1
|
Dhieb D, Mustafa D, Hassiba M, Alasmar M, Elsayed MH, Musa A, Zirie M, Bastaki K. Harnessing Pharmacomultiomics for Precision Medicine in Diabetes: A Comprehensive Review. Biomedicines 2025; 13:447. [PMID: 40002860 PMCID: PMC11853021 DOI: 10.3390/biomedicines13020447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 12/08/2024] [Accepted: 12/11/2024] [Indexed: 02/27/2025] Open
Abstract
Type 2 diabetes (T2D) is the fastest-growing non-communicable disease worldwide, accounting for around 90% of all diabetes cases and imposing a significant health burden globally. Due to its phenotypic heterogeneity and composite genetic underpinnings, T2D requires a precision medicine approach personalized to individual molecular profiles, thereby shifting away from the traditional "one-size-fits-all" medical methods. This review advocates for a thorough pharmacomultiomics approach to enhance precision medicine for T2D. It emphasizes personalized treatment strategies that enhance treatment efficacy while minimizing adverse effects by integrating data from genomics, proteomics, metabolomics, transcriptomics, microbiomics, and epigenomics. We summarize key findings on candidate genes impacting diabetic medication responses and explore the potential of pharmacometabolomics in predicting drug efficacy. The role of pharmacoproteomics in prognosis and discovering new therapeutic targets is discussed, along with transcriptomics' contribution to understanding T2D pathophysiology. Additionally, pharmacomicrobiomics is explored to understand gut microbiota interactions with antidiabetic drugs. Emerging evidence on utilizing epigenomic profiles in improving drug efficacy and personalized treatment is also reviewed, illustrating their implications in personalized medicine. In this paper, we discuss the integration of these layers of omics data, examining recently developed paradigms that leverage complex data to deepen our understanding of diabetes. Such integrative approaches advance precision medicine strategies to tackle the disease by better understanding its complex biology.
Collapse
Affiliation(s)
- Dhoha Dhieb
- College of Pharmacy, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (D.D.); (D.M.); (M.H.); (M.H.E.)
| | - Dana Mustafa
- College of Pharmacy, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (D.D.); (D.M.); (M.H.); (M.H.E.)
| | - Maryam Hassiba
- College of Pharmacy, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (D.D.); (D.M.); (M.H.); (M.H.E.)
| | - May Alasmar
- Hamad Medical Corporation, Doha P.O. Box 3050, Qatar; (M.A.); (M.Z.)
| | - Mohamed Haitham Elsayed
- College of Pharmacy, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (D.D.); (D.M.); (M.H.); (M.H.E.)
| | - Ameer Musa
- College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar;
| | - Mahmoud Zirie
- Hamad Medical Corporation, Doha P.O. Box 3050, Qatar; (M.A.); (M.Z.)
| | - Kholoud Bastaki
- College of Pharmacy, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (D.D.); (D.M.); (M.H.); (M.H.E.)
| |
Collapse
|
2
|
Snir O, Elgart M, Gnainsky Y, Goldsmith M, Ciabrelli F, Dagan S, Aviezer I, Stoops E, Cavalli G, Soen Y. Organ transformation by environmental disruption of protein integrity and epigenetic memory in Drosophila. PLoS Biol 2024; 22:e3002629. [PMID: 38805504 PMCID: PMC11161060 DOI: 10.1371/journal.pbio.3002629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 06/07/2024] [Accepted: 04/16/2024] [Indexed: 05/30/2024] Open
Abstract
Despite significant progress in understanding epigenetic reprogramming of cells, the mechanistic basis of "organ reprogramming" by (epi-)gene-environment interactions remained largely obscure. Here, we use the ether-induced haltere-to-wing transformations in Drosophila as a model for epigenetic "reprogramming" at the whole organism level. Our findings support a mechanistic chain of events explaining why and how brief embryonic exposure to ether leads to haltere-to-wing transformations manifested at the larval stage and on. We show that ether interferes with protein integrity in the egg, leading to altered deployment of Hsp90 and widespread repression of Trithorax-mediated establishment of active H3K4me3 chromatin marks throughout the genome. Despite this global reduction, Ubx targets and wing development genes preferentially retain higher levels of H3K4me3 that predispose these genes for later up-regulation in the larval haltere disc, hence the wing-like outcome. Consistent with compromised protein integrity during the exposure, the penetrance of bithorax transformations increases by genetic or chemical reduction of Hsp90 function. Moreover, joint reduction in Hsp90 and trx gene dosage can cause bithorax transformations without exposure to ether, supporting an underlying epistasis between Hsp90 and trx loss-of-functions. These findings implicate environmental disruption of protein integrity at the onset of histone methylation with altered epigenetic regulation of developmental patterning genes. The emerging picture provides a unique example wherein the alleviation of the Hsp90 "capacitor function" by the environment drives a morphogenetic shift towards an ancestral-like body plan. The morphogenetic impact of chaperone response during a major setup of epigenetic patterns may be a general scheme for organ transformation by environmental cues.
Collapse
Affiliation(s)
- Orli Snir
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Michael Elgart
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Yulia Gnainsky
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Moshe Goldsmith
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Filippo Ciabrelli
- Institute of Human Genetics, UMR9002 CNRS, University of Montpellier, Montpellier, France
| | - Shlomi Dagan
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Iris Aviezer
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Elizabeth Stoops
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Giacomo Cavalli
- Institute of Human Genetics, UMR9002 CNRS, University of Montpellier, Montpellier, France
| | - Yoav Soen
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
3
|
Liu R, Li L, Wang Z, Zhu J, Ji Y. Acetylated Histone Modifications: Intersection of Diabetes and Atherosclerosis. J Cardiovasc Pharmacol 2024; 83:207-219. [PMID: 37989137 DOI: 10.1097/fjc.0000000000001516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 11/09/2023] [Indexed: 11/23/2023]
Abstract
ABSTRACT Worldwide, type 2 diabetes is predominant form of diabetes, and it is mainly affected by the environment. Furthermore, the offspring of patients with type 2 diabetes and metabolic disorder syndrome may have a higher risk of diabetes and cardiovascular disease, which indicates that the environmental impact on diabetes prevalence can be transmitted across generations. In the process of diabetes onset and intergenerational transmission, the genetic structure of the individual is not directly changed but is regulated by epigenetics. In this process, genes or histones are modified, resulting in selective expression of proteins. This modification will affect not only the onset of diabetes but also the related onset of atherosclerosis. Acetylation and deacetylation may be important regulatory factors for the above lesions. Therefore, in this review, based on the whole process of atherosclerosis evolution, we explored the possible existence of acetylation/deacetylation caused by diabetes. However, because of the lack of atherosclerosis-related acetylation studies directly based on diabetic models, we also used a small number of experiments involving nondiabetic models of related molecular mechanisms.
Collapse
Affiliation(s)
| | | | - Zhongqun Wang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China; and
| | - Jie Zhu
- Department of Cardiology, The Lu'an Hospital Affiliated to Anhui Medical University, The Lu' an People's Hospital, Lu'an, China
| | | |
Collapse
|
4
|
Paresishvili T, Kakabadze Z. Freeze-Dried Mesenchymal Stem Cells: From Bench to Bedside. Review. Adv Biol (Weinh) 2024; 8:e2300155. [PMID: 37990389 DOI: 10.1002/adbi.202300155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/09/2023] [Indexed: 11/23/2023]
Abstract
This review describes the freeze-dried mesenchymal stem cells (MSCs) and their ability to restore damaged tissues and organs. An analysis of the literature shows that after the lyophilization MSCs retain >80% of paracrine factors and that the mechanism of their action on the restoration of damaged tissues and organs is similar to the mechanism of action of paracrine factors in fresh and cryopreserved mesenchymal stem cells. Based on the own materials, the use of paracrine factors of freeze-dried MSCs in vivo and in vitro for the treatment of various diseases of organs and tissues has shown to be effective. The study also discusses about the advantages and disadvantages of freeze-dried MSCs versus cryopreserved MSCs. However, for the effective use of freeze-dried MSCs in clinical practice, a more detailed study of the mechanism of interaction of paracrine factors of freeze-dried MSCs with target cells and tissues is required. It is also necessary to identify possible other specific paracrine factors of freeze-dried MSCs. In addition, develop new therapeutic strategies for the use of freeze-dried MSCs in regenerative medicine and tissue bioengineering.
Collapse
Affiliation(s)
- Teona Paresishvili
- Department of Clinical Anatomy, Tbilisi State Medical University, Tbilisi, 0186, Georgia
| | - Zurab Kakabadze
- Department of Clinical Anatomy, Tbilisi State Medical University, Tbilisi, 0186, Georgia
| |
Collapse
|
5
|
Sharma Y, Galvão AM. Maternal obesity and ovarian failure: is leptin the culprit? Anim Reprod 2023; 19:e20230007. [PMID: 36855701 PMCID: PMC9968511 DOI: 10.1590/1984-3143-ar2023-0007] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 01/24/2023] [Indexed: 02/22/2023] Open
Abstract
At the time of its discovery and characterization in 1994, leptin was mostly considered a metabolic hormone able to regulate body weight and energy homeostasis. However, in recent years, a great deal of literature has revealed leptin's pleiotropic nature, through its involvement in numerous physiological contexts including the regulation of the female reproductive tract and ovarian function. Obesity has been largely associated with infertility, and leptin signalling is known to be dysregulated in the ovaries of obese females. Hence, the disruption of ovarian leptin signalling was shown to contribute to the pathophysiology of ovarian failure in obese females, affecting transcriptional programmes in the gamete and somatic cells. This review attempts to uncover the underlying mechanisms contributing to female infertility associated with obesity, as well as to shed light on the role of leptin in the metabolic dysregulation within the follicle, the effects on the oocyte epigenome, and the potential long-term consequence to embryo programming.
Collapse
Affiliation(s)
- Yashaswi Sharma
- Institute of Animal Reproduction and Food Research of PAS, Department of Reproductive Immunology and Pathology, Olsztyn, Poland
| | - António Miguel Galvão
- Institute of Animal Reproduction and Food Research of PAS, Department of Reproductive Immunology and Pathology, Olsztyn, Poland,Babraham Institute, Epigenetics Programme, Cambridge, United Kingdom UK,Centre for Trophoblast Research, University of Cambridge, Cambridge, United Kingdom UK,Corresponding author: ;
| |
Collapse
|
6
|
Abstract
Data generated over nearly two decades clearly demonstrate the importance of epigenetic modifications and mechanisms in the pathogenesis of type 2 diabetes. However, the role of pharmacoepigenetics in type 2 diabetes is less well established. The field of pharmacoepigenetics covers epigenetic biomarkers that predict response to therapy, therapy-induced epigenetic alterations as well as epigenetic therapies including inhibitors of epigenetic enzymes. Not all individuals with type 2 diabetes respond to glucose-lowering therapies in the same way, and there is therefore a need for clinically useful biomarkers that discriminate responders from non-responders. Blood-based epigenetic biomarkers may be useful for this purpose. There is also a need for a better understanding of whether existing glucose-lowering therapies exert their function partly through therapy-induced epigenetic alterations. Finally, epigenetic enzymes may be drug targets for type 2 diabetes. Here, I discuss whether pharmacoepigenetics is clinically relevant for type 2 diabetes based on studies addressing this topic.
Collapse
Affiliation(s)
- Charlotte Ling
- Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Scania University Hospital, Malmö, Sweden.
| |
Collapse
|
7
|
Mo J, Liu X, Huang Y, He R, Zhang Y, Huang H. Developmental origins of adult diseases. MEDICAL REVIEW (BERLIN, GERMANY) 2022; 2:450-470. [PMID: 37724166 PMCID: PMC10388800 DOI: 10.1515/mr-2022-0027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/11/2022] [Indexed: 09/20/2023]
Abstract
The occurrence and mechanisms of developmental adult diseases have gradually attracted attention in recent years. Exposure of gametes and embryos to adverse environments, especially during plastic development, can alter the expression of certain tissue-specific genes, leading to increased susceptibility to certain diseases in adulthood, such as diabetes, cardiovascular disease, neuropsychiatric, and reproductive system diseases, etc. The occurrence of chronic disease in adulthood is partly due to genetic factors, and the remaining risk is partly due to environmental-dependent epigenetic information alteration, including DNA methylation, histone modifications, and noncoding RNAs. Changes in this epigenetic information potentially damage our health, which has also been supported by numerous epidemiological and animal studies in recent years. Environmental factors functionally affect embryo development through epimutation, transmitting diseases to offspring and even later generations. This review mainly elaborated on the concept of developmental origins of adult diseases, and revealed the epigenetic mechanisms underlying these events, discussed the theoretical basis for the prevention and treatment of related diseases.
