1
|
Melander SA, Møller AL, Mohamed KE, Rasmussen DGK, Genovese F, Karsdal MA, Henriksen K, Larsen AT. Dual amylin and calcitonin receptor agonist treatment reduces biomarkers associated with kidney fibrosis in diabetic rats. Am J Physiol Endocrinol Metab 2023; 325:E529-E539. [PMID: 37792041 DOI: 10.1152/ajpendo.00245.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/19/2023] [Accepted: 09/21/2023] [Indexed: 10/05/2023]
Abstract
Dual amylin and calcitonin receptor agonists (DACRAs) are effective treatments for obesity and type 2 diabetes (T2D). They provide beneficial effects on body weight, glucose control, and insulin action. However, whether DACRAs protect against diabetes-related kidney damage remains unknown. We characterize the potential of long-acting DACRAs (KBP-A, Key Bioscience Peptide-A) as a treatment for T2D-related pathological alterations of the kidney extracellular matrix (ECM) in Zucker diabetic fatty rats (ZDF). We examined levels of endotrophin (profibrotic signaling molecule reflecting collagen type VI formation) and tumstatin (matrikine derived from collagen type IVα3) in serum and evaluated kidney morphology and collagen deposition in the kidneys. We included a study in obese Sprague-Dawley rats to further investigate the impact of KBP-A on ECM biomarkers. In ZDF vehicles, levels of endotrophin and tumstatin increased, suggesting disease progression along with an increase in blood glucose levels. These rats also displayed damage to their kidneys, which was evident from the presence of collagen formation in the medullary region of the kidney. Interestingly, KBP-A treatment attenuated these increases, resulting in significantly lower levels of endotrophin and tumstatin than the vehicle. Levels of endotrophin and tumstatin were unchanged in obese Sprague-Dawley rats, supporting the relation to diabetes-related kidney complications. Furthermore, KBP-A treatment normalized collagen deposition in the kidney while improving glucose control. These studies confirm the beneficial effects of DACRAs on biomarkers associated with kidney fibrosis. Moreover, these antifibrotic effects are likely associated with improved glucose control, highlighting KBP-A as a promising treatment of T2D and its related late complications.NEW & NOTEWORTHY These studies describe the beneficial effects of using a dual amylin and calcitonin receptor agonist (DACRA) for diabetes-related kidney complications. DACRA treatment reduced levels of serological biomarkers associated with kidney fibrosis. These reductions were further reflected by reduced collagen expression in diabetic kidneys. In general, these results validate the use of serological biomarkers while demonstrating the potential effect of DACRAs in treating diabetes-related long-term complications.
Collapse
Affiliation(s)
- Simone Anna Melander
- Nordic Bioscience, Herlev, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Alexandra Louise Møller
- Nordic Bioscience, Herlev, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | - Kim Henriksen
- Nordic Bioscience, Herlev, Denmark
- KeyBioscience AG, Stans, Switzerland
| | | |
Collapse
|
2
|
Aboolian A, Urner S, Roden M, Jha JC, Jandeleit-Dahm K. Diabetic Kidney Disease: From Pathogenesis to Novel Treatment Possibilities. Handb Exp Pharmacol 2022; 274:269-307. [PMID: 35318511 DOI: 10.1007/164_2021_576] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
One of the microvascular complications of diabetes is diabetic kidney disease (DKD), often leading to end stage renal disease (ESRD) in which patients require costly dialysis or transplantation. The silent onset and irreversible progression of DKD are characterized by a steady decline of the estimated glomerular filtration rate, with or without concomitant albuminuria. The diabetic milieu allows the complex pathophysiology of DKD to enter a vicious cycle by inducing the synthesis of excessive amounts of reactive oxygen species (ROS) causing oxidative stress, inflammation, and fibrosis. As no cure is available, intensive research is required to develop novel treatments possibilities. This chapter provides an overview of the important pathomechanisms identified in diabetic kidney disease, the currently established therapies, as well as recently developed novel therapeutic strategies in DKD.
Collapse
Affiliation(s)
- Ara Aboolian
- Institute for Clinical Diabetology, German Diabetes Centre, Leibniz Centre for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Sofia Urner
- Institute for Clinical Diabetology, German Diabetes Centre, Leibniz Centre for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Michael Roden
- Department of Endocrinology and Diabetology, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany
- Institute for Clinical Diabetology, German Diabetes Centre, Leibniz Centre for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Centre for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
| | - Jay Chandra Jha
- Department of Diabetes, Monash University, Melbourne, VIC, Australia
| | - Karin Jandeleit-Dahm
- Institute for Clinical Diabetology, German Diabetes Centre, Leibniz Centre for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
- Department of Diabetes, Monash University, Melbourne, VIC, Australia.
| |
Collapse
|
3
|
Huang Y, Chen Q, Jiang Q, Zhao Z, Fang J, Chen L. Irisin lowers blood pressure in Zucker diabetic rats by regulating the functions of renal angiotensin II type 1 receptor via the inhibition of the NF-κB signaling pathway. Peptides 2022; 147:170688. [PMID: 34800756 DOI: 10.1016/j.peptides.2021.170688] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 11/09/2021] [Accepted: 11/11/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND Irisin, a novel myokine, has been identified to exert a series of favorable effects on metabolic diseases, including diabetes and obesity. This study aimed to explore the effects of chronic irisin administration on blood pressure and the related underlying mechanisms in Zucker diabetic fatty (ZDF) rats. METHODS AND RESULTS Male ZDF rats and Zucker lean (ZL) rats received a continuous subcutaneous infusion of irisin or saline for 4 weeks. Compared with ZL counterparts, ZDF rats reported higher systolic blood pressure (SBP), severer renal inflammation, increased oxidative stress, and impaired natriuresis and diuresis; they also had an elevated AT1R expression in renal cortex and augmented candesartan-induced natriuresis and diuresis. The irisin administration lowered SBP, improved diuretic and natriuretic effects, and reduced renal inflammation and oxidative stress in ZDF rats, along with decreased renal expression of AT1R and restored candesartan-mediated natriuresis and diuresis. Further experiments showed that irisin inhibited the translocation of NF-κB from the cytosol to the nucleus and the activation of NF-κB signaling pathway, which may contribute to the reduced AT1R expression and function. CONCLUSIONS Irisin administration serves an anti-hypertensive role in ZDF rats by alleviating renal inflammation and oxidative stress, reducing the expression and impact of AT1R, and restoring natriuresis and diuresis. The underlying mechanism may involve the irisin-induced inhibition of the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Yu Huang
- Department of Cardiology, Fujian Heart Medical Center, Fujian Institute of Coronary Heart Disease, Fujian Medical University Union Hospital, Fuzhou 350001, PR China
| | - Qin Chen
- Department of Cardiology, Fujian Heart Medical Center, Fujian Institute of Coronary Heart Disease, Fujian Medical University Union Hospital, Fuzhou 350001, PR China
| | - Qiong Jiang
- Department of Cardiology, Fujian Heart Medical Center, Fujian Institute of Coronary Heart Disease, Fujian Medical University Union Hospital, Fuzhou 350001, PR China
| | - Ziwen Zhao
- Department of Cardiology, Fujian Heart Medical Center, Fujian Institute of Coronary Heart Disease, Fujian Medical University Union Hospital, Fuzhou 350001, PR China
| | - Jun Fang
- Department of Cardiology, Fujian Heart Medical Center, Fujian Institute of Coronary Heart Disease, Fujian Medical University Union Hospital, Fuzhou 350001, PR China
| | - Lianglong Chen
- Department of Cardiology, Fujian Heart Medical Center, Fujian Institute of Coronary Heart Disease, Fujian Medical University Union Hospital, Fuzhou 350001, PR China.
| |
Collapse
|
4
|
Animal models of diabetic microvascular complications: Relevance to clinical features. Biomed Pharmacother 2021; 145:112305. [PMID: 34872802 DOI: 10.1016/j.biopha.2021.112305] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 09/29/2021] [Accepted: 10/05/2021] [Indexed: 02/06/2023] Open
Abstract
Diabetes has become more common in recent years worldwide, and this growth is projected to continue in the future. The primary concern with diabetes is developing various complications, which significantly contribute to the disease's mortality and morbidity. Over time, the condition progresses from the pre-diabetic to the diabetic stage and then to the development of complications. Years and enormous resources are required to evaluate pharmacological interventions to prevent or delay the progression of disease or complications in humans. Appropriate screening models are required to gain a better understanding of both pathogenesis and potential therapeutic agents. Different species of animals are used to evaluate the pharmacological potentials and study the pathogenesis of the disease. Animal models are essential for research because they represent most of the structural, functional, and biochemical characteristics of human diseases. An ideal screening model should mimic the pathogenesis of the disease with identifiable characteristics. A thorough understanding of animal models is required for the experimental design to select an appropriate model. Each animal model has certain advantages and limitations. The present manuscript describes the animal models and their diagnostic characteristics to evaluate microvascular diabetic complications.
