinal division to form a stalk comprising of some rectangle cells and a pointed apex cell. The base cell then started anticlinal bipartition to two cells, which then underwent many cell divisions to form a multicellular spherical structure. In addition, phytohormones as environmental cues were closely related to trichome development. We found that GA and BAP were capable of increasing trichome number per fruit with distinct effects under different concentrations.
Collapse
Affiliation(s)
- Shudan Xue
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, China
| | - Mingming Dong
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, China
| | - Xingwang Liu
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, China
| | - Shuo Xu
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, China
| | - Jinan Pang
- Tianjin Derit Seeds Co. Ltd, Tianjin, China
| | | | - Yiqun Weng
- USDA-ARS Vegetable Crops Research Unit, Horticulture Department, University of Wisconsin-Madison, Madison, USA.
| | - Huazhong Ren
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, China.
| |
Collapse
|
46
|
Che G, Zhang X. Molecular basis of cucumber fruit domestication. CURRENT OPINION IN PLANT BIOLOGY 2019; 47:38-46. [PMID: 30253288 DOI: 10.1016/j.pbi.2018.08.006] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 08/26/2018] [Accepted: 08/28/2018] [Indexed: 05/10/2023]
Abstract
Cucumber (Cucumis sativus L.) is an economically important vegetable crop that is cultivated worldwide. Compared to the wild ancestor bearing small, bitter and seedy fruit, domesticated cucumbers exhibit significant variation in fruit appearance, size and flavor. Understanding the molecular basis of domestication related traits can provide insights into fruit evolution and make crop breeding more efficient. Here we review recent advances in relating to the genetic basis of fruit morphological traits (femaleness, fruit spine, wart, size, color and carpel development) and organoleptic features (bitterness) during cucumber domestication.
Collapse
Affiliation(s)
- Gen Che
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Xiaolan Zhang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
47
|
Zhang L, Pan J, Wang G, Du H, He H, Pan J, Cai R. Cucumber CsTRY Negatively Regulates Anthocyanin Biosynthesis and Trichome Formation When Expressed in Tobacco. FRONTIERS IN PLANT SCIENCE 2019; 10:1232. [PMID: 31649700 PMCID: PMC6794952 DOI: 10.3389/fpls.2019.01232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 09/05/2019] [Indexed: 05/06/2023]
Abstract
The development of trichomes (spines) on cucumber fruits is an important agronomic trait. It has been reported that two MYB family members, CsMYB6 (Csa3G824850) and CsTRY (Csa5G139610) act as negative regulators of trichome or fruit spine initiation. To further study the functions of these two genes, we overexpressed them in tobacco, and found that the flowers and seed coats of transformants overexpressing CsTRY displayed an unexpected defect in pigmentation that was not observed in plants overexpressing CsMYB6. Moreover, the expression of key genes in the flavonoid synthesis pathway was repressed in CsTRY overexpressing plants, which resulted in the decrease of several important flavonoid secondary metabolites. In addition, CsTRY could interact with the AN1 homologous gene CsAN1 (Csa7G044190) in cucumber, which further confirmed that CsTRY not only regulates the development of fruit spines, but also functions in the synthesis of flavonoids, acting as the repressor of anthocyanin synthesis.
Collapse
Affiliation(s)
- Leyu Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Jian Pan
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Gang Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Hui Du
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Huanle He
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Junsong Pan
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Junsong Pan, ; Run Cai,
| | - Run Cai
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- State Key Laboratory of Vegetable Germplasm Innovation, Tianjin, China
- *Correspondence: Junsong Pan, ; Run Cai,
| |
Collapse
|
48
|
Bo K, Miao H, Wang M, Xie X, Song Z, Xie Q, Shi L, Wang W, Wei S, Zhang S, Gu X. Novel loci fsd6.1 and Csgl3 regulate ultra-high fruit spine density in cucumber. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:27-40. [PMID: 30242492 DOI: 10.1007/s00122-018-3191-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 09/13/2018] [Indexed: 05/06/2023]
Abstract
Quantitative Trait Loci (QTL) analysis of multiple populations in multiple environments revealed that the fsd6.2 locus, which includes the candidate gene Csgl3, controls high fruit spine density in natural cucumbers. GWAS identified a novel locus fsd6.1, which regulates ultra-high fruit spine density in combination with Csgl3, and evolved during cucumber domestication. Fruit spine density, a domestication trait, largely influences the commercial value of cucumbers. However, the molecular basis of fruit spine density in cucumber remains unclear. In this study, four populations were derived from five materials, which included three with low fruit spine density, one with high fruit spine density, and one with ultra-high fruit spine density. Fruit spine densities were measured in 15 environments over a span of 6 years. The distributions were bimodal suggesting that fruit spine density is controlled by a major-effect QTL. QTL analysis determined that the same major-effect QTL, fsd6.2, is present in four populations. Fine mapping indicated that Csgl3 is the candidate gene at the fsd6.2 locus. Phylogenetic and geographical distribution analyses revealed that Csgl3 originated from China, which has the highest genetic diversity for fruit spine density. One novel minor-effect QTL, fsd6.1, was detected in the HR and HP populations derived from the cross between 65G and 02245. In addition, GWAS identified a novel locus that colocates with fsd6.1. Inspection of a candidate region of about 18 kb in size using pairwise LD correlations, combined with genetic diversity and phylogenetic analysis of fsd6.1 in natural populations, indicated that Csa6G421750 is the candidate gene responsible for ultra-high fruit spine density in cucumber. This study provides new insights into the origin of fruit spine density and the evolution of high/ultra-high fruit spine density during cucumber domestication.
