1
|
Song S, Zhang Y, Qiao X, Duo Y, Xu J, Zhang J, Chen Y, Nie X, Sun Q, Yang X, Wang A, Lu Z, Sun W, Fu Y, Dong Y, Yuan T, Zhao W. Thyroid FT4-to-TSH ratio in the first trimester is associated with gestational diabetes mellitus in women carrying male fetus: a prospective bi-center cohort study. Front Endocrinol (Lausanne) 2024; 15:1427925. [PMID: 39678197 PMCID: PMC11637856 DOI: 10.3389/fendo.2024.1427925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 11/04/2024] [Indexed: 12/17/2024] Open
Abstract
Background Gestational diabetes mellitus (GDM) is one of the most common medical complications of pregnancy, which increases the risk of other pregnant complications and adverse perinatal outcomes. Thyroid dysfunction is closely with the risk of diabetes mellitus. However, the relationship between euthyroid function in early pregnancy and GDM is still controversial. Aims This study was to find the relationship between thyroid function within normal range during early pregnancy as well as glucose and lipids metabolisms as well as the risk of subsequent GDM. Methods A total of 1486 pregnant women were included in this prospective double-center cohort study. Free thyroxine (FT4), thyroid stimulating hormone (TSH) and antithyroid peroxidase antibodies (TPOAb) were tested during 6-12 weeks of gestation and oral glucose tolerance test (OGTT) was conducted during 24-28 weeks to screen GDM. Relative risks (RR) with 95% confidence intervals (CI) for subsequent risk of GDM by thyroid function quartiles were assessed adjusting for major risk factors. Results The incidence of GDM was 23.0% (342/1486). TSH, FT4 and the percentage of positive TPOAb were no significant difference between women with and without GDM, but FT4/TSH ratio was significantly higher in GDM group compared with NGT group [6.97(0.84,10.61) vs. 4.88(0.66,12.44), P=0.025)]. The linear trends of TC, TG, HDL-C, LDL-C, fasting glucose in the first trimester, insulin, C-peptide, HOMA-IR, fasting glucose during OGTT and incidence of GDM according to FT4/TSH ratio were all statistically significant. Further analysis based on fetal sex presented only the third quartile of FT4/TSH ratio in women carrying male fetus was associated with higher incidence of GDM statistically significant [RR (95% CI), 1.917 (1.143,3.216)], rather than in women carrying female fetus. Conclusions Thyroid function even in normal range is closely related to glucose and lipids metabolisms during the first trimester. Unappropriated FT4/TSH ratio in the first trimester is an independent risk factor of GDM in women carrying male fetus.
Collapse
Affiliation(s)
- Shuoning Song
- Department of Endocrinology, Key Laboratory of Endocrinology of Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Yuemei Zhang
- Department of Obstetrics, Haidian District Maternal and Child Health Care Hospital, Beijing, China
| | - Xiaolin Qiao
- Department of Obstetrics, Beijing Chaoyang District Maternal and Child Health Care Hospital, Beijing, China
| | - Yanbei Duo
- Department of Endocrinology, Key Laboratory of Endocrinology of Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Jiyu Xu
- Core Facility of Instrument, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Jing Zhang
- Department of Laboratory, Haidian District Maternal and Child Health Care Hospital, Beijing, China
| | - Yan Chen
- Department of Obstetrics, Beijing Chaoyang District Maternal and Child Health Care Hospital, Beijing, China
| | - Xiaorui Nie
- Department of Obstetrics, Beijing Chaoyang District Maternal and Child Health Care Hospital, Beijing, China
| | - Qiujin Sun
- Department of Clinical Laboratory, Beijing Chaoyang District Maternal and Child Health Care Hospital, Beijing, China
| | - Xianchun Yang
- Department of Clinical Laboratory, Beijing Chaoyang District Maternal and Child Health Care Hospital, Beijing, China
| | - Ailing Wang
- National Center for Women and Children’s Health, China Centers for Disease Control and Prevention (CDC), Beijing, China
| | - Zechun Lu
- National Center for Women and Children’s Health, China Centers for Disease Control and Prevention (CDC), Beijing, China
| | - Wei Sun
- Core Facility of Instrument, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Yong Fu
- Department of Endocrinology, Key Laboratory of Endocrinology of Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Yingyue Dong
- Department of Endocrinology, Key Laboratory of Endocrinology of Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Tao Yuan
- Department of Endocrinology, Key Laboratory of Endocrinology of Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Weigang Zhao
- Department of Endocrinology, Key Laboratory of Endocrinology of Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| |
Collapse
|
2
|
Miller B, Crider A, Aravamuthan B, Galindo R. Human chorionic gonadotropin decreases cerebral cystic encephalomalacia and parvalbumin interneuron degeneration in a pro-inflammatory model of mouse neonatal hypoxia-ischemia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.27.587006. [PMID: 38585735 PMCID: PMC10996598 DOI: 10.1101/2024.03.27.587006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
The pregnancy hormone, human chorionic gonadotropin (hCG) is an immunoregulatory and neurotrophic glycoprotein of potential clinical utility in the neonate at risk for cerebral injury. Despite its well-known role in its ability to modulate the innate immune response during pregnancy, hCG has not been demonstrated to affect the pro-degenerative actions of inflammation in neonatal hypoxia-ischemia (HI). Here we utilize a neonatal mouse model of mild HI combined with intraperitoneal administration of lipopolysaccharide (LPS) to evaluate the neuroprotective actions of hCG in the setting of endotoxin-mediated systemic inflammation. Intraperitoneal treatment of hCG shortly prior to LPS injection significantly decreased tissue loss and cystic degeneration in the hippocampal and cerebral cortex in the term-equivalent neonatal mouse exposed to mild HI. Noting that parvalbumin immunoreactive interneurons have been broadly implicated in neurodevelopmental disorders, it is notable that hCG significantly improved the injury-mediated reduction of these neurons in the cerebral cortex, striatum and hippocampus. The above findings were associated with a decrease in the amount of Iba1 immunoreactive microglia in most of these brain regions. These observations implicate hCG as an agent capable of improving the neurological morbidity associated with peripheral inflammation in the neonate affected by HI. Future preclinical studies should aim at demonstrating added neuroprotective benefit by hCG in the context of therapeutic hypothermia and further exploring the mechanisms responsible for this effect. This research is likely to advance the therapeutic role of gonadotropins as a treatment for neonates with neonatal brain injury.
Collapse
Affiliation(s)
- Ben Miller
- Department of Neurology, Division of Pediatric & Developmental Neurology, Washington University School of Medicine, St. Louis, MO, USA 63110
| | - Alexander Crider
- Department of Neurology, Division of Pediatric & Developmental Neurology, Washington University School of Medicine, St. Louis, MO, USA 63110
| | - Bhooma Aravamuthan
- Department of Neurology, Division of Pediatric & Developmental Neurology, Washington University School of Medicine, St. Louis, MO, USA 63110
| | - Rafael Galindo
- Department of Neurology, Division of Pediatric & Developmental Neurology, Washington University School of Medicine, St. Louis, MO, USA 63110
| |
Collapse
|
3
|
Mukherjee I, Singh S, Karmakar A, Kashyap N, Mridha AR, Sharma JB, Luthra K, Sharma RS, Biswas S, Dhar R, Karmakar S. New immune horizons in therapeutics and diagnostic approaches to Preeclampsia. Am J Reprod Immunol 2023; 89:e13670. [PMID: 36565013 DOI: 10.1111/aji.13670] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 11/02/2022] [Accepted: 12/10/2022] [Indexed: 12/25/2022] Open
Abstract
Hypertensive disorders of pregnancy (HDP) are one of the commonest maladies, affecting 5%-10% of pregnancies worldwide. The American College of Obstetricians and Gynecologists (ACOG) identifies four categories of HDP, namely gestational hypertension (GH), Preeclampsia (PE), chronic hypertension (CH), and CH with superimposed PE. PE is a multisystem, heterogeneous disorder that encompasses 2%-8% of all pregnancy-related complications, contributing to about 9% to 26% of maternal deaths in low-income countries and 16% in high-income countries. These translate to 50 000 maternal deaths and over 500 000 fetal deaths worldwide, therefore demanding high priority in understanding clinical presentation, screening, diagnostic criteria, and effective management. PE is accompanied by uteroplacental insufficiency leading to vascular and metabolic changes, vasoconstriction, and end-organ ischemia. PE is diagnosed after 20 weeks of pregnancy in women who were previously normotensive or hypertensive. Besides shallow trophoblast invasion and inadequate remodeling of uterine arteries, dysregulation of the nonimmune system has been the focal point in PE. This results from aberrant immune system activation and imbalanced differentiation of T cells. Further, a failure of tolerance toward the semi-allogenic fetus results due to altered distribution of Tregs such as CD4+FoxP3+ or CD4+CD25+CD127(low) FoxP3+ cells, thereby creating a cytotoxic environment by suboptimal production of immunosuppressive cytokines like IL-10, IL-4, and IL-13. Also, intracellular production of complement protein C5a may result in decreased FoxP3+ regulatory T cells. With immune system dysfunction as a major driver in PE pathogenesis, it is logical that therapeutic targeting of components of the immune system with pharmacologic agents like anti-inflammatory and immune-modulating molecules are either being used or under clinical trial. Cholesterol synthesis inhibitors like Pravastatin may improve placental perfusion in PE, while Eculizumab (monoclonal antibody inhibiting C5) and small molecular inhibitor of C5a, Zilucoplan are under investigation. Monoclonal antibody against IL-17(Secukinumab) has been proposed to alter the Th imbalance in PE. Autologous Treg therapy and immune checkpoint inhibitors like anti-CTLA-4 are emerging as new candidates in immune horizons for PE management in the future.
