1
|
Pretorius M, Huang C. Beta-Cell Adaptation to Pregnancy - Role of Calcium Dynamics. Front Endocrinol (Lausanne) 2022; 13:853876. [PMID: 35399944 PMCID: PMC8990731 DOI: 10.3389/fendo.2022.853876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 02/21/2022] [Indexed: 11/17/2022] Open
Abstract
During pregnancy, the mother develops insulin resistance to shunt nutrients to the growing fetus. As a result, the maternal islets of Langerhans undergo several changes to increase insulin secretion in order to maintain glucose homeostasis and prevent the development of gestational diabetes. These changes include an increase in β-cell proliferation and β-cell mass, upregulation of insulin synthesis and insulin content, enhanced cell-to-cell communication, and a lowering of the glucose threshold for insulin secretion, all of which resulting in an increase in glucose-stimulated insulin secretion. Emerging data suggests that a change in intracellular calcium dynamics occurs in the β-cell during pregnancy as part of the adaptive process. Influx of calcium into β-cells is crucial in the regulation of glucose-stimulated insulin secretion. Calcium fluxes into and out of the cytosol, endoplasmic reticulum, and mitochondria are also important in controlling β-cell function and survival. Here, we review calcium dynamics in islets in response to pregnancy-induced changes in hormones and signaling molecules, and how these changes may enhance insulin secretion to stave off gestational diabetes.
Collapse
|
2
|
Gaus B, Brüning D, Groß S, Müller M, Rustenbeck I. The changing view of insulin granule mobility: From conveyor belt to signaling hub. Front Endocrinol (Lausanne) 2022; 13:983152. [PMID: 36120467 PMCID: PMC9478610 DOI: 10.3389/fendo.2022.983152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/11/2022] [Indexed: 11/28/2022] Open
Abstract
Before the advent of TIRF microscopy the fate of the insulin granule prior to secretion was deduced from biochemical investigations, electron microscopy and electrophysiological measurements. Since Calcium-triggered granule fusion is indisputably necessary to release insulin into the extracellular space, much effort was directed to the measure this event at the single granule level. This has also been the major application of the TIRF microscopy of the pancreatic beta cell when it became available about 20 years ago. To better understand the metabolic modulation of secretion, we were interested to characterize the entirety of the insulin granules which are localized in the vicinity of the plasma membrane to identify the characteristics which predispose to fusion. In this review we concentrate on how the description of granule mobility in the submembrane space has evolved as a result of progress in methodology. The granules are in a state of constant turnover with widely different periods of residence in this space. While granule fusion is associated +with prolonged residence and decreased lateral mobility, these characteristics may not only result from binding to the plasma membrane but also from binding to the cortical actin web, which is present in the immediate submembrane space. While granule age as such affects granule mobility and fusion probability, the preceding functional states of the beta cell leave their mark on these parameters, too. In summary, the submembrane granules form a highly dynamic heterogeneous population and contribute to the metabolic memory of the beta cells.
Collapse
Affiliation(s)
- Bastian Gaus
- Institute of Pharmacology, Toxicology and Clinical Pharmacy, Technische Universität Braunschweig, Braunschweig, Germany
| | - Dennis Brüning
- Institute of Pharmacology, Toxicology and Clinical Pharmacy, Technische Universität Braunschweig, Braunschweig, Germany
| | - Sofie Groß
- Institute of Pharmacology, Toxicology and Clinical Pharmacy, Technische Universität Braunschweig, Braunschweig, Germany
| | - Michael Müller
- Institute of Dynamics and Vibrations, Technische Universität Braunschweig, Braunschweig, Germany
| | - Ingo Rustenbeck
- Institute of Pharmacology, Toxicology and Clinical Pharmacy, Technische Universität Braunschweig, Braunschweig, Germany
- *Correspondence: Ingo Rustenbeck,
| |
Collapse
|
3
|
Chapnick DA, Bunker E, Liu X, Old WM. Temporal Metabolite, Ion, and Enzyme Activity Profiling Using Fluorescence Microscopy and Genetically Encoded Biosensors. Methods Mol Biol 2019; 1978:343-353. [PMID: 31119673 DOI: 10.1007/978-1-4939-9236-2_21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Living cells employ complex and highly dynamic signaling networks and transcriptional circuits to maintain homeostasis and respond appropriately to constantly changing environments. These networks enable cells to maintain tight control on intracellular concentrations of ions, metabolites, proteins, and other biomolecules and ensure a careful balance between a cell's energetic needs and catabolic processes required for growth. Establishing molecular mechanisms of genetic and pharmacological perturbations remains challenging, due to the interconnected nature of these networks and the extreme sensitivity of cellular systems to their external environment. Live cell imaging with genetically encoded fluorescent biosensors provides a powerful new modality for nondestructive spatiotemporal tracking of ions, small molecules, enzymatic activities, and molecular interactions in living systems, from cells, tissues, and even living organisms. By deploying large panels of cell lines, each with distinct biosensors, many critical biochemical pathways can be monitored in a highly parallel and high-throughput fashion to identify pharmacological vulnerabilities and combination therapies unique to a given cell type or genetic background. Here we describe the experimental and analytical methods required to conduct multiplexed parallel fluorescence microscopy experiments on live cells expressing stable transgenic synthetic protein biosensors.
Collapse
Affiliation(s)
| | - Eric Bunker
- Department of Biochemistry, University of Colorado, Boulder, CO, USA
| | - Xuedong Liu
- Department of Biochemistry, University of Colorado, Boulder, CO, USA
| | - William M Old
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO, USA.