Collapse
Affiliation(s)
- Jiaying Mo
- Department of Obstetrics and Gynecology, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, Zhejiang Province, China
- The Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Xuanqi Liu
- The Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Yutong Huang
- The Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Renke He
- Department of Obstetrics and Gynecology, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, Zhejiang Province, China
- The Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Yu Zhang
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
| | - Hefeng Huang
- Department of Obstetrics and Gynecology, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, Zhejiang Province, China
- The Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
- Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences (No. 2019RU056), Shanghai, China
| |
Collapse
|
8
|
Kushwaha K, Garg SS, Gupta J. Targeting epigenetic regulators for treating diabetic nephropathy. Biochimie 2022; 202:146-158. [PMID: 35985560 DOI: 10.1016/j.biochi.2022.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 07/01/2022] [Accepted: 08/02/2022] [Indexed: 11/25/2022]
Abstract
Diabetes is accompanied by the worsening of kidney functions. The reasons for kidney dysfunction mainly include high blood pressure (BP), high blood sugar levels, and genetic makeup. Vascular complications are the leading cause of the end-stage renal disorder (ESRD) and death of diabetic patients. Epigenetics has emerged as a new area to explain the inheritance of non-mendelian conditions like diabetic kidney diseases. Aberrant post-translational histone modifications (PTHMs), DNA methylation (DNAme), and miRNA constitute major epigenetic mechanisms that progress diabetic nephropathy (DN). Increased blood sugar levels alter PTHMs, DNAme, and miRNA in kidney cells results in aberrant gene expression that causes fibrosis, accumulation of extracellular matrix (ECM), increase in reactive oxygen species (ROS), and renal injuries. Histone acetylation (HAc) and histone deacetylation (HDAC) are the most studied epigenetic modifications with implications in the occurrence of kidney disorders. miRNAs induced by hyperglycemia in renal cells are also responsible for ECM accumulation and dysfunction of the glomerulus. In this review, we highlight the role of epigenetic modifications in DN progression and current strategies employed to ameliorate DN.
Collapse
Affiliation(s)
- Kriti Kushwaha
- Department of Biotechnology, School of Bioengineering and Bioscience, Lovely Professional University, Phagwara, Punjab, India
| | - Sourbh Suren Garg
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Jeena Gupta
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India.
| |
Collapse
|
9
|
Ling C, Bacos K, Rönn T. Epigenetics of type 2 diabetes mellitus and weight change - a tool for precision medicine? Nat Rev Endocrinol 2022; 18:433-448. [PMID: 35513492 DOI: 10.1038/s41574-022-00671-w] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/29/2022] [Indexed: 12/12/2022]
Abstract
Pioneering studies performed over the past few decades demonstrate links between epigenetics and type 2 diabetes mellitus (T2DM), the metabolic disorder with the most rapidly increasing prevalence in the world. Importantly, these studies identified epigenetic modifications, including altered DNA methylation, in pancreatic islets, adipose tissue, skeletal muscle and the liver from individuals with T2DM. As non-genetic factors that affect the risk of T2DM, such as obesity, unhealthy diet, physical inactivity, ageing and the intrauterine environment, have been associated with epigenetic modifications in healthy individuals, epigenetics probably also contributes to T2DM development. In addition, genetic factors associated with T2DM and obesity affect the epigenome in human tissues. Notably, causal mediation analyses found DNA methylation to be a potential mediator of genetic associations with metabolic traits and disease. In the past few years, translational studies have identified blood-based epigenetic markers that might be further developed and used for precision medicine to help patients with T2DM receive optimal therapy and to identify patients at risk of complications. This Review focuses on epigenetic mechanisms in the development of T2DM and the regulation of body weight in humans, with a special focus on precision medicine.
Collapse
Affiliation(s)
- Charlotte Ling
- Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Scania University Hospital, Malmö, Sweden.
| | - Karl Bacos
- Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Scania University Hospital, Malmö, Sweden
| | - Tina Rönn
- Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Scania University Hospital, Malmö, Sweden
| |
Collapse
|
10
|
Hefetz L, Ben-Haroush Schyr R, Bergel M, Arad Y, Kleiman D, Israeli H, Samuel I, Azulai S, Haran A, Levy Y, Sender D, Rottenstreich A, Ben-Zvi D. Maternal antagonism of Glp1 reverses the adverse outcomes of sleeve gastrectomy on mouse offspring. JCI Insight 2022; 7:156424. [PMID: 35393955 PMCID: PMC9057621 DOI: 10.1172/jci.insight.156424] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 02/25/2022] [Indexed: 12/30/2022] Open
Abstract
Mothers that underwent bariatric surgery are at higher risk for delivering a small-for-gestational age (SGA) infant. This phenomenon is attributed to malabsorption and rapid weight loss following surgery. We compared pregnancy outcomes in lean mice that underwent sham surgery or sleeve gastrectomy (SG). SG led to a reduction in glucose levels and an increase in postprandial levels of glucagon-like peptide 1 (Glp1) without affecting mice weight during pregnancy. Pups of SG-operated mice (SG pups) were born SGA. The placenta and pancreas of the pups were not affected by SG, although a high-fat diet caused hepatic steatosis and glucose intolerance in male SG pups. Treatment with a Glp1 receptor antagonist during pregnancy normalized the birth weight of SG pups and diminished the adverse response to a high-fat diet without affecting glucose levels of pregnant mice. The antagonist did not affect the birth weight of pups of sham-operated mice. Our findings link elevated Glp1 signaling, rather than weight loss, to the increased prevalence of SGA births following bariatric surgery with metabolic consequences for the offspring. The long-term effects of bariatric surgery on the metabolic health of offspring of patients require further investigation.
Collapse
Affiliation(s)
- Liron Hefetz
- Department of Developmental Biology and Cancer Research, Institute of Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem, Israel.,Department of Military Medicine and Tzameret, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel, and Medical Corps, Israel Defense Forces, Israel
| | - Rachel Ben-Haroush Schyr
- Department of Developmental Biology and Cancer Research, Institute of Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Michael Bergel
- Department of Developmental Biology and Cancer Research, Institute of Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Yhara Arad
- Department of Developmental Biology and Cancer Research, Institute of Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem, Israel.,Department of Military Medicine and Tzameret, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel, and Medical Corps, Israel Defense Forces, Israel
| | - Doron Kleiman
- Department of Developmental Biology and Cancer Research, Institute of Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Hadar Israeli
- Department of Developmental Biology and Cancer Research, Institute of Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Itia Samuel
- Department of Developmental Biology and Cancer Research, Institute of Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Shira Azulai
- Department of Developmental Biology and Cancer Research, Institute of Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Arnon Haran
- Department of Developmental Biology and Cancer Research, Institute of Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Yovel Levy
- Department of Developmental Biology and Cancer Research, Institute of Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Dana Sender
- Department of Developmental Biology and Cancer Research, Institute of Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Amihai Rottenstreich
- Department of Obstetrics and Gynecology and.,Faculty of Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Danny Ben-Zvi
- Department of Developmental Biology and Cancer Research, Institute of Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| |
Collapse
|
11
|
Lien YC, Pinney SE, Lu XM, Simmons RA. Identification of Novel Regulatory Regions Induced by Intrauterine Growth Restriction in Rat Islets. Endocrinology 2022; 163:6459683. [PMID: 34894232 PMCID: PMC8743043 DOI: 10.1210/endocr/bqab251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Indexed: 01/05/2023]
Abstract
Intrauterine growth restriction (IUGR) leads to the development of type 2 diabetes in adulthood, and the permanent alterations in gene expression implicate an epigenetic mechanism. Using a rat model of IUGR, we performed TrueSeq-HELP Tagging to assess the association of DNA methylation changes and gene dysregulation in islets. We identified 511 differentially methylated regions (DMRs) and 4377 significantly altered single CpG sites. Integrating the methylome and our published transcriptome data sets resulted in the identification of pathways critical for islet function. The identified DMRs were enriched with transcription factor binding motifs, such as Elk1, Etv1, Foxa1, Foxa2, Pax7, Stat3, Hnf1, and AR. In silico analysis of 3-dimensional chromosomal interactions using human pancreas and islet Hi-C data sets identified interactions between 14 highly conserved DMRs and 35 genes with significant expression changes at an early age, many of which persisted in adult islets. In adult islets, there were far more interactions between DMRs and genes with significant expression changes identified with Hi-C, and most of them were critical to islet metabolism and insulin secretion. The methylome was integrated with our published genome-wide histone modification data sets from IUGR islets, resulting in further characterization of important regulatory regions of the genome altered by IUGR containing both significant changes in DNA methylation and specific histone marks. We identified novel regulatory regions in islets after exposure to IUGR, suggesting that epigenetic changes at key transcription factor binding motifs and other gene regulatory regions may contribute to gene dysregulation and an abnormal islet phenotype in IUGR rats.
Collapse
Affiliation(s)
- Yu-Chin Lien
- Center for Research on Reproduction and Women’s Health, Perelman School of Medicine, the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Division of Neonatology, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | - Sara E Pinney
- Center for Research on Reproduction and Women’s Health, Perelman School of Medicine, the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Division Endocrinology and Diabetes, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
- Perlman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Xueqing Maggie Lu
- Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Rebecca A Simmons
- Center for Research on Reproduction and Women’s Health, Perelman School of Medicine, the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Division of Neonatology, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
- Perlman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Correspondence: Rebecca A. Simmons, MD, Center for Research on Reproduction and Women’s Health, Perelman School of Medicine, the University of Pennsylvania, BRB II/III, 13th Fl, Rm 1308, 421 Curie Blvd, Philadelphia, PA 19104, USA.
| |
Collapse
|
12
|
Baumel-Alterzon S, Scott DK. Regulation of Pdx1 by oxidative stress and Nrf2 in pancreatic beta-cells. Front Endocrinol (Lausanne) 2022; 13:1011187. [PMID: 36187092 PMCID: PMC9521308 DOI: 10.3389/fendo.2022.1011187] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 08/26/2022] [Indexed: 01/05/2023] Open
Abstract
The beta-cell identity gene, pancreatic duodenal homeobox 1 (Pdx1), plays critical roles in many aspects of the life of beta-cells including differentiation, maturation, function, survival and proliferation. High levels of reactive oxygen species (ROS) are extremely toxic to cells and especially to beta-cells due to their relatively low expression of antioxidant enzymes. One of the major mechanisms for beta-cell dysfunction in type-2 diabetes results from oxidative stress-dependent inhibition of PDX1 levels and function. ROS inhibits Pdx1 by reducing Pdx1 mRNA and protein levels, inhibiting PDX1 nuclear localization, and suppressing PDX1 coactivator complexes. The nuclear factor erythroid 2-related factor (Nrf2) antioxidant pathway controls the redox balance and allows the maintenance of high Pdx1 levels. Therefore, pharmacological activation of the Nrf2 pathway may alleviate diabetes by preserving Pdx1 levels.
Collapse
Affiliation(s)
- Sharon Baumel-Alterzon
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- *Correspondence: Sharon Baumel-Alterzon,
| | - Donald K. Scott
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
13
|
Kim K, Joyce BT, Zheng Y, Schreiner PJ, Jacobs DR, Catov JM, Shikany JM, Carnethon MR, Greenland P, Van Horn LV, Allen NB, Lloyd-Jones DM, Gunderson EP, Hou L. DNA Methylation GrimAge and Incident Diabetes: The Coronary Artery Risk Development in Young Adults (CARDIA) Study. Diabetes 2021; 70:1404-1413. [PMID: 33820761 PMCID: PMC8275890 DOI: 10.2337/db20-1167] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 03/27/2021] [Indexed: 12/21/2022]
Abstract
DNA methylation (DNAm)-based biological age (epigenetic age) has been suggested as a useful biomarker of age-related conditions including type 2 diabetes (T2D), and its newest iterations (GrimAge measurements) have shown early promise. In this study, we explored the association between epigenetic age and incident T2D in the context of their relationships with obesity. A total of 1,057 participants in the Coronary Artery Risk Development in Young Adults (CARDIA) study were included in the current analyses. We stratified the participants into three groups: normal weight, overweight, and obese. A 1-year increase of GrimAge was associated with higher 10-year (study years 15-25) incidence of T2D (odds ratio [OR] 1.06, 95% CI 1.01-1.11). GrimAge acceleration, which represents the deviation of GrimAge from chronological age, was derived from the residuals of a model of GrimAge and chronological age, and any GrimAge acceleration (positive GrimAA: having GrimAge older than chronological age) was associated with significantly higher odds of 10-year incidence of T2D in obese participants (OR 2.57, 95% CI 1.61-4.11). Cumulative obesity was estimated by years since obesity onset, and GrimAge partially mediated the statistical association between cumulative obesity and incident diabetes or prediabetes (proportion mediated = 8.0%). In conclusion, both older and accelerated GrimAge were associated with higher risk of T2D, particularly among obese participants. GrimAge also statistically mediated the associations between cumulative obesity and T2D. Our findings suggest that epigenetic age measurements with DNAm can potentially be used as a risk factor or biomarker associated with T2D development.