Collapse
|
5
|
Azegami T, Nakayama T, Hayashi K, Hishikawa A, Yoshimoto N, Nakamichi R, Itoh H. Vaccination Against Receptor for Advanced Glycation End Products Attenuates the Progression of Diabetic Kidney Disease. Diabetes 2021; 70:2147-2158. [PMID: 34155040 DOI: 10.2337/db20-1257] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 06/14/2021] [Indexed: 11/13/2022]
Abstract
Effective treatment of diabetic kidney disease (DKD) remains a large unmet medical need. Within the disease's complicated pathogenic mechanism, activation of the advanced glycation end products (AGEs)-receptor for AGE (RAGE) axis plays a pivotal role in the development and progression of DKD. To provide a new therapeutic strategy against DKD progression, we developed a vaccine against RAGE. Three rounds of immunization of mice with the RAGE vaccine successfully induced antigen-specific serum IgG antibody titers and elevated antibody titers were sustained for at least 38 weeks. In addition, RAGE vaccination significantly attenuated the increase in urinary albumin excretion in streptozotocin-induced diabetic mice (type 1 diabetes model) and leptin-receptor-deficient db/db mice (type 2 diabetes model). In microscopic analyses, RAGE vaccination suppressed glomerular hypertrophy and mesangial expansion in both diabetic models and significantly reduced glomerular basement membrane thickness in streptozotocin-induced diabetic mice. Results of an in vitro study indicated that the serum IgG antibody elicited by RAGE vaccination suppressed the expression of AGE-induced vascular cell adhesion molecule 1 and intracellular adhesion molecule 1 in endothelial cells. Thus, our newly developed RAGE vaccine attenuated the progression of DKD in mice and is a promising potential therapeutic strategy for patients with DKD.
Collapse
Affiliation(s)
- Tatsuhiko Azegami
- Keio University Health Center, Kanagawa, Japan
- Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Takashin Nakayama
- Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Kaori Hayashi
- Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Akihito Hishikawa
- Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Norifumi Yoshimoto
- Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Ran Nakamichi
- Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Hiroshi Itoh
- Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
6
|
Use of the ZDF rat to model dietary fat induced hypercoagulability is limited by progressive and fatal nephropathy. J Pharmacol Toxicol Methods 2020; 107:106933. [PMID: 33122074 DOI: 10.1016/j.vascn.2020.106933] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/31/2020] [Accepted: 10/06/2020] [Indexed: 01/22/2023]
Abstract
INTRODUCTION Zucker diabetic fatty (ZDF) rats are used widely as an animal model of metabolic syndrome and insulin resistance. Our study focused on the effects of high versus low dietary fat on the development of Type 2 diabetes in obese male ZDF rats (fa/fa), including biomarkers to detect early signs of hypercoagulability and vascular injury in the absence of overt thrombosis. METHODS In this study, male (5/group) 10-week-old CRL:ZDF370(obese) rats were fed low (LFD, 16.7% fat) or high fat (HFD, 60% fat) diet for 12 or 15 weeks. Cohorts of 5 rats within diet groups were scheduled for sample collection after weeks 12 and 15. RESULTS HFD-fed ZDF rats had oily coats, lower rates of food consumption, more accelerated weight gain and increased serum cholesterol (+15%) and triglyceride concentrations (+75%) vs. LFD-fed ZDF rats. Urinary ketones were observed only in HFD-fed ZDF rats and greater urine glucose and protein concentrations in HFD-fed ZDF vs. LFD-fed ZDF rats were seen. Hemostasis testing showed ~2-fold greater fibrinogen concentration, increased von Willebrand factor concentration, and high thrombin generation in HFD-fed ZDF vs LFD-fed ZDF rats. Increased mortality in the HFD-fed ZDF rat was attributed to exacerbations of altered carbohydrate metabolism as evidenced by ketonuria and nephropathy leading to renal failure. DISCUSSION This characterization shows that the ZDF rat at the age, sex and weight used in this study is highly sensitive to dietary fat content that can exacerbate prothrombotic, metabolic and renal disturbances and increase mortality.
Collapse
|
7
|
Sourris KC, Watson A, Jandeleit-Dahm K. Inhibitors of Advanced Glycation End Product (AGE) Formation and Accumulation. Handb Exp Pharmacol 2020; 264:395-423. [PMID: 32809100 DOI: 10.1007/164_2020_391] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A range of chemically different compounds are known to inhibit the formation and accumulation of advanced glycation end products (AGEs) or disrupt associated signalling pathways. There is evidence that some of these agents can provide end-organ protection in chronic diseases including diabetes. Whilst this group of therapeutics are structurally and functionally different and have a range of mechanisms of action, they ultimately reduce the deleterious actions and the tissue burden of advanced glycation end products. To date it remains unclear if this is due to the reduction in tissue AGE levels per se or the modulation of downstream signal pathways. Some of these agents either stimulate antioxidant defence or reduce the formation of reactive oxygen species (ROS), modify lipid profiles and inhibit inflammation. A number of existing treatments for glucose lowering, hypertension and hyperlipidaemia are also known to reduce AGE formation as a by-product of their action. Targeted AGE formation inhibitors or AGE cross-link breakers have been developed and have shown beneficial effects in animal models of diabetic complications as well as other chronic conditions. However, only a few of these agents have progressed to clinical development. The failure of clinical translation highlights the importance of further investigation of the advanced glycation pathway, the diverse actions of agents which interfere with AGE formation, cross-linking or AGE receptor activation and their effect on the development and progression of chronic diseases including diabetic complications. Advanced glycation end products (AGEs) are (1) proteins or lipids that become glycated as a result of exposure to sugars or (2) non-proteinaceous oxidised lipids. They are implicated in ageing and the development, or worsening, of many degenerative diseases, such as diabetes, atherosclerosis, chronic kidney and Alzheimer's disease. Several antihypertensive and antidiabetic agents and statins also indirectly lower AGEs. Direct AGE inhibitors currently investigated include pyridoxamine and epalrestat, the inhibition of the formation of reactive dicarbonyls such as methylglyoxal as an important precursor of AGEs via increased activation of the detoxifying enzyme Glo-1 and inhibitors of NOX-derived ROS to reduce the AGE/RAGE signalling.
Collapse
Affiliation(s)
- Karly C Sourris
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Anna Watson
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Karin Jandeleit-Dahm
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC, Australia.
| |
Collapse
|
8
|
Treatment with adipose tissue-derived mesenchymal stem cells exerts anti-diabetic effects, improves long-term complications, and attenuates inflammation in type 2 diabetic rats. Stem Cell Res Ther 2019; 10:333. [PMID: 31747961 PMCID: PMC6868748 DOI: 10.1186/s13287-019-1474-8] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 09/03/2019] [Accepted: 10/30/2019] [Indexed: 02/08/2023] Open
Abstract
Background Long-term diabetes-associated complications are the major causes of morbidity and mortality in individuals with diabetes. These diabetic complications are closely linked to immune system activation along with chronic, non-resolving inflammation, but therapies to directly reverse these complications are still not available. Our previous study demonstrated that mesenchymal stem cells (MSCs) attenuated chronic inflammation in type 2 diabetes mellitus (T2DM), resulting in improved insulin sensitivity and islet function. Therefore, we speculated that MSCs might exert anti-inflammatory effects and promote the reversal of diabetes-induced kidney, liver, lung, heart, and lens diseases in T2DM rats. Methods We induced a long-term T2DM complication rat model by using a combination of a low dose of streptozotocin (STZ) with a high-fat diet (HFD) for 32 weeks. Adipose-derived mesenchymal stem cells (ADSCs) were systemically administered once a week for 24 weeks. Then, we investigated the role of ADSCs in modulating the progress of long-term diabetic complications. Results Multiple infusions of ADSCs attenuated chronic kidney disease (CKD), nonalcoholic steatohepatitis (NASH), lung fibrosis, and cataracts; improved cardiac function; and lowered serum lipid levels in T2DM rats. Moreover, the levels of inflammatory cytokines in the serum of each animal group revealed that ADSC infusions were able to not only inhibit pro-inflammatory cytokines IL-6, IL-1β, and TNF-α expression but also increase anti-inflammatory cytokine IL-10 systematically. Additionally, MSCs reduced the number of iNOS(+) M1 macrophages and restored the number of CD163(+) M2 macrophages. Conclusions Multiple intravenous infusions of ADSCs produced significant protective effects against long-term T2DM complications by alleviating inflammation and promoting tissue repair. The present study suggests ADSCs may be a novel, alternative cell therapy for long-term diabetic complications.
