1
|
Filfilan RM, Nassar MA. Loss and damage in large-diameter sensory neurons in the db/db diabetic mouse. Mol Pain 2025; 21:17448069251328521. [PMID: 40070107 PMCID: PMC12038194 DOI: 10.1177/17448069251328521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 02/21/2025] [Accepted: 02/27/2025] [Indexed: 04/30/2025] Open
Abstract
Diabetic peripheral neuropathy (DPN) is the most common complication of diabetes. Half of DPN patients experience sensory deficits including loss of sensation and pain. Loss of sensation increases the risk of unnoticed foot injuries which combined with poor circulation and healing lead to amputation. Type 2 diabetes accounts for 50% of foot amputation highlighting the significant impact sensory loss can have on patients' quality of life. However, the cellular basis underlying sensory loss in DPN remains unclear. We characterized diabetes-induced neuronal loss and damage in dorsal root ganglia (DRG) in the db/db mouse model of type 2 diabetes. Morphometric characterization was carried out on two neuronal populations in lumbar DRGs of 32-week diabetic (db/db) mice. These are the N200-positive neurons, a marker for low and high-threshold mechanosensitive sensory and proprioceptive neurons, and peripherin (PRPH)-positive neurons, a marker for pain sensing neurons. In diabetic mice, N200-positive neurons were reduced by 30%. Furthermore, diabetes increased the percentage of N200-positive neurons with cytoplasmic vacuoles, a sign of damage and stress, by 2.44 fold. In addition, the average number of vacuoles was 1.6 fold higher in diabetic mice. Therapies aimed at reducing this loss could help patients better protect their limbs from injuries and thus reduce amputations.
Collapse
Affiliation(s)
- Reham M Filfilan
- School of Biosciences, University of Sheffield, Sheffield, UK
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | | |
Collapse
|
2
|
Kung CC, Dai SP, Yen CH, Lee YJ, Chang SL, Fang YT, Lin HL, Chen CL. Animal neuropathic pain aroused by conglutinating oxidative regenerative cellulose on dorsal root ganglion. J Neuropathol Exp Neurol 2025; 84:34-44. [PMID: 39441706 DOI: 10.1093/jnen/nlae112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024] Open
Abstract
Neuropathic pain arises as a consequence of injury or disease in the peripheral or central nervous system. Clinical cases have shown that spine postoperative chronic neuropathic pain remains a troublesome issue in medical treatment due to the presence of various degrees of peridural fibrosis and different inflammatory factors after spinal surgery. To address this issue, we developed a new neuropathic mice model that successfully simulates the real clinical situation by applying oxidative regenerative cellulose to L5 DRG (dorsal root ganglion). Behavior tests were done by von Fray and thermal stimuli. ELISA and real-time PCR were employed to detect the expression of genes involved in neuropathic pain. This model not only successfully induces chronic pain but also causes membrane thickening, non-neuronal cell recruitment, and a local increase of TNFα and interleukin-6. Additionally, this model did not cause neuron loss in the affected DRG, which mimics the characteristics of sticky tissue-induced neuropathic pain after clinic surgery. Based on this model, we administrated a TNF inhibitor to mice and successfully reduced mechanical allodynia after DRG surgery. In this study, the developed animal model may be a novel platform for delivering neuropathic pain treatments, such as target-based drug discovery or personalized diagnostic approaches.
Collapse
Affiliation(s)
- Chia-Chi Kung
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan (R.O.C.)
- Department of Anesthesiology, Fu Jen Catholic University Hospital, Fu Jen Catholic University, New Taipei City, Taiwan (R.O.C.)
| | - Shih-Ping Dai
- Department of Anesthesiology, Fu Jen Catholic University Hospital, Fu Jen Catholic University, New Taipei City, Taiwan (R.O.C.)
| | - Cheng-Han Yen
- Department of Anesthesiology, Fu Jen Catholic University Hospital, Fu Jen Catholic University, New Taipei City, Taiwan (R.O.C.)
| | - Yi-Jui Lee
- Department of Anesthesiology, Fu Jen Catholic University Hospital, Fu Jen Catholic University, New Taipei City, Taiwan (R.O.C.)
| | - Shih-Lun Chang
- Department of Anesthesiology, Fu Jen Catholic University Hospital, Fu Jen Catholic University, New Taipei City, Taiwan (R.O.C.)
| | - Yi-Ting Fang
- Department of Anesthesiology, Fu Jen Catholic University Hospital, Fu Jen Catholic University, New Taipei City, Taiwan (R.O.C.)
| | - Heng-Liang Lin
- Center for Innovation, Fu Jen Catholic University Hospital, Fu Jen Catholic University, New Taipei City, Taiwan (R.O.C.)
| | - Chih-Li Chen
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan (R.O.C.)
| |
Collapse
|
3
|
Corral-Pujol M, Arpa B, Rosell-Mases E, Egia-Mendikute L, Mora C, Stratmann T, Sanchez A, Casanovas A, Esquerda JE, Mauricio D, Vives-Pi M, Verdaguer J. NOD mouse dorsal root ganglia display morphological and gene expression defects before and during autoimmune diabetes development. Front Endocrinol (Lausanne) 2023; 14:1176566. [PMID: 37334284 PMCID: PMC10272810 DOI: 10.3389/fendo.2023.1176566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/22/2023] [Indexed: 06/20/2023] Open
Abstract
Introduction During the development of Autoimmune Diabetes (AD) an autoimmune attack against the Peripheral Nervous System occurs. To gain insight into this topic, analyses of Dorsal Root Ganglia (DRG) from Non-Obese Diabetic (NOD) mice were carried out. Methods Histopathological analysis by electron and optical microscopy in DRG samples, and mRNA expression analyzes by the microarray technique in DRG and blood leukocyte samples from NOD and C57BL/6 mice were performed. Results The results showed the formation of cytoplasmic vacuoles in DRG cells early in life that could be related to a neurodegenerative process. In view of these results, mRNA expression analyses were conducted to determine the cause and/or the molecules involved in this suspected disorder. The results showed that DRG cells from NOD mice have alterations in the transcription of a wide range of genes, which explain the previously observed alterations. In addition, differences in the transcription genes in white blood cells were also detected. Discussion Taken together, these results indicate that functional defects are not only seen in beta cells but also in DRG in NOD mice. These results also indicate that these defects are not a consequence of the autoimmune process that takes place in NOD mice and suggest that they may be involved as triggers for its development.
Collapse
Affiliation(s)
- Marta Corral-Pujol
- Immunology Unit, Department of Experimental Medicine, Faculty of Medicine, University of Lleida and IRBLleida, Lleida, Spain
| | - Berta Arpa
- Immunology Unit, Department of Experimental Medicine, Faculty of Medicine, University of Lleida and IRBLleida, Lleida, Spain
| | - Estela Rosell-Mases
- Immunology Unit, Department of Experimental Medicine, Faculty of Medicine, University of Lleida and IRBLleida, Lleida, Spain
| | - Leire Egia-Mendikute
- Immunology Unit, Department of Experimental Medicine, Faculty of Medicine, University of Lleida and IRBLleida, Lleida, Spain
| | - Conchi Mora
- Immunology Unit, Department of Experimental Medicine, Faculty of Medicine, University of Lleida and IRBLleida, Lleida, Spain
| | - Thomas Stratmann
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Alex Sanchez
- Genetics, Microbiology and Statistics Department, Universitat de Barcelona, Barcelona, Spain
- Statistics and Bioinformatics Unit, Vall d’Hebron Institut de Recerca, Barcelona, Spain
| | - Anna Casanovas
- Patologia Neuromuscular Experimental Departament de Medicina Experimental, Facultat de Medicina, Universitat de Lleida and Institut de Recerca Biomèdica de Lleida (IRBLleida), Lleida, Spain
| | - Josep Enric Esquerda
- Patologia Neuromuscular Experimental Departament de Medicina Experimental, Facultat de Medicina, Universitat de Lleida and Institut de Recerca Biomèdica de Lleida (IRBLleida), Lleida, Spain
| | - Didac Mauricio
- Department of Endocrinology and Nutrition, Hospital de la Santa Creu i Sant Pau and Institut d’Investigació Biomèdica Sant Pau (IIB Sant Pau), Barcelona, Spain
- Faculty of Medicine, Central University of Catalonia, Vic, Spain
- CIBER of Diabetes and Associated Metabolic Diseases (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Marta Vives-Pi
- Immunology Department, Germans Trias i Pujol Research Institute, Badalona, Spain
- Department of Cellular Biology, Physiology and Immunology, Faculty of Medicine, Autonomous University of Barcelona, Cerdanyola del Vallès, Spain
| | - Joan Verdaguer
- Immunology Unit, Department of Experimental Medicine, Faculty of Medicine, University of Lleida and IRBLleida, Lleida, Spain
- CIBER of Diabetes and Associated Metabolic Diseases (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
4
|
Schulte A, Lohner H, Degenbeck J, Segebarth D, Rittner HL, Blum R, Aue A. Unbiased analysis of the dorsal root ganglion after peripheral nerve injury: no neuronal loss, no gliosis, but satellite glial cell plasticity. Pain 2023; 164:728-740. [PMID: 35969236 PMCID: PMC10026836 DOI: 10.1097/j.pain.0000000000002758] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 07/13/2022] [Accepted: 07/26/2022] [Indexed: 11/26/2022]
Abstract
ABSTRACT Pain syndromes are often accompanied by complex molecular and cellular changes in dorsal root ganglia (DRG). However, the evaluation of cellular plasticity in the DRG is often performed by heuristic manual analysis of a small number of representative microscopy image fields. In this study, we introduce a deep learning-based strategy for objective and unbiased analysis of neurons and satellite glial cells (SGCs) in the DRG. To validate the approach experimentally, we examined serial sections of the rat DRG after spared nerve injury (SNI) or sham surgery. Sections were stained for neurofilament, glial fibrillary acidic protein (GFAP), and glutamine synthetase (GS) and imaged using high-resolution large-field (tile) microscopy. After training of deep learning models on consensus information of different experts, thousands of image features in DRG sections were analyzed. We used known (GFAP upregulation), controversial (neuronal loss), and novel (SGC phenotype switch) changes to evaluate the method. In our data, the number of DRG neurons was similar 14 d after SNI vs sham. In GFAP-positive subareas, the percentage of neurons in proximity to GFAP-positive cells increased after SNI. In contrast, GS-positive signals, and the percentage of neurons in proximity to GS-positive SGCs decreased after SNI. Changes in GS and GFAP levels could be linked to specific DRG neuron subgroups of different size. Hence, we could not detect gliosis but plasticity changes in the SGC marker expression. Our objective analysis of DRG tissue after peripheral nerve injury shows cellular plasticity responses of SGCs in the whole DRG but neither injury-induced neuronal death nor gliosis.