- Linda Crnic Institute for Down Syndrome, University of Colorado School of Medicine, Aurora, CO, USA.
| |
Collapse
|
4
|
Yang X, Zhang Y, Xu W, Deng R, Liu Y, Li F, Wang Y, Ji X, Bai M, Zhou F, Zhou L, Wang X. Potential role of Hsp90 in rat islet function under the condition of high glucose. Acta Diabetol 2016; 53:621-8. [PMID: 26997509 DOI: 10.1007/s00592-016-0852-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Accepted: 02/20/2016] [Indexed: 01/02/2023]
Abstract
AIMS The preservation of pancreatic β-cell function is a key point in the treatment of type 2 diabetes mellitus. There is substantial evidence demonstrating that heat-shock protein 90 (Hsp90) is needed for the stabilization and correct folding of client proteins and plays important roles in various biological processes. Here, we revealed the important role of Hsp90 in β-cell function. METHODS Islets from male Sprague-Dawley rats were isolated to be used for further RT-PCR, Western blot, and insulin secretion test ex vivo in response to different stimuli. RESULTS Our results revealed that Hsp90 expression was significantly decreased in isolated rat islets exposed to high glucose, which was involved in glucokinase activation and glucose metabolism, not calcium signaling. Two kinds of Hsp90 inhibitors 17-DMAG and CCT018159 markedly enhanced glucose-stimulated insulin secretion from rat islets, along with increased expressions of genes closely related to β-cell function. CONCLUSIONS These data indicate that Hsp90 may be involved in high glucose-induced islet function adaptation.
Collapse
Affiliation(s)
- Xue Yang
- Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Department of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin Road II, Shanghai, 200025, China
| | - Yuqing Zhang
- Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Department of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin Road II, Shanghai, 200025, China
| | - Wan Xu
- Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Department of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin Road II, Shanghai, 200025, China
| | - Ruyuan Deng
- Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Department of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin Road II, Shanghai, 200025, China
| | - Yun Liu
- Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Department of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin Road II, Shanghai, 200025, China
| | - Fengying Li
- Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Department of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin Road II, Shanghai, 200025, China
| | - Yao Wang
- Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Department of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin Road II, Shanghai, 200025, China
| | - Xueying Ji
- Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Department of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin Road II, Shanghai, 200025, China
| | - Mengyao Bai
- Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Department of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin Road II, Shanghai, 200025, China
| | - Feiye Zhou
- Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Department of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin Road II, Shanghai, 200025, China
| | - Libin Zhou
- Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Department of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin Road II, Shanghai, 200025, China.
| | - Xiao Wang
- Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Department of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin Road II, Shanghai, 200025, China.
| |
Collapse
|
5
|
Gilon P, Chae HY, Rutter GA, Ravier MA. Calcium signaling in pancreatic β-cells in health and in Type 2 diabetes. Cell Calcium 2014; 56:340-61. [DOI: 10.1016/j.ceca.2014.09.001] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 08/26/2014] [Accepted: 09/01/2014] [Indexed: 12/24/2022]
|
6
|
Hodson DJ, Tarasov AI, Gimeno Brias S, Mitchell RK, Johnston NR, Haghollahi S, Cane MC, Bugliani M, Marchetti P, Bosco D, Johnson PR, Hughes SJ, Rutter GA. Incretin-modulated beta cell energetics in intact islets of Langerhans. Mol Endocrinol 2014; 28:860-71. [PMID: 24766140 PMCID: PMC4042069 DOI: 10.1210/me.2014-1038] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 04/17/2014] [Indexed: 01/08/2023] Open
Abstract
Incretins such as glucagon-like peptide 1 (GLP-1) are released from the gut and potentiate insulin release in a glucose-dependent manner. Although this action is generally believed to hinge on cAMP and protein kinase A signaling, up-regulated beta cell intermediary metabolism may also play a role in incretin-stimulated insulin secretion. By employing recombinant probes to image ATP dynamically in situ within intact mouse and human islets, we sought to clarify the role of GLP-1-modulated energetics in beta cell function. Using these techniques, we show that GLP-1 engages a metabolically coupled subnetwork of beta cells to increase cytosolic ATP levels, an action independent of prevailing energy status. We further demonstrate that the effects of GLP-1 are accompanied by alterations in the mitochondrial inner membrane potential and, at elevated glucose concentration, depend upon GLP-1 receptor-directed calcium influx through voltage-dependent calcium channels. Lastly, and highlighting critical species differences, beta cells within mouse but not human islets respond coordinately to incretin stimulation. Together, these findings suggest that GLP-1 alters beta cell intermediary metabolism to influence ATP dynamics in a species-specific manner, and this may contribute to divergent regulation of the incretin-axis in rodents and man.