Collapse
|
9
|
Gu TT, Chen TY, Yang YZ, Zhao XJ, Sun Y, Li TS, Zhang DM, Kong LD. Pterostilbene alleviates fructose-induced renal fibrosis by suppressing TGF-β1/TGF-β type I receptor/Smads signaling in proximal tubular epithelial cells. Eur J Pharmacol 2019; 842:70-78. [DOI: 10.1016/j.ejphar.2018.10.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 09/30/2018] [Accepted: 10/10/2018] [Indexed: 12/14/2022]
|
10
|
Omidian M, Djalali M, Javanbakht MH, Eshraghian MR, Abshirini M, Omidian P, Alvandi E, Mahmoudi M. Effects of vitamin D supplementation on advanced glycation end products signaling pathway in T2DM patients: a randomized, placebo-controlled, double blind clinical trial. Diabetol Metab Syndr 2019; 11:86. [PMID: 31673295 PMCID: PMC6814978 DOI: 10.1186/s13098-019-0479-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 10/09/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Several researches have recommended vitamin D possible health benefits on diabetic complications development, but a few number of studies have been accomplished on the molecular and cellular mechanisms. Certain cellular pathways modification and also some transcription factors activation may protect cells from hyperglycemia condition induced damages. This study purpose was to determine the vitamin D supplementation effect on some key factors [advanced glycation end products (AGEs) signaling pathway] that were involved in the diabetic complications occurrence and progression for type-2 diabetes participants. METHODOLOGY 48 type-2 diabetic patients (T2DM) randomly divided into two groups (n = 24 per group), receiving: 100-µg vitamin D or placebo for 3 months. At this study beginning and the end, the receptor expression for advanced glycation end products (RAGE) and glyoxalase I (GLO1) enzyme from peripheral blood mononuclear cells (PBMCs) and AGEs and tumor necrosis factor-α (TNF-α) serum levels were measured by the use of real-time PCR and ELISA methods, respectively. RESULTS This study results demonstrated that vitamin D supplementation could down-regulate RAGE mRNA [fold change = 0.72 in vitamin D vs. 0.95 in placebo) P = 0.001)]. In addition, no significant changes were observed for GLO1 enzyme expression (P = 0.06). This study results also indicated that vitamin D serum level significantly increased in vitamin D group (P < 0.001). Moreover, AGES and TNF-α serum levels significantly reduced in vitamin D group, but they were remained unchanged in the placebo group. CONCLUSION In conclusion, vascular complications are more frequent in diabetic patients, and vitamin D treatment may prevent or delay the complications onset in these patients by AGEs serum level and RAGE gene expression reducing.Trial registration NCT03008057. Registered December 2016.
Collapse
Affiliation(s)
- Mahsa Omidian
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Poorsina Street, Enghelab Avenue, PO Box: 14155-6446, Tehran, Iran
| | - Mahmoud Djalali
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Poorsina Street, Enghelab Avenue, PO Box: 14155-6446, Tehran, Iran
| | - Mohammad Hassan Javanbakht
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Poorsina Street, Enghelab Avenue, PO Box: 14155-6446, Tehran, Iran
| | - Mohammad Reza Eshraghian
- Department of Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Abshirini
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Parisa Omidian
- Rasoul Akram Complex Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Ehsan Alvandi
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Poorsina Street, Enghelab Avenue, PO Box: 14155-6446, Tehran, Iran
| | - Maryam Mahmoudi
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Poorsina Street, Enghelab Avenue, PO Box: 14155-6446, Tehran, Iran
| |
Collapse
|
11
|
Sanajou D, Ghorbani Haghjo A, Argani H, Roshangar L, Rashtchizadeh N, Ahmad SNS, Ashrafi-Jigheh Z, Bahrambeigi S, Asiaee F, Rashedi J, Aslani S. Reduction of renal tubular injury with a RAGE inhibitor FPS-ZM1, valsartan and their combination in streptozotocin-induced diabetes in the rat. Eur J Pharmacol 2018; 842:40-48. [PMID: 30393200 DOI: 10.1016/j.ejphar.2018.10.035] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 10/17/2018] [Accepted: 10/24/2018] [Indexed: 10/28/2022]
Abstract
Receptor for advanced glycation end-products (RAGE) is involved in the pathogenesis of diabetic nephropathy. FPS-ZM1, a selective RAGE inhibitor, in combination with valsartan were investigated for their protective potentials on the renal markers of tubular injury in streptozotocin-induced diabetic rats. Rats were assigned into groups of receiving FPS-ZM1 (1 mg/kg/day), valsartan (100 mg/kg/day), and FPS-ZM1 plus valsartan (1 mg/kg/day and 100 mg/kg/day, respectively) for one month. Kidney histology, renal inflammation and oxidative stress, and renal and urinary markers of tubular injury were investigated. FPS-ZM1 and valsartan in combination more significantly attenuated renal expressions of tumor necrosis factor-alpha and interleukin-6 genes and reduced urinary levels of interleukin-6. Moreover, the combination elevated renal NAD+/NADH ratios and Sirt1 activities, and mitigated nuclear acetylated NF-κB p65 levels. In addition to alleviating indices of oxidative stress i.e. malondialdehyde, superoxide dismutase and glutathione peroxidase, the combination of FPS-ZM1 and valsartan more effectively upregulated the renal levels of master antioxidant proteins Nrf2, heme oxygenase-1, and NAD(P)H:quinone oxidoreductase-1. Additionally, this dual therapy ameliorated more efficiently the indices of renal tubular injuries as indicated by decreased renal kidney injury molecule-1 levels as well as reduced urinary levels of cystatin C, retinol binding protein, and beta-2-microglobulin. While FPS-ZM1 alone had no appreciable effects on the renal fibrosis, the combination treatment ameliorated fibrosis better than valsartan in the kidneys. Collectively, these findings underline the extra benefits of FPS-ZM1 and valsartan dual administrations in obviating the renal tubular cell injury in streptozotocin-induced diabetic rats partly by suppressing renal inflammation and oxidative stress.
Collapse
Affiliation(s)
- Davoud Sanajou
- Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Ghorbani Haghjo
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Hassan Argani
- Urology and Nephrology Research Center, Beheshti University of Medical Sciences, Tehran, Iran
| | - Leila Roshangar
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Saeed Nazari Soltan Ahmad
- Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zahra Ashrafi-Jigheh
- Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saman Bahrambeigi
- Department of Basic Sciences, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Farshid Asiaee
- Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jalil Rashedi
- Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Somayeh Aslani
- Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
12
|
Spatholobus suberectus Ameliorates Diabetes-Induced Renal Damage by Suppressing Advanced Glycation End Products in db/db Mice. Int J Mol Sci 2018; 19:ijms19092774. [PMID: 30223524 PMCID: PMC6163801 DOI: 10.3390/ijms19092774] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 09/12/2018] [Accepted: 09/12/2018] [Indexed: 12/13/2022] Open
Abstract
Spatholobus suberectus (SS) is a medicinal herb commonly used in Asia to treat anemia, menoxenia and rheumatism. However, its effect of diabetes-induced renal damage and mechanisms of action against advanced glycation end-products (AGEs) are unclear. In this study, we evaluated the effects of SS on diabetes-induced renal damage and explored the possible underlying mechanisms using db/db type 2 diabetes mice. db/db mice were administered SS extract (50 mg/kg) orally for 6 weeks. SS-treated group did not change body weight, blood glucose and glycated hemoglobin (HbA1c) levels. However, SS treatment reversed diabetes-induced dyslipidemia and urinary albumin/creatinine ratio in db/db mice. Moreover, SS administration showed significantly increased protein expression of nuclear factor erythroid 2-related factor 2 (Nrf2), which is a transcription factor for antioxidant enzyme. SS significantly upregulated glyoxalase 1 (Glo1) and NADPH quinine oxidoreductase 1 (NQO1) expression but reduced CML accumulation and downregulated receptor for AGEs (RAGE). Furthermore, SS showed significant decrease of periodic acid⁻Schiff (PAS)-positive staining and AGEs accumulation in histological and immunohistochemical analyses of kidney tissues. Taken together, we concluded that SS ameliorated the renal damage by inhibiting diabetes-induced glucotoxicity, dyslipidemia and oxidative stress, through the Nrf2/antioxidant responsive element (ARE) stress-response system.
Collapse
|
13
|
FPS-ZM1 and valsartan combination protects better against glomerular filtration barrier damage in streptozotocin-induced diabetic rats. J Physiol Biochem 2018; 74:467-478. [PMID: 29948786 DOI: 10.1007/s13105-018-0640-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 06/01/2018] [Indexed: 12/18/2022]
Abstract
Despite the effectiveness of renin-angiotensin blockade in retarding diabetic nephropathy progression, a considerable number of patients still develop end-stage renal disease. The present investigation aims to evaluate the protective potential of FPS-ZM1, a selective inhibitor of receptor for advanced glycation end products (RAGE), alone and in combination with valsartan, an angiotensin receptor blocker, against glomerular injury parameters in streptozotocin-induced diabetic rats. FPS-ZM1 at 1 mg/kg (i.p.), valsartan at 100 mg/kg (p.o.), and their combination were administered for 4 weeks, starting 2 months after diabetes induction in rats. Tests for kidney function, glomerular filtration barrier, and podocyte slit diaphragm integrities were performed. Combined FPS-ZM1/valsartan attenuated diabetes-induced elevations in renal levels of RAGE and phosphorylated NF-κB p65 subunit. It ameliorated glomerular injury due to diabetes by increasing glomerular nephrin and synaptopodin expressions, mitigating renal integrin-linked kinase (ILK) levels, and lowering urinary albumin, collagen type IV, and podocin excretions. FPS-ZM1 also improved renal function as demonstrated by decreasing levels of serum cystatin C. Additionally, the combination also alleviated indices of renal inflammation as revealed by decreased renal monocyte chemoattractant protein 1 (MCP-1) and chemokine (C-X-C motif) ligand 12 (CXCL12) expressions, F4/80-positive macrophages, glomerular TUNEL-positive cells, and urinary alpha-1-acid glycoprotein (AGP) levels. These findings underline the benefits of FPS-ZM1 added to valsartan in alleviating renal glomerular injury evoked by diabetes in streptozotocin rats and suggest FPS-ZM1 as a new potential adjunct to the conventional renin-angiotensin blockade.
