1
|
Liu T, Zhang J, Chang F, Sun M, He J, Ai D. Role of endothelial Raptor in abnormal arteriogenesis after lower limb ischaemia in type 2 diabetes. Cardiovasc Res 2024; 120:1218-1234. [PMID: 38722901 DOI: 10.1093/cvr/cvae105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 03/08/2024] [Accepted: 03/17/2024] [Indexed: 09/03/2024] Open
Abstract
AIMS Proper arteriogenesis after tissue ischaemia is necessary to rebuild stable blood circulation; nevertheless, this process is impaired in type 2 diabetes mellitus (T2DM). Raptor is a scaffold protein and a component of mammalian target of rapamycin complex 1 (mTORC1). However, the role of the endothelial Raptor in arteriogenesis under the conditions of T2DM remains unknown. This study investigated the role of endothelial Raptor in ischaemia-induced arteriogenesis during T2DM. METHODS AND RESULTS Although endothelial mTORC1 is hyperactive in T2DM, we observed a marked reduction in the expression of endothelial Raptor in two mouse models and in human vessels. Inducible endothelial-specific Raptor knockout severely exacerbated impaired hindlimb perfusion and arteriogenesis after hindlimb ischaemic injury in 12-week high-fat diet fed mice. Additionally, we found that Raptor deficiency dampened vascular endothelial growth factor receptor 2 (VEGFR2) signalling in endothelial cells (ECs) and inhibited VEGF-induced cell migration and tube formation in a PTP1B-dependent manner. Furthermore, mass spectrometry analysis indicated that Raptor interacts with neuropilin 1 (NRP1), the co-receptor of VEGFR2, and mediates VEGFR2 trafficking by facilitating the interaction between NRP1 and Synectin. Finally, we found that EC-specific overexpression of the Raptor mutant (loss of mTOR binding) reversed impaired hindlimb perfusion and arteriogenesis induced by endothelial Raptor knockout in high-fat diet fed mice. CONCLUSION Collectively, our study demonstrated the crucial role of endothelial Raptor in promoting ischaemia-induced arteriogenesis in T2DM by mediating VEGFR2 signalling. Thus, endothelial Raptor is a novel therapeutic target for promoting arteriogenesis and ameliorating perfusion in T2DM.
Collapse
Affiliation(s)
- Ting Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Institute of Cardiology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, The Second Hospital of Tianjin Medical University, Tianjin Medical University, Qixiangtai Rd 22nd, Tianjin 300070, China
| | - Jiachen Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Institute of Cardiology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, The Second Hospital of Tianjin Medical University, Tianjin Medical University, Qixiangtai Rd 22nd, Tianjin 300070, China
| | - Fangyuan Chang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Institute of Cardiology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, The Second Hospital of Tianjin Medical University, Tianjin Medical University, Qixiangtai Rd 22nd, Tianjin 300070, China
| | - Mengyu Sun
- Research Center of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Jinlong He
- Department of Physiology and Pathophysiology, Tianjin Medical University, Qixiangtai Rd 22nd, Tianjin 300070, China
| | - Ding Ai
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Institute of Cardiology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, The Second Hospital of Tianjin Medical University, Tianjin Medical University, Qixiangtai Rd 22nd, Tianjin 300070, China
- Department of Physiology and Pathophysiology, Tianjin Medical University, Qixiangtai Rd 22nd, Tianjin 300070, China
| |
Collapse
|
2
|
Nehme J, Yang D, Altulea A, Varela-Eirin M, Wang L, Hu S, Wu Y, Togo J, Niu C, Speakman JR, Demaria M. High dietary protein and fat contents exacerbate hepatic senescence and SASP in mice. FEBS J 2023; 290:1340-1347. [PMID: 34908245 DOI: 10.1111/febs.16292] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 10/11/2021] [Accepted: 11/22/2021] [Indexed: 01/10/2023]
Abstract
Dietary choices have a profound impact on the aging process. In addition to the total amount of energy intake, macronutrient composition influences both health and lifespan. However, the exact mechanisms by which dietary macronutrients influence onset and progression of age-associated features remain poorly understood. Cellular senescence is a state of stable growth arrest characterized by the secretion of numerous bioactive molecules with pro-inflammatory properties. Accumulation of senescent cells is considered one of the basic mechanisms of aging and an important contributor to chronic inflammation and tissue degeneration. Whether dietary macronutrients affect the accumulation and the phenotype of senescent cells with age is still unknown. Here, we show that feeding on diets with varying ratios of dietary macronutrients for 3 months has a significant effect on different senescence-associated markers in the mouse liver. High protein intake is associated with higher expression levels of the two classical senescence-associated growth arrest genes, p21 and p16. Furthermore, the expression of many pro-inflammatory secretory markers was increased in diets enriched in protein and further enhanced by increases in fat content. These results provide preliminary evidence that dietary macronutrients have a significant influence on senescence markers and merit further investigation.
Collapse
Affiliation(s)
- Jamil Nehme
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen (UMCG), University of Groningen (RUG), The Netherlands.,Doctoral School of Science and Technology, Lebanese University, Hadath, Beirut, Lebanon
| | - Dengbao Yang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing Technology and Business University, China
| | - Abdullah Altulea
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen (UMCG), University of Groningen (RUG), The Netherlands
| | - Marta Varela-Eirin
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen (UMCG), University of Groningen (RUG), The Netherlands
| | - Lu Wang
- School of Pharmacy, Yantai University, China
| | - Sumei Hu
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing Technology and Business University, China.,Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University, China
| | - Yingga Wu
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing Technology and Business University, China
| | - Jacques Togo
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing Technology and Business University, China
| | - Chaoqun Niu
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing Technology and Business University, China
| | - John R Speakman
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing Technology and Business University, China.,Institute of Biological and Environmental Sciences, University of Aberdeen, UK
| | - Marco Demaria
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen (UMCG), University of Groningen (RUG), The Netherlands
| |
Collapse
|
3
|
Tan X, Huang X, Lu Z, Chen L, Hu J, Tian X, Qiu Z. The essential effect of mTORC1-dependent lipophagy in non-alcoholic fatty liver disease. Front Pharmacol 2023; 14:1124003. [PMID: 36969837 PMCID: PMC10030502 DOI: 10.3389/fphar.2023.1124003] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/23/2023] [Indexed: 03/29/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a chronic progressive liver disease with increasing prevalence. Lipophagy is a type of programmed cell death that plays an essential role in maintaining the body's balance of fatty acid metabolism. However, the livers of NAFLD patients are abnormally dysregulated in lipophagy. mTORC1 is a critical negative regulator of lipophagy, which has been confirmed to participate in the process of lipophagy through various complex mechanisms. Therefore, targeting mTORC1 to restore failed autophagy may be an effective therapeutic strategy for NAFLD. This article reviews the main pathways through which mTORC1 participates in the formation of lipophagy and the intervention effect of mTORC1-regulated lipophagy in NAFLD, providing new therapeutic strategies for the prevention and treatment of NAFLD in the future.
Collapse
Affiliation(s)
- Xiangyun Tan
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Xinyu Huang
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Zhuhang Lu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Liang Chen
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Junjie Hu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
- *Correspondence: Zhenpeng Qiu, ; Xianxiang Tian, ; Junjie Hu,
| | - Xianxiang Tian
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
- *Correspondence: Zhenpeng Qiu, ; Xianxiang Tian, ; Junjie Hu,
| | - Zhenpeng Qiu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
- Hubei Key Laboratory of Resources and Chemistry of Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, China
- *Correspondence: Zhenpeng Qiu, ; Xianxiang Tian, ; Junjie Hu,
| |
Collapse
|
4
|
The Novel Peptide Chm-273s Has Therapeutic Potential for Metabolic Disorders: Evidence from In Vitro Studies and High-Sucrose Diet and High-Fat Diet Rodent Models. Pharmaceutics 2022; 14:pharmaceutics14102088. [PMID: 36297523 PMCID: PMC9611607 DOI: 10.3390/pharmaceutics14102088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/13/2022] [Accepted: 09/19/2022] [Indexed: 11/05/2022] Open
Abstract
The aim of this study was to develop a novel peptide potentially applicable for the treatment of metabolic conditions, such as obesity and type 2 diabetes (T2D). We identified CHM-273S from the list of peptides from milk hydrolysate obtained by HPLC/MS-MS. In vitro analysis of primary murine fibroblasts indicated the potential of CHM-273S to upregulate IRS2 mRNA expression. CHM-273S showed a prominent anorexigenic effect in mice with the induction of a key mechanism of leptin signaling via STAT3 in the hypothalamus as a possible effector. In the animal model of metabolic disease, CHM-273S alleviated glucose intolerance and insulin resistance, and induced phosphorylation of Akt at Ser473 and Thr308 in the hepatocytes of high-sucrose diet-fed rats. In a murine model of T2D, CHM-273S mitigated high-fat diet-induced hyperglycemia and insulin resistance and improved low-grade inflammation by diminishing serum TNFα. Mice treated with chronic CHM-273S had a significant reduction in body weight, with a lower visceral fat pad weight and narrow adipocytes. The effects of the peptide administration were comparable to those of metformin. We show the potential of CHM-273S to alleviate diet-induced metabolic alterations in rodents, substantiating its further development as a therapeutic for obesity, T2D, and other metabolic conditions.
Collapse
|
5
|
Folorunso IM, Olawale F, Olofinsan K, Iwaloye O. Picralima nitida leaf extract ameliorates oxidative stress and modulates insulin signaling pathway in high fat-diet/STZ induced diabetic rats. SOUTH AFRICAN JOURNAL OF BOTANY 2022; 148:268-282. [DOI: 10.1016/j.sajb.2022.04.048] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
6
|
|
7
|
Zhang YX, Qu SS, Zhang LH, Gu YY, Chen YH, Huang ZY, Liu MH, Zou W, Jiang J, Chen JQ, Wang YJ, Zhou FH. The Role of Ophiopogonin D in Atherosclerosis: Impact on Lipid Metabolism and Gut Microbiota. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2021; 49:1449-1471. [PMID: 34263719 DOI: 10.1142/s0192415x21500683] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Gut microbiota has been proven to play an important role in many metabolic diseases and cardiovascular disease, particularly atherosclerosis. Ophiopogonin D (OPD), one of the effective compounds in Ophiopogon japonicus, is considered beneficial to metabolic syndrome and cardiovascular diseases. In this study, we have illuminated the effect of OPD in ApoE knockout (ApoE[Formula: see text] mice on the development of atherosclerosis and gut microbiota. To investigate the potential ability of OPD to alleviate atherosclerosis, 24 eight-week-old male ApoE[Formula: see text] mice (C57BL/6 background) were fed a high-fat diet (HFD) for 12 weeks, and 8 male C57BL/6 mice were fed a normal diet, serving as the control group. ApoE[Formula: see text] mice were randomly divided into the model group, OPD group, and simvastatin group ([Formula: see text]= 8). After treatment for 12 consecutive weeks, the results showed that OPD treatment significantly decreased the plaque formation and levels of serum lipid compared with those in the model group. In addition, OPD improved oral glucose tolerance and insulin resistance as well as reducing hepatocyte steatosis. Further analysis revealed that OPD might attenuate atherosclerosis through inhibiting mTOR phosphorylation and the consequent lipid metabolism signaling pathways mediated by SREBP1 and SCD1 in vivo and in vitro. Furthermore, OPD treatment led to significant structural changes in gut microbiota and fecal metabolites in HFD-fed mice and reduced the relative abundance of Erysipelotrichaceae genera associated with cholesterol metabolism. Collectively, these findings illustrate that OPD could significantly protect against atherosclerosis, which might be associated with the moderation of lipid metabolism and alterations in gut microbiota composition and fecal metabolites.