Collapse
Affiliation(s)
| | | | - Silvia Gimeno Brias
- Section of Cell Biology, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine (D.J.H, A.I.T., S.G.B., R.K.M., N.R.J., S.H., M.C.C., G.A.R.), Imperial College London, London W12 0NN, United Kingdom; Department of Endocrinology and Metabolism (M.B., P.M.), University of Pisa, 56126 Pisa, Italy; Cell Isolation and Transplantation Center, Department of Surgery (D.B.), Geneva University Hospitals and University of Geneva, 1205 Geneva, Switzerland; Oxford Centre for Diabetes, Endocrinology, & Metabolism (P.R.J., S.J.H.), University of Oxford, Oxford OX3 7LE, United Kingdom; NIHR Oxford Biomedical Research Centre (P.R.J., S.J.H.), Churchill Hospital, Oxford OX3 7LE, United Kingdom; and Nuffield Department of Surgical Sciences (P.R.J., S.J.H.), University of Oxford, Oxford OX3 9DU, United Kingdom
| | - Ryan K. Mitchell
- Section of Cell Biology, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine (D.J.H, A.I.T., S.G.B., R.K.M., N.R.J., S.H., M.C.C., G.A.R.), Imperial College London, London W12 0NN, United Kingdom; Department of Endocrinology and Metabolism (M.B., P.M.), University of Pisa, 56126 Pisa, Italy; Cell Isolation and Transplantation Center, Department of Surgery (D.B.), Geneva University Hospitals and University of Geneva, 1205 Geneva, Switzerland; Oxford Centre for Diabetes, Endocrinology, & Metabolism (P.R.J., S.J.H.), University of Oxford, Oxford OX3 7LE, United Kingdom; NIHR Oxford Biomedical Research Centre (P.R.J., S.J.H.), Churchill Hospital, Oxford OX3 7LE, United Kingdom; and Nuffield Department of Surgical Sciences (P.R.J., S.J.H.), University of Oxford, Oxford OX3 9DU, United Kingdom
| | - Natalie R. Johnston
- Section of Cell Biology, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine (D.J.H, A.I.T., S.G.B., R.K.M., N.R.J., S.H., M.C.C., G.A.R.), Imperial College London, London W12 0NN, United Kingdom; Department of Endocrinology and Metabolism (M.B., P.M.), University of Pisa, 56126 Pisa, Italy; Cell Isolation and Transplantation Center, Department of Surgery (D.B.), Geneva University Hospitals and University of Geneva, 1205 Geneva, Switzerland; Oxford Centre for Diabetes, Endocrinology, & Metabolism (P.R.J., S.J.H.), University of Oxford, Oxford OX3 7LE, United Kingdom; NIHR Oxford Biomedical Research Centre (P.R.J., S.J.H.), Churchill Hospital, Oxford OX3 7LE, United Kingdom; and Nuffield Department of Surgical Sciences (P.R.J., S.J.H.), University of Oxford, Oxford OX3 9DU, United Kingdom
| | - Shahab Haghollahi
- Section of Cell Biology, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine (D.J.H, A.I.T., S.G.B., R.K.M., N.R.J., S.H., M.C.C., G.A.R.), Imperial College London, London W12 0NN, United Kingdom; Department of Endocrinology and Metabolism (M.B., P.M.), University of Pisa, 56126 Pisa, Italy; Cell Isolation and Transplantation Center, Department of Surgery (D.B.), Geneva University Hospitals and University of Geneva, 1205 Geneva, Switzerland; Oxford Centre for Diabetes, Endocrinology, & Metabolism (P.R.J., S.J.H.), University of Oxford, Oxford OX3 7LE, United Kingdom; NIHR Oxford Biomedical Research Centre (P.R.J., S.J.H.), Churchill Hospital, Oxford OX3 7LE, United Kingdom; and Nuffield Department of Surgical Sciences (P.R.J., S.J.H.), University of Oxford, Oxford OX3 9DU, United Kingdom
| | - Matthew C. Cane
- Section of Cell Biology, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine (D.J.H, A.I.T., S.G.B., R.K.M., N.R.J., S.H., M.C.C., G.A.R.), Imperial College London, London W12 0NN, United Kingdom; Department of Endocrinology and Metabolism (M.B., P.M.), University of Pisa, 56126 Pisa, Italy; Cell Isolation and Transplantation Center, Department of Surgery (D.B.), Geneva University Hospitals and University of Geneva, 1205 Geneva, Switzerland; Oxford Centre for Diabetes, Endocrinology, & Metabolism (P.R.J., S.J.H.), University of Oxford, Oxford OX3 7LE, United Kingdom; NIHR Oxford Biomedical Research Centre (P.R.J., S.J.H.), Churchill Hospital, Oxford OX3 7LE, United Kingdom; and Nuffield Department of Surgical Sciences (P.R.J., S.J.H.), University of Oxford, Oxford OX3 9DU, United Kingdom
| | - Marco Bugliani
- Section of Cell Biology, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine (D.J.H, A.I.T., S.G.B., R.K.M., N.R.J., S.H., M.C.C., G.A.R.), Imperial College London, London W12 0NN, United Kingdom; Department of Endocrinology and Metabolism (M.B., P.M.), University of Pisa, 56126 Pisa, Italy; Cell Isolation and Transplantation Center, Department of Surgery (D.B.), Geneva University Hospitals and University of Geneva, 1205 Geneva, Switzerland; Oxford Centre for Diabetes, Endocrinology, & Metabolism (P.R.J., S.J.H.), University of Oxford, Oxford OX3 7LE, United Kingdom; NIHR Oxford Biomedical Research Centre (P.R.J., S.J.H.), Churchill Hospital, Oxford OX3 7LE, United Kingdom; and Nuffield Department of Surgical Sciences (P.R.J., S.J.H.), University of Oxford, Oxford OX3 9DU, United Kingdom
| | - Piero Marchetti
- Section of Cell Biology, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine (D.J.H, A.I.T., S.G.B., R.K.M., N.R.J., S.H., M.C.C., G.A.R.), Imperial College London, London W12 0NN, United Kingdom; Department of Endocrinology and Metabolism (M.B., P.M.), University of Pisa, 56126 Pisa, Italy; Cell Isolation and Transplantation Center, Department of Surgery (D.B.), Geneva University Hospitals and University of Geneva, 1205 Geneva, Switzerland; Oxford Centre for Diabetes, Endocrinology, & Metabolism (P.R.J., S.J.H.), University of Oxford, Oxford OX3 7LE, United Kingdom; NIHR Oxford Biomedical Research Centre (P.R.J., S.J.H.), Churchill Hospital, Oxford OX3 7LE, United Kingdom; and Nuffield Department of Surgical Sciences (P.R.J., S.J.H.), University of Oxford, Oxford OX3 9DU, United Kingdom