Collapse
Affiliation(s)
- Indrani Mukherjee
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India.,Amity Institute of Biotechnology (AIB), Amity University, Noida, India
| | - Sunil Singh
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Abhibrato Karmakar
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Neha Kashyap
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Asit Ranjan Mridha
- Department of Obstetrics & Gynaecology, All India Institute of Medical Sciences, New Delhi, India
| | - Jai Bhagwan Sharma
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Kalpana Luthra
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Radhey Shyam Sharma
- Ex-Head and Scientist G, Indian Council of Medical Research, New Delhi, India
| | - Subhrajit Biswas
- Amity Institute of Molecular Medicine & Stem Cell Research (AIMMSCR), Amity University, Noida, India
| | - Ruby Dhar
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Subhradip Karmakar
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
4
|
Sachdeva R, Pal R. A pregnancy hormone-cell death link promotes enhanced lupus-specific immunological effects. Front Immunol 2022; 13:1051779. [PMID: 36505418 PMCID: PMC9730325 DOI: 10.3389/fimmu.2022.1051779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/04/2022] [Indexed: 11/25/2022] Open
Abstract
Women of reproductive age demonstrate an increased incidence of systemic lupus erythematosus, and reproductive hormones have been implicated in disease progression. Additionally, pregnancy can be associated with disease "flares", the reasons for which remain obscure. While apoptotic bodies are believed to provide an autoantigenic trigger in lupus, whether autoantigenic constituents vary with varying cellular insults, and whether such variations can be immunologically consequential in the context of pregnancy, remains unknown. As assessed by antigenicity and mass spectrometry, apoptotic bodies elicited by different drugs demonstrated the differential presence of lupus-associated autoantigens, and varied in the ability to elicit lupus-associated cytokines from lupus splenocytes and alter the phenotype of lupus B cells. Immunization of tamoxifen-induced apoptotic bodies in lupus-prone mice generated higher humoral autoreactive responses than did immunization with cisplatin-induced apoptotic bodies, and both apoptotic bodies were poorly immunogenic in healthy mice. Incubation of lupus splenocytes (but not healthy splenocytes) with the pregnancy hormone human chorionic gonadotropin (hCG) along with tamoxifen-induced apoptotic bodies (but not cisplatin-induced apoptotic bodies) induced increases in the secretion of lupus-associated cytokines and in the up-modulation of B cell phenotypic markers. In addition, levels of secreted autoantibodies (including of specificities linked to lupus pathogenesis) were enhanced. These events were associated with the heightened phosphorylation of several signaling intermediates. Observations suggest that hCG is a potential disease-promoting co-stimulant in a lupus-milieu; when combined with specific apoptotic bodies, it enhances the intensity of multiple lupus-associated events. These findings deepen mechanistic insight into the hormone's links with autoreactive responses in lupus-prone mice and humans.
Collapse
|
5
|
Human Chorionic Gonadotropin and Early Embryogenesis: Review. Int J Mol Sci 2022; 23:ijms23031380. [PMID: 35163303 PMCID: PMC8835849 DOI: 10.3390/ijms23031380] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/20/2022] [Accepted: 01/23/2022] [Indexed: 12/27/2022] Open
Abstract
Human chorionic gonadotropin (hCG) has four major isoforms: classical hCG, hyperglycosylated hCG, free β subunit, and sulphated hCG. Classical hCG is the first molecule synthesized by the embryo. Its RNA is transcribed as early as the eight-cell stage and the blastocyst produces the protein before its implantation. This review synthetizes everything currently known on this multi-effect hormone: hCG levels, angiogenetic activity, immunological actions, and effects on miscarriages and thyroid function.
Collapse
|
6
|
Li S, Ma S, Zhao J, Hu J, Li H, Zhu Y, Jiang W, Cui L, Yan J, Chen ZJ. Non-Assisted Hatching Trophectoderm Biopsy Does Not Increase The Risks of Most Adverse Maternal and Neonatal Outcome and May Be More Practical for Busy Clinics: Evidence From China. Front Endocrinol (Lausanne) 2022; 13:819963. [PMID: 35250875 PMCID: PMC8892202 DOI: 10.3389/fendo.2022.819963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/13/2022] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE This study was conducted in order to investigate whether non-assisted hatching trophectoderm (TE) biopsy increases the risks of adverse perinatal outcomes in livebirths following elective single cryopreserved-thawed blastocyst transfer. PATIENTS AND METHODS A total of 5,412 cycles from 4,908 women who achieved singleton livebirths between 2013 and 2019 were included in this retrospective cohort study. All embryos in this study were fertilized by intracytoplasmic sperm injection (ICSI) and cryopreserved through vitrification. The main intervention is to open the zona pellucida (ZP) of day 5/6 blastocyst immediately for biopsy without pre-assisted hatching. The main outcome measures are the common maternal and neonatal outcomes, including hypertensive disorders of pregnancy (HDPs), gestational diabetes mellitus (GDM), abnormal placentation, abnormalities in umbilical cord and amniotic fluid, preterm birth, cesarean section, low birth weight, postpartum hemorrhage, and prolonged hospital stay (both mothers and infants). The generalized estimation equation (GEE) was used to control the effects of repeated measurements. The non-conditional logistic regression model was used to examine the associations between embryo biopsy status and each adverse perinatal event. Given that the selection bias and changes in learning curve might affect the results, we selected 1,086 similar (matching tolerance = 0.01) cycles from the ICSI group via propensity score matching (PSM) for second comparisons and adjustment (conditional logistic regression). RESULTS After adjusting for confounders, we confirmed that the non-assisted hatching protocol did not increase the risks of most adverse maternal and neonatal outcomes. Despite this, there were increased risks of GDM (aOR: 1.522, 95% CI: 1.141-2.031) and umbilical cord abnormalities (aOR: 11.539, 95% CI: 1.199-111.067) in the biopsy group. In the second comparisons after PSM, GDM incidence in the biopsy group was still higher (7.26% vs. 5.16%, P = 0.042), yet all measurement outcomes were equally likely to occur in both groups after the second adjustment. CONCLUSIONS The non-assisted hatching TE biopsy does not increase the risks of most adverse perinatal outcomes. However, there is a higher GDM incidence in the biopsy group, and this association warrants further study. Considering its safety and simplicity, the non-assisted hatching protocol has the potential to become the preferred option for TE biopsy, especially in busy clinics and IVF laboratories.
Collapse
Affiliation(s)
- Shuo Li
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong University, Jinan, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Shandong University, Jinan, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China
| | - Shuiying Ma
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Shandong University, Jinan, China
| | - Jialin Zhao
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong University, Jinan, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Shandong University, Jinan, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China
| | - Jingmei Hu
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong University, Jinan, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Shandong University, Jinan, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China
| | - Hongchang Li
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Shandong University, Jinan, China
| | - Yueting Zhu
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Shandong University, Jinan, China
| | - Wenjie Jiang
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Shandong University, Jinan, China
| | - Linlin Cui
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong University, Jinan, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Shandong University, Jinan, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China
- *Correspondence: Junhao Yan, ; Linlin Cui,
| | - Junhao Yan
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong University, Jinan, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Shandong University, Jinan, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China
- *Correspondence: Junhao Yan, ; Linlin Cui,
| | - Zi-Jiang Chen
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong University, Jinan, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Shandong University, Jinan, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
7
|
Liu Y, Guo F, Maraka S, Zhang Y, Zhang C, Korevaar TIM, Fan J. Associations between Human Chorionic Gonadotropin, Maternal Free Thyroxine, and Gestational Diabetes Mellitus. Thyroid 2021; 31:1282-1288. [PMID: 33619987 DOI: 10.1089/thy.2020.0920] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Background: Human chorionic gonadotropin (hCG) is a marker of placental function, which also stimulates the maternal thyroid gland. Maternal thyroid function can be associated with the pathophysiology of gestational diabetes mellitus (GDM). We aimed to study whether there is an association of hCG concentrations in early pregnancy with GDM and whether it is mediated through maternal thyroid hormones. Methods: This study included 18,683 pregnant women presenting at a tertiary hospital in Shanghai, China, between January 2015 and December 2016. GDM was diagnosed using a 2-hour, 75-g, oral glucose tolerance test (OGTT) according to the American Diabetes Association guidelines. Multivariable logistic or linear regression models were used to identify associations, adjusting for maternal age, education level, family history of diabetes, parity, fetal sex, thyroperoxidase antibody (TPOAb) status, and prepregnancy body-mass index. Results: Higher hCG concentrations were associated with a lower plasma glucose level during the OGTT, but not with fasting plasma glucose or hemoglobin A1c concentrations tested during early pregnancy. hCG in early pregnancy was negatively associated with GDM risk (p = 0.027). Mediation analysis identified that an estimated 21.4% of the association of hCG-associated GDM risk was mediated through changes in free thyroxine (fT4) concentrations (p < 0.05). In the sensitivity analysis restricted to TPOAb-positive women, hCG was not associated with GDM (p = 0.452). Conclusions: Higher hCG levels in early pregnancy are associated with a lower risk of GDM. Maternal fT4 may act as an important mediator in this association.