Collapse
Affiliation(s)
- Kyeezu Kim
- Center for Global Oncology, Institute for Global Health, Northwestern University Feinberg School of Medicine, Chicago, IL
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
- Division of Epidemiology and Biostatistics, School of Public Health, University of Illinois at Chicago, Chicago, IL
| | - Brian T Joyce
- Center for Global Oncology, Institute for Global Health, Northwestern University Feinberg School of Medicine, Chicago, IL
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Yinan Zheng
- Center for Global Oncology, Institute for Global Health, Northwestern University Feinberg School of Medicine, Chicago, IL
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Pamela J Schreiner
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN
| | - David R Jacobs
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN
| | - Janet M Catov
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, PA
| | - James M Shikany
- Division of Preventive Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Mercedes R Carnethon
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Philip Greenland
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Linda V Van Horn
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Norrina B Allen
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Donald M Lloyd-Jones
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Erica P Gunderson
- Division of Research, Kaiser Permanente Northern California, Oakland, CA
| | - Lifang Hou
- Center for Global Oncology, Institute for Global Health, Northwestern University Feinberg School of Medicine, Chicago, IL
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| |
Collapse
|
14
|
Ying T, Golden T, Cheng L, Ishibashi J, Seale P, Simmons RA. Neonatal IL-4 exposure decreases adipogenesis of male rats into adulthood. Am J Physiol Endocrinol Metab 2021; 320:E1148-E1157. [PMID: 33870712 PMCID: PMC8285599 DOI: 10.1152/ajpendo.00600.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/23/2021] [Accepted: 04/15/2021] [Indexed: 11/22/2022]
Abstract
The cytokine interleukin 4 (IL-4) can increase beige adipogenesis in adult rodents. However, neonatal animals use a distinct adipocyte precursor compartment for adipogenesis as compared with adults. In this study, we address whether IL-4 can induce persistent effects on adipose tissue when administered subcutaneously in the interscapular region during the neonatal period in Sprague-Dawley rats. We injected IL-4 into neonatal male rats during postnatal days 1-6, followed by analysis of adipose tissue and adipocyte precursors at 2 wk and 10 wk of age. Adipocyte precursors were cultured and subjected to differentiation in vitro. We found that a short and transient IL-4 exposure in neonates upregulated uncoupling protein 1 (Ucp1) mRNA expression and decreased fat cell size in subcutaneous white adipose tissue (WAT). Adipocyte precursors from mature rats that had been treated with IL-4 as neonates displayed a decrease in adiponectin (Adipoq) but no change in Ucp1 expression, as compared with controls. Thus, neonatal IL-4 induces acute beige adipogenesis and decreases adipogenic differentiation capacity long term. Overall, these findings indicate that the neonatal period is critical for adipocyte development and may influence the later onset of obesity.NEW & NOTEWORTHY We used neonatal injections in rat to show that IL-4 decreases adipogenesis and increases browning of white fat. In adulthood, adipocyte precursors show persistently decreased adipogenesis but not increased browning. These studies in the neonate are the first, to our knowledge, to show that IL-4 can have long-lasting effects.
Collapse
Affiliation(s)
- Tammy Ying
- The Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Thea Golden
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
- Center for Research on Reproduction and Women's Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Lan Cheng
- Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jeff Ishibashi
- Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Patrick Seale
- Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Rebecca A Simmons
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
- Center for Research on Reproduction and Women's Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
15
|
Golden TN, Simmons RA. Immune dysfunction in developmental programming of type 2 diabetes mellitus. Nat Rev Endocrinol 2021; 17:235-245. [PMID: 33526907 PMCID: PMC7969450 DOI: 10.1038/s41574-020-00464-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/17/2020] [Indexed: 01/30/2023]
Abstract
Intrauterine growth restriction (IUGR) is a common complication of pregnancy and increases the risk of the offspring developing type 2 diabetes mellitus (T2DM) later in life. Alterations in the immune system are implicated in the pathogenesis of IUGR-induced T2DM. The development of the fetal immune system is a delicate balance as it must remain tolerant of maternal antigens whilst also preparing for the post-birth environment. In addition, the fetal immune system is susceptible to an altered intrauterine milieu caused by maternal and placental inflammatory mediators or secondary to nutrient and oxygen deprivation. Pancreatic-resident macrophages populate the pancreas during fetal development, and their phenotype is dynamic through the neonatal period. Furthermore, macrophages in the islets are instrumental in islet development as they influence β-cell proliferation and islet neogenesis. In addition, cytokines, derived from β-cells and macrophages, are important to islet homeostasis in the fetus and adult and, when perturbed, can cause islet dysfunction. Several activated immune pathways have been identified in the islets of people who experienced IUGR, with alternations in the levels of IL-1β and IL-4 as well as changes in TGFβ signalling. Leptin levels are also altered. Immunomodulation has shown therapeutic benefit in T2DM and might be particularly useful in IUGR-induced T2DM.
Collapse
Affiliation(s)
- Thea N Golden
- Center for Research on Reproduction and Women's Health, Perelman School of Medicine University of Pennsylvania, Philadelphia, PA, USA
- Center of Excellence in Environmental Toxicology, Perelman School of Medicine University of Pennsylvania, Philadelphia, PA, USA
| | - Rebecca A Simmons
- Center for Research on Reproduction and Women's Health, Perelman School of Medicine University of Pennsylvania, Philadelphia, PA, USA.
- Center of Excellence in Environmental Toxicology, Perelman School of Medicine University of Pennsylvania, Philadelphia, PA, USA.
- Division of Neonatology, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| |
Collapse
|
16
|
Liu J, Lang G, Shi J. Epigenetic Regulation of PDX-1 in Type 2 Diabetes Mellitus. Diabetes Metab Syndr Obes 2021; 14:431-442. [PMID: 33564250 PMCID: PMC7866918 DOI: 10.2147/dmso.s291932] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 01/16/2021] [Indexed: 12/25/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a metabolic disease characterized by hyperglycemia which is caused by insufficient insulin secretion or insulin resistance. Interaction of genetic, epigenetic and environmental factors plays a significant role in the development of T2DM. Several environmental factors including diet and lifestyle, as well as age have been associated with an increased risk for T2DM. It has been demonstrated that these environmental factors may affect global epigenetic status, and alter the expression of susceptible genes, thereby contributing to the pathogenesis of T2DM. In recent years, a growing body of molecular and genetic studies in diabetes have been focused on the ways to restore the numbers or function of β-cells in order to reverse a range of metabolic consequences of insulin deficiency. The pancreatic duodenal homeobox 1 (PDX-1) is a transcriptional factor that is essential for the development and function of islet cells. A number of studies have shown that there is a significant increase in the level of DNA methylation of PDX-1 resulting in reduced activity in T2DM islets. The decrease in PDX-1 activity may be a critical mediator causing dysregulation of pancreatic β cells in T2DM. This article reviews the epigenetic mechanisms of PDX-1 involved in T2DM, focusing on diabetes and DNA methylation, and discusses some potential strategies for the application of PDX-1 in the treatment of diabetes.
Collapse
Affiliation(s)
- Jiangman Liu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563000, People’s Republic of China
| | - Guangping Lang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563000, People’s Republic of China
| | - Jingshan Shi
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563000, People’s Republic of China
- Correspondence: Jingshan Shi Tel +86-851-286-436-66Fax +86-851-286-423-03 Email
| |
Collapse
|
17
|
Christoforou ER, Sferruzzi-Perri AN. Molecular mechanisms governing offspring metabolic programming in rodent models of in utero stress. Cell Mol Life Sci 2020; 77:4861-4898. [PMID: 32494846 PMCID: PMC7658077 DOI: 10.1007/s00018-020-03566-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/23/2020] [Accepted: 05/27/2020] [Indexed: 12/13/2022]
Abstract
The results of different human epidemiological datasets provided the impetus to introduce the now commonly accepted theory coined as 'developmental programming', whereby the presence of a stressor during gestation predisposes the growing fetus to develop diseases, such as metabolic dysfunction in later postnatal life. However, in a clinical setting, human lifespan and inaccessibility to tissue for analysis are major limitations to study the molecular mechanisms governing developmental programming. Subsequently, studies using animal models have proved indispensable to the identification of key molecular pathways and epigenetic mechanisms that are dysregulated in metabolic organs of the fetus and adult programmed due to an adverse gestational environment. Rodents such as mice and rats are the most used experimental animals in the study of developmental programming. This review summarises the molecular pathways and epigenetic mechanisms influencing alterations in metabolic tissues of rodent offspring exposed to in utero stress and subsequently programmed for metabolic dysfunction. By comparing molecular mechanisms in a variety of rodent models of in utero stress, we hope to summarise common themes and pathways governing later metabolic dysfunction in the offspring whilst identifying reasons for incongruencies between models so to inform future work. With the continued use and refinement of such models of developmental programming, the scientific community may gain the knowledge required for the targeted treatment of metabolic diseases that have intrauterine origins.
Collapse
Affiliation(s)
- Efthimia R Christoforou
- Department of Physiology, Development and Neuroscience, Centre for Trophoblast Research, University of Cambridge, Downing Site, Cambridge, UK
| | - Amanda N Sferruzzi-Perri
- Department of Physiology, Development and Neuroscience, Centre for Trophoblast Research, University of Cambridge, Downing Site, Cambridge, UK.
| |
Collapse
|
18
|
Scisciola L, Rizzo MR, Cataldo V, Fontanella RA, Balestrieri ML, D'Onofrio N, Marfella R, Paolisso G, Barbieri M. Incretin drugs effect on epigenetic machinery: New potential therapeutic implications in preventing vascular diabetic complications. FASEB J 2020; 34:16489-16503. [PMID: 33090591 DOI: 10.1096/fj.202000860rr] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 09/25/2020] [Accepted: 10/06/2020] [Indexed: 11/11/2022]
Abstract
The effect of GLP-1R agonists on DNA methylation levels of NF-κB and SOD2 genes in human aortic endothelial cells exposed to high glucose and in diabetic patients treated and not with incretin-based drugs, was evaluated. Methylation levels, mRNA and protein expression of NF-κB and SOD2 genes were measured in human endothelial cells exposed to high glucose for 7 days and treated with GLP-1R agonists. Methylation status of NF-κB and SOD2 promoter was also analyzed in 128 diabetics and 116 nondiabetics and correlated with intima media thickness (ITM), an early marker of atherosclerotic process. Cells exposed to high glucose showed lower NF-κB and SOD2 methylation levels, increased NF-κB and reduced SOD2 expression compared to normal glucose cells. Co-treatment with GLP-1 agonists prevented methylation and genes expression changes induced by high glucose. Both high glucose and incretins exposure increased DNA methyltransferases and demethylases levels. In diabetics, incretin treatment resulted a significant predictor of NF-κB DNA methylation, independently of age, sex, body mass index (BMI), glucose and plasma lipid levels. NF-κB DNA methylation inversely correlated with IMT after adjusting for multiple covariates. Our results firstly provide new evidences of an additional mechanism by which incretin drugs could prevent vascular diabetic complications.
Collapse
Affiliation(s)
- Lucia Scisciola
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Maria Rosaria Rizzo
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Vittoria Cataldo
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Rosaria Anna Fontanella
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | | | - Nunzia D'Onofrio
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Raffaele Marfella
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Giuseppe Paolisso
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Michelangela Barbieri
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
19
|
Abstract
Background Epigenetic processes control timing and level of gene expression throughout life, during development, differentiation, and aging, and are the link to adapting gene expression profiles to environmental cues. To qualify for the definition of ‘epigenetic’, a change to a gene's activity must be inherited through at least one mitotic division. Epigenetic mechanisms link changes in the environment to adaptions of the genome that do not rely on changes in the DNA sequence. In the past two decades, multiple studies have aimed to identify epigenetic mechanisms, and to define their role in development, differentiation and disease. Scope of review In this review, we will focus on the current knowledge of the epigenetic control of pancreatic beta cell maturation and dysfunction and its relationship to the development of islet cell failure in diabetes. Most of the data currently available have been obtained in mice, but we will summarize studies of human data as well. We will focus here on DNA methylation, as this is the most stable epigenetic mark, and least impacted by the variables inherent in islet procurement, isolation, and culture. Major conclusions DNA methylation patterns of beta cell are dynamic during maturation and during the diabetic process. In both cases, the changes occur at cell specific regulatory regions such as enhancers, where the methylation profile is cell type specific. Frequently, the differentially methylated regulatory elements are associated with key function genes such as PDX1, NKX6-1 and TCF7L2. During maturation, enhancers tend to become demethylated in association with increased activation of beta cell function genes and increased functionality, as indicated by glucose stimulated insulin secretion. Likewise, the changes to the DNA methylome that are present in pancreatic islets from diabetic donors are enriched in regulatory regions as well.
Collapse
Affiliation(s)
- Dana Avrahami
- Endocrinology and Metabolism Department, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Klaus H Kaestner
- University of Pennsylvania, Department of Genetics and Institute for Diabetes, Obesity, and Metabolism, Philadelphia, PA, USA.
| |
Collapse
|
20
|
Altered Transcription Factor Binding and Gene Bivalency in Islets of Intrauterine Growth Retarded Rats. Cells 2020; 9:cells9061435. [PMID: 32527043 PMCID: PMC7348746 DOI: 10.3390/cells9061435] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/30/2020] [Accepted: 06/04/2020] [Indexed: 12/16/2022] Open
Abstract
Intrauterine growth retardation (IUGR), which induces epigenetic modifications and permanent changes in gene expression, has been associated with the development of type 2 diabetes. Using a rat model of IUGR, we performed ChIP-Seq to identify and map genome-wide histone modifications and gene dysregulation in islets from 2- and 10-week rats. IUGR induced significant changes in the enrichment of H3K4me3, H3K27me3, and H3K27Ac marks in both 2-wk and 10-wk islets, which were correlated with expression changes of multiple genes critical for islet function in IUGR islets. ChIP-Seq analysis showed that IUGR-induced histone mark changes were enriched at critical transcription factor binding motifs, such as C/EBPs, Ets1, Bcl6, Thrb, Ebf1, Sox9, and Mitf. These transcription factors were also identified as top upstream regulators in our previously published transcriptome study. In addition, our ChIP-seq data revealed more than 1000 potential bivalent genes as identified by enrichment of both H3K4me3 and H3K27me3. The poised state of many potential bivalent genes was altered by IUGR, particularly Acod1, Fgf21, Serpina11, Cdh16, Lrrc27, and Lrrc66, key islet genes. Collectively, our findings suggest alterations of histone modification in key transcription factors and genes that may contribute to long-term gene dysregulation and an abnormal islet phenotype in IUGR rats.