| | - Domenico Bosco
- Section of Cell Biology, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine (D.J.H, A.I.T., S.G.B., R.K.M., N.R.J., S.H., M.C.C., G.A.R.), Imperial College London, London W12 0NN, United Kingdom; Department of Endocrinology and Metabolism (M.B., P.M.), University of Pisa, 56126 Pisa, Italy; Cell Isolation and Transplantation Center, Department of Surgery (D.B.), Geneva University Hospitals and University of Geneva, 1205 Geneva, Switzerland; Oxford Centre for Diabetes, Endocrinology, & Metabolism (P.R.J., S.J.H.), University of Oxford, Oxford OX3 7LE, United Kingdom; NIHR Oxford Biomedical Research Centre (P.R.J., S.J.H.), Churchill Hospital, Oxford OX3 7LE, United Kingdom; and Nuffield Department of Surgical Sciences (P.R.J., S.J.H.), University of Oxford, Oxford OX3 9DU, United Kingdom
| | - Paul R. Johnson
- Section of Cell Biology, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine (D.J.H, A.I.T., S.G.B., R.K.M., N.R.J., S.H., M.C.C., G.A.R.), Imperial College London, London W12 0NN, United Kingdom; Department of Endocrinology and Metabolism (M.B., P.M.), University of Pisa, 56126 Pisa, Italy; Cell Isolation and Transplantation Center, Department of Surgery (D.B.), Geneva University Hospitals and University of Geneva, 1205 Geneva, Switzerland; Oxford Centre for Diabetes, Endocrinology, & Metabolism (P.R.J., S.J.H.), University of Oxford, Oxford OX3 7LE, United Kingdom; NIHR Oxford Biomedical Research Centre (P.R.J., S.J.H.), Churchill Hospital, Oxford OX3 7LE, United Kingdom; and Nuffield Department of Surgical Sciences (P.R.J., S.J.H.), University of Oxford, Oxford OX3 9DU, United Kingdom
| | - Stephen J. Hughes
- Section of Cell Biology, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine (D.J.H, A.I.T., S.G.B., R.K.M., N.R.J., S.H., M.C.C., G.A.R.), Imperial College London, London W12 0NN, United Kingdom; Department of Endocrinology and Metabolism (M.B., P.M.), University of Pisa, 56126 Pisa, Italy; Cell Isolation and Transplantation Center, Department of Surgery (D.B.), Geneva University Hospitals and University of Geneva, 1205 Geneva, Switzerland; Oxford Centre for Diabetes, Endocrinology, & Metabolism (P.R.J., S.J.H.), University of Oxford, Oxford OX3 7LE, United Kingdom; NIHR Oxford Biomedical Research Centre (P.R.J., S.J.H.), Churchill Hospital, Oxford OX3 7LE, United Kingdom; and Nuffield Department of Surgical Sciences (P.R.J., S.J.H.), University of Oxford, Oxford OX3 9DU, United Kingdom
| | - Guy A. Rutter
- Section of Cell Biology, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine (D.J.H, A.I.T., S.G.B., R.K.M., N.R.J., S.H., M.C.C., G.A.R.), Imperial College London, London W12 0NN, United Kingdom; Department of Endocrinology and Metabolism (M.B., P.M.), University of Pisa, 56126 Pisa, Italy; Cell Isolation and Transplantation Center, Department of Surgery (D.B.), Geneva University Hospitals and University of Geneva, 1205 Geneva, Switzerland; Oxford Centre for Diabetes, Endocrinology, & Metabolism (P.R.J., S.J.H.), University of Oxford, Oxford OX3 7LE, United Kingdom; NIHR Oxford Biomedical Research Centre (P.R.J., S.J.H.), Churchill Hospital, Oxford OX3 7LE, United Kingdom; and Nuffield Department of Surgical Sciences (P.R.J., S.J.H.), University of Oxford, Oxford OX3 9DU, United Kingdom
| |
Collapse
|
7
|
Belz M, Willenborg M, Görgler N, Hamada A, Schumacher K, Rustenbeck I. Insulinotropic effect of high potassium concentration beyond plasma membrane depolarization. Am J Physiol Endocrinol Metab 2014; 306:E697-706. [PMID: 24452455 DOI: 10.1152/ajpendo.00362.2013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The question whether K⁺ depolarization is an appropriate experimental substitute for the physiological nutrient-induced depolarization of the β-cell plasma membrane was investigated using primary mouse β-cells and islets. At basal glucose 40 mM K⁺ induced a massive monophasic response, whereas 15 mM K⁺ had only a minimal insulinotropic effect, even though the increase in the cytosolic Ca²⁺ concentration ([Ca²⁺]i) was not inferior to that by 20 mM glucose. In voltage-clamp experiments, Ca²⁺ influx appeared as nifedipine-inhibitable inward action currents in the presence of sulfonylurea plus TEA to block compensatory outward K⁺ currents. Under these conditions, 15 mM K⁺ induced prolonged action currents and 40 mM K⁺ transformed the action current pattern into a continuous inward current. Correspondingly, 15 mM K⁺ led to an oscillatory increase and 40 mM K⁺ to a plateau of [Ca²⁺]i superimposed on the [Ca²⁺]i elevated by sulfonylurea plus TEA. Raising K⁺ to 15 or 40 mM in the presence of sulfonylurea (±TEA) led to a fast further increase of insulin secretion. This was reduced to basal levels by nifedipine or CoCl₂. The effects of 15 mM K⁺ on depolarization, action currents, and insulin secretion were mimicked by adding 35 mM Cs⁺ and those of 40 mM K⁺ by adding 35 mM Rb⁺, in parallel with their ability to substitute for K⁺ as permeant cation. In conclusion, the alkali metals K⁺, Rb⁺, or Cs⁺ concentration-dependently transform the pattern of Ca²⁺ influx into the β-cell and may thus generate stimuli of supraphysiological strength for insulin secretion.