Collapse
Affiliation(s)
- Yindi Liu
- Department of Obstetrics, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Fei Guo
- Department of Obstetrics, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Spyridoula Maraka
- Division of Endocrinology and Metabolism, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
- Knowledge and Evaluation Research Unit in Endocrinology (KER_Endo), Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Yong Zhang
- Department of Obstetrics, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
- Shanghai Municipal Key Clinical Specialty, Shanghai, China
| | - Chen Zhang
- Department of Obstetrics, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Tim I M Korevaar
- Department of Internal Medicine, Academic Center for Thyroid Diseases, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Jianxia Fan
- Department of Obstetrics, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
- Shanghai Municipal Key Clinical Specialty, Shanghai, China
| |
Collapse
|
8
|
CHORIONIC GONADOTROPINE: STRUCTURAL HETEROGENEITY, METABOLIC PATHWAY, FUNCTIONS, OBTAINING AND POSSIBILITIES OF CLINICAL APPLICATION. BIOTECHNOLOGIA ACTA 2021. [DOI: 10.15407/biotech14.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Human chorionic gonadotropin (hCG) is one of the key hormones needed for pregnancy sustaining. At the same time, it performs many other biological functions, which is due to the effect on the immune cells’ activity, the ability to bind to at least three types of receptors and activate various signaling cascades. Several structural forms of hCG and their combinations have been identified. This structural heterogeneity is the cause of variations not only in the degree and direction of the hormone functional activity, but in the mechanisms of its action, the degree of binding to other molecules and the conditions of dissociation as well. Aim. To review the current understanding of the role and mechanisms of the biological activity of hCG and its isoforms, as well as the identification of physicochemical factors that affect the completeness of hCG release from biological raw materials and the stability of the isolated drug during further storage. Methods. A computerized literature search was performed using three electronic databases from 1980 to 2020. Descriptive and comparative analyzes were performed for discovered studies in molecular biology, biochemistry and clinical practice. Results. A detailed biochemical and physiological analysis of hCG and its related molecules are provided in this review. The features of measuring its content in tissues, isolation and purification methods, difficulties associated with low-temperature storage, as well as the spectrum of hCG preparations clinical use of and their proposed new therapeutic possibilities are considered. Conclusions. HCG is characterized by a wide range of versatile functions, and its field of application in laboratory diagnostics and clinical practice is still expanding. At the same time, to elucidate the mechanisms of its multiple therapeutic effects, including antitumor action, as well as the mechanisms of dissociation under conditions of low-temperature storage, which can solve the problem of maintaining the stability of this hormone, it remains relevant.
Collapse
|
9
|
Alhilali MJ, Parham A, Attaranzadeh A, Amirian M, Azizzadeh M. Prognostic role of follicular fluid tumor necrosis factor alpha in the risk of early ovarian hyperstimulation syndrome. BMC Pregnancy Childbirth 2020; 20:691. [PMID: 33183268 PMCID: PMC7663882 DOI: 10.1186/s12884-020-03379-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 10/28/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Ovarian hyperstimulation syndrome (OHSS) is an iatrogenic condition characterized by capillary hyperpermeability which can be predicted by preovulatory ovarian responses such as number of follicles. A variety of cytokines are thought to be involved in pathophysiology of this syndrome. METHODS A prospective cohort study invloving sixty intracytoplasmic sperm injection (ICSI) patients. On the day of hCG injection, we explored the threshold of larger follicles ≥11 mm diameter with a count of ≥18 follicles for the high-risk moderate-to-severe OHSS and 13-18 follicles for the low-risk moderate-to-severe OHSS. Whereas larger follicles count of less than 13 were classified as normoresponders. Pooled follicular fluid (FF) samples of each patient were collected on the day of oocyte retrieval. Magnetic multiplex immunoassay was explored to measure the concentrations of some intrafollicular cytokines including: GM-CSF, INF-γ, TNF-α, IL-10, CXCL8/IL-8, IL-6, IL-5, IL-4, IL-2, and IL-1β. All sixty patients underwent controlled ovarian hyperstimulation (COH) with either GnRH agonist or antagonist protocols. RESULTS Intrafollicular TNF-α concentration was significantly different (p < 0.05) in the high-risk moderate-to-severe OHSS patients compared to low-risk moderate-to-severe OHSS patients and normoresponders. TNF-α in FF had a negative correlation with the chance of high-risk moderate-to-severe OHSS. The differences in the risk of OHSS between patients who received GnRH agonist or antagonist were not significant (p > 0.05). CONCLUSIONS In accordance to the negative correlation of TNF-α and high risk of early OHSS, we did not expect TNF-α to play a role in increasing vascular permeability in ovarian tissues. In addition, the risk of early moderate-to-severe OHSS was not affected by different GnRH superovulation protocols.
Collapse
Affiliation(s)
- Miaad Jabbar Alhilali
- Department of Physiology, College of Veterinary Medicine, AlQadisiyiah University, Diwanyiah, Iraq
- Division of Physiology, Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Abbas Parham
- Division of Physiology, Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran.
- Stem Cell Biology and Regenerative Medicine Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Armin Attaranzadeh
- Milad Center for Infertility Treatment, Mashhad, Iran
- Mashhad University of Medical Sciences, Mashhad, Iran
| | - Malihe Amirian
- Milad Center for Infertility Treatment, Mashhad, Iran
- Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Azizzadeh
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
10
|
Huang N, Chi H, Qiao J. Role of Regulatory T Cells in Regulating Fetal-Maternal Immune Tolerance in Healthy Pregnancies and Reproductive Diseases. Front Immunol 2020; 11:1023. [PMID: 32676072 PMCID: PMC7333773 DOI: 10.3389/fimmu.2020.01023] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 04/28/2020] [Indexed: 12/11/2022] Open
Abstract
Regulatory T cells (Tregs) are a specialized subset of T lymphocytes that function as suppressive immune cells and inhibit various elements of immune response in vitro and in vivo. While there are constraints on the number or function of Tregs which can be exploited to evoke an effective anti-tumor response, sufficient expansion of Tregs is essential for successful organ transplantation and for promoting tolerance of self and foreign antigens. The immune-suppressive property of Tregs equips this T lymphocyte subpopulation with a pivotal role in the establishment and maintenance of maternal tolerance to fetal alloantigens, which is necessary for successful pregnancy. Elevation in the level of pregnancy-related hormones including estrogen, progesterone and human chorionic gonadotropin promotes the recruitment and expansion of Tregs, directly implicating these cells in the regulation of fetal-maternal immune tolerance. Current studies have provided evidence that a defect in the number or function of Tregs contributes to the etiology of several reproductive diseases, such as recurrent spontaneous abortion, endometriosis, and pre-eclampsia. In this review, we provide insight into the underlying mechanism through which Tregs contribute to pregnancy-related immune tolerance and demonstrate the association between deficiencies in Tregs and the development of reproductive diseases.
Collapse
Affiliation(s)
- Ning Huang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Hongbin Chi
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Jie Qiao
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| |
Collapse
|
11
|
Abstract
The disease course of autoimmune diseases such as rheumatoid arthritis is altered during pregnancy, and a similar modulatory role of pregnancy on inflammatory bowel disease (IBD) has been proposed. Hormonal, immunological, and microbial changes occurring during normal pregnancy may interact with the pathophysiology of IBD. IBD consists of Crohn's disease and ulcerative colitis, and because of genetic, immunological, and microbial differences between these disease entities, they may react differently during pregnancy and should be described separately. This review will address the pregnancy-induced physiological changes and their potential effect on the disease course of ulcerative colitis and Crohn's disease, with emphasis on the modulation of epithelial barrier function and immune profiles by pregnancy hormones, microbial changes, and microchimerism.