Collapse
Affiliation(s)
- Ya-Xin Zhang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, P. R. China
| | - Shan-Shan Qu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, P. R. China
| | - Li-Hua Zhang
- Department of Gynaecology, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510310, P. R. China
| | - Yu-Yan Gu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, P. R. China
| | - Yi-Hao Chen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, P. R. China
| | - Zhi-Yong Huang
- Department of Otolaryngology, The Third Affiliated Hospital, Southern Medical University, Guangzhou 510630, P. R. China
| | - Meng-Hua Liu
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, P. R. China
| | - Wei Zou
- NHC Key Laboratory of Birth Defects Research, Prevention and Treatment Hunan Provincial Maternal and Child Health Care Hospital, Changsha 410008, P. R. China
| | - Jing Jiang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, P. R. China
| | - Jun-Qi Chen
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Southern Medical University, Guangzhou 510630, P. R. China
| | - Yu-Jue Wang
- Department of Laboratory Animal Administration Center, Southern Medical University, Guangzhou 510515, P. R. China
| | - Feng-Hua Zhou
- The Fifth Affiliated Hospital, Southern Medical University, Guangzhou 510920, P. R. China
| |
Collapse
|
8
|
Tangseefa P, Martin SK, Arthur A, Panagopoulos V, Page AJ, Wittert GA, Proud CG, Fitter S, Zannettino ACW. Deletion of Rptor in Preosteoblasts Reveals a Role for the Mammalian Target of Rapamycin Complex 1 (mTORC1) Complex in Dietary-Induced Changes to Bone Mass and Glucose Homeostasis in Female Mice. JBMR Plus 2021; 5:e10486. [PMID: 33977204 PMCID: PMC8101617 DOI: 10.1002/jbm4.10486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 02/22/2021] [Accepted: 02/28/2021] [Indexed: 12/11/2022] Open
Abstract
The mammalian target of rapamycin complex 1 (mTORC1) complex is the major nutrient sensor in mammalian cells that responds to amino acids, energy levels, growth factors, and hormones, such as insulin, to control anabolic and catabolic processes. We have recently shown that suppression of the mTORC1 complex in bone‐forming osteoblasts (OBs) improved glucose handling in male mice fed a normal or obesogenic diet. Mechanistically, this occurs, at least in part, by increasing OB insulin sensitivity leading to upregulation of glucose uptake and glycolysis. Given previously reported sex‐dependent differences observed upon antagonism of mTORC1 signaling, we investigated the metabolic and skeletal effects of genetic inactivation of preosteoblastic‐mTORC1 in female mice. Eight‐week‐old control diet (CD)‐fed Rptorob−/− mice had a low bone mass with a significant reduction in trabecular bone volume and trabecular number, reduced cortical bone thickness, and increased marrow adiposity. Despite no changes in body composition, CD‐fed Rptorob−/− mice exhibited significant lower fasting insulin and glucose levels and increased insulin sensitivity. Upon high‐fat diet (HFD) feeding, Rptorob−/− mice were resistant to a diet‐induced increase in whole‐body and total fat mass and protected from the development of diet‐induced insulin resistance. Notably, although 12 weeks of HFD increased marrow adiposity, with minimal changes in both trabecular and cortical bone in the female control mice, marrow adiposity was significantly reduced in HFD‐fed Rptorob−/− compared to both HFD‐fed control and CD‐fed Rptorob−/− mice. Collectively, our results demonstrate that mTORC1 function in preosteoblasts is crucial for skeletal development and skeletal regulation of glucose homeostasis in both male and female mice. Importantly, loss of mTORC1 function in OBs results in metabolic and physiological adaptations that mirror a caloric restriction phenotype (under CD) and protects against HFD‐induced obesity, associated insulin resistance, and marrow adiposity expansion. These results highlight the critical contribution of the skeleton in the regulation of whole‐body energy homeostasis. © 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Pawanrat Tangseefa
- Adelaide Medical School, Faculty of Health and Medical Science University of Adelaide Adelaide South Australia Australia.,Cancer Program, Precision Medicine Theme, South Australian Health and Medical Research Institute Adelaide South Australia Australia
| | - Sally K Martin
- Adelaide Medical School, Faculty of Health and Medical Science University of Adelaide Adelaide South Australia Australia.,Cancer Program, Precision Medicine Theme, South Australian Health and Medical Research Institute Adelaide South Australia Australia
| | - Agnieszka Arthur
- Adelaide Medical School, Faculty of Health and Medical Science University of Adelaide Adelaide South Australia Australia.,Cancer Program, Precision Medicine Theme, South Australian Health and Medical Research Institute Adelaide South Australia Australia
| | - Vasilios Panagopoulos
- Adelaide Medical School, Faculty of Health and Medical Science University of Adelaide Adelaide South Australia Australia.,Cancer Program, Precision Medicine Theme, South Australian Health and Medical Research Institute Adelaide South Australia Australia
| | - Amanda J Page
- Adelaide Medical School, Faculty of Health and Medical Science University of Adelaide Adelaide South Australia Australia.,Nutrition, Diabetes & Gut Health Program, Lifelong Health Theme, South Australian Health and Medical Research Institute Adelaide South Australia Australia
| | - Gary A Wittert
- Adelaide Medical School, Faculty of Health and Medical Science University of Adelaide Adelaide South Australia Australia.,Nutrition, Diabetes & Gut Health Program, Lifelong Health Theme, South Australian Health and Medical Research Institute Adelaide South Australia Australia.,Freemasons Foundation Centre for Men's Health University of Adelaide Adelaide South Australia Australia
| | - Christopher G Proud
- Nutrition, Diabetes & Gut Health Program, Lifelong Health Theme, South Australian Health and Medical Research Institute Adelaide South Australia Australia.,School of Biological Sciences, University of Adelaide Adelaide South Australia Australia
| | - Stephen Fitter
- Adelaide Medical School, Faculty of Health and Medical Science University of Adelaide Adelaide South Australia Australia.,Cancer Program, Precision Medicine Theme, South Australian Health and Medical Research Institute Adelaide South Australia Australia
| | - Andrew C W Zannettino
- Adelaide Medical School, Faculty of Health and Medical Science University of Adelaide Adelaide South Australia Australia.,Cancer Program, Precision Medicine Theme, South Australian Health and Medical Research Institute Adelaide South Australia Australia.,Central Adelaide Local Health Network Adelaide South Australia Australia
| |
Collapse
|
9
|
Mathew R, Sajitha IS, Balakrishnan-Nair DK, Nair SS, Kariyil BJ, Abraham MJ. Histological and Immunohistochemical Evaluation of Phosphorylated Mechanistic Target of Rapamycin in Canine Skin Tumours. J Comp Pathol 2021; 184:60-64. [PMID: 33894879 DOI: 10.1016/j.jcpa.2021.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 12/11/2020] [Accepted: 02/05/2021] [Indexed: 10/21/2022]
Abstract
The mechanistic target of rapamycin (mTOR) plays an important role in cellular functions, including growth and metabolism. Recently, mTOR and the activated phosphorylated form of mTOR (p-mTOR) have been reported as potential prognostic markers in many human tumours. However, there are few studies on its activation in canine tumours. We investigated the expression of p-mTOR in 17 canine skin tumours (CSTs), of which 58.8% were epithelial and melanocytic and 41.2% were mesenchymal tumours. Seventy-six per cent of the CSTs had high or moderate expression of p-mTOR. Mean p-mTOR expression in the epithelial and melanocytic tumours (5.7 ± 0.56) was significantly higher (P <0.05) than that of the mesenchymal tumours (3.14 ± 0.55). The age of the animals had no influence on p-mTOR expression. These findings suggest that activation of m-TOR is important in the development of skin tumours in dogs and the study might form the basis for further research on utilizing m-TOR inhibitors as improved therapeutic modalities in canine skin tumours.
Collapse
Affiliation(s)
- Raimon Mathew
- Department of Veterinary Pathology, College of Veterinary and Animal Sciences, Mannuthy, Kerala, India.
| | - Indira S Sajitha
- Department of Veterinary Pathology, College of Veterinary and Animal Sciences, Mannuthy, Kerala, India
| | | | - Sudheesh S Nair
- Department of Veterinary Surgery & Radiology, College of Veterinary and Animal Sciences, Mannuthy, Kerala, India
| | - Bibu J Kariyil
- Department of Veterinary Pharmacology & Toxicology, College of Veterinary and Animal Sciences, Mannuthy, Kerala, India; Kerala Veterinary and Animal Sciences University, Wayanad, Kerala, India
| | - Mammen J Abraham
- Department of Veterinary Pathology, College of Veterinary and Animal Sciences, Mannuthy, Kerala, India
| |
Collapse
|
10
|
Shao S, Yang Q, Pan R, Yu X, Chen Y. Interaction of Severe Acute Respiratory Syndrome Coronavirus 2 and Diabetes. Front Endocrinol (Lausanne) 2021; 12:731974. [PMID: 34690930 PMCID: PMC8527093 DOI: 10.3389/fendo.2021.731974] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/17/2021] [Indexed: 01/08/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is causing a worldwide epidemic. It spreads very fast and hits people of all ages, especially patients with underlying diseases such as diabetes. In this review, we focus on the influences of diabetes on the outcome of SARS-CoV-2 infection and the involved mechanisms including lung dysfunction, immune disorder, abnormal expression of angiotensin-converting enzyme 2 (ACE2), overactivation of mechanistic target of rapamycin (mTOR) signaling pathway, and increased furin level. On the other hand, SARS-CoV-2 may trigger the development of diabetes. It causes the damage of pancreatic β cells, which is probably mediated by ACE2 protein in the islets. Furthermore, SARS-CoV-2 may aggravate insulin resistance through attacking other metabolic organs. Of note, certain anti-diabetic drugs (OADs), such as peroxisome proliferator-activated receptor γ (PPARγ) activator and glucagon-like peptide 1 receptor (GLP-1R) agonist, have been shown to upregulate ACE2 in animal models, which may increase the risk of SARS-CoV-2 infection. However, Metformin, as a first-line medicine for the treatment of type 2 diabetes mellitus (T2DM), may be a potential drug benefiting diabetic patients with SARS-CoV-2 infection, probably via a suppression of mTOR signaling together with its anti-inflammatory and anti-fibrosis function in lung. Remarkably, another kind of OADs, dipeptidyl Peptidase 4 (DPP4) inhibitor, may also exert beneficial effects in this respect, probably via a prevention of SARS-CoV-2 binding to cells. Thus, it is of significant to identify appropriate OADs for the treatment of diabetes in the context of SARS-CoV-2 infections.