Collapse
Affiliation(s)
- M Belz
- Institute of Pharmacology and Toxicology, University of Braunschweig, Braunschweig, Germany
| | | | | | | | | | | |
Collapse
|
8
|
Groschner LN, Alam MR, Graier WF. Metabolism-secretion coupling and mitochondrial calcium activities in clonal pancreatic β-cells. VITAMINS AND HORMONES 2014; 95:63-86. [PMID: 24559914 DOI: 10.1016/b978-0-12-800174-5.00003-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Pancreatic β-cells are the only cells capable of lowering blood glucose by secreting insulin. The β-cell continuously adjusts its secretory activity to substrate availability in order to keep blood glucose levels within the physiological range--a process called metabolism-secretion coupling. Glucose is readily taken up by the β-cell and broken down into intermediates that fuel oxidative metabolism inside the mitochondria to generate ATP. The resulting increase in the ATP/ADP ratio causes closure of plasma membrane KATP channels, thereby depolarizing the cell and triggering the opening of voltage-gated Ca²⁺ channels. Consequential oscillations of cytosolic Ca²⁺ not only mediate the exocytosis of insulin granules but are also relayed to other subcellular compartments including the mitochondria, where Ca²⁺ is required to accelerate mitochondrial metabolism in response to nutrient stimulation. The mitochondrial Ca²⁺ uptake machinery plays a fundamental role in this feed-forward mechanism that guarantees sustained insulin secretion and, thus, represents a promising therapeutic target for type 2 diabetes.
Collapse
Affiliation(s)
- Lukas N Groschner
- Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz, Graz, Austria
| | - Muhammad Rizwan Alam
- Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz, Graz, Austria
| | - Wolfgang F Graier
- Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz, Graz, Austria.
| |
Collapse
|
9
|
Abstract
Recent research suggests that in addition to their role as soluble electron carriers, pyridine nucleotides [NAD(P)(H)] also regulate ion transport mechanisms. This mode of regulation seems to have been conserved through evolution. Several bacterial ion-transporting proteins or their auxiliary subunits possess nucleotide-binding domains. In eukaryotes, the Kv1 and Kv4 channels interact with pyridine nucleotide-binding β-subunits that belong to the aldo-keto reductase superfamily. Binding of NADP(+) to Kvβ removes N-type inactivation of Kv currents, whereas NADPH stabilizes channel inactivation. Pyridine nucleotides also regulate Slo channels by interacting with their cytosolic regulator of potassium conductance domains that show high sequence homology to the bacterial TrkA family of K(+) transporters. These nucleotides also have been shown to modify the activity of the plasma membrane K(ATP) channels, the cystic fibrosis transmembrane conductance regulator, the transient receptor potential M2 channel, and the intracellular ryanodine receptor calcium release channels. In addition, pyridine nucleotides also modulate the voltage-gated sodium channel by supporting the activity of its ancillary subunit-the glycerol-3-phosphate dehydrogenase-like protein. Moreover, the NADP(+) metabolite, NAADP(+), regulates intracellular calcium homeostasis via the 2-pore channel, ryanodine receptor, or transient receptor potential M2 channels. Regulation of ion channels by pyridine nucleotides may be required for integrating cell ion transport to energetics and for sensing oxygen levels or metabolite availability. This mechanism also may be an important component of hypoxic pulmonary vasoconstriction, memory, and circadian rhythms, and disruption of this regulatory axis may be linked to dysregulation of calcium homeostasis and cardiac arrhythmias.
Collapse
Affiliation(s)
- Peter J Kilfoil
- Diabetes Obesity Center, University of Louisville, Louisville, KY 40202, USA
| | | | | | | |
Collapse
|
10
|
Mourad NI, Nenquin M, Henquin JC. Amplification of insulin secretion by acetylcholine or phorbol ester is independent of β-cell microfilaments and distinct from metabolic amplification. Mol Cell Endocrinol 2013; 367:11-20. [PMID: 23246352 DOI: 10.1016/j.mce.2012.12.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 11/23/2012] [Accepted: 12/04/2012] [Indexed: 11/30/2022]
Abstract
Insulin secretion (IS) triggered by β-cell [Ca(2+)](c) is amplified by metabolic and receptor-generated signals. Diacylglycerol largely mediates acetylcholine (ACh) effects through protein-kinase C and other effectors, which can be directly activated by phorbol-ester (PMA). Using mouse islets, we investigated the possible role of microfilaments in ACh/PMA-mediated amplification of IS. PMA had no steady-state impact on actin microfilaments. Although ACh slightly augmented and PMA diminished glucose- and tolbutamide-induced increases in β-cell [Ca(2+)](c), both amplified IS in control islets and after microfilament disruption (latrunculin) or stabilization (jasplakinolide). Both phases of IS were larger in response to glucose than tolbutamide, although [Ca(2+)](c) was lower. This difference in secretion, which reflects metabolic amplification, persisted in presence of ACh/PMA and was independent of microfilaments. Amplification of IS by ACh/PMA is thus distinct from metabolic amplification, but both pathways promote acquisition of release competence by insulin granules, which can access exocytotic sites without intervention of microfilaments.