Collapse
|
21
|
Legøy TA, Vethe H, Abadpour S, Strand BL, Scholz H, Paulo JA, Ræder H, Ghila L, Chera S. Encapsulation boosts islet-cell signature in differentiating human induced pluripotent stem cells via integrin signalling. Sci Rep 2020; 10:414. [PMID: 31942009 PMCID: PMC6962451 DOI: 10.1038/s41598-019-57305-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 12/27/2019] [Indexed: 12/20/2022] Open
Abstract
Cell replacement therapies hold great therapeutic potential. Nevertheless, our knowledge of the mechanisms governing the developmental processes is limited, impeding the quality of differentiation protocols. Generating insulin-expressing cells in vitro is no exception, with the guided series of differentiation events producing heterogeneous cell populations that display mixed pancreatic islet phenotypes and immaturity. The achievement of terminal differentiation ultimately requires the in vivo transplantation of, usually, encapsulated cells. Here we show the impact of cell confinement on the pancreatic islet signature during the guided differentiation of alginate encapsulated human induced pluripotent stem cells (hiPSCs). Our results show that encapsulation improves differentiation by significantly reshaping the proteome landscape of the cells towards an islet-like signature. Pathway analysis is suggestive of integrins transducing the encapsulation effect into intracellular signalling cascades promoting differentiation. These analyses provide a molecular framework for understanding the confinement effects on hiPSCs differentiation while confirming its importance for this process.
Collapse
Affiliation(s)
- Thomas Aga Legøy
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Heidrun Vethe
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Shadab Abadpour
- Hybrid Technology Hub-Centre of Excellence, Faculty of Medicine, University of Oslo, Oslo, Norway.,Institute for Surgical Research and Department of Transplant Medicine, Oslo University Hospital, Oslo, Norway
| | - Berit L Strand
- NOBIPOL, Department of Biotechnology and Food Science, Norwegian University of Science and Technology, Trondheim, Norway
| | - Hanne Scholz
- Hybrid Technology Hub-Centre of Excellence, Faculty of Medicine, University of Oslo, Oslo, Norway.,Institute for Surgical Research and Department of Transplant Medicine, Oslo University Hospital, Oslo, Norway
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Helge Ræder
- Department of Clinical Science, University of Bergen, Bergen, Norway.,Department of Pediatrics, Haukeland University Hospital, Bergen, Norway
| | - Luiza Ghila
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Simona Chera
- Department of Clinical Science, University of Bergen, Bergen, Norway.
| |
Collapse
|
22
|
Vaiserman A, Lushchak O. Developmental origins of type 2 diabetes: Focus on epigenetics. Ageing Res Rev 2019; 55:100957. [PMID: 31473332 DOI: 10.1016/j.arr.2019.100957] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 08/19/2019] [Accepted: 08/28/2019] [Indexed: 12/15/2022]
Abstract
Traditionally, genetics and lifestyle are considered as main determinants of aging-associated pathological conditions. Accumulating evidence, however, suggests that risk of many age-related diseases is not only determined by genetic and adult lifestyle factors but also by factors acting during early development. Type 2 diabetes (T2D), an age-related disease generally manifested after the age of 40, is among such disorders. Since several age-related conditions, such as pro-inflammatory states, are characteristic of both T2D and aging, this disease is conceptualized by many authors as a kind of premature or accelerated aging. There is substantial evidence that intrauterine growth restriction (IUGR), induced by poor or unbalanced nutrient intake, exposure to xenobiotics, maternal substance abuse etc., may impair fetal development, thereby causing the fetal adipose tissue and pancreatic beta cell dysfunction. Consequently, persisting adaptive changes may occur in the glucose-insulin metabolism, including reduced capacity for insulin secretion and insulin resistance. These changes can lead to an improved ability to store fat, thus predisposing to T2D development in later life. The modulation of epigenetic regulation of gene expression likely plays a central role in linking the adverse environmental conditions early in life to the risk of T2D in adulthood. In animal models of IUGR, long-term persistent changes in both DNA methylation and expression of genes implicated in metabolic processes have been repeatedly reported. Findings from human studies confirming the role of epigenetic mechanisms in linking early-life adverse experiences to the risk for T2D in adult life are scarce compared to data from animal studies, mainly because of limited access to suitable biological samples. It is, however, convincing evidence that these mechanisms may also operate in human beings. In this review, theoretical models and research findings evidencing the role of developmental epigenetic variation in the pathogenesis of T2D are summarized and discussed.
Collapse
Affiliation(s)
| | - Oleh Lushchak
- Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
| |
Collapse
|
23
|
Andreeva–Gateva PA, Mihaleva ID, Dimova II. Type 2 diabetes mellitus and cardiovascular risk; what the pharmacotherapy can change through the epigenetics. Postgrad Med 2019; 132:109-125. [DOI: 10.1080/00325481.2019.1681215] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Pavlina A. Andreeva–Gateva
- Department of Pharmacology and Toxicology, Faculty of Medicine, Medical University of Sofia, Sofia, Bulgaria
- Department of Pharmacology, Medical Faculty, Sofia University “St Kliment Ohridski”, Sofia, Bulgaria
| | - Ivelina D. Mihaleva
- Department of Pharmacology and Toxicology, Faculty of Medicine, Medical University of Sofia, Sofia, Bulgaria
| | - Ivanka I. Dimova
- Department of Medical Genetics, Faculty of Medicine, Medical University of Sofia, Sofia, Bulgaria
| |
Collapse
|
24
|
Perico N, Askenazi D, Cortinovis M, Remuzzi G. Maternal and environmental risk factors for neonatal AKI and its long-term consequences. Nat Rev Nephrol 2019; 14:688-703. [PMID: 30224767 DOI: 10.1038/s41581-018-0054-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Acute kidney injury (AKI) is a common and life-threatening complication in critically ill neonates. Gestational risk factors for AKI include premature birth, intrauterine growth restriction and low birthweight, which are associated with poor nephron development and are often the consequence of pre-gestational and gestational factors, such as poor nutritional status. Our understanding of how to best optimize renal development and prevent AKI is in its infancy; however, the identification of pre-gestational and gestational factors that increase the risk of adverse neonatal outcomes and the implementation of interventions, such as improving nutritional status early in pregnancy, have the potential to optimize fetal growth and reduce the risk of preterm birth, thereby improving kidney health. The overall risk of AKI among critically ill and premature neonates is exacerbated postnatally as these infants are often exposed to dehydration, septic shock and potentially nephrotoxic medications. Strategies to improve outcomes - for example, through careful evaluation of nephrotoxic drugs - may reduce the incidence of AKI and its consequences among this population. Management strategies and updated technology that will support neonates with AKI are greatly needed. Extremely premature infants and those who survive an episode of AKI should be screened for chronic kidney disease until early adulthood. Here, we provide an overview of our current understanding of neonatal AKI, focusing on its relationship to preterm birth and growth restriction. We describe factors that prevent optimal nephrogenesis during pregnancy and provide a framework for future explorations designed to maximize outcomes in this vulnerable population.
Collapse
Affiliation(s)
- Norberto Perico
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - David Askenazi
- Pediatric and Infant Center for Acute Nephrology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Monica Cortinovis
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Giuseppe Remuzzi
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy. .,Unit of Nephrology and Dialysis, Azienda Socio Sanitaria Territoriale Papa Giovanni XXIII, Bergamo, Italy. .,L. Sacco Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy.
| |
Collapse
|
25
|
Glavas MM, Hui Q, Tudurí E, Erener S, Kasteel NL, Johnson JD, Kieffer TJ. Early overnutrition reduces Pdx1 expression and induces β cell failure in Swiss Webster mice. Sci Rep 2019; 9:3619. [PMID: 30842440 PMCID: PMC6403421 DOI: 10.1038/s41598-019-39177-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 01/07/2019] [Indexed: 12/25/2022] Open
Abstract
Childhood obesity and early rapid growth increase the risk for type 2 diabetes. Such early overnutrition can be modeled in mice by reducing litter size. We investigated the effects of early overnutrition and increased dietary fat intake on β cell function in Swiss Webster mice. On a moderate-fat diet, early overnutrition accelerated weight gain and induced hyperinsulinemia in pups. Early overnutrition males exhibited higher β cell mass but reduced islet insulin content and Pdx1 expression. Males had a high diabetes incidence that was increased by early overnutrition, characterized by a progressive increase in insulin secretion as well as β cell death, indicated by histological analysis and increased circulating miR-375 levels. Females maintained normoglycemia throughout life. High-fat diet (HFD) increased diabetes incidence in males, whereas low-fat diet was completely protective. This protective effect was abolished in early overnutrition males transiently exposed to HFD in early life. Although Swiss Webster mice are not known to be diabetes-prone, the high diabetes incidence suggests an underlying genetic susceptibility that can be induced by overnutrition and increased dietary fat intake in early life. Thus, the nutritional environment in early life may impact long-term β cell function and increase diabetes risk, particularly in genetically susceptible individuals.
Collapse
Affiliation(s)
- Maria M Glavas
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Queenie Hui
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Eva Tudurí
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada.,Centro de Investigación Biomédica en Red de Diabetes y , Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Suheda Erener
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Naomi L Kasteel
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - James D Johnson
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Timothy J Kieffer
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada. .,Department of Surgery, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
26
|
Prenatal Malnutrition-Induced Epigenetic Dysregulation as a Risk Factor for Type 2 Diabetes. Int J Genomics 2019; 2019:3821409. [PMID: 30944826 PMCID: PMC6421750 DOI: 10.1155/2019/3821409] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 02/06/2019] [Indexed: 02/08/2023] Open
Abstract
Type 2 diabetes (T2D) is commonly regarded as a disease originating from lifestyle-related factors and typically occurring after the age of 40. There is, however, consistent experimental and epidemiological data evidencing that the risk for developing T2D may largely depend on conditions early in life. In particular, intrauterine growth restriction (IUGR) induced by poor or unbalanced nutrient intake can impair fetal growth and also cause fetal adipose tissue and pancreatic β-cell dysfunction. On account of these processes, persisting adaptive changes can occur in the glucose-insulin metabolism. These changes can include reduced ability for insulin secretion and insulin resistance, and they may result in an improved capacity to store fat, thereby predisposing to the development of T2D and obesity in adulthood. Accumulating research findings indicate that epigenetic regulation of gene expression plays a critical role in linking prenatal malnutrition to the risk of later-life metabolic disorders including T2D. In animal models of IUGR, changes in both DNA methylation and expression levels of key metabolic genes were repeatedly found which persisted until adulthood. The causal link between epigenetic disturbances during development and the risk for T2D was also confirmed in several human studies. In this review, the conceptual models and empirical data are summarized and discussed regarding the contribution of epigenetic mechanisms in developmental nutritional programming of T2D.
Collapse
|
27
|
Portha B, Grandjean V, Movassat J. Mother or Father: Who Is in the Front Line? Mechanisms Underlying the Non-Genomic Transmission of Obesity/Diabetes via the Maternal or the Paternal Line. Nutrients 2019; 11:E233. [PMID: 30678214 PMCID: PMC6413176 DOI: 10.3390/nu11020233] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 01/01/2019] [Accepted: 01/09/2019] [Indexed: 02/06/2023] Open
Abstract
Extensive epidemiological and experimental evidence have shown that exposure to an adverse intrauterine environment as observed in offspring of pregnancies complicated by obesity or diabetes, can program susceptibility to metabolic, endocrine and cardiovascular disorders later in life. Although most studies have concentrated on the maternal environment, it is also becoming evident that paternal exposure to obesity or diabetes can result in the later development of metabolic disorders in the offspring. Such programmed effects might not be limited to the first directly exposed generation, but could be transmitted to subsequent generations. This suggests the existence of mechanisms by which metabolic changes in parental phenotype are transmissible to offspring. The mechanisms which underpin the transmission of the programmed effects across generations are still unclear. However, epigenetic regulation of transcription has emerged as a strong candidate for mediating the heritability of metabolic diseases. Here, we review the most relevant evidence from human and animal studies showing transmission of programming effects of obesity or diabetes across generations, and the current mechanisms underlying either maternal or paternal influences on the metabolic status of offspring.