Collapse
|
12
|
Gridelet V, Perrier d'Hauterive S, Polese B, Foidart JM, Nisolle M, Geenen V. Human Chorionic Gonadotrophin: New Pleiotropic Functions for an "Old" Hormone During Pregnancy. Front Immunol 2020; 11:343. [PMID: 32231662 PMCID: PMC7083149 DOI: 10.3389/fimmu.2020.00343] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 02/12/2020] [Indexed: 12/11/2022] Open
Abstract
Human chorionic gonadotrophin (hCG) is the first specific molecule synthesized by the embryo. hCG RNA is transcribed as early as the eight-cell stage, and the blastocyst produces the protein before its implantation. hCG in the uterine microenvironment binds with its cognate receptor, luteinizing hormone/choriogonadotropin receptor (LHCGR), on the endometrial surface. This binding stimulates leukemia inhibitory factor (LIF) production and inhibits interleukin-6 (IL-6) production by epithelial cells of the endometrium. These effects ensure essential help in the preparation of the endometrium for initial embryo implantation. hCG also effects angiogenic and immunomodulatory actions as reported in many articles by our laboratories and other ones. By stimulating angiogenesis and vasculogenesis, hCG provides the placenta with an adequate maternal blood supply and optimal embryo nutrition during the invasion of the uterine endometrium. The immunomodulatory properties of hCG are numerous and important for programming maternal immune tolerance toward the embryo. The reported effects of hCG on uterine NK, Treg, and B cells, three major cell populations for the maintenance of pregnancy, demonstrate the role of this embryonic signal as a crucial immune regulator in the course of pregnancy. Human embryo rejection for hCG-related immunological reasons has been studied in different ways, and a sufficient dose of hCG seems to be necessary to maintain maternal tolerance. Different teams have studied the addition of hCG in patients suffering from recurrent miscarriages or implantation failures. hCG could also have a beneficial or a negative impact on autoimmune diseases during pregnancy. In this review, we will discuss the immunological impacts of hCG during pregnancy and if this hormone might be used therapeutically.
Collapse
Affiliation(s)
- Virginie Gridelet
- GIGA-I3 Center of Immunoendocrinology GIGA Research Institute, University of Liege, Liege, Belgium
- Center for Assisted Medical Procreation, University of Liège, CHR Citadelle, Liège, Belgium
| | - Sophie Perrier d'Hauterive
- GIGA-I3 Center of Immunoendocrinology GIGA Research Institute, University of Liege, Liege, Belgium
- Center for Assisted Medical Procreation, University of Liège, CHR Citadelle, Liège, Belgium
| | - Barbara Polese
- GIGA-I3 Center of Immunoendocrinology GIGA Research Institute, University of Liege, Liege, Belgium
| | - Jean-Michel Foidart
- Laboratory of Tumor and Development Biology, University of Liège, Liège, Belgium
| | - Michelle Nisolle
- Center for Assisted Medical Procreation, University of Liège, CHR Citadelle, Liège, Belgium
- Department of Obstetrics and Gynecology, CHR Citadelle, University of Liège, Liège, Belgium
| | - Vincent Geenen
- GIGA-I3 Center of Immunoendocrinology GIGA Research Institute, University of Liege, Liege, Belgium
| |
Collapse
|
13
|
Napso T, Yong HEJ, Lopez-Tello J, Sferruzzi-Perri AN. The Role of Placental Hormones in Mediating Maternal Adaptations to Support Pregnancy and Lactation. Front Physiol 2018; 9:1091. [PMID: 30174608 PMCID: PMC6108594 DOI: 10.3389/fphys.2018.01091] [Citation(s) in RCA: 274] [Impact Index Per Article: 39.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 07/23/2018] [Indexed: 12/12/2022] Open
Abstract
During pregnancy, the mother must adapt her body systems to support nutrient and oxygen supply for growth of the baby in utero and during the subsequent lactation. These include changes in the cardiovascular, pulmonary, immune and metabolic systems of the mother. Failure to appropriately adjust maternal physiology to the pregnant state may result in pregnancy complications, including gestational diabetes and abnormal birth weight, which can further lead to a range of medically significant complications for the mother and baby. The placenta, which forms the functional interface separating the maternal and fetal circulations, is important for mediating adaptations in maternal physiology. It secretes a plethora of hormones into the maternal circulation which modulate her physiology and transfers the oxygen and nutrients available to the fetus for growth. Among these placental hormones, the prolactin-growth hormone family, steroids and neuropeptides play critical roles in driving maternal physiological adaptations during pregnancy. This review examines the changes that occur in maternal physiology in response to pregnancy and the significance of placental hormone production in mediating such changes.
Collapse
Affiliation(s)
- Tina Napso
- Department of Physiology, Development and Neuroscience, Centre for Trophoblast Research, University of Cambridge, Cambridge, United Kingdom
| | - Hannah E J Yong
- Department of Physiology, Development and Neuroscience, Centre for Trophoblast Research, University of Cambridge, Cambridge, United Kingdom
| | - Jorge Lopez-Tello
- Department of Physiology, Development and Neuroscience, Centre for Trophoblast Research, University of Cambridge, Cambridge, United Kingdom
| | - Amanda N Sferruzzi-Perri
- Department of Physiology, Development and Neuroscience, Centre for Trophoblast Research, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
14
|
De A, Sachdeva R, Bose A, Malik M, Jayachandran N, Pal R. Human Chorionic Gonadotropin Influences Systemic Autoimmune Responses. Front Endocrinol (Lausanne) 2018; 9:742. [PMID: 30574119 PMCID: PMC6291461 DOI: 10.3389/fendo.2018.00742] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 11/23/2018] [Indexed: 11/13/2022] Open
Abstract
Immunopathological outcomes in Systemic Lupus Erythematosus (SLE; or lupus) are believed to be autoantibody-mediated. Conditions which promote a Th2 skew (such as pregnancy) should encourage antibody production, worsening antibody-mediated diseases while ameliorating Th1/Th17-mediated diseases. Although an increased propensity toward autoreactivity can be observed in pregnant lupus patients and in pregnant lupus-prone mice, whether a unique human pregnancy-specific factor can contribute to such effects is unknown. This study assessed whether human chorionic gonadotropin (hCG, a pregnancy-specific hormone of diverse function) at physiological concentrations could mediate stimulatory influences on immune parameters in non-pregnant, lupus-prone mice, in light of the hormone's ameliorating effects on Th1-mediated autoimmunity in murine models. Results demonstrate that administration of hCG heightened global autoreactivity in such mice; antibodies to dsDNA, RNP68, Protein S, Protein C, β2-glycoprotein 1, and several phospholipids were enhanced, and hormone administration had adverse effects on animal survival. Specifically in splenic cell cultures containing cells derived from lupus-prone mice, hCG demonstrated synergistic effects with TLR ligands (up-modulation of costimulatory markers on B cells) as well as with TCR stimuli (enhanced proliferative responses, enhanced levels of cytokines, and the phosphorylation of p38). In both instances, enhanced synthesis of lupus-associated cytokines was observed, in addition to the heightened generation of autoantibodies reactive toward apoptotic blebs. These results suggest that selective transducive, proliferative, and differentiative effects of hCG on adaptive immune cells may drive autoreactive responses in a lupus environment, and may also potentially provide insights into the association between the presence of higher hCG levels (or the administration of hCG) with the presence (or appearance) of humoral autoimmunity.
Collapse
|
15
|
Movsas TZ, Weiner RL, Greenberg MB, Holtzman DM, Galindo R. Pretreatment with Human Chorionic Gonadotropin Protects the Neonatal Brain against the Effects of Hypoxic-Ischemic Injury. Front Pediatr 2017; 5:232. [PMID: 29164084 PMCID: PMC5675846 DOI: 10.3389/fped.2017.00232] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 10/16/2017] [Indexed: 01/01/2023] Open
Abstract
INTRODUCTION Though the human fetus is exposed to placentally derived human chorionic gonadotropin (hCG) throughout gestation, the role of hCG on the fetal brain is unknown. Review of the available literature appears to indicate that groups of women with higher mean levels of hCG during pregnancy tend to have offspring with lower cerebral palsy (CP) risk. Given that newborn cerebral injury often precedes the development of CP, we aimed to determine whether hCG may protect against the neurodegenerative effects of neonatal brain injury. METHODS We utilized the Rice-Vannucci model of neonatal cerebral hypoxia-ischemia (HI) in postnatal day 7 mice to examine whether intraperitoneal administration of hCG 15-18 h prior, 1 h after or immediately following HI decrease brain tissue loss 7 days after injury. We next studied whether hCG has pro-survival and trophic properties in neurons by exposing immature cortical and hippocampal neurons to hCG in vitro and examining neurite sprouting and neuronal survival prior and after glutamate receptor-mediated excitotoxic injury. RESULTS We found that intraperitoneal injection of hCG 15 h prior to HI, but not at or 1 h after HI induction, resulted in a significant decrease in hippocampal and striatal tissue loss 7 days following brain injury. Furthermore, hCG reduced N-methyl-d-aspartate (NMDA)-mediated neuronal excitotoxicity in vitro when neurons were continuously exposed to this hormone for 10 days or when given at the time and following neuronal injury. In addition, continuous in vitro administration of hCG for 6-9 days increased neurite sprouting and basal neuronal survival as assessed by at least a 1-fold increase in MAP2 immunoreactivity and a 2.5-fold increase in NeuN + immunoreactivity. CONCLUSION Our findings suggest that hCG can decrease HI-associated immature neural degeneration. The mechanism of action for this neuroprotective effect may partly involve inhibition of NMDA-dependent excitotoxic injury. This study supports the hypothesis that hCG during pregnancy has the potential for protecting the developing brain against HI, an important CP risk factor.