Collapse
Affiliation(s)
- Annemarie Schulte
- Department of Neurology, University Hospital of Würzburg, Würzburg, Germany
| | - Hannah Lohner
- Department of Anesthesiology, Center for Interdisciplinary Pain Medicine, Intensive Care, Emergency Medicine and Pain Therapy, University Hospital of Würzburg, Würzburg, Germany
| | - Johannes Degenbeck
- Department of Anesthesiology, Center for Interdisciplinary Pain Medicine, Intensive Care, Emergency Medicine and Pain Therapy, University Hospital of Würzburg, Würzburg, Germany
| | - Dennis Segebarth
- Institute of Clinical Neurobiology, University Hospital of Würzburg, Würzburg, Germany
| | - Heike L. Rittner
- Department of Anesthesiology, Center for Interdisciplinary Pain Medicine, Intensive Care, Emergency Medicine and Pain Therapy, University Hospital of Würzburg, Würzburg, Germany
| | - Robert Blum
- Department of Neurology, University Hospital of Würzburg, Würzburg, Germany
| | - Annemarie Aue
- Department of Anesthesiology, Center for Interdisciplinary Pain Medicine, Intensive Care, Emergency Medicine and Pain Therapy, University Hospital of Würzburg, Würzburg, Germany
| |
Collapse
|
5
|
Kokabi F, Ebrahimi S, Mirzavi F, Ghiasi Nooghabi N, Hashemi SF, Hashemy SI. The neuropeptide substance P/neurokinin-1 receptor system and diabetes: From mechanism to therapy. Biofactors 2023. [PMID: 36651605 DOI: 10.1002/biof.1935] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 12/22/2022] [Indexed: 01/19/2023]
Abstract
Diabetes is a significant public health issue known as the world's fastest-growing disease condition. It is characterized by persistent hyperglycemia and subsequent chronic complications leading to organ dysfunction and, ultimately, the failure of target organs. Substance P (SP) is an undecapeptide that belongs to the family of tachykinin (TK) peptides. The SP-mediated activation of the neurokinin 1 receptor (NK1R) regulates many pathophysiological processes in the body. There is also a relation between the SP/NK1R system and diabetic processes. Importantly, deregulated expression of SP has been reported in diabetes and diabetes-associated chronic complications. SP can induce both diabetogenic and antidiabetogenic effects and thus affect the pathology of diabetes destructively or protectively. Here, we review the current knowledge of the functional relevance of the SP/NK1R system in diabetes pathogenesis and its exploitation for diabetes therapy. A comprehensive understanding of the role of the SP/NK1R system in diabetes is expected to shed further light on developing new therapeutic possibilities for diabetes and its associated chronic conditions.
Collapse
Affiliation(s)
- Fariba Kokabi
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Safieh Ebrahimi
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farshad Mirzavi
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | | | | | - Seyed Isaac Hashemy
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
6
|
Huo Y, Grotle AK, McCuller RK, Samora M, Stanhope KL, Havel PJ, Harrison ML, Stone AJ. Exaggerated exercise pressor reflex in male UC Davis type 2 diabetic rats is due to the pathophysiology of the disease and not aging. Front Physiol 2023; 13:1063326. [PMID: 36703927 PMCID: PMC9871248 DOI: 10.3389/fphys.2022.1063326] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 12/16/2022] [Indexed: 01/12/2023] Open
Abstract
Introduction: Studies in humans and animals have found that type 2 diabetes mellitus (T2DM) exaggerates the blood pressure (BP) response to exercise, which increases the risk of adverse cardiovascular events such as heart attack and stroke. T2DM is a chronic disease that, without appropriate management, progresses in severity as individuals grow older. Thus, it is possible that aging may also exaggerate the BP response to exercise. Therefore, the purpose of the current study was to determine the effect of the pathophysiology of T2DM on the exercise pressor reflex independent of aging. Methods: We compared changes in peak pressor (mean arterial pressure; ΔMAP), BP index (ΔBPi), heart rate (ΔHR), and HR index (ΔHRi) responses to static contraction, intermittent contraction, and tendon stretch in UCD-T2DM rats to those of healthy, age-matched Sprague Dawley rats at three different stages of the disease. Results: We found that the ΔMAP, ΔBPi, ΔHR, and ΔHRi responses to static contraction were significantly higher in T2DM rats (ΔMAP: 29 ± 4 mmHg; ΔBPi: 588 ± 51 mmHg•s; ΔHR: 22 ± 5 bpm; ΔHRi: 478 ± 45 bpm•s) compared to controls (ΔMAP: 10 ± 1 mmHg, p < 0.0001; ΔBPi: 121 ± 19 mmHg•s, p < 0.0001; ΔHR: 5 ± 2 bpm, p = 0.01; ΔHRi: 92 ± 19 bpm•s, p < 0.0001) shortly after diabetes onset. Likewise, the ΔMAP, ΔBPi, and ΔHRi to tendon stretch were significantly higher in T2DM rats (ΔMAP: 33 ± 7 mmHg; ΔBPi: 697 ± 70 mmHg•s; ΔHRi: 496 ± 51 bpm•s) compared to controls (ΔMAP: 12 ± 5 mmHg, p = 0.002; ΔBPi: 186 ± 30 mmHg•s, p < 0.0001; ΔHRi: 144 ± 33 bpm•s, p < 0.0001) shortly after diabetes onset. The ΔBPi and ΔHRi, but not ΔMAP, to intermittent contraction was significantly higher in T2DM rats (ΔBPi: 543 ± 42 mmHg•s; ΔHRi: 453 ± 53 bpm•s) compared to controls (ΔBPi: 140 ± 16 mmHg•s, p < 0.0001; ΔHRi: 108 ± 22 bpm•s, p = 0.0002) shortly after diabetes onset. Discussion: Our findings suggest that the exaggerated exercise pressor reflex and mechanoreflex seen in T2DM are due to the pathophysiology of the disease and not aging.
Collapse
Affiliation(s)
- Yu Huo
- Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, TX, United States
| | - Ann-Katrin Grotle
- Department of Sport, Food and Natural Sciences, Western Norway University of Applied Science, Bergen, Norway
| | - Richard K. McCuller
- Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, TX, United States
| | - Milena Samora
- Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, TX, United States
| | - Kimber L. Stanhope
- Department of Molecular Biosciences, School of Veterinary Medicine and Department of Nutrition, University of California, Davis, Davis, CA, United States
| | - Peter J. Havel
- Department of Molecular Biosciences, School of Veterinary Medicine and Department of Nutrition, University of California, Davis, Davis, CA, United States
| | - Michelle L. Harrison
- Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, TX, United States
| | - Audrey J. Stone
- Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, TX, United States
| |
Collapse
|
7
|
Foroumadi R, Baeeri M, Asgarian S, Emamgholipour Z, Goli F, Firoozpour L, Keykhaei M, Gholami M, Dehpour AR, Abdollahi M, Foroumadi A. Antidiabetic and neuroprotective effects of a novel repaglinide analog. J Biochem Mol Toxicol 2022; 36:e23125. [PMID: 35702883 DOI: 10.1002/jbt.23125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/24/2022] [Accepted: 05/28/2022] [Indexed: 11/11/2022]
Abstract
Repaglinide (RPG) is an oral insulin secretagogue used in the treatment of diabetes. In this study, a new RPG analog was synthesized. Its antidiabetic and neuroprotective effects on dorsal root ganglions (DRG) in streptozotocin (STZ)-induced diabetic rats were examined compared to RPG. To assess the effects of 2-methoxy-4-(2-((3-methyl-1-(2-(piperidin-1-yl)phenyl)butyl)amino)-2-oxoethoxy)benzoic acid (OXR), the impact of OXR on oxidative stress biomarkers, motor function, and the expression of the glutamate dehydrogenase 1 (GLUD1), SLC2A2/glucose transporter 2 (GLUT2), and glucokinase (GCK) genes in STZ-induced diabetic rats were assessed. DRGs were examined histologically using hemotoxylin and eosin staining. Molecular docking was used to investigate the interactions between OXR and the binding site of RPG, the ATP-sensitive potassium (KATP) channel. Following 5 weeks of treatment, OXR significantly increased the level of total antioxidant power, decreased reactive oxygen species, and lipid peroxidation in the DRGs of diabetic rats. OXR restored STZ-induced pathophysiological damages in DRG tissues. Administration of OXR improved motor function of rats with diabetic neuropathy. Administration of 0.5 mg/kg OXR reduced blood glucose while promoting insulin, mainly through upregulation of messenger RNA expression of GLUD1, GLUT2, and GCK in the pancreas. Molecular docking revealed a favorable binding mode of OXR to the KATP channel. In conclusion, OXR has neuroprotective effects in diabetic rats by lowering oxidative stress, lowering blood glucose, and stimulating insulin secretion. We report that 0.5 mg/kg OXR administration was the most effective concentration of the compound in this study. OXR may be a promising target for further research on neuroprotective antidiabetic molecules.
Collapse
Affiliation(s)
- Roham Foroumadi
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Maryam Baeeri
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Sara Asgarian
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Emamgholipour
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Fereshteh Goli
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Loghman Firoozpour
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Keykhaei
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdi Gholami
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Ahmad R Dehpour
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Abdollahi
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), Tehran University of Medical Sciences (TUMS), Tehran, Iran.,Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Foroumadi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.,Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
8
|
Zhu BT. Biochemical mechanism underlying the pathogenesis of diabetic retinopathy and other diabetic complications in humans: the methanol-formaldehyde-formic acid hypothesis. Acta Biochim Biophys Sin (Shanghai) 2022; 54:415-451. [PMID: 35607958 PMCID: PMC9828688 DOI: 10.3724/abbs.2022012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/18/2021] [Indexed: 11/25/2022] Open
Abstract
Hyperglycemia in diabetic patients is associated with abnormally-elevated cellular glucose levels. It is hypothesized that increased cellular glucose will lead to increased formation of endogenous methanol and/or formaldehyde, both of which are then metabolically converted to formic acid. These one-carbon metabolites are known to be present naturally in humans, and their levels are increased under diabetic conditions. Mechanistically, while formaldehyde is a cross-linking agent capable of causing extensive cytotoxicity, formic acid is an inhibitor of mitochondrial cytochrome oxidase, capable of inducing histotoxic hypoxia, ATP deficiency and cytotoxicity. Chronic increase in the production and accumulation of these toxic one-carbon metabolites in diabetic patients can drive the pathogenesis of ocular as well as other diabetic complications. This hypothesis is supported by a large body of experimental and clinical observations scattered in the literature. For instance, methanol is known to have organ- and species-selective toxicities, including the characteristic ocular lesions commonly seen in humans and non-human primates, but not in rodents. Similarly, some of the diabetic complications (such as ocular lesions) also have a characteristic species-selective pattern, closely resembling methanol intoxication. Moreover, while alcohol consumption or combined use of folic acid plus vitamin B is beneficial for mitigating acute methanol toxicity in humans, their use also improves the outcomes of diabetic complications. In addition, there is also a large body of evidence from biochemical and cellular studies. Together, there is considerable experimental support for the proposed hypothesis that increased metabolic formation of toxic one-carbon metabolites in diabetic patients contributes importantly to the development of various clinical complications.