Collapse
Affiliation(s)
- Nizar I Mourad
- Unit of Endocrinology and Metabolism, University of Louvain, Faculty of Medicine, B-1200 Brussels, Belgium
| | | | | |
Collapse
|
11
|
Alam MR, Groschner LN, Parichatikanond W, Kuo L, Bondarenko AI, Rost R, Waldeck-Weiermair M, Malli R, Graier WF. Mitochondrial Ca2+ uptake 1 (MICU1) and mitochondrial ca2+ uniporter (MCU) contribute to metabolism-secretion coupling in clonal pancreatic β-cells. J Biol Chem 2012; 287:34445-54. [PMID: 22904319 PMCID: PMC3464549 DOI: 10.1074/jbc.m112.392084] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
In pancreatic β-cells, uptake of Ca2+ into mitochondria facilitates metabolism-secretion coupling by activation of various matrix enzymes, thus facilitating ATP generation by oxidative phosphorylation and, in turn, augmenting insulin release. We employed an siRNA-based approach to evaluate the individual contribution of four proteins that were recently described to be engaged in mitochondrial Ca2+ sequestration in clonal INS-1 832/13 pancreatic β-cells: the mitochondrial Ca2+ uptake 1 (MICU1), mitochondrial Ca2+ uniporter (MCU), uncoupling protein 2 (UCP2), and leucine zipper EF-hand-containing transmembrane protein 1 (LETM1). Using a FRET-based genetically encoded Ca2+ sensor targeted to mitochondria, we show that a transient knockdown of MICU1 or MCU diminished mitochondrial Ca2+ uptake upon both intracellular Ca2+ release and Ca2+ entry via L-type channels. In contrast, knockdown of UCP2 and LETM1 exclusively reduced mitochondrial Ca2+ uptake in response to either intracellular Ca2+ release or Ca2+ entry, respectively. Therefore, we further investigated the role of MICU1 and MCU in metabolism-secretion coupling. Diminution of MICU1 or MCU reduced mitochondrial Ca2+ uptake in response to d-glucose, whereas d-glucose-triggered cytosolic Ca2+ oscillations remained unaffected. Moreover, d-glucose-evoked increases in cytosolic ATP and d-glucose-stimulated insulin secretion were diminished in MICU1- or MCU-silenced cells. Our data highlight the crucial role of MICU1 and MCU in mitochondrial Ca2+ uptake in pancreatic β-cells and their involvement in the positive feedback required for sustained insulin secretion.
Collapse
Affiliation(s)
- Muhammad Rizwan Alam
- Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz, 8010 Graz, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Cao DS, Zhong L, Hsieh TH, Abooj M, Bishnoi M, Hughes L, Premkumar LS. Expression of transient receptor potential ankyrin 1 (TRPA1) and its role in insulin release from rat pancreatic beta cells. PLoS One 2012; 7:e38005. [PMID: 22701540 PMCID: PMC3365106 DOI: 10.1371/journal.pone.0038005] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Accepted: 05/01/2012] [Indexed: 11/19/2022] Open
Abstract
Objective Several transient receptor potential (TRP) channels are expressed in pancreatic beta cells and have been proposed to be involved in insulin secretion. However, the endogenous ligands for these channels are far from clear. Here, we demonstrate the expression of the transient receptor potential ankyrin 1 (TRPA1) ion channel in the pancreatic beta cells and its role in insulin release. TRPA1 is an attractive candidate for inducing insulin release because it is calcium permeable and is activated by molecules that are produced during oxidative glycolysis. Methods Immunohistochemistry, RT-PCR, and Western blot techniques were used to determine the expression of TRPA1 channel. Ca2+ fluorescence imaging and electrophysiology (voltage- and current-clamp) techniques were used to study the channel properties. TRPA1-mediated insulin release was determined using ELISA. Results TRPA1 is abundantly expressed in a rat pancreatic beta cell line and freshly isolated rat pancreatic beta cells, but not in pancreatic alpha cells. Activation of TRPA1 by allyl isothiocyanate (AITC), hydrogen peroxide (H2O2), 4-hydroxynonenal (4-HNE), and cyclopentenone prostaglandins (PGJ2) and a novel agonist methylglyoxal (MG) induces membrane current, depolarization, and Ca2+ influx leading to generation of action potentials in a pancreatic beta cell line and primary cultured pancreatic beta cells. Activation of TRPA1 by agonists stimulates insulin release in pancreatic beta cells that can be inhibited by TRPA1 antagonists such as HC030031 or AP-18 and by RNA interference. TRPA1-mediated insulin release is also observed in conditions of voltage-gated Na+ and Ca2+ channel blockade as well as ATP sensitive potassium (KATP) channel activation. Conclusions We propose that endogenous and exogenous ligands of TRPA1 cause Ca2+ influx and induce basal insulin release and that TRPA1-mediated depolarization acts synergistically with KATP channel blockade to facilitate insulin release.