Collapse
Affiliation(s)
- Tammy Z. Movsas
- Zietchick Research Institute, Plymouth, MI, United States
- Department of Pediatrics and Human Development, Michigan State University College of Human Medicine, East Lansing, MI, United States
| | - Rebecca L. Weiner
- Department of Neurology, Hope Center for Neurological Disorders, Washington University, St. Louis, MO, United States
| | - M. Banks Greenberg
- Department of Neurology, Hope Center for Neurological Disorders, Washington University, St. Louis, MO, United States
| | - David M. Holtzman
- Department of Neurology, Hope Center for Neurological Disorders, Washington University, St. Louis, MO, United States
| | - Rafael Galindo
- Department of Neurology, Hope Center for Neurological Disorders, Washington University, St. Louis, MO, United States
| |
Collapse
|
16
|
Immunometabolism, pregnancy, and nutrition. Semin Immunopathol 2017; 40:157-174. [PMID: 29071391 DOI: 10.1007/s00281-017-0660-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 10/18/2017] [Indexed: 12/16/2022]
Abstract
The emerging field of immunometabolism has substantially progressed over the last years and provided pivotal insights into distinct metabolic regulators and reprogramming pathways of immune cell populations in various immunological settings. However, insights into immunometabolic reprogramming in the context of reproduction are still enigmatic. During pregnancy, the maternal immune system needs to actively adapt to the presence of the fetal antigens, i.e., by functional modifications of distinct innate immune cell subsets, the generation of regulatory T cells, and the suppression of an anti-fetal effector T cell response. Considering that metabolic pathways have been shown to affect the functional role of such immune cells in a number of settings, we here review the potential role of immunometabolism with regard to the molecular and cellular mechanisms necessary for successful reproduction. Since immunometabolism holds the potential for a therapeutic approach to alter the course of immune diseases, we further highlight how a targeted metabolic reprogramming of immune cells may be triggered by maternal anthropometric or nutritional aspects.
Collapse
|
17
|
Nair RR, Verma P, Singh K. Immune-endocrine crosstalk during pregnancy. Gen Comp Endocrinol 2017; 242:18-23. [PMID: 26965955 DOI: 10.1016/j.ygcen.2016.03.003] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Revised: 02/25/2016] [Accepted: 03/05/2016] [Indexed: 12/27/2022]
Abstract
The success of pregnancy depends mostly on a synchronized immune-endocrine crosstalk at the maternal-fetal interface. Hormones are important in terms of maintaining the suitable environment and sufficient nutrition for the developing fetus. They also play a major role during the process of parturition and lactation. Maternal immunomodulation is important for the tolerance of semiallogeneic fetus. This is achieved in concert with a variety of endocrine stimulation. Estrogen, progesterone, and Human Chorionic Gonadotropin play a major role in immune modulation during pregnancy. Hormones modulate B cells, dendritic cells, uterine natural killer cells, macrophages, neutrophils to adopt fetal friendly immune phenotypes. Recently the use of hormones in assisted reproductive technology has been found to improve the pregnancy outcome. The present review focuses on the pregnancy-related hormones, their role in immunomodulation for successful pregnancy outcome. This also shed light on the immune-endocrine crosstalk at maternal-fetal interface during pregnancy.
Collapse
Affiliation(s)
- Rohini R Nair
- Division of Genetics and Cell Biology, San Raffaele University and Institute, Milano, Italy
| | - Priyanka Verma
- Department of Molecular & Human Genetics, Banaras Hindu University, Varanasi 221005, India
| | - Kiran Singh
- Department of Molecular & Human Genetics, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
18
|
Chairta P, Nicolaou P, Christodoulou K. Genomic and genetic studies of systemic sclerosis: A systematic review. Hum Immunol 2016; 78:153-165. [PMID: 27984087 DOI: 10.1016/j.humimm.2016.10.017] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 10/27/2016] [Accepted: 10/27/2016] [Indexed: 12/12/2022]
Abstract
Systemic sclerosis is an autoimmune rheumatic disease characterised by fibrosis, vasculopathy and inflammation. The exact aetiology of SSc remains unknown but evidences show that various genetic factors may be involved. This review aimed to assess HLA alleles/non-HLA polymorphisms, microsatellites and chromosomal abnormalities that have thus far been associated with SSc. PubMed, Embase and Scopus databases were searched up to July 29, 2015 using a combination of search-terms. Articles retrieved were evaluated based on set exclusion and inclusion criteria. A total of 150 publications passed the filters. HLA and non-HLA studies showed that particular alleles in the HLA-DRB1, HLA-DQB1, HLA-DQA1, HLA-DPB1 genes and variants in STAT4, IRF5 and CD247 are frequently associated with SSc. Non-HLA genes analysis was performed using the PANTHER and STRING10 databases. PANTHER classification revealed that inflammation mediated by chemokine and cytokine, interleukin and integrin signalling pathways are among the common extracted pathways associated with SSc. STRING10 analysis showed that NFKB1, CSF3R, STAT4, IFNG, PRL and ILs are the main "hubs" of interaction network of the non-HLA genes associated with SSc. This study gathers data of valid genetic factors associated with SSc and discusses the possible interactions of implicated molecules.
Collapse
Affiliation(s)
- Paraskevi Chairta
- Neurogenetics Department, The Cyprus Institute of Neurology and Genetics, Nicosia 2370, Cyprus; Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, Nicosia 2370, Cyprus
| | - Paschalis Nicolaou
- Neurogenetics Department, The Cyprus Institute of Neurology and Genetics, Nicosia 2370, Cyprus; Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, Nicosia 2370, Cyprus
| | - Kyproula Christodoulou
- Neurogenetics Department, The Cyprus Institute of Neurology and Genetics, Nicosia 2370, Cyprus; Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, Nicosia 2370, Cyprus.
| |
Collapse
|
19
|
Furcron AE, Romero R, Mial TN, Balancio A, Panaitescu B, Hassan SS, Sahi A, Nord C, Gomez-Lopez N. Human Chorionic Gonadotropin Has Anti-Inflammatory Effects at the Maternal-Fetal Interface and Prevents Endotoxin-Induced Preterm Birth, but Causes Dystocia and Fetal Compromise in Mice. Biol Reprod 2016; 94:136. [PMID: 27146032 PMCID: PMC4946806 DOI: 10.1095/biolreprod.116.139345] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 03/13/2016] [Accepted: 05/02/2016] [Indexed: 12/18/2022] Open
Abstract
Human chorionic gonadotropin (hCG) is implicated in the maintenance of uterine quiescence by down-regulating myometrial gap junctions during pregnancy, and it was considered as a strategy to prevent preterm birth after the occurrence of preterm labor. However, the effect of hCG on innate and adaptive immune cells implicated in parturition is poorly understood. Herein, we investigated the immune effects of hCG at the maternal-fetal interface during late gestation, and whether this hormone can safely prevent endotoxin-induced preterm birth. Using immunophenotyping, we demonstrated that hCG has immune effects at the maternal-fetal interface (decidual tissues) by: 1) increasing the proportion of regulatory T cells; 2) reducing the proportion of macrophages and neutrophils; 3) inducing an M1 → M2 macrophage polarization; and 4) increasing the proportion of T helper 17 cells. Next, ELISAs were used to determine whether the local immune changes were associated with systemic concentrations of progesterone, estradiol, and/or cytokines (IFNgamma, IL1beta, IL2, IL4, IL5, IL6, IL10, IL12p70, KC/GRO, and TNFalpha). Plasma concentrations of IL1beta, but not progesterone, estradiol, or any other cytokine, were increased following hCG administration. Pretreatment with hCG prevented endotoxin-induced preterm birth by 44%, proving the effectiveness of this hormone as an anti-inflammatory agent. However, hCG administration alone caused dystocia and fetal compromise, as proven by Doppler ultrasound. These results provide insight into the mechanisms whereby hCG induces an anti-inflammatory microenvironment at the maternal-fetal interface during late gestation, and demonstrate its effectiveness in preventing preterm labor/birth. However, the deleterious effects of this hormone on mothers and fetuses warrant caution.
Collapse
Affiliation(s)
- Amy-Eunice Furcron
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan
| | - Roberto Romero
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, Michigan Center for Molecular Obstetrics and Genetics, Wayne State University, Detroit, Michigan
| | - Tara N Mial
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan
| | - Amapola Balancio
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan
| | - Bogdan Panaitescu
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan
| | - Sonia S Hassan
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan
| | - Aashna Sahi
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan
| | - Claire Nord
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan
| | - Nardhy Gomez-Lopez
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan Department of Immunology and Microbiology, Wayne State University School of Medicine, Detroit, Michigan
| |
Collapse
|
20
|
Rao CV. Potential Therapy for Rheumatoid Arthritis and Sjögren Syndrome With Human Chorionic Gonadotropin. Reprod Sci 2015; 23:566-71. [PMID: 26239386 DOI: 10.1177/1933719115597765] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Autoimmune diseases such as rheumatoid arthritis (RA) and Sjögren syndrome (SS) ameliorate during pregnancy, through dampening (immunotolerance) of the maternal immune system which protects the fetus from rejection. A large number of studies have shown that human chorionic gonadotropin (hCG) contributes to this tolerance. Studies on animal models have reaffirmed that hCG treatment mimics the benefits of pregnancy. Based on the scientific evidence, randomized clinical trials comparing hCG with current therapies and/or placebo are recommended for RA, SS, and for other autoimmune diseases such as, type 1 diabetes and ankylosing spondylitis, which also get better during pregnancy and hCG treatment seems to help.