Collapse
Affiliation(s)
- Bao Ting Zhu
- Shenzhen Key Laboratory of Steroid Drug Discovery and DevelopmentSchool of MedicineThe Chinese University of Hong KongShenzhen518172China
- Department of PharmacologyToxicology and TherapeuticsSchool of MedicineUniversity of Kansas Medical CenterKansas CityKS66160USA
| |
Collapse
|
9
|
Hall BE, Macdonald E, Cassidy M, Yun S, Sapio MR, Ray P, Doty M, Nara P, Burton MD, Shiers S, Ray-Chaudhury A, Mannes AJ, Price TJ, Iadarola MJ, Kulkarni AB. Transcriptomic analysis of human sensory neurons in painful diabetic neuropathy reveals inflammation and neuronal loss. Sci Rep 2022; 12:4729. [PMID: 35304484 PMCID: PMC8933403 DOI: 10.1038/s41598-022-08100-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 02/25/2022] [Indexed: 01/02/2023] Open
Abstract
Pathological sensations caused by peripheral painful neuropathy occurring in Type 2 diabetes mellitus (T2DM) are often described as 'sharp' and 'burning' and are commonly spontaneous in origin. Proposed etiologies implicate dysfunction of nociceptive sensory neurons in dorsal root ganglia (DRG) induced by generation of reactive oxygen species, microvascular defects, and ongoing axonal degeneration and regeneration. To investigate the molecular mechanisms contributing to diabetic pain, DRGs were acquired postmortem from patients who had been experiencing painful diabetic peripheral neuropathy (DPN) and subjected to transcriptome analyses to identify genes contributing to pathological processes and neuropathic pain. DPN occurs in distal extremities resulting in the characteristic "glove and stocking" pattern. Accordingly, the L4 and L5 DRGs, which contain the perikarya of primary afferent neurons innervating the foot, were analyzed from five DPN patients and compared with seven controls. Transcriptome analyses identified 844 differentially expressed genes. We observed increases in levels of inflammation-associated transcripts from macrophages in DPN patients that may contribute to pain hypersensitivity and, conversely, there were frequent decreases in neuronally-related genes. The elevated inflammatory gene profile and the accompanying downregulation of multiple neuronal genes provide new insights into intraganglionic pathology and mechanisms causing neuropathic pain in DPN patients with T2DM.
Collapse
Affiliation(s)
- Bradford E Hall
- Functional Genomics Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Drive, Room 130, Bethesda, MD, 20892, USA
| | - Emma Macdonald
- Functional Genomics Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Drive, Room 130, Bethesda, MD, 20892, USA
- Present Affiliation: NIH Graduate Partnerships Program, Brown University, Providence, RI, 02912, USA
| | - Margaret Cassidy
- Functional Genomics Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Drive, Room 130, Bethesda, MD, 20892, USA
| | - Sijung Yun
- Yotta Biomed, LLC, Bethesda, MD, 20814, USA
| | - Matthew R Sapio
- Department of Perioperative Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Pradipta Ray
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Megan Doty
- Functional Genomics Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Drive, Room 130, Bethesda, MD, 20892, USA
| | - Pranavi Nara
- Department of Perioperative Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Michael D Burton
- Neuroimmunology and Behavior Group, School of Behavior and Brain Sciences, University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Stephanie Shiers
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Abhik Ray-Chaudhury
- Surgical Neurology Branch, Disorders and Stroke, National Institute of Neurological, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Andrew J Mannes
- Department of Perioperative Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Theodore J Price
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Michael J Iadarola
- Department of Perioperative Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Ashok B Kulkarni
- Functional Genomics Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Drive, Room 130, Bethesda, MD, 20892, USA.
| |
Collapse
|
10
|
Carozzi VA, Salio C, Rodriguez-Menendez V, Ciglieri E, Ferrini F. 2D <em>vs</em> 3D morphological analysis of dorsal root ganglia in health and painful neuropathy. Eur J Histochem 2021; 65. [PMID: 34664808 PMCID: PMC8547168 DOI: 10.4081/ejh.2021.3276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/16/2021] [Indexed: 11/23/2022] Open
Abstract
Dorsal root ganglia (DRGs) are clusters of sensory neurons that transmit the sensory information from the periphery to the central nervous system, and satellite glial cells (SGCs), their supporting trophic cells. Sensory neurons are pseudounipolar neurons with a heterogeneous neurochemistry reflecting their functional features. DRGs, not protected by the blood brain barrier, are vulnerable to stress and damage of different origin (i.e., toxic, mechanical, metabolic, genetic) that can involve sensory neurons, SGCs or, considering their intimate intercommunication, both cell populations. DRG damage, primary or secondary to nerve damage, produces a sensory peripheral neuropathy, characterized by neurophysiological abnormalities, numbness, paraesthesia and dysesthesia, tingling and burning sensations and neuropathic pain. DRG stress can be morphologically detected by light and electron microscope analysis with alterations in cell size (swelling/atrophy) and in different subcellular compartments (i.e., mitochondria, endoplasmic reticulum, and nucleus) of neurons and/or SGCs. In addition, neurochemical changes can be used to portray abnormalities of neurons and SGC. Conventional immunostaining, i.e., immunohistochemical detection of specific molecules in tissue slices, can be employed to detect, localize and quantify particular markers of damage in neurons (i.e., nuclear expression of ATF3) or SGCs (i.e., increased expression of GFAP), markers of apoptosis (i.e., caspases), markers of mitochondrial suffering and oxidative stress (i.e., 8-OHdG), markers of tissue inflammation (i.e., CD68 for macrophage infiltration) etc. However classical (2D) methods of immunostaining disrupt the overall organization of the DRG, thus resulting in the loss of some crucial information. Whole-mount (3D) methods have been recently developed to investigate DRG morphology and neurochemistry without tissue slicing, giving the opportunity to study the intimate relationship between SGCs and sensory neurons in health and disease. Here, we aim to compare classical (2D) vs whole-mount (3D) approaches to highlight “pros” and “cons” of the two methodologies when analysing neuropathy-induced alterations in DRGs.
Collapse
Affiliation(s)
- Valentina Alda Carozzi
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza (MB).
| | - Chiara Salio
- Department of Veterinary Sciences, University of Turin, Grugliasco (TO).
| | | | | | - Francesco Ferrini
- Department of Veterinary Sciences, University of Turin, Grugliasco (TO).
| |
Collapse
|
11
|
Muke I, Sprenger A, Bobylev I, Wiemer V, Barham M, Neiss WF, Lehmann HC. Ultrastructural characterization of mitochondrial damage in experimental autoimmune neuritis. J Neuroimmunol 2020; 343:577218. [PMID: 32251941 DOI: 10.1016/j.jneuroim.2020.577218] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 03/16/2020] [Accepted: 03/18/2020] [Indexed: 12/11/2022]
Abstract
Data are sparse about mitochondrial damage in GBS and in its most frequently employed animal model, experimental autoimmune neuritis (EAN). We here characterized changes in mitochondrial content and morphology at different time points during EAN by use of ultrastructural imaging and immunofluorescent labelling. Histological examination revealed that demyelinated axons and their adjacent Schwann cells showed reduced mitochondrial content and remaining mitochondria appeared swollen with greater diameter in Schwann cells and unmyelinated axons. Our findings indicate that in EAN, particularly mitochondria in Schwann cells are damaged. Further studies are warranted to address whether these changes are amenable to novel, mitoprotective treatments.
Collapse
Affiliation(s)
- Ines Muke
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, Germany
| | - Alina Sprenger
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, Germany
| | - Ilja Bobylev
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, Germany
| | - Valerie Wiemer
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, Germany
| | - Mohammed Barham
- Department of Anatomy I, Faculty of Medicine, University of Cologne, Germany
| | | | - Helmar Christoph Lehmann
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, Germany.
| |
Collapse
|
12
|
Muscarinic Toxin 7 Signals Via Ca 2+/Calmodulin-Dependent Protein Kinase Kinase β to Augment Mitochondrial Function and Prevent Neurodegeneration. Mol Neurobiol 2020; 57:2521-2538. [PMID: 32198698 PMCID: PMC7253379 DOI: 10.1007/s12035-020-01900-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 03/09/2020] [Indexed: 12/29/2022]
Abstract
Mitochondrial dysfunction is implicated in a variety of neurodegenerative diseases of the nervous system. Peroxisome proliferator–activated receptor-γ coactivator-1α (PGC-1α) is a regulator of mitochondrial function in multiple cell types. In sensory neurons, AMP-activated protein kinase (AMPK) augments PGC-1α activity and this pathway is depressed in diabetes leading to mitochondrial dysfunction and neurodegeneration. Antimuscarinic drugs targeting the muscarinic acetylcholine type 1 receptor (M1R) prevent/reverse neurodegeneration by inducing nerve regeneration in rodent models of diabetes and chemotherapy-induced peripheral neuropathy (CIPN). Ca2+/calmodulin-dependent protein kinase kinase β (CaMKKβ) is an upstream regulator of AMPK activity. We hypothesized that antimuscarinic drugs modulate CaMKKβ to enhance activity of AMPK, and PGC-1α, increase mitochondrial function and thus protect from neurodegeneration. We used the specific M1R antagonist muscarinic toxin 7 (MT7) to manipulate muscarinic signaling in the dorsal root ganglia (DRG) neurons of normal rats or rats with streptozotocin-induced diabetes. DRG neurons treated with MT7 (100 nM) or a selective muscarinic antagonist, pirenzepine (1 μM), for 24 h showed increased neurite outgrowth that was blocked by the CaMKK inhibitor STO-609 (1 μM) or short hairpin RNA to CaMKKβ. MT7 enhanced AMPK phosphorylation which was blocked by STO-609 (1 μM). PGC-1α reporter activity was augmented up to 2-fold (p < 0.05) by MT7 and blocked by STO-609. Mitochondrial maximal respiration and spare respiratory capacity were elevated after 3 h of exposure to MT7 (p < 0.05). Diabetes and CIPN induced a significant (p < 0.05) decrease in corneal nerve density which was corrected by topical delivery of MT7. We reveal a novel M1R-modulated, CaMKKβ-dependent pathway in neurons that represents a therapeutic target to enhance nerve repair in two of the most common forms of peripheral neuropathy.
Collapse
|
13
|
Eid SA, El Massry M, Hichor M, Haddad M, Grenier J, Dia B, Barakat R, Boutary S, Chanal J, Aractingi S, Wiesel P, Szyndralewiez C, Azar ST, Boitard C, Zaatari G, Eid AA, Massaad C. Targeting the NADPH Oxidase-4 and Liver X Receptor Pathway Preserves Schwann Cell Integrity in Diabetic Mice. Diabetes 2020; 69:448-464. [PMID: 31882567 DOI: 10.2337/db19-0517] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 12/15/2019] [Indexed: 11/13/2022]
Abstract
Diabetes triggers peripheral nerve alterations at a structural and functional level, collectively referred to as diabetic peripheral neuropathy (DPN). This work highlights the role of the liver X receptor (LXR) signaling pathway and the cross talk with the reactive oxygen species (ROS)-producing enzyme NADPH oxidase-4 (Nox4) in the pathogenesis of DPN. Using type 1 diabetic (T1DM) mouse models together with cultured Schwann cells (SCs) and skin biopsies from patients with type 2 diabetes (T2DM), we revealed the implication of LXR and Nox4 in the pathophysiology of DPN. T1DM animals exhibit neurophysiological defects and sensorimotor abnormalities paralleled by defective peripheral myelin gene expression. These alterations were concomitant with a significant reduction in LXR expression and increase in Nox4 expression and activity in SCs and peripheral nerves, which were further verified in skin biopsies of patients with T2DM. Moreover, targeted activation of LXR or specific inhibition of Nox4 in vivo and in vitro to attenuate diabetes-induced ROS production in SCs and peripheral nerves reverses functional alteration of the peripheral nerves and restores the homeostatic profiles of MPZ and PMP22. Taken together, our findings are the first to identify novel, key mediators in the pathogenesis of DPN and suggest that targeting LXR/Nox4 axis is a promising therapeutic approach.