Collapse
|
14
|
Sanajou D, Ghorbani Haghjo A, Argani H, Aslani S. AGE-RAGE axis blockade in diabetic nephropathy: Current status and future directions. Eur J Pharmacol 2018; 833:158-164. [PMID: 29883668 DOI: 10.1016/j.ejphar.2018.06.001] [Citation(s) in RCA: 191] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 06/02/2018] [Accepted: 06/04/2018] [Indexed: 12/16/2022]
Abstract
Diabetic nephropathy is one of the most frequent micro-vascular complications both in type 1 and type 2 diabetic patients and is the leading cause of end-stage renal disease worldwide. Although disparate mechanisms give rise to the development of diabetic nephropathy, prevailing evidence accentuates that hyperglycemia-associated generation of advanced glycation end products (AGEs) plays a central role in the disease pathophysiology. Engagement of the receptor for AGE (RAGE) with its ligands provokes oxidative stress and chronic inflammation in renal tissues, ending up with losses in kidney function. Moreover, RAGE activation evokes the activation of different intracellular signaling pathways like PI3K/Akt, MAPK/ERK, and NF-κB; and therefore, its blockade seems to be an attractive therapeutic target in these group of patients. By recognizing the contribution of AGE-RAGE axis to the pathogenesis of diabetic nephropathy, agents that block AGEs formation have been at the heart of investigations for several years, yielding encouraging improvements in experimental models of diabetic nephropathy. Even so, recent studies have evaluated the effects of specific RAGE inhibition with FPS-ZM1 and RAGE-aptamers as novel therapeutic strategies. Despite all these promising outcomes in experimental models of diabetic nephropathy, no thorough clinical trial have ever examined the end results of AGE-RAGE axis blockade in patients of diabetic nephropathy. As most of the AGE lowering or RAGE inhibiting compounds have emerged to be non-toxic, devising novel clinical trials appears to be inevitable. Here, the current potential treatment options for diabetic nephropathy by AGE-RAGE inhibitory modalities have been reviewed.
Collapse
Affiliation(s)
- Davoud Sanajou
- Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Ghorbani Haghjo
- Biotechnology Research Center, Tabriz University of Medical Sciences, Golgasht Avenue, POBOX: 14711, 5166614711 Tabriz, Iran.
| | - Hassan Argani
- Urology and Nephrology Research Center, Beheshti University of Medical Sciences, Tehran, Iran
| | - Somayeh Aslani
- Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
15
|
Arora MK, Sarup Y, Tomar R, Singh M, Kumar P. Amelioration of Diabetes-Induced Diabetic Nephropathy by Aloe vera: Implication of Oxidative Stress and Hyperlipidemia. J Diet Suppl 2018; 16:227-244. [PMID: 29621403 DOI: 10.1080/19390211.2018.1449159] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This study investigated the effect of Aloe vera in diabetes-induced nephropathy in rats. As diabetes-associated hyperlipidemia and oxidative stress have been implicated in the pathogenesis of diabetic nephropathy, we evaluated the protective effect of whole leaf extract of Aloe vera on the basis of its hypolipidemic and antioxidative property. Aloe vera (300 mg/kg orally) has been noted to possess renoprotective effect in experimental diabetic nephropathy. However, its mechanism is not fully understood. Rats were administered streptozotocin (STZ) (55 mg/kg intraperitoneally once) to induce experimental diabetes mellitus. The development of diabetic nephropathy was assessed biochemically and histologically. In addition, the diabetes-induced lipid profile and renal oxidative stress were assessed. The single administration of STZ produced diabetes, which induced renal oxidative stress, altered the lipid profile, and subsequently produced nephropathy in eight weeks by increasing serum creatinine, blood urea nitrogen, proteinuria, and glomerular damage. Treatment with Aloe vera (300 mg/kg/day orally) was noted to be more effective against the diabetes-induced nephropathy and renal oxidative stress as compared to lisinopril (1 mg/kg/day orally), a reference agent. It may be concluded that diabetes-induced oxidative stress and lipid alterations may be accountable for the induction of nephropathy in diabetic rats. The treatment with Aloe vera (300 mg/kg/day orally) may have prevented the development of diabetes-induced nephropathy by reducing lipid alteration, decreasing renal oxidative stress, and providing direct renoprotective action.
Collapse
Affiliation(s)
| | - Yogesh Sarup
- a Department of Pharmacognosy , KIET School of Pharmacy , Ghaziabad , India
| | - Ritu Tomar
- b Department of Pharmacognosy , Swami Vivekanand Subharti University , Meerut , India
| | - Mary Singh
- a Department of Pharmacognosy , KIET School of Pharmacy , Ghaziabad , India
| | - Puspendra Kumar
- c Department of Pharamocognosy , KIET School of Pharmacy , Ghaziabad , India
| |
Collapse
|
16
|
Komers R, Xu B, Schneider J, Oyama TT. Effects of xanthine oxidase inhibition with febuxostat on the development of nephropathy in experimental type 2 diabetes. Br J Pharmacol 2016; 173:2573-88. [PMID: 27238746 DOI: 10.1111/bph.13527] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Revised: 05/11/2016] [Accepted: 05/12/2016] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND AND PURPOSE Elevated serum uric acid (UA) is a risk factor for the development of kidney disease. Inhibitors of xanthine oxidase (XOi), an enzyme involved in UA synthesis, have protective effects at early stages of experimental diabetic nephropathy (DN). However, long-term effects of XOi in models of DN remain to be determined. EXPERIMENTAL APPROACH The development of albuminuria, renal structure and molecular markers of DN were studied in type 2 diabetic Zucker obese (ZO) rats treated for 18 weeks with the XOi febuxostat and compared with vehicle-treated ZO rats, ZO rats treated with enalapril or a combination of both agents, and lean Zucker rats without metabolic defects. RESULTS Febuxostat normalized serum UA and attenuated the development of albuminuria, renal structural changes, with no significant effects on BP, metabolic control or systemic markers of oxidative stress (OS). Most of these actions were comparable with those of enalapril. Combination treatment induced marked decreases in BP and was more effective in ameliorating structural changes, expression of profibrotic genes and systemic OS than either monotherapy. Febuxostat attenuated renal protein expression of TGF-ß, CTGF, collagen 4, mesenchymal markers (FSP1 and vimentin) and a tissue marker of OS nitrotyrosine. Moreover, febuxostat attenuated TGF-ß- and S100B-induced increased expression of fibrogenic molecules in renal tubular cells in vitro in UA-free media in an Akt kinase-dependent manner. CONCLUSIONS AND IMPLICATIONS Febuxostat is protective and enhances the actions of enalapril in experimental DN. Multiple mechanisms might be involved, such as a reduction of UA, renal OS and inhibition of profibrotic signalling.
Collapse
Affiliation(s)
- Radko Komers
- Department of Medicine, Division of Nephrology and Hypertension, Oregon Health and Science University, Portland, OR, USA
| | - Bei Xu
- Department of Medicine, Division of Nephrology and Hypertension, Oregon Health and Science University, Portland, OR, USA
| | - Jennifer Schneider
- Department of Medicine, Division of Nephrology and Hypertension, Oregon Health and Science University, Portland, OR, USA
| | - Terry T Oyama
- Department of Medicine, Division of Nephrology and Hypertension, Oregon Health and Science University, Portland, OR, USA
| |
Collapse
|
17
|
Targeting advanced glycation with pharmaceutical agents: where are we now? Glycoconj J 2016; 33:653-70. [PMID: 27392438 DOI: 10.1007/s10719-016-9691-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 05/11/2016] [Accepted: 05/26/2016] [Indexed: 02/06/2023]
Abstract
Advanced glycation end products (AGEs) are the final products of the Maillard reaction, a complex process that has been studied by food chemists for a century. Over the past 30 years, the biological significance of advanced glycation has also been discovered. There is mounting evidence that advanced glycation plays a homeostatic role within the body and that food-related Maillard products, intermediates such as reactive α-dicarbonyl compounds and AGEs, may influence this process. It remains to be understood, at what point AGEs and their intermediates become pathogenic and contribute to the pathogenesis of chronic diseases that inflict current society. Diabetes and its complications have been a major focus of AGE biology due to the abundance of excess sugar and α-dicarbonyls in this family of diseases. While further temporal information is required, a number of pharmacological agents that inhibit components of the advanced glycation pathway have already showed promising results in preclinical models. These therapies appear to have a wide range of mechanistic actions to reduce AGE load. Some of these agents including Alagebrium, have translated successfully to clinical trials, while others such as aminoguanidine, have had undesirable side-effect profiles. This review will discuss different pharmacological agents that have been used to reduce AGE burden in preclinical models of disease with a focus on diabetes and its complications, compare outcomes of those therapies that have reached clinical trials, and provide further rationale for the use of inhibitors of the glycation pathway in chronic diseases.