Collapse
Affiliation(s)
- Bernard Portha
- Sorbonne-Paris-Cité, Laboratoire B2PE (Biologie et Pathologie du Pancréas Endocrine), Unité BFA (Biologie Fonctionnelle et Adaptative), Université Paris-Diderot, CNRS UMR 8251, F-75205 Paris CEDEX 13, France.
| | - Valérie Grandjean
- Inserm U1065 C3M, Team Control of Gene Expression (10), Université Côte d'Azur, 151 Route de Ginestière, 06204 Nice CEDEX 3, France.
| | - Jamileh Movassat
- Sorbonne-Paris-Cité, Laboratoire B2PE (Biologie et Pathologie du Pancréas Endocrine), Unité BFA (Biologie Fonctionnelle et Adaptative), Université Paris-Diderot, CNRS UMR 8251, F-75205 Paris CEDEX 13, France.
| |
Collapse
|
28
|
Diz-Chaves Y, Toba L, Fandiño J, González-Matías LC, Garcia-Segura LM, Mallo F. The GLP-1 analog, liraglutide prevents the increase of proinflammatory mediators in the hippocampus of male rat pups submitted to maternal perinatal food restriction. J Neuroinflammation 2018; 15:337. [PMID: 30518432 PMCID: PMC6282252 DOI: 10.1186/s12974-018-1370-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 11/18/2018] [Indexed: 12/17/2022] Open
Abstract
Background Perinatal maternal malnutrition is related to altered growth of tissues and organs. The nervous system development is very sensitive to environmental insults, being the hippocampus a vulnerable structure, in which altered number of neurons and granular cells has been observed. Moreover, glial cells are also affected, and increased expression of proinflammatory mediators has been observed. We studied the effect of Glucagon-like peptide-1 receptor (GLP-1R) agonists, liraglutide, which have very potent metabolic and neuroprotective effects, in order to ameliorate/prevent the glial alterations present in the hippocampus of the pups from mothers with food restriction during pregnancy and lactation (maternal perinatal food restriction—MPFR). Methods Pregnant Sprague-Dawley rats were randomly assigned to 50% food restriction (FR; n = 12) or ad libitum controls (CT, n = 12) groups at day of pregnancy 12 (GD12). From GD14 to parturition, pregnant FR and CT rats were treated with liraglutide (100 μg/kg) or vehicle. At postnatal day 21 and before weaning, 48 males and 45 females (CT and MPFR) were sacrificed. mRNA expression levels of interleukin-1β (IL1β), interleukin-6 (IL-6), nuclear factor-κβ, major histocompatibility complex-II (MHCII), interleukin 10 (IL10), arginase 1 (Arg1), and transforming growth factor (TGFβ) were assessed in the hippocampus by quantitative real-time polymerase chain reaction. Iba1 and GFAP-immunoreactivity were assessed by immunocytochemistry. Results The mRNA expression IL1β, IL6, NF-κB, and MHCII increased in the hippocampus of male but not in female pups from MPFR. In addition, there was an increase in the percentage of GFAP and Iba1-immupositive cells in the dentate gyrus compared to controls, indicating an inflammatory response in the brain. On the other hand, liraglutide treatment prevented the neuroinflammatory process, promoting the production of anti-inflammatory molecules such as IL10, TGFβ, and arginase 1, and decreasing the number and reactivity of microglial cells and astrocytes in the hippocampus of male pups. Conclusion Therefore, the GLP-1 analog, liraglutide, emerges as neuroprotective drug that minimizes the harmful effects of maternal food restriction, decreasing neuroinflammation in the hippocampus in a very early stage.
Collapse
Affiliation(s)
- Y Diz-Chaves
- Laboratory of Endocrinology, Biomedical Research Center (CINBIO), University of Vigo, Campus As Lagoas-Marcosende, E-36310, Vigo (Pontevedra), Spain.
| | - L Toba
- Laboratory of Endocrinology, Biomedical Research Center (CINBIO), University of Vigo, Campus As Lagoas-Marcosende, E-36310, Vigo (Pontevedra), Spain
| | - J Fandiño
- Laboratory of Endocrinology, Biomedical Research Center (CINBIO), University of Vigo, Campus As Lagoas-Marcosende, E-36310, Vigo (Pontevedra), Spain
| | - L C González-Matías
- Laboratory of Endocrinology, Biomedical Research Center (CINBIO), University of Vigo, Campus As Lagoas-Marcosende, E-36310, Vigo (Pontevedra), Spain
| | - L M Garcia-Segura
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Avenida Doctor Arce 37, E-28002, Madrid, Spain.,Centro de Investigación en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - F Mallo
- Laboratory of Endocrinology, Biomedical Research Center (CINBIO), University of Vigo, Campus As Lagoas-Marcosende, E-36310, Vigo (Pontevedra), Spain
| |
Collapse
|
29
|
Gao M, Deng XL, Liu ZH, Song HJ, Zheng J, Cui ZH, Xiao KL, Chen LL, Li HQ. Liraglutide protects β-cell function by reversing histone modification of Pdx-1 proximal promoter in catch-up growth male rats. J Diabetes Complications 2018; 32:985-994. [PMID: 30177467 DOI: 10.1016/j.jdiacomp.2018.08.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 07/17/2018] [Accepted: 08/01/2018] [Indexed: 01/08/2023]
Abstract
AIMS Catch-up growth after a period of nutritional deprivation in adulthood is related to the onset of metabolic disorders. This process involves chromatin remodelling of the Pdx-1 gene in pancreas. The objective of this study was to determine the chromatin remodelling mechanism of GLP-1 analogue Liraglutide upon Pdx-1 in catch-up growth rats in vivo and in vitro. METHODS Five-week-old male specific pathogen free (SPF) Wistar rats were randomly divided into normal group, catch-up growth group and Liraglutide group. Hyperglycemic clamp test and glucose-stimulated insulin secretion test were carried out to evaluate β-cell function in vivo and in vitro. The histone H3 modification changes at the Pdx-1 proximal promoter were assessed by chromatin immunoprecipitation. RESULTS The catch-up growth state was characterized by less recruitment of histone H3 lysine4 trimethylation and histone H3 acetylation and more recruitment of histone H3 lysine9 dimethylation at the Pdx-1 proximal promoter. Liraglutide treatment reversed these epigenetic changes and increased Pdx-1 expression, which could be abrogated by GLP-1 receptor antagonist Exendin 9-39. The β-cell function of catch-up growth rats was improved after Liraglutide treatment. CONCLUSIONS The protective effects of Liraglutide on pancreatic islet β-cell function may be related to histone H3 modification at the Pdx-1 proximal promoter during catch-up growth and could be used to treat catch-up growth-related metabolic disorders.
Collapse
Affiliation(s)
- Ming Gao
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, China; Department of Endocrinology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei, China
| | - Xiu-Ling Deng
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, China
| | - Zhen-Hua Liu
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, China
| | - Hui-Jie Song
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, China; Department of Endocrinology, Wuhan No.1 Hospital, Wuhan 430022, Hubei, China
| | - Juan Zheng
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, China
| | - Zhen-Hai Cui
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, China
| | - Kang-Li Xiao
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, China
| | - Lu-Lu Chen
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, China
| | - Hui-Qing Li
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, China.
| |
Collapse
|
30
|
Abstract
The incidence of metabolic disorders like type 2 diabetes (T2D) and obesity continue to increase. Although it is evident that the increasing incidence of diabetes confers a global societal and economic burden, the mechanisms responsible for the increased incidence of T2D are not well understood. Extensive efforts to understand the association of early-life perturbations with later onset of metabolic diseases, the founding principle of developmental origins of health and disease, have been crucial in determining the mechanisms that may be driving the pathogenesis of T2D. As the programming of the epigenome occurs during critical periods of development, it has emerged as a potential molecular mechanism that could occur early in life and impact metabolic health decades later. In this review, we critically evaluate human and animal studies that illustrated an association of epigenetic processes with development of T2D as well as intervention strategies that have been employed to reverse the perturbed epigenetic modification or reprogram the naturally occurring epigenetic marks to favor improved metabolic outcome. We highlight that although our understanding of epigenetics and its contribution toward developmental origins of T2D continues to grow, whether epigenetics is a cause, consequence, or merely a correlation remains debatable due to the many limitations/challenges of the existing epigenetic studies. Finally, we discuss the potential of establishing collaborative research efforts between different disciplines, including physiology, epigenetics, and bioinformatics, to help advance the developmental origins field with great potential for understanding the pathogenesis of T2D and developing preventive strategies for T2D.
Collapse
Affiliation(s)
- Amita Bansal
- Center for Research on Reproduction and Women's Health, Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania
- Center of Excellence in Environmental Toxicology, Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania
- Division of Neonatology, Department of Pediatrics, Children's Hospital of Philadelphia , Philadelphia, Pennsylvania
| | - Rebecca A Simmons
- Center for Research on Reproduction and Women's Health, Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania
- Center of Excellence in Environmental Toxicology, Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania
- Division of Neonatology, Department of Pediatrics, Children's Hospital of Philadelphia , Philadelphia, Pennsylvania
| |
Collapse
|
31
|
Hawkins LJ, Al-Attar R, Storey KB. Transcriptional regulation of metabolism in disease: From transcription factors to epigenetics. PeerJ 2018; 6:e5062. [PMID: 29922517 PMCID: PMC6005171 DOI: 10.7717/peerj.5062] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 06/04/2018] [Indexed: 12/13/2022] Open
Abstract
Every cell in an individual has largely the same genomic sequence and yet cells in different tissues can present widely different phenotypes. This variation arises because each cell expresses a specific subset of genomic instructions. Control over which instructions, or genes, are expressed is largely controlled by transcriptional regulatory pathways. Each cell must assimilate a huge amount of environmental input, and thus it is of no surprise that transcription is regulated by many intertwining mechanisms. This large regulatory landscape means there are ample possibilities for problems to arise, which in a medical context means the development of disease states. Metabolism within the cell, and more broadly, affects and is affected by transcriptional regulation. Metabolism can therefore contribute to improper transcriptional programming, or pathogenic metabolism can be the result of transcriptional dysregulation. Here, we discuss the established and emerging mechanisms for controling transcription and how they affect metabolism in the context of pathogenesis. Cis- and trans-regulatory elements, microRNA and epigenetic mechanisms such as DNA and histone methylation, all have input into what genes are transcribed. Each has also been implicated in diseases such as metabolic syndrome, various forms of diabetes, and cancer. In this review, we discuss the current understanding of these areas and highlight some natural models that may inspire future therapeutics.
Collapse
Affiliation(s)
- Liam J Hawkins
- Institute of Biochemistry, Department of Biology, Carleton University, Ottawa, ON, Canada
| | - Rasha Al-Attar
- Institute of Biochemistry, Department of Biology, Carleton University, Ottawa, ON, Canada
| | - Kenneth B Storey
- Institute of Biochemistry, Department of Biology, Carleton University, Ottawa, ON, Canada
| |
Collapse
|
32
|
Hoffman DJ, Reynolds RM, Hardy DB. Developmental origins of health and disease: current knowledge and potential mechanisms. Nutr Rev 2018; 75:951-970. [PMID: 29186623 DOI: 10.1093/nutrit/nux053] [Citation(s) in RCA: 231] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Epidemiologic and clinical research has provided a large body of evidence supporting the developmental origins of health and disease (DOHaD), but there has been a relative dearth of mechanistic studies in humans due to the complexity of working with large, longitudinal cohorts. Nonetheless, animal models of undernutrition have provided substantial evidence for the potential epigenetic, metabolic, and endocrine mechanisms behind DOHaD. Furthermore, recent research has explored the interaction between the environment and the gastrointestinal system by investigating how the gut microbial ecology may impact the capacity for nutrient processing and absorption in a manner that may limit growth. This review presents a summary of current research that supports the concept of DOHaD, as well as potential mechanisms and interactions that explain how nutrition in utero and during early childhood influences lifelong health.
Collapse
Affiliation(s)
- Daniel J Hoffman
- Department of Nutritional Sciences, Program in International Nutrition, and the New Jersey Institute for Food, Nutrition, and Health, Center for Childhood Nutrition Education and Research, Rutgers University, New Brunswick, New Jersey, USA
| | - Rebecca M Reynolds
- University/British Heart Foundation Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Daniel B Hardy
- Department of Obstetrics & Gynecology and the Department of Physiology & Pharmacology, The Children's Health Research Institute and the Lawson Health Research Institute, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
33
|
Song S, Johnson FB. Epigenetic Mechanisms Impacting Aging: A Focus on Histone Levels and Telomeres. Genes (Basel) 2018; 9:genes9040201. [PMID: 29642537 PMCID: PMC5924543 DOI: 10.3390/genes9040201] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 03/27/2018] [Accepted: 03/29/2018] [Indexed: 12/13/2022] Open
Abstract
Aging and age-related diseases pose some of the most significant and difficult challenges to modern society as well as to the scientific and medical communities. Biological aging is a complex, and, under normal circumstances, seemingly irreversible collection of processes that involves numerous underlying mechanisms. Among these, chromatin-based processes have emerged as major regulators of cellular and organismal aging. These include DNA methylation, histone modifications, nucleosome positioning, and telomere regulation, including how these are influenced by environmental factors such as diet. Here we focus on two interconnected categories of chromatin-based mechanisms impacting aging: those involving changes in the levels of histones or in the functions of telomeres.