Collapse
Affiliation(s)
- Stéphanie A Eid
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Faculty of Medicine and Medical Center, Beirut, Lebanon
- INSERM UMR 1124, University Paris Descartes, Faculty of Basic and Biomedical Sciences, Paris, France
| | - Mohamed El Massry
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Faculty of Medicine and Medical Center, Beirut, Lebanon
- INSERM UMR 1124, University Paris Descartes, Faculty of Basic and Biomedical Sciences, Paris, France
| | - Mehdi Hichor
- INSERM UMR 1124, University Paris Descartes, Faculty of Basic and Biomedical Sciences, Paris, France
| | - Mary Haddad
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Faculty of Medicine and Medical Center, Beirut, Lebanon
| | - Julien Grenier
- INSERM UMR 1124, University Paris Descartes, Faculty of Basic and Biomedical Sciences, Paris, France
| | - Batoul Dia
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Faculty of Medicine and Medical Center, Beirut, Lebanon
| | - Rasha Barakat
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Faculty of Medicine and Medical Center, Beirut, Lebanon
- INSERM U1016, Cochin Institute, University Paris Descartes, Faculty of Medicine, Sorbonne Paris Cité, Paris, France
| | - Suzan Boutary
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Faculty of Medicine and Medical Center, Beirut, Lebanon
| | - Johan Chanal
- INSERM U1016, Cochin Institute, University Paris Descartes, Faculty of Medicine, Sorbonne Paris Cité, Paris, France
| | - Selim Aractingi
- INSERM U1016, Cochin Institute, University Paris Descartes, Faculty of Medicine, Sorbonne Paris Cité, Paris, France
| | | | | | - Sami T Azar
- Department of Internal Medicine, American University of Beirut, Faculty of Medicine and Medical Center, Beirut, Lebanon
- AUB Diabetes, American University of Beirut, Faculty of Medicine and Medical Center, Beirut, Lebanon
| | - Christian Boitard
- INSERM U1016, Cochin Institute, University Paris Descartes, Faculty of Medicine, Sorbonne Paris Cité, Paris, France
| | - Ghazi Zaatari
- Department of Pathology, American University of Beirut, Faculty of Medicine and Medical Center, Beirut, Lebanon
| | - Assaad A Eid
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Faculty of Medicine and Medical Center, Beirut, Lebanon
- AUB Diabetes, American University of Beirut, Faculty of Medicine and Medical Center, Beirut, Lebanon
| | - Charbel Massaad
- INSERM UMR 1124, University Paris Descartes, Faculty of Basic and Biomedical Sciences, Paris, France
| |
Collapse
|
14
|
Jeong SH, Jung BH, Yoo KY, Um HS, Chang BS, Lee JK, Choi WY. Determination of the optimal diabetes duration for bone regeneration experiments in an alloxan-induced diabetic rabbit calvarial defect model. J Periodontal Implant Sci 2019; 48:383-394. [PMID: 30619639 PMCID: PMC6312880 DOI: 10.5051/jpis.2018.48.6.383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 12/16/2018] [Indexed: 01/23/2023] Open
Abstract
Purpose The purpose of this study was to evaluate the optimal diabetes duration for bone regeneration experiments in an alloxan monohydrate (ALX)–induced diabetic rabbit calvarial defect model by evaluating the association between diabetes duration and bone healing capacity. Methods Twenty-four New Zealand white rabbits were used. Twenty-two rabbits were injected with 100 mg/kg of ALX to induce experimental diabetes. These rabbits were divided into 4 groups, including a control group and groups with diabetes durations of 1 week (group 1), 2 weeks (group 2), and 4 weeks (group 3). Calvarial defects were created at 1, 2, and 4 weeks after ALX injection and in the control rabbits. Cone-beam computed tomography (CBCT) scanning was performed on the day of surgery and at 2 and 4 weeks after surgery. The rabbits were sacrificed 4 weeks after surgery, followed by histological and immunofluorescence analysis. Results The diabetic state of all diabetic rabbits was well-maintained throughout the experiment. Reconstructed 3-dimensional CBCT imaging showed more rapid and prominent bone regeneration in the control group than in the experimental groups. Histological staining showed notable bone regeneration in the control group, in contrast to scarce bone formation in the experimental groups. The appearance and immunoreactivity of receptor activator of nuclear factor-kappa B and osteoprotegerin did not show notable differences among the groups. Conclusion ALX administration at 100 mg/kg successfully induced experimental diabetes in rabbits. The effect of diabetes on bone healing was evident when the interval between diabetes induction and the intervention was ≥1 week.
Collapse
Affiliation(s)
- Sang-Hun Jeong
- Department of Periodontology, Gangneung-Wonju National University College of Dentistry, Gangneung, Korea
| | - Bo Hyun Jung
- Department of Anatomy, Gangneung-Wonju National University College of Dentistry, Gangneung, Korea
| | - Ki-Yeon Yoo
- Department of Anatomy, Gangneung-Wonju National University College of Dentistry, Gangneung, Korea.,Research Institute for Dental Engineering, Gangneung-Wonju National University, Gangneung, Korea
| | - Heung-Sik Um
- Department of Periodontology, Gangneung-Wonju National University College of Dentistry, Gangneung, Korea
| | - Beom-Seok Chang
- Department of Periodontology, Gangneung-Wonju National University College of Dentistry, Gangneung, Korea
| | - Jae-Kwan Lee
- Department of Periodontology, Gangneung-Wonju National University College of Dentistry, Gangneung, Korea.,Research Institute for Dental Engineering, Gangneung-Wonju National University, Gangneung, Korea
| | - Won-Youl Choi
- Research Institute for Dental Engineering, Gangneung-Wonju National University, Gangneung, Korea.,Department of Metal and Materials Engineering, Gangneung-Wonju National University, Gangneung, Korea.,Wellnanos Co., Ltd., Gangneung, Korea
| |
Collapse
|
15
|
Garcia-Perez E, Schönberger T, Sumalla M, Stierstorfer B, Solà R, Doods H, Serra J, Gorodetskaya N. Behavioural, morphological and electrophysiological assessment of the effects of type 2 diabetes mellitus on large and small nerve fibres in Zucker diabetic fatty, Zucker lean and Wistar rats. Eur J Pain 2018; 22:1457-1472. [DOI: 10.1002/ejp.1235] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2018] [Indexed: 01/09/2023]
Affiliation(s)
| | - T. Schönberger
- Boehringer Ingelheim Pharma GmbH & Co. KG; Biberach an der Riss Germany
| | - M. Sumalla
- Neuroscience Technologies; Barcelona Spain
| | - B. Stierstorfer
- Boehringer Ingelheim Pharma GmbH & Co. KG; Biberach an der Riss Germany
| | - R. Solà
- Neuroscience Technologies; Barcelona Spain
| | - H. Doods
- Boehringer Ingelheim Pharma GmbH & Co. KG; Biberach an der Riss Germany
| | - J. Serra
- Neuroscience Technologies; Barcelona Spain
| | - N. Gorodetskaya
- Boehringer Ingelheim Pharma GmbH & Co. KG; Biberach an der Riss Germany
| |
Collapse
|
16
|
Heat Shock Proteins in Vascular Diabetic Complications: Review and Future Perspective. Int J Mol Sci 2017; 18:ijms18122709. [PMID: 29240668 PMCID: PMC5751310 DOI: 10.3390/ijms18122709] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 12/09/2017] [Accepted: 12/11/2017] [Indexed: 01/22/2023] Open
Abstract
Heat shock proteins (HSPs) are a large family of proteins highly conserved throughout evolution because of their unique cytoprotective properties. Besides assisting protein refolding and regulating proteostasis under stressful conditions, HSPs also play an important role in protecting cells from oxidative stress, inflammation, and apoptosis. Therefore, HSPs are crucial in counteracting the deleterious effects of hyperglycemia in target organs of diabetes vascular complications. Changes in HSP expression have been demonstrated in diabetic complications and functionally related to hyperglycemia-induced cell injury. Moreover, associations between diabetic complications and altered circulating levels of both HSPs and anti-HSPs have been shown in clinical studies. HSPs thus represent an exciting therapeutic opportunity and might also be valuable as clinical biomarkers. However, this field of research is still in its infancy and further studies in both experimental diabetes and humans are required to gain a full understanding of HSP relevance. In this review, we summarize current knowledge and discuss future perspective.
Collapse
|
17
|
Calcutt NA, Smith DR, Frizzi K, Sabbir MG, Chowdhury SKR, Mixcoatl-Zecuatl T, Saleh A, Muttalib N, Van der Ploeg R, Ochoa J, Gopaul A, Tessler L, Wess J, Jolivalt CG, Fernyhough P. Selective antagonism of muscarinic receptors is neuroprotective in peripheral neuropathy. J Clin Invest 2017; 127:608-622. [PMID: 28094765 DOI: 10.1172/jci88321] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 11/22/2016] [Indexed: 01/29/2023] Open
Abstract
Sensory neurons have the capacity to produce, release, and respond to acetylcholine (ACh), but the functional role of cholinergic systems in adult mammalian peripheral sensory nerves has not been established. Here, we have reported that neurite outgrowth from adult sensory neurons that were maintained under subsaturating neurotrophic factor conditions operates under cholinergic constraint that is mediated by muscarinic receptor-dependent regulation of mitochondrial function via AMPK. Sensory neurons from mice lacking the muscarinic ACh type 1 receptor (M1R) exhibited enhanced neurite outgrowth, confirming the role of M1R in tonic suppression of axonal plasticity. M1R-deficient mice made diabetic with streptozotocin were protected from physiological and structural indices of sensory neuropathy. Pharmacological blockade of M1R using specific or selective antagonists, pirenzepine, VU0255035, or muscarinic toxin 7 (MT7) activated AMPK and overcame diabetes-induced mitochondrial dysfunction in vitro and in vivo. These antimuscarinic drugs prevented or reversed indices of peripheral neuropathy, such as depletion of sensory nerve terminals, thermal hypoalgesia, and nerve conduction slowing in diverse rodent models of diabetes. Pirenzepine and MT7 also prevented peripheral neuropathy induced by the chemotherapeutic agents dichloroacetate and paclitaxel or HIV envelope protein gp120. As a variety of antimuscarinic drugs are approved for clinical use against other conditions, prompt translation of this therapeutic approach to clinical trials is feasible.