Collapse
|
18
|
New molecular insights in diabetic nephropathy. Int Urol Nephrol 2016; 48:373-87. [PMID: 26759327 DOI: 10.1007/s11255-015-1203-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 12/25/2015] [Indexed: 12/15/2022]
Abstract
Diabetes mellitus represents one of the major causes of functional kidney impairment. The review highlights the most significant steps made over the last decades in understanding the molecular basis of diabetic nephropathy (DN), which may provide reliable biomarkers for early diagnosis and prognosis, along with new molecular targets for personalized medicine. There is an increased interest in developing new therapeutic strategies to slow DN progression for improving patients' quality of life and reducing all-cause morbidity and disease-associated mortality. It is highly important to have a science-based medical attitude when facing diabetic patients with associated comorbidities and risk of rapid evolution toward end-stage renal disease. The data discussed herein were mainly from MEDLINE and PubMed articles published in English from 1990 to 2015 and from up-to-date. The search term was "diabetic nephropathy and oxidative stress".
Collapse
|
19
|
Luo H, Wang X, Wang J, Chen C, Wang N, Xu Z, Chen S, Zeng C. Chronic NF-κB blockade improves renal angiotensin II type 1 receptor functions and reduces blood pressure in Zucker diabetic rats. Cardiovasc Diabetol 2015; 14:76. [PMID: 26055622 PMCID: PMC4465496 DOI: 10.1186/s12933-015-0239-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 06/02/2015] [Indexed: 02/07/2023] Open
Abstract
Background Both angiotensin II type 1 receptor (AT1R) and nuclear factor-kappa B (NF-κB) play significant roles in the pathogenesis of hypertension and type 2 diabetes. However, the role of NF-κB in perpetuating renal AT1 receptors dysfunction remains unclear. The aim of the present study to determine whether blockade of NF-κB, could reverse the exaggerated renal AT1R function, reduce inflammatory state and oxidative stress, lower blood pressure in Zucker diabetic fatty (ZDF) rats. Methods Pyrrolidine dithiocarbamate (PDTC), a NF-κB inhibitor (150 mg/kg in drinking water)or vehicle was administered orally to 12-weeks-old ZDF rats and their respective control lean Zucker (LZ) rats for 4 weeks. Blood pressure was measured weekly by tail-cuff method. AT1R functions were determined by measuring diuretic and natriuretic responses to AT1R antagonist (candesartan; 10 μg/kg/min iv). The mRNA and protein levels of NF-κB, oxidative stress maker and AT1R were determined using quantitative real-time PCR and Western blotting, respectively. The NF-κB-DNA binding activity in renal cortex was measured by Electrophoretic mobility shift assay (EMSA). Results As compared with LZ rats, ZDF rats had higher blood pressure, impaired natriuresis and diuresis, accompanied with higher levels of oxidative stress and inflammation. Furthermore, AT1R expression was higher in renal cortex from ZDF rats; candesartan induced natriresis and diuresis, which was augmented in ZDF rats. Treatment with PDTC lowered blood pressure and improved diuretic and natriuretic effects in ZDF rats; meanwhile, the increased oxidative stress and inflammation were reduced; the increased AT1R expression and augmented candesartan-mediated natriuresis and diuresis were recoverd in ZDF rats. Our further study investigated the mechanisms of PDTC on AT1R receptor expression. It resulted that PDTC inhibited NF-κB translocation from cytosol to nucleus, inhibited binding of NF-κB with AT1R promoter, therefore, reduced AT1R expression and function. Conclusions Our present study indicates blockade of NF-κB, via inhibition of binding of NF-κB with AT1R promoter, reduces renal AT1R expression and function, improves oxidative stress and inflammatory/anti-inflammatory balance, therefore, lowers blood pressure and recovers renal function in ZDF rats. Electronic supplementary material The online version of this article (doi:10.1186/s12933-015-0239-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hao Luo
- The Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, PR China. .,Chongqing Institute of Cardiology, Chongqing, PR China.
| | - Xinquan Wang
- The Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, PR China. .,Chongqing Institute of Cardiology, Chongqing, PR China.
| | - Jialiang Wang
- The Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, PR China. .,Chongqing Institute of Cardiology, Chongqing, PR China.
| | - Caiyu Chen
- The Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, PR China. .,Chongqing Institute of Cardiology, Chongqing, PR China.
| | - Na Wang
- The Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, PR China. .,Chongqing Institute of Cardiology, Chongqing, PR China.
| | - Zaicheng Xu
- The Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, PR China. .,Chongqing Institute of Cardiology, Chongqing, PR China.
| | - Shuo Chen
- The Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, PR China. .,Chongqing Institute of Cardiology, Chongqing, PR China.
| | - Chunyu Zeng
- The Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, PR China. .,Chongqing Institute of Cardiology, Chongqing, PR China.
| |
Collapse
|
20
|
Satheesan S, Figarola JL, Dabbs T, Rahbar S, Ermel R. Effects of a new advanced glycation inhibitor, LR-90, on mitigating arterial stiffening and improving arterial elasticity and compliance in a diabetic rat model: aortic impedance analysis. Br J Pharmacol 2015; 171:3103-14. [PMID: 24611770 DOI: 10.1111/bph.12656] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 02/08/2014] [Accepted: 02/17/2014] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND AND PURPOSE We determined the effects of treatment with LR-90, an inhibitor of advanced glycation end products, on the mechanical properties of the arterial system in streptozotocin (STZ)-induced diabetic Sprague Dawley rats, using aortic impedance analysis, and further investigated the effects of LR-90 on the progression of aortic pathology. EXPERIMENTAL APPROACH STZ-induced diabetic rats were treated with or without LR-90 (50 mg L(-1) in drinking water) for 8 weeks and compared with control groups. Arterial BP measurements, various metabolic parameters, aortic histopathology, collagen cross-linking, AGE accumulation, and RAGE protein expression in aortic tissue were determined. Pulsatile parameters were evaluated using a standard Fourier series expansion technique and impulse response function of the filtered aortic input impedance spectra. KEY RESULTS LR-90 reduced glycated haemoglobin and triglycerides levels, although it had no effect on the glycaemic status. LR-90 did not affect arterial BP, but prevented the diabetes-induced increase in peripheral resistance and variations in aortic distensibility, as it reduced aortic characteristic impedance by 21%. LR-90 also prevented the elevation in wave reflection factor, as indicated by a 22.5% reduction and an associated increase of 23.5% in wave transit time, suggesting it prevents the augmentation of the systolic load of the left ventricle. Moreover, LR-90 inhibited collagen cross-linking and the accumulation of AGE and RAGE in the vasculature of diabetic rats. CONCLUSIONS AND IMPLICATIONS Treatment with LR-90 may impart significant protection against diabetes-induced aortic stiffening and cardiac hypertrophy and provides an additional therapeutic option for treatment of AGE associated diabetic complications.
Collapse
Affiliation(s)
- S Satheesan
- Division of Comparative Medicine, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, USA
| | | | | | | | | |
Collapse
|
21
|
Aldini G, Vistoli G, Stefek M, Chondrogianni N, Grune T, Sereikaite J, Sadowska-Bartosz I, Bartosz G. Molecular strategies to prevent, inhibit, and degrade advanced glycoxidation and advanced lipoxidation end products. Free Radic Res 2013; 47 Suppl 1:93-137. [PMID: 23560617 DOI: 10.3109/10715762.2013.792926] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The advanced glycoxidation end products (AGEs) and lipoxidation end products (ALEs) contribute to the development of diabetic complications and of other pathologies. The review discusses the possibilities of counteracting the formation and stimulating the degradation of these species by pharmaceuticals and natural compounds. The review discusses inhibitors of ALE and AGE formation, cross-link breakers, ALE/AGE elimination by enzymes and proteolytic systems, receptors for advanced glycation end products (RAGEs) and blockade of the ligand-RAGE axis.