Collapse
Affiliation(s)
- Shufei Song
- Biochemistry and Molecular Biophysics Graduate Group, Biomedical Graduate Studies, University of Pennsylvania, Philadelphia, PA 19104, USA.
- Department of Pathology and Laboratory Medicine, and Institute on Aging, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - F Brad Johnson
- Department of Pathology and Laboratory Medicine, and Institute on Aging, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
34
|
Rashid CS, Lien YC, Bansal A, Jaeckle-Santos LJ, Li C, Won KJ, Simmons RA. Transcriptomic Analysis Reveals Novel Mechanisms Mediating Islet Dysfunction in the Intrauterine Growth-Restricted Rat. Endocrinology 2018; 159:1035-1049. [PMID: 29309562 PMCID: PMC5793792 DOI: 10.1210/en.2017-00888] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 12/28/2017] [Indexed: 02/07/2023]
Abstract
Intrauterine growth restriction (IUGR) increases the risk of type 2 diabetes developing in adulthood. In previous studies that used bilateral uterine artery ligation in a rat model of IUGR, age-associated decline in glucose homeostasis and islet function was revealed. To elucidate mechanisms contributing to IUGR pathogenesis, the islet transcriptome was sequenced from 2-week-old rats, when in vivo glucose tolerance is mildly impaired, and at 10 weeks of age, when rats are hyperglycemic and have reduced β-cell mass. RNA sequencing and functional annotation with Ingenuity Pathway Analysis revealed temporal changes in IUGR islets. For instance, gene expression involving amino acid metabolism was significantly reduced primarily at 2 weeks of age, but ion channel expression, specifically that involved in cell-volume regulation, was more disrupted in adult IUGR islets. Additionally, we observed alterations in the microenvironment of IUGR islets with extracellular matrix genes being significantly increased at 2 weeks of age and significantly decreased at 10 weeks. Specifically, hyaluronan synthase 2 expression and hyaluronan staining were increased in IUGR islets at 2 weeks of age (P < 0.05). Mesenchymal stromal cell-derived factors that have been shown to preserve islet allograft function, such as Anxa1, Cxcl12, and others, also were increased at 2 weeks and decreased in adult islets. Finally, comparisons of differentially expressed genes with those of type 2 diabetic human islets support a role for these pathways in human patients with diabetes. Together, these data point to new mechanisms in the pathogenesis of IUGR-mediated islet dysfunction in type 2 diabetes.
Collapse
Affiliation(s)
- Cetewayo S. Rashid
- Center for Research on Reproduction and Women’s Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
- Division of Neonatology, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania 19104
| | - Yu-Chin Lien
- Center for Research on Reproduction and Women’s Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Amita Bansal
- Center for Research on Reproduction and Women’s Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
- Division of Neonatology, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania 19104
| | - Lane J. Jaeckle-Santos
- Division of Neonatology, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania 19104
| | - Changhong Li
- Division of Endocrinology and Diabetes, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania 19104
- Institute for Diabetes, Obesity, and Metabolism, Smilow Center for Translational Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Kyoung-Jae Won
- Institute for Diabetes, Obesity, and Metabolism, Smilow Center for Translational Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
- Department of Genetics, Smilow Center for Translational Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Rebecca A. Simmons
- Center for Research on Reproduction and Women’s Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
- Division of Neonatology, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania 19104
| |
Collapse
|
35
|
Salguero-Aranda C, Tapia-Limonchi R, Cahuana GM, Hitos AB, Diaz I, Hmadcha A, Fraga M, Martín F, Soria B, Tejedo JR, Bedoya FJ. Differentiation of Mouse Embryonic Stem Cells toward Functional Pancreatic β-Cell Surrogates through Epigenetic Regulation of Pdx1 by Nitric Oxide. Cell Transplant 2018; 25:1879-1892. [PMID: 26980118 DOI: 10.3727/096368916x691178] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Pancreatic and duodenal homeobox 1 (Pdx1) is a transcription factor that regulates the embryonic development of the pancreas and the differentiation toward β cells. Previously, we have shown that exposure of mouse embryonic stem cells (mESCs) to high concentrations of diethylenetriamine nitric oxide adduct (DETA-NO) triggers differentiation events and promotes the expression of Pdx1. Here we report evidence that Pdx1 expression is associated with release of polycomb repressive complex 2 (PRC2) and P300 from its promoter region. These events are accompanied by epigenetic changes in bivalent markers of histones trimethylated histone H3 lysine 27 (H3K27me3) and H3K4me3, site-specific changes in DNA methylation, and no change in H3 acetylation. On the basis of these findings, we developed a protocol to differentiate mESCs toward insulin-producing cells consisting of sequential exposure to DETA-NO, valproic acid, and P300 inhibitor (C646) to enhance Pdx1 expression and a final maturation step of culture in suspension to form cell aggregates. This small molecule-based protocol succeeds in obtaining cells that express pancreatic β-cell markers such as PDX1, INS1, GCK, and GLUT2 and respond in vitro to high glucose and KCl.
Collapse
Affiliation(s)
- Carmen Salguero-Aranda
- Andalusian Center for Molecular Biology and Regenerative Medicine, Seville, Spain.,Center for Network Research in Diabetes and Metabolic Diseases (CIBERDEM) Instituto de Salud Carlos III, Madrid, Spain.,Cell Therapy Network, Madrid (RED-TERCEL), Instituto de Salud Carlos III, Madrid, Spain.,Fundación Progreso y Salud, Seville, Spain
| | - Rafael Tapia-Limonchi
- Andalusian Center for Molecular Biology and Regenerative Medicine, Seville, Spain.,Pablo de Olavide University, Seville, Spain
| | - Gladys Margot Cahuana
- Andalusian Center for Molecular Biology and Regenerative Medicine, Seville, Spain.,Pablo de Olavide University, Seville, Spain
| | - Ana Belen Hitos
- Andalusian Center for Molecular Biology and Regenerative Medicine, Seville, Spain.,Center for Network Research in Diabetes and Metabolic Diseases (CIBERDEM) Instituto de Salud Carlos III, Madrid, Spain
| | - Irene Diaz
- Andalusian Center for Molecular Biology and Regenerative Medicine, Seville, Spain.,Center for Network Research in Diabetes and Metabolic Diseases (CIBERDEM) Instituto de Salud Carlos III, Madrid, Spain
| | - Abdelkrim Hmadcha
- Andalusian Center for Molecular Biology and Regenerative Medicine, Seville, Spain.,Cell Therapy Network, Madrid (RED-TERCEL), Instituto de Salud Carlos III, Madrid, Spain.,Fundación Progreso y Salud, Seville, Spain
| | - Mario Fraga
- Department of Epigenetics, Oncologic Institute of Principado of Asturias, Oviedo, Spain
| | - Franz Martín
- Andalusian Center for Molecular Biology and Regenerative Medicine, Seville, Spain.,Center for Network Research in Diabetes and Metabolic Diseases (CIBERDEM) Instituto de Salud Carlos III, Madrid, Spain.,Pablo de Olavide University, Seville, Spain
| | - Bernat Soria
- Andalusian Center for Molecular Biology and Regenerative Medicine, Seville, Spain.,Center for Network Research in Diabetes and Metabolic Diseases (CIBERDEM) Instituto de Salud Carlos III, Madrid, Spain.,Cell Therapy Network, Madrid (RED-TERCEL), Instituto de Salud Carlos III, Madrid, Spain.,Fundación Progreso y Salud, Seville, Spain
| | - Juan Rigoberto Tejedo
- Andalusian Center for Molecular Biology and Regenerative Medicine, Seville, Spain.,Center for Network Research in Diabetes and Metabolic Diseases (CIBERDEM) Instituto de Salud Carlos III, Madrid, Spain.,Cell Therapy Network, Madrid (RED-TERCEL), Instituto de Salud Carlos III, Madrid, Spain.,Pablo de Olavide University, Seville, Spain
| | - Francisco Javier Bedoya
- Andalusian Center for Molecular Biology and Regenerative Medicine, Seville, Spain.,Center for Network Research in Diabetes and Metabolic Diseases (CIBERDEM) Instituto de Salud Carlos III, Madrid, Spain.,Cell Therapy Network, Madrid (RED-TERCEL), Instituto de Salud Carlos III, Madrid, Spain.,Pablo de Olavide University, Seville, Spain
| |
Collapse
|
36
|
Boehmer BH, Limesand SW, Rozance PJ. The impact of IUGR on pancreatic islet development and β-cell function. J Endocrinol 2017; 235:R63-R76. [PMID: 28808079 PMCID: PMC5808569 DOI: 10.1530/joe-17-0076] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 08/10/2017] [Indexed: 12/14/2022]
Abstract
Placental insufficiency is a primary cause of intrauterine growth restriction (IUGR). IUGR increases the risk of developing type 2 diabetes mellitus (T2DM) throughout life, which indicates that insults from placental insufficiency impair β-cell development during the perinatal period because β-cells have a central role in the regulation of glucose tolerance. The severely IUGR fetal pancreas is characterized by smaller islets, less β-cells, and lower insulin secretion. Because of the important associations among impaired islet growth, β-cell dysfunction, impaired fetal growth, and the propensity for T2DM, significant progress has been made in understanding the pathophysiology of IUGR and programing events in the fetal endocrine pancreas. Animal models of IUGR replicate many of the observations in severe cases of human IUGR and allow us to refine our understanding of the pathophysiology of developmental and functional defects in islet from IUGR fetuses. Almost all models demonstrate a phenotype of progressive loss of β-cell mass and impaired β-cell function. This review will first provide evidence of impaired human islet development and β-cell function associated with IUGR and the impact on glucose homeostasis including the development of glucose intolerance and diabetes in adulthood. We then discuss evidence for the mechanisms regulating β-cell mass and insulin secretion in the IUGR fetus, including the role of hypoxia, catecholamines, nutrients, growth factors, and pancreatic vascularity. We focus on recent evidence from experimental interventions in established models of IUGR to understand better the pathophysiological mechanisms linking placental insufficiency with impaired islet development and β-cell function.
Collapse
Affiliation(s)
- Brit H Boehmer
- Department of PediatricsPerinatal Research Center, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Sean W Limesand
- School of Animal and Comparative Biomedical SciencesUniversity of Arizona, Tucson, Arizona, USA
| | - Paul J Rozance
- Department of PediatricsPerinatal Research Center, University of Colorado School of Medicine, Aurora, Colorado, USA
| |
Collapse
|
37
|
Sulaiman SA, De Blasio MJ, Harland ML, Gatford KL, Owens JA. Maternal methyl donor and cofactor supplementation in late pregnancy increases β-cell numbers at 16 days of life in growth-restricted twin lambs. Am J Physiol Endocrinol Metab 2017; 313:E381-E390. [PMID: 28679621 DOI: 10.1152/ajpendo.00033.2017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 05/18/2017] [Accepted: 06/27/2017] [Indexed: 02/07/2023]
Abstract
Restricted growth before birth (IUGR) increases adult risk of Type 2 diabetes by impairing insulin sensitivity and secretion. Altered fetal one-carbon metabolism is implicated in developmental programming of adult health and disease by IUGR. Therefore, we evaluated effects of maternal dietary supplementation with methyl donors and cofactors (MMDS), designed to increase fetal supply, on insulin action in the spontaneously IUGR twin lamb. In vivo glucose-stimulated insulin secretion and insulin sensitivity were measured at days 12-14 in singleton controls (CON, n = 7 lambs from 7 ewes), twins (IUGR, n = 8 lambs from 8 ewes), and twins from ewes that received MMDS (2 g rumen-protected methionine, 300 mg folic acid, 1.2 g sulfur, 0.7 mg cobalt) daily from 120 days after mating (~0.8 of term) until delivery (IUGR+MMDS, n = 8 lambs from 4 ewes). Body composition and pancreas morphometry were assessed in lambs at day 16 IUGR reduced size at birth and increased neonatal fractional growth rate. MMDS normalized long bone lengths but not other body dimensions of IUGR lambs at birth. IUGR did not impair glucose control or insulin action at days 12-14, compared with controls. MMDS increased metabolic clearance rate of insulin and increased β-cell numerical density and tended to improve insulin sensitivity, compared with untreated IUGR lambs. This demonstrates that effects of late-pregnancy methyl donor supplementation persist until at least the third week of life. Whether these effects of MMDS persist beyond early postnatal life and improve metabolic outcomes after IUGR in adults and the underlying mechanisms remain to be determined.