Collapse
Affiliation(s)
- Shiying Shao
- Division of Endocrinology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
- Branch of National Clinical Research Center for Metabolic Diseases, Hubei, China
| | - Qin Yang
- Division of Pathology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Ruping Pan
- Department of Nuclear Medicine, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Xuefeng Yu
- Division of Endocrinology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
- Branch of National Clinical Research Center for Metabolic Diseases, Hubei, China
| | - Yong Chen
- Division of Endocrinology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
- Branch of National Clinical Research Center for Metabolic Diseases, Hubei, China
- *Correspondence: Yong Chen,
| |
Collapse
|
11
|
Morales-Scholz MG, Swinton C, Murphy RM, Kowalski GM, Bruce CR, Howlett KF, Shaw CS. Autophagy is not involved in lipid accumulation and the development of insulin resistance in skeletal muscle. Biochem Biophys Res Commun 2021; 534:533-539. [PMID: 33261883 DOI: 10.1016/j.bbrc.2020.11.048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 11/12/2020] [Indexed: 01/15/2023]
Abstract
OBJECTIVE To investigate the effect of high fat diet-induced insulin resistance on autophagy markers in the liver and skeletal muscle of mice in the fasted state and following an oral glucose bolus. METHODS Forty C57BL/6J male mice were fed either a high fat, high sucrose (HFSD, n = 20) or standard chow control (CON, n = 20) diet for 16 weeks. Upon trial completion, mice were gavaged with water or glucose and skeletal muscle and liver were collected 15 min post gavage. Protein abundance and gene expression of autophagy markers and activation of related signalling pathways were assessed. RESULTS Compared to CON, the HFSD intervention increased LC3B-II and p62/SQSTM1 protein abundance in the liver which is indicative of elevated autophagosome content via reduced clearance. These changes coincided with inhibitory autophagy signalling through elevated p-mTOR S2448 and p-ULK1S758. HFSD did not alter autophagy markers in skeletal muscle. Administration of an oral glucose bolus had no effect on autophagy markers or upstream signalling responses in either tissue regardless of diet. CONCLUSION HFSD induces tissue-specific autophagy impairments, with autophagosome accumulation indicating reduced lysosomal clearance in the liver. In contrast, autophagy markers were unchanged in skeletal muscle, indicating that autophagy is not involved in the development of skeletal muscle insulin resistance.
Collapse
Affiliation(s)
- María G Morales-Scholz
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, 3216, VIC, Australia
| | - Courtney Swinton
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, 3216, VIC, Australia
| | - Robyn M Murphy
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, 3086, VIC, Australia
| | - Greg M Kowalski
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, 3216, VIC, Australia
| | - Clinton R Bruce
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, 3216, VIC, Australia
| | - Kirsten F Howlett
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, 3216, VIC, Australia
| | - Christopher S Shaw
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, 3216, VIC, Australia.
| |
Collapse
|
12
|
Guo W, Qiu W, Ao X, Li W, He X, Ao L, Hu X, Li Z, Zhu M, Luo D, Xing W, Xu X. Low-concentration DMSO accelerates skin wound healing by Akt/mTOR-mediated cell proliferation and migration in diabetic mice. Br J Pharmacol 2020; 177:3327-3341. [PMID: 32167156 DOI: 10.1111/bph.15052] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 01/09/2020] [Accepted: 01/09/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND AND PURPOSE DMSO has been found to promote tissue repair. However, the role of DMSO in diabetic skin wound healing and the underlying molecular mechanisms are still unclear. EXPERIMENTAL APPROACH The effects of DMSO on wound healing were evaluated by HE staining, immunohistochemistry and collagen staining using a wound model of full-thickness skin resection on the backs of non-diabetic or diabetic mice. Real-time cell analysis and 5-ethynyl-2'-deoxyuridine incorporation assays were used to study the effect of DMSO on primary fibroblast proliferation. A transwell assay was used to investigate keratinocyte migration. The associated signalling pathway was identified by western blotting and inhibitor blocking. The effect of DMSO on the translation rate of downstream target genes was studied by RT-qPCR of polyribosome mRNA. KEY RESULTS We found that low-concentration DMSO significantly accelerated skin wound closure by promoting fibroblast proliferation in both nondiabetic and diabetic mice. In addition, increased migration of keratinocytes may also contribute to accelerated wound healing, which was stimulated by increased TGF-β1 secretion from fibroblasts. Furthermore, we demonstrated that this effect of DMSO depends on Akt/mTOR-mediated translational control and the promotion of the translation of a set of cell proliferation-related genes. As expected, DMSO-induced wound healing and cell proliferation were impaired by rapamycin, an inhibitor of Akt/mTOR signalling. CONCLUSION AND IMPLICATIONS DMSO can promote skin wound healing in diabetic mice by activating the Akt/mTOR pathway. Low-concentration DMSO presents an alternative medication for chronic cutaneous wounds, especially for diabetic patients.
Collapse
Affiliation(s)
- Wei Guo
- Department of Stem Cell & Regenerative Medicine.,Central Laboratory, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing, P.R., China
| | - Wei Qiu
- Department of Stem Cell & Regenerative Medicine.,Central Laboratory, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing, P.R., China
| | - Xiang Ao
- Department of Stem Cell & Regenerative Medicine.,Central Laboratory, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing, P.R., China
| | - Weiqiang Li
- Department of Stem Cell & Regenerative Medicine.,Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Army Medical University, Chongqing, P.R. China
| | - Xiao He
- Department of Stem Cell & Regenerative Medicine.,Central Laboratory, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing, P.R., China
| | - Luoquan Ao
- Department of Stem Cell & Regenerative Medicine.,Central Laboratory, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing, P.R., China
| | - Xueting Hu
- Department of Stem Cell & Regenerative Medicine.,Central Laboratory, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing, P.R., China
| | - Zhan Li
- Department of Stem Cell & Regenerative Medicine.,Central Laboratory, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing, P.R., China
| | - Ming Zhu
- Department of Stem Cell & Regenerative Medicine.,Central Laboratory, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing, P.R., China
| | - Donglin Luo
- Department of General Surgery, Daping Hospital, Army Medical University, Chongqing, P.R. China
| | - Wei Xing
- Department of Stem Cell & Regenerative Medicine.,Central Laboratory, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing, P.R., China
| | - Xiang Xu
- Department of Stem Cell & Regenerative Medicine.,Central Laboratory, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing, P.R., China.,Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Army Medical University, Chongqing, P.R. China
| |
Collapse
|
13
|
Waise TMZ, Rasti M, Duca FA, Zhang SY, Bauer PV, Rhodes CJ, Lam TKT. Inhibition of upper small intestinal mTOR lowers plasma glucose levels by inhibiting glucose production. Nat Commun 2019; 10:714. [PMID: 30755615 PMCID: PMC6372624 DOI: 10.1038/s41467-019-08582-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 01/16/2019] [Indexed: 12/11/2022] Open
Abstract
Glucose homeostasis is partly controlled by the energy sensor mechanistic target of rapamycin (mTOR) in the muscle and liver. However, whether mTOR in the small intestine affects glucose homeostasis in vivo remains unknown. Here, we first report that delivery of rapamycin or an adenovirus encoding the dominant negative acting mTOR-mutated protein into the upper small intestine is sufficient to inhibit small intestinal mTOR signaling and lower glucose production in rodents with high fat diet-induced insulin resistance. Second, we found that molecular activation of small intestinal mTOR blunts the glucose-lowering effect of the oral anti-diabetic agent metformin, while inhibiting small intestinal mTOR alone lowers plasma glucose levels by inhibiting glucose production in rodents with diabetes as well. Thus, these findings illustrate that inhibiting upper small intestinal mTOR is sufficient and necessary to lower glucose production and enhance glucose homeostasis, and thereby unveil a previously unappreciated glucose-lowering effect of small intestinal mTOR. The mechanistic target of rapamycin (TOR) functions as an energy sensor and contributes to the control of glucose homeostasis. Here, the authors show that mTOR in the upper small intestine regulates hepatic glucose production and is required for the glucose lowering effect of metformin.
Collapse
Affiliation(s)
- T M Zaved Waise
- Toronto General Hospital Research Institute, UHN, Toronto, ON, M5G 1L7, Canada
| | - Mozhgan Rasti
- Toronto General Hospital Research Institute, UHN, Toronto, ON, M5G 1L7, Canada
| | - Frank A Duca
- Toronto General Hospital Research Institute, UHN, Toronto, ON, M5G 1L7, Canada.,School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, 85721, USA
| | - Song-Yang Zhang
- Toronto General Hospital Research Institute, UHN, Toronto, ON, M5G 1L7, Canada
| | - Paige V Bauer
- Toronto General Hospital Research Institute, UHN, Toronto, ON, M5G 1L7, Canada.,Department of Physiology, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Christopher J Rhodes
- Kovler Diabetes Center, Department of Medicine, Section of Endocrinology, Diabetes and Metabolism, University of Chicago, Chicago, IL, 60637, USA.,MedImmune LLC, Gaithersburg, MD, 20878, USA
| | - Tony K T Lam
- Toronto General Hospital Research Institute, UHN, Toronto, ON, M5G 1L7, Canada. .,Department of Physiology, University of Toronto, Toronto, ON, M5S 1A8, Canada. .,Department of Medicine, University of Toronto, Toronto, ON, M5S 1A8, Canada. .,Banting and Best Diabetes Centre, University of Toronto, Toronto, ON, M5G 2C4, Canada.
| |
Collapse
|
14
|
Gancheva S, Jelenik T, Álvarez-Hernández E, Roden M. Interorgan Metabolic Crosstalk in Human Insulin Resistance. Physiol Rev 2018; 98:1371-1415. [PMID: 29767564 DOI: 10.1152/physrev.00015.2017] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Excessive energy intake and reduced energy expenditure drive the development of insulin resistance and metabolic diseases such as obesity and type 2 diabetes mellitus. Metabolic signals derived from dietary intake or secreted from adipose tissue, gut, and liver contribute to energy homeostasis. Recent metabolomic studies identified novel metabolites and enlarged our knowledge on classic metabolites. This review summarizes the evidence of their roles as mediators of interorgan crosstalk and regulators of insulin sensitivity and energy metabolism. Circulating lipids such as free fatty acids, acetate, and palmitoleate from adipose tissue and short-chain fatty acids from the gut effectively act on liver and skeletal muscle. Intracellular lipids such as diacylglycerols and sphingolipids can serve as lipotoxins by directly inhibiting insulin action in muscle and liver. In contrast, fatty acid esters of hydroxy fatty acids have been recently shown to exert a series of beneficial effects. Also, ketoacids are gaining interest as potent modulators of insulin action and mitochondrial function. Finally, branched-chain amino acids not only predict metabolic diseases, but also inhibit insulin signaling. Here, we focus on the metabolic crosstalk in humans, which regulates insulin sensitivity and energy homeostasis in the main insulin-sensitive tissues, skeletal muscle, liver, and adipose tissue.
Collapse
Affiliation(s)
- Sofiya Gancheva
- Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University , Düsseldorf , Germany ; Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University , Düsseldorf , Germany ; and German Center of Diabetes Research (DZD e.V.), Munich- Neuherberg , Germany
| | - Tomas Jelenik
- Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University , Düsseldorf , Germany ; Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University , Düsseldorf , Germany ; and German Center of Diabetes Research (DZD e.V.), Munich- Neuherberg , Germany
| | - Elisa Álvarez-Hernández
- Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University , Düsseldorf , Germany ; Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University , Düsseldorf , Germany ; and German Center of Diabetes Research (DZD e.V.), Munich- Neuherberg , Germany
| | - Michael Roden
- Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University , Düsseldorf , Germany ; Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University , Düsseldorf , Germany ; and German Center of Diabetes Research (DZD e.V.), Munich- Neuherberg , Germany
| |
Collapse
|
15
|
den Hartigh LJ, Goodspeed L, Wang SA, Kenerson HL, Omer M, O'Brien KD, Ladiges W, Yeung R, Subramanian S. Chronic oral rapamycin decreases adiposity, hepatic triglycerides and insulin resistance in male mice fed a diet high in sucrose and saturated fat. Exp Physiol 2018; 103:1469-1480. [PMID: 30117227 DOI: 10.1113/ep087207] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 08/09/2018] [Indexed: 12/22/2022]
Abstract
NEW FINDINGS What is the central question of this study? Whether chronic oral rapamycin promotes beneficial effects on glucose/lipid metabolism and energy balance when administered to mice with an obesogenic diet rich in saturated fat and sucrose has not been explored. What is the main finding and its importance? Chronic oral rapamycin reduces body weight and fat gain, improves insulin sensitivity and reduces hepatic steatosis when administered to mice with a high-fat, high-sucrose diet. In addition, we make the new observation that there appear to be tissue-specific effects of rapamycin. Although rapamycin appears to impart its effects mainly on visceral adipose tissue, its effects on insulin sensitivity are mediated by subcutaneous adipose tissue. ABSTRACT Excess adiposity is commonly associated with insulin resistance, which can increase the risk of cardiovascular disease. However, the exact molecular mechanisms by which obesity results in insulin resistance are yet to be understood clearly. The intracellular nutrient-sensing protein, mechanistic target of rapamycin (mTOR), is a crucial signalling component in the development of obesity-associated insulin resistance. Given that increased tissue activation of mTOR complex-1 (mTORC1) occurs in obesity, diabetes and ageing, we hypothesized that pharmacological inhibition of mTORC1 would improve metabolic dysregulation in diet-induced obesity. We administered continuous rapamycin, a specific mTORC1 inhibitor, orally to C57BL/6J mice concurrently with a high-fat, high-sucrose (HFHS) diet for 20 weeks. The control group received placebo microcapsules. Rapamycin-treated mice showed significantly reduced weight gain and adiposity (33.6 ± 4.9 versus 40.4 ± 3.0% body fat, P < 0.001, n = 8 mice per group), despite increased or equivalent food intake compared with the placebo group. The rapamycin-fed mice also demonstrated reduced plasma glucose (252 ± 57 versus 297 ± 67 mg dl-1 , P < 0.001) and improved insulin sensitivity during insulin and glucose tolerance testing. Rapamycin-treated mice also had lower plasma triglycerides (48 ± 13 versus 67 ± 11 mg/dL, P < 0.01) and hepatic triglyceride content (89 ± 15 versus 110 ± 19 mg/g liver, P < 0.05) compared with the placebo group. A moderately low dose of rapamycin decreased adiposity and improved the metabolic profile in a model of diet-induced obesity. These data suggest that low-grade chronic mTORC1 inhibition might be a potential strategy for anti-obesity therapies.