Collapse
Affiliation(s)
- Giancarlo Aldini
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
The most problematic issue in clinical nephrology is the relentless and progressive increase in patients with ESRD (end-stage renal disease) worldwide. The impact of diabetic nephropathy on the increasing population with CKD (chronic kidney disease) and ESRD is enormous. Three major pathways showing abnormality of intracellular metabolism have been identified in the development of diabetic nephropathy: (i) the activation of polyol and PKC (protein kinase C) pathways; (ii) the formation of advanced glycation end-products; and (iii) intraglomerular hypertension induced by glomerular hyperfiltration. Upstream of these three major pathways, hyperglycaemia is the major driving force of the progression to ESRD from diabetic nephropathy. Downstream of the three pathways, microinflammation and subsequent extracellular matrix expansion are common pathways for the progression of diabetic nephropathy. In recent years, many researchers have been convinced that the inflammation pathways play central roles in the progression of diabetic nephropathy, and the identification of new inflammatory molecules may link to the development of new therapeutic strategies. Various molecules related to the inflammation pathways in diabetic nephropathy include transcription factors, pro-inflammatory cytokines, chemokines, adhesion molecules, Toll-like receptors, adipokines and nuclear receptors, which are candidates for the new molecular targets for the treatment of diabetic nephropathy. Understanding of these molecular pathways of inflammation would translate into the development of anti-inflammation therapeutic strategies.
Collapse
|
23
|
Kong LL, Wu H, Cui WP, Zhou WH, Luo P, Sun J, Yuan H, Miao LN. Advances in murine models of diabetic nephropathy. J Diabetes Res 2013; 2013:797548. [PMID: 23844375 PMCID: PMC3697778 DOI: 10.1155/2013/797548] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2013] [Accepted: 05/21/2013] [Indexed: 12/20/2022] Open
Abstract
Diabetic nephropathy (DN) is one of the microvascular complications of both type 1 and type 2 diabetes, which is also associated with a poor life expectancy of diabetic patients. However, the pathogenesis of DN is still unclear. Thus, it is of great use to establish appropriate animal models of DN for doing research on pathogenesis and developing novel therapeutic strategies. Although a large number of murine models of DN including artificially induced, spontaneous, and genetically engineered (knockout and transgenic) animal models have been developed, none of them develops renal changes sufficiently reflecting those seen in humans. Here we review the identified murine models of DN from the aspects of genetic background, type of diabetes, method of induction, gene deficiency, animal age and gender, kidney histopathology, and phenotypic alterations in the hope of enhancing our comprehension of genetic susceptibility and molecular mechanisms responsible for this disease and providing new clues as to how to choose appropriate animal models of DN.
Collapse
Affiliation(s)
- Li-li Kong
- Department of Nephrology, The Second Hospital of Jilin University, Changchun 130041, China
| | - Hao Wu
- Department of Nephrology, The Second Hospital of Jilin University, Changchun 130041, China
| | - Wen-peng Cui
- Department of Nephrology, The Second Hospital of Jilin University, Changchun 130041, China
| | - Wen-hua Zhou
- Department of Nephrology, The Second Hospital of Jilin University, Changchun 130041, China
| | - Ping Luo
- Department of Nephrology, The Second Hospital of Jilin University, Changchun 130041, China
| | - Jing Sun
- Department of Nephrology, The Second Hospital of Jilin University, Changchun 130041, China
| | - Hang Yuan
- Department of Nephrology, The Second Hospital of Jilin University, Changchun 130041, China
| | - Li-ning Miao
- Department of Nephrology, The Second Hospital of Jilin University, Changchun 130041, China
- *Li-ning Miao:
| |
Collapse
|
24
|
Nagai R, Murray DB, Metz TO, Baynes JW. Chelation: a fundamental mechanism of action of AGE inhibitors, AGE breakers, and other inhibitors of diabetes complications. Diabetes 2012; 61:549-59. [PMID: 22354928 PMCID: PMC3282805 DOI: 10.2337/db11-1120] [Citation(s) in RCA: 165] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This article outlines evidence that advanced glycation end product (AGE) inhibitors and breakers act primarily as chelators, inhibiting metal-catalyzed oxidation reactions that catalyze AGE formation. We then present evidence that chelation is the most likely mechanism by which ACE inhibitors, angiotensin receptor blockers, and aldose reductase inhibitors inhibit AGE formation in diabetes. Finally, we note several recent studies demonstrating therapeutic benefits of chelators for diabetic cardiovascular and renal disease. We conclude that chronic, low-dose chelation therapy deserves serious consideration as a clinical tool for prevention and treatment of diabetes complications.
Collapse
Affiliation(s)
- Ryoji Nagai
- Department of Food and Nutrition, Japan Women’s University, Tokyo, Japan
| | - David B. Murray
- Department of Pharmacology, University of Mississippi, Oxford, Mississippi
| | - Thomas O. Metz
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington
| | - John W. Baynes
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina
- Corresponding author: John W. Baynes,
| |
Collapse
|
25
|
Shevalye H, Lupachyk S, Watcho P, Stavniichuk R, Khazim K, Abboud HE, Obrosova IG. Prediabetic nephropathy as an early consequence of the high-calorie/high-fat diet: relation to oxidative stress. Endocrinology 2012; 153:1152-61. [PMID: 22234462 PMCID: PMC3281531 DOI: 10.1210/en.2011-1997] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
This study evaluated early renal functional, structural, and biochemical changes in high-calorie/high-fat diet fed mice, a model of prediabetes and alimentary obesity. Male C57BL6/J mice were fed normal (11 kcal% fat) or high-fat (58 kcal% fat) diets for 16 wk. Renal changes were evaluated by histochemistry and immunohistochemistry, Western blot analysis, ELISA, enzymatic assays, and chemiluminometry. High-fat diet consumption led to increased body and kidney weights, impaired glucose tolerance, hyperinsulinemia, polyuria, a 2.7-fold increase in 24-h urinary albumin excretion, 20% increase in renal glomerular volume, 18% increase in renal collagen deposition, and 8% drop of glomerular podocytes. It also resulted in a 5.3-fold increase in urinary 8-isoprostane excretion and a 38% increase in renal cortex 4-hydroxynonenal adduct accumulation. 4-hydroxynonenal adduct level and immunoreactivity or Sirtuin 1 expression in renal medulla were not affected. Studies of potential mechanisms of the high-fat diet induced renal cortex oxidative injury revealed that whereas nicotinamide adenine dinucleotide phosphate reduced form oxidase activity only tended to increase, 12/15-lipoxygenase was significantly up-regulated, with approximately 12% increase in the enzyme protein expression and approximately 2-fold accumulation of 12(S)-hydroxyeicosatetraenoic acid, a marker of 12/15-lipoxygenase activity. Accumulation of periodic acid-Schiff -positive material, concentrations of TGF-β, sorbitol pathway intermediates, and expression of nephrin, CAAT/enhancer-binding protein homologous protein, phosphoeukaryotic initiation factor-α, and total eukaryotic initiation factor-α in the renal cortex were indistinguishable between experimental groups. Vascular endothelial growth factor concentrations were reduced in high-fat diet fed mice. In conclusion, systemic and renal cortex oxidative stress associated with 12/15-lipoxygenase overexpression and activation is an early phenomenon caused by high-calorie/high-fat diet consumption and a likely contributor to kidney disease associated with prediabetes and alimentary obesity.
Collapse
Affiliation(s)
- Hanna Shevalye
- Pennington Biomedical Research Center, Louisiana State University, 6400 Perkins Road, Baton Rouge, Louisiana 70808, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Hempe J, Elvert R, Schmidts HL, Kramer W, Herling AW. Appropriateness of the Zucker Diabetic Fatty rat as a model for diabetic microvascular late complications. Lab Anim 2012; 46:32-9. [DOI: 10.1258/la.2011.010165] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Male obese Zucker Diabetic Fatty (ZDF) rats develop type 2 diabetes around eight weeks of age, and are widely used as a model for human diabetes and its complications. The objective of the study was to test whether the complications manifested in the kidney and nerves of ZDF rats really correspond to human diabetic complications in their being related to the hyperglycaemic state. Four groups of ZDF rats were used. One lean (Fa/?) and one obese (fa/fa) untreated group served as non-diabetic and diabetic controls. In two further groups of obese (fa/fa) rats, diabetes was prevented by pioglitazone or delayed by food restriction. All rats were monitored up to 35 weeks of age with respect to their blood glucose, HbA1c and insulin levels, their kidney function (urinary glucose excretion, renal glucose filtration, glomerular filtration rate, albumin/creatinine ratio), and their nerve function (tactile and thermal sensory threshold and nerve conduction velocity). Pioglitazone prevented the development of diabetes, while food restriction delayed its onset for 8–10 weeks. Accordingly, kidney function parameters were similar to lean non-diabetic rats in pioglitazone-treated rats and significantly improved in food-restricted rats compared with obese controls. Kidney histology paralleled the functional results. By contrast, nerve functional evaluations did not mirror the differing blood glucose levels. We conclude that the ZDF rat is a good model for diabetic nephropathy, while alterations in nerve functions were not diabetes-related.