Collapse
Affiliation(s)
- Siti A Sulaiman
- Robinson Research Institute and Adelaide Medical School, University of Adelaide, South Australia, Australia
| | - Miles J De Blasio
- Robinson Research Institute and Adelaide Medical School, University of Adelaide, South Australia, Australia
| | - M Lyn Harland
- Robinson Research Institute and Adelaide Medical School, University of Adelaide, South Australia, Australia
| | - Kathryn L Gatford
- Robinson Research Institute and Adelaide Medical School, University of Adelaide, South Australia, Australia
| | - Julie A Owens
- Robinson Research Institute and Adelaide Medical School, University of Adelaide, South Australia, Australia
| |
Collapse
|
38
|
Tarry-Adkins JL, Ozanne SE. Nutrition in early life and age-associated diseases. Ageing Res Rev 2017; 39:96-105. [PMID: 27594376 DOI: 10.1016/j.arr.2016.08.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 03/24/2016] [Accepted: 08/05/2016] [Indexed: 02/06/2023]
Abstract
The prevalence of age-associated disease is increasing at a striking rate globally. It is known that a strong association exists between a suboptimal maternal and/or early-life environment and increased propensity of developing age-associated disease, including cardiovascular disease (CVD), type-2 diabetes (T2D) and obesity. The dissection of underlying molecular mechanisms to explain this phenomenon, which is known as 'developmental programming' is still emerging; however three common mechanisms have emerged in many models of developmental programming. These mechanisms are (a) changes in tissue structure, (b) epigenetic regulation and (c) accelerated cellular ageing. This review will examine the epidemiological evidence and the animal models of suboptimal maternal environments, focusing upon these molecular mechanisms and will discuss the progress being made in the development of safe and effective intervention strategies which ultimately could target those 'programmed' individuals who are known to be at-risk of age-associated disease.
Collapse
Affiliation(s)
- Jane L Tarry-Adkins
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Institute of Metabolic Science, Level 4, Box 289, Addenbrooke's Treatment Centre, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 OQQ, UK.
| | - Susan E Ozanne
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Institute of Metabolic Science, Level 4, Box 289, Addenbrooke's Treatment Centre, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 OQQ, UK.
| |
Collapse
|
39
|
Sackett SD, Rodriguez A, Odorico JS. The Nexus of Stem Cell-Derived Beta-Cells and Genome Engineering. Rev Diabet Stud 2017. [PMID: 28632820 DOI: 10.1900/rds.2017.14.39] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Diabetes, type 1 and type 2 (T1D and T2D), are diseases of epidemic proportions, which are complicated and defined by genetics, epigenetics, environment, and lifestyle choices. Current therapies consist of whole pancreas or islet transplantation. However, these approaches require life-time immunosuppression, and are compounded by the paucity of available donors. Pluripotent stem cells have advanced research in the fields of stem cell biology, drug development, disease modeling, and regenerative medicine, and importantly allows for the interrogation of therapeutic interventions. Recent developments in beta-cell differentiation and genomic modifications are now propelling investigations into the mechanisms behind beta-cell failure and autoimmunity, and offer new strategies for reducing the propensity for immunogenicity. This review discusses the derivation of endocrine lineage cells from human pluripotent stem cells for the treatment of diabetes, and how the editing or manipulation of their genomes can transcend many of the remaining challenges of stem cell technologies, leading to superior transplantation and diabetes drug discovery platforms.
Collapse
Affiliation(s)
- Sara D Sackett
- Division of Transplantation, Department of Surgery, School of Medicine and Public Health, University of Wisconsin-Madison, 1111 Highland Ave, Madison, WI 53711, USA
| | - Aida Rodriguez
- Division of Transplantation, Department of Surgery, School of Medicine and Public Health, University of Wisconsin-Madison, 1111 Highland Ave, Madison, WI 53711, USA
| | - Jon S Odorico
- Division of Transplantation, Department of Surgery, School of Medicine and Public Health, University of Wisconsin-Madison, 1111 Highland Ave, Madison, WI 53711, USA
| |
Collapse
|
40
|
Golson ML, Kaestner KH. Epigenetics in formation, function, and failure of the endocrine pancreas. Mol Metab 2017; 6:1066-1076. [PMID: 28951829 PMCID: PMC5605720 DOI: 10.1016/j.molmet.2017.05.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 05/16/2017] [Accepted: 05/22/2017] [Indexed: 01/17/2023] Open
Abstract
Background Epigenetics, in the broadest sense, governs all aspects of the life of any multicellular organism, as it controls how differentiated cells arrive at their unique phenotype during development and differentiation, despite having a uniform (with some exceptions such as T-cells and germ cells) genetic make-up. The endocrine pancreas is no exception. Transcriptional regulators and epigenetic modifiers shape the differentiation of the five major endocrine cell types from their common precursor in the fetal pancreatic bud. Beyond their role in cell differentiation, interactions of the organism with the environment are also often encoded into permanent or semi-permanent epigenetic marks and affect cellular behavior and organismal health. Epigenetics is defined as any heritable – at least through one mitotic cell division – change in phenotype or trait that is not the result of a change in genomic DNA sequence, and it forms the basis that mediates the environmental impact on diabetes susceptibility and islet function. Scope of review We will summarize the impact of epigenetic regulation on islet cell development, maturation, function, and pathophysiology. We will briefly recapitulate the major epigenetic marks and their relationship to gene activity, and outline novel strategies to employ targeted epigenetic modifications as a tool to improve islet cell function. Major conclusions The improved understanding of the epigenetic underpinnings of islet cell differentiation, function and breakdown, as well as the development of innovative tools for their manipulation, is key to islet cell biology and the discovery of novel approaches to therapies for islet cell failure.
Collapse
Affiliation(s)
- Maria L Golson
- University of Pennsylvania, Department of Genetics and Institute for Diabetes, Obesity, and Metabolism, Philadelphia, PA, USA
| | - Klaus H Kaestner
- University of Pennsylvania, Department of Genetics and Institute for Diabetes, Obesity, and Metabolism, Philadelphia, PA, USA
| |
Collapse
|
41
|
Developmental and Transmittable Origins of Obesity-Associated Health Disorders. Trends Genet 2017; 33:399-407. [PMID: 28438343 DOI: 10.1016/j.tig.2017.03.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 03/27/2017] [Accepted: 03/28/2017] [Indexed: 11/23/2022]
Abstract
The current global obesity pandemic is clearly linked to both the increasing prevalence of, and preference for, foods high in calories, specifically fat and sucrose, and declining levels of daily physical activity. A less commonly discussed possible explanation is that risk of obesity begins in utero as a result of developmental plasticity during early life. This idea fits into the broader Developmental Origins of Health and Diseases (DOHAD) hypothesis, which holds that stressful in utero exposure manifests as disease in adulthood. In this review, we highlight several studies that have revealed the role of epigenetics in multigenerational transmission of developmentally programmed obesity and associated cardiometabolic disease.
Collapse
|
42
|
Hjort L, Jørgensen SW, Gillberg L, Hall E, Brøns C, Frystyk J, Vaag AA, Ling C. 36 h fasting of young men influences adipose tissue DNA methylation of LEP and ADIPOQ in a birth weight-dependent manner. Clin Epigenetics 2017; 9:40. [PMID: 28439315 PMCID: PMC5399392 DOI: 10.1186/s13148-017-0340-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 04/12/2017] [Indexed: 12/18/2022] Open
Abstract
Background Subjects born with low birth weight (LBW) display a more energy-conserving response to fasting compared with normal birth weight (NBW) subjects. However, the molecular mechanisms explaining these metabolic differences remain unknown. Environmental influences may dynamically affect epigenetic marks, also in postnatal life. Here, we aimed to study the effects of short-term fasting on leptin (LEP) and adiponectin (ADIPOQ) DNA methylation and gene expression in subcutaneous adipose tissue (SAT) from subjects with LBW and NBW. Methods Twenty-one young LBW men and 18 matched NBW controls were studied during 36 h fasting. Eight subjects from each group completed a control study (overnight fast). We analyzed SAT LEP and ADIPOQ methylation (Epityper MassARRAY), gene expression (q-PCR), and adipokine plasma levels. Results After overnight fast (control study), LEP and ADIPOQ DNA methylation levels were higher in LBW compared to those in NBW subjects (p ≤ 0.03) and increased with 36 h fasting in NBW subjects only (p ≤ 0.06). Both LEP and ADIPOQ methylation levels were positively associated with total body fat percentage (p ≤ 0.05). Plasma leptin levels were higher in LBW versus NBW subjects after overnight fasting (p = 0.04) and decreased more than threefold in both groups after 36 h fasting (p ≤ 0.0001). Conclusions This is the first study to demonstrate that fasting induces changes in DNA methylation. This was shown in LEP and ADIPOQ promoters in SAT among NBW but not LBW subjects. The altered epigenetic flexibility in LBW subjects might contribute to their differential response to fasting, adipokine levels, and increased risk of metabolic disease. Electronic supplementary material The online version of this article (doi:10.1186/s13148-017-0340-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Line Hjort
- Department of Endocrinology (Diabetes and Metabolism), Rigshospitalet, section 7652, Tagensvej 20, DK-2200 Copenhagen N, Denmark.,Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,The Danish Diabetes Academy, Odense, Denmark
| | - Sine W Jørgensen
- Department of Endocrinology (Diabetes and Metabolism), Rigshospitalet, section 7652, Tagensvej 20, DK-2200 Copenhagen N, Denmark.,Steno Diabetes Center, Gentofte, Denmark
| | - Linn Gillberg
- Department of Endocrinology (Diabetes and Metabolism), Rigshospitalet, section 7652, Tagensvej 20, DK-2200 Copenhagen N, Denmark
| | - Elin Hall
- Epigenetics and Diabetes and Islet Cell Exocytosis, Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, CRC, Jan Waldentröms gata 35, SE-20502 Malmö, Sweden
| | - Charlotte Brøns
- Department of Endocrinology (Diabetes and Metabolism), Rigshospitalet, section 7652, Tagensvej 20, DK-2200 Copenhagen N, Denmark
| | - Jan Frystyk
- Institute of Clinical Medicine, University of Aarhus, Aarhus, Denmark
| | - Allan A Vaag
- Department of Endocrinology (Diabetes and Metabolism), Rigshospitalet, section 7652, Tagensvej 20, DK-2200 Copenhagen N, Denmark.,AstraZeneca, Mölndal, Sweden
| | - Charlotte Ling
- Epigenetics and Diabetes and Islet Cell Exocytosis, Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, CRC, Jan Waldentröms gata 35, SE-20502 Malmö, Sweden
| |
Collapse
|
43
|
Abstract
Intrauterine growth restriction (IUGR) has been defined in several ways, but in general describes a condition in which the fetus exhibits poor growth in utero. This complication of pregnancy poses a significant public health burden as well as increased morbidity and mortality for the offspring. In human IUGR, alteration in fetal glucose and insulin homeostasis occurs in an effort to conserve energy and survive at the expense of fetal growth in an environment of inadequate nutrient provision. Several animal models of IUGR have been utilized to study the effects of IUGR on fetal glucose handling, as well as the postnatal reprogramming of energy metabolite handling, which may be unmasked in adulthood as a maladaptive propensity for cardiometabolic disease. This developmental programming may be mediated in part by epigenetic modification of essential regulators of glucose homeostasis. Several pharmacological therapies and nonpharmacological lifestyle modifications have shown early promise in mitigating the risk for or severity of adult metabolic phenotypes but still require further study of unanticipated and/or untoward side effects.
Collapse
Affiliation(s)
- Sherin U Devaskar
- Department of Pediatrics, Division of Neonatology, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Alison Chu
- Department of Pediatrics, Division of Neonatology, David Geffen School of Medicine at UCLA, Los Angeles, California
| |
Collapse
|
44
|
Bernstein D, Golson ML, Kaestner KH. Epigenetic control of β-cell function and failure. Diabetes Res Clin Pract 2017; 123:24-36. [PMID: 27918975 PMCID: PMC5250585 DOI: 10.1016/j.diabres.2016.11.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 11/15/2016] [Indexed: 12/21/2022]
Abstract
Type 2 diabetes is a highly heritable disease, but only ∼15% of this heritability can be explained by known genetic variant loci. In fact, body mass index is more predictive of diabetes than any of the common risk alleles identified by genome-wide association studies. This discrepancy may be explained by epigenetic inheritance, whereby changes in gene regulation can be passed along to offspring. Epigenetic changes throughout an organism's lifetime, based on environmental factors such as chemical exposures, diet, physical activity, and age, can also affect gene expression and susceptibility to diabetes. Recently, novel genome-wide assays of epigenetic marks have resulted in a greater understanding of how genetics, epigenetics, and the environment interact in the development and inheritance of diabetes.
Collapse
Affiliation(s)
- Diana Bernstein
- Department of Genetics and Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Maria L Golson
- Department of Genetics and Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Klaus H Kaestner
- Department of Genetics and Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
45
|
A review of fundamental principles for animal models of DOHaD research: an Australian perspective. J Dev Orig Health Dis 2016; 7:449-472. [DOI: 10.1017/s2040174416000477] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Epidemiology formed the basis of ‘the Barker hypothesis’, the concept of ‘developmental programming’ and today’s discipline of the Developmental Origins of Health and Disease (DOHaD). Animal experimentation provided proof of the underlying concepts, and continues to generate knowledge of underlying mechanisms. Interventions in humans, based on DOHaD principles, will be informed by experiments in animals. As knowledge in this discipline has accumulated, from studies of humans and other animals, the complexity of interactions between genome, environment and epigenetics, has been revealed. The vast nature of programming stimuli and breadth of effects is becoming known. As a result of our accumulating knowledge we now appreciate the impact of many variables that contribute to programmed outcomes. To guide further animal research in this field, the Australia and New Zealand DOHaD society (ANZ DOHaD) Animals Models of DOHaD Research Working Group convened at the 2nd Annual ANZ DOHaD Congress in Melbourne, Australia in April 2015. This review summarizes the contributions of animal research to the understanding of DOHaD, and makes recommendations for the design and conduct of animal experiments to maximize relevance, reproducibility and translation of knowledge into improving health and well-being.