Collapse
Affiliation(s)
- Laura J den Hartigh
- Department of Medicine, Division of Metabolism, Endocrinology and Nutrition, University of Washington, Seattle, WA, 98019, USA.,Diabetes Institute, University of Washington, Seattle, WA, 98019, USA
| | - Leela Goodspeed
- Department of Medicine, Division of Metabolism, Endocrinology and Nutrition, University of Washington, Seattle, WA, 98019, USA.,Diabetes Institute, University of Washington, Seattle, WA, 98019, USA
| | - Shari A Wang
- Department of Medicine, Division of Metabolism, Endocrinology and Nutrition, University of Washington, Seattle, WA, 98019, USA.,Diabetes Institute, University of Washington, Seattle, WA, 98019, USA
| | - Heidi L Kenerson
- Department of Surgery, University of Washington, Seattle, WA, 98019, USA
| | - Mohamed Omer
- Department of Medicine, Division of Metabolism, Endocrinology and Nutrition, University of Washington, Seattle, WA, 98019, USA.,Diabetes Institute, University of Washington, Seattle, WA, 98019, USA
| | - Kevin D O'Brien
- Diabetes Institute, University of Washington, Seattle, WA, 98019, USA.,Division of Cardiology, University of Washington, Seattle, WA, 98019, USA
| | - Warren Ladiges
- Department of Comparative Medicine, University of Washington, Seattle, WA, 98019, USA
| | - Raymond Yeung
- Department of Surgery, University of Washington, Seattle, WA, 98019, USA
| | - Savitha Subramanian
- Department of Medicine, Division of Metabolism, Endocrinology and Nutrition, University of Washington, Seattle, WA, 98019, USA.,Diabetes Institute, University of Washington, Seattle, WA, 98019, USA
| |
Collapse
|
16
|
Apelin protects against liver X receptor-mediated steatosis through AMPK and PPARα in human and mouse hepatocytes. Cell Signal 2017; 39:84-94. [DOI: 10.1016/j.cellsig.2017.08.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 07/04/2017] [Accepted: 08/14/2017] [Indexed: 12/19/2022]
|
17
|
Thelen AM, Zoncu R. Emerging Roles for the Lysosome in Lipid Metabolism. Trends Cell Biol 2017; 27:833-850. [PMID: 28838620 DOI: 10.1016/j.tcb.2017.07.006] [Citation(s) in RCA: 186] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 07/28/2017] [Accepted: 07/31/2017] [Indexed: 12/20/2022]
Abstract
Precise regulation of lipid biosynthesis, transport, and storage is key to the homeostasis of cells and organisms. Cells rely on a sophisticated but poorly understood network of vesicular and nonvesicular transport mechanisms to ensure efficient delivery of lipids to target organelles. The lysosome stands at the crossroads of this network due to its ability to process and sort exogenous and endogenous lipids. The lipid-sorting function of the lysosome is intimately connected to its recently discovered role as a metabolic command-and-control center, which relays multiple nutrient cues to the master growth regulator, mechanistic target of rapamycin complex (mTORC)1 kinase. In turn, mTORC1 potently drives anabolic processes, including de novo lipid synthesis, while inhibiting lipid catabolism. Here, we describe the dual role of the lysosome in lipid transport and biogenesis, and we discuss how integration of these two processes may play important roles both in normal physiology and in disease.
Collapse
Affiliation(s)
- Ashley M Thelen
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA; The Paul F. Glenn Center for Aging Research at the University of California, Berkeley, Berkeley, CA 94720, USA
| | - Roberto Zoncu
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA; The Paul F. Glenn Center for Aging Research at the University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
18
|
Roles of the interorgan neuronal network in the development of metabolic syndrome. Diabetol Int 2016; 7:205-211. [PMID: 30603265 DOI: 10.1007/s13340-016-0277-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 06/26/2016] [Indexed: 01/01/2023]
Abstract
Metabolic processes in different tissues and remote organs are under coordinated systemic regulation, allowing adaptation to a variety of external circumstances. Neuronal signals as well as humoral factors, such as nutrients, growth factors, and hormones, have attracted increasing attention for their roles in this interorgan metabolic network, responsible for the maintenance of metabolic homeostasis at the whole-body level. These interorgan communications within an organism are considered to be diverse and, in fact, we identified previously unknown neuronal relay systems originating in the liver which modulate energy, glucose, and lipid metabolism. Furthermore, when nutrient overload is prolonged, these neuronal mechanisms, which function as an endogenous defense system against obesity development, contribute to the pathophysiological states of metabolic syndrome characterized by obesity-associated features. Therefore, these interorgan neuronal systems are considered to be possible molecular targets for treating metabolic syndrome. We herein review the precise mechanisms underlying the functions of the mammalian interorgan neuronal network, especially the pathways from the liver to several other organs, focusing on their significance and roles in the development of metabolic syndrome.
Collapse
|
19
|
Abstract
Lipids are essential components of a cell providing energy substrates for cellular processes, signaling intermediates, and building blocks for biological membranes. Lipids are constantly recycled and redistributed within a cell. Lysosomes play an important role in this recycling process that involves the recruitment of lipids to lysosomes via autophagy or endocytosis for their degradation by lysosomal hydrolases. The catabolites produced are redistributed to various cellular compartments to support basic cellular function. Several studies demonstrated a bidirectional relationship between lipids and lysosomes that regulate autophagy. While lysosomal degradation pathways regulate cellular lipid metabolism, lipids also regulate lysosome function and autophagy. In this review, we focus on this bidirectional relationship in the context of dietary lipids and provide an overview of recent evidence of how lipid-overload lipotoxicity, as observed in obesity and metabolic syndrome, impairs lysosomal function and autophagy that may eventually lead to cellular dysfunction or cell death.
Collapse
Affiliation(s)
- Bharat Jaishy
- Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| | - E Dale Abel
- Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| |
Collapse
|
20
|
Wu Y, Lu H, Yang H, Li C, Sang Q, Liu X, Liu Y, Wang Y, Sun Z. Zinc stimulates glucose consumption by modulating the insulin signaling pathway in L6 myotubes: essential roles of Akt-GLUT4, GSK3β and mTOR-S6K1. J Nutr Biochem 2016; 34:126-35. [PMID: 27295130 DOI: 10.1016/j.jnutbio.2016.05.008] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 05/10/2016] [Accepted: 05/17/2016] [Indexed: 01/04/2023]
Abstract
The present study was performed to evaluate the insulin-like effects of zinc in normal L6 myotubes as well as its ability to alleviate insulin resistance. Glucose consumption was measured in both normal and insulin-resistant L6 myotubes. Western blotting and immunofluorescence revealed that zinc exhibited insulin-like glucose transporting effects by activating key markers that are involved in the insulin signaling cascade (including Akt, GLUT4 and GSK3β), and downregulating members of the insulin signaling feedback cascade such as mammalian target of rapamycin (mTOR) and ribosomal protein S6 kinase (S6K1). In normal L6 myotubes, zinc enhanced glucose consumption via a mechanism that might involve the activation of Akt phosphorylation, glucose transporter 4 (GLUT4) translocation and GSK3β phosphorylation. In contrast, zinc exerted insulin-mimetic effects in insulin-resistant L6 myotubes by upregulating Akt phosphorylation, GLUT4 translocation and GSK3β phosphorylation, and downregulating the expression of mTOR and S6K1. In conclusion, zinc might enhance glucose consumption by modulating insulin signaling pathways including Akt-GLUT4, GSK3β, mTOR and S6K1.
Collapse
Affiliation(s)
- Yuntang Wu
- Department of Nutrition and Food Hygiene, School of Public Health, Tianjin Medical University, Tianjin, China.
| | - Huizi Lu
- Tanggu Centers for Disease Control and Prevention, Tianjin Binhai New Area,Tianjin, China
| | - Huijun Yang
- Department of Nutrition and Food Hygiene, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Chunlei Li
- Department of Nutrition and Food Hygiene, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Qian Sang
- Department of Nutrition and Food Hygiene, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Xinyan Liu
- Department of Nutrition and Food Hygiene, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Yongzhe Liu
- Department of Toxicology, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Yongming Wang
- Department of Toxicology, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Zhong Sun
- Department of Epidemiology and biostatistics, School of Public Health, Tianjin Medical University, Tianjin, China
| |
Collapse
|
21
|
Kooijman S, Wang Y, Parlevliet ET, Boon MR, Edelschaap D, Snaterse G, Pijl H, Romijn JA, Rensen PCN. Central GLP-1 receptor signalling accelerates plasma clearance of triacylglycerol and glucose by activating brown adipose tissue in mice. Diabetologia 2015; 58:2637-46. [PMID: 26254578 PMCID: PMC4589565 DOI: 10.1007/s00125-015-3727-0] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 07/23/2015] [Indexed: 12/21/2022]
Abstract
AIMS/HYPOTHESIS Glucagon-like peptide 1 (GLP-1) receptor (GLP-1R) agonism, used in the treatment of type 2 diabetes, has recently been shown to increase thermogenesis via the brain. As brown adipose tissue (BAT) produces heat by burning triacylglycerol (TG) and takes up glucose for de novo lipogenesis, the aim of this study was to evaluate the potential of chronic central GLP-1R activation by exendin-4 to facilitate clearance of lipids and glucose from the circulation by activating BAT. METHODS Lean and diet-induced obese (DIO) C57Bl/6J mice were used to explore the effect of a 5 day intracerebroventricular infusion of the GLP-1 analogue exendin-4 or vehicle on lipid and glucose uptake by BAT in both insulin-sensitive and insulin-resistant conditions. RESULTS Central administration of exendin-4 in lean mice increased sympathetic outflow towards BAT and white adipose tissue (WAT), resulting in increased thermogenesis as evidenced by increased uncoupling protein 1 (UCP-1) protein levels and decreased lipid content, while the uptake of TG-derived fatty acids was increased in both BAT and WAT. Interestingly, in DIO mice, the effects on WAT were blunted, while exendin-4 still increased sympathetic outflow towards BAT and increased the uptake of plasma TG-derived fatty acids and glucose by BAT. These effects were accompanied by increased fat oxidation, lower plasma TG and glucose concentrations, and reduced body weight. CONCLUSIONS/INTERPRETATION Collectively, our results suggest that BAT activation may be a major contributor to the glucose- and TG-lowering effects of GLP-1R agonism.