Collapse
Affiliation(s)
- Kailiang Bo
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Han Miao
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Min Wang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaoxiao Xie
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zichao Song
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qing Xie
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lixue Shi
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Weiping Wang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shuang Wei
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shengping Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Xingfang Gu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
49
|
Cao W, Du Y, Wang C, Xu L, Wu T. Cscs encoding chorismate synthase is a candidate gene for leaf variegation mutation in cucumber. BREEDING SCIENCE 2018; 68:571-581. [PMID: 30697118 PMCID: PMC6345225 DOI: 10.1270/jsbbs.18023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 08/23/2018] [Indexed: 05/22/2023]
Abstract
Variegation is a frequently observed genetic phenomenon in landscaping. In this study, an ethyl methanesulfonate induced variegated leaf (Csvl) mutant in cucumber (Cucumis sativus L.) was identified. The Csvl mutant displayed green-yellow-white variegation phenotype throughout the whole growth cycle, while the leaf of wild type plants was normal green. The photosynthetic pigment contents and photosynthetic parameters of Csvl was significantly lower than wild type. The cytology observation results showed that the mesophyll cells of Csvl mutant contained defective chloroplasts. Genetic analysis indicated that variegated leaf phenotype was monogenic recessive inheritance. MutMap and genotyping results revealed that Csa6G405290 (Cscs), encoding chorismate synthase, was the candidate gene for variegated leaf mutant in cucumber. The expression level of Cscs was similar between wild type and variegated leaf mutant leaves. Transcriptome profile analysis of leaves of Csvl mutant identified 183 candidate genes involved in variegated leaf development in cucumber, including genes that encode heat shock protein, zinc finger protein. Cscs may regulate variegated leaf in cucumber by interacting with these genes. In a word, these results revealed that Cscs might regulate the variegated leaf phenotype in cucumber.
Collapse
Affiliation(s)
- Wen Cao
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture, Northeast Agricultural University,
600 Changjiang Road, Harbin 150030,
China
- College of Horticulture and Landscape Architecture, Northeast Agricultural University,
600 Changjiang Road, Harbin 150030,
China
| | - Yalin Du
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture, Northeast Agricultural University,
600 Changjiang Road, Harbin 150030,
China
- College of Horticulture and Landscape Architecture, Northeast Agricultural University,
600 Changjiang Road, Harbin 150030,
China
| | - Chao Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture, Northeast Agricultural University,
600 Changjiang Road, Harbin 150030,
China
- College of Horticulture and Landscape Architecture, Northeast Agricultural University,
600 Changjiang Road, Harbin 150030,
China
| | - Lilin Xu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture, Northeast Agricultural University,
600 Changjiang Road, Harbin 150030,
China
- College of Horticulture and Landscape Architecture, Northeast Agricultural University,
600 Changjiang Road, Harbin 150030,
China
| | - Tao Wu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture, Northeast Agricultural University,
600 Changjiang Road, Harbin 150030,
China
- College of Horticulture and Landscape Architecture, Northeast Agricultural University,
600 Changjiang Road, Harbin 150030,
China
- Corresponding author (e-mail: )
| |
Collapse
|
50
|
Chang J, Yu T, Yang Q, Li C, Xiong C, Gao S, Xie Q, Zheng F, Li H, Tian Z, Yang C, Ye Z. Hair, encoding a single C2H2 zinc-finger protein, regulates multicellular trichome formation in tomato. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 96:90-102. [PMID: 29981215 DOI: 10.1111/tpj.14018] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 06/06/2018] [Accepted: 06/20/2018] [Indexed: 05/24/2023]
Abstract
Trichomes originate from the epidermal cells of nearly all terrestrial plants, which are specialized unicellular or multicellular structures. Although the molecular mechanism regulating unicellular trichome formation has been extensively characterized, most of the genes essential for multicellular trichome formation remain unknown. In this study, we identified an associated locus on the long arm of chromosome 10 using a genome-wide association study (GWAS) on type-I trichomes of 180 diverse Solanum lycopersicum (tomato) accessions. Using map-based cloning we then cloned the key gene controlling the initiation of this type of trichome, named Hair (H), which encodes a single C2H2 zinc-finger protein. Transgenic experiments showed that hair-absent phenotype is caused by the deletion of the entire coding region of H. We identified three alleles of H containing several missense mutations and a nucleotide deletion, which result in amino acid substitutions and a reading frame shift, respectively. In addition, knockdown of H or Woolly (Wo) represses the formation of type-I trichomes, suggesting that both regulators may function as a heterodimer. Direct protein-protein interaction between them was further detected through pull-down and yeast two-hybrid assays. In addition, ectopic expression of H in Nicotiana tabacum (tobacco) and expression of its homologs from Capsicum annuum (pepper) and tobacco in tomato can trigger trichome formation. Taken together, these findings suggest that the H gene may be functionally conserved in multicellular trichome formation in Solanaceae species.
Collapse
Affiliation(s)
- Jiang Chang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Ting Yu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Qihong Yang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Changxing Li
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Cheng Xiong
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Shenghua Gao
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Qingmin Xie
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Fangyan Zheng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Hanxia Li
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Zhendong Tian
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Changxian Yang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Zhibiao Ye
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| |
Collapse
|