Collapse
Affiliation(s)
- De-Shou Cao
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, Illinois, United States of America
- * E-mail: (DSC); (LSP)
| | - Linlin Zhong
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, Illinois, United States of America
| | - Tsung-han Hsieh
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, Illinois, United States of America
| | - Mruvil Abooj
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, Illinois, United States of America
| | - Mahendra Bishnoi
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, Illinois, United States of America
| | - Lauren Hughes
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, Illinois, United States of America
| | - Louis S. Premkumar
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, Illinois, United States of America
- * E-mail: (DSC); (LSP)
| |
Collapse
|
13
|
MacDonald PE. Signal integration at the level of ion channel and exocytotic function in pancreatic β-cells. Am J Physiol Endocrinol Metab 2011; 301:E1065-9. [PMID: 21934040 DOI: 10.1152/ajpendo.00426.2011] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Whole body energy balance is ensured by the exquisite control of insulin secretion, the dysregulation of which has serious consequences. Although a great deal has been learned about the control of insulin secretion from pancreatic β-cells in the past 30 years, there remains much to be understood about the molecular mechanisms and interactions that underlie the precise control of this process. Numerous molecular interactions at the plasma membrane mediate the excitatory and amplifying events involved in insulin secretion; this includes interactions between ion channels, signal transduction machinery, and exocytotic proteins. The present Perspectives article considers evidence that key membrane and membrane-associated proteins essential to insulin secretion are regulated in concert as a functional unit, ensuring an integrated excitatory and exocytotic response to the signals that control insulin secretion.
Collapse
Affiliation(s)
- Patrick E MacDonald
- Department of Pharmacology and Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
14
|
Semplici F, Vaxillaire M, Fogarty S, Semache M, Bonnefond A, Fontés G, Philippe J, Meur G, Diraison F, Sessions RB, Rutter J, Poitout V, Froguel P, Rutter GA. Human mutation within Per-Arnt-Sim (PAS) domain-containing protein kinase (PASK) causes basal insulin hypersecretion. J Biol Chem 2011; 286:44005-44014. [PMID: 22065581 PMCID: PMC3243507 DOI: 10.1074/jbc.m111.254995] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
PAS kinase (PASK) is a glucose-regulated protein kinase involved in the control of pancreatic islet hormone release and insulin sensitivity. We aimed here to identify mutations in the PASK gene that may be associated with young-onset diabetes in humans. We screened 18 diabetic probands with unelucidated maturity-onset diabetes of the young (MODY). We identified two rare nonsynonymous mutations in the PASK gene (p.L1051V and p.G1117E), each of which was found in a single MODY family. Wild type or mutant PASKs were expressed in HEK 293 cells. Kinase activity of the affinity-purified proteins was assayed as autophosphorylation at amino acid Thr307 or against an Ugp1p-derived peptide. Whereas the PASK p.G1117E mutant displayed a ∼25% increase with respect to wild type PASK in the extent of autophosphorylation, and a ∼2-fold increase in kinase activity toward exogenous substrates, the activity of the p.L1051V mutant was unchanged. Amino acid Gly1117 is located in an α helical region opposing the active site of PASK and may elicit either: (a) a conformational change that increases catalytic efficiency or (b) a diminished inhibitory interaction with the PAS domain. Mouse islets were therefore infected with adenoviruses expressing wild type or mutant PASK and the regulation of insulin secretion was examined. PASK p.G1117E-infected islets displayed a 4-fold decrease in glucose-stimulated (16.7 versus 3 mM) insulin secretion, chiefly reflecting a 4.5-fold increase in insulin release at low glucose. In summary, we have characterized a rare mutation (p.G1117E) in the PASK gene from a young-onset diabetes family, which modulates glucose-stimulated insulin secretion.
Collapse
Affiliation(s)
- Francesca Semplici
- Department of Medicine, Section of Cell Biology, Division of Diabetes Endocrinology and Metabolism, Imperial College London, London SW7 2AZ, United Kingdom
| | - Martine Vaxillaire
- CNRS-UMR-8199, Pasteur Institute of Lille, BP245 59019 Lille Cedex, France; Lille Nord de France University, BP245 59019 Lille Cedex, France
| | - Sarah Fogarty
- University of Utah School of Medicine, Salt Lake City, Utah 84132-3201
| | - Meriem Semache
- Montreal Diabetes Research Center, CRCHUM, University of Montréal, Québec, Canada
| | - Amélie Bonnefond
- CNRS-UMR-8199, Pasteur Institute of Lille, BP245 59019 Lille Cedex, France; Lille Nord de France University, BP245 59019 Lille Cedex, France
| | - Ghislaine Fontés
- Montreal Diabetes Research Center, CRCHUM, University of Montréal, Québec, Canada
| | - Julien Philippe
- CNRS-UMR-8199, Pasteur Institute of Lille, BP245 59019 Lille Cedex, France; Lille Nord de France University, BP245 59019 Lille Cedex, France
| | - Gargi Meur
- Department of Medicine, Section of Cell Biology, Division of Diabetes Endocrinology and Metabolism, Imperial College London, London SW7 2AZ, United Kingdom
| | - Frederique Diraison
- Centre for Research in Biomedicine, Faculty of Health and Life Sciences, University of the West of England, Bristol BS16 1QY, United Kingdom
| | - Richard B Sessions
- Department of Biochemistry, School of Medical Sciences, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - Jared Rutter
- University of Utah School of Medicine, Salt Lake City, Utah 84132-3201
| | - Vincent Poitout
- Montreal Diabetes Research Center, CRCHUM, University of Montréal, Québec, Canada; Department of Medicine, University of Montréal, Montréal QC H1W 4A4 Québec, Canada
| | - Philippe Froguel
- CNRS-UMR-8199, Pasteur Institute of Lille, BP245 59019 Lille Cedex, France; Lille Nord de France University, BP245 59019 Lille Cedex, France; Department of Genomics of Common Disease, School of Public Health, Imperial College London, London SW7 2AZ, United Kingdom
| | - Guy A Rutter
- Department of Medicine, Section of Cell Biology, Division of Diabetes Endocrinology and Metabolism, Imperial College London, London SW7 2AZ, United Kingdom.