Collapse
Affiliation(s)
- Sander Kooijman
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Room C7-Q44, Albinusdreef 2, PO Box 9600, 2300, RC, Leiden, the Netherlands.
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands.
| | - Yanan Wang
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Room C7-Q44, Albinusdreef 2, PO Box 9600, 2300, RC, Leiden, the Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Edwin T Parlevliet
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Room C7-Q44, Albinusdreef 2, PO Box 9600, 2300, RC, Leiden, the Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
- Department of Medicine, Academic Medical Center, Amsterdam, the Netherlands
| | - Mariëtte R Boon
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Room C7-Q44, Albinusdreef 2, PO Box 9600, 2300, RC, Leiden, the Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - David Edelschaap
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Room C7-Q44, Albinusdreef 2, PO Box 9600, 2300, RC, Leiden, the Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Gido Snaterse
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Room C7-Q44, Albinusdreef 2, PO Box 9600, 2300, RC, Leiden, the Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Hanno Pijl
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Room C7-Q44, Albinusdreef 2, PO Box 9600, 2300, RC, Leiden, the Netherlands
| | - Johannes A Romijn
- Department of Medicine, Academic Medical Center, Amsterdam, the Netherlands
| | - Patrick C N Rensen
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Room C7-Q44, Albinusdreef 2, PO Box 9600, 2300, RC, Leiden, the Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
22
|
Uno K, Yamada T, Ishigaki Y, Imai J, Hasegawa Y, Sawada S, Kaneko K, Ono H, Asano T, Oka Y, Katagiri H. A hepatic amino acid/mTOR/S6K-dependent signalling pathway modulates systemic lipid metabolism via neuronal signals. Nat Commun 2015; 6:7940. [PMID: 26268630 PMCID: PMC4557134 DOI: 10.1038/ncomms8940] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 06/30/2015] [Indexed: 12/15/2022] Open
Abstract
Metabolism is coordinated among tissues and organs via neuronal signals. Levels of circulating amino acids (AAs), which are elevated in obesity, activate the intracellular target of rapamycin complex-1 (mTORC1)/S6kinase (S6K) pathway in the liver. Here we demonstrate that hepatic AA/mTORC1/S6K signalling modulates systemic lipid metabolism via a mechanism involving neuronal inter-tissue communication. Hepatic expression of an AA transporter, SNAT2, activates the mTORC1/S6K pathway, and markedly elevates serum triglycerides (TGs), while downregulating adipose lipoprotein lipase (LPL). Hepatic Rheb or active-S6K expression have similar metabolic effects, whereas hepatic expression of dominant-negative-S6K inhibits TG elevation in SNAT2 mice. Denervation, pharmacological deafferentation and β-blocker administration suppress obesity-related hypertriglyceridemia with adipose LPL upregulation, suggesting that signals are transduced between liver and adipose tissue via a neuronal pathway consisting of afferent vagal and efferent sympathetic nerves. Thus, the neuronal mechanism uncovered here serves to coordinate amino acid and lipid levels and contributes to the development of obesity-related hypertriglyceridemia.
Collapse
Affiliation(s)
- Kenji Uno
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Tetsuya Yamada
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Yasushi Ishigaki
- Division of Diabetes and Metabolism, Iwate Medical University, Morioka 020-8505, Japan
| | - Junta Imai
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Yutaka Hasegawa
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Shojiro Sawada
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Keizo Kaneko
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Hiraku Ono
- The Fourth Department of Internal Medicine, Saitama Medical University, Saitama 350-0495, Japan
| | - Tomoichiro Asano
- Department of Medical Science, Graduate School of Medicine, University of Hiroshima, Hiroshima 734-8553, Japan
| | - Yoshitomo Oka
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Hideki Katagiri
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan.,Japan Science and Technology Agency, CREST, Sendai 980-8575, Japan
| |
Collapse
|
23
|
Gracia-Sancho J, Guixé-Muntet S, Hide D, Bosch J. Modulation of autophagy for the treatment of liver diseases. Expert Opin Investig Drugs 2014; 23:965-77. [DOI: 10.1517/13543784.2014.912274] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Jordi Gracia-Sancho
- Barcelona Hepatic Hemodynamic Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) – Hospital Clínic de Barcelona – CIBEREHD,
Barcelona, Spain ;
| | - Sergi Guixé-Muntet
- Barcelona Hepatic Hemodynamic Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) – Hospital Clínic de Barcelona – CIBEREHD,
Barcelona, Spain ;
| | - Diana Hide
- Barcelona Hepatic Hemodynamic Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) – Hospital Clínic de Barcelona – CIBEREHD,
Barcelona, Spain ;
| | | |
Collapse
|
24
|
Barazzoni R, Semolic A, Cattin MR, Zanetti M, Guarnieri G. Acylated ghrelin limits fat accumulation and improves redox state and inflammation markers in the liver of high-fat-fed rats. Obesity (Silver Spring) 2014; 22:170-7. [PMID: 23512916 DOI: 10.1002/oby.20454] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 02/28/2013] [Accepted: 02/28/2013] [Indexed: 12/30/2022]
Abstract
OBJECTIVE Obesity commonly causes hepatic lipid accumulation that may favor oxidative stress and inflammation with negative clinical impact. Acylated ghrelin (A-Ghr) modulates body lipid distribution and metabolism, and it may exert antioxidant effects in vitro as well as systemic anti-inflammatory effects in vivo. The impact of A-Ghr on liver triglyceride content, redox state and inflammation markers in diet-induced obesity was investigated. DESIGN AND METHODS A-Ghr (200-μg/injection: HFG) or saline (HF) were administered subcutaneously twice-daily for 4 days to 12-week-old male rats fed a high-fat diet for 1 month (n = 8-10/group). RESULTS Compared to lean animals, liver triglyceride accumulation occurred in HF despite enhanced phosphorylation of the lipid oxidation regulator AMPK and preserved mitochondrial enzyme activities. High triglycerides were accompanied by pro-oxidant changes in redox state and proinflammatory changes in NF-kB and TNF-alpha. A-Ghr limited liver triglyceride excess (P < 0.05 HF > HFG > Control) with concomitant activation of glutathione peroxidase and normalized redox state and cytokines. A-Ghr-induced liver changes were associated with higher plasma adiponectin and lower circulating fatty acids (P < 0.05 HFG vs. HF) CONCLUSIONS A-Ghr limits liver triglyceride accumulation and normalizes tissue redox state and inflammation markers in diet-induced obese rats. These results suggest a favorable impact of A-Ghr on hepatic complications of diet-induced obesity.
Collapse
Affiliation(s)
- Rocco Barazzoni
- Clinica Medica, Department of Medical, Surgical and Health Sciences, University of Trieste, Italy
| | | | | | | | | |
Collapse
|
25
|
TOR-centric view on insulin resistance and diabetic complications: perspective for endocrinologists and gerontologists. Cell Death Dis 2013; 4:e964. [PMID: 24336084 PMCID: PMC3877573 DOI: 10.1038/cddis.2013.506] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 11/11/2013] [Accepted: 11/13/2013] [Indexed: 01/06/2023]
Abstract
This article is addressed to endocrinologists treating patients with diabetic complications as well as to basic scientists studying an elusive link between diseases and aging. It answers some challenging questions. What is the link between insulin resistance (IR), cellular aging and diseases? Why complications such as retinopathy may paradoxically precede the onset of type II diabetes. Why intensive insulin therapy may initially worsen retinopathy. How nutrient- and insulin-sensing mammalian target of rapamycin (mTOR) pathway can drive insulin resistance and diabetic complications. And how rapamycin, at rational doses and schedules, may prevent IR, retinopathy, nephropathy and beta-cell failure, without causing side effects.
Collapse
|
26
|
Abstract
mTOR [mammalian (or mechanistic) target of rapamycin] is a protein kinase that, as part of mTORC1 (mTOR complex 1), acts as a critical molecular link between growth signals and the processes underlying cell growth. Although there has been intense interest in the upstream mechanisms regulating mTORC1, the full repertoire of downstream molecular events through which mTORC1 signalling promotes cell growth is only recently coming to light. It is now recognized that mTORC1 promotes cell growth and proliferation in large part through the activation of key anabolic processes. Through a variety of downstream targets, mTORC1 alters cellular metabolism to drive the biosynthesis of building blocks and macromolecules fundamentally essential for cell growth, including proteins, lipids and nucleic acids. In the present review, we focus on the metabolic functions of mTORC1 as they relate to the control of cell growth and proliferation. As mTORC1 is aberrantly activated in a number of tumour syndromes and up to 80% of human cancers, we also discuss the importance of this mTORC1-driven biosynthetic programme in tumour growth and progression.
Collapse
|
27
|
Dibble CC, Manning BD. Signal integration by mTORC1 coordinates nutrient input with biosynthetic output. Nat Cell Biol 2013; 15:555-64. [PMID: 23728461 DOI: 10.1038/ncb2763] [Citation(s) in RCA: 569] [Impact Index Per Article: 47.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Flux through metabolic pathways is inherently sensitive to the levels of specific substrates and products, but cellular metabolism is also managed by integrated control mechanisms that sense the nutrient and energy status of a cell or organism. The mechanistic target of rapamycin complex 1 (mTORC1), a protein kinase complex ubiquitous to eukaryotic cells, has emerged as a critical signalling node that links nutrient sensing to the coordinated regulation of cellular metabolism. Here, we discuss the role of mTORC1 as a conduit between cellular growth conditions and the anabolic processes that promote cell growth. The emerging network of signalling pathways through which mTORC1 integrates systemic signals (secreted growth factors) with local signals (cellular nutrients - amino acids, glucose and oxygen - and energy, ATP) is detailed. Our expanding understanding of the regulatory network upstream of mTORC1 provides molecular insights into the integrated sensing mechanisms by which diverse cellular signals converge to control cell physiology.
Collapse
Affiliation(s)
- Christian C Dibble
- Division of Signal Transduction, Beth Israel Deaconess Medical Center, Systems Biology Department, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
28
|
Papáčková Z, Daňková H, Páleníčková E, Kazdová L, Cahová M. Effect of short- and long-term high-fat feeding on autophagy flux and lysosomal activity in rat liver. Physiol Res 2013; 61:S67-76. [PMID: 23130905 DOI: 10.33549/physiolres.932394] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Autophagy-lysosomal pathway is a cellular mechanism ensuring degradation of various macromolecules like proteins or triacylglycerols (TAG). Its disruption is related to many pathological states, including liver steatosis. We compared the effect of short- and long-established steatosis on the intensity of autophagy-lysosomal pathway in rat liver. The experiments were carried out on 3-month old Wistar rats fed standard (SD) or high-fat diet for 2 (HF-2) or 10 (HF-10) weeks. HF diet administered animals accumulated an increased amount of TAG in the liver (HF-2->HF-10). Autophagy flux was up-regulated in HF-2 group but nearly inhibited after 10 weeks of HF administration. The expression of autophagy related genes was up-regulated in HF-2 but normal in HF-10. In contrast, total activities of two lysosomal enzymes, lysosomal lipase (LAL) and acid phosphatase, were unaffected in HF-2 but significantly increased in HF-10 groups. mRNA expression of lysosomal enzymes was not affected by the diet. We conclude that in a state of metabolic unbalance (steatosis), autophagy machinery and lysosomal enzymes expression are regulated independently. The accumulation of TAG in the liver is associated with the increase of total LAL activity and protein expression. In contrast, the autophagy response is bi-phasic and after rapid increase it is significantly diminished. This may represent an adaptive mechanism that counteracts the excessive degradation of substrate, i.e. TAG, and eliminate over-production of potentially hazardous lipid-degradation intermediates.