Collapse
Affiliation(s)
- J Hempe
- Diabetes Division, Translational Medicine, Sanofi-Aventis Deutschland GmbH, Industriepark Hoechst, H821, 65926 Frankfurt am Main, Germany
| | - R Elvert
- Diabetes Division, Translational Medicine, Sanofi-Aventis Deutschland GmbH, Industriepark Hoechst, H821, 65926 Frankfurt am Main, Germany
| | - H-L Schmidts
- Diabetes Division, Translational Medicine, Sanofi-Aventis Deutschland GmbH, Industriepark Hoechst, H821, 65926 Frankfurt am Main, Germany
| | - W Kramer
- Diabetes Division, Translational Medicine, Sanofi-Aventis Deutschland GmbH, Industriepark Hoechst, H821, 65926 Frankfurt am Main, Germany
| | - A W Herling
- Diabetes Division, Translational Medicine, Sanofi-Aventis Deutschland GmbH, Industriepark Hoechst, H821, 65926 Frankfurt am Main, Germany
| |
Collapse
|
27
|
Fang D, Guan H, Liu J, Wei G, Ke W, Yao B, Xiao H, Li Y. Early intensive insulin therapy attenuates the p38 pathway in the renal cortex and indices of nephropathy in diabetic rats. Endocr J 2012; 59:81-90. [PMID: 22068113 DOI: 10.1507/endocrj.ej11-0057] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
In this rodent study, we compared the effects of early versus late intensive insulin therapy on diabetic nephropathy and potential causal mechanisms. Diabetes was induced in rats by high-fat diet and low-dose streptozotocin. Intensive insulin therapy was initiated in the early intensive insulin therapy groups as soon as diabetes was confirmed and lasted for 8 (8wEI group) and 16 weeks (16wEI group). In the late insulin therapy group (LI group), intensive insulin treatment was initiated 8 weeks later and lasted for 8 weeks. Age-matched diabetic rats (8wDM group and 16wDM group) and non-diabetic rats (8wNC group and 16wNC group) served as controls. Histological analysis, real-time PCR, and western blot were performed in renal cortex specimens. Glomerular hypertrophy and mesangial matrix expansion were prominent in the 16wDM and LI groups while the EI groups remained normal and similar to the 16wNC group. Western blots revealed that p38 MAPK activities in the EI groups decreased significantly, whereas the level in the LI group was markedly higher than the 16wEI group, and not different from the DM groups. Activities of MKK3/6, CREB and MKP-1 proteins as well as CREB and MKP-1 mRNA showed a similar pattern. Therefore, we concluded that early intensive insulin treatment and attainment of good glycemic control counteracted some renal molecular pathways associated with epigenetic metabolic memory to minimize risk of diabetic nephropathy. However, late insulin therapy did not abrogate the increased renal cortical p38 MAPK pathway activation in diabetic rats and led to glomerular hypertrophy and extracellular matrix expansion.
Collapse
MESH Headings
- Animals
- Diabetes Mellitus, Type 2/complications
- Diabetes Mellitus, Type 2/drug therapy
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/pathology
- Diabetic Nephropathies/prevention & control
- Gene Expression Regulation/drug effects
- Glomerular Mesangium/drug effects
- Glomerular Mesangium/pathology
- Humans
- Hypertrophy
- Hypoglycemic Agents/therapeutic use
- Insulin, Isophane/therapeutic use
- Insulin, Regular, Human/therapeutic use
- Isophane Insulin, Human
- Kidney Cortex/drug effects
- Kidney Cortex/metabolism
- Kidney Cortex/pathology
- Kidney Glomerulus/drug effects
- Kidney Glomerulus/pathology
- MAP Kinase Signaling System/drug effects
- Male
- Phosphorylation/drug effects
- Protein Processing, Post-Translational/drug effects
- RNA, Messenger/metabolism
- Random Allocation
- Rats
- Rats, Sprague-Dawley
- Time Factors
- p38 Mitogen-Activated Protein Kinases/antagonists & inhibitors
- p38 Mitogen-Activated Protein Kinases/metabolism
Collapse
Affiliation(s)
- Donghong Fang
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-sen University, Guangdong, China
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Turner JM, Bauer C, Abramowitz MK, Melamed ML, Hostetter TH. Treatment of chronic kidney disease. Kidney Int 2011; 81:351-62. [PMID: 22166846 DOI: 10.1038/ki.2011.380] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Treatment of chronic kidney disease (CKD) can slow its progression to end-stage renal disease (ESRD). However, the therapies remain limited. Blood pressure control using angiotensin-converting enzyme (ACE) inhibitors or angiotensin II receptor blockers (ARBs) has the greatest weight of evidence. Glycemic control in diabetes seems likely to retard progression. Several metabolic disturbances of CKD may prove to be useful therapeutic targets but have been insufficiently tested. These include acidosis, hyperphosphatemia, and vitamin D deficiency. Drugs aimed at other potentially damaging systems and processes, including endothelin, fibrosis, oxidation, and advanced glycation end products, are at various stages of development. In addition to the paucity of proven effective therapies, the incomplete application of existing treatments, the education of patients about their disease, and the transition to ESRD care remain major practical barriers to better outcomes.
Collapse
Affiliation(s)
- Jeffrey M Turner
- Nephrology Division, Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
| | | | | | | | | |
Collapse
|
29
|
Agil A, Navarro-Alarcón M, Ruiz R, Abuhamadah S, El-Mir MY, Vázquez GF. Beneficial effects of melatonin on obesity and lipid profile in young Zucker diabetic fatty rats. J Pineal Res 2011; 50:207-12. [PMID: 21087312 DOI: 10.1111/j.1600-079x.2010.00830.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The study objective was to investigate the effects of melatonin on obesity and obesity-associated systolic hypertension and dyslipidemia in young male Zucker diabetic fatty (ZDF) rats, an experimental model of the metabolic syndrome. ZDF rats (n=30) and lean littermates (ZL) (n=30) were used. At 6wk of age, both lean and fatty animals were subdivided into three groups (n=10): naive (N), vehicle-treated (V), and melatonin-treated (M) (10mg/kg/day) for 6wk. Vehicle and melatonin were added to the drinking water. Melatonin reduced mean weight gain (51±2/100g BW) versus N-ZDF group (58±3, P<0.05) without food intake differences. M-ZDF rats showed an apparent reduction in systolic hypertension that proved not to be statistically significant, and a significant improvement in dyslipidemia, with a reduction in hypertriglyceridemia from 580±40 to 420.6±40.9mg/dL (P<0.01). Melatonin raised high-density-lipoprotein (HDL) cholesterol in ZDF (from 81.6±4.9 to 103.1±4.5mg/dL, P<0.01) and ZL rats (from 62.8±4.8 to 73.5±4.8mg/dL, P<0.05) and significantly reduced low-density-lipoprotein (LDL) cholesterol in ZDF rats from 5.20±0.4 to 4.14±0.3 mg/dL (P<0.05) but had no effect on total cholesterol levels. To our knowledge, this is the first evidence of a positive effect of melatonin on overweight and lipid pattern of obese Zucker diabetic rats, supporting the proposition that melatonin administration may ameliorate overweight and lipid metabolism in humans. Because these benefits occurred in youth, before advanced metabolic and vascular complications, melatonin might help to prevent cardiovascular disease associated with obesity and dyslipidemia.
Collapse
Affiliation(s)
- Ahmad Agil
- Department of Pharmacology and Neurosciences Institute, School of Medicine, University of Granada, Granada, Spain.
| | | | | | | | | | | |
Collapse
|
30
|
Wu CH, Huang SM, Yen GC. Silymarin: a novel antioxidant with antiglycation and antiinflammatory properties in vitro and in vivo. Antioxid Redox Signal 2011; 14:353-66. [PMID: 20578796 DOI: 10.1089/ars.2010.3134] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The current study was designed to evaluate the effects of silymarin (SM) on advanced glycation endproduct (AGE) formation and monocyte activation induced by S100b, a specific ligand of receptor for AGEs. The in vivo verification of antiglycation, antioxidant, and antiinflammatory capacities was examined by 12 weeks of SM administration in streptozotocin-diabetic rats. In vitro glycation assays demonstrated that SM exerted marked inhibition during the late stages of glycation and subsequent crosslinking. Dual action mechanisms, namely, antioxidant and reactive carbonyl trapping activities, may contribute to its antiglycation effect. SM produced a significant decrease in monocytic interleukin-1β and COX-2 levels and prevented oxidant formation caused by S100b, which appeared to be mediated by inhibition of p47phox membrane translocation. Chromatin immunoprecipitation demonstrated that S100b increased the recruitment of nuclear factor-kappaB transcription factor as well as cAMP response element-binding-binding protein and coactivator-associated arginine methyltransferase-1 cofactors to the interleukin-1β promoter, whereas these changes were inhibited with SM treatment. In vivo, SM reduced tissue AGE accumulation, tail collagen crosslinking, and concentrations of plasma glycated albumin. Levels of oxidative and inflammatory biomarkers were also significantly decreased in SM-treated groups compared with the diabetic group. These data suggest that SM supplementation may reduce the burden of AGEs in diabetics and may prevent resulting complications.