| |
Collapse
|
15
|
Wiederkehr A, Szanda G, Akhmedov D, Mataki C, Heizmann CW, Schoonjans K, Pozzan T, Spät A, Wollheim CB. Mitochondrial matrix calcium is an activating signal for hormone secretion. Cell Metab 2011; 13:601-11. [PMID: 21531342 DOI: 10.1016/j.cmet.2011.03.015] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Revised: 12/30/2010] [Accepted: 03/11/2011] [Indexed: 12/18/2022]
Abstract
Mitochondrial Ca(2+) signals have been proposed to accelerate oxidative metabolism and ATP production to match Ca(2+)-activated energy-consuming processes. Efforts to understand the signaling role of mitochondrial Ca(2+) have been hampered by the inability to manipulate matrix Ca(2+) without directly altering cytosolic Ca(2+). We were able to selectively buffer mitochondrial Ca(2+) rises by targeting the Ca(2+)-binding protein S100G to the matrix. We find that matrix Ca(2+) controls signal-dependent NAD(P)H formation, respiration, and ATP changes in intact cells. Furthermore, we demonstrate that matrix Ca(2+) increases are necessary for the amplification of sustained glucose-dependent insulin secretion in β cells. Through the regulation of NAD(P)H in adrenal glomerulosa cells, matrix Ca(2+) also acts as a positive signal in reductive biosynthesis, which stimulates aldosterone secretion. Our dissection of cytosolic and mitochondrial Ca(2+) signals reveals the physiological importance of matrix Ca(2+) in energy metabolism required for signal-dependent hormone secretion.
Collapse
Affiliation(s)
- Andreas Wiederkehr
- Department of Cell Physiology and Metabolism, University of Geneva, University Medical Center, Switzerland.
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Dalle S, Ravier MA, Bertrand G. Emerging roles for β-arrestin-1 in the control of the pancreatic β-cell function and mass: New therapeutic strategies and consequences for drug screening. Cell Signal 2011; 23:522-8. [DOI: 10.1016/j.cellsig.2010.09.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Accepted: 09/06/2010] [Indexed: 01/09/2023]
|
17
|
Mourad NI, Nenquin M, Henquin JC. Metabolic amplification of insulin secretion by glucose is independent of β-cell microtubules. Am J Physiol Cell Physiol 2011; 300:C697-706. [DOI: 10.1152/ajpcell.00329.2010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Glucose-induced insulin secretion (IS) by β-cells is controlled by two pathways. The triggering pathway involves ATP-sensitive potassium (KATP) channel-dependent depolarization, Ca2+ influx, and rise in the cytosolic Ca2+ concentration ([Ca2+]c), which triggers exocytosis of insulin granules. The metabolic amplifying pathway augments IS without further increasing [Ca2+]c. After exclusion of the contribution of actin microfilaments, we here tested whether amplification implicates microtubule-dependent granule mobilization. Mouse islets were treated with nocodazole or taxol, which completely depolymerized and polymerized tubulin. They were then perifused to measure [Ca2+]c and IS. Metabolic amplification was studied during imposed steady elevation of [Ca2+]c by tolbutamide or KCl or by comparing [Ca2+]c and IS responses to glucose and tolbutamide. Nocodazole did not alter [Ca2+]c or IS changes induced by the three secretagogues, whereas taxol caused a small inhibition of IS that is partly ascribed to a decrease in [Ca2+]c. When [Ca2+]c was elevated and controlled by KCl or tolbutamide, the amplifying action of glucose was unaffected by microtubule disruption or stabilization. Both phases of IS were larger in response to glucose than tolbutamide, although triggering [Ca2+]c was lower. This difference, due to amplification, persisted in nocodazole- or taxol-treated islets, even when IS was augmented fourfold by microfilament disruption with cytochalasin B or latrunculin B. In conclusion, metabolic amplification rapidly augments first and second phases of IS independently of insulin granule translocation along microtubules. We therefore extend our previous proposal that it does not implicate the cytoskeleton but corresponds to acceleration of the priming process conferring release competence to insulin granules.
Collapse
Affiliation(s)
- Nizar I. Mourad
- Unit of Endocrinology and Metabolism, University of Louvain Faculty of Medicine, Brussels, Belgium
| | - Myriam Nenquin
- Unit of Endocrinology and Metabolism, University of Louvain Faculty of Medicine, Brussels, Belgium
| | - Jean-Claude Henquin
- Unit of Endocrinology and Metabolism, University of Louvain Faculty of Medicine, Brussels, Belgium
| |
Collapse
|
18
|
Fluorescent Genetically Encoded Calcium Indicators and Their In Vivo Application. FLUORESCENT PROTEINS II 2011. [DOI: 10.1007/4243_2011_29] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
19
|
Affiliation(s)
- Patrick E MacDonald
- Alberta Diabetes Institute, Department of Pharmacology, University of Alberta, Edmonton, Canada.
| |
Collapse
|