Collapse
Affiliation(s)
- C V Rao
- Department of Cellular Biology and Pharmacology, Molecular and Human Genetics and Obstetrics and Gynecology, Reproduction and Development Program, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| |
Collapse
|
21
|
Orvieto R, Dratviman-Storobinsky O, Lantsberg D, Haas J, Mashiach R, Cohen Y. Interleukin-2 and SOCS-1 proteins involvement in the pathophysiology of severe ovarian hyperstimulation syndrome--a preliminary proof of concept. J Ovarian Res 2014; 7:106. [PMID: 25424734 PMCID: PMC4255649 DOI: 10.1186/s13048-014-0106-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 10/29/2014] [Indexed: 12/15/2022] Open
Abstract
Background Ovarian hyperstimulation syndrome (OHSS), is characterized by marked ovarian enlargement and acute third space fluid sequestration that almost always develops after hCG administration or in early pregnancy. OHSS is similar to vascular leak syndrome (VLS), which may be attributable to the massive increase in systemic inflammatory cytokines. In the present pilot exploratory case series, we sought to evaluate interleukin (IL)-2 and suppressor of cytokine signaling (SOCS)-1 expressions in the peripheral blood mononuclear cells (PBMCs) of patients suffering from severe ovarian hypertimulation syndrome (OHSS), and to examine whether their expressions differ when compared to PBMCs originated from normal early pregnant women (without OHSS). Methods Interleukin-2 and SOCS-1 mRNA expressions were examined in PBMCs of 5 women who were hospitalized due to severe OHSS (OHSS group) and 5 women with early IVF pregnancies and without OHSS (control group). Results Interleukin-2 mRNA levels in PBMCs were significantly higher in the OHSS as compared to the control groups. Moreover, while SOCS-1 mRNA levels were non-significantly lower, the ratio between IL-2 and SOCS-1 mRNA levels was significantly higher in the OHSS, as compared to the control group. Conclusions The inflammatory response to hCG, leading to dysregulation of Il-2 expression and SOCS activation, might be the culprit of OHSS. Additional large prospective studies are required to elucidate the effect of hCG on patients’ inherited inflammatory cascades, which may help discriminating those at risk to develop severe OHSS from those who are not.
Collapse
Affiliation(s)
- Raoul Orvieto
- Department of Obstetrics and Gynecology, Chaim Sheba Medical Center (Tel Hashomer), Ramat Gan, Israel. .,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Olga Dratviman-Storobinsky
- Department of Obstetrics and Gynecology, Chaim Sheba Medical Center (Tel Hashomer), Ramat Gan, Israel. .,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Daniel Lantsberg
- Department of Obstetrics and Gynecology, Chaim Sheba Medical Center (Tel Hashomer), Ramat Gan, Israel. .,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Jigal Haas
- Department of Obstetrics and Gynecology, Chaim Sheba Medical Center (Tel Hashomer), Ramat Gan, Israel. .,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Roy Mashiach
- Department of Obstetrics and Gynecology, Chaim Sheba Medical Center (Tel Hashomer), Ramat Gan, Israel. .,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Yoram Cohen
- Department of Obstetrics and Gynecology, Chaim Sheba Medical Center (Tel Hashomer), Ramat Gan, Israel. .,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
22
|
The immunology of pregnancy: Regulatory T cells control maternal immune tolerance toward the fetus. Immunol Lett 2014; 162:41-8. [DOI: 10.1016/j.imlet.2014.06.013] [Citation(s) in RCA: 168] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 06/13/2014] [Accepted: 06/24/2014] [Indexed: 01/20/2023]
|
23
|
Schumacher A, Costa SD, Zenclussen AC. Endocrine factors modulating immune responses in pregnancy. Front Immunol 2014; 5:196. [PMID: 24847324 PMCID: PMC4021116 DOI: 10.3389/fimmu.2014.00196] [Citation(s) in RCA: 157] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 04/22/2014] [Indexed: 12/16/2022] Open
Abstract
How the semi-allogeneic fetus is tolerated by the maternal immune system remains a fascinating phenomenon. Despite extensive research activity in this field, the mechanisms underlying fetal tolerance are still not well understood. However, there are growing evidences that immune–immune interactions as well as immune–endocrine interactions build up a complex network of immune regulation that ensures fetal survival within the maternal uterus. In the present review, we aim to summarize emerging research data from our and other laboratories on immune modulating properties of pregnancy hormones with a special focus on progesterone, estradiol, and human chorionic gonadotropin. These pregnancy hormones are critically involved in the successful establishment, maintenance, and termination of pregnancy. They suppress detrimental maternal alloresponses while promoting tolerance pathways. This includes the reduction of the antigen-presenting capacity of dendritic cells (DCs), monocytes, and macrophages as well as the blockage of natural killer cells, T and B cells. Pregnancy hormones also support the proliferation of pregnancy supporting uterine killer cells, retain tolerogenic DCs, and efficiently induce regulatory T (Treg) cells. Furthermore, they are involved in the recruitment of mast cells and Treg cells into the fetal–maternal interface contributing to a local accumulation of pregnancy-protective cells. These findings highlight the importance of endocrine factors for the tolerance induction during pregnancy and encourage further research in the field.
Collapse
Affiliation(s)
- Anne Schumacher
- Department of Experimental Obstetrics and Gynecology, Medical Faculty, Otto-von-Guericke University , Magdeburg , Germany
| | - Serban-Dan Costa
- University Women's Clinic, Otto-von-Guericke University , Magdeburg , Germany
| | - Ana Claudia Zenclussen
- Department of Experimental Obstetrics and Gynecology, Medical Faculty, Otto-von-Guericke University , Magdeburg , Germany
| |
Collapse
|
24
|
Muzzio D, Zygmunt M, Jensen F. The role of pregnancy-associated hormones in the development and function of regulatory B cells. Front Endocrinol (Lausanne) 2014; 5:39. [PMID: 24744750 PMCID: PMC3978254 DOI: 10.3389/fendo.2014.00039] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 03/14/2014] [Indexed: 12/14/2022] Open
Abstract
During mammalian pregnancy, highly specialized mechanisms of immune tolerance are triggered in order to allow the semi-allogeneic fetus to grow within the maternal uterus in harmony with the maternal immune system. Among other mechanisms, changes in the endocrine status have been proposed to be at least part of the machinery responsible for the induction of immune tolerance during pregnancy. Indeed, pregnancy-associated hormones, estradiol, progesterone, and human chorionic gonadotropin are known to confer immune suppressive capacity to innate as well as adaptive immune cells. Regulatory B cells, a subpopulation of B lymphocytes with strong immunosuppressive functions, were shown to expand during pregnancy. Furthermore, it is well-known that some women suffering from multiple sclerosis, significantly improve their symptoms during pregnancy and this was attributed to the effect of female sex hormones. Accordingly, estradiol protects mice from developing experimental autoimmune encephalomyelitis by triggering the expansion and activation of regulatory B cells. In this review, we discuss different mechanisms associated with the development, activation, and function of regulatory B cells with a special focus on those involving pregnancy-associated hormones.
Collapse
Affiliation(s)
- Damián Muzzio
- Research Laboratory, Department of Obstetrics and Gynecology, University of Greifswald, Greifswald, Germany
| | - Marek Zygmunt
- Research Laboratory, Department of Obstetrics and Gynecology, University of Greifswald, Greifswald, Germany
| | - Federico Jensen
- Research Laboratory, Department of Obstetrics and Gynecology, University of Greifswald, Greifswald, Germany
- *Correspondence: Federico Jensen, Research Laboratory, Department of Obstetrics and Gynecology, University of Greifswald, Sauerbruchstr., Greifswald 17475, Germany e-mail:
| |
Collapse
|
25
|
Polese B, Gridelet V, Araklioti E, Martens H, Perrier d’Hauterive S, Geenen V. The Endocrine Milieu and CD4 T-Lymphocyte Polarization during Pregnancy. Front Endocrinol (Lausanne) 2014; 5:106. [PMID: 25071722 PMCID: PMC4083450 DOI: 10.3389/fendo.2014.00106] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 06/21/2014] [Indexed: 12/18/2022] Open
Abstract
Acceptance of the fetal semi-allograft by the mother's immune system has become the focus of intensive research. CD4+ T cells are important actors in the establishment of pregnancy. Th1/Th2 paradigm has been expanded to include CD4+ regulatory T (Treg) and T helper 17 (Th17) cells. Pregnancy hormones exert very significant modulatory properties on the maternal immune system. In this review, we describe mechanisms by which the endocrine milieu modulates CD4 T cell polarization during pregnancy. We first focused on Treg and Th17 cells and on their importance for pregnancy. Secondly, we review the effects of pregnancy hormones [progesterone (P4) and estradiol (E2)] on immune cells previously described, with a particular attention to human chorionic gonadotropin (hCG). The importance of Treg cells for pregnancy is evidenced. They are recruited before implantation and are essential for pregnancy maintenance. Decreased number or less efficient Treg cells are implicated in fertility disorders. As for Th17 cells, the few available studies suggest that they have a negative impact on fertility. Th17 frequency is increased in infertile patients. With the combination of its pro-effects on Th2 and Treg cells and anti-effects on Th1 and Th17 cells, P4 contributes to establishment of a favorable environment for pregnancy. E2 effects are more dependent on the context but it seems that E2 promotes Treg and Th2 cells while it inhibits Th1 cells. hCG positively influences activities of Treg and uterine natural killer cells. This embryo signal is an essential actor for the success of pregnancy, both as the endocrine factor regulating P4 secretion by the ovarian corpus luteum, but also as a paracrine agent during implantation as well as an angiogenic and immunologic mediator during the course of gestation. Luteinizing hormone (LH) immune properties begin to be studied but its positive impact on Treg cells suggests that LH could be a considerable immunomodulator in the mouse.