Collapse
|
18
|
Muramatsu K, Niwa M, Tamaki T, Ikutomo M, Masu Y, Hasegawa T, Shimo S, Sasaki SI. Effect of streptozotocin-induced diabetes on motoneurons and muscle spindles in rats. Neurosci Res 2016; 115:21-28. [PMID: 27826051 DOI: 10.1016/j.neures.2016.10.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 10/17/2016] [Accepted: 10/27/2016] [Indexed: 12/30/2022]
Abstract
This study examined the alterations in the number and size of motoneurons innervating the medial gastrocnemius (MG) and biceps femoris (BF) motor nuclei in diabetic rats (12 or 22 weeks after injection of streptozotocin) and age-matched controls using retrograde labeling technique. Additionally, morphological alterations of muscle spindles in BF and MG muscles were tested. Significantly fewer labeled MG motoneurons were found in 12- and 22-week diabetic rats as compared with age-matched control animals. In contrast, the number of BF motoneurons was preserved in each group. Compared to control animals, the ratio of larger motoneurons of MG and BF muscle were decreased at 12 weeks, and smaller MG motoneurons were drastically decreased at 22 weeks. Moreover, MG muscle spindle showed reduction of its number and increase of intrafusal muscle fibers; however, BF muscle spindles showed little or no difference from control animals. We conclude that there is an early loss of alpha motoneurons for both MG and BF muscles followed by a later loss of gamma motoneurons in MG muscle in diabetic animals. Moreover, loss of gamma motoneuron might induce atrophy of MG muscle spindles.
Collapse
Affiliation(s)
- Ken Muramatsu
- Department of Physical Therapy, Health Science University, Yamanashi, Japan.
| | - Masatoshi Niwa
- Department of Occupational Therapy, Kyorin University, Tokyo, Japan
| | - Toru Tamaki
- Department of Physical Therapy, Health Science University, Yamanashi, Japan
| | - Masako Ikutomo
- Department of Physical Therapy, Health Science University, Yamanashi, Japan
| | - Yujiro Masu
- Department of Physical Therapy, Health Science University, Yamanashi, Japan
| | - Tatsuya Hasegawa
- Division of Human Environmental Science, Mount Fuji Research Institute, Yamanashi, Japan
| | - Satoshi Shimo
- Department of Occupational Therapy, Health Science University, Yamanashi, Japan
| | - Sei-Ichi Sasaki
- Center for Medical Sciences, Ibaraki Prefectural University of Health Sciences, Ibaraki, Japan
| |
Collapse
|
19
|
Abstract
Diabetic polyneuropathy (DPN) is a common but intractable degenerative disorder of peripheral neurons. DPN first results in retraction and loss of sensory terminals in target organs such as the skin, whereas the perikarya (cell bodies) of neurons are relatively preserved. This is important because it implies that regrowth of distal terminals, rather than neuron replacement or rescue, may be useful clinically. Although a number of neuronal molecular abnormalities have been examined in experimental DPN, several are prominent: loss of structural proteins, neuropeptides, and neurotrophic receptors; upregulation of "stress" and "repair" proteins; elevated nitric oxide synthesis; increased AGE-RAGE signaling, NF-κB and PKC; altered neuron survival pathways; changes of pain-related ion channel investment. There is also a role for abnormalities of direct signaling of neurons by insulin, an important trophic factor for neurons that express its receptors. While evidence implicating each of these pathways has emerged, how they link together and result in neuronal degeneration remains unclear. However, several offer interesting new avenues for more definitive therapy of this condition.
Collapse
Affiliation(s)
- Douglas W Zochodne
- Division of Neurology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
20
|
Zochodne DW. Sensory Neurodegeneration in Diabetes: Beyond Glucotoxicity. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2016; 127:151-80. [PMID: 27133149 DOI: 10.1016/bs.irn.2016.03.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Diabetic polyneuropathy in humans is of gradual, sometimes insidious onset, and is more likely to occur if glucose control is poor. Arguments that the disorder arises chiefly from glucose toxicity however ignore the greater complexity of a unique neurodegenerative disorder. For example, sensory neurons regularly thrive in media with levels of glucose at or exceeding those of poorly controlled diabetic persons. Also, all of the linkages between hyperglycemia and neuropathy develop in the setting of altered insulin availability or sensitivity. Insulin itself is recognized as a potent growth, or trophic factor for adult sensory neurons. Low doses of insulin, insufficient to alter blood glucose levels, reverse features of diabetic neurodegeneration in animal models. Insulin resistance, as occurs in diabetic adipose tissue, liver, and muscle, also develops in sensory neurons, offering a mechanism for neurodegeneration in the setting of normal or elevated insulin levels. Other interventions that "shore up" sensory neurons prevent features of diabetic polyneuropathy from developing despite persistent hyperglycemia. More recently evidence has emerged that a series of subtle molecular changes in sensory neurons can be linked to neurodegeneration including epigenetic changes in the control of gene expression. Understanding the new complexity of sensory neuron degeneration may give rise to therapeutic strategies that have a higher chance of success in the clinical trial arena.
Collapse
Affiliation(s)
- D W Zochodne
- Neuroscience and Mental Health Institute and Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
21
|
Abstract
Diabetic neuropathy is a common secondary complication of diabetes that impacts on patient's health and well-being. Distal axon degeneration is a key feature of diabetic neuropathy, but the pathological changes which underlie axonal die-back are incompletely understood; despite decades of research a treatment has not yet been identified. Basic research must focus on understanding the complex mechanisms underlying changes that occur in the nervous system during diabetes. To this end, tissue culture techniques are invaluable as they enable researchers to examine the intricate mechanistic responses of cells to high glucose or other factors in order to better understand the pathogenesis of nerve dysfunction. This chapter describes the use of in vitro models to study a wide range of specific cellular effects pertaining to diabetic neuropathy including apoptosis, neurite outgrowth, neurodegeneration, activity, and bioenergetics. We consider problems associated with in vitro modeling and future refinement such as use of induced pluripotent stem cells and microfluidic technology.
Collapse
|
22
|
Abstract
Diabetic neuropathy is a dying back neurodegenerative disease of the peripheral nervous system where mitochondrial dysfunction has been implicated as an etiological factor. Diabetes (type 1 or type 2) invokes an elevation of intracellular glucose concentration simultaneously with impaired growth factor support by insulin, and this dual alteration triggers a maladaptation in metabolism of adult sensory neurons. The energy sensing pathway comprising the AMP-activated protein kinase (AMPK)/sirtuin (SIRT)/peroxisome proliferator-activated receptor-γ coactivator α (PGC-1α) signaling axis is the target of these damaging changes in nutrient levels, e.g., induction of nutrient stress, and loss of insulin-dependent growth factor support and instigates an aberrant metabolic phenotype characterized by a suppression of mitochondrial oxidative phosphorylation and shift to anaerobic glycolysis. There is discussion of how this loss of mitochondrial function and transition to overreliance on glycolysis contributes to the diminishment of collateral sprouting and axon regeneration in diabetic neuropathy in the context of the highly energy-consuming nerve growth cone.
Collapse
Affiliation(s)
- Paul Fernyhough
- Division of Neurodegenerative Disorders, St Boniface Hospital Research Centre, R4046-351 Taché Ave, Winnipeg, Manitoba, R2H 2A6, Canada.
- Department of Pharmacology & Therapeutics, University of Manitoba, Winnipeg, MB, R3E 0T6, Canada.
| |
Collapse
|
23
|
Zochodne DW. Diabetes and the plasticity of sensory neurons. Neurosci Lett 2015; 596:60-5. [DOI: 10.1016/j.neulet.2014.11.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 11/11/2014] [Accepted: 11/13/2014] [Indexed: 12/13/2022]
|
24
|
Flatters SJ. The Contribution of Mitochondria to Sensory Processing and Pain. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 131:119-46. [DOI: 10.1016/bs.pmbts.2014.12.004] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
25
|
Krames ES. The Dorsal Root Ganglion in Chronic Pain and as a Target for Neuromodulation: A Review. Neuromodulation 2014; 18:24-32; discussion 32. [DOI: 10.1111/ner.12247] [Citation(s) in RCA: 147] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 11/08/2013] [Accepted: 02/04/2014] [Indexed: 11/29/2022]
|
26
|
Koneri RB, Samaddar S, Simi SM, Rao ST. Neuroprotective effect of a triterpenoid saponin isolated from Momordica cymbalaria Fenzl in diabetic peripheral neuropathy. Indian J Pharmacol 2014; 46:76-81. [PMID: 24550589 PMCID: PMC3912812 DOI: 10.4103/0253-7613.125179] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2012] [Revised: 06/22/2013] [Accepted: 10/08/2013] [Indexed: 01/04/2023] Open
Abstract
Objectives: To investigate the neuroprotective potential of a saponin isolated from the roots of Momordica cymbalaria against peripheral neuropathy in streptozotocin-induced diabetic rats. Materials and Methods: A steroidal saponin (SMC) was isolated from M. cymbalaria Fenzl and purified by preparative high-performance liquid chromatography. Diabetes was induced in male Wister rats by injecting streptozotocin 45 mg/kg. Diabetic rats were divided into six groups for neuroprotective effect—three each for preventive and curative groups. Neuropathic analgesia was assessed by tail-flick and hot-plate methods. Dorsal root ganglion (DRG) neurons and sciatic nerves were isolated, and histopathological analysis was performed. Antioxidant activity (superoxide dismutase, catalase, and inhibition of lipid peroxidation) of the saponin was also carried out on the isolated DRG neurons and sciatic nerves to assess total oxidative stress. Results: In both preventive and curative protocols, rats administered with SMC showed significant decrease in tail immersion latency time and increase in pain sensitivity when compared to diabetic control group. There was improvement in the myelination and degenerative changes of the nerve fiber in both the groups, and an obvious delay in the progression of neuropathy was evident. SMC treatment showed significant decrease in superoxide dismutase, catalase activity, and lipid peroxidation in the nerves. Conclusions: The steroidal saponin of M. cymbalaria (SMC) possesses potential neuroprotective effect in diabetic peripheral neuropathy with respect to neuropathic analgesia, improvement in neuronal degenerative changes, and significant antioxidant activity.
Collapse
Affiliation(s)
- Raju B Koneri
- Department of Pharmacology, Karnataka College of Pharmacy, Bangalore, Karnataka, India
| | - Suman Samaddar
- Department of Pharmacology, Karnataka College of Pharmacy, Bangalore, Karnataka, India
| | - S M Simi
- Department of Pharmacology, Karnataka College of Pharmacy, Bangalore, Karnataka, India
| | - Srinivas T Rao
- Department of Pharmacology, Karnataka College of Pharmacy, Bangalore, Karnataka, India
| |
Collapse
|
27
|
Calcium signalling in sensory neurones and peripheral glia in the context of diabetic neuropathies. Cell Calcium 2014; 56:362-71. [PMID: 25149565 DOI: 10.1016/j.ceca.2014.07.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 07/11/2014] [Accepted: 07/12/2014] [Indexed: 12/14/2022]
Abstract
Peripheral sensory nervous system is comprised of neurones with their axons and neuroglia that includes satellite glial cells in sensory ganglia, myelinating, non-myelinating and perisynaptic Schwann cells. Pathogenesis of peripheral diabetic polyneuropathies is associated with aberrant function of both neurones and glia. Deregulated Ca(2+) homoeostasis and aberrant Ca(2+) signalling in neuronal and glial elements contributes to many forms of neuropathology and is fundamental to neurodegenerative diseases. In diabetes both neurones and glia experience metabolic stress and mitochondrial dysfunction which lead to deregulation of Ca(2+) homeostasis and Ca(2+) signalling, which in their turn lead to pathological cellular reactions contributing to development of diabetic neuropathies. Molecular cascades responsible for Ca(2+) homeostasis and signalling, therefore, can be regarded as potential therapeutic targets.