Collapse
Affiliation(s)
- Z Papáčková
- Institute for Clinical and Experimental Medicine, Department of Metabolism and Diabetes, Prague, Czech Republic.
| | | | | | | | | |
Collapse
|
29
|
Wiza C, Herzfeld de Wiza D, Nascimento EBM, Lehr S, Al-Hasani H, Ouwens DM. Knockdown of PRAS40 inhibits insulin action via proteasome-mediated degradation of IRS1 in primary human skeletal muscle cells. Diabetologia 2013; 56:1118-28. [PMID: 23460019 DOI: 10.1007/s00125-013-2861-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2012] [Accepted: 01/23/2013] [Indexed: 10/27/2022]
Abstract
AIMS/HYPOTHESIS The proline-rich Akt substrate of 40 kDa (PRAS40) is a component of the mammalian target of rapamycin complex 1 (mTORC1) and among the most prominent Akt substrates in skeletal muscle. Yet the cellular functions of PRAS40 are incompletely defined. This study assessed the function of PRAS40 in insulin action in primary human skeletal muscle cells (hSkMC). METHODS Insulin action was examined in hSkMC following small interfering RNA-mediated silencing of PRAS40 (also known as AKT1S1) under normal conditions and following chemokine-induced insulin resistance. RESULTS PRAS40 knockdown (PRAS40-KD) in hSkMC decreased insulin-mediated phosphorylation of Akt by 50% (p < 0.05) as well as of the Akt substrates glycogen synthase kinase 3 (40%) and tuberous sclerosis complex 2 (32%) (both p < 0.05). Furthermore, insulin-stimulated glucose uptake was reduced by 20% in PRAS40-KD myotubes (p < 0.05). Exposing PRAS40-KD myotubes to chemokines caused no additional deterioration of insulin action. PRAS40-KD further reduced insulin-mediated phosphorylation of the mTORC1-regulated proteins p70S6 kinase (p70S6K) (47%), S6 (43%), and eukaryotic elongation 4E-binding protein 1 (100%), as well as protein levels of growth factor receptor bound protein 10 (35%) (all p < 0.05). The inhibition of insulin action in PRAS40-KD myotubes was associated with a reduction in IRS1 protein levels (60%) (p < 0.05), and was reversed by pharmacological proteasome inhibition. Accordingly, expression of the genes encoding E3-ligases F-box protein 32 (also known as atrogin-1) and muscle RING-finger protein-1 and activity of the proteasome was elevated in PRAS40-KD myotubes. CONCLUSIONS/INTERPRETATION Inhibition of insulin action in PRAS40-KD myotubes was found to associate with IRS1 degradation promoted by increased proteasome activity rather than hyperactivation of the p70S6K-negative-feedback loop. These findings identify PRAS40 as a modulator of insulin action.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/antagonists & inhibitors
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Cells, Cultured
- Chemokine CCL2/metabolism
- Chemokines/metabolism
- Down-Regulation/drug effects
- Female
- Gene Silencing
- Humans
- Hypoglycemic Agents/pharmacology
- Insulin Receptor Substrate Proteins/metabolism
- Insulin Resistance
- Insulin, Regular, Pork/pharmacology
- Intercellular Signaling Peptides and Proteins
- Male
- Muscle, Skeletal/cytology
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/immunology
- Muscle, Skeletal/metabolism
- Phosphorylation/drug effects
- Proteasome Endopeptidase Complex/drug effects
- Proteasome Endopeptidase Complex/metabolism
- Protein Processing, Post-Translational/drug effects
- Proteolysis/drug effects
- Proto-Oncogene Proteins c-akt/metabolism
- RNA, Small Interfering
- Recombinant Proteins/metabolism
- Up-Regulation/drug effects
Collapse
Affiliation(s)
- C Wiza
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Auf´m Hennekamp 65, 40225 Düsseldorf, Germany
| | | | | | | | | | | |
Collapse
|
30
|
Theytaz F, Noguchi Y, Egli L, Campos V, Buehler T, Hodson L, Patterson BW, Nishikata N, Kreis R, Mittendorfer B, Fielding B, Boesch C, Tappy L. Effects of supplementation with essential amino acids on intrahepatic lipid concentrations during fructose overfeeding in humans. Am J Clin Nutr 2012; 96:1008-16. [PMID: 23034968 DOI: 10.3945/ajcn.112.035139] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND A high dietary protein intake has been shown to blunt the deposition of intrahepatic lipids in high-fat- and high-carbohydrate-fed rodents and humans. OBJECTIVE The aim of this study was to evaluate the effect of essential amino acid supplementation on the increase in hepatic fat content induced by a high-fructose diet in healthy subjects. DESIGN Nine healthy male volunteers were studied on 3 occasions in a randomized, crossover design after 6 d of dietary intervention. Dietary conditions consisted of a weight-maintenance balanced diet (control) or the same balanced diet supplemented with 3 g fructose · kg(-1) · d(-1) and 6.77 g of a mixture of 5 essential amino acids 3 times/d (leucine, isoleucine, valine, lysine, and threonine) (HFrAA) or with 3 g fructose · kg(-1) · d(-1) and a maltodextrin placebo 3 times/d (HFr); there was a washout period of 4 to 10 wk between each condition. For each condition, the intrahepatocellular lipid (IHCL) concentration, VLDL-triglyceride concentration, and VLDL-[(13)C]palmitate production were measured after oral loading with [(13)C]fructose. RESULTS HFr increased the IHCL content (1.27 ± 0.31 compared with 2.74 ± 0.55 vol %; P < 0.05) and VLDL-triglyceride (0.55 ± 0.06 compared with 1.40 ± 0.15 mmol/L; P < 0.05). HFr also enhanced VLDL-[(13)C]palmitate production. HFrAA significantly decreased IHCL compared with HFr (to 2.30 ± 0.43 vol%; P < 0.05) but did not change VLDL-triglyceride concentrations or VLDL-[(13)C]palmitate production. CONCLUSIONS Supplementation with essential amino acids blunts the fructose-induced increase in IHCL but not hypertriglyceridemia. This is not because of inhibition of VLDL-[(13)C]palmitate production. This trial was registered at www.clinicaltrials.gov as NCT01119989.
Collapse
Affiliation(s)
- Fanny Theytaz
- Department of Physiology, University of Lausanne, Lausanne, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Watterson KR, Bestow D, Gallagher J, Hamilton DL, Ashford FB, Meakin PJ, Ashford ML. Anorexigenic and orexigenic hormone modulation of mammalian target of rapamycin complex 1 activity and the regulation of hypothalamic agouti-related protein mRNA expression. Neurosignals 2012; 21:28-41. [PMID: 22456226 PMCID: PMC3704126 DOI: 10.1159/000334144] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Revised: 09/30/2011] [Accepted: 09/30/2011] [Indexed: 12/16/2022] Open
Abstract
Activation of mammalian target of rapamycin 1 (mTORC1) by nutrients, insulin and leptin leads to appetite suppression (anorexia). Contrastingly, increased AMP-activated protein kinase (AMPK) activity by ghrelin promotes appetite (orexia). However, the interplay between these mechanisms remains poorly defined. The relationship between the anorexigenic hormones, insulin and leptin, and the orexigenic hormone, ghrelin, on mTORC1 signalling was examined using S6 kinase phosphorylation as a marker for changes in mTORC1 activity in mouse hypothalamic GT1-7 cells. Additionally, the contribution of AMPK and mTORC1 signalling in relation to insulin-, leptin- and ghrelin-driven alterations to mouse hypothalamic agouti-related protein (AgRP) mRNA levels was examined. Insulin and leptin increase mTORC1 activity in a phosphoinositide-3-kinase (PI3K)- and protein kinase B (PKB)-dependent manner, compared to vehicle controls, whereas increasing AMPK activity inhibits mTORC1 activity and blocks the actions of the anorexigenic hormones. Ghrelin mediates an AMPK-dependent decrease in mTORC1 activity and increases hypothalamic AgRP mRNA levels, the latter effect being prevented by insulin in an mTORC1-dependent manner. In conclusion, mTORC1 acts as an integration node in hypothalamic neurons for hormone-derived PI3K and AMPK signalling and mediates at least part of the assimilated output of anorexigenic and orexigenic hormone actions in the hypothalamus.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Michael L.J. Ashford
- Medical Research Institute, Division of Cardiovascular and Diabetes Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| |
Collapse
|
32
|
Metabolic effects of lactoferrin during energy restriction and weight regain in diet-induced obese mice. J Funct Foods 2012. [DOI: 10.1016/j.jff.2011.08.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
33
|
Adams SH. Emerging perspectives on essential amino acid metabolism in obesity and the insulin-resistant state. Adv Nutr 2011; 2:445-56. [PMID: 22332087 PMCID: PMC3226382 DOI: 10.3945/an.111.000737] [Citation(s) in RCA: 306] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Dysregulation of insulin action is most often considered in the context of impaired glucose homeostasis, with the defining feature of diabetes mellitus being elevated blood glucose concentration. Complications arising from the hyperglycemia accompanying frank diabetes are well known and epidemiological studies point to higher risk toward development of metabolic disease in persons with impaired glucose tolerance. Although the central role of proper blood sugar control in maintaining metabolic health is well established, recent developments have begun to shed light on associations between compromised insulin action [obesity, prediabetes, and type 2 diabetes mellitus (T2DM)] and altered intermediary metabolism of fats and amino acids. For amino acids, changes in blood concentrations of select essential amino acids and their derivatives, in particular BCAA, sulfur amino acids, tyrosine, and phenylalanine, are apparent with obesity and insulin resistance, often before the onset of clinically diagnosed T2DM. This review provides an overview of these changes and places recent observations from metabolomics research into the context of historical reports in the areas of biochemistry and nutritional biology. Based on this synthesis, a model is proposed that links the FFA-rich environment of obesity/insulin resistance and T2DM with diminution of BCAA catabolic enzyme activity, changes in methionine oxidation and cysteine/cystine generation, and tissue redox balance (NADH/NAD+).
Collapse
|
34
|
Shi J, Tauriainen E, Martonen E, Finckenberg P, Ahlroos-Lehmus A, Tuomainen A, Pilvi TK, Korpela R, Mervaala EM. Whey protein isolate protects against diet-induced obesity and fatty liver formation. Int Dairy J 2011. [DOI: 10.1016/j.idairyj.2011.03.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
35
|
Kenerson HL, Yeh MM, Yeung RS. Tuberous sclerosis complex-1 deficiency attenuates diet-induced hepatic lipid accumulation. PLoS One 2011; 6:e18075. [PMID: 21479224 PMCID: PMC3066210 DOI: 10.1371/journal.pone.0018075] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Accepted: 02/24/2011] [Indexed: 12/26/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is causally linked to type 2 diabetes, insulin resistance and dyslipidemia. In a normal liver, insulin suppresses gluconeogenesis and promotes lipogenesis. In type 2 diabetes, the liver exhibits selective insulin resistance by failing to inhibit hepatic glucose production while maintaining triglyceride synthesis. Evidence suggests that the insulin pathway bifurcates downstream of Akt to regulate these two processes. Specifically, mTORC1 has been implicated in lipogenesis, but its role on hepatic steatosis has not been examined. Here, we generated mice with hepatocyte-specific deletion of Tsc1 to study the effects of constitutive mTORC1 activation in the liver. These mice developed normally but displayed mild hepatomegaly and insulin resistance without obesity. Unexpectedly, the Tsc1-null livers showed minimal signs of steatosis even under high-fat diet condition. This 'resistant' phenotype was reversed by rapamycin and could be overcome by the expression of Myr-Akt. Moreover, rapamycin failed to reduce hepatic triglyceride levels in models of steatosis secondary to Pten ablation in hepatocytes or high-fat diet in wild-type mice. These observations suggest that mTORC1 is neither necessary nor sufficient for steatosis. Instead, Akt and mTORC1 have opposing effects on hepatic lipid accumulation such that mTORC1 protects against diet-induced steatosis. Specifically, mTORC1 activity induces a metabolic shift towards fat utilization and glucose production in the liver. These findings provide novel insights into the role of mTORC1 in hepatic lipid metabolism.