Collapse
Affiliation(s)
- Chi-Hao Wu
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | | | | |
Collapse
|
31
|
Jung DH, Kim YS, Kim NH, Lee J, Jang DS, Kim JS. Extract of Cassiae Semen and its major compound inhibit S100b-induced TGF-β1 and fibronectin expression in mouse glomerular mesangial cells. Eur J Pharmacol 2010; 641:7-14. [DOI: 10.1016/j.ejphar.2010.04.061] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Revised: 03/26/2010] [Accepted: 04/28/2010] [Indexed: 10/19/2022]
|
32
|
Kim NH, Kim YS, Jung DH, Kim JS. KIOM-79 prevents xylose-induced lens opacity and inhibits TGF-beta2 in human lens epithelial cells cultured under high glucose. JOURNAL OF ETHNOPHARMACOLOGY 2010; 130:599-606. [PMID: 20561927 DOI: 10.1016/j.jep.2010.05.052] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Revised: 05/14/2010] [Accepted: 05/25/2010] [Indexed: 05/29/2023]
Abstract
AIM OF THE STUDY To investigate the effects of KIOM-79 in preventing the development of diabetic complications, such as cataracts. MATERIALS AND METHODS The inhibitory effects of KIOM-79 were assessed in a model of xylose-induced lens opacity and on changes mediated by high levels of glucose in human lens epithelial (HLE-B3) cells. RESULTS In lenses treated with KIOM-79, opacity was significantly improved and glutathione (GSH) was increased compared to controls. In HLE-B3 cells treated with KIOM-79, high glucose-mediated increases in TGF-beta2, alphaB-crystallin, and fibronectin were significantly inhibited in a dose-dependent manner. KIOM-79 decreased the phosphorylation of p-Smad2/3, pp38MAPK, pp44/42, and NF-kappaB signaling in cells grown under high glucose conditions. CONCLUSION KIOM-79 is protective against lens opacity and protects HLE-B3 cells from the toxic effects of high glucose. Therefore, KIOM-79 may provide a potential therapeutic approach for preventing diabetic complications, such as cataracts.
Collapse
Affiliation(s)
- Nan Hee Kim
- Diabetic Complications Research Center, Division of Traditional Korean Medicine (TKM) Integrated Research, Korea Institute of Oriental Medicine (KIOM), Yuseong-gu, Daejeon, Republic of Korea
| | | | | | | |
Collapse
|
33
|
Shevalye H, Maksimchyk Y, Watcho P, Obrosova IG. Poly(ADP-ribose) polymerase-1 (PARP-1) gene deficiency alleviates diabetic kidney disease. Biochim Biophys Acta Mol Basis Dis 2010; 1802:1020-7. [PMID: 20621183 DOI: 10.1016/j.bbadis.2010.07.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Revised: 07/01/2010] [Accepted: 07/05/2010] [Indexed: 11/19/2022]
Abstract
Poly(ADP-ribose)polymerase (PARP) inhibitors prevent or alleviate diabetic nephropathy. This study evaluated the role for PARP-1 in diabetic kidney disease using the PARP-1-deficient mouse. PARP-1-/- and the wild-type (129S1/SvImJ) mice were made diabetic with streptozotocin, and were maintained for 12 weeks. Final blood glucose concentrations were increased ∼ 3.7-fold in both diabetic groups. PARP-1 protein expression (Western blot analysis) in the renal cortex was similar in non-diabetic and diabetic wild-type mice (100% and 107%) whereas all knockouts were PARP-1-negative. PARP-1 gene deficiency reduced urinary albumin (ELISA) and protein excretion prevented diabetes-induced kidney hypertrophy, and decreased mesangial expansion and collagen deposition (both assessed by histochemistry) as well as fibronectin expression. Renal podocyte loss (immunohistochemistry) and nitrotyrosine and transforming growth factor-β₁ accumulations (both by ELISA) were slightly lower in diabetic PARP-1-/- mice, but the differences with diabetic wild-type group did not achieve statistical significance. In conclusion, PARP-1-/- gene deficiency alleviates although does not completely prevent diabetic kidney disease.
Collapse
Affiliation(s)
- Hanna Shevalye
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, USA
| | | | | | | |
Collapse
|
34
|
Drel VR, Xu W, Zhang J, Pavlov IA, Shevalye H, Slusher B, Obrosova IG. Poly(Adenosine 5'-diphosphate-ribose) polymerase inhibition counteracts multiple manifestations of experimental type 1 diabetic nephropathy. Endocrinology 2009; 150:5273-83. [PMID: 19854869 PMCID: PMC2795707 DOI: 10.1210/en.2009-0628] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
This study was aimed at evaluating the role for poly(ADP-ribose) polymerase (PARP) in early nephropathy associated with type 1 diabetes. Control and streptozotocin-diabetic rats were maintained with or without treatment with one of two structurally unrelated PARP inhibitors, 1,5-isoquinolinediol (ISO) and 10-(4-methyl-piperazin-1-ylmethyl)-2H-7-oxa-1,2-diaza-benzo[de] anthracen-3-one (GPI-15427), at 3 mg/kg(-1) x d(-1) ip and 30 mg/kg(-1) x d(-1), respectively, for 10 wk after the first 2 wk without treatment. PARP activity in the renal cortex was assessed by immunohistochemistry and Western blot analysis of poly(ADP-ribosyl)ated proteins. Variables of diabetic nephropathy in urine and renal cortex were evaluated by ELISA, Western blot analysis, immunohistochemistry, and colorimetry. Urinary albumin excretion was increased about 4-fold in diabetic rats, and this increase was prevented by ISO and GPI-15427. PARP inhibition counteracted diabetes-associated increase in poly(ADP-ribose) immunoreactivities in renal glomeruli and tubuli and poly(ADP-ribosyl)ated protein level. Renal concentrations of TGF-beta(1), vascular endothelial growth factor, endothelin-1, TNF-alpha, monocyte chemoattractant protein-1, lipid peroxidation products, and nitrotyrosine were increased in diabetic rats, and all these changes as well as an increase in urinary TNF-alpha excretion were completely or partially prevented by ISO and GPI-15427. PARP inhibition counteracted diabetes-induced up-regulation of endothelin (B) receptor, podocyte loss, accumulation of collagen-alpha1 (IY), periodic acid-Schiff-positive substances, fibronectin, and advanced glycation end-products in the renal cortex. In conclusion, PARP activation is implicated in multiple changes characteristic for early nephropathy associated with type 1 diabetes. These findings provide rationale for development and further studies of PARP inhibitors and PARP inhibitor-containing combination therapies.
Collapse
Affiliation(s)
- Viktor R Drel
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana 70808, USA.
| | | | | | | | | | | | | |
Collapse
|
35
|
Jung DH, Kim YS, Kim JS. KIOM-79 prevents S100b-induced TGF-beta1 and fibronectin expression in mouse mesangial cells. JOURNAL OF ETHNOPHARMACOLOGY 2009; 125:374-379. [PMID: 19666101 DOI: 10.1016/j.jep.2009.08.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2009] [Revised: 07/16/2009] [Accepted: 08/01/2009] [Indexed: 05/28/2023]
Abstract
AIM OF THE STUDY In this study, we investigated whether KIOM-79 inhibits transforming growth factor-beta 1 (TGF-beta1) and fibronectin expression in mouse mesangial cells cultured under S100b, a specific ligand of the receptor for advanced glycation end products (RAGE). MATERIALS AND METHODS Cell counting kit (CCK-8) assay was employed to evaluate the viability of KIOM-79-treated mesangial cells. The effect of KIOM-79 on S100b-induced TGF-beta1 and fibronectin expression was investigated using RT-PCR, ELISA, and Western blot on mesangial cells. RESULTS KIOM-79 (up to 50 microg/ml) appeared to have no effect on cell viability. S100b induced an increase in the expression TGF-beta1 and fibronectin. Expression of TGF-beta1 and fibronectin was inhibited significantly by KIOM-79 treatment in mesangial cells. KIOM-79 also inhibited the expression of NF-kB and inactivated p38 mitogen-activated protein kinase (MAPK) and extracellular signal-regulated kinase (ERK) 1/2 in mesangial cells. KIOM-79 pretreatment inhibited increased malondialdehyde (a product of lipid peroxidation and a marker for oxidative stress) levels in S100b-induced mesangial cells. CONCLUSIONS These data demonstrate that KIOM-79 inhibits expression of TGF-beta1 and fibronectin through inactivation of MAPK/ERK1/2 signaling, reduction in malondiadehyde levels, and inhibition of NF-kB in mesangial cells cultured under diabetic conditions. KIOM-79 could be beneficial for preventing of the development of diabetic complications such as nephropathy.
Collapse
Affiliation(s)
- Dong Ho Jung
- Diabetic Complications Research Center, Division of Traditional Korean Medicine, Integrated Research, Korea Institute of Oriental Medicine, 483 Exporo, Yuseong-gu, Daejeon 305-811, Republic of Korea
| | | | | |
Collapse
|
36
|
|