Collapse
|
28
|
Abstract
Neuropathy is the most common complication of diabetes. As a consequence of longstanding hyperglycemia, a downstream metabolic cascade leads to peripheral nerve injury through an increased flux of the polyol pathway, enhanced advanced glycation end‐products formation, excessive release of cytokines, activation of protein kinase C and exaggerated oxidative stress, as well as other confounding factors. Although these metabolic aberrations are deemed as the main stream for the pathogenesis of diabetic microvascular complications, organ‐specific histological and biochemical characteristics constitute distinct mechanistic processes of neuropathy different from retinopathy or nephropathy. Extremely long axons originating in the small neuronal body are vulnerable on the most distal side as a result of malnutritional axonal support or environmental insults. Sparse vascular supply with impaired autoregulation is likely to cause hypoxic damage in the nerve. Such dual influences exerted by long‐term hyperglycemia are critical for peripheral nerve damage, resulting in distal‐predominant nerve fiber degeneration. More recently, cellular factors derived from the bone marrow also appear to have a strong impact on the development of peripheral nerve pathology. As evident from such complicated processes, inhibition of single metabolic factors might not be sufficient for the treatment of neuropathy, but a combination of several inhibitors might be a promising approach to overcome this serious disorder. (J Diabetes Invest, doi: 10.1111/j.2040‐1124.2010.00070.x, 2010)
Collapse
Affiliation(s)
| | | | - Kazuhiro Sugimoto
- Laboratory Medicine, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| |
Collapse
|
29
|
Accumulation of misfolded SOD1 in dorsal root ganglion degenerating proprioceptive sensory neurons of transgenic mice with amyotrophic lateral sclerosis. BIOMED RESEARCH INTERNATIONAL 2014; 2014:852163. [PMID: 24877142 PMCID: PMC4022303 DOI: 10.1155/2014/852163] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 04/07/2014] [Indexed: 12/13/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is an adult-onset progressive neurodegenerative disease affecting upper and lower motoneurons (MNs). Although the motor phenotype is a hallmark for ALS, there is increasing evidence that systems other than the efferent MN system can be involved. Mutations of superoxide dismutase 1 (SOD1) gene cause a proportion of familial forms of this disease. Misfolding and aggregation of mutant SOD1 exert neurotoxicity in a noncell autonomous manner, as evidenced in studies using transgenic mouse models. Here, we used the SOD1G93A mouse model for ALS to detect, by means of conformational-specific anti-SOD1 antibodies, whether misfolded SOD1-mediated neurotoxicity extended to neuronal types other than MNs. We report that large dorsal root ganglion (DRG) proprioceptive neurons accumulate misfolded SOD1 and suffer a degenerative process involving the inflammatory recruitment of macrophagic cells. Degenerating sensory axons were also detected in association with activated microglial cells in the spinal cord dorsal horn of diseased animals. As large proprioceptive DRG neurons project monosynaptically to ventral horn MNs, we hypothesise that a prion-like mechanism may be responsible for the transsynaptic propagation of SOD1 misfolding from ventral horn MNs to DRG sensory neurons.
Collapse
|
30
|
Krames ES. The role of the dorsal root ganglion in the development of neuropathic pain. PAIN MEDICINE 2014; 15:1669-85. [PMID: 24641192 DOI: 10.1111/pme.12413] [Citation(s) in RCA: 137] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND The dorsal root ganglion (DRG), in the not too distant past, had been thought of as a passive organ not involved in the development of abnormal aberrent neuropathic pain (NP), but merely metabolically "supporting" physiologic functions between the peripheral nervous system (PNS) and the central nervous system (CNS). New information regarding metabolic change within the DRG has dispelled this supportive passive role and suggests that the DRG is an active, not a passive, organ, in the process of the development of chronic pain. METHODS A review of the anatomic and physiologic literature utilizing PubMed and Google Scholar was performed to create a review of the anatomic and physiologic foundations for the development of NP after peripheral afferent fiber injury. CONCLUSIONS The DRG is as involved in the process of generating NP as is the nociceptor and the dorsal horn of the spinal cord.
Collapse
|
31
|
|
32
|
|
33
|
Abstract
It is increasingly apparent that not only is a cure for the current worldwide diabetes epidemic required, but also for its major complications, affecting both small and large blood vessels. These complications occur in the majority of individuals with both type 1 and type 2 diabetes. Among the most prevalent microvascular complications are kidney disease, blindness, and amputations, with current therapies only slowing disease progression. Impaired kidney function, exhibited as a reduced glomerular filtration rate, is also a major risk factor for macrovascular complications, such as heart attacks and strokes. There have been a large number of new therapies tested in clinical trials for diabetic complications, with, in general, rather disappointing results. Indeed, it remains to be fully defined as to which pathways in diabetic complications are essentially protective rather than pathological, in terms of their effects on the underlying disease process. Furthermore, seemingly independent pathways are also showing significant interactions with each other to exacerbate pathology. Interestingly, some of these pathways may not only play key roles in complications but also in the development of diabetes per se. This review aims to comprehensively discuss the well validated, as well as putative mechanisms involved in the development of diabetic complications. In addition, new fields of research, which warrant further investigation as potential therapeutic targets of the future, will be highlighted.
Collapse
Affiliation(s)
- Josephine M Forbes
- Diabetes Division, Baker IDI Heart and Diabetes Institute, Melbourne, Australia
| | | |
Collapse
|
34
|
Xie F, Fu H, Hou JF, Jiao K, Costigan M, Chen J. High energy diets-induced metabolic and prediabetic painful polyneuropathy in rats. PLoS One 2013; 8:e57427. [PMID: 23451227 PMCID: PMC3581455 DOI: 10.1371/journal.pone.0057427] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 01/22/2013] [Indexed: 12/16/2022] Open
Abstract
To establish the role of the metabolic state in the pathogenesis of polyneuropathy, an age- and sex-matched, longitudinal study in rats fed high-fat and high-sucrose diets (HFSD) or high-fat, high-sucrose and high-salt diets (HFSSD) relative to controls was performed. Time courses of body weight, systolic blood pressure, fasting plasma glucose (FPG), insulin, free fatty acids (FFA), homeostasis model assessment-insulin resistance index (HOMA-IR), thermal and mechanical sensitivity and motor coordination were measured in parallel. Finally, large and small myelinated fibers (LMF, SMF) as well as unmyelinated fibers (UMF) in the sciatic nerves and ascending fibers in the spinal dorsal column were quantitatively assessed under electron microscopy. The results showed that early metabolic syndrome (hyperinsulinemia, dyslipidemia, and hypertension) and prediabetic conditions (impaired fasting glucose) could be induced by high energy diet, and these animals later developed painful polyneuropathy characterized by myelin breakdown and LMF loss in both peripheral and central nervous system. In contrast SMF and UMF in the sciatic nerves were changed little, in the same animals. Therefore the phenomenon that high energy diets induce bilateral mechanical, but not thermal, pain hypersensitivity is reflected by severe damage to LMF, but mild damage to SMF and UMF. Moreover, dietary sodium (high-salt) deteriorates the neuropathic pathological process induced by high energy diets, but paradoxically high salt consumption, may reduce, at least temporarily, chronic pain perception in these animals.
Collapse
Affiliation(s)
- Fang Xie
- Institute for Biomedical Sciences of Pain and Institute for Functional Brain Disorders, Tangdu Hospital, The Fourth Military Medical University, Xi'an, P. R. China
| | | | | | | | | | | |
Collapse
|
35
|
|
36
|
Coenzyme Q10 prevents peripheral neuropathy and attenuates neuron loss in the db-/db- mouse, a type 2 diabetes model. Proc Natl Acad Sci U S A 2012; 110:690-5. [PMID: 23267110 DOI: 10.1073/pnas.1220794110] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Diabetic peripheral neuropathy (DPN) is the most common complication in both type 1 and type 2 diabetes. Here we studied some phenotypic features of a well-established animal model of type 2 diabetes, the leptin receptor-deficient db(-)/db(-) mouse, and also the effect of long-term (6 mo) treatment with coenzyme Q10 (CoQ10), an endogenous antioxidant. Diabetic mice at 8 mo of age exhibited loss of sensation, hypoalgesia (an increase in mechanical threshold), and decreases in mechanical hyperalgesia, cold allodynia, and sciatic nerve conduction velocity. All these changes were virtually completely absent after the 6-mo, daily CoQ10 treatment in db(-)/db(-) mice when started at 7 wk of age. There was a 33% neuronal loss in the lumbar 5 dorsal root ganglia (DRGs) of the db(-)/db(-) mouse versus controls at 8 mo of age, which was significantly attenuated by CoQ10. There was no difference in neuron number in 5/6-wk-old mice between diabetic and control mice. We observed a strong down-regulation of phospholipase C (PLC) β3 in the DRGs of diabetic mice at 8 mo of age, a key molecule in pain signaling, and this effect was also blocked by the 6-mo CoQ10 treatment. Many of the phenotypic, neurochemical regulations encountered in lumbar DRGs in standard models of peripheral nerve injury were not observed in diabetic mice at 8 mo of age. These results suggest that reactive oxygen species and reduced PLCβ3 expression may contribute to the sensory deficits in the late-stage diabetic db(-)/db(-) mouse, and that early long-term administration of the antioxidant CoQ10 may represent a promising therapeutic strategy for type 2 diabetes neuropathy.
Collapse
|
37
|
Muramatsu K, Niwa M, Nagai M, Kamimura T, Sasaki SI, Ishiguro T. The size of motoneurons of the gastrocnemius muscle in rats with diabetes. Neurosci Lett 2012; 531:109-13. [PMID: 23127853 DOI: 10.1016/j.neulet.2012.10.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Revised: 10/07/2012] [Accepted: 10/19/2012] [Indexed: 11/15/2022]
Abstract
Alterations in the number and size of motoneurons were studied in the medial gastrocnemius (MG) motor nucleus of diabetic rats (12 or 22 weeks after injection of storeptozotocin) and age-matched controls. Each group contained 6 animals. MG motoneurons were retrogradely labeled by dextran-fluorescein and the number and size of cell bodies were examined. Significantly fewer labeled MG motoneurons were found in the 22-week diabetic rats as compared with age-matched control animals. The mean soma diameter of MG motoneurons was significantly smaller in the 12- and 22-week diabetic animals. Furthermore the soma size for 22-week diabetic animals was smaller than for 12-week diabetic animals. The distribution of average soma diameters in the MG nucleus of control animals was bimodal; cells with larger average diameter were presumed to be alpha-motoneurons and those with smaller diameters were presumed to be gamma. Compared to control animals, the number of smaller MG motoneurons was reduced in 12 week diabetic animals. By 22 weeks, diabetic animals had no small MG motoneurons and the size distribution became unimodal. We conclude that there is a significant decrease in the absolute number and size of MG motoneurons in diabetic rats, with the possibility that the decrease occurred predominantly among the smaller gamma-motoneurons.