Collapse
Affiliation(s)
- Barbara Polese
- GIGA-I3, Center of Immunoendocrinology, University of Liège, Liège, Belgium
- *Correspondence: Barbara Polese, GIGA-I3, Center of Immunoendocrinology, University of Liege, CHU-B34, Sart Tilman, Liège B-4000, Belgium e-mail:
| | - Virginie Gridelet
- GIGA-I3, Center of Immunoendocrinology, University of Liège, Liège, Belgium
| | - Eleni Araklioti
- GIGA-I3, Center of Immunoendocrinology, University of Liège, Liège, Belgium
| | - Henri Martens
- GIGA-I3, Center of Immunoendocrinology, University of Liège, Liège, Belgium
| | | | - Vincent Geenen
- GIGA-I3, Center of Immunoendocrinology, University of Liège, Liège, Belgium
| |
Collapse
|
26
|
Bansal AS, Bora SA, Saso S, Smith JR, Johnson MR, Thum MY. Mechanism of human chorionic gonadotrophin-mediated immunomodulation in pregnancy. Expert Rev Clin Immunol 2013; 8:747-53. [PMID: 23167686 DOI: 10.1586/eci.12.77] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Human chorionic gonadotrophin (hCG) is released within hours of fertilization and has a profound ability to downregulate maternal cellular immunity against trophoblastic paternal antigens. It also promotes angiogenic activity of the extravillous trophoblast, and impairment of this function may lead to inadequate placentation and an increased risk of preeclampsia. There is increasing evidence that hCG alters the activity of dendritic cells via an upregulation of indoleamine 2,3-dioxygenase activity. This reduces T-cell activation and cytokine production, as well as encouraging Treg cell recruitment to the fetal-maternal interface. These changes are critical in promoting maternal tolerance. hCG is also able to increase the proliferation of uterine natural killer cells, while reducing the activity of cytotoxic peripheral blood natural killer cells. There are rare reports of autoantibodies directed against hCG or the luteinizing hormone/hCG receptor in women with recurrent miscarriage. These autoantibodies are more frequent in women with thyroid autoimmunity. This may explain the association between thyroid autoimmunity and impaired fertility. Downregulating these anti-hCG and anti-luteinizing hormone/hCG receptor autoantibodies may be helpful in some women with early miscarriage or recurrent failed in vitro fertilization.
Collapse
Affiliation(s)
- Amolak S Bansal
- Department of Immunology and Allergy, St. Helier Hospital, Carshalton, Surrey, SM5 1AA, UK.
| | | | | | | | | | | |
Collapse
|
27
|
Schumacher A, Heinze K, Witte J, Poloski E, Linzke N, Woidacki K, Zenclussen AC. Human Chorionic Gonadotropin as a Central Regulator of Pregnancy Immune Tolerance. THE JOURNAL OF IMMUNOLOGY 2013; 190:2650-8. [DOI: 10.4049/jimmunol.1202698] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
28
|
Teles A, Zenclussen AC, Schumacher A. Regulatory T cells are baby's best friends. Am J Reprod Immunol 2013; 69:331-9. [PMID: 23289369 DOI: 10.1111/aji.12067] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 12/05/2012] [Indexed: 01/18/2023] Open
Abstract
Regulatory T cells (Treg) are one of the most and best studied immune cell population during human and murine pregnancy, and there is a general consent about their expansion during pregnancy. However, the identification of new and more reliable Treg markers during the last years resulted in some controversies about the kinetics of various Treg subsets at different pregnancy stages. No doubt exists regarding the importance of Treg for a normal pregnancy as pregnancy complications like spontaneous abortion and preeclampsia could be associated with a reduced Treg number and activity. In future, more attention should be paid to bring established data from the bench to the bedside to force the development of adequate therapies for treatment of pregnancy complications. In this article, we summarize previous and recent data on several aspects of Treg biology during human and murine pregnancy.
Collapse
Affiliation(s)
- Ana Teles
- Department of Experimental Obstetrics and Gynecology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| | | | | |
Collapse
|
29
|
Antihypertriglyceridemia and anti-inflammatory activities of monascus-fermented dioscorea in streptozotocin-induced diabetic rats. EXPERIMENTAL DIABETES RESEARCH 2011; 2011:710635. [PMID: 21716679 PMCID: PMC3118455 DOI: 10.1155/2011/710635] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Revised: 01/11/2011] [Accepted: 02/10/2011] [Indexed: 01/22/2023]
Abstract
The rice fermented by Monascus, called red mold rice (RMR), and has a long tradition in East Asia as a dietary staple. Monascus-fermented dioscorea called red mold dioscorea (RMD) contains various metabolites to perform the ability of reducing oxidative stress and anti-inflammatory response. We used Wistar rats and induced diabetes by injecting streptozotocin (STZ, 65 mg/kg i.p.). RMD was administered daily starting six weeks after disease onset. Throughout the experimental period, significantly (P < .05) lowered plasma glucose, triglyceride, cholesterol, free fatty acid and low density lipoprotein levels were observed in the RMD-treated groups. The RMD-treated diabetic rats showed higher activities of glutathione disulfide reductase, glutathione reductase, catalase and superoxide dismutase (P < .05) in the pancreas compared with the diabetic control rats. RMD also inhibited diabetes-induced elevation in the levels of interleukin (IL)-1β, IL-6, interferon-γ and tumor necrosis factor-α. Pancreatic β-cells damaged by STZ in the RMD supplemented groups were ameliorated. The results of this study clearly demonstrated that RMD possesses several treatment-oriented properties, including the control of hyperglycemia, antioxidant effects, pancreatic β-cell protection and anti-inflammatory effects. Considering these observations, it appears that RMD may be a useful supplement to delay the development of diabetes and its complications.
Collapse
|
30
|
van der Zee M, van den Berg JW, van Holten-Neelen C, Dik WA. The beta-human chorionic gonadotropin-related peptide LQGV exerts anti-inflammatory effects through activation of the adrenal gland and glucocorticoid receptor in C57BL/6 mice. THE JOURNAL OF IMMUNOLOGY 2010; 185:5066-73. [PMID: 20926791 DOI: 10.4049/jimmunol.1001414] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The systemic inflammatory response syndrome is a complex host response to a variety of clinical insults, generally leading to severe pathology. The human chorionic gonadotropin β-chain-related tetrapeptide leucine-glutamine-glycine-valine (LQGV) reduces hemorrhagic and LPS-induced systemic inflammatory response syndrome, but its mechanisms of action are not yet fully understood. Through the combination of in vivo, in vitro, and ex vivo approaches, we demonstrate that LQGV actively stimulates corticosterone production in mice and thereby suppresses in vivo TLR4-directed inflammation upon LPS administration. Blocking in vivo glucocorticosteroid receptor signaling reduced the prosurvival effect of LQGV. Also, upon multiple TLR activation by heat-killed Listeria monocytogenes, splenocytes from LQGV-treated mice produced significantly less TNF-α and IL-6, which was absent after in vitro blockage of the glucocorticosteroid receptor. Using adrenal gland and adrenal cell line cultures, we show that LQGV stimulates corticosterone production. Moreover, by using specific pharmacological inhibitors of the adrenocorticotropic hormone (ACTH) and luteinizing hormone receptors as well as of cAMP signaling, we demonstrate that LQGV stimulates the ACTH receptor. These data show that the β-human chorionic gonadotropin-related tetrapeptide LQGV stimulates adrenal glucocorticosteroid production through activation of the ACTH receptor with consequent glucocorticoid receptor activation and immunosuppression in C57BL/6 mice.