Collapse
Affiliation(s)
- Heidi L. Kenerson
- Department of Surgery, University of Washington, Seattle, Washington, United States of America
| | - Matthew M. Yeh
- Department of Pathology, University of Washington, Seattle, Washington, United States of America
| | - Raymond S. Yeung
- Department of Surgery, University of Washington, Seattle, Washington, United States of America
- Department of Pathology, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
36
|
Howell JJ, Manning BD. mTOR couples cellular nutrient sensing to organismal metabolic homeostasis. Trends Endocrinol Metab 2011; 22:94-102. [PMID: 21269838 PMCID: PMC3744367 DOI: 10.1016/j.tem.2010.12.003] [Citation(s) in RCA: 266] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Revised: 12/21/2010] [Accepted: 12/29/2010] [Indexed: 02/08/2023]
Abstract
The mammalian target of rapamycin complex 1 (mTORC1) has the ability to sense a variety of essential nutrients and respond by altering cellular metabolic processes. Hence, this protein kinase complex is poised to influence adaptive changes to nutrient fluctuations toward the maintenance of whole-body metabolic homeostasis. Defects in mTORC1 regulation, arising from either physiological or genetic conditions, are believed to contribute to the metabolic dysfunction underlying a variety of human diseases, including type 2 diabetes. We are just now beginning to gain insights into the complex tissue-specific functions of mTORC1. In this review, we detail the current knowledge of the physiological functions of mTORC1 in controlling systemic metabolism, with a focus on advances obtained through genetic mouse models.
Collapse
Affiliation(s)
| | - Brendan D. Manning
- Correspondence to: 665 Huntington Ave., SPH2-117, Boston, MA 02115, Phone: 617 432-5614, Fax: 617 432-5236,
| |
Collapse
|
37
|
Parlevliet ET, de Leeuw van Weenen JE, Romijn JA, Pijl H. GLP-1 treatment reduces endogenous insulin resistance via activation of central GLP-1 receptors in mice fed a high-fat diet. Am J Physiol Endocrinol Metab 2010; 299:E318-24. [PMID: 20530733 DOI: 10.1152/ajpendo.00191.2010] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Glucagon-like peptide-1 (GLP-1) improves insulin sensitivity in humans and rodents. It is currently unknown to what extent the (metabolic) effects of GLP-1 treatment are mediated by central GLP-1 receptors. We studied the impact of central GLP-1 receptor (GLP-1R) antagonism on the metabolic effects of peripheral GLP-1 administration in mice. High-fat-fed insulin-resistant C57Bl/6 mice were treated with continuous subcutaneous infusion of GLP-1 or saline (PBS) for 2 wk, whereas the GLP-1R antagonist exendin-9 (EX-9) and cerebrospinal fluid (CSF) were simultaneously infused in the left lateral cerebral ventricle (icv). Glucose and glycerol turnover were determined during a hyperinsulinemic euglycemic clamp. VLDL-triglyceride (VLDL-TG) production was determined in hyperinsulinemic conditions. Our data show that the rate of glucose infusion necessary to maintain euglycemia was significantly increased by GLP-1. Simultaneous icv infusion of EX-9 diminished this effect by 62%. The capacities of insulin to stimulate glucose disposal and inhibit glucose production were reinforced by GLP-1. Simultaneous icv infusion of EX-9 significantly diminished the latter effect. Central GLP-1R antagonism alone did not affect glucose metabolism. Also, GLP-1 treatment reinforced the inhibitory action of insulin on VLDL-TG production. In conclusion, peripheral administration of GLP-1 reinforces the ability of insulin to suppress endogenous glucose and VLDL-TG production (but not lipolysis) and boosts its capacity to stimulate glucose disposal in high-fat-fed C57Bl/6 mice. Activation of central GLP-1Rs contributes substantially to the inhibition of endogenous glucose production by GLP-1 treatment in this animal model.
Collapse
Affiliation(s)
- Edwin T Parlevliet
- Department of Endocrinology and Metabolic Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | |
Collapse
|
38
|
van den Berg SA, Guigas B, Bijland S, Ouwens M, Voshol PJ, Frants RR, Havekes LM, Romijn JA, van Dijk KW. High levels of dietary stearate promote adiposity and deteriorate hepatic insulin sensitivity. Nutr Metab (Lond) 2010; 7:24. [PMID: 20346174 PMCID: PMC2852377 DOI: 10.1186/1743-7075-7-24] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Accepted: 03/27/2010] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Relatively little is known about the role of specific saturated fatty acids in the development of high fat diet induced obesity and insulin resistance. Here, we have studied the effect of stearate in high fat diets (45% energy as fat) on whole body energy metabolism and tissue specific insulin sensitivity. METHODS C57Bl/6 mice were fed a low stearate diet based on palm oil or one of two stearate rich diets, one diet based on lard and one diet based on palm oil supplemented with tristearin (to the stearate level of the lard based diet), for a period of 5 weeks. Ad libitum fed Oxidative metabolism was assessed by indirect calorimetry at week 5. Changes in body mass and composition was assessed by DEXA scan analysis. Tissue specific insulin sensitivity was assessed by hyperinsulinemic-euglycemic clamp analysis and Western blot at the end of week 5. RESULTS Indirect calorimetry analysis revealed that high levels of dietary stearate resulted in lower caloric energy expenditure characterized by lower oxidation of fatty acids. In agreement with this metabolic phenotype, mice on the stearate rich diets gained more adipose tissue mass. Whole body and tissue specific insulin sensitivity was assessed by hyperinsulinemic-euglycemic clamp and analysis of insulin induced PKBser473 phosphorylation. Whole body insulin sensitivity was decreased by all high fat diets. However, while insulin-stimulated glucose uptake by peripheral tissues was impaired by all high fat diets, hepatic insulin sensitivity was affected only by the stearate rich diets. This tissue-specific pattern of reduced insulin sensitivity was confirmed by similar impairment in insulin-induced phosphorylation of PKBser473 in both liver and skeletal muscle. CONCLUSION In C57Bl/6 mice, 5 weeks of a high fat diet rich in stearate induces a metabolic state favoring low oxidative metabolism, increased adiposity and whole body insulin resistance characterized by severe hepatic insulin resistance. These results indicate that dietary fatty acid composition per sé rather than dietary fat content determines insulin sensitivity in liver of high fat fed C57Bl/6 mice.
Collapse
Affiliation(s)
- Sjoerd Aa van den Berg
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Tao R, Gong J, Luo X, Zang M, Guo W, Wen R, Luo Z. AMPK exerts dual regulatory effects on the PI3K pathway. J Mol Signal 2010; 5:1. [PMID: 20167101 PMCID: PMC2848036 DOI: 10.1186/1750-2187-5-1] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Accepted: 02/18/2010] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND AMP-activated protein kinase (AMPK) is a fuel-sensing enzyme that is activated when cells experience energy deficiency and conversely suppressed in surfeit of energy supply. AMPK activation improves insulin sensitivity via multiple mechanisms, among which AMPK suppresses mTOR/S6K-mediated negative feedback regulation of insulin signaling. RESULTS In the present study we further investigated the mechanism of AMPK-regulated insulin signaling. Our results showed that 5-aminoimidazole-4-carboxamide-1 ribonucleoside (AICAR) greatly enhanced the ability of insulin to stimulate the insulin receptor substrate-1 (IRS1)-associated PI3K activity in differentiated 3T3-F442a adipocytes, leading to increased Akt phosphorylation at S473, whereas insulin-stimulated activation of mTOR was diminished. In 3T3-F442a preadipocytes, these effects were attenuated by expression of a dominant negative mutant of AMPK alpha1 subunit. The enhancing effect of ACIAR on Akt phosphorylation was also observed when the cells were treated with EGF, suggesting that it is regulated at a step beyond IR/IRS1. Indeed, when the cells were chronically treated with AICAR in the absence of insulin, Akt phosphorylation was progressively increased. This event was associated with an increase in levels of phosphatidylinositol -3,4,5-trisphosphate (PIP3) and blocked by Wortmannin. We then expressed the dominant negative mutant of PTEN (C124S) and found that the inhibition of endogenous PTEN per se did not affect phosphorylation of Akt at basal levels or upon treatment with AICAR or insulin. Thus, this result suggests that AMPK activation of Akt is not mediated by regulating phosphatase and tensin homologue (PTEN). CONCLUSION Our present study demonstrates that AMPK exerts dual effects on the PI3K pathway, stimulating PI3K/Akt and inhibiting mTOR/S6K.
Collapse
Affiliation(s)
- Rong Tao
- Department of Medicine, Molecular Medicine PhD Program, Boston University School of Medicine, 715 Albany Street, Evans 643, Boston, MA 02118, USA
| | - Jun Gong
- Department of Biochemistry, Boston University School of Medicine, 715 Albany Street, Evans 643, Boston, MA 02118, USA
| | - Xixi Luo
- Department of Medicine, Section of Hematology and Oncology, University of Chicago, 5812 South Ellis Avenue, Chicago, IL 60637, USA
| | - Mengwei Zang
- Department of Medicine, Boston University School of Medicine, 610 Albany Street, Boston, MA 02118, USA
| | - Wen Guo
- Department of Medicine, Boston University School of Medicine, 610 Albany Street, Boston, MA 02118, USA
| | - Rong Wen
- Bascom Palmer Eye Institute, University of Miami, Miller School of Medicine, 1638 NW 10th Avenue, Miami, FL 33136, USA
| | - Zhijun Luo
- Department of Biochemistry, Boston University School of Medicine, 715 Albany Street, Evans 643, Boston, MA 02118, USA
- Department of Medicine, Boston University School of Medicine, 610 Albany Street, Boston, MA 02118, USA
| |
Collapse
|
40
|
Rivas DA, Lessard SJ, Coffey VG. mTOR function in skeletal muscle: a focal point for overnutrition and exercise. Appl Physiol Nutr Metab 2009; 34:807-16. [DOI: 10.1139/h09-073] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The mammalian target of rapamycin (mTOR) is a highly conserved atypical serine–threonine kinase that controls numerous functions essential for cell homeostasis and adaptation in mammalian cells via 2 distinct protein complex formations. Moreover, mTOR is a key regulatory protein in the insulin signalling cascade and has also been characterized as an insulin-independent nutrient sensor that may represent a critical mediator in obesity-related impairments of insulin action in skeletal muscle. Exercise characterizes a remedial modality that enhances mTOR activity and subsequently promotes beneficial metabolic adaptation in skeletal muscle. Thus, the metabolic effects of nutrients and exercise have the capacity to converge at the mTOR protein complexes and subsequently modify mTOR function. Accordingly, the aim of the present review is to highlight the role of mTOR in the regulation of insulin action in response to overnutrition and the capacity for exercise to enhance mTOR activity in skeletal muscle.