Collapse
Affiliation(s)
- Ken Muramatsu
- Department of Physical Therapy, Health Science University, Yamanashi, Japan.
| | | | | | | | | | | |
Collapse
|
38
|
Farmer KL, Li C, Dobrowsky RT. Diabetic peripheral neuropathy: should a chaperone accompany our therapeutic approach? Pharmacol Rev 2012; 64:880-900. [PMID: 22885705 PMCID: PMC3462992 DOI: 10.1124/pr.111.005314] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Diabetic peripheral neuropathy (DPN) is a common complication of diabetes that is associated with axonal atrophy, demyelination, blunted regenerative potential, and loss of peripheral nerve fibers. The development and progression of DPN is due in large part to hyperglycemia but is also affected by insulin deficiency and dyslipidemia. Although numerous biochemical mechanisms contribute to DPN, increased oxidative/nitrosative stress and mitochondrial dysfunction seem intimately associated with nerve dysfunction and diminished regenerative capacity. Despite advances in understanding the etiology of DPN, few approved therapies exist for the pharmacological management of painful or insensate DPN. Therefore, identifying novel therapeutic strategies remains paramount. Because DPN does not develop with either temporal or biochemical uniformity, its therapeutic management may benefit from a multifaceted approach that inhibits pathogenic mechanisms, manages inflammation, and increases cytoprotective responses. Finally, exercise has long been recognized as a part of the therapeutic management of diabetes, and exercise can delay and/or prevent the development of painful DPN. This review presents an overview of existing therapies that target both causal and symptomatic features of DPN and discusses the role of up-regulating cytoprotective pathways via modulating molecular chaperones. Overall, it may be unrealistic to expect that a single pharmacologic entity will suffice to ameliorate the multiple symptoms of human DPN. Thus, combinatorial therapies that target causal mechanisms and enhance endogenous reparative capacity may enhance nerve function and improve regeneration in DPN if they converge to decrease oxidative stress, improve mitochondrial bioenergetics, and increase response to trophic factors.
Collapse
Affiliation(s)
- Kevin L Farmer
- Department of Pharmacology and Toxicology, The University of Kansas, Lawrence, KS 66045, USA
| | | | | |
Collapse
|
39
|
Hernández-Beltrán N, Moreno CB, Gutiérrez-Álvarez AM. Contribution of mitochondria to pain in diabetic neuropathy. ACTA ACUST UNITED AC 2012; 60:25-32. [PMID: 22595537 DOI: 10.1016/j.endonu.2012.03.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Revised: 03/10/2012] [Accepted: 03/19/2012] [Indexed: 01/13/2023]
Abstract
Diabetes is a metabolic disease affecting approximately 300 million people worldwide. Neuropathy is one of its frequent complications, and may affect sensory, motor, and autonomic nerves. Its pathophysiology has not fully been elucidated. Several hypotheses have been proposed, and mitochondria have been suggested to play a significant role. This article reviews the mechanisms involved in mitochondrial dysfunction and development of diabetic neuropathy, consisting mainly of oxidative and inflammatory stress, changes in intracellular calcium regulation, apoptotic processes, and changes in mitochondrial structure and function that may lead to development of diabetic neuropathy.
Collapse
|
40
|
Modulating molecular chaperones improves sensory fiber recovery and mitochondrial function in diabetic peripheral neuropathy. Exp Neurol 2012; 235:388-96. [PMID: 22465570 DOI: 10.1016/j.expneurol.2012.03.005] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Revised: 03/03/2012] [Accepted: 03/12/2012] [Indexed: 12/20/2022]
Abstract
Quantification of intra-epidermal nerve fibers (iENFs) is an important approach to stage diabetic peripheral neuropathy (DPN) and is a promising clinical endpoint for identifying beneficial therapeutics. Mechanistically, diabetes decreases neuronal mitochondrial function and enhancing mitochondrial respiratory capacity may aid neuronal recovery from glucotoxic insults. We have proposed that modulating the activity and expression of heat shock proteins (Hsp) may be of benefit in treating DPN. KU-32 is a C-terminal Hsp90 inhibitor that improved thermal hypoalgesia in diabetic C57Bl/6 mice but it was not determined if this was associated with an increase in iENF density and mitochondrial function. After 16 weeks of diabetes, Swiss Webster mice showed decreased electrophysiological and psychosensory responses and a >30% loss of iENFs. Treatment of the mice with ten weekly doses of 20mg/kg KU-32 significantly reversed pre-existing deficits in nerve conduction velocity and responses to mechanical and thermal stimuli. KU-32 therapy significantly reversed the pre-existing loss of iENFs despite the identification of a sub-group of drug-treated diabetic mice that showed improved thermal sensitivity but no increase in iENF density. To determine if the improved clinical indices correlated with enhanced mitochondrial activity, sensory neurons were isolated and mitochondrial bioenergetics assessed ex vivo using extracellular flux technology. Diabetes decreased maximal respiratory capacity in sensory neurons and this deficit was improved following KU-32 treatment. In conclusion, KU-32 improved physiological and morphologic markers of degenerative neuropathy and drug efficacy may be related to enhanced mitochondrial bioenergetics in sensory neurons.
Collapse
|
41
|
Chowdhury SKR, Smith DR, Fernyhough P. The role of aberrant mitochondrial bioenergetics in diabetic neuropathy. Neurobiol Dis 2012; 51:56-65. [PMID: 22446165 DOI: 10.1016/j.nbd.2012.03.016] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Revised: 02/22/2012] [Accepted: 03/01/2012] [Indexed: 02/07/2023] Open
Abstract
Diabetic neuropathy is a neurological complication of diabetes that causes significant morbidity and, because of the obesity-driven rise in incidence of type 2 diabetes, is becoming a major international health problem. Mitochondrial phenotype is abnormal in sensory neurons in diabetes and may contribute to the etiology of diabetic neuropathy where a distal dying-back neurodegenerative process is a key component contributing to fiber loss. This review summarizes the major features of mitochondrial dysfunction in neurons and Schwann cells in human diabetic patients and in experimental animal models (primarily exhibiting type 1 diabetes). This article attempts to relate these findings to the development of critical neuropathological hallmarks of the disease. Recent work reveals that hyperglycemia in diabetes triggers nutrient excess in neurons that, in turn, mediates a phenotypic change in mitochondrial biology through alteration of the AMP-activated protein kinase (AMPK)/peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) signaling axis. This vital energy sensing metabolic pathway modulates mitochondrial function, biogenesis and regeneration. The bioenergetic phenotype of mitochondria in diabetic neurons is aberrant due to deleterious alterations in expression and activity of respiratory chain components as a direct consequence of abnormal AMPK/PGC-1α signaling. Utilization of innovative respirometry equipment to analyze mitochondrial function of cultured adult sensory neurons from diabetic rodents shows that the outcome for cellular bioenergetics is a reduced adaptability to fluctuations in ATP demand. The diabetes-induced maladaptive process is hypothesized to result in exhaustion of the ATP supply in the distal nerve compartment and induction of nerve fiber dissolution. The role of mitochondrial dysfunction in the etiology of diabetic neuropathy is compared with other types of neuropathy with a distal dying-back pathology such as Friedreich ataxia, Charcot-Marie-Tooth disease type 2 and human immunodeficiency virus-associated distal-symmetric neuropathy.
Collapse
Affiliation(s)
- Subir K Roy Chowdhury
- Division of Neurodegenerative Disorders, St Boniface Hospital Research Centre, Winnipeg, MB, Canada
| | | | | |
Collapse
|
42
|
IGF-1 induction by acylated steryl β-glucosides found in a pre-germinated brown rice diet reduces oxidative stress in streptozotocin-induced diabetes. PLoS One 2011; 6:e28693. [PMID: 22194889 PMCID: PMC3237479 DOI: 10.1371/journal.pone.0028693] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Accepted: 11/14/2011] [Indexed: 11/24/2022] Open
Abstract
Background The pathology of diabetic neuropathy involves oxidative stress on pancreatic β-cells, and is related to decreased levels of Insulin-like growth factor 1 (IGF-1). Acylated steryl β-glucoside (PR-ASG) found in pre-germiated brown rice is a bioactive substance exhibiting properties that enhance activity of homocysteine-thiolactonase (HTase), reducing oxidative stress in diabetic neuropathy. The biological importance of PR-ASG in pancreatic β-cells remains unknown. Here we examined the effects of PR-ASG on IGF-1 and glucose metabolism in β-cells exposed to oxidative stress. Methodology/Principal Findings In the present study, a pre-germinated brown rice (PR)-diet was tested in streptozotocin (STZ)-induced diabetic rats. Compared with diabetic rats fed control diets, the PR-diet fed rats showed an improvement of serum metabolic and neurophysiological parameters. In addition, IGF-1 levels were found to be increased in the serum, liver, and pancreas of diabetic rats fed the PR-diet. The increased IGF-1 level in the pancreas led us to hypothesize that PR-ASG is protective for islet β-cells against the extensive injury of advanced or severe diabetes. Thus we examined PR-ASG to determine whether it showed anti-apoptotic, pro-proliferative effects on the insulin-secreting β-cells line, INS-1; and additionally, whether PR-ASG stimulated IGF-1 autocrine secretion/IGF-1-dependent glucose metabolism. We have demonstrated for the first time that PR-ASG increases IGF-1 production and secretion from pancreatic β-cells. Conclusion/Significance These findings suggest that PR-ASG may affect pancreatic β-cells through the activation of an IGF-1-dependent mechanism in the diabetic condition. Thus, intake of pre-germinated brown rice may have a beneficial effect in the treatment of diabetes, in particular diabetic neuropathy.
Collapse
|
43
|
Roy Chowdhury SK, Dobrowsky RT, Fernyhough P. Nutrient excess and altered mitochondrial proteome and function contribute to neurodegeneration in diabetes. Mitochondrion 2011; 11:845-54. [PMID: 21742060 PMCID: PMC3375692 DOI: 10.1016/j.mito.2011.06.007] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Revised: 04/28/2011] [Accepted: 06/24/2011] [Indexed: 01/01/2023]
Abstract
Diabetic neuropathy is a major complication of diabetes that results in the progressive deterioration of the sensory nervous system. Mitochondrial dysfunction has been proposed to play an important role in the pathogenesis of the neurodegeneration observed in diabetic neuropathy. Our recent work has shown that mitochondrial dysfunction occurs in dorsal root ganglia (DRG) sensory neurons in streptozotocin (STZ) induced diabetic rodents. In neurons, the nutrient excess associated with prolonged diabetes may trigger a switching off of AMP kinase (AMPK) and/or silent information regulator T1 (SIRT1) signaling leading to impaired peroxisome proliferator-activated receptor γ coactivator-1 (PGC-1α) expression/activity and diminished mitochondrial activity. This review briefly summarizes the alterations of mitochondrial function and proteome in sensory neurons of STZ-diabetic rodents. We also discuss the possible involvement of AMPK/SIRT/PGC-1α pathway in other diabetic models and different tissues affected by diabetes.