Collapse
Affiliation(s)
- Marten van der Zee
- Department of Immunology, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | | | | |
Collapse
|
31
|
Xu Y, Madsen-Bouterse SA, Romero R, Hassan S, Mittal P, Elfline M, Zhu A, Petty HR. Leukocyte pyruvate kinase expression is reduced in normal human pregnancy but not in pre-eclampsia. Am J Reprod Immunol 2010; 64:137-51. [PMID: 20560913 PMCID: PMC3045787 DOI: 10.1111/j.1600-0897.2010.00881.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
PROBLEM Emerging evidence suggests that metabolism influences immune cell signaling and immunoregulation. To examine the immunoregulatory role of glycolysis in pregnancy, we evaluated the properties of pyruvate kinase in leukocytes from non-pregnant women and those with normal pregnancy and pre-eclampsia. METHOD OF STUDY We evaluated pyruvate kinase expression in lymphocytes and neutrophils from non-pregnant, pregnant, and pre-eclampsia patients using fluorescence microscopy and flow cytometry. Leukocyte pyruvate kinase activity and pyruvate concentrations were also evaluated. To study pyruvate's effect on signaling, we labeled Jurkat T cells with Ca(2+) dyes and measured cell responses in the presence of agents influencing intracellular pyruvate. RESULTS The expression of pyruvate kinase is reduced in lymphocytes and neutrophils from normal pregnant women in comparison with those of non-pregnant women and pre-eclampsia patients. Similarly, the activity of pyruvate kinase and the intracellular pyruvate concentration are reduced in leukocytes of normal pregnant women in comparison with non-pregnant women and women with pre-eclampsia. Using Jurkat cells as a model of leukocyte signaling, we have shown that perturbations of intracellular pyruvate influence Ca(2+) signals. CONCLUSION Normal pregnancy is characterized by reduced pyruvate kinase expression within lymphocytes and neutrophils. We speculate that reduced pyruvate kinase expression modifies immune cell responses due to reduced pyruvate concentrations.
Collapse
Affiliation(s)
- Yi Xu
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI 48201
| | - Sally A. Madsen-Bouterse
- Perinatology Research Branch, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD) of NIH, Bethesda, Maryland and Detroit, Michigan 48201
| | - Roberto Romero
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI 48201
- Perinatology Research Branch, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD) of NIH, Bethesda, Maryland and Detroit, Michigan 48201
- Center of Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan; Hutzel Women's Hospital at the Detroit Medical Center, Detroit, Michigan, 3990 John R. Rd., 4 Brush South, Detroit, MI 48201
| | - Sonia Hassan
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI 48201
| | - Pooja Mittal
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI 48201
| | - Megan Elfline
- Department of Ophthalmology and Visual Sciences, The University of Michigan Medical School, Ann Arbor, MI 48105
| | - Aiping Zhu
- Department of Ophthalmology and Visual Sciences, The University of Michigan Medical School, Ann Arbor, MI 48105
| | - Howard R. Petty
- Department of Ophthalmology and Visual Sciences, The University of Michigan Medical School, Ann Arbor, MI 48105
- Department of Microbiology and Immunology, The University of Michigan Medical School, Ann Arbor, MI 48105
| |
Collapse
|
32
|
Schumacher A, Brachwitz N, Sohr S, Engeland K, Langwisch S, Dolaptchieva M, Alexander T, Taran A, Malfertheiner SF, Costa SD, Zimmermann G, Nitschke C, Volk HD, Alexander H, Gunzer M, Zenclussen AC. Human chorionic gonadotropin attracts regulatory T cells into the fetal-maternal interface during early human pregnancy. THE JOURNAL OF IMMUNOLOGY 2009; 182:5488-97. [PMID: 19380797 DOI: 10.4049/jimmunol.0803177] [Citation(s) in RCA: 227] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Regulatory T cells (Treg) expand during pregnancy and are present at the fetal-maternal interface at very early stages in pregnancy. The migration mechanisms of Treg to the pregnant uterus are still unclear. Human chorionic gonadotropin (hCG) is secreted by the blastocyst immediately after fertilization and has chemoattractant properties. Therefore, we sought to analyze whether hCG secreted by early trophoblasts attracts Treg to the uterus and hence contributes to maternal tolerance toward the fetus. Decidua and placenta tissue samples from patients having spontaneous abortions or ectopic pregnancies were employed to evaluate Treg and hCG levels. Age-matched samples from normal pregnant women served as controls. We further performed in vitro studies with primary first trimester trophoblast cells and a choriocarcinoma cell line (JEG-3) aiming to evaluate the ability of secreted hCG to attract Treg. Patients having miscarriages or ectopic pregnancy presented significantly decreased hCG mRNA and protein levels associated with decreased Foxp3, neuropilin-1, IL-10, and TGF-beta mRNA levels as compared with normal pregnant women. Using migration assays we demonstrated that Treg were attracted by hCG-producing trophoblasts or choriocarcinoma cells. Treg migration toward cells transfected with hCG expression vectors confirmed the chemoattractant ability of hCG. Our data clearly show that hCG produced by trophoblasts attracts Treg to the fetal-maternal interface. High hCG levels at very early pregnancy stages ensure Treg to migrate to the site of contact between paternal Ags and maternal immune cells and to orchestrate immune tolerance toward the fetus.
Collapse
Affiliation(s)
- Anne Schumacher
- Department of Experimental Obstetrics and Gynecology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Zhao J, Lei Z, Liu Y, Li B, Zhang L, Fang H, Song C, Wang X, Zhang GM, Feng ZH, Huang B. Human pregnancy up-regulates Tim-3 in innate immune cells for systemic immunity. THE JOURNAL OF IMMUNOLOGY 2009; 182:6618-24. [PMID: 19414817 DOI: 10.4049/jimmunol.0803876] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Pregnant women have both the local immune tolerance at the maternal-fetal interface and the systemic immune defense against pathogens. To date, regardless of the extensive investigation on the maternal-fetal immune tolerance, the maintenance of systemic immune defense in pregnant women still remains poorly understood. In the present study, we demonstrate that the immunoregulatory molecule T cell Ig and mucin domain (Tim)-3 plays important roles in innate and adaptive immunity of human pregnancy. During pregnancy, Tim-3 is strikingly up-regulated in peripheral blood of pregnant women, most by monocytes but not by T or B cells. The increased IL-4/STAT6 signaling may contribute to such up-regulation of Tim-3. In turn, the increased Tim-3 enhances not only innate immunity but also Th1-associated immune responses of pregnant women against pathogens. In contrast, our clinical data show that abnormal Tim-3 expression level might be connected to the pregnancy loss. In conclusion, our data show in this study that an immune regulatory molecule Tim-3, by virtue of its up-regulation in innate immune cells in pregnant women, enhances both innate and adaptive immune responses. Nevertheless, the abnormality of Tim-3 in pregnant woman may be deleterious to normal pregnancy.
Collapse
Affiliation(s)
- Jie Zhao
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Wuhan, The People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Bibliography. Current world literature. Diabetes and the endocrine pancreas II. Curr Opin Endocrinol Diabetes Obes 2008; 15:383-93. [PMID: 18594281 DOI: 10.1097/med.0b013e32830c6b8e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
35
|
Oh YS, Khil LY, Cho KA, Ryu SJ, Ha MK, Cheon GJ, Lee TS, Yoon JW, Jun HS, Park SC. A potential role for skeletal muscle caveolin-1 as an insulin sensitivity modulator in ageing-dependent non-obese type 2 diabetes: studies in a new mouse model. Diabetologia 2008; 51:1025-34. [PMID: 18408913 DOI: 10.1007/s00125-008-0993-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2008] [Accepted: 02/21/2008] [Indexed: 10/22/2022]
Abstract
AIMS/HYPOTHESIS Type 2 diabetes mellitus is a common age-dependent disease. We discovered that male offspring of non-diabetic C57BL/6 and DBA/2 mice, called JYD mice, develop type 2 diabetes when they grow old. JYD mice show characteristics of insulin resistance, hyperglycaemia and hyperinsulinaemia in old age without obesity. We postulated that the mechanism of age-dependent type 2 diabetes in this model relates to caveolin-1 status in skeletal muscle, which appears to regulate insulin sensitivity in the mice. METHODS We compared insulin sensitivity in aged C57BL/6 and JYD mice using glucose and insulin tolerance tests and (18)F-fluorodeoxyglucose positron emission tomography. We also determined insulin signalling molecules and caveolin proteins using western blotting, and altered caveolin-1 levels in skeletal muscle of C57BL/6 and JYD mice using viral vector systems, to examine the effect of this on insulin sensitivity. RESULTS In 30-week-old C57BL/6 and JYD mice, the basal levels of IRS-1, Akt and peroxisome proliferator-activated receptor-gamma decreased, as did insulin-stimulated phosphorylation of Akt and insulin receptor beta. However, caveolin-1 was only increased about twofold in 30-week-old JYD mice as compared with 3-week-old mice, whereas an eightfold increase was seen in C57BL/6 mice. Downregulation of caveolin-1 production in C57BL/6 mice caused severe impairment of glucose and insulin tolerance. Upregulation of caveolin-1 in aged diabetic JYD mice significantly improved insulin sensitivity with a concomitant increase of glucose uptake in the skeletal muscle. CONCLUSIONS/INTERPRETATION The level of skeletal muscle caveolin-1 is correlated with the progression of age-dependent type 2 diabetes in JYD mice.
Collapse
Affiliation(s)
- Y S Oh
- Department of Biochemistry and Molecular Biology, Aging and Apoptosis Research Center, Seoul National University College of Medicine, 28 Yungon Dong, Chongno Ku, Seoul 110-799, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|