Collapse
Affiliation(s)
- Donato A. Rivas
- Exercise Metabolism Group, School of Medical Sciences, RMIT University, Bundoora, Victoria 3083, Australia
- The Research Division, Joslin Diabetes Center and Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
| | - Sarah J. Lessard
- Exercise Metabolism Group, School of Medical Sciences, RMIT University, Bundoora, Victoria 3083, Australia
- The Research Division, Joslin Diabetes Center and Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
| | - Vernon G. Coffey
- Exercise Metabolism Group, School of Medical Sciences, RMIT University, Bundoora, Victoria 3083, Australia
- The Research Division, Joslin Diabetes Center and Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
41
|
Abstract
Alterations in signalling via protein kinase B (PKB/Akt) and the mammalian target of rapamycin (mTOR) frequently occur in type 2 diabetes and various human malignancies. Proline-rich Akt substrate of 40-kDa (PRAS40) has a regulatory function at the intersection of these pathways. The interaction of PRAS40 with the mTOR complex 1 (mTORC1) inhibits the activity of mTORC1. Phosphorylation of PRAS40 by PKB/Akt and mTORC1 disrupts the binding between mTORC1 and PRAS40, and relieves the inhibitory constraint of PRAS40 on mTORC1 activity. This review summarizes the signalling pathways regulating PRAS40 phosphorylation, as well as the dual function of PRAS40 as substrate and inhibitor of mTORC1 in the physiological situation, and under pathological conditions, such as insulin resistance and cancer.
Collapse
Affiliation(s)
- Emmani B M Nascimento
- Department of Molecular Cell Biology, Section Signal Transduction and Ageing, Leiden University Medical Centre, Leiden, The Netherlands
| | | |
Collapse
|
42
|
Vodenik B, Rovira J, Campistol JM. Mammalian target of rapamycin and diabetes: what does the current evidence tell us? Transplant Proc 2009; 41:S31-8. [PMID: 19651294 DOI: 10.1016/j.transproceed.2009.06.159] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
New-onset diabetes mellitus after transplantation (NODAT) is a serious complication in organ transplantation; not only does it enhance the risk of graft dysfunction, it also increases cardiovascular morbidity and mortality. The mammalian target of rapamycin (mTOR) is regulated independently by insulin, amino acids, and energy sufficiency. It integrates signal from growth factors, hormones, nutrients, and cellular energy levels to regulate protein translation and cell growth, proliferation, and survival. In addition, mTOR generates an inhibitory feedback loop on insulin receptor substrate (IRS) proteins. Therefore, it was suggested that mTOR might link nutrient excess with both obesity and insulin resistance. In this review, we summarize the role of mTOR and its inhibitor sirolimus (SRL) on chronic hyperglycemia and insulin resistance in beta cells, adipose tissue, liver, and muscle. We further hypothesize, based on data from the literature and generated in our laboratory, that SRL could counteract the development of NODAT in stable glucose homeostasis due to its positive effects on insulin-stimulated glucose uptake, whereas in conditions that require an adaptive beta cell proliferation (such as pregnancy and weight increase), the administration of SRL might have effects that would promote the development of NODAT. Therefore, it seems crucial for patient outcome to consider these potentially contrasting effects of SRL.
Collapse
Affiliation(s)
- B Vodenik
- Department of Nephrology and Renal Transplantation, Laboratori Experimental de Nefrologia I Trasplantament (LENIT), Hospital Clinic i Provincial de Barcelona, Barcelona, Spain
| | | | | |
Collapse
|
43
|
Abstract
NAFLD (non-alcoholic fatty liver disease) refers to a wide spectrum of liver damage, ranging from simple steatosis to NASH (non-alcoholic steatohepatitis), advanced fibrosis and cirrhosis. NAFLD is strongly associated with insulin resistance and is defined by accumulation of liver fat >5% per liver weight in the presence of <10 g of daily alcohol consumption. The exact prevalence of NAFLD is uncertain because of the absence of simple non-invasive diagnostic tests to facilitate an estimate of prevalence. In certain subgroups of patients, such as those with Type 2 diabetes, the prevalence of NAFLD, defined by ultrasound, may be as high as 70%. NASH is an important subgroup within the spectrum of NAFLD that progresses over time with worsening fibrosis and cirrhosis, and is associated with increased risk for cardiovascular disease. It is, therefore, important to understand the pathogenesis of NASH and, in particular, to develop strategies for interventions to treat this condition. Currently, the 'gold standard' for the diagnosis of NASH is liver biopsy, and the need to undertake a biopsy has impeded research in subjects in this field. Limited results suggest that the prevalence of NASH could be as high as 11% in the general population, suggesting there is a worsening future public health problem in this field of medicine. With a burgeoning epidemic of diabetes in an aging population, it is likely that the prevalence of NASH will continue to increase over time as both factors are important risk factors for liver fibrosis. The purpose of this review is to: (i) briefly discuss the epidemiology of NAFLD to describe the magnitude of the future potential public health problem; and (ii) to discuss extra- and intra-hepatic mechanisms contributing to the pathogenesis of NAFLD, a better understanding of which may help in the development of novel treatments for this condition.
Collapse
|
44
|
Mori H, Inoki K, Münzberg H, Opland D, Faouzi M, Villanueva EC, Ikenoue T, Kwiatkowski D, MacDougald OA, Myers MG, Guan KL. Critical role for hypothalamic mTOR activity in energy balance. Cell Metab 2009; 9:362-74. [PMID: 19356717 PMCID: PMC2790375 DOI: 10.1016/j.cmet.2009.03.005] [Citation(s) in RCA: 148] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2008] [Revised: 11/10/2008] [Accepted: 03/11/2009] [Indexed: 01/21/2023]
Abstract
The mammalian target of rapamycin (mTOR) promotes anabolic cellular processes in response to growth factors and metabolic cues. The TSC1 and TSC2 tumor suppressors are major upstream inhibitory regulators of mTOR signaling. Mice with Rip2/Cre-mediated deletion of Tsc1 (Rip-Tsc1cKO mice) developed hyperphagia and obesity, suggesting that hypothalamic disruption (for which Rip2/Cre is well known) of Tsc1 may dysregulate feeding circuits via mTOR activation. Indeed, Rip-Tsc1cKO mice displayed increased mTOR signaling and enlarged neuron cell size in a number of hypothalamic populations, including Pomc neurons. Furthermore, Tsc1 deletion with Pomc/Cre (Pomc-Tsc1cKO mice) resulted in dysregulation of Pomc neurons and hyperphagic obesity. Treatment with the mTOR inhibitor, rapamycin, ameliorated the hyperphagia, obesity, and the altered Pomc neuronal morphology in developing or adult Pomc-Tsc1cKO mice, and cessation of treatment reinstated these phenotypes. Thus, ongoing mTOR activation in Pomc neurons blocks the catabolic function of these neurons to promote nutrient intake and increased adiposity.
Collapse
Affiliation(s)
- Hiroyuki Mori
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109
| | - Ken Inoki
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109
| | - Heike Münzberg
- Department of Medicine, University of Michigan, Ann Arbor, Michigan 48109
| | - Darren Opland
- Department of Medicine, University of Michigan, Ann Arbor, Michigan 48109
- Program in Neuroscience, University of Michigan, Ann Arbor, Michigan 48109
| | - Miro Faouzi
- Department of Medicine, University of Michigan, Ann Arbor, Michigan 48109
| | - Eneida C. Villanueva
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109
- Department of Medicine, University of Michigan, Ann Arbor, Michigan 48109
| | - Tsuneo Ikenoue
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109
| | - David Kwiatkowski
- Division of Translational Medicine, Department of Medicine, Brigham and Women’s Hospital Harvard Medical School, Boston, Massachusetts 02115
| | - Ormond A MacDougald
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109
- Department of Medicine, University of Michigan, Ann Arbor, Michigan 48109
| | - Martin G. Myers
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109
- Department of Medicine, University of Michigan, Ann Arbor, Michigan 48109
- Program in Neuroscience, University of Michigan, Ann Arbor, Michigan 48109
| | - Kun-Liang Guan
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109
- Institute of Gerontology, University of Michigan, Ann Arbor, Michigan 48109
- Department of Pharmacology and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093-0815
| |
Collapse
|
45
|
Mannack G, Graf D, Donner MM, Richter L, Gorg B, Vom Dahl S, Haussinger D, Schliess F. Taurolithocholic acid-3 sulfate impairs insulin signaling in cultured rat hepatocytes and perfused rat liver. Cell Physiol Biochem 2008; 21:137-50. [PMID: 18209481 DOI: 10.1159/000113756] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2007] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND/AIMS The role of bile acids for insulin resistance in cholestatic liver disease is unknown. METHODS The effect of taurolithocholic acid-3 sulfate (TLCS) on insulin signaling was studied in cultured rat hepatocytes and perfused rat liver. RESULTS TLCS induced insulin resistance at the level of insulin receptor (IR) beta Tyr(1158) phosphorylation, phosphoinositide (PI) 3-kinase activity and protein kinase (PK)B Ser(473) phosphorylation in cultured hepatocytes. Consistently, the insulin stimulation of the PI 3-kinase-dependent K(+) uptake, hepatocyte swelling and proteolysis inhibition was blunted by TLCS in perfused rat liver. The PKC inhibitor Go6850 and tauroursodeoxycholate (TUDC) counteracted the suppression of insulin-induced IRbeta and PKB phosphorylation by TLCS. Rapamycin and dibutyryl-cAMP, which inhibited basal signaling via mammalian target of rapamycin (mTOR), restored insulin-induced PKB- but not IRbeta phosphorylation. In livers from 7 day bile duct-ligated rats PKB Ser(473) phosphorylation was decreased by about 50%. CONCLUSION TLCS induces insulin resistance by a PKC-dependent suppression of insulin-induced IRbeta phosphorylation and the PI 3-kinase/PKB path. This can in part be compensated by a decrease of mTOR activity, which may release insulin-sensitive components downstream of the insulin receptor from tonic inhibition. The data suggest that retention of hydrophobic bile acids confers insulin resistance on the cholestatic liver.
Collapse
Affiliation(s)
- Gudrun Mannack
- Clinic for Gastroenterology, Hepatology and Infectiology, Heinrich-Heine-University Dusseldorf, Dusseldorf, Germany
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Korsheninnikova E, Voshol PJ, Baan B, van der Zon GCM, Havekes LM, Romijn JA, Maassen JA, Ouwens DM. Dynamics of insulin signalling in liver during hyperinsulinemic euglycaemic clamp conditions in vivo and the effects of high-fat feeding in male mice. Arch Physiol Biochem 2007; 113:173-85. [PMID: 18158643 DOI: 10.1080/13813450701669084] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Insulin is an important regulator of hepatic carbohydrate, lipid, and protein metabolism, and the regulation of these processes by insulin is disturbed under conditions of insulin resistance and type 2 diabetes. Despite these alterations, the impact of insulin resistance on insulin signalling in the liver is not well defined. Variations in time and dose of insulin stimulation as well as plasma glucose levels may underlie this. The present study aimed at determining the dynamics of activation of hepatic insulin signalling in vivo at insulin concentrations resembling those achieved after a meal, and addressing the effects of high-fat feeding. An unexpected finding of this study was the biphasic activation pattern of the IRS-PI3K-PKB/Akt pathway. Our findings indicate that the first burst of activation contributes to regulation of glucose metabolism. The physiological function of the second peak is still unknown, but may involve regulation of protein synthesis. Finally, high-fat feeding caused hepatic insulin resistance, as illustrated by a reduced suppression of hepatic glucose production. A sustained increased phosphorylation of the serine/threonine kinases p70S6kinase and Jun N-terminal kinase in the absence of insulin may underlie the abrogated phosphorylation of the IRS proteins and their downstream targets.
Collapse
Affiliation(s)
- E Korsheninnikova
- Departments of Molecular Cell Biology, Leiden University Medical Centre, Leiden, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|