Collapse
Affiliation(s)
- Subir K. Roy Chowdhury
- Division of Neurodegenerative Disorders, St Boniface Hospital Research Centre, Winnipeg, MB, Canada R2H 2A6
| | - Rick T. Dobrowsky
- Department of Pharmacology & Toxicology, University of Kansas, Lawrence, KS 660 45, USA
| | - Paul Fernyhough
- Division of Neurodegenerative Disorders, St Boniface Hospital Research Centre, Winnipeg, MB, Canada R2H 2A6
- Department of Pharmacology & Therapeutics, University of Manitoba, Winnipeg, MB, Canada R3E 0T6
| |
Collapse
|
44
|
Abstract
OBJECTIVE Angiotensin (ANG) II type 1 receptor (AT1R) blockers have neuroprotective effects against neuronal lesions. The present study examines whether the AT1R blocker olmesartan improves peripheral nerve dysfunction in rats with type 2 diabetes. METHODS Fourteen-week-old male type 2 diabetic Zucker diabetic fatty (ZDF) rats were orally administered with olmesartan (6 mg/kg per day; n = 7) or not treated (n = 7) and then followed up for nine weeks. Age-matched and sex-matched nondiabetic lean rats served as controls (n = 7). RESULTS Olmesartan for 9 weeks did not influence blood glucose and A1c levels that were higher in untreated ZDF (U-ZDF) rats than in control rats. In U-ZDF rats, myelinated fiber density and myelin areas of myelinated fibers in peroneal nerves significantly increased and decreased, respectively, and the intraepidermal nerve fiber density (IENFD) of footpad skin tended to decrease. The U-ZDF rats developed mechanical hyperalgesia, thermal hypoalgesia and slower sensory and motor nerve conduction in the sciatic-tibial nerves. Olmesartan increased myelin areas and IENFD and ameliorated sensory nerve conduction deficits. These beneficial effects of olmesartan were associated with ANG II and insulin receptor upregulation in sensory neurons as well as deactivation of Erk1/2 in sciatic nerves. CONCLUSION Olmesartan appears to improve the structure and function of small and large nerves and upregulate ANG II and insulin receptors in sensory neurons of rats with type 2 diabetes.
Collapse
|
45
|
Saleh A, Smith DR, Balakrishnan S, Dunn L, Martens C, Tweed CW, Fernyhough P. Tumor necrosis factor-α elevates neurite outgrowth through an NF-κB-dependent pathway in cultured adult sensory neurons: Diminished expression in diabetes may contribute to sensory neuropathy. Brain Res 2011; 1423:87-95. [PMID: 21985959 DOI: 10.1016/j.brainres.2011.09.029] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Revised: 09/14/2011] [Accepted: 09/15/2011] [Indexed: 11/24/2022]
Abstract
The presence of a proinflammatory environment in the sensory neuron axis in diabetes was tested by measuring levels of proinflammatory cytokines in lumbar dorsal root ganglia (DRG) and peripheral nerve from age matched control and streptozotocin (STZ)-induced diabetic rats. The levels of tumor necrosis factor-α (TNFα) and other cytokines were diminished in lumbar DRG from diabetic animals. Consequently, we tested the hypothesis that TNFα modulated axonal plasticity in adult sensory neurons and posited that impairments in this signal transduction pathway may underlie degeneration in diabetic sensory neuropathy. Cultured adult rat sensory neurons were grown under defined conditions and TNFα caused a dose-dependent 2-fold (P<0.05) elevation in neurite outgrowth. Neurons derived from 3 to 5month STZ-induced diabetic rats exhibited significantly reduced levels of neurite outgrowth in response to TNFα. TNFα enhanced NF-κB activity as assessed using Western blotting and plasmid reporter technology. Blockade of TNFα-induction of NF-κB activation caused inhibition of neurite outgrowth in cultured neurons. Immunofluorescent staining for NF-κB subunit p50 within neuronal nuclei revealed that medium to large diameter neurons were most susceptible to NF-κB inhibition and was associated with decreased neurite outgrowth. The results demonstrating reduced cytokine expression in DRG confirm that diabetic sensory neuropathy does not involve a neuroinflammatory component at this stage of the disease in experimental animal models. In addition, it is hypothesized that reduced TNFα expression in the DRG and possibly associated deficits in anterograde transport may contribute to impaired collatoral sprouting and regeneration in target tissue in type 1 diabetes.
Collapse
Affiliation(s)
- Ali Saleh
- Division of Neurodegenerative Disorders, St Boniface Hospital Research Centre, Winnipeg, MB, Canada
| | | | | | | | | | | | | |
Collapse
|
46
|
Dobretsov M, Backonja MM, Romanovsky D, Stimers JR. Animal Models of Diabetic Neuropathic Pain. ANIMAL MODELS OF PAIN 2011. [DOI: 10.1007/978-1-60761-880-5_9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
47
|
Fernyhough P, Roy Chowdhury SK, Schmidt RE. Mitochondrial stress and the pathogenesis of diabetic neuropathy. Expert Rev Endocrinol Metab 2010; 5:39-49. [PMID: 20729997 PMCID: PMC2924887 DOI: 10.1586/eem.09.55] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Diabetic neuropathy is a major complication of diabetes that affects the sensory and autonomic nervous systems and leads to significant morbidity and impact on quality of life of patients. Mitochondrial stress has been proposed as a major mediator of neurodegeneration in diabetes. This review briefly summarizes the nature of sensory and autonomic nerve dysfunction and presents these findings in the context of diabetes-induced nerve degeneration mediated by alterations in mitochondrial ultrastructure, physiology and trafficking. Diabetes-induced dysfunction in calcium homeostasis is discussed at length and causative associations with sub-optimal mitochondrial physiology are developed. It is clear that across a range of complications of diabetes that mitochondrial physiology is impaired, in general a reduction in electron transport chain capability is apparent. This abnormal activity may predispose mitochondria to generate elevated reactive oxygen species (ROS), although experimental proof remains lacking, but more importantly will deleteriously alter the bioenergetic status of neurons. It is proposed that the next five years of research should focus on identifying changes in mitochondrial phenotype and associated cellular impact, identifying sources of ROS in neurons and analyzing mitochondrial trafficking under diabetic conditions.
Collapse
Affiliation(s)
- Paul Fernyhough
- Division of Neurodegenerative Disorders, St Boniface Hospital Research Centre, R4046 - 351 Taché Avenue, Winnipeg, MB R2H 2A6, Canada and Department of Pharmacology & Therapeutics, University of Manitoba, Winnipeg, MB, Canada, Tel: (204) 235 3692
| | | | | |
Collapse
|
48
|
Fernyhough P, Calcutt NA. Abnormal calcium homeostasis in peripheral neuropathies. Cell Calcium 2009; 47:130-9. [PMID: 20034667 DOI: 10.1016/j.ceca.2009.11.008] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Accepted: 11/17/2009] [Indexed: 01/02/2023]
Abstract
Abnormal neuronal calcium (Ca2+) homeostasis has been implicated in numerous diseases of the nervous system. The pathogenesis of two increasingly common disorders of the peripheral nervous system, namely neuropathic pain and diabetic polyneuropathy, has been associated with aberrant Ca2+ channel expression and function. Here we review the current state of knowledge regarding the role of Ca2+ dyshomeostasis and associated mitochondrial dysfunction in painful and diabetic neuropathies. The central impact of both alterations of Ca2+ signalling at the plasma membrane and also intracellular Ca2+ handling on sensory neurone function is discussed and related to abnormal endoplasmic reticulum performance. We also present new data highlighting sub-optimal axonal Ca2+ signalling in diabetic neuropathy and discuss the putative role for this abnormality in the induction of axonal degeneration in peripheral neuropathies. The accumulating evidence implicating Ca2+ dysregulation in both painful and degenerative neuropathies, along with recent advances in understanding of regional variations in Ca2+ channel and pump structures, makes modulation of neuronal Ca2+ handling an increasingly viable approach for therapeutic interventions against the painful and degenerative aspects of many peripheral neuropathies.
Collapse
Affiliation(s)
- Paul Fernyhough
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, Manitoba, Canada R3E0T6.
| | | |
Collapse
|
49
|
Kamiya H, Zhang W, Sima AAF. The beneficial effects of C-Peptide on diabetic polyneuropathy. Rev Diabet Stud 2009; 6:187-202. [PMID: 20039008 DOI: 10.1900/rds.2009.6.187] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Diabetic polyneuropathy (DPN) is a common complication in diabetes. At present, there is no adequate treatment, and DPN is often debilitating for patients. It is a heterogeneous disorder and differs in type 1 and type 2 diabetes. An important underlying factor in type 1 DPN is insulin deficiency. Proinsulin C-peptide is a critical element in the cascade of events. In this review, we describe the physiological role of C-peptide and how it provides an insulin-like signaling function. Such effects translate into beneficial outcomes in early metabolic perturbations of neural Na+/K+-ATPase and nitric oxide (NO) with subsequent preventive effects on early nerve dysfunction. Further corrective consequences resulting from this signaling cascade have beneficial effects on gene regulation of early gene responses, neurotrophic factors, their receptors, and the insulin receptor itself. This may lead to preventive and corrective results to nerve fiber degeneration and loss, as well as, promotion of nerve fiber regeneration with respect to sensory somatic fibers and small nociceptive nerve fibers. A characteristic abnormality of type 1 DPN is nodal and paranodal degeneration with severe consequences for myelinated fiber function. This review deals in detail with the underlying insulin-deficiency-related molecular changes and their correction by C-peptide. Based on these observations, it is evident that continuous maintenance of insulin-like actions by C-peptide is needed in peripheral nerve to minimize the sequences of metabolic and molecular abnormalities, thereby ameliorating neuropathic complications. There is now ample evidence demonstrating that C-peptide replacement in type 1 diabetes promotes insulin action and signaling activities in a more enhanced, prolonged, and continuous fashion than does insulin alone. It is therefore necessary to replace C-peptide to physiological levels in diabetic patients. This will have substantial beneficial effects on type 1 DPN.
Collapse
Affiliation(s)
- Hideki Kamiya
- Department of Pathology, Wayne State University, Detroit, MI, USA
| | | | | |
Collapse
|
50
|
Melli G, Höke A. Dorsal Root Ganglia Sensory Neuronal Cultures: a tool for drug discovery for peripheral neuropathies. Expert Opin Drug Discov 2009; 4:1035-1045. [PMID: 20657751 PMCID: PMC2908326 DOI: 10.1517/17460440903266829] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
BACKGROUND: Peripheral neuropathies affect many people worldwide and are caused by or associated with a wide range of conditions, both genetic and acquired. Current therapies are directed at symptomatic control because no effective regenerative treatment exists. Primary challenge is that mechanisms that lead to distal axonal degeneration, a common feature of all peripheral neuropathies, are largely unknown. OBJECTIVE/METHODS: To address the role and specific characteristics of dorsal root ganglia (DRG) derived sensory neuron culture system as a useful model in evaluating the pathogenic mechanisms of peripheral neuropathies and examination and validation of potential therapeutic compounds. A thorough review of the recent literature was completed and select examples of the use of DRG neurons in different peripheral neuropathy models were chosen to highlight the utility of these cultures. CONCLUSION: Many useful models of different peripheral neuropathies have been developed using DRG neuronal culture and potential therapeutic targets have been examined, but so far none of the potential therapeutic compounds have succeeded in clinical trials. In recent years, focus has changed to evaluation of axon degeneration as the primary outcome measure advocating a drug development strategy starting with phenotypic drug screening, followed by validation in primary complex co-cultures and animal models.
Collapse
Affiliation(s)
- Giorgia Melli
- Istituto Nazionale Neurologico Carlo Besta, Milano, Italy
| | - Ahmet Höke
- Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|