Collapse
|
46
|
Oxytocin, a main breastfeeding hormone, prevents hypertension acquired in utero: A therapeutics preview. Biochim Biophys Acta Gen Subj 2016; 1861:3071-3084. [PMID: 27658996 DOI: 10.1016/j.bbagen.2016.09.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 08/29/2016] [Accepted: 09/16/2016] [Indexed: 02/07/2023]
Abstract
Hypertension is a major risk factor for ischemic heart disease and stroke, leading causes of morbidity and death worldwide. Intrauterine growth restriction (IUGR), caused by an excess of glucocorticoid exposure to the fetus, produces an imbalance in oxidative stress altering many biochemical and epigenetic gene transcription processes exposing the fetus and neonate to the 'thrifty' phenotype and pervasive polymorphisms appearance damaging health, cognitive, and behavioral processes in later life. OT is a major regulator of oxidative stress radicals that plays a major role in neonatal maturation of the central nervous system and many peripheral tissues expressing oxytocin/oxytocin-receptor (OT/OTR) system in the early postnatal period. OT and OTR are damaged by IUGR and early stress. This review highlights the fact that hypertension is likely to be a legacy of preterm birth due to IUGR and failure to meet nutritional needs in early infancy when fed formula instead of breastfeeding or human milk.
Collapse
|
47
|
Yasuda H, Ohashi A, Nishida S, Kamiya T, Suwa T, Hara H, Takeda J, Itoh Y, Adachi T. Exendin-4 induces extracellular-superoxide dismutase through histone H3 acetylation in human retinal endothelial cells. J Clin Biochem Nutr 2016; 59:174-181. [PMID: 27895384 PMCID: PMC5110938 DOI: 10.3164/jcbn.16-26] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 06/04/2016] [Indexed: 12/28/2022] Open
Abstract
Extracellular-superoxide dismutase (genetic name SOD3) is a secreted anti-oxidative enzyme, and its presence in vascular walls may play an important role in protecting the vascular system against oxidative stress. Oxidative stress has been implicated in the pathogenesis of diabetic retinopathy; therefore, increases in extracellular-superoxide dismutase have been suggested to inhibit the progression of diabetic retinopathy. Incretin-based drugs such as glucagon-like peptide-1 receptor agonists are used in the treatment of type 2 diabetes. Glucagon-like peptide-1 receptor agonists are expected to function as extrapancreatic agents because the glucagon-like peptide-1 receptor is expressed not only in pancreatic tissues, but also in many other tissue types. We herein demonstrated that exendin-4, a glucagon-like peptide-1 receptor agonist, induced the expression of extracellular-superoxide dismutase in human retinal microvascular endothelial cells through epigenetic regulation. The results of the present study demonstrated that exendin-4 induced the expression of extracellular-superoxide dismutase through histone H3 acetylation at the SOD3 proximal promoter region. Moreover, plasma extracellular-superoxide dismutase concentrations in diabetic patients were elevated by incretin-based therapies. Therefore, incretin-based therapies may exert direct extrapancreatic effects in order to protect blood vessels by enhancing anti-oxidative activity.
Collapse
Affiliation(s)
- Hiroyuki Yasuda
- Laboratory of Clinical Pharmaceutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Atsuko Ohashi
- Laboratory of Clinical Pharmaceutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Shohei Nishida
- Department of Pharmacy, Gifu University Hospital, 1-1 Yanagido, Gifu 501-1194, Japan
| | - Tetsuro Kamiya
- Laboratory of Clinical Pharmaceutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Tetsuya Suwa
- Department of Diabetes and Endocrinology, Gifu University School of Medicine, 1-1 Yanagido, Gifu 501-1194, Japan
| | - Hirokazu Hara
- Laboratory of Clinical Pharmaceutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Jun Takeda
- Department of Diabetes and Endocrinology, Gifu University School of Medicine, 1-1 Yanagido, Gifu 501-1194, Japan
| | - Yoshinori Itoh
- Department of Pharmacy, Gifu University Hospital, 1-1 Yanagido, Gifu 501-1194, Japan
| | - Tetsuo Adachi
- Laboratory of Clinical Pharmaceutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| |
Collapse
|
48
|
Diz-Chaves Y, Gil-Lozano M, Toba L, Fandiño J, Ogando H, González-Matías LC, Mallo F. Stressing diabetes? The hidden links between insulinotropic peptides and the HPA axis. J Endocrinol 2016; 230:R77-94. [PMID: 27325244 DOI: 10.1530/joe-16-0118] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 06/20/2016] [Indexed: 12/25/2022]
Abstract
Diabetes mellitus exerts metabolic stress on cells and it provokes a chronic increase in the long-term activity of the hypothalamus-pituitary-adrenocortical (HPA) axis, perhaps thereby contributing to insulin resistance. GLP-1 receptor (GLP-1R) agonists are pleiotropic hormones that not only affect glycaemic and metabolic control, but they also produce many other effects including activation of the HPA axis. In fact, several of the most relevant effects of GLP-1 might involve, at least in part, the modulation of the HPA axis. Thus, the anorectic activity of GLP-1 could be mediated by increasing CRF at the hypothalamic level, while its lipolytic effects could imply a local increase in glucocorticoids and glucocorticoid receptor (GC-R) expression in adipose tissue. Indeed, the potent activation of the HPA axis by GLP-1R agonists occurs within the range of therapeutic doses and with a short latency. Interestingly, the interactions of GLP-1 with the HPA axis may underlie most of the effects of GLP-1 on food intake control, glycaemic metabolism, adipose tissue biology and the responses to stress. Moreover, such activity has been observed in animal models (mice and rats), as well as in normal humans and in type I or type II diabetic patients. Accordingly, better understanding of how GLP-1R agonists modulate the activity of the HPA axis in diabetic subjects, especially obese individuals, will be crucial to design new and more efficient therapies for these patients.
Collapse
Affiliation(s)
- Yolanda Diz-Chaves
- Laboratory of EndocrinologyCenter for Biomedical Research - CINBIO, University of Vigo, Vigo, Spain Instituto de Investigación Sanitaria Galicia Sur - IISGSVigo, Spain
| | - Manuel Gil-Lozano
- Laboratory of EndocrinologyCenter for Biomedical Research - CINBIO, University of Vigo, Vigo, Spain Instituto de Investigación Sanitaria Galicia Sur - IISGSVigo, Spain
| | - Laura Toba
- Laboratory of EndocrinologyCenter for Biomedical Research - CINBIO, University of Vigo, Vigo, Spain Instituto de Investigación Sanitaria Galicia Sur - IISGSVigo, Spain
| | - Juan Fandiño
- Laboratory of EndocrinologyCenter for Biomedical Research - CINBIO, University of Vigo, Vigo, Spain Instituto de Investigación Sanitaria Galicia Sur - IISGSVigo, Spain
| | - Hugo Ogando
- Laboratory of EndocrinologyCenter for Biomedical Research - CINBIO, University of Vigo, Vigo, Spain Instituto de Investigación Sanitaria Galicia Sur - IISGSVigo, Spain
| | - Lucas C González-Matías
- Laboratory of EndocrinologyCenter for Biomedical Research - CINBIO, University of Vigo, Vigo, Spain Instituto de Investigación Sanitaria Galicia Sur - IISGSVigo, Spain
| | - Federico Mallo
- Laboratory of EndocrinologyCenter for Biomedical Research - CINBIO, University of Vigo, Vigo, Spain Instituto de Investigación Sanitaria Galicia Sur - IISGSVigo, Spain
| |
Collapse
|
49
|
Kido T, Honma S, Nhu DD, Manh HD, Van Tung D, Liang SX, Anh LT, Okamoto R, Maruzeni S, Nakagawa H, Hung NN, Son LK. Inverse association of highly chlorinated dioxin congeners in maternal breast milk with dehydroepiandrosterone levels in three-year-old Vietnamese children. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 550:248-255. [PMID: 26820928 DOI: 10.1016/j.scitotenv.2016.01.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 01/05/2016] [Accepted: 01/06/2016] [Indexed: 05/04/2023]
Abstract
This study aims to evaluate the endocrine-disrupting effect of dioxin congeners on adrenal steroid hormones in mother-child pairs. In our previous study, we found that cortisol and cortisone levels were higher in the blood and the saliva of mothers living in a dioxin hotspot area than in mothers from a non-exposed region in Vietnam. In this follow-up study, we determined the salivary steroid hormone levels in 49 and 55 three-year-old children of these mothers in the hotspot and non-exposed region, respectively. Steroid hormones were determined by liquid chromatography-tandem mass spectrometry, and dioxin in the maternal breast milk was determined by gas chromatography-mass spectrometry. Dioxin levels in the breast milk of mothers from the hotspot (median total toxic equivalents polychlorinated dibenzodioxins/polychlorinated dibenzofurans; (TEQ PCDD/Fs) of 11pg/g lipid) were three to four times higher than those of mothers in the non-exposed region (median TEQ PCDD/Fs of 3.07pg/g lipid). Salivary dehydroepiandrosterone (DHEA) levels in children were found to be significantly lower in the hotspot than in the non-exposed region, while cortisol and cortisone levels were not different between the two regions. Highly chlorinated dioxin congeners, such as octacholorodibenzodioxin (OCDD), 1,2,3,4,6,7,8-heptacholorodibenzodioxin (HpCDD) and 1,2,3,4 (or 6), 7,8-hexachlorodibenzodioxin Hx(CDD), showed stronger inverse associations with the children's salivary DHEA than other lowly chlorinated dioxin congeners. Glucocorticoid levels in the mothers exhibited a significantly positive correlation with OCDD and HpCDD/F (polychlorinated dibenzofurans). In conclusion, highly chlorinated dioxin congeners are more strongly correlated with endocrine-disrupting effects on adrenal hormones, resulting in high cortisol levels in the mothers and low DHEA levels in their three-year-old children.
Collapse
Affiliation(s)
- Teruhiko Kido
- Faculty of Health Sciences, Institute of Medical Pharmaceutical and Health Sciences, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa, Japan.
| | - Seijiro Honma
- Faculty of Health Sciences, Institute of Medical Pharmaceutical and Health Sciences, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa, Japan
| | - Dang Duc Nhu
- School of Medicine and Pharmacy, Vietnam National University, Hanoi, Viet Nam
| | - Ho Dung Manh
- Faculty of Health Sciences, Institute of Medical Pharmaceutical and Health Sciences, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa, Japan; Faculty of Pharmacy, Lac Hong University, No. 10 Huynh Van Nghe, Buu Long, Bien Hoa, Dong Nai, Viet Nam
| | - Dao Van Tung
- Hanoi Medical University, No.1 Ton That Tung, Dong Da, Hanoi, Viet Nam; Viettiep Hospital, No. 1 Nha Thuong, Le Chan, Hai Phong, Viet Nam
| | - Sun Xian Liang
- Faculty of Health Sciences, Institute of Medical Pharmaceutical and Health Sciences, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa, Japan; Department of Public Health, School of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, Zhenjiang, China
| | - Le Thai Anh
- Faculty of Health Sciences, Institute of Medical Pharmaceutical and Health Sciences, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa, Japan
| | - Rie Okamoto
- Faculty of Health Sciences, Institute of Medical Pharmaceutical and Health Sciences, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa, Japan
| | - Shoko Maruzeni
- Department of Epidemiology and Public Health, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Ishikawa, Japan
| | - Hideaki Nakagawa
- Department of Epidemiology and Public Health, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Ishikawa, Japan
| | - Nguyen Ngoc Hung
- Hanoi Medical University, No.1 Ton That Tung, Dong Da, Hanoi, Viet Nam
| | - Le Ke Son
- Environment Administration, Ministry of Natural Resources and Environment, 67 Nguyen Du Street, Hanoi, Viet Nam
| |
Collapse
|
50
|
Blood-based biomarkers of age-associated epigenetic changes in human islets associate with insulin secretion and diabetes. Nat Commun 2016; 7:11089. [PMID: 27029739 PMCID: PMC4821875 DOI: 10.1038/ncomms11089] [Citation(s) in RCA: 169] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 02/19/2016] [Indexed: 12/18/2022] Open
Abstract
Aging associates with impaired pancreatic islet function and increased type 2 diabetes (T2D) risk. Here we examine whether age-related epigenetic changes affect human islet function and if blood-based epigenetic biomarkers reflect these changes and associate with future T2D. We analyse DNA methylation genome-wide in islets from 87 non-diabetic donors, aged 26-74 years. Aging associates with increased DNA methylation of 241 sites. These sites cover loci previously associated with T2D, for example, KLF14. Blood-based epigenetic biomarkers reflect age-related methylation changes in 83 genes identified in human islets (for example, KLF14, FHL2, ZNF518B and FAM123C) and some associate with insulin secretion and T2D. DNA methylation correlates with islet expression of multiple genes, including FHL2, ZNF518B, GNPNAT1 and HLTF. Silencing these genes in β-cells alter insulin secretion. Together, we demonstrate that blood-based epigenetic biomarkers reflect age-related DNA methylation changes in human islets, and associate with insulin secretion in vivo and T2D.
Collapse
|